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1 Summary of Prerequisite 

A prerequisite is the minimum knowledge required to pass a course or subject that must be met 

before being allowed to study it. [Glossary of foreign words] 

Overview 

The prerequisite content could be well-known from programming courses. We will present the 

coding of binary integers as unsigned and signed numbers and explain their overflows during 

additions or subtractions. Furthermore, we will describe the logical and arithmetic shifts essential 

in logic circuits. In languages C, C #, and Java, they are partially included as shift operators << 

and >>. 

Finally, we will briefly discuss the hexadecimal notation, necessary BCD coding, and ASCII 

characters. 

Why was it created? 

Many have certainly encountered binary numbers during their studies or have studied the subject 

themselves, but others have only experienced them fleetingly. Back in the day, when lectures 

started from the basics, the more knowledgeable students wrote in the course evaluation survey 

that they were pretty bored in the first few classes. After responding to their comments, the lec-

ture focused more quickly on more interesting issues, but the less knowledgeable were blamed 

for not understanding the introductory passages.  

I have written a prerequisite here to standardize the input knowledge to accommodate everyone. 

I have included only light terms. The complexities were left in the lectures. 

How should we study the prerequisite?  

Be sure to read the full text. If you think you understand a passage, don't skip it, but skim it to 

see if you can discover any new insights. However, slow down if you come across less familiar 

concepts or are not 100% sure about something, and study the topic carefully, including the pro-

cedures in the examples. 

Language note 

The textbook was translated from the original Czech language by a DeepL and then manually 

corrected with the aid of the Grammerly checker. Readers may encounter some sentence that 

escapes proofing. They will be purified in the following versions. 

We do not use LaTeX. DeepL does not support its documents. We selected the MS Word editor, 

which does not allow inserting some cases of cross-references by a simple number. Some of 

them can also look clumsy. 

History of the text 

The prerequisite initially belonged to the APOLOS textbook, the name of which was created by 

combining the abbreviations of the course Computer Architecture (APO) and Logic Circuits and 

Systems (LOS), which was the predecessor of today's Logic Processor Systems (LSP). It con-

tained a very brief overview of logic and binary numbers. 

For the LOS, later LSP, I created other textbooks. In 2023, I completed the text Logic Circuits on 

FPGAs, greatly expanding the APOLOS passage on logic. I then removed the treatment of bina-

ry numbers from APOLOS and, after minor adaptations, saved it as a Binary Prerequisite. 

https://www.deepl.com/translator
https://www.grammarly.com/grammar-check
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Follow-up textbook for Logic Systems and Processors 

Computer Architecture has an excellent textbook, "David A. Patterson and John L. Hennessy. 

2013. Computer Organization and Design".  

There are many materials on logic, but they often refer to older design techniques. Nothing com-

prehensive has been found that comprehensively summarizes the knowledge needed to design 

circuits correctly. And, after all, novice designers may find it more difficult to distinguish what is 

still valid today, what designs can still be applied after minor modifications, and what rampages 

are no longer allowed on modern means, even though they were once trendy and recommended, 

and so there are numerous diagrams of them on the web.  

 

The binary prerequisite you are now reading is the entry portal.  

The textbook Logic Circuits on FPGAs covers the main logic structures and principles. It con-

tains general logic circuit knowledge but without descriptions in HDL languages. Schematics 

explain everything; for some, the circuit versions are given when implemented on FPGAs (Field 

Programmable Gate Arrays). There are widespread universal chips that offer a cheaper way for 

small series and a good solution for debugging monolithic integrated circuits' prototypes. 

The textbook "Logic Circuits on FPGAs" serves as a springboard for design, which we can write 

in any HDL (Hardware Description Language). In our Control Engineering Department, we 

have chosen VHDL, which we consider more convenient for beginners. It is the focus of our 

other scripts, still under development, "Circuit Design in VHDL 2008 for C Programmers".  

If somebody chooses to continue with Verilog or SystemVerilog, one will find several scholars 

from other authors.  

 



7 

 

2 Integers expressed in binary system 

Maybe you have already heard somewhere the following joke or some of its modifications: 

After a car accident, a programmer signed me the compensation of 1000 €. 

He paid me ten euros with the note that he gave me two euros extra. 

Its punchline is based on the fact that 1000 in a binary system is always decimal 8. It may or may 

not. The value depends on the method of coding numbers and the bit length of the numbers. 

Computers use different lengths of binary numbers, but usually only multiples of 8 bits (byte 

length). The lowest bit is located on the right, while the highest bit is on the left. 

  

The word "bit" originally meant a small quantity of food. Four bits are sometimes called "nib-

ble" (a negligible quantity of food). The size of 8 bits is known as byte, originating from a delib-

erate respelling of bite (a small amount of food). The size of 8 bits is also called "octet".  

In logic circuits, a binary number may have an arbitrary positive length, i.e., a length greater than 

zero. There is no limit to the entire number of bits. The lowest bit can lie to the right (as in the 

picture above) and left. However, even circuits prefer the classical computer arrangement with 

the lowest bit to the right. The abbreviations mark the order of bits: 

MSB "most significant bit" or "high-order bit". MSB is also used for specifying the order-

ing of bytes as "most significant byte".   

LSB has the opposite meaning: "least significant bit" or "right-most bit". LSB is again used 

for specifying the ordering of bytes as "least significant byte".   

We must distinguish from the context of a text whether MSB and LSB refer to a bit or a byte. 

A length "word" indicates the native bit length of a processor. 32bit processors have "word" 

length 32-bits, 64-bit processors 64-bits. Word is not always and everywhere a 16-bit binary 

number, as it is sometimes mentioned mistakenly1. For example, "Apollo Guidance Computers" 

used in the flight to the Moon have 15-bit word. 

The binary number is merely a sequence of 1 and 0, and its decimal value can be decided only by 

the selected method's specifications for encoding the decimal numbers. In the following text, we 

analyze the most frequently used ways. 

                                                 
1 An exception of word-width can be found in industrial programming languages for PLCs (Programmable Logic 

Controllers), where the word is defined by standard IEC 1131-3. It introduces WORD type as a 16-bit length. De-

rived term DWORD (double word) defines 32-bit type and LWORD (long word) 64-bit type. The industrial stand-

ard IEC 1131-3, however, relates only to PLCs, it does not apply elsewhere. 

Figure 1 - Byte, bit, MSB, LSB 
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2.1 Unsigned binary 

By the whole name "binary encoded unsigned integers", unsigned binary is 

the base for binary numbers. Its principle is based on the mathematical fact 

that the sum of all previous members of 2N series is always less by one than 

the following member. For example, the sum of the first four members of 

the series 20+21+22 +23 = 1+2+4+8 = 15 = 24-1. In general: 

2n − 1 = ∑ 2kn−1

k=0
       (1) 

We can express any nonnegative integer as the sum of selected members of 

2N series. If a member of the relevant powers is used, we write bit 1, other-

wise 0. String x ≈  bm-1 bm-2 ... b1 b0 of m-bits is called a binary encoded 

unsigned integer, starting now an unsigned binary, and it has a value: 

x = ∑ 𝑏𝑘2𝑘𝑚−1

𝑘=0
          (2) 

For example, if we take string 1100100 as unsigned binary, we receive the 

decimal value 100: 

1*26 + 1*25 +  0*24 + 0*23 + 1*22 + 0*21 + 0*20 = 

64 + 32   + 4   =100 

The equation (1) ensures that there is exactly one combination of some 

members of 2N series, whose sum gives the number, and each series member 

occurs in the sum at the most one time. In other words, the coding has bijec-

tive property, i.e., correspondence one-to-one. 

 

n 2n 

0 1 

1 2 

2 4 

3 8 

4 16 

5 32 

6 64 

7 128 

8 256 

9 512 

10 1024 

11 2048 

12 4096 

13 8192 

14 16384 

15 32768 

16 65536 

17 131072 

18 262144 

19 524288 

20 1048576 

2.1.1 Changing bit-width of numbers 

Bits '1' only determine the value of an unsigned binary number. We can insert any number of 

zeros before if without changing its value. For example, unsigned binaries 1100100, 01100100, 

001100100, 0001100100, and so forth have the exact decimal value of 100. Here, we assume 

unlimited bit length. In practice, the width of binary numbers is limited, so we can add only as 

many zeroes to fit in a given limit. 

2.1.2 Logical shifts 

The operation of logical left shift appends bit 0 after the binary number, i.e., to its right side. For 

example, unsigned binary 101, corresponding to decimal 5 (22+20), changes by left shift to 1010 

which has double decimal value, i.e., 10. Each 1-bit was moved below the next member of 2N 

series. Similarly, 10100 with appended two 0 bits has a quadruple decimal value, i.e., 20, and 

101000 is eight times of the original value, i.e. 40. 

  25=32 24=16 23=8 22=4 21=2 20=1  

8*5=40 =32+8 1 0 1 0 0 0  

4*5=20 =16+4  1 0 1 0 0  

2*5 =  10 =8+2   1 0 1 0  

5 =4+1    1 0 1  
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If we have limited bit width, then the value of a number is doubled by logical left shifts as long 

as the leftmost bit in 1 reaches the end of storage for our number.  

For example, if we have unsigned binary 101 stored in 8 bits, i.e., as 00000101, then its value is 

always doubled after its first 5 logical left shifts, i.e., to the value 10100000, which corresponds 

to the decimal number 5 * 25 = 5 * 32 = 160. Another logical shift left gives 01000000, which is 

decimal 64. The highest bit 1 was lost due to the limited 8-bit width. An arithmetic overflow 

occurred. We will discuss it more in Chapter 2.1.5. 

Programming languages based on the C language defines << 2 followed by the length of the shift 

in bits. If we have variable byte x = 5; (in C language as unsigned char x=5;) then:   

2 * x  == (x << 1) , or   4*x == (x << 2), and so on up  32*x == (x << 5).  

The logical right shift corresponds to the operation of integer dividing by 2, since bits 1 are 

shifted to previous members of 2N series. The integer division gives a result and a remainder. If 

we shift unsigned binary 101 by one bit to the right, the result is 10, decimal 2. The lowest bit 1 

has fallen out from 101 is the remainder.  

  25=32 24=16 23=8 22=4 21=2 20=1  

5 =4+1    1 0 1  

5/2 = 2 

 the remainder 1 

=2     1 0 -> 1 

In C language, operator  >> only partially implements logical left shift because the operator does 

not give the remainder. For variable byte x = 5; it can be used only as an integer dividing by 2. It 

holds:  (x% 2) == 1 , (x >> 1)==2 and x / 2 == 2.  

Programming languages often translate integer multiplications and divisions by constants equal 

to 2N powers with the aid of shifts because they are high-speed operations. 

2.1.3 Conversion of unsigned binary to decimal number 

Method 1: The decimal value of a binary string taken as an unsigned binary is equal directly to 

the sum of the corresponding member of 2N series, where N is the number of the specific bit. If 

we have a binary string X = 10011, which has 1-bit on the 4th, 1st, and 0th position, then we can 

determine its value as the sum of corresponding members of the series: 

X=10011 -> 24 + 21 + 20 = 16 + 2 + 1 = 19 

If the binary string is longer and with more 1-bits, such as Q = 11111110110, then its conversion 

by the sum would be challenging. Our 11bit Q has mostly 1-bits:  

bit 10 9 8 7 6 5 4 3 2 1 0 

Q 1 1 1 1 1 1 1 0 1 1 0 

We can shorten the calculation by the property given in equation (1) that the value of the follow-

ing member of 2N series is always greater by 1 than the sum of all previous members. So we 

know that: 

211-1 = 2048-1 = 2047 = 210+29+28+27+26+25+24+23+22+21+20 

                                                 
2 In language C ++, bit shift operators << and >> are usually overloaded by some includes (as iostream.h) to reading 

from and writing to data streams but they still behave as shifts for number arguments. 
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If we compare 2047 with our Q, then Q corresponds to nearly the same sequence of 2N series 

members, in which two members 23 and 20 are only missing. It means 

Q = 11111110110 -> 2047 - 23 - 20 = 2047-8-1 = 2038 

Method 2: We can also use logical left shift operations and calculate the value by a polynomial 

Horner scheme (see this name in Wikipedia). 

We begin with the highest bit. We take the bit and write it as a result, 1 or 0. If there is the next 

bit, we multiply the result by 2 or add the value of this next bit (1 or 0). We repeat the process 

until the lowest bit is added. 

10011 

1 → 1*2+0=2 → 2*2+0=4 → 4*2+1=9 → 9*2+1=19 

Another example, in abbreviated notation: 

11111110110 

1 → 2+1=3 → 6+1=7 → 14+1=15 → 30+1=31 → 62+1=63 → 126+1=127  

→ 254+0=254 → 508+1 → 1018+1 = 1019 → 2038+0=2038 

We cannot recommend method 2 for hand calculations based on our experience. The technique 

alternates operations multiplication and addition, so it is not entirely mechanical. We can easily 

make a numerical error. However, the method is very suitable for the algorithm that converts 

unsigned binary to BCD numbers, Chapter 2.5.2, page 27. 

2.1.4 Conversion of decimal number to unsigned binary 

For simple conversions, we can apply either repeated subtractions or division by 2 

2.1.4.1 Repeated subtractions 

First, we found the higher member of 2N series less than the converted decimal. For example, if 

we have 35, we select 25 = 32. We begin the subtractions from it. 

decimal number subtracted member subtracted binary result  

35 -32 3 1 MSB 

3 -16 no 0  

3 -8 no 0  

3 -4 no 0  

3 -2 1 1  

1 -1 0  (end) 1 LSB 

If the difference is positive, we write 1 bit and subtract the member of 2N series. Otherwise, we 

write bit 0. Then, we try to lower member of the series. We repeat until we obtain 0. The result 

of the conversion of decimal number 35 is unsigned binary 100011. 

Repeated subtractions require knowledge of 2N series. We easily learn its several beginning 

members, but repeated divisions are more comfortable converting bigger decimals. 
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2.1.4.2 Repeated divisions by 2 

The method is derived from logical right shifts, Chapter 2.1.2 on page 8. We divide the given 

decimal number by 2 until the quotient becomes zero. We write down the reminders after integer 

divisions from the least significant bit (LSB) to the most significant bit (MSB).  

The algorithm ends after obtaining the quotient 0. If we convert a decimal number greater than 0, 

then the remainder of the last division is always 1, which is the leftmost bit of the obtained bina-

ry result. 

35 / 2 = 17 remainder of integer division 1  - the least significant bit 

17 / 2 = 8 remainder of integer division 1 

8 / 2 = 4 remainder of integer division 0 

4 / 2 = 2 remainder of integer division 0 

2 / 2 = 1 remainder of integer division 0 

1 / 2 = 0 remainder of integer division 1 - the most significant bit 

We can write the algorithm more briefly. We divide a decimal by 2 and retrospectively deter-

mine remainders from intermediate results. Odd results had remainders 1. 

For example, we convert the decimal number 1000 to unsigned binary. In the next line, symbol 

→ indicates that the right number was derived as a quotient of dividing the left number by 2: 

      1000  →  500 → 250 → 125 → 62 → 31 → 15 → 7 → 3 →  1     →  0 

If we write the odd numbers as bits 1 and 0, we get unsigned binary 1111101000 . We lined up 

bits from the lowest, i.e., in the reverse order of the row of the numbers.  

It would not mind if we included the last →  0. In that case, we obtained a binary number 

01111101000 with the same value, see paragraph 2.1.1. 

2.1.5 Arithmetic overflow during additions and subtractions 

Computers and digital circuits always store a finite number of bits. If we continue adding 1, the 

number eventually reaches its maximum value. For unsigned binary, the maximum contains only 

1 bits. The used arithmetic representation gives their count. 

 Carry 27 26 25 24 23 22 21 20 

254  1 1 1 1 1 1 1 0 

+1         1 

255  1 1 1 1 1 1 1 1 

+1         1 

0 1 0 0 0 0 0 0 0 0 

+1         1 

1  0 0 0 0 0 0 0 1 

Table 1 - Adding +1 to 8bit unsigned binary 

The maximum unsigned 8-bit binary number is 11111111, representing decimal 255. If we add 

+1 to it, we get the unsigned binary=100000000, which correctly corresponds to decimal 28 = 

256, but it has nine bits. In 8-bit binaries, we can save only its lower eight 0 bits. The highest bit 

must be thrown away, so our result equals 0. 
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The removed highest bit is called Carry; it carries value to a higher order. It announces an 

arithmetic overflow of unsigned binary numbers, i.e., exceeding the maximum value for the giv-

en bit length.  

When subtracting 1, the overflow can also occur. We can imagine the subtraction as a progres-

sion from the bottom up in Table 1. Then, operation 0 minus 1 gives here decimal 255 as its re-

sult. In logic circuits, the overflow of the opposite direction from 0 to the maximum is 

sometimes called Borrow because it borrows value from a higher order.3 However, it is 

frequently also called Carry. 

If we subtract one from zero, the overflow always occurs, and the binary result is filled by bits 1. 

It is the maximum value of unsigned binary arithmetics. The bit width only determines the 

decimal value of this wrong result of the subtraction 0-1. For example:   

for 8 bit unsigned binary, 0-1 = 28-1 = 255,  

for 9 bit unsigned binary, 0-1 = 29-1 = 511 

for 16 bit unsigned binary, 0-1 = 216-1=65535, and so on. 

The result of the subtraction 0-1 in decimal counting is -1. If we want to know its unsigned val-

ue, we add 2m, where m represents bit width of binaries. When the result is less than zero, we add 

2m until we get a positive number. If the result is greater or equal to 2m, then we subtract 2m. 

Question 1: In 4-bit unsigned binary arithmetic, what is the decimal value of the result for two 

decimal numbers when adding them 14 + 4 and when subtracting them 4-14? 

Answer: We evaluate 14+4=18. The result is over 24=16, so we correct it by 18-16=2. 

  We evaluate 4-14 = -10. The result is less than 0, so we correct it by -10+16 = 6. 

We can imagine the previous calculations on the wheel with numbers; see Figure 2. Addition 

operations correspond to rotating the wheel counterclockwise and subtractions to turning the 

wheel clockwise. A count of wheel cogs, for which the wheel turns, is determined by the number 

that we add or subtract. The figure shows that the number 14 is about 4 positions counterclock-

wise from the number 2 (14 + 4 = 2), and number 4 is about 14 positions clockwise from number 

6 (4-14 = 6). 

 
Figure 2 - Adding and subtracting unsigned binary 

                                                 
3 Most processors do not distinguish overflow directions and their ALUs generate Carry in the both cases. Whether 

it was a Carry or a Borrow we can find out only according to executed assembler instruction. Addition - Carry, sub-

traction - Borrow. 
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Question 2:  In 8-bit unsigned binary arithmetic, what is the decimal result of the addition of two 

decimal numbers 200 and 100? 

Answer: We add numbers, 200+100 = 300. The result is over 28 = 256. We subtract correction 

28: 300-256=44. The result is 44.  

Question 3: In 10-bit unsigned binary arithmetic, what is the decimal result of the subtraction of 

two decimal number 1000-1500? 

Answer: We evaluate 1000-1500 = -500. The result is less than 0, so we add 210 = 1024, so -

500+1024=524. The result is 524. 

Question 4: In 5-bit unsigned binary arithmetic, what is the decimal result of the addition of two 

decimal numbers 10 a 20? 

Answer: We add 10+20=30. The result is positive and less than 25=32. No correction is re-

quired. 

2.2 Signed integers in two's complement 

For integers with a sign, several different codes exist, of which the most used is two's comple-

ment based on the arithmetic overflow, Chapter 2.1.5. 

If we have unsigned binary x stored in m-bits, we can create its one's complement χ by negating 

all its bits. The sum x+ χ is unsigned binary with all bits in 1 because χ has bits 1 in such posi-

tions where x has bits 0.  

The sum x+ χ = 2m -1 is the maximum unsigned binary. If we add +1 to χ, we obtain x+( χ+1 )= 

2m. The result 2m has bit length m+1. We can store only m lower bits that are all equal to 0. For 

m-bit unsigned binary, therefore, the following holds x+( χ +1) = 0.  

For this property, (χ+1) is called two's complement of x. 

For example, if we have 4-bit unsigned binary, decimal 4 is coded as 0100. Its one's complement 

(the negation of all its bits) is 1011 (χ). If we add +1 (binary 0001) to χ, we get 1100 (χ+1); it is 

two's complement of 0100. The sum  0100+1100 =10000. The result 10000 (taken as unsigned 

binary) has a decimal value 16, but 10000 has 5-bit width. Into 4-bit binary, we can store only its 

lower bits 0. Thus, the result equals to 0000. The arithmetic overflow has occurred.  

We define signed integers in two's complement, also known as signed binary, as: 

 The negation of an unsigned binary number is its two's complement, 

 Further, we specify that a m-bit binary, which has bit 1 in its most significant bit 

(i.e., in the bit with weight 2m-1), encodes a negative decimal number.  

For 4-bit arithmetic, signed binary are shown on the next page in Figure 3 to the right. 

Signed binary 1000, with decimal value -8, has a particular position. Its two's complement also 

exists, but it is a binary 1000 itself. Because 1000 has 1 in its upper bit, it represents the negative 

decimal number -8, to which no positive decimal counterpart exists in 4-bit arithmetic. This 

asymmetry is only one drawback of signed binaries (signed integers in two's complement). 
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Figure 3 - 4-bit unsigned and signed binaries 

Otherwise, signed binaries provide only benefits. We calculate their additions and subtractions in 

the same way as unsigned binaries. Therefore, we can use the same computing unit for both rep-

resentations of numbers. It depends only on us whether we interpret the results of the operations 

as unsigned or signed binaries. Moreover, the coding of positive integers is the same. Two's 

complement is calculated only for negative integers. 

For the advantages mentioned above, signed binaries (signed integers in two's complement) are 

the ultimate way for storing signed integer numbers (in C, signed int type). 

2.2.1 Important properties 

Signed binaries have significant properties worth remembering.  

 Number 0 is always coded by all bits 0. 

 If we denote the bit length as m, such binary encode decimals in the range 

from 2m-1 to 2m-1 -1, the other numbers are out of the range.  

For example, for m = 4, the range is from -23 to 23 - 1, thus from -8 to 7. 

 A signed binary with 1 followed by m-1 bits 0 is always the least number, and its decimal 

value equals -2m-1. This number is also the only anomaly; its positive counterpart does 

not exist in a given bit length. For example, if we have 8-bit signed binaries, their least 

binary is 10000000 with decimal value -28-1 = -27 = -128. 

 Signed binary with 0 followed by m-1 bits 1 is always the bigger number. Its decimal 

value equals to 2m-1 -1. For example, if we have 8-bit signed binaries, their greatest bina-

ry is 01111111 and has decimal value is 28-1 -1 = 27 -1 = 127. Note: Its counterpart, dec-

imal -127, is coded as 10000001. It is greater by 1 than -128. 

 Signed binary with all bits 1, i.e., m bits 1, always equals to decimal -1. For example, if 

we have 8-bit signed binaries, then -1 is coded as 11111111. Note: Decimal -2 is stored 

as 11111110 because it is less by one than -1. 

2.2.2 Arithmetic negation by two's complement 

Let us have a signed binary (signed integer in two's complement) of known bit length m. We 

find its negative number (arithmetic negation) by algorithm of two's complement: 

a) we logically negate all its bits (one's complement), 

b) then, we add 1 to the result to obtain two's complement of the original binary. 
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Example 1: Calculate arithmetic negation of 8-bit signed binary 01100100, it has decimal 

value 100.   

Answer: We create one's complement by negating all its bits  01100100→10011011. Fi-

nally, we add 1 to it, i.e., 10011011+00000001 = 10011100. 

Example 2: Calculate arithmetic negation of 10-bit signed binary 1000000000, (decimal val-

ue -512). 

Answer: The example is a trick question. The correct answer is: "we cannot", see 

Important properties above. 

2.2.3 Conversion of decimal number to signed binary 

To convert a decimal number, we must always know the bit length of the desired signed binary 

number. We again denote the bit length as m. For bit length m, we can convert only integers that 

satisfy the range of signed binaries from 2m-1 to 2m-1 -1, paragraph 2.2.1 

 We convert positive integers as unsigned binaries. 

 We convert negative integers by any of the following methods, in which we denote an 

entered negative decimal number as  -x 

a) We convert the absolute value -x, i.e. | -x |, as an unsigned integer and create its 

two's complement. The disadvantage of this method is the necessity of binary 

adding 1 when calculating the two's complement. 

b) To avoid binary addition, we can convert the absolute value of the decimal num-

ber reduced by 1, i.e., |-x|-1, to unsigned binary. Its one's complement (negation 

of all its bits) equals two's complement of |-x|. 

c) Alternatively, we can convert ( 2m - x )  to m-bit unsigned binary. If we take the 

result as m-bit signed binary, it is equal to -x. This method uses the direct how 

signed binaries in two's complement have been defined. 

How do we verify that we remember a method? We need to know one decimal and its cor-

rect conversion to signed binary. For example, decimal -1 is always converted to all bits 1. 

First, we try to convert our selected known number by any of the methods above. If we get 

the correct result, we remember the calculation process correctly. 

Remember: We can always verify our conversion of -x by the addition: -x+x=0 

Example: Convert decimal  -12 to 8-bit signed binary: 

 Calculation by a)  First, we convert absolute value  |-12| = 12 to 8-bit unsigned binary as 

00001100. We create one's complement of the result by the negation of its bits as 

11110011. Then, we increment it by 1, so 11110011+00000001 = 11110100. 

 Calculation by b):   |-12|-1 = 11. Decimal 11 as 8-bit unsigned binary is 00001011. Then, 

we perform one's complement of the result: 00001011 → 11110100. 

 Calculation by c):  28-12 = 256-12 = 244. Decimal 244 converted to 8-bit unsigned binary 

is 11110100. This number, taken as 8-bit signed binary, has its decimal value -12.  
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2.2.4 Conversion of signed binary to decimal 

To convert binary numbers, we must again know the bit length of the desired signed binary rep-

resentation. We again denoted it as m.  

 Signed binary numbers with 0 in their most significant bit (MSB) are converted by the same 

ways as unsigned binaries. 

 Negative signed binary numbers, i.e. with MSB equal to 1, can be converted by one of the 

following ways, which are reversed versions of the previous methods in 2.2.3. 

 First, we calculate two's complement of the signed binary and converted it as unsigned 

binary to number x. Finally, we change its sign to minus, so -x. 

 We can perform only one's complement (logical negation of bits) of our signed binary. 

Then, we convert the result as unsigned binary to decimal that we denote as y. The re-

quired result -x is given by:  -x = -y-1. 

 Alternatively, we can convert the signed binary as an unsigned binary to the number we 

denote as z. The required result -x is given by -x = z-2m.  

Example: Convert 9-bit signed binary 000111000 to a decimal number. 

Solution: The most significant bit is 0. Therefore, we convert as an unsigned binary. For ex-

ample, we apply adding of the weights of its 1-bits: 25+24+23 =  32+16+8=56. 

Example: Convert 8-bit signed binary 11001100 to a decimal number. 

Solution: MSB is 1. Thus, we apply the methods for negative binaries: 

 Calculation by a)  We evaluate two's complement of signed binary 11001100: 

00110011+00000001=00110100. Then, we convert 00110100 as an unsigned binary to 

52. The searched result is its negation, so -52. 

 Calculation by b): We evaluate one's complement of  11001100 → 00110011. Then, we 

convert it as unsigned binary: 00110011 → 51. The searched result is -51-1 = -52. 

 Calculation by c):  We convert signed binary 11001100 as unsigned, e.g., by adding 

weights of 1-bits: 128+64+8+4=204. The result is 204-28= 204-256=-52.  

2.2.5 Change of bit length - sign extension 

In front of an unsigned binary number, we can add 0 bits without changing its value, see 2.1.1. 

To preserve the value of a signed binary number, we must utilize the sign extension that main-

tains the most significant bit, the sign of our number.  

  
Inserting bits 0 in front of unsigned binary  Sign extension  

for signed binary in two's complement 

Figure 4 - Signed extension 
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Figure 4 shows the differences between binary numbers. While we always insert bits 0 for un-

signed binary, we must copy the most significant bit (MSB) for signed binary. 

Conversely, if we decrease the length of a binary number, we can remove all leftmost bits 0 of an 

unsigned binary. For a signed binary, we can remove either the most significant bits 0 and 1 in 

the case that we preserve the value of the original most significant bit. 

Example 1:  Extend 4-bit signed binary 0111 to 8 bits. 

Solution: The most significant bit 0 is copied into inserted bits, so the result is 0000 0111. 

Example 2: Extend 8-bit signed binary 1000 0010 to 16 bits. 

Solution: We again copy MSB=1 into inserted bits, so the result is 1111 1111 1000 0010. 

Example 3: What is the shortest possible bit length for 8-bit signed binary 1110 0100? 

Solution: We can remove only 2 bits 1. The shortest length is 6 bits, so 10 0100. 

Example 4: What is the shortest possible bit length for 8-bit signed binary 0000 0100? 

Solution: The shortest length is 4 bits, so 0100. 

Note: The type of a binary number determines whether we must perform its sign extension. Ma-

chine codes of processors contain different instructions for loading signed and unsigned data 

from smaller sizes to larger one. For example, RISC V CPU loads an unsigned byte to a 32-bit 

register by LBU instruction, but it has LB instruction that performs sign extension for byte con-

taining a signed binary in two's complement. Processors of x86 family use MOV instruction and 

MOVSX for the same purposes. Compilers of higher languages select machine code instructions 

according to types of variables.  

2.2.6 Logical and arithmetic shifts 

Preserving sign bit requires different shift operations with binary numbers, so we use two shift 

types. Unsigned binaries require logical shifts and signed binaries use arithmetic shifts that 

respect the sign bits.  

 

 
 

Logical right shift Arithmetic right shift 

Figure 5 depicts right shifts for 8-bit binary "hgfedcba" in which ´a´ is LSB and ´h´ is MSB. If a 

binary represents the unsigned format, we perform right shifts by inserting 0-bits. If we have a 

signed binary, we utilize arithmetic right shifts, in which the highest bit (MSB) remains firmly in 

its place, here ´h´.  

Figure 5 - Logical and arithmetic right shifts 
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For example, 8-bit 11101011 changes after the logical right shift to 01110101, while it changes 

to 11110101 after arithmetic right shift. In contrast for 8-bit string 01101010, whose MSB=0, the 

both logical and arithmetic shifts give the same result 00110101. 

Input Decimal value as Left shift After the shift Decimal value as 

11101011 unsigned= 235 logical  01110101 unsigned= 117  

 signed=  -21 arithmetic 11110101 signed=  -11 

01101010 unsigned= 106 logical  00110101 unsigned= 53 

 signed= 106 arithmetic 00110101 signed = 53 

From the table above, we can see that the logical right shift is suitable for unsigned binaries, for 

which corresponds to dividing by 2. The result is its quotient and the lowest bit (LSB) lost by the 

shift is its remainder. 

Arithmetic right shifts are necessary for signed binaries to preserve their sign bits. For a positive 

signed binary, the result is the quotient of dividing by 2, and the remainder is given by the lowest 

lost bit. For a negative signed binary, the quotient is rounded towards the lower numbers, e.g.  -

21/2 = floor(-10.5) = -11, where floor() denotes rounding down.4  Arithmetic right shifts interpret-

ed as a division by 2 give contradictory results, for example -1/2 = -1. 

 If we replace integer division by 2 with the aid of arithmetic right shifts, we must sometimes 

correct the results of negative binary shifts to receive the expected numbers. The corrections are 

simple; we increment the results by 1 in selected cases.5  Therefore, we should remember that the 

arithmetic right shift is not an exact analogy of integer division by 2 for signed binaries. 

Left shifts of binary numbers are the same - the logical left shift is performed as arithmetic. Fig-

ure 6 shows the shifts for 8-bit binary "hgfedcba", in which ´a´ is LSB and ´h´ is MSB that is lost 

after left shifts.  

If there is not arithmetic overflow, then a left shift corresponds to the multiplication by 2 for un-

signed and signed binaries. 

  

 

Logical and arithmetic left shift 

Figure 6 - Left shift of 8-bit binary 

The signed and unsigned representations differ only when arithmetic overflow occurs during 

shifts. For an unsigned binary number, the arithmetic overflow occurs when the highest bit, lost 

                                                 
4 In C, we have floor(...) function, floor(...) method in Java, and Math.Floor(...) method in C# . 
5 In general, processors can use the same arithmetic unit for unsigned and signed binary, which is the major ad-

vantage of these representations. Only in some cases, arithmetic operations with signed binaries require additional 

steps. Further, in a multiplication or division, when their operands are negative signed binary numbers, the result 

requires some corrections and negative signed binary numbers near zero have a lot of bits 1 and their multiplication 

could last too long. The processors can include a unit for the multiplications of negative signed binaries to speed up 

calculations, but frequently perform it with absolute values and adjust signs of results. Detailed descriptions are 

beyond the scope of this publication. For more information, search  "Booth's algorithm" on Wikipedia. 
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during shifting, equals 1. However, signed arithmetic overflow occurs when the shift changes the 

value of MSB.   

For example, if we have 8-bit signed binary 11101011 (decimal -21), then its first left shift gives 

the result 11010110 (-42) and the second 10101100 (-84). After performing third left shift, we 

obtain 01011000 (decimal 88). The overflow has occurred. 

Another example: If we have 8-bit signed binary 00110010 (decimal 50), its first left shift result 

is 01100100 (decimal 100). The second shift gives 11001000, which has as 8-bit signed binary 

decimal value -56; thus, we have the overflow.  

Notice that we will have no overflow after the second shift if we take the same binary entry as an 

unsigned number, because its decimal value is 200. The overflow would appear here after its 

third left shift, resulting in 10010000 with the decimal value 144. 

Note: The term of arithmetic overflow strictly depends on how we interpret a binary number. If a 

binary is taken as a common chain (vector) of bits with no specified numerical representation, 

then shifts just change positions of bits moving them to the left or the right. The shifts behave as 

an analogy of some conveyor belt that moves by one position, and the bit that lays at the end of 

the conveyor falls out.  

2.2.7 Arithmetic overflow for addition and subtraction 

In Chapter 2.1.5 on page 11, where we have discussed the addition and subtraction for unsigned 

binary, we have detected the overflow by Carry. However, the Carry has no practical meaning 

for signed binaries since it is frequently generated for them because they are based on the over-

flow of unsigned binaries, Chapter 2.2 on page 13. 

For signed binary numbers, signed arithmetic overflow occurs when crossing the border between 

their largest and smallest numbers. For example, if we have 8-bit signed binaries, then their 

greatest number is decimal 127 coded as 0111 1111. When we increment it by 1, i.e. 0111 1111 

+ 0000 0001, then we obtain 1000 0000, i.e., their least number, decimal -128. We have a 

negative result of the sum of two positive numbers. Analogously, when subtracting 1 from -128, 

we receive the positive result 127. 

 Overflow 27 26 25 24 23 22 21 20 

126  0 1 1 1 1 1 1 0 

+1  0 0 0 0 0 0 0 1 

127 0 0 1 1 1 1 1 1 1 

+1  0 0 0 0 0 0 0 1 

-128 1 1 0 0 0 0 0 0 0 

+1  0 0 0 0 0 0 0 1 

-127 0 1 0 0 0 0 0 0 1 

Table 2 - Arithmetic overflow for addition of 8-bit signed binaries 
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ALU of a processor detects overflow situations by a table of sign bits of operands and results. If 

the result is, of course, incorrect, flag Overflow is generated. 

operand 1 operation operand 2 result 

positive + positive negative 

negative + negative positive 

negative - positive positive 

positive - negative negative 

Table 3 - Conditions for overflow of signed binaries 

To be exact, ALU sets after each addition and subtraction of numbers, at least four basic arith-

metic flags6 to 0 or 1, to 0 or to 1, depending on the situation that has occurred 

 Carry - carry or borrow from the most significant ALU bit position7; 

 Overflow - overflow for signed binary numbers; 

 Sign - the result of the operation is negative; 

 Zero - the result was zero. 

Additions and subtractions of signed and unsigned binary numbers are performed the same way, 

so the majority of ALUs always assign all of these flags. Compiled machine instructions must 

test the proper flag, on which a result depends, according to the format considered as input oper-

ands.  

2.3 Signed integer in straight binary and offset binary 

Other coding methods exist for signed integers. For completeness, we mention two general 

methods: straight and offset binaries.  

We can store a signed integer by encoding its absolute value as an unsigned binary and add a 

sign bit. This method is called a straight binary or sign or magnitude representation, abbreviated 

as sign-magnitude. 

 
Figure 7 - Straight binary (Sign-magnitude) 

 

Figure 8 - Excess K with K=8 

Figure 7 shows straight binaries for 4-bit length. In the code, there are two zeros, negative and 

positive. For example, if our result reaches zero during the iterations, we know how calculations 

                                                 
6 Processors have flags stored in a special register called "flag register" or "status register" together with other flags. 

Many machine instructions influence these flags, not only arithmetic operations.  
7 ALUs set Carry also for shifts, but higher programming languages do not implement possibility to use their Carry 

results. 
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approach it. We can distinguish +0 or -0, which is essential in many numerical algorithms. The 

+0 and -0 are stored in float IEEE75 formats as unique values. Another advantage of this code is 

very fast arithmetic negation by only changing the highest bit.  

Example: Encode decimal -15 as 8-bit straight binary. 

Solution: 8-bit straight binary has 1 sign bit and 7 bits of its absolute value. We encode  |-

15| to 7 bits as unsigned binary to 000 1111 and we add sign bit, here 1, in front of it, 

because -15 is negative. The result is 1000 1111. 

The next popular encoding is Excess-K or offset binary or biased representation. We first 

convert signed integers to nonnegative numbers by adding a fixed constant K to them, which is 

chosen so that the results are always positive. Then, we encoded them as an unsigned binary 

number. 

If we choose m-bit length binaries and a fixed constant K, we obtain the range of decimals that 

we can convert from  -K  to  2m-1-K.  

For example, if we select 4-bit binaries and K=8, we have the range from -8 to 7, see Figure 8. 

We can select the range by any value of K. For example, if we take K=30, then 4-bit binaries 

have a range from -30 to -15. 

Example: Encode -15 as 5-bit Excess-K binary +16. 

Solution:  -15 +16 = 1. Decimal 1 as 5-bit unsigned binary is  00001. 

Excess-K additive code performs arithmetic operations with (x + K) and (y + K) numbers instead 

of the numbers x and y. For example, the result of x + y is (x + y) + 2 * K. We must always 

correct it by subtracting K. The corrections of multiplications are more complicated, and we 

cannot perform division directly in this code. 

Straight and K-excess codes are unsuitable for immediate calculations because conventional pro-

cessors cannot work with them. However, they are used for transmissions, as internal codes, and 

for composed numbers.  

They are also fundamental for floating point numbers encoded according to the IEEE 754 stand-

ard for types float, double, and extended used by most modern computers. IEEE 754 stores man-

tissa in straight code and exponent in K-excess code8. 

                                                 
8 With numbers IEEE 754, we usually do not calculate directly, but before arithmetic operations are decomposed 

into mantissa and exponent, which are processed separately. Finally, the result is again composed. However, some 

operations can be performed directly with composed numbers. Saving mantissa in straight code allows quick arith-

metic negation of a number, merely by changing one bit. You can also compare two IEEE 754 number directly in 

composed form, i.e., as quickly as two integer numbers. 
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2.4 Hexadecimal notation 

Hexadecimal notation is a shorthand way of writing binary 

strings. We encode 4-bit groups as 4-bit unsigned binary. The 

values from 10 to 15 are replaced by letters from A to F to 

maintain a single-character representation of groups.  

Example 1: Write binary vector 10100111 in hexadecimal nota-

tion. 

Solution: We divide the vector into 4-bit groups 1010 0111, 

and we encode each group, so the result A7 

Example 2: Write 11100110101011 in hexadecimal notation: 

Solution: First, we divide the string into 4-bit groups from its 

LSB to 11 1001 1010 1011. We extend the leftmost 

group with 2 bit to 4 bits 0011 1001 1010 1011. We 

encode them as 39AB 

Example 3: Convert hexadecimal notation 1F to 6-bit binary 

string. 

Solution: By direct conversion, we obtain 0001 1111. We take 

the lower 6 bits, so 01 1111  

 

Binary 

string 
Char 

Unsigned 

value 

0000 0 0 

0001 1 1 

0010 2 2 

0011 3 3 

0100 4 4 

0101 5 5 

0110 6 6 

0111 7 7 

1000 8 8 

1001 9 9 

1010 A 10 

1011 B 11 

1100 C 12 

1101 D 13 

1110 E 14 

1111 F 15 

The hexadecimal notation leads implicitly to the number of bit lengths divisible by 4, but it is 

possible to use it for other lengths if we add the bit length specification. 

2.4.1 Hexadecimal number 

A hexadecimal number means that the bit string written in hexadecimal notation is interpreted as 

an unsigned binary number. There are several different ways for specifying thus format. We 

show some of them for the values of A7 and 39AB from examples 1 and 2 above. 

a) 0A7H , 39ABH  Hexadecimal notation ends with the suffix H, and if it begins with a letter, 

we add the prefix 0 to highlight the numeric value.  

b) 0xA7,  0x39AB We add prefix 0x in front of the number.  

c)  X"A7", X"39AB" Notation in VHDL language. 

d) 16#A7, 16#39AB Notation in PostScript language. 

..... and many other formats, see Wikipedia, keyword Hexadecimal 

In programming languages, however, a hexadecimal constant (literal) can also be taken as a 

signed binary number if assigned to a variable of a signed type. The situation is demonstrated in 

the following C ++ code compiled so that the variable int has 4 bytes.9 

                                                 
9 The size of int depends on a compiler. In 64-bit environment, it could be 8 bytes, i.e.  64 bits, but many compilers 

select here also 4 bytes, i.e. 32 bits, for backward compatibility of programs. 
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int intsize = sizeof(int); // intsize = 4 (byty) 

unsigned char uc = 0xFF; // uc = 255 

char sc = 0xFF; // sc = -1 

unsigned short int usi = 0xFFFF; // usi = 65535 

short int ssi = 0xFFFF; // ssi = -1 

unsigned int ui = 0xFFFFFFFF; // ui = 4294967295 

int si = 0xFFFFFFFF; // si = -1 

As the example shows, 0xFF constant may not always be equal to 255, see variable sc. 

2.4.2  Numeral systems 

Hexadecimal (also base 16, or hex) numbers are often introduced as a positional numeral system 

with a radix, or base, of 16. However, such definition directly induces that numbers are unsigned 

binaries, so we have had so far avoided.   

x16 = ∑ 𝑎𝑘16𝑘  ;      16 > 𝑎𝑘 ≥ 0 
𝑚−1

𝑘=0
    (3) 

We evaluate the value of hex number x16=0xA7 as the sum x16=10*161+7*160 = 167. From a 

mathematical point of view, we can select any integer greater than 1 as the radix. If we choose, 

for example, r = 10 then we get decimal numbers. If we denote the radix of a numeral system as 

r, then the equation gives number xr  as:  

xr = ∑ 𝑎𝑘𝐫𝑘 ;      𝒓 > 𝑎𝑘 ≥ 0, 𝒓 > 1 
𝑚−1

𝑘=0
      (4) 

The values ak are numbers, but we write them by single characters in hex notation. The circuits 

and computers prefer numbers with radixes equal to r=2m because they allow fast conversions to 

binaries and efficient storage. The exponent m determines the length of a bit group coded by one 

character. The table below shows conventional systems: 

Name of number Base (radix) r Length of bit group   

Binary 2 1 

Octal 8 3 

Hexadecimal 16 4 

Base32 32 5 

Base64 nebo Radix64 64 6 

Decimal 10 - no possibility to convert by bit groups- 

Table 4 - Some conventional radixes for numeral systems 

In the following paragraphs, we briefly summarize yet unlisted codes. 

2.4.2.1 Octal numbers 

If we select r=8 in equation (4), we obtain coding by 3-bit groups known as octal numeral 

system or oct for short. 

For example, hexadecimal number 0xA7, with decimal value 167, is encoded as unsigned binary 

1010 0111. If we split it from the right side to 3-bit groups as 10 100 111 and we encode each 

group as an unsigned binary number, then obtain octal number 247. Suffix Q is sometimes 

appended, i.e., 247Q, to emphasize octal encoding. 
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In the past, octals were widely used, mainly in telecommunications. Now, they are applied only 

rarely. In Unix versions, they remain in commands chown and chmod (abbreviation for change 

owner and change mode), whose arguments are octals (without suffixes Q). 

2.4.2.2 Base32 and Base64 

If we select radix r=32, we encode 5-bit groups to Base32. If we take radix r=64, then we encode 

6-bit groups to Base64. We frequently encounter both encodings. They are suitable for efficient 

transmissions of long binary strings in text form as encryption of keys. Activation keys of pro-

grams are also often encoded as Base32 numbers. 

Base32 and Base64 encoding are less transparent than hexadecimal numbers because they rarely 

represent numerical values according to the formula (4). Encoded bit groups with a length of 5, 

or respectively 6 bits, are not commensurable with the standard byte sizes of numbers, i.e., 1, 2, 

4, or 8 bytes. We do not achieve efficient compression into text if we encode separate numbers 

with byte sizes. Therefore, all numbers are often joined into one long binary chain, i.e., one 

many-bit number encoded in a text string. After we decode the string to the original binary chain, 

we divide it into numbers. 

We divide very long binary chains to bit groups, usually from the leftmost bit. Several code ta-

bles exist, put in place by manufacturers, so numbers ak from equation (4) can be represented by 

different symbols. According to a selected table, we write characters for values from 0 to 31 for 

Base32, respectively, from 0 to 63 for Base64. The character tables are usually designed to avoid 

confusion with similar symbols, such as the lowercase letters l and numeral 1. Base32 only uses 

numbers and letters, and it is case-insensitive. Base64 needs more characters, so it is case-

sensitive. An uppercase letter has a different value than its lowercase counterpart.   

To the end of Base32 and Base64 codes, the padding is appended. The sequence of '=' indicates 

the length of the last group. It is also helpful as an end mark when the text result is stored in 

more lines. See Wikipedia, keys Base32 and Base64. 

The comparison of some possible encoding to Base32 and Base64 with other codes: 

Decimal number 1234567890 

encoded as encoded to text string 

 decimal 1234567890 

 (un)signed binary 0100 1001 1001 0110 0000 0010 1101 0010 

 hexadecimal 499602D2 

 octal 11145401322 

 its bit groups 01 001 001 100 101 100 000 001 011 010 010 

as unsigned binary encoded in 

 Base32 RFC4648 JGLAFUQ= 

 its bit groups 01001 00110 01011 00000 00101 10100 10+000 

 Base64 original SZYC0g== 

 - 010010 011001 011000 000010 110100 10+0000 
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2.5 BCD - Binary Coded Decimal 

BCD encoding represents the oldest used method. Each its digit is encoded as a single unsigned 

binary number and stored in four bits, so we directly write a decimal number. For example, we 

store decimal 35 as 0011 0101 in BCD. 

 
Figure 9 - BCD číslo 35 

BCD coding offers the advantage of good readability for large binary numbers because we can 

directly see a decimal number from its binary encoding. Display devices preferably use BCD. 

For example, to display a number on the 7-segment display, we must first convert it to BCD, see 

Figure 9. Similarly, when we print numbers by calling printf () the function, it first converts 

numbers to BCDs and then writes characters of digits.  

BCD contains 4-bit groups similar to hexadecimal numbers, but BCD does not use the whole 

range of 4-bit unsigned binaries from 0 to 15, but only the values from 0 to 9. If some 4-bit BCD 

group contains a value outside this range, then it is not a valid BCD number. When we encode a 

decimal 9876543210 to BCD number, we obtain 4 * 10 bytes, i.e. 40 bits:  

Decimal number 9 8 7 6 5 4 3 2 1 0 

BCD digit 1001 1000 0111 0110 0101 0100 0011 0010 0001 0000 

The earlier computers used BCD numbers directly, precisely for their easy readability by human 

operators, such as the first electronic computer, ENIAC (Electronic Numerical Integrator and 

Computer) made in 1946, see Figure 10 [photograph from Wikipedia, key ENIAC].  

 
Figure 10 - ENIAC Electronic Numerical Integrator and Computer 
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Regarding storing BCD numbers in computer memories, there are two formats of BCD numbers. 

Unpacked BCD format stores each BCD digit in a single separate byte, which is suitable for nu-

merical operations. Packed BCD format stores in one byte two BCD digits, and it is efficient for 

storing numbers. Microprocessors can usually perform arithmetic operations only with unpacked 

BCD numbers. 

Today, direct counting with BCD numbers is rarely performed because it is about 2 to 3 times 

slower than binary numbers and requires more memory access. However, BCD is necessary for 

each printing of numbers. 

We can convert a binary number to BCD by dividing by ten and counting remainders, but such 

an approach is unnecessarily slow. There is a much faster method based on the left shifts, previ-

ously mentioned as Horner scheme; see Method 2 in Chapter 2.1.3, beginning on page 9. Moreo-

ver, there is a method that can directly convert packed BCD numbers, which is suitable for paral-

lel realization in hardware. For it, we need only the operation of BCD multiplication by 2. 

2.5.1 How to multiply BCD by 2  

When a BCD number contains digits from 0 to 4, we multiply them by 2 as unsigned binaries by 

the logical left shift. The values of the result will be in the valid BCD range from 0 to 8. The 

problem arises for BCD digits in the range from 5 to 9. After multiplying them by 2, we obtain 

the results from 10 to 18 outside the valid BCD range. 

We can correct them by the double daddle algorithm. Before performing the left shift of a BCD, 

we add 3 to all BCD digits with values from 5 to 9.  

Why are 3? It is half of the length range missing in BCD coding. BCD encoding utilizes only the 

values 0 to 9 of the full range of 4-bit unsigned binaries (i.e., from 0 to 15). BCD omits its 6 val-

ues from 10 to 15. Therefore, before we left shift a BCD, we added +3 to its BCD digits greater 

than 4 as their corrections. Then, these corrected digits will skip the missing 6 values during the 

following shift left (multiplication by 2). Thus, we obtain the required result. 

BCD Correction Before left shift After left shift 

0000 0000 [0 | 0]  0000 0000 [0 | 0] 0000 0000 [0 | 0] 

0000 0001 [0 | 1]  0000 0001 [0 | 1] 0000 0010 [0 | 2] 

0000 0010 [0 | 2]  0000 0010 [0 | 2] 0000 0100 [0 | 4] 

0000 0011 [0 | 3]  0000 0011 [0 | 3] 0000 0110 [0 | 6] 

0000 0100 [0 | 4]  0000 0100 [0 | 4] 0001 0100 [0 | 8] 

0000 0101 [0 | 5] +[0 | 3] 0000 1000 [0 | 8] 0001 0000 [1 | 0] 

0000 0110 [0 | 6] +[0 | 3] 0000 1001 [0 | 9] 0001 0010 [1 | 2] 

0000 0110 [0 | 7] +[0 | 3] 0000 1010 [0 | 10] 0001 0100 [1 | 4] 

0000 0110 [0 | 8] +[0 | 3] 0000 1011 [0 | 11] 0001 0110 [1 | 6] 

0000 0110 [0 | 9] +[0 | 3] 0000 1100 [0 | 12] 0001 1000 [1 | 8] 

The correction can cause the temporary creation of invalid values for BCD digits, like 1010, 

1011, and 1100, in the last rows of the table. Still, the logical left shift immediately converts 

them to valid BCD values. 
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2.5.2 Conversion of unsigned binary to BCD 

We explain the algorithm by the example of converting 8-bit unsigned binary 01110011, hex 

0x73, with decimal value 115.  

Steps: 

a) At the beginning of each step, we first examine all individual 4-bit BCD digits. If a digit 

is greater than the number 4 (0100), we add binary 3 (0011). We perform these addi-

tions separately for each corrected BCD digit, i.e., as the operation with an isolated 4-bit 

unsigned binary. Intermediate results of the correction can be over 9 (1001), but such 

invalid values are automatically corrected in the next step b). 

b)  Then, we perform the logical left shift of entire BCD number joined with converted un-

signed binary, i.e., we shift all numbers as a single continuous chain of bits.   

For 8-bit unsigned binary, we repeat the steps a) and b) by 8 times. 

Operation packed BCD number 
Unsigned 

binary 

Initialization [ 0 | 0 | 0 ]    0000 0000 0000 01110011 

after 1st joined left shift BCD and binary [ 0 |0 | 0 ]    0000 0000 0000 11100110  

after 2nd joined left shift BCD and binary [ 0 |0 | 1 ]    0000 0000 0001 11001100  

after 3rd t joined left shift BCD and binary [ 0 | 0 | 3 ]    0000 0000 0011 10011000  

after 4th t joined left shift BCD and binary [ 0 | 0 | 7 ] 0000 0000 0111 00110000  

BCD digit 0111> 0100    +[ 0 | 0 | 3 ] +0000 0000 0011  

result of the correction [ 0 | 0 | 10 ]  0000 0000 1010 00110000  

after 5th joined left shift BCD and binary [ 0 | 1 | 4 ] 0000 0001 0100 01100000  

after 6th joined left shift BCD and binary [ 0 | 2 | 8 ] 0000 0010 1000 11000000  

BCD digit 1000> 0100→ correction    +[ 0 | 0 | 3 ] +0000 0000 0011  

result of the correction [ 0 | 2 | 11 ]  0000 0010 1011 11000000  

after 7th joined left shift BCD and binary [ 0 | 5 | 7 ] 0000 0101 0111 10000000  

BCD digits 0101 a 0111>= 0100→ correction    +[ 0 | 3 | 3 ] +0000 0011 0011  

result of the correction [ 0 | 8 | 10 ] 0000 1000 1010 10000000  

after 8th joined left shift BCD and binary [ 1 | 1 | 5 ] 0001 0001 0101 00000000  

the end - BCD contains the final result     

The conversion algorithm can be extended to longer numbers. It is discussed in more detail in the 

follow-up textbook Logic Circuits on FPGA, where we preset its C-code and the circuit that 

implements it. 
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2.6 Character encoding standard ASCII 

The character encoding standard ASCII (American Standard Code for Information Interchange) 

was developed in 1963 and revised. Its most recent update in 1986 is utilized until today. It is 

also incorporated into the newer codes, as Unicode or UTF8, which assigns the same numeral 

values to characters defined in ASCII for backward compatibility.  

ASCII contains 128 valid characters with decimal values from 0 to 127; see Table 5 on p.29. We 

can store this range into 8-bit unsigned or signed binary. 

Example: Covert text "Hello, Logic!" to ASCII bytes. 

Solution: We find out text symbols in ASCII table and write down their ASCII codes, e.g. as: 

Symbol H e l l o ,   L o g i c ! 

Hexacimal 48 65 6c 6c 6f 2c 20 4c 6f 67 69 63 21 

Decimal value 72 101 108 108 111 44 32 76 111 103 105 99 33 

 

Important properties of ASCII 

 Control characters - The characters with codes from 0 to 31 are reserved for controlling 

devices, like printers or teletypewriters. Language C contains escape code for the fre-

quently used control characters with values from 7 to 13. In C, the escape codes begin by 

a backslash. Table 5 emphasizes them in red color. We mention here only BS - backspace 

('\b'), TAB - tabulator ('\t'),  LF - linefeed ('\n'), and CR - carriage return - go to the be-

ginning of a line of text ('\r'). We can find the complete overview of control characters on 

Wikipedia, under ASCII. 

 Digits 0-9 have decimal codes from 48 to 57 (hexadecimal from 0x30 to 0x39). There-

fore, we can easily convert between a digit character and its numerical value by subtract-

ing or adding 48 (0x30), the ASCII value of the character '0'. 

 Letters are stored in two contiguous blocks in alphabetical order. Uppercase letters occu-

py positions from 65 to 90 (0x41 to 0x5A) and lowercase from 97 to 122 (0x61 to 0x7A), 

so we can quickly test whether a character is a letter and sort them alphabetically. 

 Lowercase and uppercase character codes have difference to each other about 32 decimal, 

hexadecimal 0x20, so that the conversions between uppercase and lowercase letters are 

fast, we just add, respectively subtract, 32 (0x20) from the value of the character code.  
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Table 5 - ASCII table 

ASCII Hex Symbol ASCII Hex Symbol ASCII Hex Symbol ASCII Hex Symbol 

0 0x0 NUL 32 0x20 (mezera) 64 0x40 @ 96 0x60 ` 

1 0x1 SOH 33 0x21 ! 65 0x41 A 97 0x61 a 

2 0x2 STX 34 0x22 " 66 0x42 B 98 0x62 b 

3 0x3 ETX 35 0x23 # 67 0x43 C 99 0x63 c 

4 0x4 EOT 36 0x24 $ 68 0x44 D 100 0x64 d 

5 0x5 ENQ 37 0x25 % 69 0x45 E 101 0x65 e 

6 0x6 ACK 38 0x26 & 70 0x46 F 102 0x66 f 

7 0x7 \a  BEL 39 0x27 ' 71 0x47 G 103 0x67 g 

8 0x8 \b  BS 40 0x28 ( 72 0x48 H 104 0x68 h 

9 0x9 \t  TAB 41 0x29 ) 73 0x49 I 105 0x69 i 

10 0xA \n   LF 42 0x2A * 74 0x4A J 106 0x6A j 

11 0xB \v   VT 43 0x2B + 75 0x4B K 107 0x6B k 

12 0xC \f    FF 44 0x2C , 76 0x4C L 108 0x6C l 

13 0xD \r   CR 45 0x2D - 77 0x4D M 109 0x6D m 

14 0xE SO 46 0x2E . 78 0x4E N 110 0x6E n 

15 0xF SI 47 0x2F / 79 0x4F O 111 0x6F o 

16 0x10 DLE 48 0x30 0 80 0x50 P 112 0x70 p 

17 0x11 DC1 49 0x31 1 81 0x51 Q 113 0x71 q 

18 0x12 DC2 50 0x32 2 82 0x52 R 114 0x72 r 

19 0x13 DC3 51 0x33 3 83 0x53 S 115 0x73 s 

20 0x14 DC4 52 0x34 4 84 0x54 T 116 0x74 t 

21 0x15 NAK 53 0x35 5 85 0x55 U 117 0x75 u 

22 0x16 SYN 54 0x36 6 86 0x56 V 118 0x76 v 

23 0x17 ETB 55 0x37 7 87 0x57 W 119 0x77 w 

24 0x18 CAN 56 0x38 8 88 0x58 X 120 0x78 x 

25 0x19 EM 57 0x39 9 89 0x59 Y 121 0x79 y 

26 0x1A SUB 58 0x3A : 90 0x5A Z 122 0x7A z 

27 0x1B ESC 59 0x3B ; 91 0x5B [ 123 0x7B { 

28 0x1C FS 60 0x3C < 92 0x5C \ 124 0x7C | 

29 0x1D GS 61 0x3D = 93 0x5D ] 125 0x7D } 

30 0x1E RS 62 0x3E > 94 0x5E ^ 126 0x7E ~ 

31 0x1F US 63 0x3F ? 95 0x5F _ 127 0x7F   
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2.6.1 Extended ASCII 

Basic ASCII uses 7 bits, ending at 127 (0x7f). 8-bit unsigned binary has its maximum value 255 

(0xFF). The values from 0x80 to 0xFF were later used for extending ASCII (extended ASCII) 

with national characters, mainly various accented characters. 

 
Figure 11 - Principle of extended ASCII 

Figure 11 demonstrates the principle of the extension. While the lower decimal values from 0 to 

127 remain constant, as defined by the ASCII standard, the upper half from 128 to 255 changed 

according to national needs.  

Many different extending coding options exist. IBM OEM specification contains 81 of them. 

IANA (Internet Assigned Numbers Authority) has registered 257 of them, which still did not 

include all code pages used. For example, it does not contain code page 895 (Brothers Ka-

menický encoding), formerly very popular in the Czech Republic.  

We could encounter countless compatibility issues if we did not know the used code page. How-

ever, extended ASCII is still used today because it has a significant advantage of storing each 

symbol in 1 byte. 

If we work with extended ASCII characters in language C, we must remember that the extension 

code page uses values from 128 to 255 (from 0x80 to 0xFF). These are signed 8-bit numbers 

from -128 to -1 because C language takes char type just assigned char type (signed is here the 

default), i.e., as an 8-bit signed binary number. 

The widespread mistake is skipping whitespace characters with values 0x8 from 0x20 by com-

paring with the character ' ' = 0x20.  

The following program was compiled in v C++, where sizeof(char)=1 (1 byte): 

 char * line = " \n\t à la mode"; 

 // wrong program for skipping of whitespaces 

 int i=0; while (line[i]!=0 && line[i] <= ' ') i++; 

 char c = line[i]; // c='l' 

The program jumped over newline character '\n' (0xA) and tabulator '\t' (0x9), but it also skipped 

accented character à, because it has negative values in an extended ASCII table. 
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We correct the code above by using unsigned char types. The characters from 0x80 to 0xFF 

range in the extended ASCII are now converted to decimal values of 128 to 255, so that only 

whitespaces are less than or equal to the space character ' '. 

 unsigned char * line = (unsigned char*)" \n\t à la mode"; 

 int i=0; while (line[i]!=0 && line[i] <= ' ') i++; 

 char c = line[i]; // c='à' 

In programs, extended ASCII coding is now usually replaced by Unicode. Its basic coding plane 

has 16-bit characters. All Unicode planes contain codes from 0 to 0x10ffff that store all the 

world's national characters, including historical scripts and most symbols. To values 0 to 0x7f, 

Unicode assigns the same characters as ASCII. 

UTF-8 (Unicode Transformation Format) is increasingly utilized for storing texts and websites, 

which has maximum compatibility with ASCII, because its character values from 0 to 0x7f codes 

are identical to ASCII. UTF8 uses codes from 0x80 to 0xFF to indicate the beginnings of more 

byte sequences of Unicode characters. Their length can be up to 6 bytes, but UTF8 modern 

standard RFC 3629 limits sequence to 4 bytes. 

The above program that skips whitespaces will not be simplified if we use Unicode type charac-

ters, for example, C++ language type wchar_t. The opposite is valid.  

In Unicode, we must check not only 6 white characters (less than or equal space ' ' in ASCII), but 

we should add further tests recognizing at least 19 new characters10  added to Unicode for dif-

ferent typographic spacings and line spacings. Many simple programs for text processing apply 

Unicode and ignore its additional characters. ☺ Silently assume that input texts do not contain 

them. 

In any case, ASCII remains the primary encoding for hardware and small display devices. 

2.7 How much is 1000? 

We have begun Chapter 2 with the following joke: 

After a car accident, a programmer signed me the compensation of 1000 €. 

He paid me ten euros with the note that he gave me two euros extra. 

Thus, how much is 1000 in different numeral systems? Now, we know that its value depends on 

used binary encoding :-) We can convert four digit text "1000" to decimal number: 

 = -8  from 4-bit binary signed,  

 = -0 from sign-magnitude, 

 = 8 from unsigned binary or signed binary longer than 4 bits,  

 = 512 from octal number,  

 = 1000, if we take the digits as decimal, 

 = 4096 from hexadecimal number, 

 = to an arbitrary integer from K-excess code according to its chosen K offset value. 

                                                 
10 Totally, Unicode adds 25 new whitespaces, but 6 of them are rarely used. We can find complete list of whitespac-

es on Wikipedia, key "Whitespace character".  
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2.8 Test from knowledge of Chapter 2  

Try to answer 4 questions from memory, i.e., without any aids. The correct solution is in the ap-

pendix. 

Question 1 - Fill in missing values in tables. 

 8-bit unsigned binary BCD number 

Decimal number Binary Hexadecimal Binary Hexadecimal 

100 0110 0100 64 0001 0000 0000 100 

150     

50     

300     

 

 

Question 2 - Consider the operands written as decimal numbers. Fill decimal values of the results 

of arithmetic additions and subtractions, if the numbers are stored in given format. 

Format of binary 

number 

Length in bits Operation with decimal 

values 

gives the result with 

decimal value 

unsigned 8 100+200= 44 

unsigned 10 100+200= 300 

unsigned 8 200+200=  

unsigned 9 200+200=  

unsigned 8 127+1=  

signed 8 127+1=  

signed: 8 100-150=  

signed: 12 100-150=  

Question 3 - Consider 8-bit binary operands. Write the results of the operations: 

string (vector) of 

bits  

The left shift by 1 bit The right shift by 1 bit 

arithmetic logical arithmetic logical 

1000 0001 0000 0010    

1111 1111     

0101 0101     

1010 1010     

 10-bit signed binary Straight binary - sign-magnitude 

Decimal number Binary Hexadecimal Binary Hexadecimal 

-100 11 1001 1100 39C 10 0110 0100 264 

-10     

 11 1111 1110    

  200   

   10 0000 0100  

511     
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Question 4 - What are the final values of iresult and cresult of the program in C language? 

 char c1 = 'A'; 

 char c2 = 'b'; 

 int iresult = c2 - c1;     //  iresult =.............. 

 char cresult = '0' + 5;    //  cresult =............... 
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3 Appendix 

3.1 Alphabetical list of used terms and abbreviations 
ALU Arithmetic Logic Unit - ALU processor is an essential component of the processor that 

performs all arithmetic and logical operations. 

ASCII  American Standard Code for Information Interchange - coding of characters, see 

Chapter 2.6 on page 28. 

BCD Binary Coded Decimal - encoding of a decimal number for good comprehensibility of 

human and easy visualization, see Chapter 2.5 on page 25. 

biased representation - the other name of Excess-K encoding of numbers, see Chapter 2.6.1 on 

page 30. 

Borrow it means borrowing a bit from higher order during arithmetic overflow in the direction 

down, see Chapter 2.1.5 on page 11. However, processors do not usually distinguish 

the direction of overflow and Carry denotes the both direction.  

Carry arithmetic overflow of binary number range in the direction up, see Chapter 2.1.5 on 

page 11. However, processors do not usually distinguish the direction of overflow and 

Carry denotes the both directions, and it is the main status flags generated by ALUs of 

processors. 

Excess-K coding of numbers, see Chapter 2.1.5 on page 20. 

Extended ASCII - the extension of ASCII code, see Chapter 2.6.1 on page 30. 

logic gate  it was originally designated as an electronic logical element. Today, it often denotes 

the schematic symbol of a logic operation, see the following textbook Logical Circuits 

on FPGA.  

LSB  "least significant bit" or "right-most bit". LSB also means a byte order as "least signif-

icant byte". We distinguish whether LSB refers to byte or bit from the contextual de-

scription, see Figure 1 on page 7. 

MSB "most significant bit" or "high-order bit". MSB also means a byte order as "most 

significant byte". We distinguish whether MSB refers to byte or bit from the contextu-

al description, see Figure 1 on page 7. 

offset binary - the other name for K-excess coding of numbers, see Chapter 2.3 on page 20. 

overflow the term refers to arithmetic overflow that occurs when the result is outside of a range 

of used binary numbers. In processors, this term mainly denotes overflow flag that is 

related to arithmetic overflow with signed binaries, and it means that the result of the 

operation is meaningless - as a negative result of the addition of two positive numbers.  

straight binary -  coding of numbers, see Chapter 2.6.1 on page 30. 

sign–magnitude - the other name of straight binary coding of numbers,  see Chapter 2.6.1 on 

page 30. 

signed binary  - the abbreviation for the binary coding of signed integers in two's complement, 

see Chapter 2.2 on page 13. 

unsigned binary - the abbreviation for the binary coding of positive integers, see Chapter 2.1 on 

page 8. 
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3.2 Solution of test from Chapter 2 

The solution is related to test on page 32. 

Question 1 - Fill in missing values in tables. 

 8-bit unsigned binary BCD číslo 

Decimal number Binary Hexadecimal Binary Hexadecimal 

100 0110 0100 64 0001 0000 0000 100 

150 1001 0110 96 0001 0101 0000 150 

50 0011 0010 32 0000 0101 0000 050 

300 impossible impossible 0011 0000 0000 300 

 

 

Question 2 - Consider the operands written as decimal numbers. Fill decimal values of the results 

of arithmetic additions and subtractions, if the numbers are stored in given format. 

Format of binary 

number 

Length in bits Operation with decimal 

values 

gives the result with 

decimal value 

unsigned 8 100+200= 44 

unsigned 10 100+200= 300 

unsigned 8 200+200= 144 

unsigned 9 200+200= 400 

unsigned 8 127+1= 128 

signed 8 127+1= -128 

signed: 
8 

100-150= 
impossible, 150 is out 

of 8-bit signed range 

signed: 12 100-150= -50 

Question 3 - Consider 8-bit binary operands. Write the results of operations: 

string (vector) of 

bits  

The left shift by 1 bit The right shift by 1 bit 

arithmetic logical arithmetic logical 

1000 0001 0000 0010 0000 0010 1100 0000 0100 0000 

1111 1111 1111 1110 1111 1110 1111 1111 0111 1111 

0101 0101 1010 1010 1010 1010 0010 1010 0010 1010 

1010 1010 0101 0100 0101 0100 1101 0101 0101 0101 

 10-bit signed binary Straight binary - sign-magnitude 

Decimal number Binary Hexadecimal Binary Hexadecimal 

-100 11 1001 1100 39C 10 0110 0100 264 

-10 11 1111 0110 3F6 10 0000 1010 20A 

-2 11 1111 1110 3FE 10 0000 0010 202 

-512 10 0000 0000 200 out of the range out of the range 

-4 11 1111 1100 3FC 10 0000 0100 204 

511 01 1111 1111 1FF 01 1111 1111 1FF 
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Question 4 - What are the final values of iresult and cresult of the program in C language? 

 char c1 = 'A'; 

 char c2 = 'b'; 

 int iresult = c2 - c1;     //  iresult = 33 (0x21) 

 char cresult = '0' + 5;    //  cresult = '5' 
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3.3 GNU Free Documentation License 
Version 1.3, 3 November 2008 

Copyright © 2000, 2001, 2002, 2007, 2008 Free Software Foundation, Inc. <https://fsf.org/> 

Everyone is permitted to copy and distribute verbatim copies of this license document, but 

changing it is not allowed. 

0. PREAMBLE 

The purpose of this License is to make a manual, textbook, or other functional and useful docu-

ment "free" in the sense of freedom: to assure everyone the effective freedom to copy and redis-

tribute it, with or without modifying it, either commercially or noncommercially. Secondarily, 

this License preserves for the author and publisher a way to get credit for their work, while not 

being considered responsible for modifications made by others. 

This License is a kind of "copyleft", which means that derivative works of the document must 

themselves be free in the same sense. It complements the GNU General Public License, which is 

a copyleft license designed for free software. 

We have designed this License in order to use it for manuals for free software, because free 

software needs free documentation: a free program should come with manuals providing the 

same freedoms that the software does. But this License is not limited to software manuals; it can 

be used for any textual work, regardless of subject matter or whether it is published as a printed 

book. We recommend this License principally for works whose purpose is instruction or refer-

ence. 

1. APPLICABILITY AND DEFINITIONS 

This License applies to any manual or other work, in any medium, that contains a notice placed 

by the copyright holder saying it can be distributed under the terms of this License. Such a notice 

grants a world-wide, royalty-free license, unlimited in duration, to use that work under the condi-

tions stated herein. The "Document", below, refers to any such manual or work. Any member of 

the public is a licensee, and is addressed as "you". You accept the license if you copy, modify or 

distribute the work in a way requiring permission under copyright law. 

A "Modified Version" of the Document means any work containing the Document or a portion 

of it, either copied verbatim, or with modifications and/or translated into another language. 

A "Secondary Section" is a named appendix or a front-matter section of the Document that deals 

exclusively with the relationship of the publishers or authors of the Document to the Document's 

overall subject (or to related matters) and contains nothing that could fall directly within that 

overall subject. (Thus, if the Document is in part a textbook of mathematics, a Secondary Section 

may not explain any mathematics.) The relationship could be a matter of historical connection 

with the subject or with related matters, or of legal, commercial, philosophical, ethical or politi-

cal position regarding them. 

The "Invariant Sections" are certain Secondary Sections whose titles are designated, as being 

those of Invariant Sections, in the notice that says that the Document is released under this Li-

cense. If a section does not fit the above definition of Secondary then it is not allowed to be des-

ignated as Invariant. The Document may contain zero Invariant Sections. If the Document does 

not identify any Invariant Sections then there are none. 

The "Cover Texts" are certain short passages of text that are listed, as Front-Cover Texts or 

Back-Cover Texts, in the notice that says that the Document is released under this License. A 

Front-Cover Text may be at most 5 words, and a Back-Cover Text may be at most 25 words. 

A "Transparent" copy of the Document means a machine-readable copy, represented in a format 

whose specification is available to the general public, that is suitable for revising the document 

straightforwardly with generic text editors or (for images composed of pixels) generic paint pro-

grams or (for drawings) some widely available drawing editor, and that is suitable for input to 

https://fsf.org/
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text formatters or for automatic translation to a variety of formats suitable for input to text for-

matters. A copy made in an otherwise Transparent file format whose markup, or absence of 

markup, has been arranged to thwart or discourage subsequent modification by readers is not 

Transparent. An image format is not Transparent if used for any substantial amount of text. A 

copy that is not "Transparent" is called "Opaque". 

Examples of suitable formats for Transparent copies include plain ASCII without markup, 

Texinfo input format, LaTeX input format, SGML or XML using a publicly available DTD, and 

standard-conforming simple HTML, PostScript or PDF designed for human modification. Ex-

amples of transparent image formats include PNG, XCF and JPG. Opaque formats include pro-

prietary formats that can be read and edited only by proprietary word processors, SGML or XML 

for which the DTD and/or processing tools are not generally available, and the machine-

generated HTML, PostScript or PDF produced by some word processors for output purposes 

only. 

The "Title Page" means, for a printed book, the title page itself, plus such following pages as are 

needed to hold, legibly, the material this License requires to appear in the title page. For works in 

formats which do not have any title page as such, "Title Page" means the text near the most 

prominent appearance of the work's title, preceding the beginning of the body of the text. 

The "publisher" means any person or entity that distributes copies of the Document to the public. 

A section "Entitled XYZ" means a named subunit of the Document whose title either is precisely 

XYZ or contains XYZ in parentheses following text that translates XYZ in another language. 

(Here XYZ stands for a specific section name mentioned below, such as "Acknowledgements", 

"Dedications", "Endorsements", or "History".) To "Preserve the Title" of such a section when 

you modify the Document means that it remains a section "Entitled XYZ" according to this defi-

nition. 

The Document may include Warranty Disclaimers next to the notice which states that this Li-

cense applies to the Document. These Warranty Disclaimers are considered to be included by 

reference in this License, but only as regards disclaiming warranties: any other implication that 

these Warranty Disclaimers may have is void and has no effect on the meaning of this License. 

2. VERBATIM COPYING 

You may copy and distribute the Document in any medium, either commercially or noncommer-

cially, provided that this License, the copyright notices, and the license notice saying this Li-

cense applies to the Document are reproduced in all copies, and that you add no other conditions 

whatsoever to those of this License. You may not use technical measures to obstruct or control 

the reading or further copying of the copies you make or distribute. However, you may accept 

compensation in exchange for copies. If you distribute a large enough number of copies you 

must also follow the conditions in section 3. 

You may also lend copies, under the same conditions stated above, and you may publicly display 

copies. 

3. COPYING IN QUANTITY 

If you publish printed copies (or copies in media that commonly have printed covers) of the 

Document, numbering more than 100, and the Document's license notice requires Cover Texts, 

you must enclose the copies in covers that carry, clearly and legibly, all these Cover Texts: 

Front-Cover Texts on the front cover, and Back-Cover Texts on the back cover. Both covers 

must also clearly and legibly identify you as the publisher of these copies. The front cover must 

present the full title with all words of the title equally prominent and visible. You may add other 

material on the covers in addition. Copying with changes limited to the covers, as long as they 

preserve the title of the Document and satisfy these conditions, can be treated as verbatim copy-

ing in other respects. 



39 

 

If the required texts for either cover are too voluminous to fit legibly, you should put the first 

ones listed (as many as fit reasonably) on the actual cover, and continue the rest onto adjacent 

pages. 

If you publish or distribute Opaque copies of the Document numbering more than 100, you must 

either include a machine-readable Transparent copy along with each Opaque copy, or state in or 

with each Opaque copy a computer-network location from which the general network-using pub-

lic has access to download using public-standard network protocols a complete Transparent copy 

of the Document, free of added material. If you use the latter option, you must take reasonably 

prudent steps, when you begin distribution of Opaque copies in quantity, to ensure that this 

Transparent copy will remain thus accessible at the stated location until at least one year after the 

last time you distribute an Opaque copy (directly or through your agents or retailers) of that edi-

tion to the public. 

It is requested, but not required, that you contact the authors of the Document well before redis-

tributing any large number of copies, to give them a chance to provide you with an updated ver-

sion of the Document. 

4. MODIFICATIONS 

You may copy and distribute a Modified Version of the Document under the conditions of sec-

tions 2 and 3 above, provided that you release the Modified Version under precisely this License, 

with the Modified Version filling the role of the Document, thus licensing distribution and modi-

fication of the Modified Version to whoever possesses a copy of it. In addition, you must do 

these things in the Modified Version: 

 A. Use in the Title Page (and on the covers, if any) a title distinct from that of the Docu-

ment, and from those of previous versions (which should, if there were any, be listed in the 

History section of the Document). You may use the same title as a previous version if the 

original publisher of that version gives permission. 

 B. List on the Title Page, as authors, one or more persons or entities responsible for au-

thorship of the modifications in the Modified Version, together with at least five of the 

principal authors of the Document (all of its principal authors, if it has fewer than five), 

unless they release you from this requirement. 

 C. State on the Title page the name of the publisher of the Modified Version, as the pub-

lisher. 

 D. Preserve all the copyright notices of the Document. 

 E. Add an appropriate copyright notice for your modifications adjacent to the other copy-

right notices. 

 F. Include, immediately after the copyright notices, a license notice giving the public per-

mission to use the Modified Version under the terms of this License, in the form shown in 

the Addendum below. 

 G. Preserve in that license notice the full lists of Invariant Sections and required Cover 

Texts given in the Document's license notice. 

 H. Include an unaltered copy of this License. 

 I. Preserve the section Entitled "History", Preserve its Title, and add to it an item stating at 

least the title, year, new authors, and publisher of the Modified Version as given on the Ti-

tle Page. If there is no section Entitled "History" in the Document, create one stating the ti-

tle, year, authors, and publisher of the Document as given on its Title Page, then add an 

item describing the Modified Version as stated in the previous sentence. 

 J. Preserve the network location, if any, given in the Document for public access to a 

Transparent copy of the Document, and likewise the network locations given in the Docu-

ment for previous versions it was based on. These may be placed in the "History" section. 
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You may omit a network location for a work that was published at least four years before 

the Document itself, or if the original publisher of the version it refers to gives permission. 

 K. For any section Entitled "Acknowledgements" or "Dedications", Preserve the Title of 

the section, and preserve in the section all the substance and tone of each of the contributor 

acknowledgements and/or dedications given therein. 

 L. Preserve all the Invariant Sections of the Document, unaltered in their text and in their 

titles. Section numbers or the equivalent are not considered part of the section titles. 

 M. Delete any section Entitled "Endorsements". Such a section may not be included in the 

Modified Version. 

 N. Do not retitle any existing section to be Entitled "Endorsements" or to conflict in title 

with any Invariant Section. 

 O. Preserve any Warranty Disclaimers. 

If the Modified Version includes new front-matter sections or appendices that qualify as Second-

ary Sections and contain no material copied from the Document, you may at your option desig-

nate some or all of these sections as invariant. To do this, add their titles to the list of Invariant 

Sections in the Modified Version's license notice. These titles must be distinct from any other 

section titles. 

You may add a section Entitled "Endorsements", provided it contains nothing but endorsements 

of your Modified Version by various parties—for example, statements of peer review or that the 

text has been approved by an organization as the authoritative definition of a standard. 

You may add a passage of up to five words as a Front-Cover Text, and a passage of up to 25 

words as a Back-Cover Text, to the end of the list of Cover Texts in the Modified Version. Only 

one passage of Front-Cover Text and one of Back-Cover Text may be added by (or through ar-

rangements made by) any one entity. If the Document already includes a cover text for the same 

cover, previously added by you or by arrangement made by the same entity you are acting on 

behalf of, you may not add another; but you may replace the old one, on explicit permission from 

the previous publisher that added the old one. 

The author(s) and publisher(s) of the Document do not by this License give permission to use 

their names for publicity for or to assert or imply endorsement of any Modified Version. 

5. COMBINING DOCUMENTS 

You may combine the Document with other documents released under this License, under the 

terms defined in section 4 above for modified versions, provided that you include in the combi-

nation all of the Invariant Sections of all of the original documents, unmodified, and list them all 

as Invariant Sections of your combined work in its license notice, and that you preserve all their 

Warranty Disclaimers. 

The combined work need only contain one copy of this License, and multiple identical Invariant 

Sections may be replaced with a single copy. If there are multiple Invariant Sections with the 

same name but different contents, make the title of each such section unique by adding at the end 

of it, in parentheses, the name of the original author or publisher of that section if known, or else 

a unique number. Make the same adjustment to the section titles in the list of Invariant Sections 

in the license notice of the combined work. 

In the combination, you must combine any sections Entitled "History" in the various original 

documents, forming one section Entitled "History"; likewise combine any sections Entitled 

"Acknowledgements", and any sections Entitled "Dedications". You must delete all sections En-

titled "Endorsements". 

6. COLLECTIONS OF DOCUMENTS 

You may make a collection consisting of the Document and other documents released under this 

License, and replace the individual copies of this License in the various documents with a single 
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copy that is included in the collection, provided that you follow the rules of this License for ver-

batim copying of each of the documents in all other respects. 

You may extract a single document from such a collection, and distribute it individually under 

this License, provided you insert a copy of this License into the extracted document, and follow 

this License in all other respects regarding verbatim copying of that document. 

7. AGGREGATION WITH INDEPENDENT WORKS 

A compilation of the Document or its derivatives with other separate and independent documents 

or works, in or on a volume of a storage or distribution medium, is called an "aggregate" if the 

copyright resulting from the compilation is not used to limit the legal rights of the compilation's 

users beyond what the individual works permit. When the Document is included in an aggregate, 

this License does not apply to the other works in the aggregate which are not themselves deriva-

tive works of the Document. 

If the Cover Text requirement of section 3 is applicable to these copies of the Document, then if 

the Document is less than one half of the entire aggregate, the Document's Cover Texts may be 

placed on covers that bracket the Document within the aggregate, or the electronic equivalent of 

covers if the Document is in electronic form. Otherwise they must appear on printed covers that 

bracket the whole aggregate. 

8. TRANSLATION 

Translation is considered a kind of modification, so you may distribute translations of the Docu-

ment under the terms of section 4. Replacing Invariant Sections with translations requires special 

permission from their copyright holders, but you may include translations of some or all Invari-

ant Sections in addition to the original versions of these Invariant Sections. You may include a 

translation of this License, and all the license notices in the Document, and any Warranty Dis-

claimers, provided that you also include the original English version of this License and the orig-

inal versions of those notices and disclaimers. In case of a disagreement between the translation 

and the original version of this License or a notice or disclaimer, the original version will prevail. 

If a section in the Document is Entitled "Acknowledgements", "Dedications", or "History", the 

requirement (section 4) to Preserve its Title (section 1) will typically require changing the actual 

title. 

9. TERMINATION 

You may not copy, modify, sublicense, or distribute the Document except as expressly provided 

under this License. Any attempt otherwise to copy, modify, sublicense, or distribute it is void, 

and will automatically terminate your rights under this License. 

However, if you cease all violation of this License, then your license from a particular copyright 

holder is reinstated (a) provisionally, unless and until the copyright holder explicitly and finally 

terminates your license, and (b) permanently, if the copyright holder fails to notify you of the 

violation by some reasonable means prior to 60 days after the cessation. 

Moreover, your license from a particular copyright holder is reinstated permanently if the copy-

right holder notifies you of the violation by some reasonable means, this is the first time you 

have received notice of violation of this License (for any work) from that copyright holder, and 

you cure the violation prior to 30 days after your receipt of the notice. 

Termination of your rights under this section does not terminate the licenses of parties who have 

received copies or rights from you under this License. If your rights have been terminated and 

not permanently reinstated, receipt of a copy of some or all of the same material does not give 

you any rights to use it. 

10. FUTURE REVISIONS OF THIS LICENSE 

The Free Software Foundation may publish new, revised versions of the GNU Free Documenta-

tion License from time to time. Such new versions will be similar in spirit to the present version, 
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but may differ in detail to address new problems or concerns. 

See https://www.gnu.org/licenses/. 

Each version of the License is given a distinguishing version number. If the Document specifies 

that a particular numbered version of this License "or any later version" applies to it, you have 

the option of following the terms and conditions either of that specified version or of any later 

version that has been published (not as a draft) by the Free Software Foundation. If the Docu-

ment does not specify a version number of this License, you may choose any version ever pub-

lished (not as a draft) by the Free Software Foundation. If the Document specifies that a proxy 

can decide which future versions of this License can be used, that proxy's public statement of 

acceptance of a version permanently authorizes you to choose that version for the Document. 

11. RELICENSING 

"Massive Multiauthor Collaboration Site" (or "MMC Site") means any World Wide Web server 

that publishes copyrightable works and also provides prominent facilities for anybody to edit 

those works. A public wiki that anybody can edit is an example of such a server. A "Massive 

Multiauthor Collaboration" (or "MMC") contained in the site means any set of copyrightable 

works thus published on the MMC site. 

"CC-BY-SA" means the Creative Commons Attribution-Share Alike 3.0 license published by 

Creative Commons Corporation, a not-for-profit corporation with a principal place of business in 

San Francisco, California, as well as future copyleft versions of that license published by that 

same organization. 

"Incorporate" means to publish or republish a Document, in whole or in part, as part of another 

Document. 

An MMC is "eligible for relicensing" if it is licensed under this License, and if all works that 

were first published under this License somewhere other than this MMC, and subsequently in-

corporated in whole or in part into the MMC, (1) had no cover texts or invariant sections, and (2) 

were thus incorporated prior to November 1, 2008. 

The operator of an MMC Site may republish an MMC contained in the site under CC-BY-SA on 

the same site at any time before August 1, 2009, provided the MMC is eligible for relicensing. 

 

https://www.gnu.org/licenses/
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