
101 Innovation Drive
San Jose, CA 95134
www.altera.com

MNL-AVABUSREF-2.0

Specifications

Avalon Interface

Document last updated for Altera Complete Design Suite version:
Document publication date:

11.0
May 2011

Subscribe

Avalon Interface Specifications

http://www.altera.com
https://www.altera.com/servlets/subscriptions/alert?id=MNL-AVABUSREF

Avalon Interface Specifications May 2011 Altera Corporation

© 2011 Altera Corporation. All rights reserved. ALTERA, ARRIA, CYCLONE, HARDCOPY, MAX, MEGACORE, NIOS, QUARTUS and STRATIX are Reg. U.S. Pat.
& Tm. Off. and/or trademarks of Altera Corporation in the U.S. and other countries. All other trademarks and service marks are the property of their respective
holders as described at www.altera.com/common/legal.html. Altera warrants performance of its semiconductor products to current specifications in accordance
with Altera’s standard warranty, but reserves the right to make changes to any products and services at any time without notice. Altera assumes no responsibility or
liability arising out of the application or use of any information, product, or service described herein except as expressly agreed to in writing by Altera. Altera
customers are advised to obtain the latest version of device specifications before relying on any published information and before placing orders for products or
services.

http://www.altera.com/common/legal.html

May 2011 Altera Corporation
Contents
Chapter 1. Introduction
1.1. Avalon Properties and Parameters . 1–4
1.2. .Signal Roles . 1–4
1.3. Interface Timing . 1–4
1.4. Related Documents . 1–5

Chapter 2. Avalon Clock and Reset Interfaces
2.1. Clock Sink . 2–1

2.1.1. Clock Sink Signal Roles . 2–1
2.1.2. Clock Sink Properties . 2–1
2.1.3. Associated Clock Interfaces . 2–2

2.2. Clock Source . 2–2
2.2.1. Clock Source Signa Roles . 2–2
2.2.2. Clock Source Properties . 2–2

2.3. Reset Interfaces . 2–3
2.3.1. Reset Sink . 2–3
2.3.2. Reset Sink Interface Properties . 2–3
2.3.3. Associated Reset Interfaces . 2–3
2.3.4. Reset Source . 2–3
2.3.5. Reset Source Interface Properties . 2–4

Chapter 3. Avalon Memory-Mapped Interfaces
3.1. Introduction . 3–1
3.2. Signals . 3–2
3.3. Interface Properties . 3–5
3.4. Timing . 3–7
3.5. Transfers . 3–7

3.5.1. Typical Read and Write Transfers . 3–8
3.5.2. Read and Write Transfers with Fixed Wait-States . 3–8
3.5.3. Pipelined Transfers . 3–9

3.5.3.1. Pipelined Read Transfer with Variable Latency . 3–10
3.5.3.2. Pipelined Read Transfers with Fixed Latency . 3–11

3.5.4. Burst Transfers . 3–11
3.5.4.1. Write Bursts . 3–12
3.5.4.2. Read Bursts . 3–13
3.5.4.3. Line–Wrapped Bursts . 3–14

3.6. Address Alignment . 3–14
3.7. Avalon-MM Slave Addressing . 3–15

Chapter 4. Avalon Interrupt Interfaces
4.1. Interrupt Sender . 4–1

4.1.1. Interrupt Sender Signal Roles . 4–1
4.1.2. Interrupt Sender Properties . 4–1

4.2. Interrupt Receiver . 4–2
4.2.1. Interrupt Receiver Signal Roles . 4–2
4.2.2. Interrupt Receiver Properties . 4–2
4.2.3. Interrupt Timing . 4–3
Avalon Interface Specifications

ContentsContents iv
Chapter 5. Avalon Streaming Interfaces
5.1. Features . 5–1
5.2. Terms and Concepts . 5–2
5.3. Avalon-ST Interface Signals . 5–2
5.4. Signal Sequencing and Timing . 5–4

5.4.1. Synchronous Interface . 5–4
5.4.2. Clock Enables . 5–4

5.5. Avalon-ST Interface Properties . 5–4
5.6. Typical Data Transfers . 5–5
5.7. Signal Details . 5–5
5.8. Data Layout . 5–6
5.9. Data Transfer without Backpressure . 5–7
5.10. Data Transfer with Backpressure . 5–7
5.11. Packet Data Transfers . 5–9
5.12. Signal Details . 5–10
5.13. Protocol Details . 5–10

Chapter 6. Avalon Conduit Interfaces
6.1. Signals . 6–2
6.2. Properties . 6–2

Chapter 7. Avalon Tri-State Conduit Interface
7.1. Tri-State Conduit Signals . 7–3
7.2. Tri-State Conduit Properties . 7–4
7.3. Tri-State Conduit Timing . 7–4

Additional Information
 Document Revision History . Info–1
 How to Contact Altera . Info–1
Typographic Conventions . Info–1
May 2011 Altera Corporation Avalon Interface Specifications

May 2011 Altera Corporation
1. Introduction
Avalon® interfaces simplify system design by allowing you to easily connect
components in an Altera® FPGA. The Avalon interface family defines interfaces
appropriate for streaming high-speed data, reading and writing registers and
memory, and controlling off-chip devices. These standard interfaces are designed into
the components available in Qsys. You can also use these standardized interfaces in
your custom components. By using these standard interfaces, you enhance the
interoperability of your designs.

This specification defines all of the Avalon interfaces. After reading it, you should
understand which interfaces are appropriate for your components and which signal
roles to use for particular behaviors. This specification defines the following seven
interface roles:

■ Avalon Streaming Interface (Avalon-ST)—an interface that supports the
unidirectional flow of data, including multiplexed streams, packets, and DSP data.

■ Avalon Memory Mapped Interface (Avalon-MM)—an address-based read/write
interface typical of master–slave connections.

■ Avalon Conduit Interface— an interface type that accommodates individual
signals or groups of signals that do not fit into any of the other Avalon types. You
can connect conduit interfaces inside a Qsys system or export them to make
connections to other modules in the design or to FPGA pins.

■ Avalon Tri-State Conduit Interface (Avalon-TC) —an interface to support
connections to off-chip peripherals. Multiple peripherals can share pins through
signal multiplexing, reducing the pin count of the FPGA and the number of traces
on the PCB.

■ Avalon Interrupt Interface—an interface that allows components to signal events
to other components.

■ Avalon Clock Interface—an interface that drives or receives clocks. All Avalon
interfaces are synchronous.

■ Avalon Reset Interface—an interface that provides reset connectivity.

A single component can include any number of these interfaces and can also include
multiple instances of the same interface type. For example, in Figure 1–1, the Ethernet
Controller includes six different interface types: Avalon-MM, Avalon-ST, Avalon
Conduit, Avalon-TC, Avalon Interrupt, and Avalon Clock.

1 Avalon interfaces are an open standard. No license or royalty is required to develop
and sell products that use, or are based on Avalon interfaces.

1 This specification describes the behavior of the Avalon interfaces supported in Qsys. It
supersedes version 1.3 of the Avalon Interface Specifications which describes the
behavior of Avalon interfaces supported in SOPC Builder.

f For more information about the differences between Avalon interfaces supported in
Qsys and SOPC Builder, refer to AN 632: SOPC Builder to Qsys Migration Guidelines.
Avalon Interface Specifications

http://www.altera.com/literature/an/an632.pdf
http://www.altera.com/literature/manual/mnl_avalon_spec_1_3.pdf

1–2 Chapter 1: Introduction
Figure 1–1 and Figure 1–2 illustrate the use of the Avalon interfaces in system designs.

Figure 1–1. Avalon Interfaces in a System Design with Scatter Gather DMA Controller and Nios II Processor

IRQ1 IRQ2

C1

Conduit

Avalon-MM

C2

Avalon-ST

C1C1

Avalon-ST

FIFO Buffer

FIFO Buffer

Avalon-ST Avalon-ST

C2

C2
C2

C1

C2
Ref Clk

FlashSSRAM DDR3

Altera FPGA

Printed Circuit Board

IRQ3

IRQ4

IRQ3

IRQ4

TimerUART

Nios II

C1C1

Tristate Cntrl
SSRAM

PLL

TCM

TCM

TCSTCS

M S

S

S S

MS

MS

TMS

S S

Cn

Cn

Cn

CSnk
CSrc

CSrc

CSnk

CSrc

Src

SrcSnk

Snk

Avalon-MM Master

Avalon-MM Slave

Avalon-ST Source

Avalon Conduit

Avalon-TC Master

Avalon-TC Slave

Avalon Clock Source

Avalon Clock Sink

Avalon-ST Sink

TCS

TCM

M

S

Cn

Src

Snk

Cn Cn Cn

TCS

Tristate Cntrl
Flash

DDR3
Controller

Scatter Gather
DMA

Scatter Gather
DMA

Ethernet
Controller

Tristate Conduit
Bridge

Tristate Conduit
Pin Sharer
Avalon Interface Specifications May 2011 Altera Corporation

Chapter 1: Introduction 1–3
In Figure 1–1, the Nios® II processor accesses the control and status registers of
on-chip components using an Avalon-MM interface. The scatter gather DMAs send
and receive data using Avalon-ST interfaces. Four components include interrupt
interfaces serviced by software running on the Nios II processor. A PLL accepts a
clock via an Avalon Clock Sink interface and provides two clock sources. Two
components include Avalon-TC interfaces to access off-chip memories. Finally, the
DDR3 controller accesses external DDR3 memory using an Avalon Conduit interface.

Figure 1–2. Avalon Interfaces in a System Design with PCI Express Endpoint and External Processor

Avalon-MM

C1C1

C1

C2
Ref Clk

Altera FPGA

Printed Circuit Board

IRQ1 IRQ2 IRQ3

C1

Custom
Logic

Ethernet
MAC

PLL

M M

S

Cn

CSnk
CSrc

CSrc

SDRAM
Controller

IRQ4

C2

IRQ5

C2

FlashSSRAM

C1

TCS

TCM TCM

TCS TCS

Cn

TCM

S

UART

S

Custom
Logic

SDRAM

CnCn Cn

SS

Tristate Cntrl
SSRAM

Tristate Cntrl
Flash

Tristate Conduit
Pin Sharer

Tristate Conduit
Bridge

C1

PCI Express
Endpoint

M

IRQ1
IRQ2
IRQ3
IRQ4
IRQ5

External Bus
Protocol
Bridge

M

PCI Express
Root Port

External
CPU
May 2011 Altera Corporation Avalon Interface Specifications

1–4 Chapter 1: Introduction
Avalon Properties and Parameters
In Figure 1–2, an external processor accesses the control and status registers of on-chip
components via an external bus bridge with an Avalon-MM interface. The PCI
Express root port controls devices on the printed circuit board and the other
components of the FPGA by driving an on-chip PCI Express endpoint with an
Avalon-MM master interface. An external processor handles interrupts from five
components. A PLL accepts a reference clock via a Avalon Clock sink interface and
provides two clock sources. The flash and SRAM memories use an Avalon-TC
interface to share FPGA pins. Finally, an SDRAM controller accesses an external
SDRAM memory using an Avalon Conduit interface.

1.1. Avalon Properties and Parameters
Avalon interfaces use properties to describe their behavior. For example, the
maxChannel property of Avalon-ST interfaces allows you to specify the number of
channels supported by the interface. The clockRate property of the Avalon Clock
interface provides the frequency of a clock signal. The specification for each interface
type defines all of its properties and specifies the default values.

1.2. .Signal Roles
Each of the Avalon interfaces defines a number of signal roles and their behavior.
Many signal roles are optional, allowing component designers the flexibility to select
only the signal roles necessary to implement the required functionality. For example,
the Avalon-MM interface includes optional beginbursttransfer and burstcount
signal roles for use in components that support bursting. The Avalon-ST interface
includes the optional startofpacket and endofpacket signal roles for interfaces that
support packets.

With the exception of Avalon Conduit interfaces, each interface may include only one
signal of each signal role. Active-low signals are permitted for many signal roles.
Active-high signals are generally used in this document.

1.3. Interface Timing
Subsequent chapters of this document include timing information that describes
transfers for individual interface types. There is no guaranteed performance for any of
these interfaces; actual performance depends on many factors, including component
design and system implementation.

Most Avalon interfaces must not be edge sensitive to signals other than the clock and
reset because other signals may transition multiple times before they stabilize. The
exact timing of signals between clock edges varies depending upon the characteristics
of the selected Altera device. This specification does not specify electrical
characteristics. Refer to the appropriate device documentation for electrical
specifications.
Avalon Interface Specifications May 2011 Altera Corporation

Chapter 1: Introduction 1–5
Related Documents
1.4. Related Documents
You can find additional information on related topics in the following documents and
design examples:

■ System Design with Qsys in volume 1 of the Quartus II Handbook.

This section includes the following chapters:

■ Creating a System with Qsys—provides an overview of the Qsys system
integration tool, including an introduction to hierarchical system design.

■ Creating Qsys Components—introduces Qsys components and the Qsys
component library. It also provides an overview of the Qsys component editor
which you can use to define custom components.

■ Qsys Interconnect—discusses the Qsys interconnect, a high-bandwidth structure
for connecting components that use Avalon interfaces.

■ Component Interface Tcl Reference—describes an alternative method for defining
Qsys components by declaring their properties and behaviors in a Hardware
Component Description File (_hw.tcl). This chapter also provides a reference
for the Tool Command Language (Tcl) commands that describe Qsys
components.

■ AN 632: SOPC Builder to Qsys Migration Guidelines—discusses issues and
guidelines for migrating designs from SOPC Builder to Qsys.

■ Qsys Tutorial Design Example—introduces you to system development in Qsys. It
builds a memory test system using components with Avalon interfaces to verify a
memory subsystem.
May 2011 Altera Corporation Avalon Interface Specifications

http://www.altera.com/support/examples/design-entry-tools/qsys/exm-qsys-tut.html
http://www.altera.com/literature/hb/qts/qsys_intro.pdf
http://www.altera.com/literature/hb/qts/qsys_tcl.pdf
http://www.altera.com/literature/an/an632.pdf
http://www.altera.com/literature/hb/qts/qsys_section.pdf
http://www.altera.com/literature/hb/qts/qsys_components.pdf
http://www.altera.com/literature/hb/qts/qsys_interconnect.pdf

1–6 Chapter 1: Introduction
Related Documents
Avalon Interface Specifications May 2011 Altera Corporation

May 2011 Altera Corporation
2. Avalon Clock and Reset Interfaces
Avalon Clock interfaces define the clock or clocks used by a component. Components
can have clock inputs, clock outputs, or both. A phase locked loop (PLL) is an
example of a component that has both a clock input and clock outputs. Figure 2–1 is a
simplified illustration showing the most important inputs and outputs of a PLL
component.

2.1. Clock Sink
A typical component includes a clock sink input to provide a timing reference for
other interfaces and internal logic.

2.1.1. Clock Sink Signal Roles
Table 2–1 lists the clock input signals.

2.1.2. Clock Sink Properties
Table 2–2 lists the properties of clock inputs.

Figure 2–1. PLL Core Clock Outputs and Inputs

PLL Core

altpll Megafunction

ref_clk

Clock Output
Interface1

Clock Output
Interface2

Clock Output
Interface_n

reset

Clock
Sink

Clock
Source

Clock
Source

Clock
Source

Reset
Sink

Table 2–1. Clock Input Signal Roles

Signal Role Width Direction Required Description

clk 1 Input Yes A clock signal. Provides synchronization for internal logic and for
other interfaces.

Table 2–2. Clock Sink Properties

Name Default Value Legal Values Description

clockRate 0 0–232–1 Indicates the frequency in Hz of the clock sink interface. If 0, the clock
rate is not significant.
Avalon Interface Specifications

2–2 Chapter 2: Avalon Clock and Reset Interfaces
Clock Source
2.1.3. Associated Clock Interfaces
All synchronous interfaces have an associatedClock property that specifies which
clock input on the component is used as a synchronization reference for the interface.
This property is illustrated in Figure 2–2.

2.2. Clock Source
An Avalon Clock source interface is an interface that drives a clock signal out of a
component.

2.2.1. Clock Source Signal Roles
Table 2–3 lists the clock source signals.

2.2.2. Clock Source Properties
Table 2–4 lists the properties of clock outputs.

Figure 2–2. associatedClock Property

Dual Clock FIFO

rx_clk

ST
Sink

Clock
Sink

tx_clk

ST
Source

associatedClock = "rx_clk" associatedClock = "tx_clk"

Clock
Sink

rx_data tx_data

Table 2–3. Clock Source Signal Roles

Signal Role Width Direction Required Description

clk 1 Output Yes An output clock signal.

Table 2–4. Clock Source Properties

Name Default Value Legal Values Description

associatedDirect
Clock

— a clock name The name of the clock input that directly drive this clock output,
if any.

clockRate 0 0–232–1 Indicates the frequency in Hz at which the clock output is
driven.

clockRateKnown false true, false
Indicates whether or not the clock frequency is known. If the
clock frequency is known, this information can be used to
customize other components in the system.
Avalon Interface Specifications May 2011 Altera Corporation

Chapter 2: Avalon Clock and Reset Interfaces 2–3
Reset Interfaces
2.3. Reset Interfaces
Avalon Reset interfaces provide both soft and hard reset functionality. Soft reset logic
typically reinitializes registers and memories without powering down the device.
Hard reset logic initializes the device after power-on.

The following sections describe the properties and signal roles for reset interfaces.

2.3.1. Reset Sink
Table 2–5 lists the reset input signals.

2.3.2. Reset Sink Interface Properties
Table 2–6 lists the properties of resets.

2.3.3. Associated Reset Interfaces
All synchronous interfaces have an associatedReset property that specifies which
reset signal resets the interface logic.

2.3.4. Reset Source
Table 2–7 lists the reset input signals.

Table 2–5. Reset Input Signal Roles

Signal Role Width Direction Required Description

reset
reset_n

1 Input Yes
Resets the internal logic of an interface or component to a
user-defined state. Synchronous to the clock input in the associated
clock interface.

Table 2–6. Reset Interface Properties

Name Default Value Legal Values Description

associatedClock — a clock name
The name of a clock to which this interface synchronized.
Required if the value of synchronousEdges is DEASSERT or
BOTH.

synchronousEdges DEASSERT
NONE

DEASSERT
BOTH

Indicates the type of synchronization the reset input requires.
The following values are defined:

■ NONE–no synchronization is required because the
component includes logic for internal synchronization of
the reset signal.

■ DEASSERT–the reset assertion is asynchronous and
deassertion is synchronous.

■ BOTH–reset assertion and deassertion are synchronous.

Table 2–7. Reset Output Signal Roles

Signal Role Width Direction Required Description

reset
reset_n

1 Output Yes Resets the internal logic of an interface or component to a
user-defined state.
May 2011 Altera Corporation Avalon Interface Specifications

2–4 Chapter 2: Avalon Clock and Reset Interfaces
Reset Interfaces
2.3.5. Reset Source Interface Properties
Table 2–6 lists the properties of resets.

.

Table 2–8. Reset Interface Properties

Name Default Value Legal Values Description

associatedClock — a clock name
The name of a clock to which this interface synchronized.
Required if the value of synchronousEdges is DEASSERT
or BOTH.

associatedDirectReset — a reset name The name of the reset input that directly drives this reset
source through a one-to-one link.

associatedResetSinks — a reset name
Specifies reset inputs which will eventually cause a reset
source to assert reset; for example, a reset synchronizer
ORs a number of reset inputs to generate a reset output.

synchronousEdges DEASSERT
NONE

DEASSERT
BOTH

indicates the type of synchronization the reset input
requires. The following values are defined:

■ NONE–no synchronization is required because the
component includes logic for internal synchronization
of the reset signal.

■ DEASSERT–the reset assertion is asynchronous and
deassertion is synchronous.

■ BOTH–reset assertion and deassertion are
synchronous.
Avalon Interface Specifications May 2011 Altera Corporation

May 2011 Altera Corporation
3. Avalon Memory-Mapped Interfaces
3.1. Introduction
Avalon Memory-Mapped (Avalon-MM) interfaces are used for read and write
interfaces on master and slave components in a memory-mapped system. These
components include microprocessors, memories, UARTs, DMAs, and timers which
have master and slave interfaces connected by an interconnect fabric. Avalon-MM
interfaces can describe a wide variety of component interfaces, from SRAM interfaces
which support simple, fixed-cycle read and write transfers to more complex,
pipelined interfaces capable of burst transfers.

Figure 3–1 shows a typical system, highlighting the Avalon-MM slave interface
connection to the interconnect fabric.

Figure 3–1. Focus on Avalon-MM Slave Transfers

RS-232

Avalon-MM System

 Interconnect

Ethernet
PHY
Chip

Avalon
Slave Port

Avalon-MM
Slave

Avalon-MM
Slave

RAM
Memory

Chip

Avalon-MM
Master

Processor

Flash
Memory

Chip

Tristate
Conduit
Slave

Tristate
Conduit
Slave

SRAM
Memory

Chip

Avalon-MM
Master

Avalon-MM
Master

Ethernet MAC Custom Logic

RAM
Controller

UART Custom
Logic

Flash
Controller

Avalon-MM
Slave

Tristate Conduit Pin Sharer &
Tristate Conduit Bridge

Tristate Conduit Slave

Tristate Conduit Master

SRAM
Controller

Avalon-MM
Slave

Avalon-MM
Slave
Avalon Interface Specifications

3–2 Chapter 3: Avalon Memory-Mapped Interfaces
Signals
Avalon-MM components typically include only the signals required for the
component logic. The 16-bit general-purpose I/O peripheral shown in Figure 3–2
only responds to write requests, therefore it includes only the slave signals required
for write transfers.

Each signal in an Avalon-MM slave corresponds to exactly one Avalon-MM signal
role. An Avalon-MM port can use only one instance of each signal role.

3.2. Signals
Table 3–1 lists the signal roles that constitute the Avalon-MM interface. The signal
roles available for Avalon-MM interfaces allow you to create masters that use bursts
for both reads and writes. You can increase the throughput of your system by
initiating reads with multiple pipelined slave peripherals. In responding to reads,
when a slave peripheral has valid data it asserts readdatavalid and the interconnect
enables the connection between the master and slave pair.

This specification does not require all signals to exist in an Avalon-MM interface. In
fact, there is no one signal that is always required. The minimum requirements are
readdata for a read-only interface or writedata and write for a write-only interface.

Figure 3–2. Example Slave Component

Avalon-MM
 Interface

(Avalon-MM
 Slave Port)

Application-
Specific
Interface

writedata[15..0]

write

clk

pio_out[15..0]

CLK_EN

>

D Q

Avalon-MM Peripheral

Table 3–1. Avalon-MM Signals (1) (Part 1 of 4)

Signal role Width Direction Description

Fundamental Signals

address 1-32 Master →
Slave

For masters, the address signal represents a byte address. The
value of the address must be aligned to the data width. To write to
specific bytes within a data word, the master must use the
byteenable signal.

For slaves, the interconnect translates the byte address into a
word address in the slave’s address space so that each slave
access is for a word of data from the perspective of the slave. For
example, address= 0 selects the first word of the slave and
address 1 selects the second word of the slave.
Avalon Interface Specifications May 2011 Altera Corporation

Chapter 3: Avalon Memory-Mapped Interfaces 3–3
Signals
begintransfer 1 Master →
Slave

Asserted by the interconnect for the first cycle of each transfer
regardless of waitrequest and other signals. If you do not
include this signal in your Avalon-MM master interface, Qsys
automatically generates this signal for you.

byteenable

byteenable_n

1, 2, 4, 8,
16, 32, 64,
128

Master →
Slave

Enables specific byte lane(s) during transfers on ports of width
greater than 8 bits. Each bit in byteenable corresponds to a
byte in writedata and readdata. The master bit <n> of
byteenable indicates whether byte <n> is being written to.
During writes, byteenables specify which bytes are being
written to; other bytes should be ignored by the slave. During
reads, byteenables indicates which bytes the master is reading.
Slaves that simply return readdata with no side effects are free
to ignore byteenables during reads. If an interface does not
have a byteenable signal, the transfer proceeds as if all
byteenables are asserted.

When more than one bit of the byteenable signal is asserted, all
asserted lanes are adjacent. The number of adjacent lines must
be a power of 2, and the specified bytes must be aligned on an
address boundary for the size of the data. For example, the
following values are legal for a 32-bit slave:

1111 writes full 32 bits

0011 writes lower 2 bytes

1100 writes upper 2 bytes

0001 writes byte 0 only

0010 writes byte 1 only

0100 writes byte 2 only

1000 writes byte 3 only

Altera strongly recommends that you use the byteenable signal
in components that will be used in systems with different word
sizes. Doing so avoids unintended side effects in systems that
include width adapters.

chipselect
chipselect_n

1 Master →
Slave

When present, a slave port ignores all Avalon-MM signals unless
chipselect is asserted. chipselect must be used in
combination with read or write. The chipselect signal is not
necessary; Altera does not recommend using it.

debugaccess 1 Master →
Slave

When asserted, allows internal memories that are normally
write-protected to be written. For example, on-chip ROM
memories can only be written when debugaccess is asserted.

read

read_n
1 Master →

Slave
Asserted to indicate a read transfer. If present, readdata is
required.

readdata
8,16, 32, 64,
128, 256,
512, 1024

Slave →
Master

The readdata driven from the slave to the master in response to
a read transfer.

write

write_n
1 Master →

Slave
Asserted to indicate a write transfer. If present, writedata is
required.

Table 3–1. Avalon-MM Signals (1) (Part 2 of 4)

Signal role Width Direction Description
May 2011 Altera Corporation Avalon Interface Specifications

3–4 Chapter 3: Avalon Memory-Mapped Interfaces
Signals
writedata
8,16, 32, 64,
128, 256,
512, 1024

Master →
Slave

Data for write transfers. The width must be the same as the width
of readdata if both are present.

Wait-State Signals

lock 1 Master →
Slave

lock ensures that once a master wins arbitration, it maintains
access to the slave for multiple transactions. It is asserted
coincident with the first read or write of a locked sequence of
transactions, and is deasserted on the final transaction of a
locked sequence of transactions. lock assertion does not
guarantee that arbitration will be won, but after the lock-asserting
master has been granted, it retains grant until it is deasserted.

A master equipped with lock cannot be a burst master.
Arbitration priority values for lock-equipped masters are ignored.

lock is particularly useful for read-modify-write operations,
where master A reads 32-bit data that has multiple bit fields,
changes one field, and writes the 32-bit data back. If lock is not
used, a master B could perform a write between Master A’s read
and write and master A’s write would overwrite master B’s
changes.

waitrequest

waitrequest_n
1 Slave →

Master

Asserted by the slave when it is unable to respond to a read or
write request. Forces the master to wait until the interconnect is
ready to proceed with the transfer. At the start of all transfers, a
master initiates the transfer and waits until waitrequest is
deasserted. A master must make no assumption about the
assertion state of waitrequest when the master is idle:
waitrequest may be high or low, depending on system
properties. When waitrequest is asserted, master control
signals to the slave remain constant with the exception of
begintransfer and beginbursttransfer, as is illustrated by
Figure 3–7 on page 3–14. An Avalon-MM slave may assert
waitrequest during idle cycles. An Avalon-MM master may
initiate a transaction when waitrequest is asserted and wait for
that signal to be deasserted. To avoid system lockup, a slave
device should assert waitrequest when in reset.

Pipeline Signals

readdatavalid

readdatavalid_n
1 Slave →

Master

Used for variable-latency, pipelined read transfers. Asserted by
the slave to indicate that the readdata signal contains valid data
in response to a previous read request. A slave with
readdatavalid must assert this signal for one cycle for each
read access it has received. There must be at least one cycle of
latency between acceptance of the read and assertion of
readdatavalid. Figure 3–5 on page 3–11 illustrates the
readdatavalid signal.

Required if the master supports pipelined reads. Bursting
masters with read functionality must include the readdatavalid
signal.

Table 3–1. Avalon-MM Signals (1) (Part 3 of 4)

Signal role Width Direction Description
Avalon Interface Specifications May 2011 Altera Corporation

Chapter 3: Avalon Memory-Mapped Interfaces 3–5
Interface Properties
3.3. Interface Properties
Table 3–2 describes the Avalon-MM interface properties.

Burst Signals

burstcount 1–11 Master →
Slave

Used by bursting masters to indicate the number of transfers in
each burst. The value of the maximum burstcount parameter
must be a power of 2, so a burstcount port of width <n> can
encode a max burst of size 2(<n>-1). For example, a 4-bit
burstcount signal can support a maximum burst count of 8. The
minimum burstcount is 1. The timing of the burstcount
signal is controlled by the constantBurst property. Bursting
masters with read functionality must include the readdatavalid
signal.

For bursting masters and slaves, the following restriction applies
to the width of the address:

<address_w> >= <burstcount_w> + floor(log2
(<symbols_per_word_on_this_interface>))

beginbursttransfer 1 Master →
Slave

Asserted for the first cycle of a burst to indicate when a burst
transfer is starting. This signal is deasserted after one cycle
regardless of the value of waitrequest. Refer to Figure 3–7 on
page 3–14 for an example of its use.

Notes to Table 3–1:

(1) All Avalon signals are active high. Avalon signals that can also be asserted low list _n versions of the signal in the Signal role column.

Table 3–1. Avalon-MM Signals (1) (Part 4 of 4)

Signal role Width Direction Description

Table 3–2. Avalon-MM Interface Properties (Part 1 of 3)

Name Default
Value Legal Values Description

addressUnits

Master -
symbol

Slave -
word

word, symbol Specifies the unit of data for reads and writes.

burstCountUnits words word, symbol Specifies the unit of data for bursts.

burstOnBurstBoundariesOnly false true, false
If true, burst transfers presented to this interface
are guaranteed to begin at addresses which are
multiples of the burst size in bytes.

constantBurstBehavior

Master -
true

Slave -
false

true, false

When true for a master, declares that the master
holds address and burstcount stable
throughout a burst; when false, declares that the
master holds address and burstcount stable
only for the first transaction of a burst. When true
for a slave, declares that the slave expects
address and burstcount to be held stable
throughout a burst; when false, declares that the
slave samples address and burstcount only on
the first transaction of a burst.
May 2011 Altera Corporation Avalon Interface Specifications

3–6 Chapter 3: Avalon Memory-Mapped Interfaces
Interface Properties
holdTime (1) 0 0–1000
cycles

Specifies time in timingUnits between the
deassertion of write and the deassertion of
chipselect, address, and data. (Only applies
to write transactions.)

linewrapBursts false true, false

Some memory devices implement a wrapping
burst instead of an incrementing burst. The
difference between the two is that with a wrapping
burst, when the address reaches a burst
boundary, the address wraps back to the previous
burst boundary such that only the low order bits
are required for address counting. For example, a
wrapping burst with burst boundaries every 32
bytes across a 32-bit interface to address 0xC
would write to addresses 0xC, 0x10, 0x14, 0x18,
0x1C, 0x0, 0x4, and 0x8.

maximumPendingReadTransactions
(1)

1 (2) 1–64

The maximum number of pending reads which
can be queued by the slave. Refer to Figure 3–5 on
page 3–11 for a timing diagram that uses this
property.

readLatency (1) 0 0–63

Read latency for fixed-latency Avalon-MM slaves.
Not used on interfaces that include the
readdatavalid signal. Refer to Figure 3–6 on
page 3–12 for a timing diagram that uses this
property.

readWaitTime (1) 1 0–1000
cycles

For interfaces that don’t use the waitrequest
signal, readWaitTime indicates the number of
cycles or nanoseconds before the slave accepts a
read command. The timing is as if the slave
asserted waitrequest for readWaitTime cycles.

setupTime (1) 0
0–1000
cycles

Specifies time in timingUnits between the
assertion of chipselect, address, and data
and assertion of read or write.

timingUnits (1) cycles cycles,
nanoseconds

Specifies the units for setupTime, holdTime,
writeWaitTime and readWaitTime. Use cycles
for synchronous devices and nanoseconds
(depending on the timingUnits parameter) for
asynchronous devices. Almost all Avalon-MM
slave devices are synchronous. One example of a
device that requires asynchronous timing is an
Avalon-MM slave that reads and writes an off-chip
bidirectional port. That off-chip device might have
a fixed settling time for bus turnaround.

Table 3–2. Avalon-MM Interface Properties (Part 2 of 3)

Name Default
Value Legal Values Description
Avalon Interface Specifications May 2011 Altera Corporation

Chapter 3: Avalon Memory-Mapped Interfaces 3–7
Timing
3.4. Timing
The Avalon-MM interface is synchronous. Each Avalon-MM port is synchronized to
an associated clock interface. Signals may be combinational if they are driven from the
outputs of registers that are synchronous to the clock signal. This document does not
dictate how or when signals transition between clock edges and timing diagrams are
devoid of fine-grained timing information.

3.5. Transfers
This section defines two basic concepts before introducing the transfer types:

■ Transfer—A transfer is a read or write operation of a word or symbol of data,
between an Avalon-MM port and the interconnect. Avalon-MM transfers words
ranging in size from 8–1024 bits. Transfers take one or more clock cycles to
complete.

Both masters and slaves are part of a transfer; the Avalon-MM master initiates the
transfer and the Avalon-MM slave responds to it.

■ Master-slave pair —This term refers to the master port and slave port involved in a
transfer. During a transfer, the master port's control and data signals pass through
the interconnect fabric and interact with the slave port.

writeWaitTime (1) 0 0–1000
cycles

For interfaces that do not use the waitrequest
signal, writeWaitTime indicates the number of
cycles or nanoseconds (depending on the
timingUnits parameter) before a slave accepts a
write. The timing is as if the slave asserted
waitrequest for writeWaitTime cycles or
nanoseconds. Refer to Figure 3–4 on page 3–9 for
a timing diagram that uses this property.

Interface Relationship Properties

associatedClock — — Name of the clock interface to which this
Avalon-MM interface is synchronous.

associatedReset — — Name of the reset interface to which this
Avalon-MM interface is synchronous.

bridgesToMaster null

Avalon-MM
master on the
same
component

An Avalon-MM bridge consists of a slave and a
master, and has the property that an access to the
slave requesting a particular byte or bytes will
cause the same byte or bytes to be requested by
the master. The Avalon-MM Pipeline Bridge in the
Qsys component library implements this
functionality.

Note to Table 3–2:

(1) Although this property characterizes a slave device, masters can declare this property to enable direct connections between matching master
and slave interfaces.

(2) If a component accepts more read transfers than the value indicated here, the internal pending read FIFO may overflow with unpredictable
results, including the loss of readdata, routing of readdata to the wrong master interface, or system lockup.

Table 3–2. Avalon-MM Interface Properties (Part 3 of 3)

Name Default
Value Legal Values Description
May 2011 Altera Corporation Avalon Interface Specifications

3–8 Chapter 3: Avalon Memory-Mapped Interfaces
Transfers
3.5.1. Typical Read and Write Transfers
This section describes a typical Avalon-MM interface that supports read and write
transfers with slave-controlled waitrequest. The slave can stall the interconnect for as
many cycles as required by asserting the waitrequest signal. If a slave uses
waitrequest for either read or write transfers, it must use waitrequest for both.

If a slave receives address, byteenable, read or write, and writedata after the rising
edge of the clock, the slave port must assert waitrequest before the next rising clock
edge to hold off the transfers. When the slave asserts waitrequest, the transfer is
delayed and the address and control signals are held constant. Transfers complete on
the rising edge of the first clk after the slave port deasserts waitrequest.

There is no limit on how long a slave port can stall. Therefore, you must ensure that a
slave port does not assert waitrequest indefinitely. Figure 3–3 shows read and write
transfers using waitrequest.

1 waitrequest can be decoupled from the read and write request signals so that it may
be asserted during idle cycles. An Avalon-MM master may initiate a transaction when
waitrequest is asserted and wait for that signal to be deasserted. Decoupling
waitrequest from read and write requests may improve system timing by
eliminating a combinational loop including the read, write and waitrequest signals.

Figure 3–3. Read and Write Transfers with Waitrequest

Notes to Figure 3–3:

(1) address, read, and begintransfer are asserted after the rising edge of clk. waitrequest is asserted stalling the transfer.
(2) waitrequest is sampled. Because waitrequest is asserted, the cycle becomes a wait-state, and address, read, write, and byteenable

remain constant. Begintransfer is not held constant.
(3) The slave presents valid readdata and deasserts waitrequest.
(4) readdata and deasserted waitrequest are sampled, completing the transfer.
(5) address, writedata, byteenable, begintransfer, and write signals are asserted. The slave responds by asserting waitrequest, stalling

the transfer.
(6) The slave captures writedata and deasserts waitrequest, ending the transfer.

clk

address

byteenable

read

write

waitrequest

readdata

writedata

address

byteenable

readdata

writedata

1 2 3 4 5 6
Avalon Interface Specifications May 2011 Altera Corporation

Chapter 3: Avalon Memory-Mapped Interfaces 3–9
Transfers
3.5.2. Read and Write Transfers with Fixed Wait-States
Instead of using waitrequest to hold off a transfer, a slave can specify fixed
wait-states using the readWaitTime and writeWaitTime properties. The address and
control signals (byteenable, read, and write) are held constant for the duration of the
transfer. The read/write timing with readWaitTime/writeWaitTime set to <n> is
exactly the same as asserting waitrequest for <n> cycles per transfer.

Figure 3–4 shows an example slave read and write transfers with writeWaitTime = 2
and readWaitTime = 1.

Transfers with a single wait-state are commonly used for multicycle off-chip
peripherals. The peripheral can capture address and control signals on the rising edge
of clk, and has one full cycle to return data. Components with zero wait-states are
allowed, but may decrease achievable frequency because they generate the response
in the same cycle as the request.

3.5.3. Pipelined Transfers
Avalon-MM pipelined read transfers increase the throughput for synchronous slave
devices that require several cycles to return data for the first access, but can return one
data value per cycle for some time thereafter. New pipelined read transfers can be
started before readdata for the previous transfers is returned. Write transfers cannot
be pipelined.

A pipelined read transfer is divided into two phases: an address phase and a data
phase. A master initiates a transfer by presenting the address during the address
phase; a slave port fulfills the transfer by delivering the data during the data phase.
The address phase for a new transfer (or multiple transfers) can begin before the data
phase of a previous transfer completes. The delay is called pipeline latency, which is the
duration from the end of the address phase to the beginning of the data phase.

The key differences between how wait-states and pipeline latency affect transfer
timing is as follows:

Figure 3–4. Read and Write Transfer with Fixed Wait-States at the Slave Interface

Notes to Figure 3–4:

(1) The master asserts address and read on the rising edge of clk.
(2) The next rising edge of clk marks the end of the first and only wait-state cycle because the readWaitTime is 1.
(3) The slave captures readdata on the rising edge of clk, and the read transfer ends.
(4) writedata, address, byteenable, and write signals are available to the slave.
(5) Because writeWaitTime is 2, the transfer terminates after completing. The data and control signals are held constant until this time.

clk

address

byteenable

read

write

readdata

writedata

address address

readdata

writedata

4 51 2 3
May 2011 Altera Corporation Avalon Interface Specifications

3–10 Chapter 3: Avalon Memory-Mapped Interfaces
Transfers
■ Wait-states—Wait-states determine the length of the address phase, and limit the
maximum throughput of a port. If a slave requires one wait-state to respond to a
transfer request, then the port requires at least two clock cycles per transfer.

■ Pipeline Latency—Pipeline latency determines the time until data is returned
independently of the address phase. A pipelined slave port with no wait-states can
sustain one transfer per cycle, even though it may require several cycles of latency
to return the first unit of data.

Wait-states and pipelined reads can be supported concurrently, and pipeline latency
can be either fixed or variable, as discussed in the following sections.

3.5.3.1. Pipelined Read Transfer with Variable Latency
An Avalon-MM pipelined slave takes one or more cycles to produce data after
address and control signals have been captured. A pipelined slave port may have
multiple pending read transfers at any given time. Variable-latency pipelined read
transfers use the same set of signals as non-pipelined read transfers, with one
additional signal, readdatavalid. Slave peripherals that use readdatavalid are
considered pipelined with variable latency; the readdata and readdatavalid signals
can be asserted the cycle after the read cycle is asserted, at the earliest.

The slave port must return readdata in the same order that it accepted the addresses.
Pipelined slave ports with variable latency must use waitrequest. The slave can
assert waitrequest to stall transfers to maintain the number of pending transfers at an
acceptable level.

1 The maximum number of pending transfers is a property of the slave interface. The
interconnect fabric builds logic which routes readdata to the requesting masters,
parameterized by this maximum number. It is the responsibility of the slave interface,
not the interconnect fabric, to keep the number of pending reads from exceeding the
stated maximum by asserting waitrequest.
Avalon Interface Specifications May 2011 Altera Corporation

Chapter 3: Avalon Memory-Mapped Interfaces 3–11
Transfers
Figure 3–5 shows several slave read transfers between a master and a pipelined slave
with variable latency. In this example, the slave can accept a maximum of two
pending transfers and uses waitrequest to prevent overrunning this maximum.

If the slave cannot handle a write transfer while it is processing pending read
transfers, the slave must assert its waitrequest and stall the write operation until the
pending read transfers have completed. The Avalon-MM specification does not define
the value of readdata in the event that a slave accepts a write transfer to the same
address as a currently pending read transfer. Pipelined slaves with variable latency
must support waitrequest.

3.5.3.2. Pipelined Read Transfers with Fixed Latency
The address phase for fixed latency read transfers is identical to the variable latency
case. After the address phase, a pipelined slave port with fixed read latency takes a
fixed number of clock cycles to return valid readdata, as indicated by the
readWaitTime property. The interconnect captures readdata on the appropriate rising
clock edge, and the data phase ends.

During the address phase, the slave port can assert waitrequest to hold off the
transfer or can specify readWaitTime for a fixed number of wait states. The address
phase ends on the next rising edge of clk after wait-states, if any.

During the data phase, the slave drives readdata after a fixed latency. If the slave has
a read latency of <n>, the slave port must present valid readdata on the <nth> rising
edge of clk after the end of the address phase.

Figure 3–5. Pipelined Read Transfers with Variable Latency

Notes to Figure 3–5:

(1) The master asserts address and read, initiating a read transfer.
(2) The slave captures addr1, and immediately provides the response data1 and asserts readdatavalid.
(3) The slave captures addr2 and immediately provides the response data2 and asserts readdatavalid. The

interconnect captures data1.
(4) The slave asserts waitrequest for two cycles causing the third transfer to be stalled.
(5) The interconnect captures data2.
(6) The slave drives readdatavalid and valid readdata in response to the third read transfer.
(7) The data from transfer 3 is captured by the interconnect at the same time that addr4 is captured by the slave.
(8) The slave captures addr5. The interconnect captures data4.
(9) data5 is presented with readdatavalid completing the data phase for the final pending read transfer.

clk

address

read

waitrequest

readdata

readdatavalid

1 2 3 4 5 6 7 98

addr1 addr2 addr3

stall

addr4 addr5

data1 data2 data 3 data4 data5
May 2011 Altera Corporation Avalon Interface Specifications

3–12 Chapter 3: Avalon Memory-Mapped Interfaces
Transfers
Figure 3–6 shows multiple data transfers between a master and a pipelined slave port
that uses waitrequest and has a fixed read latency of 2 cycles.

3.5.4. Burst Transfers
A burst executes multiple transfers as a unit, rather than treating every word
independently. Bursts may increase throughput for slave ports that achieve greater
efficiency when handling multiple word at a time, such as SDRAM. The net effect of
bursting is to lock the arbitration for the duration of the burst. If a Avalon-MM
interface includes both read and write functionality and supports bursting, it must
support both burst reads and burst writes.

To support bursts, an Avalon-MM interface includes a burstcount output signal. If a
slave has a burstcount input, it is considered burst capable.

The burstcount signal behaves as follows:

■ At the start of a burst, burstcount presents the number of sequential transfers in
the burst.

■ For width <n> of burstcount, the maximum burst length is 2(<n>-1).The minimum
legal burst length is one.

To support slave read bursts, a slave must also support:

■ wait-states with the waitrequest signal.

■ Pipelined transfers with variable latency with the readdatavalid signal.

At the start of a burst, the slave sees the address and a burst length value on
burstcount. For a burst with an address of <a> and a burstcount value of , the
slave must perform consecutive transfers starting at address <a>. The burst
completes after the slave receives (write) or returns (read) the <bth> word of data. The
bursting slave must capture address and burstcount only once for each burst. The
slave logic must infer the address for all but the first transfers in the burst. A slave can
also use the input signal beginbursttransfer, which the interconnect asserts on the
first cycle of each burst.

Figure 3–6. Pipelined Read Transfer with Fixed Latency of Two Cycles

Notes to Figure 3–6:

(1) A master initiates a read transfer by asserting read and addr1. The slave asserts waitrequest to hold off the transfer for one cycle.
(2) The slave deasserts waitrequest and captures addr1 at the rising edge of clk. The address phase ends here.
(3) The slave presents valid readdata after 2 cycles, ending the transfer.
(4) addr2 and read are asserted for a new read transfer.
(5) The master initiates a third read transfer during the next cycle, before the data from the prior transfer is returned.

clk

address

read

waitrequest

readdata

addr1 addr2 addr3

data1 data2 data3

1 2 3 4 5
Avalon Interface Specifications May 2011 Altera Corporation

Chapter 3: Avalon Memory-Mapped Interfaces 3–13
Transfers
3.5.4.1. Write Bursts
These rules apply when a write burst begins with burstcount greater than one:

■ When a burstcount of <n> is presented at the beginning of the burst, the slave
must accept <n> successive units of writedata to complete the burst. Arbitration
between the master-slave pair is locked until the burst completes, guaranteeing
that data arrives, in order, from the master port that initiated the burst.

■ The slave must only capture writedata when write is asserted. During the burst,
write can be deasserted to indicate that it is not presenting valid writedata.
Deasserting write does not terminate the burst; it only delays it. When a burst is
delayed, no other masters can access the slave, reducing the transfer efficiency.

■ The constantBurstBehavior property controls the behavior of the burst signals.
When true for a master, declares that the master holds address and burstcount
stable throughout a burst; when false, declares that the master holds address and
burstcount stable only for the first transaction of a burst. When true for a slave,
declares that the slave expects address and burstcount to be held stable
throughout a burst; when false, declares that the slave samples address and
burstcount only on the first transaction of a burst. (Refer to “Avalon-MM Interface
Properties” on page 3–5.)

■ The slave can delay a transfer by asserting waitrequest which forces writedata,
write, and byteenable to be held constant, as usual.

■ The functionality of the byteenable signal is the same for bursting and
non-bursting slaves. For a 32-bit master burst-writing to a 64-bit slave, starting at
byte address 4, the first write transfer seen by the slave is at its address 0, with
byteenable = 8b’11110000. The byteenables can change for different words of the
burst.

■ The byteenable signals do not all have to be asserted. A burst master writing
partial words can use the byteenable signal to identify the data being written.
May 2011 Altera Corporation Avalon Interface Specifications

3–14 Chapter 3: Avalon Memory-Mapped Interfaces
Transfers
Figure 3–7 demonstrates a slave write burst of length 4. In this example, the slave port
asserts waitrequest twice delaying the burst.

In Figure 3–7, the beginbursttransfer signal is asserted for the first clock cycle of a
burst and is deasserted on the next clock cycle. Even if the slave asserts waitrequest,
the beginbursttransfer signal is asserted only for the first clock cycle.

3.5.4.2. Read Bursts
Read bursts are similar to pipelined read transfers with variable latency. A read burst
has distinct address and data phases, and readdatavalid indicates when the slave is
presenting valid readdata. The difference is that a single read burst address results in
multiple data transfers.

These rules apply to read bursts:

■ When burstcount is <n>, the slave must return <n> words of readdata to
complete the burst.

■ The slave presents each word by providing readdata and asserting readdatavalid
for a cycle. Deassertion of readdatavalid delays but does not terminate the burst
data phase.

■ The byteenables presented with a read burst command apply to all cycles of the
burst. A byteenable value of 1 means that the least significant byte is being read
across all of the read cycles.

1 Altera recommends that burst capable slaves not have read side effects. (This
specification does not guarantee how many bytes will be read from the slave in order
to satisfy a request.)

Figure 3–7. Write Burst with constantBurstBehavior Set to False for Master and Slave

Notes to Figure 3–7:

(1) The master asserts address, burstcount, write, and drives the first unit of writedata. The slave immediately asserts waitrequest,
indicating that it is not ready to proceed with the transfer.

(2) waitrequest is low; the slave captures addr1, burstcount, and the first unit of writedata . On subsequent cycles of the transfer, address
and burstcount are ignored.

(3) The slave port captures the second unit of data at the rising edge of clk.
(4) The burst is paused while write is deasserted.
(5) The slave captures the third unit of data at the rising edge of clk.
(6) The slave asserts waitrequest. In response, all outputs are held constant through another clock cycle.
(7) The slave captures the last unit of data on this rising edge of clk. The slave write burst ends.

clk

address

beginbursttransfer

burstcount

write

writedata

waitrequest

addr1

4

data1 data2 data3 data4

1 2 3 4 65 7
Avalon Interface Specifications May 2011 Altera Corporation

Chapter 3: Avalon Memory-Mapped Interfaces 3–15
Address Alignment
Figure 3–8 illustrates a system with two bursting masters accessing a slave. Note that
Master B can drive a read request before the data has returned for Master A.

3.5.4.3. Line–Wrapped Bursts
Processors with data or instruction caches gain efficiency by using line-wrapped
bursts. When a processor requests data, and the data is not in the cache, the cache
controller reads enough data from the memory to fill the entire cache line. For a
processor with a cache line size of 64 bytes, a cache miss causes 64 bytes to be read
from memory. If the processor reads from address 0xC when the cache miss occurred,
then an incrementing addressing burst cache controller could issue a burst at address
0, resulting in data from read addresses 0x0, 0x4, 0x8, 0xC, 0x10, 0x14, 0x18, and 0x1C
– the data that the processor requested is not available until the fourth read. With
wrapping bursts, the address order is 0xC, 0x10, 0x14, 0x18, 0x1C, 0x0, 0x4, and 0x8
such that the data that the processor requested is returned first.

3.6. Address Alignment
For systems in which master and slave data widths differ, the interconnect manages
address alignment issues. The Avalon-MM interface resolves data width differences,
so that any master port can communicate with any slave port, regardless of the
respective data widths. The interconnect only supports aligned accesses; a master can
only issue addresses that are a multiple of its data width. (A master can write partial
words by deasserting some byteenables. For example, a burst of size 2 at address 0
would have the following pattern for the byteenables: 1100.)

Figure 3–8. Read Burst

Notes to Figure 3–8:

(1) Master A asserts address (A0), burstcount, and read after the rising edge of clk. The slave asserts waitrequest, causing all inputs except
beginbursttransfer to be held constant through another clock cycle.

(2) The slave captures A0 and burstcount at this rising edge of clk. A new transfer could start on the next cycle.
(3) Master B drives address (A1), burstcount, and read. The slave asserts waitrequest, causing all inputs except beginbursttransfer to

be held constant. The slave could have returned read data from the first read request at this time, at the earliest.
(4) The slave presents valid readdata and asserts readdatavalid, transferring the first word of data for master A.
(5) The second word for master A is transferred. The slave deasserts readdatavalid pausing the read burst. The slave port can keep

readdatavalid deasserted for an arbitrary number of clock cycles.
(6) The first word for master B is returned.

clk

address

read

beginbursttransfer

waitrequest

burstcount

readdatavalid

readdata

A0 (master A) A1 (master B)

4 2

D(A0) D(A0+1) D(A0+2) D(A0+3) D(A1) D(A1+1)

2 3 5 61 4
May 2011 Altera Corporation Avalon Interface Specifications

3–16 Chapter 3: Avalon Memory-Mapped Interfaces
Avalon-MM Slave Addressing
3.7. Avalon-MM Slave Addressing
Dynamic bus sizing refers to a service provided by the interconnect that dynamically
manages data during transfers between master-slave pairs of differing data widths,
such that all slave data are aligned in contiguous bytes in the master address space.

If the master is wider than the slave, data bytes in the master address space map to
multiple locations in the slave address space. For example, when a 32-bit master port
performs a full 32-bit read transfer from a 16-bit slave port, the interconnect executes
two read transfers on the slave side on consecutive addresses, and presents 32-bits of
slave data back to the master port.

If the master is narrower than the slave, then the interconnect manages the slave byte
lanes. During master read transfers, the interconnect presents only the appropriate
byte lanes of slave data to the narrower master. During master write transfers, the
interconnect automatically asserts the byteenable signals to write data only to the
specified slave byte lanes.

Slaves must have a data width of 8, 16, 32, 64, 128, 256, 512 or 1024 bits. Table 3–3
shows how slave data of various widths is aligned within a 32-bit master when the
master is performing full-word accesses. In Table 3–3, OFFSET[N] refers to a slave
word size offset into the slave address space.

Table 3–3. Dynamic Bus Sizing Master-to-Slave Address Mapping

Master Byte
Address (1)

32-Bit Master Data

When Accessing
an 8-Bit Slave Port

When Accessing
a 16-Bit Slave Port

When Accessing
a 64-Bit Slave Port

0x00
OFFSET[3]7..0:OFFSET[2]7..0:
OFFSET[1]7..0:OFFSET[0]7..0

OFFSET[1]15..0:OFFSET[0]15..0 (2) OFFSET[0]31..0

0x04
OFFSET[7]7..0:OFFSET[6]7..0:
OFFSET[5]7..0:OFFSET[4]7..0

OFFSET[3]15..0:OFFSET[2]15..0 OFFSET[0]63..32

0x08
OFFSET[11]7..0:OFFSET[10]7..0:
OFFSET[9]7..0:OFFSET[8]7..0

OFFSET[5]15..0:OFFSET[4]15..0 OFFSET[1]31..0

0x0C
OFFSET[15]7..0:OFFSET[14]7..0:
OFFSET[13]7..0:OFFSET[12]7..0

OFFSET[7]15..0:OFFSET[6]15..0 OFFSET[1]63..32

...

Notes to Table 3–3:

(1) Although the master is issuing byte addresses, it is accessing full 32-bit words.
(2) For all slave entries, [<n>] is the word offset and the subscript values are the bits in the word.
Avalon Interface Specifications May 2011 Altera Corporation

May 2011 Altera Corporation
4. Avalon Interrupt Interfaces
Avalon Interrupt interfaces allow slave components to signal events to master
components. For example, a DMA controller can interrupt a processor when it has
completed a DMA transfer.

4.1. Interrupt Sender
An interrupt sender drives a single interrupt signal to an interrupt receiver. The
timing of the irq signal must be synchronous to the rising edge of its associated clock,
but has no relationship to any transfer on any other interface. irq must be asserted
until the interrupt has been acknowledged on the associated Avalon-MM slave
interface. The interrupt receiver typically determines how to respond to the event by
reading an interrupt status register from an Avalon-MM slave interface. The
mechanism used to acknowledge an interrupt is component specific.

4.1.1. Interrupt Sender Signal Roles
Table 4–1 lists the interrupt signal roles.

4.1.2. Interrupt Sender Properties
Table 4–2 lists the properties associated with interrupt senders.

Table 4–1. Interrupt Sender Signal Roles

Signal Role Width Direction Required Description

irq

irq_n
1 Output Yes Interrupt Request. A slave asserts irq when it needs to be serviced.

Table 4–2. Interrupt Sender Properties

Property Name Default
Value Legal Values Description

associatedAddressablePoint
—

Name of Avalon-MM
slave on this
component.

The name of the Avalon-MM slave interface that
provides access to the registers that should be
accessed to service the interrupt.

associatedClock —
Name of a clock
interface on this
component.

The name of the clock interface to which this
interrupt sender is synchronous. The sender and
receiver may have different values for this
property.

associated Reset —
Name of a reset
interface on this
component.

The name of the reset interface to which this
interrupt sender is synchronous.
Avalon Interface Specifications

4–2 Chapter 4: Avalon Interrupt Interfaces
Interrupt Receiver
4.2. Interrupt Receiver
An interrupt receiver interface receives interrupts from interrupt sender interfaces.
Components with an Avalon-MM master interface can include an interrupt receiver to
detect interrupts asserted by slave components with interrupt sender interfaces. The
interrupt receiver accepts interrupt requests from each interrupt sender as a separate
bit.

4.2.1. Interrupt Receiver Signal Roles
Table 4–3 lists the interrupt receiver signal roles.

4.2.2. Interrupt Receiver Properties
Table 4–4 lists the properties associated with interrupt receivers.
A

Table 4–3. Interrupt Receiver Signal Roles

Signal Role Width Direction Required Description

irq 1–32 Input Yes irq is an <n>-bit vector, where each bit corresponds directly to one
IRQ sender, with no inherent assumption of priority.

Table 4–4. Interrupt Receiver Properties

Property Name Default Value Legal Values Description

associatedAddressable
Point

— Name of Avalon-MM
master interface

The name of the Avalon-MM
master interface used to
service interrupts received on
this interface.

associatedClock — Name of an Avalon Clock
interface

The name of the Avalon Clock
interface to which this interrupt
receiver is synchronous. The
sender and receiver may have
different values for this
property.

associatedReset — Name of an Avalon Reset
interface

The name of the reset interface
to which this interrupt receiver
is synchronous.

irqScheme individualRequests individualRequests
Each interrupt sender interface
asserts its irq signal to
request service.
Avalon Interface Specifications May 2011 Altera Corporation

Chapter 4: Avalon Interrupt Interfaces 4–3
Interrupt Receiver
4.2.3. Interrupt Timing
Figure 4–1 illustrates interrupt timing. The Avalon-MM master services the priority 0
interrupt before the priority 1 interrupt.

Figure 4–1. Interrupt Timing for Individual Request and Priority Encoded Interrupts

Notes to Figure 4–1:

(1) Interrupt 0 serviced.
(2) Interrupt 1 serviced.

clk

int0

int1

1 2

Individual
Requests
May 2011 Altera Corporation Avalon Interface Specifications

4–4 Chapter 4: Avalon Interrupt Interfaces
Interrupt Receiver
Avalon Interface Specifications May 2011 Altera Corporation

May 2011 Altera Corporation
5. Avalon Streaming Interfaces
You can use Avalon Streaming (Avalon-ST) interfaces for components that drive high
bandwidth, low latency, unidirectional data. Typical applications include multiplexed
streams, packets, and DSP data. The Avalon-ST interface signals can describe
traditional streaming interfaces supporting a single stream of data without
knowledge of channels or packet boundaries. The interface can also support more
complex protocols capable of burst and packet transfers with packets interleaved
across multiple channels. Figure 5–1 illustrates a typical application of the Avalon-ST
interface.

All Avalon-ST source and sink interfaces are not necessarily interoperable. However,
if two interfaces provide compatible functions for the same application space,
adapters are available to allow them to interoperate.

Figure 5–1. Avalon-ST Interface - Typical Application

SDRAM
Memory

Chip

Avalon-MM
Master Port

Processor

Avalon-MM Interface (Control Plane)

Avalon-MM
Master Port

IO Control

Avalon-MM
Slave Port

SDRAM Cntl

Source Sink SinkSource

ch
0-2

2

1

0

Scheduler

Tx IF CoreRx IF Core
Avalon-ST

Input
Avalon-ST

Output

Avalon-ST Interfaces (Data Plane)

Altera FPGA

Printed Circuit Board
Avalon Interface Specifications

5–2 Chapter 5: Avalon Streaming Interfaces
Features
5.1. Features
The following list highlights some of the prominent features of the Avalon-ST
interface:

■ Low latency, high throughput point-to-point data transfer

■ Multiple channel support with flexible packet interleaving

■ Sideband signaling of channel, error, and start and end of packet delineation

■ Support for data bursting

■ Automatic interface adaptation

5.2. Terms and Concepts
This section defines terms and concepts used in the Avalon-ST interface protocol.

■ Avalon Streaming System—An Avalon Streaming system is a system that contains
one or more Avalon-ST connections that transfer data from a source interface to a
sink interface. The system shown in Figure 5–1 consists of Avalon-ST interfaces to
transfer data from the system input to output and Avalon-MM control and status
register interfaces to allow software control.

■ Avalon Streaming Components—A typical system using Avalon-ST interfaces
combines multiple functional modules, called components. The system designer
configures the components and connects them together to implement a system.

■ Source and Sink Interfaces and Connections—When two components are connected,
the data flows from the source interface to the sink interface. The combination of a
source interface connected to a sink interface is referred to as a connection.

■ Backpressure—Backpressure is a mechanism by which a sink can signal to a source
to stop sending data. The sink typically uses backpressure to stop the flow of data
when its FIFOs are full or when there is congestion on its output port. Support for
backpressure is optional.

■ Transfers and Ready Cycles—A transfer is an operation that results in data and
control propagation from a source interface to a sink interface. For data interfaces,
a ready cycle is a cycle during which the sink can accept a transfer.

■ Symbol—A symbol is the smallest unit of data. For most packet interfaces, a
symbol is a byte. One or more symbols make up the single unit of data transferred
in a cycle.

■ Channel—A channel is a physical or logical path or link through which
information passes between two ports.

■ Beat—A single cycle transfer between a source and sync interface made up of one
or more symbols.

■ Packet—A packet is an aggregation of data and control signals that is transmitted
together. A packet may contain a header to help routers and other network devices
direct the packet to the correct destination. The packet format is defined by the
application, not this specification. Avalon-ST packets can be variable in length and
can be interleaved across a connection. With an Avalon-ST interfaces, the use of
packets is optional.
Avalon Interface Specifications May 2011 Altera Corporation

Chapter 5: Avalon Streaming Interfaces 5–3
Avalon-ST Interface Signals
5.3. Avalon-ST Interface Signals
Each signal in an Avalon-ST source or sink interface corresponds to one Avalon-ST
signal role; an Avalon-ST interface may contain only one instance of each signal role.
All Avalon-ST signal roles apply to both sources and sinks and have the same
meaning for both.

Table 5–1 lists the signal roles that comprise an Avalon-ST data interface.

All signal roles listed in Table 5–1 are active high.

Table 5–1. Avalon-ST Interface Signals

Signal Role Width Direction Description

Fundamental Signals

channel 1–128 Source →
Sink

The channel number for data being transferred on the current cycle.

If an interface supports the channel signal, it must also define the
maxChannel parameter.

data 1–4096 Source →
Sink

The data signal from the source to the sink, typically carries the bulk of
the information being transferred.

The contents and format of the data signal is further defined by
parameters.

error 1–256 Source →
Sink

A bit mask used to mark errors affecting the data being transferred in the
current cycle. A single bit in error is used for each of the errors
recognized by the component, as defined by the errorDescriptor
property.

ready 1 Sink →
Source

Asserted high to indicate that the sink can accept data. ready is asserted
by the sink on cycle <n> to mark cycle <n + readyLatency> as a ready
cycle, during which the source may assert valid and transfer data.

Sources without a ready input cannot be backpressured, and sinks
without a ready output never need to backpressure.

valid 1 Source →
Sink

Asserted by the source to qualify all other source to sink signals. On ready
cycles where valid is asserted, the data bus and other source to sink
signals are sampled by the sink, and on other cycles are ignored.

Sources without a valid output implicitly provide valid data on every
cycle that they are not being backpressured, and sinks without a valid
input expect valid data on every cycle that they are not backpressuring.

Packet Transfer Signals

empty 1–8 Source →
Sink

Indicates the number of symbols that are empty during cycles that contain
the end of a packet. The empty signal is not used on interfaces where there
is one symbol per beat. If endofpacket is not asserted, this signal is not
interpreted.

endofpacket
1 Source →

Sink Asserted by the source to mark the end of a packet.

startofpacket
1 Source →

Sink Asserted by the source to mark the beginning of a packet.
May 2011 Altera Corporation Avalon Interface Specifications

5–4 Chapter 5: Avalon Streaming Interfaces
Signal Sequencing and Timing
5.4. Signal Sequencing and Timing
This section provides information related to timing and sequencing of Avalon-ST
interfaces.

5.4.1. Synchronous Interface
All transfers of an Avalon-ST connection occur synchronous to the rising edge of the
associated clock signal. All outputs from a source interface to a sink interface,
including the data, channel, and error signals, must be registered on the rising edge
of clock. Inputs to a sink interface do not have to be registered. Registering signals at
the source provides for high frequency operation while eliminating back-to-back
registers with no intervening logic.

5.4.2. Clock Enables
Avalon-ST components typically do not include a clock enable input, because the
Avalon-ST signaling itself is sufficient to determine the cycles that a component
should and should not be enabled. Avalon-ST compliant components may have a
clock enable input for their internal logic, but they must take care to ensure that the
timing of the interface control signals still adheres to the protocol.

5.5. Avalon-ST Interface Properties
Table 5–2 lists the properties that characterize an Avalon-ST interface.

Table 5–2. Avalon-ST Interface Properties (Part 1 of 2)

Property Name Default
Value Legal Values Description

symbolsPerBeat 1 1–512 The number of symbols that are transferred on every valid
cycle.

associatedClock 1 a clock
interface

The name of the Avalon Clock interface to which this
Avalon-ST interface is synchronous.

associatedReset 1 a reset
interface

The name of the Avalon Reset interface to which this
Avalon-ST interface is synchronous.

dataBitsPerSymbol 8 1–512
Defines the number of bits per symbol. For example,
byte-oriented interfaces have 8-bit symbols. This value is not
restricted to be a power of 2.

errorDescriptor 0 list of strings

A list of words that describe the error associated with each bit
of the error signal. The length of the list must be the same as
the number of bits in the error signal, and the first word in the
list applies to the highest order bit. For example, “crc,
overflow" means that bit[1] of error indicates a CRC error,
and bit[0] indicates an overflow error.

firstSymbolInHigh
OrderBits

false true, false
When true, the high-order symbol is driven to the MSB of the
data interface. The highest-order symbol is labelled D0 in this
specification.
Avalon Interface Specifications May 2011 Altera Corporation

Chapter 5: Avalon Streaming Interfaces 5–5
Typical Data Transfers
5.6. Typical Data Transfers
This section defines the transfer of data from a source interface to a sink interface. In
all cases, the data source and the data sink must comply with the specification. It is
not the responsibility of the data sink to detect source protocol errors.

5.7. Signal Details
This section describes the basic Avalon-ST protocol that all data transfers must follow.
It also highlights the flexibility available in choosing Avalon-ST signals to meet the
needs of a particular component and makes recommendations about the signals that
should be used.

Figure 5–1 shows the signals that are typically included in an Avalon-ST interface. As
this figure indicates, a typical Avalon-ST source interface drives the valid, data,
error, and channel signals to the sink. The sink can apply backpressure using the
ready signal.

The following paragraphs provide more details about these signals:

■ ready—On interfaces supporting backpressure, the sink asserts ready to mark the
cycles where transfers may take place. Data interfaces that support backpressure
must define the readyLatency parameter so that if ready is asserted on cycle <n>,
cycle <n + readyLatency> is considered a ready cycle.

■ valid—The valid signal qualifies valid data on any cycle where data is being
transferred from the source to the sink. On each active cycle the data signal and
other source to sink signals are sampled by the sink.

maxChannel 0 0–255 The maximum number of channels that a data interface can
support.

readyLatency 0 0–8
Defines the relationship between assertion and deassertion of
the ready signal, and cycles which are considered to be ready
for data transfer, separately for each interface.

Table 5–2. Avalon-ST Interface Properties (Part 2 of 2)

Property Name Default
Value Legal Values Description

Figure 5–2. Typical Avalon-ST Interface Signals

channel
<max_channel>

valid

data

error

ready

Data SinkData Source
May 2011 Altera Corporation Avalon Interface Specifications

5–6 Chapter 5: Avalon Streaming Interfaces
Data Layout
■ data—The data signal typically carries the bulk of the information being
transferred from the source to the sink, and consists of one or more symbols being
transferred on every clock cycle. The dataBitsPerSymbol parameter defines how
the data signal is divided into symbols.

■ error—Errors are signaled with the error signal, where each bit in error
corresponds to a possible error condition. A value of 0 on any cycle indicates the
data on that cycle is error-free. The action that a component takes when an error is
detected is not defined by this specification.

■ channel—The optional channel signal is driven by the source to indicate the
channel to which the data belongs. The meaning of channel for a given interface
depends on the application: some applications use channel as a port number
indication, while other applications use channel as a page number or timeslot
indication. When the channel signal is used, all of the data transferred in each
active cycle belongs to the same channel. The source may change to a different
channel on successive active cycles.

An interface that uses the channel signal must define the maxChannel parameter to
indicate the maximum channel number. If the number of channels that the
interface supports varies while the component is operating, maxChannel is the
maximum channel number that the interface can support.

5.8. Data Layout
Figure 5–3 shows a 64-bit data signal with dataBitsPerSymbol=16. Symbol 0 is the
most significant symbol.

The timing diagram in Figure 5–4, provides a 32-bit example where
dataBitsPerSymbol=8.

Figure 5–3. Data Symbols

 symbol 0 symbol 3symbol 2symbol 1

63 48 47 32 31 16 15 0

Figure 5–4. Big Endian Layout of Data

clk

ready

valid

channel

error

data[31:24]

data[23:16]

data[15:8]

data[7:0]

D0 D4 D8

D1

D2

D3

D5

D6

D7

D9

DA

DD

DC

DE

DF

D11

D12

DB

D10

D13
Avalon Interface Specifications May 2011 Altera Corporation

Chapter 5: Avalon Streaming Interfaces 5–7
Data Transfer without Backpressure
5.9. Data Transfer without Backpressure
The data transfer without backpressure is the most basic of Avalon-ST data transfers.
On any given clock cycle, the source interface drives the data and the optional
channel and error signals, and asserts valid. The sink interface samples these signals
on the rising edge of the reference clock if valid is asserted. Figure 5–5 shows an
example of data transfer without backpressure.

5.10. Data Transfer with Backpressure
The sink indicates to the source that it is ready for an active cycle by asserting ready
for a single clock cycle. Cycles during which the sink is ready for data are called ready
cycles. During a ready cycle, the source may assert valid and provide data to the sink.
If it has no data to send, it deasserts valid and can drive data to any value.

Each interface that supports backpressure defines the readyLatency parameter to
indicate the number of cycles from the time that ready is asserted until valid data can
be driven. If readyLatency has a nonzero value, the interface considers cycle <n +
readyLatency> to be a ready cycle if ready is asserted on cycle <n>. Any interface
that includes the ready signal and defines the readyLatency parameter supports
backpressure.

When readyLatency = 0, data is transferred only when ready and valid are asserted
on the same cycle, which is called the ready cycle. In this mode of operation, the
source does not receive the sink’s ready signal before it begins sending valid data. The
source provides the data and asserts valid whenever it can and waits for the sink to
capture the data and assert ready. The source can change the data it is providing at
any time. The sink only captures input data from the source when ready and valid
are both asserted.

Figure 5–5. Data Transfer without Backpressure

clk

valid

channel

error

data D1 D2 D3D0
May 2011 Altera Corporation Avalon Interface Specifications

5–8 Chapter 5: Avalon Streaming Interfaces
Data Transfer with Backpressure
When readyLatency >= 1, the sink asserts ready before the ready cycle itself. The
source can respond during the appropriate cycle by asserting valid. It may not assert
valid during a cycle that is not a ready cycle. Figure 5–6 illustrates an Avalon-ST
interface where readyLatency = 4.

Figure 5–7 illustrates a transfer with backpressure and readyLatency=0. The source
provides data and asserts valid on cycle 1, even though the sink is not ready. The
source waits until cycle two, when the sink does assert ready, before moving onto the
next data cycle. In cycle 3, the source drives data on the same cycle and the sink is
ready to receive it; the transfer happens immediately. In cycle 4, the sink asserts ready,
but the source does not drive valid data.

Figure 5–6. Avalon-ST Interface with readyLatency = 4

clock

ready

valid

data[31:0]

readyLatency = 4 readyLatency = 4

1 2 3 4

source may not assert valid

source may assert valid

Figure 5–7. Transfer with Backpressure, readyLatency=0

clk

ready

valid

channel

error

data

0 1 2 3 5 6 7 84

D0 D1 D2 D3
Avalon Interface Specifications May 2011 Altera Corporation

Chapter 5: Avalon Streaming Interfaces 5–9
Packet Data Transfers
Figure 5–8 and Figure 5–9 show data transfers with readyLatency=1 and
readyLatency=2, respectively. In both these cases, ready is asserted before the ready
cycle, and the source responds 1 or 2 cycles later by providing data and asserting
valid. When readyLatency is not 0, the source must deassert valid on non-ready
cycles.

5.11. Packet Data Transfers
The packet transfer property adds support for transferring packets from a source
interface to a sink interface. Three additional signals are defined to implement the
packet transfer. Both the source and sink interfaces must include these additional
signals to support packets. No automatic adaptation is provided to create connections
between source and sink interfaces with and without packet support.

Figure 5–8. Transfer with Backpressure, readyLatency=1

Figure 5–9. Transfer with Backpressure, readyLatency=2

clk

ready

valid

channel

error

data D0 D1 D2 D3 D4 D5

valid

channel

error

data D0 D1 D2

Figure 5–10. Avalon-ST Packet Interface Signals

channel
<max_channel>

valid

data

error

ready

Data Source Data Sink

empty

startofpacket

endofpacket
May 2011 Altera Corporation Avalon Interface Specifications

5–10 Chapter 5: Avalon Streaming Interfaces
Signal Details
5.12. Signal Details
The following paragraphs provide more details about these three signals:

■ startofpacket—The startofpacket signal is required by all interfaces supporting
packet transfers and marks the active cycle containing the start of the packet. This
signal is only interpreted when valid is asserted.

■ endofpacket—The endofpacket signal is required by all interfaces supporting
packet transfer and marks the active cycle containing the end of the packet. This
signal is only interpreted when valid is asserted. startofpacket and endofpacket
can be asserted in the same cycle. No idle cycles are required between packets, so
that the startofpacket signal can follow immediately after the previous
endofpacket signal.

■ empty—The optional empty signal indicates the number of symbols that are empty
during the cycles that mark the end of a packet. The sink only checks the value of
the empty during active cycles that have endofpacket asserted. The empty symbols
are always the last symbols in data, those carried by the low-order bits when
firstSymbolInHighOrderBits = true. The empty signal is required on all packet
interfaces whose data signal carries more than one symbol of data and have a
variable length packet format. The size of the empty signal in bits is log2(<symbols
per cycle>).

5.13. Protocol Details
Packet data transfer follows the same protocol as the typical data transfer described in
“Typical Data Transfers” on page 5–5, with the addition of the startofpacket,
endofpacket, and empty.

Figure 5–11 illustrates the transfer of a 17-byte packet from a source interface to a sink
interface, where readyLatency=0. Data transfer occurs on cycles 1, 2, 4, 5, and 6, when
both ready and valid are asserted. During cycle 1, startofpacket is asserted, and the
first 4 bytes of packet are transferred. During cycle 6, endofpacket is asserted, and
empty has a value of 3, indicating that this is the end of the packet and that 3 of the 4
symbols are empty. In cycle 6, the high-order byte, data[31:24] drives valid data.

Figure 5–11. Packet Transfer

clk

ready

valid

startofpacket

endofpacket

empty

channel

error

data[31:24]

data[23:16]

data[15:8]

data[7:0]

0 0 0 0 0

0 0 0 0 0

D0 D4 D8 D12 D16

D1 D5 D9 D13

D2 D6 D10 D14

D3 D7 D11 D15

3

1 2 3 4 5 6 7
Avalon Interface Specifications May 2011 Altera Corporation

May 2011 Altera Corporation
6. Avalon Conduit Interfaces
Avalon Conduit interfaces are used to group together an arbitrary collection of signals
to be exported to the next level of a hierarchical design or to the top level of a Qsys
system. An Avalon Conduit interface can include input, output, and bidirectional
signals. Directions, such as source and sink for Avalon-ST interfaces, or in and out for
Avalon-MM masters and slaves, do not apply to Avalon Conduit interfaces. A module
can have multiple Avalon Conduit interfaces to provide a logical grouping of the
signals being exported. Table 6–1 illustrates this interface.

In this figure, signals that interface to the SDRAM, such as address, data and control
signals, form an Avalon Conduit interface and would have the signal role export.

Figure 6–1. Focus on the Conduit Interface

Avalon-MM System

System Interconnect Fabric

Ethernet
PHY
Chip

Avalon
Slave

Avalon-MM
Slave

SDRAM
Memory

Chip

Avalon-MM
Master

Processor

Avalon-MM
Master

Avalon-MM
Master

Ethernet MAC Custom Logic

SDRAM
Controller

Custom
Logic

Conduit
Interface
Avalon Interface Specifications

6–2 Chapter 6: Avalon Conduit Interfaces
Signals
6.1. Signals
Table 6–1 lists the conduit signal roles.

6.2. Properties
There are no properties for conduit interfaces.

Table 6–1. Conduit Signal Roles

Signal Role Width Direction Description

export <n> In, out or
bidirectional

A conduit interface consists of one or more signals of arbitrary width of direction
input or output. Compatible Conduit interfaces can be connected inside the Qsys
system, exported to the next level of the hierarchical design, or to the top-level of
the Qsys system.
Avalon Interface Specifications May 2011 Altera Corporation

May 2011 Altera Corporation
7. Avalon Tristate Conduit Interface
The Avalon Tristate Conduit Interface (Avalon-TC) is a point-to-point interface
designed for on-chip controllers that drive off-chip components. This interface allows
data, address, and control pins to be shared across multiple tristate devices. Sharing
conserves pins in systems that have multiple external memory devices.

The Avalon-TC restricts the more general Avalon Conduit Interface in two ways:

■ The Avalon-TC requires request and grant signals. These signals enable bus
arbitration when multiple Tristate Conduit Masters (TCM) are requesting access to
a shared bus.

■ The pin type of a signal must be specified using suffixes appended to a signal’s
role. The three suffixes are: _out, _in, and _outen. Matching role prefixes identify
signals are share the same I/O Pin. Figure 7–1 illustrates the naming conventions
for Avalon-TC shared pins.

Figure 7–2 illustrates pin sharing using Avalon-TC interfaces. This figure illustrates
the following points.

■ The Tristate Conduit Pins Sharer includes separate Tristate Conduit Slave Interface
for each Tristate Conduit Master. Each master and slave pair has its own request
and grant signals.

■ The Tristate Conduit Pin Sharer identifies signals with identical roles, as tristate
signals that share the same pin on the FPGA. In this example, the following signals
are shared: addr_out, data_out, data_in, read_out, and write_out.

■ The Tristate Conduit Pin Sharer drives a single bus including all of the shared
signals to the Tristate Conduit Bridge. If the widths of shared signals differ, the
Tristate Conduit Pin Sharer aligns them on their 0th bit and drives the higher-order
pins to 0 whenever the smaller signal has control of the bus.

■ Signals that are not shared propagate directly through the Tristate Conduit Pin
Sharer. In this example, the following signals are not shared: chipselect0_out,
irq0_out, chipselect1_out, and irq1_out.

■ All Avalon-TC interfaces connected to the same Tristate Conduit Pin Sharer must
be in the same clock domain.

Figure 7–1. Shared Pin Types

data_out data

data_in

data_outen

Altera FPGA

Bidirectional Pin

reset_out reset

Altera FPGA

Tri-state Output Pin

reset_outen

write_out write

Altera FPGA

Output Pin

busy_in busy

Altera FPGA

Input Pin

write_outen
Avalon Interface Specifications
Preliminary

7–2 Chapter 7: Avalon Tristate Conduit Interface
Figure 7–2 illustrates the typical use of Avalon-TC Master and Slave interfaces and
signal naming.

f For more information about the Generic Tristate Controller and Tristate Conduit Pin
Sharer, refer to the Avalon Tristate Conduit Components User Guide and the Qsys
Interconnect chapter in volume 1 of the Quartus II Handbook.

Figure 7–2. Tristate Conduit Interfaces

Altera FPGA

TCM

Tristate Conduit
Pin Sharer

addr_out[20:0]
data_outen

data_out[31:0]
data_in[31:0]

read_out
write_out

request
grant

grant
request

addr_out[22:0]
data_outen

 data_out[15:0]
data_in[15:0]

read_out
write_out

TCS

Tristate Conduit
Bridge

S

 Controller
for 2 MByte
x32 SSRAM

CS
IRQ

A[20:0]
D_EN

D[31:0]
DI[31:0]

Rd
Wr

Request
Grant

TCM

S

Grant
Req

A[22:0]
D_EN

D[15:0]
DI[15:0]

Rd
Wr

TCM

chipselect_out

chipselect_out
irq_in

Controller
for 8 MByte
x16 Flash

addr_out<n>

data_out<n>

data_in<n>

data_outen<n>

chipselect_out

request
grant

irq_in
chipselect_out

write_out

read_out

clock

Note (1)

Avalon-MM
Master

TCS

TCS

CS
IRQ

Avalon-MM SlaveS

TCM Tristate Conduit Master

Tristate Conduit SlaveTCS

Arb
Avalon Interface Specifications May 2011 Altera Corporation
Preliminary

http://www.altera.com/literature/hb/qts/qsys_interconnect.pdf
http://www.altera.com/literature/hb/qts/qsys_interconnect.pdf

Chapter 7: Avalon Tristate Conduit Interface 7–3
Tristate Conduit Signals
7.1. Tristate Conduit Signals
Table 7–1 lists the signal defined for the Avalon-TC interface. All Avalon-TC signals
apply to both masters and slaves and have the same meaning for both

7.2. Tristate Conduit Properties
There are no special properties for the Avalon-TC Interface.

7.3. Tristate Conduit Timing
Figure 7–3 illustrates arbitration timing for the Tristate Conduit Pin Sharer. As this
figure illustrates, a device can drive or receive valid data in the granted cycle.
Figure 7–3 shows the following sequence of events:

1. In cycle one, the tristate conduit master asserts grant. The granted slave drives
valid data in cycles one and two.

2. In cycle 4, the tristate conduit master asserts grant. The granted slave drives valid
data in cycles 4–7.

Table 7–1. Tristate Conduit Interface Signal Roles

Signal Role Width Direction Required Description

request 1 Master →
Slave Yes

The meaning of request depends on the state of the grant
signal, as the following rules dictate.

1. When request is asserted and grant is deasserted,
request is requesting access for the current cycle.

2. When request is asserted and grant is asserted, request
is requesting access for the next cycle; consequently,
request should be deasserted on the final cycle of an
access.

Because request is deasserted in the last cycle of a bus access,
it can be reasserted immediately following the final cycle of a
transfer, making both rearbitration and continuous bus access
possible if no other masters are requesting access.

Once asserted, request must remain asserted until granted;
consequently, the shortest bus access is 2 cycles. Refer to
Figure 7–3 on page 7–4 for an example of arbitration timing.

grant 1 Slave →
Master Yes

When asserted, indicates that a tristate conduit master has been
granted access to perform transactions. grant is asserted in
response to the request signal and remains asserted until 1
cycle following the deassertion of request.

The design of the Avalon-TC Interface does not allow a default
Avalon-TC master to be granted when no masters are
requesting.

<name>_in 1–1024 Slave →
Master No The input signal of a logical tristate signal.

<name>_out 1–1024 Master →
Slave No The output signal of a logical tristate signal.

<name>_outen 1 Master →
Slave No The output enable for a logical tristate signal.
May 2011 Altera Corporation Avalon Interface Specifications
Preliminary

7–4 Chapter 7: Avalon Tristate Conduit Interface
Tristate Conduit Timing
3. In cycle 8, the tristate conduit master asserts grant. The granted slave drives valid
data in cycles 8–16.

4. Cycle 3 is the only cycle that does not contain valid data.

Figure 7–3. Arbitration Timing

clk

request

grant

data_out[31:0] 0 a b c d e f 10 11 12 13 14 15 16 17

1 3 62 74 5 8 10 139 1411 12 16 1715

.

Avalon Interface Specifications May 2011 Altera Corporation
Preliminary

May 2011 Altera Corporation
Additional Information
This chapter provides additional information about the document and Altera.

Document Revision History
The following table shows the revision history for this document.

How to Contact Altera
To locate the most up-to-date information about Altera products, refer to the
following table.

Typographic Conventions
The following table shows the typographic conventions this document uses.

Date Version Changes

May 2011 1.0 Initial release of the Avalon Interface Specifications supported by Qsys.

Contact (1) Contact Method Address

Technical support Website www.altera.com/support

Technical training
Website www.altera.com/training

Email custrain@altera.com

Product literature Website www.altera.com/literature

Non-technical support (General) Email nacomp@altera.com

(Software Licensing) Email authorization@altera.com

Note to Table:

(1) You can also contact your local Altera sales office or sales representative.

Visual Cue Meaning

Bold Type with Initial Capital
Letters

Indicate command names, dialog box titles, dialog box options, and other GUI
labels. For example, Save As dialog box. For GUI elements, capitalization matches
the GUI.

bold type
Indicates directory names, project names, disk drive names, file names, file name
extensions, software utility names, and GUI labels. For example, \qdesigns
directory, D: drive, and chiptrip.gdf file.

Italic Type with Initial Capital Letters Indicate document titles. For example, Stratix IV Design Guidelines.

italic type
Indicates variables. For example, n + 1.

Variable names are enclosed in angle brackets (< >). For example, <file name> and
<project name>.pof file.

Initial Capital Letters Indicate keyboard keys and menu names. For example, the Delete key and the
Options menu.
Avalon Interface Specifications

http://www.altera.com/support
http://www.altera.com/training
mailto:custrain@altera.com
http://www.altera.com/literature/
mailto:nacomp@altera.com
mailto:authorization@altera.com

 Info–2 Additional Information
Typographic Conventions
“Subheading Title” Quotation marks indicate references to sections within a document and titles of
Quartus II Help topics. For example, “Typographic Conventions.”

Courier type

Indicates signal, port, register, bit, block, and primitive names. For example, data1,
tdi, and input. The suffix n denotes an active-low signal. For example, reset_n.

Indicates command line commands and anything that must be typed exactly as it
appears. For example, c:\qdesigns\tutorial\chiptrip.gdf.

Also indicates sections of an actual file, such as a Report File, references to parts of
files (for example, the AHDL keyword SUBDESIGN), and logic function names (for
example, TRI).

r An angled arrow instructs you to press the Enter key.

1., 2., 3., and
a., b., c., and so on

Numbered steps indicate a list of items when the sequence of the items is important,
such as the steps listed in a procedure.

■ ■ ■ Bullets indicate a list of items when the sequence of the items is not important.

1 The hand points to information that requires special attention.

h A question mark directs you to a software help system with related information.

f The feet direct you to another document or website with related information.

c A caution calls attention to a condition or possible situation that can damage or
destroy the product or your work.

w A warning calls attention to a condition or possible situation that can cause you
injury.

The envelope links to the Email Subscription Management Center page of the Altera
website, where you can sign up to receive update notifications for Altera documents.

Visual Cue Meaning
Avalon Interface Specifications May 2011 Altera Corporation

https://www.altera.com/subscriptions/email/signup/eml-index.jsp

	Avalon Interface Specifications
	Contents
	1. Introduction
	1.1. Avalon Properties and Parameters
	1.2. .Signal Roles
	1.3. Interface Timing
	1.4. Related Documents

	2. Avalon Clock and Reset Interfaces
	2.1. Clock Sink
	2.1.1. Clock Sink Signal Roles
	2.1.2. Clock Sink Properties
	2.1.3. Associated Clock Interfaces

	2.2. Clock Source
	2.2.1. Clock Source Signal Roles
	2.2.2. Clock Source Properties

	2.3. Reset Interfaces
	2.3.1. Reset Sink
	2.3.2. Reset Sink Interface Properties
	2.3.3. Associated Reset Interfaces
	2.3.4. Reset Source
	2.3.5. Reset Source Interface Properties

	3. Avalon Memory-Mapped Interfaces
	3.1. Introduction
	3.2. Signals
	3.3. Interface Properties
	3.4. Timing
	3.5. Transfers
	3.5.1. Typical Read and Write Transfers
	3.5.2. Read and Write Transfers with Fixed Wait-States
	3.5.3. Pipelined Transfers
	3.5.3.1. Pipelined Read Transfer with Variable Latency
	3.5.3.2. Pipelined Read Transfers with Fixed Latency

	3.5.4. Burst Transfers
	3.5.4.1. Write Bursts
	3.5.4.2. Read Bursts
	3.5.4.3. Line–Wrapped Bursts

	3.6. Address Alignment
	3.7. Avalon-MM Slave Addressing

	4. Avalon Interrupt Interfaces
	4.1. Interrupt Sender
	4.1.1. Interrupt Sender Signal Roles
	4.1.2. Interrupt Sender Properties

	4.2. Interrupt Receiver
	4.2.1. Interrupt Receiver Signal Roles
	4.2.2. Interrupt Receiver Properties
	4.2.3. Interrupt Timing

	5. Avalon Streaming Interfaces
	5.1. Features
	5.2. Terms and Concepts
	5.3. Avalon-ST Interface Signals
	5.4. Signal Sequencing and Timing
	5.4.1. Synchronous Interface
	5.4.2. Clock Enables

	5.5. Avalon-ST Interface Properties
	5.6. Typical Data Transfers
	5.7. Signal Details
	5.8. Data Layout
	5.9. Data Transfer without Backpressure
	5.10. Data Transfer with Backpressure
	5.11. Packet Data Transfers
	5.12. Signal Details
	5.13. Protocol Details

	6. Avalon Conduit Interfaces
	6.1. Signals
	6.2. Properties

	7. Avalon Tristate Conduit Interface
	7.1. Tristate Conduit Signals
	7.2. Tristate Conduit Properties
	7.3. Tristate Conduit Timing

	Additional Information
	Document Revision History
	How to Contact Altera
	Typographic Conventions

