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1. Introduction
Avalon® interfaces simplify system design by allowing you to easily connect 
components in an Altera® FPGA. The Avalon interface family defines interfaces 
appropriate for streaming high-speed data, reading and writing registers and 
memory, and controlling off-chip devices. These standard interfaces are designed into 
the components available in Qsys. You can also use these standardized interfaces in 
your custom components. By using these standard interfaces, you enhance the 
interoperability of your designs. 

This specification defines all of the Avalon interfaces. After reading it, you should 
understand which interfaces are appropriate for your components and which signal 
roles to use for particular behaviors. This specification defines the following seven 
interface roles: 

■ Avalon Streaming Interface (Avalon-ST)—an interface that supports the 
unidirectional flow of data, including multiplexed streams, packets, and DSP data.

■ Avalon Memory Mapped Interface (Avalon-MM)—an address-based read/write 
interface typical of master–slave connections.

■ Avalon Conduit Interface— an interface type that accommodates individual 
signals or groups of signals that do not fit into any of the other Avalon types. You 
can connect conduit interfaces inside a Qsys system or export them to make 
connections to other modules in the design or to FPGA pins. 

■ Avalon Tri-State Conduit Interface (Avalon-TC) —an interface to support 
connections to off-chip peripherals. Multiple peripherals can share pins through 
signal multiplexing, reducing the pin count of the FPGA and the number of traces 
on the PCB. 

■ Avalon Interrupt Interface—an interface that allows components to signal events 
to other components. 

■ Avalon Clock Interface—an interface that drives or receives clocks. All Avalon 
interfaces are synchronous.

■ Avalon Reset Interface—an interface that provides reset connectivity.

A single component can include any number of these interfaces and can also include 
multiple instances of the same interface type. For example, in Figure 1–1, the Ethernet 
Controller includes six different interface types: Avalon-MM, Avalon-ST, Avalon 
Conduit, Avalon-TC, Avalon Interrupt, and Avalon Clock.

1 Avalon interfaces are an open standard. No license or royalty is required to develop 
and sell products that use, or are based on Avalon interfaces.

1 This specification describes the behavior of the Avalon interfaces supported in Qsys. It 
supersedes version 1.3 of the Avalon Interface Specifications which describes the 
behavior of Avalon interfaces supported in SOPC Builder.

f For more information about the differences between Avalon interfaces supported in 
Qsys and SOPC Builder, refer to AN 632: SOPC Builder to Qsys Migration Guidelines. 
Avalon Interface Specifications
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1–2 Chapter 1: Introduction
Figure 1–1 and Figure 1–2 illustrate the use of the Avalon interfaces in system designs. 

Figure 1–1. Avalon Interfaces in a System Design with Scatter Gather DMA Controller and Nios II Processor
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Chapter 1: Introduction 1–3
In Figure 1–1, the Nios® II processor accesses the control and status registers of 
on-chip components using an Avalon-MM interface. The scatter gather DMAs send 
and receive data using Avalon-ST interfaces. Four components include interrupt 
interfaces serviced by software running on the Nios II processor. A PLL accepts a 
clock via an Avalon Clock Sink interface and provides two clock sources. Two 
components include Avalon-TC interfaces to access off-chip memories. Finally, the 
DDR3 controller accesses external DDR3 memory using an Avalon Conduit interface.

Figure 1–2. Avalon Interfaces in a System Design with PCI Express Endpoint and External Processor
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Avalon Properties and Parameters
In Figure 1–2, an external processor accesses the control and status registers of on-chip 
components via an external bus bridge with an Avalon-MM interface. The PCI 
Express root port controls devices on the printed circuit board and the other 
components of the FPGA by driving an on-chip PCI Express endpoint with an 
Avalon-MM master interface. An external processor handles interrupts from five 
components. A PLL accepts a reference clock via a Avalon Clock sink interface and 
provides two clock sources. The flash and SRAM memories use an Avalon-TC 
interface to share FPGA pins. Finally, an SDRAM controller accesses an external 
SDRAM memory using an Avalon Conduit interface.

1.1. Avalon Properties and Parameters
Avalon interfaces use properties to describe their behavior. For example, the 
maxChannel property of Avalon-ST interfaces allows you to specify the number of 
channels supported by the interface. The clockRate property of the Avalon Clock 
interface provides the frequency of a clock signal. The specification for each interface 
type defines all of its properties and specifies the default values.

1.2. .Signal Roles
Each of the Avalon interfaces defines a number of signal roles and their behavior. 
Many signal roles are optional, allowing component designers the flexibility to select 
only the signal roles necessary to implement the required functionality. For example, 
the Avalon-MM interface includes optional beginbursttransfer and burstcount 
signal roles for use in components that support bursting. The Avalon-ST interface 
includes the optional startofpacket and endofpacket signal roles for interfaces that 
support packets. 

With the exception of Avalon Conduit interfaces, each interface may include only one 
signal of each signal role. Active-low signals are permitted for many signal roles. 
Active-high signals are generally used in this document.

1.3. Interface Timing
Subsequent chapters of this document include timing information that describes 
transfers for individual interface types. There is no guaranteed performance for any of 
these interfaces; actual performance depends on many factors, including component 
design and system implementation.

Most Avalon interfaces must not be edge sensitive to signals other than the clock and 
reset because other signals may transition multiple times before they stabilize. The 
exact timing of signals between clock edges varies depending upon the characteristics 
of the selected Altera device. This specification does not specify electrical 
characteristics. Refer to the appropriate device documentation for electrical 
specifications. 
Avalon Interface Specifications May 2011 Altera Corporation
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Related Documents
1.4. Related Documents
You can find additional information on related topics in the following documents and 
design examples:

■ System Design with Qsys in volume 1 of the Quartus II Handbook. 

This section includes the following chapters:

■ Creating a System with Qsys—provides an overview of the Qsys system 
integration tool, including an introduction to hierarchical system design. 

■ Creating Qsys Components—introduces Qsys components and the Qsys 
component library. It also provides an overview of the Qsys component editor 
which you can use to define custom components.

■ Qsys Interconnect—discusses the Qsys interconnect, a high-bandwidth structure 
for connecting components that use Avalon interfaces.

■ Component Interface Tcl Reference—describes an alternative method for defining 
Qsys components by declaring their properties and behaviors in a Hardware 
Component Description File (_hw.tcl). This chapter also provides a reference 
for the Tool Command Language (Tcl) commands that describe Qsys 
components. 

■ AN 632: SOPC Builder to Qsys Migration Guidelines—discusses issues and 
guidelines for migrating designs from SOPC Builder to Qsys.

■ Qsys Tutorial Design Example—introduces you to system development in Qsys. It 
builds a memory test system using components with Avalon interfaces to verify a 
memory subsystem.
May 2011 Altera Corporation Avalon Interface Specifications
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2. Avalon Clock and Reset Interfaces
Avalon Clock interfaces define the clock or clocks used by a component. Components 
can have clock inputs, clock outputs, or both. A phase locked loop (PLL) is an 
example of a component that has both a clock input and clock outputs. Figure 2–1 is a 
simplified illustration showing the most important inputs and outputs of a PLL 
component.

2.1. Clock Sink
A typical component includes a clock sink input to provide a timing reference for 
other interfaces and internal logic.

2.1.1. Clock Sink Signal Roles
Table 2–1 lists the clock input signals.

2.1.2. Clock Sink Properties
Table 2–2 lists the properties of clock inputs. 

Figure 2–1. PLL Core Clock Outputs and Inputs
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Table 2–1. Clock Input Signal Roles

Signal Role Width Direction Required Description

clk 1 Input Yes A clock signal. Provides synchronization for internal logic and for 
other interfaces.

Table 2–2. Clock Sink Properties

Name Default Value Legal Values Description

clockRate 0 0–232–1 Indicates the frequency in Hz of the clock sink interface. If 0, the clock 
rate is not significant.
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2.1.3. Associated Clock Interfaces 
All synchronous interfaces have an associatedClock property that specifies which 
clock input on the component is used as a synchronization reference for the interface. 
This property is illustrated in Figure 2–2.

2.2. Clock Source
An Avalon Clock source interface is an interface that drives a clock signal out of a 
component. 

2.2.1. Clock Source Signal Roles
Table 2–3 lists the clock source signals.

2.2.2. Clock Source Properties
Table 2–4 lists the properties of clock outputs. 

Figure 2–2. associatedClock Property
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Table 2–3. Clock Source Signal Roles

Signal Role Width Direction Required Description

clk 1 Output Yes An output clock signal.

Table 2–4. Clock Source Properties

Name Default Value Legal Values Description

associatedDirect
Clock

— a clock name The name of the clock input that directly drive this clock output, 
if any.

clockRate 0 0–232–1 Indicates the frequency in Hz at which the clock output is 
driven.

clockRateKnown false true, false
Indicates whether or not the clock frequency is known. If the 
clock frequency is known, this information can be used to 
customize other components in the system.
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2.3. Reset Interfaces
Avalon Reset interfaces provide both soft and hard reset functionality. Soft reset logic 
typically reinitializes registers and memories without powering down the device. 
Hard reset logic initializes the device after power-on.

The following sections describe the properties and signal roles for reset interfaces.

2.3.1. Reset Sink
Table 2–5 lists the reset input signals.

2.3.2. Reset Sink Interface Properties
Table 2–6 lists the properties of resets. 

2.3.3. Associated Reset Interfaces
All synchronous interfaces have an associatedReset property that specifies which 
reset signal resets the interface logic.

2.3.4. Reset Source
Table 2–7 lists the reset input signals.

Table 2–5. Reset Input Signal Roles

Signal Role Width Direction Required Description

reset
reset_n

1 Input Yes
Resets the internal logic of an interface or component to a 
user-defined state. Synchronous to the clock input in the associated 
clock interface.

Table 2–6. Reset Interface Properties

Name Default Value Legal Values Description

associatedClock — a clock name
The name of a clock to which this interface synchronized. 
Required if the value of synchronousEdges is DEASSERT or 
BOTH.

synchronousEdges DEASSERT
NONE

DEASSERT
BOTH

Indicates the type of synchronization the reset input requires. 
The following values are defined:

■ NONE–no synchronization is required because the 
component includes logic for internal synchronization of 
the reset signal.

■ DEASSERT–the reset assertion is asynchronous and 
deassertion is synchronous. 

■ BOTH–reset assertion and deassertion are synchronous.

Table 2–7. Reset Output Signal Roles

Signal Role Width Direction Required Description

reset
reset_n

1 Output Yes Resets the internal logic of an interface or component to a 
user-defined state.
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Reset Interfaces
2.3.5. Reset Source Interface Properties
Table 2–6 lists the properties of resets. 

.

Table 2–8. Reset Interface Properties

Name Default Value Legal Values Description

associatedClock — a clock name
The name of a clock to which this interface synchronized. 
Required if the value of synchronousEdges is DEASSERT 
or BOTH.

associatedDirectReset — a reset name The name of the reset input that directly drives this reset 
source through a one-to-one link.

associatedResetSinks — a reset name
Specifies reset inputs which will eventually cause a reset 
source to assert reset; for example, a reset synchronizer 
ORs a number of reset inputs to generate a reset output.

synchronousEdges DEASSERT
NONE

DEASSERT
BOTH

indicates the type of synchronization the reset input 
requires. The following values are defined:

■ NONE–no synchronization is required because the 
component includes logic for internal synchronization 
of the reset signal.

■ DEASSERT–the reset assertion is asynchronous and 
deassertion is synchronous. 

■ BOTH–reset assertion and deassertion are 
synchronous.
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3. Avalon Memory-Mapped Interfaces
3.1. Introduction
Avalon Memory-Mapped (Avalon-MM) interfaces are used for read and write 
interfaces on master and slave components in a memory-mapped system. These 
components include microprocessors, memories, UARTs, DMAs, and timers which 
have master and slave interfaces connected by an interconnect fabric. Avalon-MM 
interfaces can describe a wide variety of component interfaces, from SRAM interfaces 
which support simple, fixed-cycle read and write transfers to more complex, 
pipelined interfaces capable of burst transfers.

Figure 3–1 shows a typical system, highlighting the Avalon-MM slave interface 
connection to the interconnect fabric. 

Figure 3–1. Focus on Avalon-MM Slave Transfers
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Signals
Avalon-MM components typically include only the signals required for the 
component logic. The 16-bit general-purpose I/O peripheral shown in Figure 3–2 
only responds to write requests, therefore it includes only the slave signals required 
for write transfers. 

Each signal in an Avalon-MM slave corresponds to exactly one Avalon-MM signal 
role. An Avalon-MM port can use only one instance of each signal role. 

3.2. Signals 
Table 3–1 lists the signal roles that constitute the Avalon-MM interface. The signal 
roles available for Avalon-MM interfaces allow you to create masters that use bursts 
for both reads and writes. You can increase the throughput of your system by 
initiating reads with multiple pipelined slave peripherals. In responding to reads, 
when a slave peripheral has valid data it asserts readdatavalid and the interconnect 
enables the connection between the master and slave pair. 

This specification does not require all signals to exist in an Avalon-MM interface. In 
fact, there is no one signal that is always required. The minimum requirements are 
readdata for a read-only interface or writedata and write for a write-only interface.

Figure 3–2. Example Slave Component
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Table 3–1.  Avalon-MM Signals (1) (Part 1 of 4)

Signal role Width Direction Description

Fundamental Signals

address 1-32 Master → 
Slave 

For masters, the address signal represents a byte address. The 
value of the address must be aligned to the data width. To write to 
specific bytes within a data word, the master must use the 
byteenable signal. 

For slaves, the interconnect translates the byte address into a 
word address in the slave’s address space so that each slave 
access is for a word of data from the perspective of the slave. For 
example, address= 0 selects the first word of the slave and 
address 1 selects the second word of the slave.
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begintransfer 1 Master → 
Slave 

Asserted by the interconnect for the first cycle of each transfer 
regardless of waitrequest and other signals. If you do not 
include this signal in your Avalon-MM master interface, Qsys 
automatically generates this signal for you. 

byteenable

byteenable_n

1, 2, 4, 8, 
16, 32, 64, 
128

Master → 
Slave 

Enables specific byte lane(s) during transfers on ports of width 
greater than 8 bits. Each bit in byteenable corresponds to a 
byte in writedata and readdata. The master bit <n> of 
byteenable indicates whether byte <n> is being written to. 
During writes, byteenables specify which bytes are being 
written to; other bytes should be ignored by the slave. During 
reads, byteenables indicates which bytes the master is reading. 
Slaves that simply return readdata with no side effects are free 
to ignore byteenables during reads. If an interface does not 
have a byteenable signal, the transfer proceeds as if all 
byteenables are asserted.

When more than one bit of the byteenable signal is asserted, all 
asserted lanes are adjacent. The number of adjacent lines must 
be a power of 2, and the specified bytes must be aligned on an 
address boundary for the size of the data. For example, the 
following values are legal for a 32-bit slave:

1111 writes full 32 bits

0011 writes lower 2 bytes

1100 writes upper 2 bytes

0001 writes byte 0 only

0010 writes byte 1 only

0100 writes byte 2 only

1000 writes byte 3 only

Altera strongly recommends that you use the byteenable signal 
in components that will be used in systems with different word 
sizes. Doing so avoids unintended side effects in systems that 
include width adapters.

chipselect
chipselect_n

1 Master → 
Slave 

When present, a slave port ignores all Avalon-MM signals unless 
chipselect is asserted. chipselect must be used in 
combination with read or write. The chipselect signal is not 
necessary; Altera does not recommend using it.

debugaccess 1 Master → 
Slave 

When asserted, allows internal memories that are normally 
write-protected to be written. For example, on-chip ROM 
memories can only be written when debugaccess is asserted. 

read

read_n
1 Master → 

Slave 
Asserted to indicate a read transfer. If present, readdata is 
required. 

readdata
8,16, 32, 64,
128, 256, 
512, 1024

Slave → 
Master 

The readdata driven from the slave to the master in response to 
a read transfer. 

write

write_n
1 Master → 

Slave 
Asserted to indicate a write transfer. If present, writedata is 
required.

Table 3–1.  Avalon-MM Signals (1) (Part 2 of 4)

Signal role Width Direction Description
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writedata
8,16, 32, 64,
128, 256, 
512, 1024

Master → 
Slave 

Data for write transfers. The width must be the same as the width 
of readdata if both are present. 

Wait-State Signals

lock 1 Master → 
Slave 

lock ensures that once a master wins arbitration, it maintains 
access to the slave for multiple transactions. It is asserted 
coincident with the first read or write of a locked sequence of 
transactions, and is deasserted on the final transaction of a 
locked sequence of transactions. lock assertion does not 
guarantee that arbitration will be won, but after the lock-asserting 
master has been granted, it retains grant until it is deasserted.

A master equipped with lock cannot be a burst master. 
Arbitration priority values for lock-equipped masters are ignored.

lock is particularly useful for read-modify-write operations, 
where master A reads 32-bit data that has multiple bit fields, 
changes one field, and writes the 32-bit data back. If lock is not 
used, a master B could perform a write between Master A’s read 
and write and master A’s write would overwrite master B’s 
changes. 

waitrequest

waitrequest_n
1 Slave → 

Master

Asserted by the slave when it is unable to respond to a read or 
write request. Forces the master to wait until the interconnect is 
ready to proceed with the transfer. At the start of all transfers, a 
master initiates the transfer and waits until waitrequest is 
deasserted. A master must make no assumption about the 
assertion state of waitrequest when the master is idle: 
waitrequest may be high or low, depending on system 
properties. When waitrequest is asserted, master control 
signals to the slave remain constant with the exception of 
begintransfer and beginbursttransfer, as is illustrated by 
Figure 3–7 on page 3–14. An Avalon-MM slave may assert 
waitrequest during idle cycles. An Avalon-MM master may 
initiate a transaction when waitrequest is asserted and wait for 
that signal to be deasserted. To avoid system lockup, a slave 
device should assert waitrequest when in reset. 

Pipeline Signals

readdatavalid

readdatavalid_n
1 Slave → 

Master

Used for variable-latency, pipelined read transfers. Asserted by 
the slave to indicate that the readdata signal contains valid data 
in response to a previous read request. A slave with 
readdatavalid must assert this signal for one cycle for each 
read access it has received. There must be at least one cycle of 
latency between acceptance of the read and assertion of 
readdatavalid. Figure 3–5 on page 3–11 illustrates the 
readdatavalid signal.

Required if the master supports pipelined reads. Bursting 
masters with read functionality must include the readdatavalid 
signal.

Table 3–1.  Avalon-MM Signals (1) (Part 3 of 4)

Signal role Width Direction Description
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3.3. Interface Properties
Table 3–2 describes the Avalon-MM interface properties. 

Burst Signals

burstcount 1–11 Master → 
Slave 

Used by bursting masters to indicate the number of transfers in 
each burst. The value of the maximum burstcount parameter 
must be a power of 2, so a burstcount port of width <n> can 
encode a max burst of size 2(<n>-1). For example, a 4-bit 
burstcount signal can support a maximum burst count of 8. The 
minimum burstcount is 1. The timing of the burstcount 
signal is controlled by the constantBurst property. Bursting 
masters with read functionality must include the readdatavalid 
signal.

For bursting masters and slaves, the following restriction applies 
to the width of the address:

<address_w> >= <burstcount_w> + floor(log2 
(<symbols_per_word_on_this_interface>))

beginbursttransfer 1 Master → 
Slave 

Asserted for the first cycle of a burst to indicate when a burst 
transfer is starting. This signal is deasserted after one cycle 
regardless of the value of waitrequest. Refer to Figure 3–7 on 
page 3–14 for an example of its use. 

Notes to Table 3–1:

(1) All Avalon signals are active high. Avalon signals that can also be asserted low list _n versions of the signal in the Signal role column. 

Table 3–1.  Avalon-MM Signals (1) (Part 4 of 4)

Signal role Width Direction Description

Table 3–2. Avalon-MM Interface Properties (Part 1 of 3)

Name Default 
Value Legal Values Description

addressUnits

Master - 
symbol

Slave -
word

word, symbol Specifies the unit of data for reads and writes. 

burstCountUnits words word, symbol Specifies the unit of data for bursts.

burstOnBurstBoundariesOnly false true, false
If true, burst transfers presented to this interface 
are guaranteed to begin at addresses which are 
multiples of the burst size in bytes.

constantBurstBehavior

Master -
true

Slave -
false

true, false

When true for a master, declares that the master 
holds address and burstcount stable 
throughout a burst; when false, declares that the 
master holds address and burstcount stable 
only for the first transaction of a burst. When true 
for a slave, declares that the slave expects 
address and burstcount to be held stable 
throughout a burst; when false, declares that the 
slave samples address and burstcount only on 
the first transaction of a burst. 
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holdTime (1) 0 0–1000 
cycles 

Specifies time in timingUnits between the 
deassertion of write and the deassertion of 
chipselect, address, and data. (Only applies 
to write transactions.)

linewrapBursts false true, false

Some memory devices implement a wrapping 
burst instead of an incrementing burst. The 
difference between the two is that with a wrapping 
burst, when the address reaches a burst 
boundary, the address wraps back to the previous 
burst boundary such that only the low order bits 
are required for address counting. For example, a 
wrapping burst with burst boundaries every 32 
bytes across a 32-bit interface to address 0xC 
would write to addresses 0xC, 0x10, 0x14, 0x18, 
0x1C, 0x0, 0x4, and 0x8.

maximumPendingReadTransactions 
(1)

1 (2) 1–64

The maximum number of pending reads which 
can be queued by the slave. Refer to Figure 3–5 on 
page 3–11 for a timing diagram that uses this 
property.

readLatency (1) 0 0–63

Read latency for fixed-latency Avalon-MM slaves. 
Not used on interfaces that include the 
readdatavalid signal. Refer to Figure 3–6 on 
page 3–12 for a timing diagram that uses this 
property.

readWaitTime (1) 1 0–1000 
cycles

For interfaces that don’t use the waitrequest 
signal, readWaitTime indicates the number of 
cycles or nanoseconds before the slave accepts a 
read command. The timing is as if the slave 
asserted waitrequest for readWaitTime cycles.

setupTime (1) 0
0–1000 
cycles 

Specifies time in timingUnits between the 
assertion of chipselect, address, and data 
and assertion of read or write.

timingUnits (1) cycles cycles, 
nanoseconds

Specifies the units for setupTime, holdTime, 
writeWaitTime and readWaitTime. Use cycles 
for synchronous devices and nanoseconds 
(depending on the timingUnits parameter) for 
asynchronous devices. Almost all Avalon-MM 
slave devices are synchronous. One example of a 
device that requires asynchronous timing is an 
Avalon-MM slave that reads and writes an off-chip 
bidirectional port. That off-chip device might have 
a fixed settling time for bus turnaround.

Table 3–2. Avalon-MM Interface Properties (Part 2 of 3)

Name Default 
Value Legal Values Description
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3.4. Timing
The Avalon-MM interface is synchronous. Each Avalon-MM port is synchronized to 
an associated clock interface. Signals may be combinational if they are driven from the 
outputs of registers that are synchronous to the clock signal. This document does not 
dictate how or when signals transition between clock edges and timing diagrams are 
devoid of fine-grained timing information. 

3.5. Transfers
This section defines two basic concepts before introducing the transfer types:

■ Transfer—A transfer is a read or write operation of a word or symbol of data, 
between an Avalon-MM port and the interconnect. Avalon-MM transfers words 
ranging in size from 8–1024 bits. Transfers take one or more clock cycles to 
complete. 

Both masters and slaves are part of a transfer; the Avalon-MM master initiates the 
transfer and the Avalon-MM slave responds to it.

■ Master-slave pair —This term refers to the master port and slave port involved in a 
transfer. During a transfer, the master port's control and data signals pass through 
the interconnect fabric and interact with the slave port. 

writeWaitTime (1) 0 0–1000 
cycles

For interfaces that do not use the waitrequest 
signal, writeWaitTime indicates the number of 
cycles or nanoseconds (depending on the 
timingUnits parameter) before a slave accepts a 
write. The timing is as if the slave asserted 
waitrequest for writeWaitTime cycles or 
nanoseconds. Refer to Figure 3–4 on page 3–9 for 
a timing diagram that uses this property.

Interface Relationship Properties

associatedClock — — Name of the clock interface to which this 
Avalon-MM interface is synchronous.

associatedReset — — Name of the reset interface to which this 
Avalon-MM interface is synchronous.

bridgesToMaster null

Avalon-MM 
master on the 
same 
component

An Avalon-MM bridge consists of a slave and a 
master, and has the property that an access to the 
slave requesting a particular byte or bytes will 
cause the same byte or bytes to be requested by 
the master. The Avalon-MM Pipeline Bridge in the 
Qsys component library implements this 
functionality.

Note to Table 3–2:

(1) Although this property characterizes a slave device, masters can declare this property to enable direct connections between matching master 
and slave interfaces.

(2) If a component accepts more read transfers than the value indicated here, the internal pending read FIFO may overflow with unpredictable 
results, including the loss of readdata, routing of readdata to the wrong master interface, or system lockup.

Table 3–2. Avalon-MM Interface Properties (Part 3 of 3)

Name Default 
Value Legal Values Description
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3.5.1. Typical Read and Write Transfers 
This section describes a typical Avalon-MM interface that supports read and write 
transfers with slave-controlled waitrequest. The slave can stall the interconnect for as 
many cycles as required by asserting the waitrequest signal. If a slave uses 
waitrequest for either read or write transfers, it must use waitrequest for both. 

If a slave receives address, byteenable, read or write, and writedata after the rising 
edge of the clock, the slave port must assert waitrequest before the next rising clock 
edge to hold off the transfers. When the slave asserts waitrequest, the transfer is 
delayed and the address and control signals are held constant. Transfers complete on 
the rising edge of the first clk after the slave port deasserts waitrequest. 

There is no limit on how long a slave port can stall. Therefore, you must ensure that a 
slave port does not assert waitrequest indefinitely. Figure 3–3 shows read and write 
transfers using waitrequest. 

1 waitrequest can be decoupled from the read and write request signals so that it may 
be asserted during idle cycles. An Avalon-MM master may initiate a transaction when 
waitrequest is asserted and wait for that signal to be deasserted. Decoupling 
waitrequest from read and write requests may improve system timing by 
eliminating a combinational loop including the read, write and waitrequest signals.

Figure 3–3.  Read and Write Transfers with Waitrequest

Notes to Figure 3–3: 

(1) address, read, and begintransfer are asserted after the rising edge of clk. waitrequest is asserted stalling the transfer. 
(2) waitrequest is sampled. Because waitrequest is asserted, the cycle becomes a wait-state, and address, read, write, and byteenable 

remain constant. Begintransfer is not held constant.
(3) The slave presents valid readdata and deasserts waitrequest.
(4) readdata and deasserted waitrequest are sampled, completing the transfer.
(5) address, writedata, byteenable, begintransfer, and write signals are asserted. The slave responds by asserting waitrequest, stalling 

the transfer.
(6) The slave captures writedata and deasserts waitrequest, ending the transfer.
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3.5.2. Read and Write Transfers with Fixed Wait-States
Instead of using waitrequest to hold off a transfer, a slave can specify fixed 
wait-states using the readWaitTime and writeWaitTime properties. The address and 
control signals (byteenable, read, and write) are held constant for the duration of the 
transfer. The read/write timing with readWaitTime/writeWaitTime set to <n> is 
exactly the same as asserting waitrequest for <n> cycles per transfer.

Figure 3–4 shows an example slave read and write transfers with writeWaitTime = 2 
and readWaitTime = 1. 

Transfers with a single wait-state are commonly used for multicycle off-chip 
peripherals. The peripheral can capture address and control signals on the rising edge 
of clk, and has one full cycle to return data. Components with zero wait-states are 
allowed, but may decrease achievable frequency because they generate the response 
in the same cycle as the request.

3.5.3. Pipelined Transfers
Avalon-MM pipelined read transfers increase the throughput for synchronous slave 
devices that require several cycles to return data for the first access, but can return one 
data value per cycle for some time thereafter. New pipelined read transfers can be 
started before readdata for the previous transfers is returned. Write transfers cannot 
be pipelined.

A pipelined read transfer is divided into two phases: an address phase and a data 
phase. A master initiates a transfer by presenting the address during the address 
phase; a slave port fulfills the transfer by delivering the data during the data phase. 
The address phase for a new transfer (or multiple transfers) can begin before the data 
phase of a previous transfer completes. The delay is called pipeline latency, which is the 
duration from the end of the address phase to the beginning of the data phase. 

The key differences between how wait-states and pipeline latency affect transfer 
timing is as follows: 

Figure 3–4. Read and Write Transfer with Fixed Wait-States at the Slave Interface

Notes to Figure 3–4:

(1) The master asserts address and read on the rising edge of clk.
(2) The next rising edge of clk marks the end of the first and only wait-state cycle because the readWaitTime is 1. 
(3) The slave captures readdata on the rising edge of clk, and the read transfer ends.
(4) writedata, address, byteenable, and write signals are available to the slave. 
(5) Because writeWaitTime is 2, the transfer terminates after completing. The data and control signals are held constant until this time. 
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■ Wait-states—Wait-states determine the length of the address phase, and limit the 
maximum throughput of a port. If a slave requires one wait-state to respond to a 
transfer request, then the port requires at least two clock cycles per transfer. 

■ Pipeline Latency—Pipeline latency determines the time until data is returned 
independently of the address phase. A pipelined slave port with no wait-states can 
sustain one transfer per cycle, even though it may require several cycles of latency 
to return the first unit of data. 

Wait-states and pipelined reads can be supported concurrently, and pipeline latency 
can be either fixed or variable, as discussed in the following sections.

3.5.3.1. Pipelined Read Transfer with Variable Latency
An Avalon-MM pipelined slave takes one or more cycles to produce data after 
address and control signals have been captured. A pipelined slave port may have 
multiple pending read transfers at any given time. Variable-latency pipelined read 
transfers use the same set of signals as non-pipelined read transfers, with one 
additional signal, readdatavalid. Slave peripherals that use readdatavalid are 
considered pipelined with variable latency; the readdata and readdatavalid signals 
can be asserted the cycle after the read cycle is asserted, at the earliest.

The slave port must return readdata in the same order that it accepted the addresses. 
Pipelined slave ports with variable latency must use waitrequest. The slave can 
assert waitrequest to stall transfers to maintain the number of pending transfers at an 
acceptable level. 

1 The maximum number of pending transfers is a property of the slave interface. The 
interconnect fabric builds logic which routes readdata to the requesting masters, 
parameterized by this maximum number. It is the responsibility of the slave interface, 
not the interconnect fabric, to keep the number of pending reads from exceeding the 
stated maximum by asserting waitrequest. 
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Figure 3–5 shows several slave read transfers between a master and a pipelined slave 
with variable latency. In this example, the slave can accept a maximum of two 
pending transfers and uses waitrequest to prevent overrunning this maximum.

If the slave cannot handle a write transfer while it is processing pending read 
transfers, the slave must assert its waitrequest and stall the write operation until the 
pending read transfers have completed. The Avalon-MM specification does not define 
the value of readdata in the event that a slave accepts a write transfer to the same 
address as a currently pending read transfer. Pipelined slaves with variable latency 
must support waitrequest.

3.5.3.2. Pipelined Read Transfers with Fixed Latency 
The address phase for fixed latency read transfers is identical to the variable latency 
case. After the address phase, a pipelined slave port with fixed read latency takes a 
fixed number of clock cycles to return valid readdata, as indicated by the 
readWaitTime property. The interconnect captures readdata on the appropriate rising 
clock edge, and the data phase ends. 

During the address phase, the slave port can assert waitrequest to hold off the 
transfer or can specify readWaitTime for a fixed number of wait states. The address 
phase ends on the next rising edge of clk after wait-states, if any. 

During the data phase, the slave drives readdata after a fixed latency. If the slave has 
a read latency of <n>, the slave port must present valid readdata on the <nth> rising 
edge of clk after the end of the address phase. 

Figure 3–5.  Pipelined Read Transfers with Variable Latency 

Notes to Figure 3–5: 

(1) The master asserts address and read, initiating a read transfer. 
(2) The slave captures addr1, and immediately provides the response data1 and asserts readdatavalid. 
(3) The slave captures addr2 and immediately provides the response data2 and asserts readdatavalid. The 

interconnect captures data1.
(4) The slave asserts waitrequest for two cycles causing the third transfer to be stalled.
(5) The interconnect captures data2.
(6) The slave drives readdatavalid and valid readdata in response to the third read transfer.
(7) The data from transfer 3 is captured by the interconnect at the same time that addr4 is captured by the slave.
(8) The slave captures addr5. The interconnect captures data4. 
(9) data5 is presented with readdatavalid completing the data phase for the final pending read transfer.
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1 2 3 4 5 6 7 98

addr1 addr2 addr3

stall

addr4 addr5

data1 data2 data 3 data4 data5
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Figure 3–6 shows multiple data transfers between a master and a pipelined slave port 
that uses waitrequest and has a fixed read latency of 2 cycles. 

3.5.4. Burst Transfers
A burst executes multiple transfers as a unit, rather than treating every word 
independently. Bursts may increase throughput for slave ports that achieve greater 
efficiency when handling multiple word at a time, such as SDRAM. The net effect of 
bursting is to lock the arbitration for the duration of the burst. If a Avalon-MM 
interface includes both read and write functionality and supports bursting, it must 
support both burst reads and burst writes. 

To support bursts, an Avalon-MM interface includes a burstcount output signal. If a 
slave has a burstcount input, it is considered burst capable. 

The burstcount signal behaves as follows:

■ At the start of a burst, burstcount presents the number of sequential transfers in 
the burst. 

■ For width <n> of burstcount, the maximum burst length is 2(<n>-1).The minimum 
legal burst length is one.

To support slave read bursts, a slave must also support:

■ wait-states with the waitrequest signal. 

■ Pipelined transfers with variable latency with the readdatavalid signal. 

At the start of a burst, the slave sees the address and a burst length value on 
burstcount. For a burst with an address of <a> and a burstcount value of <b>, the 
slave must perform <b> consecutive transfers starting at address <a>. The burst 
completes after the slave receives (write) or returns (read) the <bth> word of data. The 
bursting slave must capture address and burstcount only once for each burst. The 
slave logic must infer the address for all but the first transfers in the burst. A slave can 
also use the input signal beginbursttransfer, which the interconnect asserts on the 
first cycle of each burst.

Figure 3–6.  Pipelined Read Transfer with Fixed Latency of Two Cycles

Notes to Figure 3–6: 

(1) A master initiates a read transfer by asserting read and addr1. The slave asserts waitrequest to hold off the transfer for one cycle.
(2) The slave deasserts waitrequest and captures addr1 at the rising edge of clk. The address phase ends here.
(3) The slave presents valid readdata after 2 cycles, ending the transfer. 
(4) addr2 and read are asserted for a new read transfer.
(5) The master initiates a third read transfer during the next cycle, before the data from the prior transfer is returned.
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3.5.4.1. Write Bursts
These rules apply when a write burst begins with burstcount greater than one:

■ When a burstcount of <n> is presented at the beginning of the burst, the slave 
must accept <n> successive units of writedata to complete the burst. Arbitration 
between the master-slave pair is locked until the burst completes, guaranteeing 
that data arrives, in order, from the master port that initiated the burst.

■ The slave must only capture writedata when write is asserted. During the burst, 
write can be deasserted to indicate that it is not presenting valid writedata. 
Deasserting write does not terminate the burst; it only delays it. When a burst is 
delayed, no other masters can access the slave, reducing the transfer efficiency. 

■ The constantBurstBehavior property controls the behavior of the burst signals. 
When true for a master, declares that the master holds address and burstcount 
stable throughout a burst; when false, declares that the master holds address and 
burstcount stable only for the first transaction of a burst. When true for a slave, 
declares that the slave expects address and burstcount to be held stable 
throughout a burst; when false, declares that the slave samples address and 
burstcount only on the first transaction of a burst. (Refer to “Avalon-MM Interface 
Properties” on page 3–5.)

■ The slave can delay a transfer by asserting waitrequest which forces writedata, 
write, and byteenable to be held constant, as usual. 

■ The functionality of the byteenable signal is the same for bursting and 
non-bursting slaves. For a 32-bit master burst-writing to a 64-bit slave, starting at 
byte address 4, the first write transfer seen by the slave is at its address 0, with 
byteenable = 8b’11110000. The byteenables can change for different words of the 
burst.

■ The byteenable signals do not all have to be asserted. A burst master writing 
partial words can use the byteenable signal to identify the data being written.
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Figure 3–7 demonstrates a slave write burst of length 4. In this example, the slave port 
asserts waitrequest twice delaying the burst. 

In Figure 3–7, the beginbursttransfer signal is asserted for the first clock cycle of a 
burst and is deasserted on the next clock cycle. Even if the slave asserts waitrequest, 
the beginbursttransfer signal is asserted only for the first clock cycle. 

3.5.4.2. Read Bursts
Read bursts are similar to pipelined read transfers with variable latency. A read burst 
has distinct address and data phases, and readdatavalid indicates when the slave is 
presenting valid readdata. The difference is that a single read burst address results in 
multiple data transfers. 

These rules apply to read bursts:

■ When burstcount is <n>, the slave must return <n> words of readdata to 
complete the burst. 

■ The slave presents each word by providing readdata and asserting readdatavalid 
for a cycle. Deassertion of readdatavalid delays but does not terminate the burst 
data phase.

■ The byteenables presented with a read burst command apply to all cycles of the 
burst. A byteenable value of 1 means that the least significant byte is being read 
across all of the read cycles.

1 Altera recommends that burst capable slaves not have read side effects. (This 
specification does not guarantee how many bytes will be read from the slave in order 
to satisfy a request.)

Figure 3–7. Write Burst with constantBurstBehavior Set to False for Master and Slave 

Notes to Figure 3–7: 

(1) The master asserts address, burstcount, write, and drives the first unit of writedata. The slave immediately asserts waitrequest, 
indicating that it is not ready to proceed with the transfer. 

(2) waitrequest is low; the slave captures addr1, burstcount, and the first unit of writedata . On subsequent cycles of the transfer, address 
and burstcount are ignored. 

(3) The slave port captures the second unit of data at the rising edge of clk.
(4) The burst is paused while write is deasserted. 
(5) The slave captures the third unit of data at the rising edge of clk.
(6) The slave asserts waitrequest. In response, all outputs are held constant through another clock cycle. 
(7) The slave captures the last unit of data on this rising edge of clk. The slave write burst ends.
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Figure 3–8 illustrates a system with two bursting masters accessing a slave. Note that 
Master B can drive a read request before the data has returned for Master A.

3.5.4.3. Line–Wrapped Bursts
Processors with data or instruction caches gain efficiency by using line-wrapped 
bursts. When a processor requests data, and the data is not in the cache, the cache 
controller reads enough data from the memory to fill the entire cache line. For a 
processor with a cache line size of 64 bytes, a cache miss causes 64 bytes to be read 
from memory. If the processor reads from address 0xC when the cache miss occurred, 
then an incrementing addressing burst cache controller could issue a burst at address 
0, resulting in data from read addresses 0x0, 0x4, 0x8, 0xC, 0x10, 0x14, 0x18, and 0x1C 
– the data that the processor requested is not available until the fourth read. With 
wrapping bursts, the address order is 0xC, 0x10, 0x14, 0x18, 0x1C, 0x0, 0x4, and 0x8 
such that the data that the processor requested is returned first.

3.6. Address Alignment 
For systems in which master and slave data widths differ, the interconnect manages 
address alignment issues. The Avalon-MM interface resolves data width differences, 
so that any master port can communicate with any slave port, regardless of the 
respective data widths. The interconnect only supports aligned accesses; a master can 
only issue addresses that are a multiple of its data width. (A master can write partial 
words by deasserting some byteenables. For example, a burst of size 2 at address 0 
would have the following pattern for the byteenables: 1100.)

Figure 3–8.  Read Burst

Notes to Figure 3–8:

(1) Master A asserts address (A0), burstcount, and read after the rising edge of clk. The slave asserts waitrequest, causing all inputs except 
beginbursttransfer to be held constant through another clock cycle.

(2) The slave captures A0 and burstcount at this rising edge of clk. A new transfer could start on the next cycle. 
(3) Master B drives address (A1), burstcount, and read. The slave asserts waitrequest, causing all inputs except beginbursttransfer to 

be held constant. The slave could have returned read data from the first read request at this time, at the earliest.
(4) The slave presents valid readdata and asserts readdatavalid, transferring the first word of data for master A.
(5) The second word for master A is transferred. The slave deasserts readdatavalid pausing the read burst. The slave port can keep 

readdatavalid deasserted for an arbitrary number of clock cycles.
(6) The first word for master B is returned.
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3.7. Avalon-MM Slave Addressing
Dynamic bus sizing refers to a service provided by the interconnect that dynamically 
manages data during transfers between master-slave pairs of differing data widths, 
such that all slave data are aligned in contiguous bytes in the master address space.

If the master is wider than the slave, data bytes in the master address space map to 
multiple locations in the slave address space. For example, when a 32-bit master port 
performs a full 32-bit read transfer from a 16-bit slave port, the interconnect executes 
two read transfers on the slave side on consecutive addresses, and presents 32-bits of 
slave data back to the master port.

If the master is narrower than the slave, then the interconnect manages the slave byte 
lanes. During master read transfers, the interconnect presents only the appropriate 
byte lanes of slave data to the narrower master. During master write transfers, the 
interconnect automatically asserts the byteenable signals to write data only to the 
specified slave byte lanes.

Slaves must have a data width of 8, 16, 32, 64, 128, 256, 512 or 1024 bits. Table 3–3 
shows how slave data of various widths is aligned within a 32-bit master when the 
master is performing full-word accesses. In Table 3–3, OFFSET[N] refers to a slave 
word size offset into the slave address space. 

Table 3–3. Dynamic Bus Sizing Master-to-Slave Address Mapping

Master Byte 
Address (1)

32-Bit Master Data

When Accessing 
an 8-Bit Slave Port

When Accessing 
a 16-Bit Slave Port 

When Accessing 
a 64-Bit Slave Port

0x00
OFFSET[3]7..0:OFFSET[2]7..0:
OFFSET[1]7..0:OFFSET[0]7..0 

OFFSET[1]15..0:OFFSET[0]15..0 (2) OFFSET[0]31..0 

0x04
OFFSET[7]7..0:OFFSET[6]7..0:
OFFSET[5]7..0:OFFSET[4]7..0 

OFFSET[3]15..0:OFFSET[2]15..0 OFFSET[0]63..32

0x08
OFFSET[11]7..0:OFFSET[10]7..0:
OFFSET[9]7..0:OFFSET[8]7..0 

OFFSET[5]15..0:OFFSET[4]15..0 OFFSET[1]31..0

0x0C
OFFSET[15]7..0:OFFSET[14]7..0:
OFFSET[13]7..0:OFFSET[12]7..0 

OFFSET[7]15..0:OFFSET[6]15..0 OFFSET[1]63..32

... ... ...

Notes to Table 3–3:

(1) Although the master is issuing byte addresses, it is accessing full 32-bit words.
(2) For all slave entries, [<n>] is the word offset and the subscript values are the bits in the word.
Avalon Interface Specifications May 2011 Altera Corporation



May 2011 Altera Corporation
4. Avalon Interrupt Interfaces
Avalon Interrupt interfaces allow slave components to signal events to master 
components. For example, a DMA controller can interrupt a processor when it has 
completed a DMA transfer.

4.1. Interrupt Sender
An interrupt sender drives a single interrupt signal to an interrupt receiver. The 
timing of the irq signal must be synchronous to the rising edge of its associated clock, 
but has no relationship to any transfer on any other interface. irq must be asserted 
until the interrupt has been acknowledged on the associated Avalon-MM slave 
interface. The interrupt receiver typically determines how to respond to the event by 
reading an interrupt status register from an Avalon-MM slave interface. The 
mechanism used to acknowledge an interrupt is component specific.

4.1.1. Interrupt Sender Signal Roles 
Table 4–1 lists the interrupt signal roles.

4.1.2. Interrupt Sender Properties
Table 4–2 lists the properties associated with interrupt senders.

Table 4–1. Interrupt Sender Signal Roles

Signal Role Width Direction Required Description

irq

irq_n
1 Output Yes Interrupt Request. A slave asserts irq when it needs to be serviced.

Table 4–2. Interrupt Sender Properties

Property Name Default 
Value Legal Values Description

associatedAddressablePoint
—

Name of Avalon-MM 
slave on this 
component.

The name of the Avalon-MM slave interface that 
provides access to the registers that should be 
accessed to service the interrupt.

associatedClock —
Name of a clock 
interface on this 
component.

The name of the clock interface to which this 
interrupt sender is synchronous. The sender and 
receiver may have different values for this 
property.

associated Reset —
Name of a reset 
interface on this 
component.

The name of the reset interface to which this 
interrupt sender is synchronous. 
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4.2. Interrupt Receiver
An interrupt receiver interface receives interrupts from interrupt sender interfaces. 
Components with an Avalon-MM master interface can include an interrupt receiver to 
detect interrupts asserted by slave components with interrupt sender interfaces. The 
interrupt receiver accepts interrupt requests from each interrupt sender as a separate 
bit. 

4.2.1. Interrupt Receiver Signal Roles
Table 4–3 lists the interrupt receiver signal roles.

4.2.2. Interrupt Receiver Properties
Table 4–4 lists the properties associated with interrupt receivers.
A

Table 4–3. Interrupt Receiver Signal Roles

Signal Role Width Direction Required Description

irq 1–32 Input Yes  irq is an <n>-bit vector, where each bit corresponds directly to one 
IRQ sender, with no inherent assumption of priority.

Table 4–4. Interrupt Receiver Properties

Property Name Default Value Legal Values Description

associatedAddressable
Point

— Name of Avalon-MM 
master interface

The name of the Avalon-MM 
master interface used to 
service interrupts received on 
this interface.

associatedClock — Name of an Avalon Clock 
interface

The name of the Avalon Clock 
interface to which this interrupt 
receiver is synchronous. The 
sender and receiver may have 
different values for this 
property.

associatedReset — Name of an Avalon Reset 
interface

The name of the reset interface 
to which this interrupt receiver 
is synchronous.

irqScheme individualRequests individualRequests
Each interrupt sender interface 
asserts its irq signal to 
request service.
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4.2.3. Interrupt Timing 
Figure 4–1 illustrates interrupt timing. The Avalon-MM master services the priority 0 
interrupt before the priority 1 interrupt.

Figure 4–1. Interrupt Timing for Individual Request and Priority Encoded Interrupts

Notes to Figure 4–1:

(1) Interrupt 0 serviced.
(2) Interrupt 1 serviced.
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int1

1 2

Individual
Requests
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5. Avalon Streaming Interfaces
You can use Avalon Streaming (Avalon-ST) interfaces for components that drive high 
bandwidth, low latency, unidirectional data. Typical applications include multiplexed 
streams, packets, and DSP data. The Avalon-ST interface signals can describe 
traditional streaming interfaces supporting a single stream of data without 
knowledge of channels or packet boundaries. The interface can also support more 
complex protocols capable of burst and packet transfers with packets interleaved 
across multiple channels. Figure 5–1 illustrates a typical application of the Avalon-ST 
interface.

All Avalon-ST source and sink interfaces are not necessarily interoperable. However, 
if two interfaces provide compatible functions for the same application space, 
adapters are available to allow them to interoperate.

Figure 5–1. Avalon-ST Interface - Typical Application
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5.1. Features
The following list highlights some of the prominent features of the Avalon-ST 
interface:

■ Low latency, high throughput point-to-point data transfer

■ Multiple channel support with flexible packet interleaving

■ Sideband signaling of channel, error, and start and end of packet delineation

■ Support for data bursting

■ Automatic interface adaptation

5.2. Terms and Concepts
This section defines terms and concepts used in the Avalon-ST interface protocol. 

■ Avalon Streaming System—An Avalon Streaming system is a system that contains 
one or more Avalon-ST connections that transfer data from a source interface to a 
sink interface. The system shown in Figure 5–1 consists of Avalon-ST interfaces to 
transfer data from the system input to output and Avalon-MM control and status 
register interfaces to allow software control.

■ Avalon Streaming Components—A typical system using Avalon-ST interfaces 
combines multiple functional modules, called components. The system designer 
configures the components and connects them together to implement a system.

■ Source and Sink Interfaces and Connections—When two components are connected, 
the data flows from the source interface to the sink interface. The combination of a 
source interface connected to a sink interface is referred to as a connection. 

■ Backpressure—Backpressure is a mechanism by which a sink can signal to a source 
to stop sending data. The sink typically uses backpressure to stop the flow of data 
when its FIFOs are full or when there is congestion on its output port. Support for 
backpressure is optional.

■ Transfers and Ready Cycles—A transfer is an operation that results in data and 
control propagation from a source interface to a sink interface. For data interfaces, 
a ready cycle is a cycle during which the sink can accept a transfer. 

■ Symbol—A symbol is the smallest unit of data. For most packet interfaces, a 
symbol is a byte. One or more symbols make up the single unit of data transferred 
in a cycle.

■ Channel—A channel is a physical or logical path or link through which 
information passes between two ports. 

■ Beat—A single cycle transfer between a source and sync interface made up of one 
or more symbols.

■ Packet—A packet is an aggregation of data and control signals that is transmitted 
together. A packet may contain a header to help routers and other network devices 
direct the packet to the correct destination. The packet format is defined by the 
application, not this specification. Avalon-ST packets can be variable in length and 
can be interleaved across a connection. With an Avalon-ST interfaces, the use of 
packets is optional. 
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5.3. Avalon-ST Interface Signals
Each signal in an Avalon-ST source or sink interface corresponds to one Avalon-ST 
signal role; an Avalon-ST interface may contain only one instance of each signal role. 
All Avalon-ST signal roles apply to both sources and sinks and have the same 
meaning for both.

Table 5–1 lists the signal roles that comprise an Avalon-ST data interface. 

All signal roles listed in Table 5–1 are active high. 

Table 5–1. Avalon-ST Interface Signals 

Signal Role Width Direction Description

Fundamental Signals

channel 1–128 Source → 
Sink

The channel number for data being transferred on the current cycle. 

If an interface supports the channel signal, it must also define the 
maxChannel parameter. 

data 1–4096 Source → 
Sink

The data signal from the source to the sink, typically carries the bulk of 
the information being transferred.

The contents and format of the data signal is further defined by 
parameters.

error 1–256 Source → 
Sink

A bit mask used to mark errors affecting the data being transferred in the 
current cycle. A single bit in error is used for each of the errors 
recognized by the component, as defined by the errorDescriptor 
property.

ready 1 Sink → 
Source

Asserted high to indicate that the sink can accept data. ready is asserted 
by the sink on cycle <n> to mark cycle <n + readyLatency> as a ready 
cycle, during which the source may assert valid and transfer data. 

Sources without a ready input cannot be backpressured, and sinks 
without a ready output never need to backpressure. 

valid 1 Source → 
Sink

Asserted by the source to qualify all other source to sink signals. On ready 
cycles where valid is asserted, the data bus and other source to sink 
signals are sampled by the sink, and on other cycles are ignored. 

Sources without a valid output implicitly provide valid data on every 
cycle that they are not being backpressured, and sinks without a valid 
input expect valid data on every cycle that they are not backpressuring.

Packet Transfer Signals

empty 1–8 Source → 
Sink

Indicates the number of symbols that are empty during cycles that contain 
the end of a packet. The empty signal is not used on interfaces where there 
is one symbol per beat. If endofpacket is not asserted, this signal is not 
interpreted.

endofpacket
1 Source → 

Sink Asserted by the source to mark the end of a packet. 

startofpacket
1 Source → 

Sink Asserted by the source to mark the beginning of a packet. 
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5.4. Signal Sequencing and Timing
This section provides information related to timing and sequencing of Avalon-ST 
interfaces.

5.4.1. Synchronous Interface
All transfers of an Avalon-ST connection occur synchronous to the rising edge of the 
associated clock signal. All outputs from a source interface to a sink interface, 
including the data, channel, and error signals, must be registered on the rising edge 
of clock. Inputs to a sink interface do not have to be registered. Registering signals at 
the source provides for high frequency operation while eliminating back-to-back 
registers with no intervening logic. 

5.4.2. Clock Enables
Avalon-ST components typically do not include a clock enable input, because the 
Avalon-ST signaling itself is sufficient to determine the cycles that a component 
should and should not be enabled. Avalon-ST compliant components may have a 
clock enable input for their internal logic, but they must take care to ensure that the 
timing of the interface control signals still adheres to the protocol. 

5.5. Avalon-ST Interface Properties
Table 5–2 lists the properties that characterize an Avalon-ST interface.

Table 5–2. Avalon-ST Interface Properties (Part 1 of 2)

Property Name Default 
Value Legal Values Description

symbolsPerBeat 1 1–512 The number of symbols that are transferred on every valid 
cycle.

associatedClock 1 a clock 
interface

The name of the Avalon Clock interface to which this 
Avalon-ST interface is synchronous. 

associatedReset 1 a reset 
interface

The name of the Avalon Reset interface to which this 
Avalon-ST interface is synchronous.

dataBitsPerSymbol 8 1–512
Defines the number of bits per symbol. For example, 
byte-oriented interfaces have 8-bit symbols. This value is not 
restricted to be a power of 2. 

errorDescriptor 0 list of strings

A list of words that describe the error associated with each bit 
of the error signal. The length of the list must be the same as 
the number of bits in the error signal, and the first word in the 
list applies to the highest order bit. For example, “crc, 
overflow" means that bit[1] of error indicates a CRC error, 
and bit[0] indicates an overflow error.

firstSymbolInHigh
OrderBits

false true, false
When true, the high-order symbol is driven to the MSB of the 
data interface. The highest-order symbol is labelled D0 in this 
specification. 
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5.6. Typical Data Transfers
This section defines the transfer of data from a source interface to a sink interface. In 
all cases, the data source and the data sink must comply with the specification. It is 
not the responsibility of the data sink to detect source protocol errors.

5.7. Signal Details
This section describes the basic Avalon-ST protocol that all data transfers must follow. 
It also highlights the flexibility available in choosing Avalon-ST signals to meet the 
needs of a particular component and makes recommendations about the signals that 
should be used. 

Figure 5–1 shows the signals that are typically included in an Avalon-ST interface. As 
this figure indicates, a typical Avalon-ST source interface drives the valid, data, 
error, and channel signals to the sink. The sink can apply backpressure using the 
ready signal.

The following paragraphs provide more details about these signals:

■ ready—On interfaces supporting backpressure, the sink asserts ready to mark the 
cycles where transfers may take place. Data interfaces that support backpressure 
must define the readyLatency parameter so that if ready is asserted on cycle <n>, 
cycle <n + readyLatency> is considered a ready cycle.

■ valid—The valid signal qualifies valid data on any cycle where data is being 
transferred from the source to the sink. On each active cycle the data signal and 
other source to sink signals are sampled by the sink. 

maxChannel 0 0–255 The maximum number of channels that a data interface can 
support.

readyLatency 0 0–8
Defines the relationship between assertion and deassertion of 
the ready signal, and cycles which are considered to be ready 
for data transfer, separately for each interface.

Table 5–2. Avalon-ST Interface Properties (Part 2 of 2)

Property Name Default 
Value Legal Values Description

Figure 5–2. Typical Avalon-ST Interface Signals 
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5–6 Chapter 5: Avalon Streaming Interfaces
Data Layout
■ data—The data signal typically carries the bulk of the information being 
transferred from the source to the sink, and consists of one or more symbols being 
transferred on every clock cycle. The dataBitsPerSymbol parameter defines how 
the data signal is divided into symbols. 

■ error—Errors are signaled with the error signal, where each bit in error 
corresponds to a possible error condition. A value of 0 on any cycle indicates the 
data on that cycle is error-free. The action that a component takes when an error is 
detected is not defined by this specification.

■ channel—The optional channel signal is driven by the source to indicate the 
channel to which the data belongs. The meaning of channel for a given interface 
depends on the application: some applications use channel as a port number 
indication, while other applications use channel as a page number or timeslot 
indication. When the channel signal is used, all of the data transferred in each 
active cycle belongs to the same channel. The source may change to a different 
channel on successive active cycles.

An interface that uses the channel signal must define the maxChannel parameter to 
indicate the maximum channel number. If the number of channels that the 
interface supports varies while the component is operating, maxChannel is the 
maximum channel number that the interface can support.

5.8. Data Layout
Figure 5–3 shows a 64-bit data signal with dataBitsPerSymbol=16. Symbol 0 is the 
most significant symbol.

The timing diagram in Figure 5–4, provides a 32-bit example where 
dataBitsPerSymbol=8. 

Figure 5–3. Data Symbols

 symbol 0 symbol 3symbol 2symbol 1

63 48 47 32 31 16 15 0

Figure 5–4. Big Endian Layout of Data 
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Chapter 5: Avalon Streaming Interfaces 5–7
Data Transfer without Backpressure
5.9. Data Transfer without Backpressure
The data transfer without backpressure is the most basic of Avalon-ST data transfers. 
On any given clock cycle, the source interface drives the data and the optional 
channel and error signals, and asserts valid. The sink interface samples these signals 
on the rising edge of the reference clock if valid is asserted. Figure 5–5 shows an 
example of data transfer without backpressure.

5.10. Data Transfer with Backpressure 
The sink indicates to the source that it is ready for an active cycle by asserting ready 
for a single clock cycle. Cycles during which the sink is ready for data are called ready 
cycles. During a ready cycle, the source may assert valid and provide data to the sink. 
If it has no data to send, it deasserts valid and can drive data to any value. 

Each interface that supports backpressure defines the readyLatency parameter to 
indicate the number of cycles from the time that ready is asserted until valid data can 
be driven. If readyLatency has a nonzero value, the interface considers cycle <n + 
readyLatency> to be a ready cycle if ready is asserted on cycle <n>. Any interface 
that includes the ready signal and defines the readyLatency parameter supports 
backpressure. 

When readyLatency = 0, data is transferred only when ready and valid are asserted 
on the same cycle, which is called the ready cycle. In this mode of operation, the 
source does not receive the sink’s ready signal before it begins sending valid data. The 
source provides the data and asserts valid whenever it can and waits for the sink to 
capture the data and assert ready. The source can change the data it is providing at 
any time. The sink only captures input data from the source when ready and valid 
are both asserted.

Figure 5–5. Data Transfer without Backpressure
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5–8 Chapter 5: Avalon Streaming Interfaces
Data Transfer with Backpressure
When readyLatency >= 1, the sink asserts ready before the ready cycle itself. The 
source can respond during the appropriate cycle by asserting valid. It may not assert 
valid during a cycle that is not a ready cycle. Figure 5–6 illustrates an Avalon-ST 
interface where readyLatency = 4.

Figure 5–7 illustrates a transfer with backpressure and readyLatency=0. The source 
provides data and asserts valid on cycle 1, even though the sink is not ready. The 
source waits until cycle two, when the sink does assert ready, before moving onto the 
next data cycle. In cycle 3, the source drives data on the same cycle and the sink is 
ready to receive it; the transfer happens immediately. In cycle 4, the sink asserts ready, 
but the source does not drive valid data.

Figure 5–6. Avalon-ST Interface with readyLatency = 4
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Figure 5–7.  Transfer with Backpressure, readyLatency=0 
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Chapter 5: Avalon Streaming Interfaces 5–9
Packet Data Transfers
Figure 5–8 and Figure 5–9 show data transfers with readyLatency=1 and 
readyLatency=2, respectively. In both these cases, ready is asserted before the ready 
cycle, and the source responds 1 or 2 cycles later by providing data and asserting 
valid. When readyLatency is not 0, the source must deassert valid on non-ready 
cycles.

5.11. Packet Data Transfers
The packet transfer property adds support for transferring packets from a source 
interface to a sink interface. Three additional signals are defined to implement the 
packet transfer. Both the source and sink interfaces must include these additional 
signals to support packets. No automatic adaptation is provided to create connections 
between source and sink interfaces with and without packet support.

Figure 5–8. Transfer with Backpressure, readyLatency=1

Figure 5–9. Transfer with Backpressure, readyLatency=2
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Figure 5–10. Avalon-ST Packet Interface Signals
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5–10 Chapter 5: Avalon Streaming Interfaces
Signal Details
5.12. Signal Details
The following paragraphs provide more details about these three signals:

■ startofpacket—The startofpacket signal is required by all interfaces supporting 
packet transfers and marks the active cycle containing the start of the packet. This 
signal is only interpreted when valid is asserted. 

■ endofpacket—The endofpacket signal is required by all interfaces supporting 
packet transfer and marks the active cycle containing the end of the packet. This 
signal is only interpreted when valid is asserted. startofpacket and endofpacket 
can be asserted in the same cycle. No idle cycles are required between packets, so 
that the startofpacket signal can follow immediately after the previous 
endofpacket signal.

■ empty—The optional empty signal indicates the number of symbols that are empty 
during the cycles that mark the end of a packet. The sink only checks the value of 
the empty during active cycles that have endofpacket asserted. The empty symbols 
are always the last symbols in data, those carried by the low-order bits when 
firstSymbolInHighOrderBits = true. The empty signal is required on all packet 
interfaces whose data signal carries more than one symbol of data and have a 
variable length packet format. The size of the empty signal in bits is log2(<symbols 
per cycle>).

5.13. Protocol Details
Packet data transfer follows the same protocol as the typical data transfer described in 
“Typical Data Transfers” on page 5–5, with the addition of the startofpacket, 
endofpacket, and empty.

Figure 5–11 illustrates the transfer of a 17-byte packet from a source interface to a sink 
interface, where readyLatency=0. Data transfer occurs on cycles 1, 2, 4, 5, and 6, when 
both ready and valid are asserted. During cycle 1, startofpacket is asserted, and the 
first 4 bytes of packet are transferred. During cycle 6, endofpacket is asserted, and 
empty has a value of 3, indicating that this is the end of the packet and that 3 of the 4 
symbols are empty. In cycle 6, the high-order byte, data[31:24] drives valid data.

Figure 5–11. Packet Transfer
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6. Avalon Conduit Interfaces
Avalon Conduit interfaces are used to group together an arbitrary collection of signals 
to be exported to the next level of a hierarchical design or to the top level of a Qsys 
system. An Avalon Conduit interface can include input, output, and bidirectional 
signals. Directions, such as source and sink for Avalon-ST interfaces, or in and out for 
Avalon-MM masters and slaves, do not apply to Avalon Conduit interfaces. A module 
can have multiple Avalon Conduit interfaces to provide a logical grouping of the 
signals being exported. Table 6–1 illustrates this interface. 

In this figure, signals that interface to the SDRAM, such as address, data and control 
signals, form an Avalon Conduit interface and would have the signal role export. 

Figure 6–1. Focus on the Conduit Interface
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6–2 Chapter 6: Avalon Conduit Interfaces
Signals
6.1. Signals
Table 6–1 lists the conduit signal roles.

6.2. Properties
There are no properties for conduit interfaces. 

Table 6–1. Conduit Signal Roles

Signal Role Width Direction Description

export <n> In, out or 
bidirectional

A conduit interface consists of one or more signals of arbitrary width of direction 
input or output. Compatible Conduit interfaces can be connected inside the Qsys 
system, exported to the next level of the hierarchical design, or to the top-level of 
the Qsys system. 
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7. Avalon Tristate Conduit Interface
The Avalon Tristate Conduit Interface (Avalon-TC) is a point-to-point interface 
designed for on-chip controllers that drive off-chip components. This interface allows 
data, address, and control pins to be shared across multiple tristate devices. Sharing 
conserves pins in systems that have multiple external memory devices. 

The Avalon-TC restricts the more general Avalon Conduit Interface in two ways:

■ The Avalon-TC requires request and grant signals. These signals enable bus 
arbitration when multiple Tristate Conduit Masters (TCM) are requesting access to 
a shared bus.

■ The pin type of a signal must be specified using suffixes appended to a signal’s 
role. The three suffixes are: _out, _in, and _outen. Matching role prefixes identify 
signals are share the same I/O Pin. Figure 7–1 illustrates the naming conventions 
for Avalon-TC shared pins. 

Figure 7–2 illustrates pin sharing using Avalon-TC interfaces. This figure illustrates 
the following points.

■ The Tristate Conduit Pins Sharer includes separate Tristate Conduit Slave Interface 
for each Tristate Conduit Master. Each master and slave pair has its own request 
and grant signals.

■ The Tristate Conduit Pin Sharer identifies signals with identical roles, as tristate 
signals that share the same pin on the FPGA. In this example, the following signals 
are shared: addr_out, data_out, data_in, read_out, and write_out. 

■ The Tristate Conduit Pin Sharer drives a single bus including all of the shared 
signals to the Tristate Conduit Bridge. If the widths of shared signals differ, the 
Tristate Conduit Pin Sharer aligns them on their 0th bit and drives the higher-order 
pins to 0 whenever the smaller signal has control of the bus.

■ Signals that are not shared propagate directly through the Tristate Conduit Pin 
Sharer. In this example, the following signals are not shared: chipselect0_out, 
irq0_out, chipselect1_out, and irq1_out.

■ All Avalon-TC interfaces connected to the same Tristate Conduit Pin Sharer must 
be in the same clock domain.

Figure 7–1. Shared Pin Types
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7–2 Chapter 7: Avalon Tristate Conduit Interface
Figure 7–2 illustrates the typical use of Avalon-TC Master and Slave interfaces and 
signal naming.

f For more information about the Generic Tristate Controller and Tristate Conduit Pin 
Sharer, refer to the Avalon Tristate Conduit Components User Guide and the Qsys 
Interconnect chapter in volume 1 of the Quartus II Handbook.

Figure 7–2. Tristate Conduit Interfaces 
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Chapter 7: Avalon Tristate Conduit Interface 7–3
Tristate Conduit Signals
7.1. Tristate Conduit Signals
Table 7–1 lists the signal defined for the Avalon-TC interface. All Avalon-TC signals 
apply to both masters and slaves and have the same meaning for both

7.2. Tristate Conduit Properties
There are no special properties for the Avalon-TC Interface.

7.3. Tristate Conduit Timing
Figure 7–3 illustrates arbitration timing for the Tristate Conduit Pin Sharer. As this 
figure illustrates, a device can drive or receive valid data in the granted cycle. 
Figure 7–3 shows the following sequence of events:

1. In cycle one, the tristate conduit master asserts grant. The granted slave drives 
valid data in cycles one and two.

2. In cycle 4, the tristate conduit master asserts grant. The granted slave drives valid 
data in cycles 4–7.

Table 7–1. Tristate Conduit Interface Signal Roles

Signal Role Width Direction Required Description

request 1 Master → 
Slave Yes

The meaning of request depends on the state of the grant 
signal, as the following rules dictate.

1. When request is asserted and grant is deasserted, 
request is requesting access for the current cycle.

2. When request is asserted and grant is asserted, request 
is requesting access for the next cycle; consequently, 
request should be deasserted on the final cycle of an 
access. 

Because request is deasserted in the last cycle of a bus access, 
it can be reasserted immediately following the final cycle of a 
transfer, making both rearbitration and continuous bus access 
possible if no other masters are requesting access. 

Once asserted, request must remain asserted until granted; 
consequently, the shortest bus access is 2 cycles. Refer to 
Figure 7–3 on page 7–4 for an example of arbitration timing.

grant 1 Slave → 
Master Yes

When asserted, indicates that a tristate conduit master has been 
granted access to perform transactions. grant is asserted in 
response to the request signal and remains asserted until 1 
cycle following the deassertion of request. 

The design of the Avalon-TC Interface does not allow a default 
Avalon-TC master to be granted when no masters are 
requesting. 

<name>_in 1–1024 Slave → 
Master No The input signal of a logical tristate signal.

<name>_out 1–1024 Master → 
Slave No The output signal of a logical tristate signal.

<name>_outen 1 Master → 
Slave No The output enable for a logical tristate signal.
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7–4 Chapter 7: Avalon Tristate Conduit Interface
Tristate Conduit Timing
3. In cycle 8, the tristate conduit master asserts grant. The granted slave drives valid 
data in cycles 8–16.

4. Cycle 3 is the only cycle that does not contain valid data.

Figure 7–3. Arbitration Timing
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Additional Information
This chapter provides additional information about the document and Altera.

Document Revision History
The following table shows the revision history for this document.

How to Contact Altera
To locate the most up-to-date information about Altera products, refer to the 
following table.

Typographic Conventions
The following table shows the typographic conventions this document uses.

Date Version Changes

May 2011 1.0 Initial release of the Avalon Interface Specifications supported by Qsys.

Contact (1) Contact Method Address

Technical support Website www.altera.com/support

Technical training
Website www.altera.com/training

Email custrain@altera.com

Product literature Website www.altera.com/literature

Non-technical support (General) Email nacomp@altera.com

(Software Licensing) Email authorization@altera.com

Note to Table:

(1) You can also contact your local Altera sales office or sales representative. 

Visual Cue Meaning

Bold Type with Initial Capital 
Letters

Indicate command names, dialog box titles, dialog box options, and other GUI 
labels. For example, Save As dialog box. For GUI elements, capitalization matches 
the GUI.

bold type
Indicates directory names, project names, disk drive names, file names, file name 
extensions, software utility names, and GUI labels. For example, \qdesigns 
directory, D: drive, and chiptrip.gdf file.

Italic Type with Initial Capital Letters Indicate document titles. For example, Stratix IV Design Guidelines.

italic type
Indicates variables. For example, n + 1.

Variable names are enclosed in angle brackets (< >). For example, <file name> and 
<project name>.pof file. 

Initial Capital Letters Indicate keyboard keys and menu names. For example, the Delete key and the 
Options menu. 
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 Info–2 Additional Information
Typographic Conventions
“Subheading Title” Quotation marks indicate references to sections within a document and titles of 
Quartus II Help topics. For example, “Typographic Conventions.”

Courier type

Indicates signal, port, register, bit, block, and primitive names. For example, data1, 
tdi, and input. The suffix n denotes an active-low signal. For example, reset_n.

Indicates command line commands and anything that must be typed exactly as it 
appears. For example, c:\qdesigns\tutorial\chiptrip.gdf. 

Also indicates sections of an actual file, such as a Report File, references to parts of 
files (for example, the AHDL keyword SUBDESIGN), and logic function names (for 
example, TRI). 

r An angled arrow instructs you to press the Enter key.

1., 2., 3., and
a., b., c., and so on

Numbered steps indicate a list of items when the sequence of the items is important, 
such as the steps listed in a procedure. 

■ ■ ■ Bullets indicate a list of items when the sequence of the items is not important. 

1 The hand points to information that requires special attention. 

h A question mark directs you to a software help system with related information. 

f The feet direct you to another document or website with related information. 

c A caution calls attention to a condition or possible situation that can damage or 
destroy the product or your work.

w A warning calls attention to a condition or possible situation that can cause you 
injury.

The envelope links to the Email Subscription Management Center page of the Altera 
website, where you can sign up to receive update notifications for Altera documents.

Visual Cue Meaning
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