LCD Backgrounds:
Image Creation Using FPGA Logic

Version 2.3 September 13, 2025

Textbook for the Course

Logic Systems and Processors

Richard Susta

Department of Control
Engineering

CTU-FEE in Prague

Home page of this document and LCD source code: https://dcenet.fel.cvut.cz/edu/fpga/guides.aspx

GHDL installation manual: https://dcenet.fel.cvut.cz/edu/fpga/install en.aspx
FPGA-LCD Tools mentioned here: https://github.com/cvut/FPGA-LCD Utils

Copyright (c) 2024, 2025, Richard Susta.
Permission is granted to copy and distribute this document

under the terms of the GNU Free Documentation License, Version 1.3

or any later version published by the Free Software Foundation;

with no Invariant Sections, no Front-Cover Texts, and no Back-Cover Texts.

Author: Richard Susta, richard@susta.cz, https://susta.cz/
Figures: Richard Susta
Publisher: Department of Control Engineering CTU-FEE in Prague,

Technicka 2, 166 00 Prague 6
https://control.fel.cvut.cz/en

Datum of issue: September 2025

https://dcenet.fel.cvut.cz/edu/fpga/guides.aspx
https://dcenet.fel.cvut.cz/edu/fpga/install_en.aspx
https://github.com/cvut/FPGA-LCD_Utils
https://www.gnu.org/licenses/fdl-1.3.en.html#license-text
mailto:richard@susta.cz
https://susta.cz/
https://control.fel.cvut.cz/en

Contents

INEFOTUCTION <.ttt sttt s e e st e e sab e e ab e e e st e e e st e e s st e e eabbeeeabbeeeabeeesabeeesaneeesaseeaans 3
(K010 ol | oW) K3 =T] o o U 4
LCDpackV2.vhd — definition [IDrary ...ttt ee e st e e s e saaae e e s sanae e e snanenes 4
VeekMT2_LCDgenV2 — Synchronization GENEIrator......cuiiiiiiiiieiiiiiee ettt e e s sae e e s saee e e e saaeee s 5
VeekMT2_LCDregV2 — sending COIOr 0 LCD .. .iiiiiuiiiiiiiiiieeeeiieee e sttee et e st e e e iaae e s e saaa e e s snaaeeeennaaaaee s 5
LCDIlogicO — the image draWing CIFCUITuuiiiiiiiieie ittt e e e s e e s s sare e e s s ssrae e e e saaeeeesnanenes 6
File testbenChV2_LCDIOZIC.VNGcooei i e e e e e e e e e st e e e e e e e e e nnnaaaeeeeeeeeas 6

[l o [CR oo o [o1 o] o 47/ o TSR 7
The rUNICA. DAL FIlE ...ttt e et e et e s bt e e s be e e s bt e e sabeeesaneeenas 8
RUNNING the GHDL SIMUIGTION ..eviiiiiiiiii et e e s et e e e e sbae e e e snbeeeesnnneeeesnnns 9
(601 [0 g - o LT T PP OPPPPPP 10
Templates With STraiGNt NES.......eeee i e e e e e e e s e e e e e e e s s e nntrnrnneeeeeens 11
o TSI =T g Y o1 - 1 =3RS 15
Question: Why didn't we use the conditional assignment as When - €lS€?cccccvevieecreeiieccieecie e, 17
Pattern generator using diviSion by POWEIS Of 2....cciuiiiiiieiiie e 18
Repeated shapes generated DY @ COUNTENciii i s e e e srae e e e e nnanes 21
Inserting an image from FPGA ROM MEMOIYuuiiiiiiiiieeeeieeeeecite e e e eette e e e esataee e e e iaseeeeseasaeeesnnsaeeessssaeeesnnnsens 23
BItMQAP CONVEISION ..ttt s 24
How is @an image read from MEMOIY ... ettt e e s e e s st e e e s sbaeeeessbeeeesennnaeeeennes 27
VHDL code with images inserted from MEMOIYoiiiiiiiiie e e e e saaes 28

Introduction

Configurable logic elements, the main components of FPGA circuits, can create some images more
efficiently than when loading them from BMP, JPEG, or PNG files. On the other hand, these file formats
store many more scenes better. However, if we are drawing the background of our LCD control panel, it is
entirely up to us how we design it. We can therefore compose it from shapes in which logic excels.

The image below shows an example of background of 800x480 pixels, which would be stored in a 33,817-
byte JPEG file at 80% quality or in a lossless compressed 7,384-byte PNG (Portable Network Graphics) file,
whose methods are more refined for graphics with repeating motifs.

Figure 1 - Example of an LCD background created by logic

When the background is implemented using logic, it only requires 339 LE (logic elements). One LE stores 2
bytes, so it took up the equivalent of approximately 680 bytes. In addition, it needs another 4096 bytes of
ROM memory to create symbols with 0 and 1 digits. In total, the background created by logic consumed
the equivalent of approximately 4800 bytes, or roughly 2/3 of the size of a PNG file.

However, saving a third is not the decisive factor here. PNG and JPEG images are not encoded as
continuous arrays of pixels. Their decompression involves several steps, in which various parts of the
bitmap are filled in and rewritten, so the entire bitmap must be stored in memory. The test background in
the figure above would require an additional 240 kilobytes of FPGA memory for its depacking, even with
economical encoding colors as four-bit indexes into a palette. In total, it takes up 51 times more than the
logic needs. And decompressing the image will slow down the processor on which its complex algorithm
must be implemented.

In addition, the logical solution sends pixels as a stream of bits, which is precisely how an LCD panel works.
We can transfer them directly to the panel.

For completeness, we must mention RLE (Run-Length Encoding), the sub-step of JPEG compression that

can be easily implemented in hardware and output stream of bits as the LCD requires. Optimal RLE
compression of the image above uses almost 36 kilobytes. Of course, we can apply the RLE method only to
parts of our image if we have enough free space in the FPGA. And our assignment allows it! The future

version V3.0 of the FPGA Utils will offer an option for converting an image to RLE.

However, RLE compression lacks any possibility of changes. The RLE reader can only display the image. If
we create a motif using logic, we can dynamically modify it according to the input data.

We have created templates of graphic motifs together with VHDL codes that render them as inspiration,
demonstrating some logic possibilities. All of them have been tested on the Veek-MT2 development board
from Terasic, but they can also be adapted for other FPGAs and their boards.

https://en.wikipedia.org/wiki/Run-length_encoding
https://dcenet.fel.cvut.cz/edu/fpga/veek-mt2.aspx
https://www.terasic.com.tw/cgi-bin/page/archive.pl?Language=English&CategoryNo=165&No=1020#contents

LCD circuits version 2

Image creation was tested in the Quartus Lite development environment. The middle entity in the schema
below, LCDlogic0, is analogous to drawing. It obtains synchronization signals and coordinates of pixels from
the generator. It assigns a color to each coordinate and sends it to the register connected to the LCD panel.

50 MHz (e

xoolumn[S..0] RGEGokor23. 0 s

yrow[3..0]
KEND_N
WEND_N

o _{LcD_DE
xcoluminfS..0]
e —{ LCO_DCLK
yrow(3..0] : G (g™ §
XEND_N — LiDkge
YEND_N — et F:GBolor[23..0] LCD_RT..0] s
LCD_DE }— L LCD_DE_in -

LCD_B[7..0]
LCD_B[7..0]
LCD_DCLK
LCD_DE
LCD_DIM
LCD_DITH
LCD_MODE
LCD_POWER_CTL
LCD_RSTE | —
LCD_SHLR {—
LCD_UFDN
LCD_HSD
LCO_vSD

LED_DCLK —
CLRN

LCD_DICLK_in
CLRN

Figure 2 - Basic circuit for image creation
Note 1: This document has an attachment with sample code containing all three circuits in VHDL, namely
VeekMT2_LCDgenV2, VeekMT2_LCDregV2, and the default LCDlogicO.
Note 2: The proposed schema works similarly to processor pipelines, where the clocks time their stages. The
synchronization generator sends the coordinates x and y of a current pixel. In the next stage, this pixel is
assigned a color in LCDlogic0. The color is loaded into the register and sent to the LCD panel. In the
meantime, the two previous stages have already been completed for the next pixels.

Clocks 1: VeekMT2_LCDgenV2 2: LCDlogic0 3: VeekMT2_LCDregV2
Power-Up - -
Clock 1 Pixel coordinates [x,y]=[0,0] -
Clock 2 Pixel coordinates [x,y]=[1,0] assigns the color [0,0] -
Clock 3 Pixel coordinates [x,y]=[2,0] assigns color [1,0] Color [0,0]— LCD
Clock 4 Pixel coordinates [x,y]=[3,0] assigns color [2,0] Color [1,0]— n LCD

LCDpackV2.vhd - definition library

LCDpackV2.vhd is the VHDL package. This document supposes its version 2.1, or higher with additional
definitions. It is in its header, and V2.1 is upward compatible with V2.0. The package defines constants and
functions for LCD panel geometry and converting colors. It is referenced in all subsequent VHDL codes.

Its main definitions:

constant LCD_WIDTH : integer := 800;

constant LCD_HEIGHT : integer := 480;
constant XCOLUMN_MAX : integer :=1023;
constant YROW_MAX :integer := 524;
subtype xy_tis unsigned(9 downto 0);

constant XY_ZERO : xy_t := (others=>'0");
subtype RGB_t is std_logic_vector(23 downto 0);
function ToRGB4r, g, b:natural) return RGB_t;

-- + color constants for 16 named web colors, aka (i.e., also known as) 16 Windows colors:
- AQUA, BLACK, BLUE, GRAY, GREEN, LIME, OLIVE, MAROON,

- NAVY, PURPLE, RED, SILVER, TEAL, VIOLET, WHITE, YELLOW

Note: Packages are explained in CircuitDesignWithVHDL dataflow and structural eng V10.pdf,
Chapter 7, pages 58 to 62.

-- the visible part of LCD screen, the xcolumn axis
-- the visible part of LCD screen, the yrow axis

-- max. xcolumn lies in invisible part

-- max. yrow lies in invisible part

--xcolumn and yrow data sent by LCDgenV?2

-- R G B color, R:23..16, G:15..8, B:7..0

https://dcenet.fel.cvut.cz/edu/fpga/doc/CircuitDesignWithVHDL_dataflow_and_structural_eng_V10.pdf#page=55

VeekKMT2_LCDgenV2 — Synchronization Generator

The VeekMT2_LCDgenV2 generator contains a pair of counters and comparators for their values. It has a
simple connection, which mainly follows the timing according to the hardware specifications in the LCD
panel manufacturer's catalog.

We would write an analogy of the generator in C using two cycles:
unsigned short int xcolumn, yrow;
unsigned int color; bool LCD _DE, XEND_N, YEND_N;
for (yrow = @; yrow < 525; yrow++)
{ for (xcolumn = @; xcolumn <1024; xcolumn++)

{ LCD_DE = xcolumn>=800 || yrow>=480 ? 0 : 1;
XEND_N = xcolumn==1023 ? @ : 1; YEND_N = yrow==524 ? @ : 1;
color = LCDlogic®(xcolumn, yrow, XEND_N, YEND_N, LCD_DE);
} // In hardware, LCDlogicO function is created by logic
}
Input

» CLOCK_50 - 50 MHz frequency input from the pin of the same name on the development board. The
generator must be connected directly to it without any logic inserted, as required by the PLL (Phase-
locked loop), which is embedded in it and changes the frequency from 50 Hz to 33 MHz. All
electronics operating at higher frequencies usually contain some PLLSs, and by adjusting their
parameters, it is possible to overclock processors or graphics cards, for example.

» ACLRN — initialization after power-on. On the VEEK-MT2 board, it is connected to KEY[0].

KEY[0]

W= =

CLOCK_50
CLRN

)
s

YEND_N

o
s

i A A U Iy

[l

2
Uz

KEY[0]
CLOCK_50
CLRN

Uy UUUL

ERerr= a1 0 I A o A e O R S 1 e e 6 W 0 B
oo LCD_DE o LCD_DE
4 yeolumn B 5 xeolumn
> yrow 2 2o yrow 2 3
24 > ReBeolor 000000 FFFEOD 2 > RGBeolor 006400 000000
24 XEND_N o4 XEND_N [E

4 YEND_N

Figure 3 - Simulation of LCDgenV2 output

VeekMT2_LCDregV2 — sending color to LCD

At the rising edge of LCD_DCLK, the register stores the color assigned by the LCDlogic0 circuit. Its outputs
are connected to the large rear LCD of the Veek-MT2 board. The register also crops the image so that
LCD_R, LCD_G, and LCD_B outputs are at 0 (black) when LCD_DE='0', as the LCD panel requires.

Note: The output pins of VeekMT2_LCDregister were generated automatically in the *.bdf schematic via the
context menu of its symbol by selecting Generate Pins for Symbol Ports.

1=}
¥ 0
g
7 2

{ Fitin Window

Lo o

< Fit Selection in Window

Cirl+Alt+wW

Cirl+Shift+w

‘Generate Pins for Symbol Ports
Fdit Selected Symhol

LCDreg

Figure 4 - Generate Pins for Symbol Ports

https://en.wikipedia.org/wiki/Phase-locked_loop
https://en.wikipedia.org/wiki/Phase-locked_loop

LCDlogicO — the image drawing circuit

LCDlogic receives the unsigned xcolumn and yrow coordinates from the LCD synchronization generator,
with the x and y axes orientations corresponding to Windows graphics.

It contains combinational logic that assigns an the RGBcolor variable for the current x, y pixel. Its prototype,
LCDlogic0, can be found in the ZIP file along with the generator and register.

0 xcolumn 1023=XCOLUMN_MAX

:'T"

!

|
iLCD_HEIGHT
I =480px

LCDlogic0

= xcolumn[9..0] RGBcolor[23..0] T
= yrow[9..0]
—— XEND_N
— YEND_N
— LCD_DE
— LCD_DCLK

Figure 5 - LCDlogic combination circuit

Figure 6 - Dimensions of the touchscreen LCD

LCDlogic inputs
xcolumn, yrow - 10-bit pixel coordinate signals have the unsigned type xy_t introduced in the
LCDpackV2.vhd package, which defines the other constants listed below.
The xcolumn column varies from 0 to 1023=XCOLUMN_MAX, but the visible image only lies in the
range 0 to 799=LCD_WIDTH-1.
The yrow row varies from 0 to 524=YROW_MAX, but the visible part will only be in the range
0to 479=LCD_HEIGHT-1.
XEND_N is logical '0' when xcolumn=1023; otherwise '1'. It signals the last column.
It has a frequency of 32.2 kHz= 33 MHz/1024 = 33 MHz/(XCOLUMN_MAX+1)
YEND_N is logical '0' when yrow=524, otherwise '1'. It signals the last line of the frame.
...It has a frequency of 61.4 Hz= 33 MHz/(1024*525)=33 MHz/((XCOLUMN_MAX+1)*(YROW_MAX+1))
LCD_DE is the LCD Data Enable synchronization signal. On LCD_DE="1', pixels belonging to the visible
area are sent. In columns 800 to 1023 and rows 480 to 524, i.e., outside the visible region, the
signal LCD_DE='0". The LCD needs these invisible parts to write the image row and prepare to
receive the following row or frame. The manufacturer's manual defines intervals in which LCD_DE
must remain '0' and the color must be black. VeekMT2_LCDregister performs this cropping.
LCD_DCLK — LCD Data Clock has a frequency of exactly 33 MHz, with a duty cycle of 50%.

Output
RGBcolor - 24-bit std_logic_vector with 8-bit RGB color values. The R color is in the upper eight bits, and
the B color is in the lower eight. Note: RGB is without an alpha channel with opacity information. LCDs
do not generally know transparency. Opacities are only used during graphic processing. Its results are
without the alpha channel.

File testbenchV2_LCDlogic.vhd

The module simulates drawing and saves pixel colors in compressed form to a text file that can be loaded
from Testbench Viewer from FPGA-LCD Utils to display the created LCD image.

The testbench contains its own synchronization generator in an optimized form for simulation and also its
own register. Only LCDlogic* is inserted into it.

https://github.com/cvut/FPGA-LCD_Utils

The code prototype

We will start by specifying the inputs and outputs using types from LCDpackV2. We suppose its version 2.1
and higher that contains assignlf functions.

LCDlogicO We will use the following definitions from the LCDpackV2 package:
I [OREATT subtype xy._tis unsigned(9 downto 0); -for data xcolumn and yrow
i i:i': constant XY_ZERO : xy_t := (others=>"0");
T ceonoou subtype RGB_t is std_logic_vector(23 downto 0); - R G B color, R:23.16, G:15..8, B:7..0

Let's write the entity and architecture:

library ieee, work; use ieee.std_logic_1164.all; use ieee.numeric_std.all; -- for integer and unsigned types
use work.LCDpackV2.all;
entity LCDlogic0 is
port(xcolumn, yrow :in xy_t :=XY_ZERO; -- x, y-coordinates of pixel (column, row indexes)
XEND_N :in std_logic :='0"; -- ‘0" only when xcolumn=XCOLUMN_MAX, otherwise '1; frequency
-- 32,2 kHz = LCD_DCKL/1024 = LCD_DCKL/(XCOLUMN_MAX+1)
YEND_N :in std_logic :='0"; --'0" only when yrow=YROW_MAX, otherwise '1'; frequency
61,4 Hz =LCD_DCKL/(1024*525) = LCD_DCKL/((XCOLUMN_MAX+1)*(YROW_MAX+1))
LCD_DE :in std_logic :='0"; -- DataEnable indicates the visible part of LCD
LCD_DCLK :in std_logic :='0"; -- 33 MHz exactly; LCD data clock
RGBcolor : out RGB_t); -- defined in LCDpackV2; RGB_t = std_logic_vector(23 downto 0)
end entity;

architecture behavioral of LCDlogic0 is
constant DARKBLUE: RGB_t := ToRGB(0, 0, 139); -- = X"00008B", adding the color not defined in LCDpackV/2
begin -- architecture

LSPimage : process(xcolumn, yrow, LCD_DE)

variable RGB :RGB_t :=BLACK; -- the color of pixel

variable x : integer range 0 to XCOLUMN_MAX:=0;

variable y : integer range 0 to YROW_MAX:=0;

begin -- process
x := to_integer(xcolumn); y := to_integer(yrow); -- we convert unsigned inputs to integers
---------- our image
RGB :=DARKBLUE;

RGBcolor <= RGB; -- assigning the output signal
end process;
end architecture;

Important notes:

1. Keep naming thinity, otherwise the code will become uncompileable. The file LCDlogic0.vhd contains
the entity LCDlogic0 with the behavioral architecture for LCDlogic0. The behavioral identifier is a local
name, valid only within the entity. It can be used again in another entity.

2. The entity also contains inputs not yet referenced to increase its versatility. The compiler will omit
everything unused during minimization. However, if we need another input in the future, we have it
available and do not need to add it to the entity and regenerate its schematic symbol.

3. The initialization of signal and variable values in definitions is mainly for simulation. Synthesis is only
performed for constant definitions or local variables in functions and procedures.

The process needs initialization with an assignment statement in its main code.

4. The keyword process opens the VHDL sequential domain. LSPimage is an optional flag. It cannot be
referenced in synthesis, but we will see it as a reference in simulation.

5. The lists in parentheses after the keyword process are not parameters, but a "sensitivity list" that lists
signals whose changes can cause changes in its outputs. It is required for simulations!

7

The runlcd.bat file

The runlcd.bat batch file contains scripting shell language commands and is similar to runmorse.bat
described in the DCENET manual: Installing and using the GHDL language, page 7. But it does not generate

output for GtkWave, so the --vcd parameter is missing in "ghdl.exe -r".The result is displayed in the
Testbench Viewer from FPGA-LCD Utils.

@ECHO OFF

rem SETLOCAL — the following definitions will be canceled after the batch ends. IMPORTANT, never omit!
SETLOCAL

rem The testbench file name must be without extension, because its name is also used for other components
set TBNAME=testbenchV2_LCDlogic

rem Files have extensions and relative paths to the parent directory. List them in the correct order of compilation!
set FILES=../LCDpackV2.vhd ../LCDlogic@.vhd

rem Simulation runtime in its time.

set SIMTIME=20ms

rem Move mingw64 to the top of PATH, which will only be temporary thanks to SETLOCAL

rem GHDL is compiled for VHDL-2008

set GHDL_FLAGS=-fsynopsys --std=08

@ECHO ON

ghdl.exe -a %GHDL_FLAGS% %FILES% ../%TBNAME%.vhd

@IF ERRORLEVEL 1 GOTO BAT-END

ghdl.exe -e %GHDL_FLAGS% %TBNAME%

@IF ERRORLEVEL 1 GOTO BAT-END

ghdl.exe -r %GHDL_FLAGS% %TBNAME% --stop-time=%SIMTIME%
:BAT-END

Its commands are explained in more detail:
ECHO OFF - executed commands are not displayed during processing of this *.bat file.
When ON, commands that do not start with the @ sign are displayed.
SETLOCAL - runs environment variable localization. Changes are valid until the batch file's end or the
corresponding ENDLOCAL command. Without SETLOCAL, they would be permanent!
rem - the following text is a comment until the end of the line.
set TBNAME — testbench entity, only its name, without extension or path.
The parameter set is referenced as %its_name%, e.g., % TBNAME%.
set FILES= — file(s) from which the circuit is assembled. Spaces separate them and must be listed in
the order of their compilation! Do not add a synchronization generator and register — the
testbench has them.
set SIMTIME — the simulation should run for 16.6 ms, its internal time, then stop automatically. If it
does not, there is an error somewhere, and the stop will be forced after 20 milliseconds.
set PATH — we only temporarily move the path to mingw64 to the beginning due to previous SETLOCAL
set GHDL_FLAGS — enable VHDL 2008 support. GHDL can handle almost all of it.
ghdl.exe -a — analyzes VHDL files. In its command line, FILES must precede the TBNAME.
IF ERRORLEVEL 1 GOTO BAT-END - jumps to the end if the previous command ended with an error.
ghdl.exe -e - creates a circuit simulation in the TBNAME . exe file
ghdl.exe -r — runs TBNAME.exe

Note: If we want to simulate a different VHDL file, we change the commands
set FILES= and, if necessary, set TBNAME if we are using a different testbench

8

https://dcenet.fel.cvut.cz/edu/fpga/install/GHDL_InstallOnWindows.pdf#page=7

Running the GHDL simulation
GHDL allows faster debugging. The Demo project contains runlcd.bat, which was intentionally placed in the
simulation subdirectory so that all temporary files created by GHDL remain there.

First, open the project folder in the free VSC application, commonly known as Visual Studio Code. Then

create a new terminal.

> File Edit Selection Vie Ge Run Terminal Helf ><| File Edit Selection View Go Run Terminal Help
<« v 1 <« 5PS » VeekMT2_Quartus20_LCD
Organize v MNew folder

Mame

v 3 Quick access
[I PSS st

In the terminal, enter two Windows PowerShell commands:

PS C:\SPS\VeekMT2_Quartus20_LCD> cd .\simulation\

PS C:\SPS\VeekMT2_Quartus20_LCD\simulation> .\runlcd.bat
You can type cd and press the tab key, and VSC will complete the command. Similarly, after typing ./r, you
can use the tab key to complete the rest. The simulation will list the commands executed and successfully
terminate with the message:

:-) OK end of SINGLE frame simulation.

\testbenchv2_Icdlogic.exe:error: assertion failed in process .testbenchv2_Icdlogic(testbench).stimuls

\testbenchv2_Icdlogic.exe:error: simulation failed

PS C:\SPS\VeekMT2_Quartus20_LCD\simulation>
We ignore the "error" messages after :-) OK end. Paradoxically, reporting an fatal error that everything is
OK:-), is the way to stop the simulation in VHDL.
The testbench result can be viewed using the Testbench Viewer for FPGA LCD Utils.
In the prototype code (page 7), we have assigned a dark blue color to all pixels in visible and invisible
areas, which can be sometimes confusing if we switch the Testbench Viewer to full-screen mode, as shown
in the images below. For better orientation, you can add clipping with the if command.

The register does the clipping, so inserting it into LCDlogic is unnecessary, but we can do so for our own
orientation. The following codes will be without it.

------------------------ our image ~omomeenenenneoeoeone- OUF IMAge
_ RGB color<= DARKBLUE;
RGB color<= DARKBLUE, if LCD_DE = '0'then RGBcolor <= BLACK: end if:

@ viewer of LCD Testbench V3.3 - C:\SPS\testbenchLCD.txt - O X

4 Viewer of LCD Testbench V3.3 - C:\SPS\testbenchLCD. bt - m} X File Show Zoom Help

File | Show | Zoom Help Auto ¥ | Reload | Zoom [100% 100° Xy [007 163 RGB |0x0000% (0.0,139.0ekBue) DE=1 D] =
Autofy Visible 800430 pixels [070.000 RGB [B00008 (0.0, 139 DakBoe J[DE="; 5| = | END_N
Ly

hole frame 1024x525 pixels
Wait 2 s for Complete frame

Always show last frame

c - YEND_N C
Figure 8- Cropped
+ highlighted positions XEND_N and YEND_N

Figure 7- All pixels are dark blue

https://code.visualstudio.com/

Color table

A handy table of colors organized by shade can be found on Reddit. Web hexadecimal codes are written
with X in VHDL. For example, maroon color #800000 is written in VHDL as X"800000" or using the
conversion function TORGB(128, 0, 0).

Note: There are many hexadecimal formats, see the Wiki overview:; Distinguishing from decimal

HEXADECIMAL COLOR CODES

o

[marcon [T #00FFFF | | beige #FSF5DC
[darkred [N #00FFFF | | bisque #FFE4CA
brown #A52A2A | | light cyan #EOFFFF | | blanched almond #FFEBCD
firebrick #822222 #00CED1 | | wheat #FSDEB3
urquoise #40E0D0 | | com silk HFFF8DC

#48D1CC | lemon chiffon #FFFACD

| pale turquoise #AFEEEE | light golden rod yellow #FAFAD2

| aqua marine #7FFFD4 | | light yellow #FFFFEO

| powder blue #BOEOEG addle bro #8B4513

adet blue #5FIEAQ #A0522D

#CD853F

| sandy brown 1| _#Fands0

dodger blue #1E9OFF #DEB887

| tight blue #ADDSE6 , #D2B48C

| orange #FFA500 | | sky biue #87CEEB #BCBF8F
| gold #FFD700 | | light'sky bive #87CEFA | | moccasin #FFE4B5
dark golden rod #B8B60B b #191970 | | navajo white #FFDEAD
#oars20 | IEESEE :cocos0 | | peach puft #FFDABY

#eeesan | FETTTSEE :o000ss | | misty rose HFFE4E1

7| #soe7e | AT :o0ococD | | tavender blush H#FFFOF5

#roeesc | [N :oooorF | | tinen #FAFOES

| old lace #FDF5E6

T c/25c2 | | papaya whip #FFEFD5

I /50052 || seashel #FFFSEE

dark slate biue #48308B | | mint cream #FSFFFA

olive drab #6BBE23 slate blue #6A5ACD ate gra #708090

| tawn green | #7cFcoo ght slate gra #778899
| chart reuse #7FFF00 | light steel biue | #Boc4pE
| green yellow #aoFF2F | [T 550088 | | lavender HEGEGFA
d #006400 | FEISSUI 020003 | | fioral white H#FFFAFQ
IEES 00500 | | aiice biue HFOFBFF
| grost hie serare
|| #o0FFo0 | p #800080 | | honeydew H#FOFFFO
#32cD32 | | thistle #D8BFD8 | | ivory H#FFFFFO

| light green #90EEQ0 | | piiim #DDAODD | | azure H#FOFFFF
| pale green #osFBos | | iclet! | #EE82EE | | snow #FFFAFA
dark sea gree #BFBCBF #FFOOFF #000000

[#o0Faon | |GGG #0A7006 |
; | #OOFF7F medium violet red #C71585
pale violet red #DB7093 I | #A9A9A9
DT #eocoaa | [IEEERERI ri093 | | silver #C0COCO
#FFeoBa | | light gray / light grey #D3D3D3
| tight pink #FFB6C1 | | gainsboro #DCDCDC
dark slate gray HOFAF4F | pink #FFCOCB | | white smoke #F5F5F5
teal #008080 | | antique white #FAEBD7 | | white #FFFFFF
| darkoen SN

Figure 9 - Table of named colors taken from Reddit

10

https://www.reddit.com/r/coolguides/comments/k0q8lu/color_names_with_hex_codes/
https://en.wikipedia.org/wiki/Hexadecimal#Distinguishing_from_decimal
https://en.wikipedia.org/wiki/Hexadecimal#Distinguishing_from_decimal
file:///C:/Users/susta/AppData/Roaming/Microsoft/Word/ToRGB(0,%200,%20139)

Templates with straight lines

The equation of a straight line passing through two different points can be derived by direct proportion.
However, the hardware implementation of a straight line requires integer coefficients. It leads to a simpler
circuit if the greatest common divisor gdc exceeds 1 and reduces the slope fraction to smaller numbers.
x1 x2 LCD x-axis
T

<
-

<
N

Exactly one line passes trought two points (x1, y1) # (x2, y2)
(y2 -y1)(x -x1) = (x2 - x1)(y - y1) [direct proportion |
AY(X -x1) - AX(y -y1) =0; AX =x2-x1 AY =y2-y1
AY x-AXy =Q Q=AY x1 - AX y1

LCD y-axis

Figure 10 - Derivation of the equation of a straight line

The equations of straight lines (and also ellipses) can be found, for example, using the LCD Geometry Rulers
in FPGA-LCD Utils, which are very similar to the well-known Geodebra tool, but adapted to integer results
and the coordinate system of LCDs, in which the y-axis runs from top to bottom for historical reasons.

architecture behavioral of LCDlogic0 is Result
constant DARKBLUE: RGB_t := ToRGB(0, 0, 139);

begin -- architecture

LSPimage : process(xcolumn, yrow, LCD_DE) vsC

@ Viewer of LCD Testbench V3.3 - C:\SPS\testbenchLCD.bxt = =] *

variable RGB :RGB_t :=BLACK; -- the color of xy-pixel
variable x : integer range 0 to XCOLUMN_MAX:=0;

variable y : integer range 0 to YROW_MAX:=0; e
begin x:=to_integer(xcolumn); y := to_integer(yrow);
---------- our image

RGB :=DARKBLUE;

RGBcolor <= RGB; -- assigning the output signal
end process;
end architecture;

In the following codes, the lines in the "our image" section change only.

We will also prefer several separate if-then statements. The ifs of higher priority assignments are placed after
those with lower priority. We consider this style more comprehensible than long cascades of if-elsif-elsif...
statements. Quartus implements separate if-then just as effectively as a cascade of if-elsif-elsif. Tested.

And code typos are more frequent in cascades of if-elsif-elsif than in multiple separated if-then. Also verified by
many of our students ©

---------- our image
RGB:= DARKBLUE; -- default value !!! REQUIRED !!!
if x< LCD_WIDTH/2 then RGB:=GREEN; end if;

-- INCORRECT code without assigning the default value for RBG & Checker of VEEK-MT2 Project (A
---------- our image File

if x< LCD_WIDTH/2 then RGB:=GREEN; end if; "3 ToDo Gusnus Poeet | I Lag
---------- LATCH in our code, RGB is not always assigned in the process code Type | Code [Ny
—-Compiler:Info (10041): Inferred latch for LSPimage:RGB ecloved WARNINGAATER 21

11

https://github.com/cvut/FPGA-LCD_Utils
https://www.geogebra.org/classic?lang=en

---------- our image
RGB :=DARKBLUE;
if x<LCD_HEIGHTI2 then RGB:=YELLOW, end if;

---------- our image
RGB :=DARKBLUE;

if x<LCD_WIDTH/2 then RGB:=GREEN; end if;

if y<LCD_HEIGHTI2 then RGB:=YELLOW, end if;

---------- our image
RGB :=DARKBLUE;

if y<LCD_HEIGHT/2 then RGB:=YELLOW, end if;
if x<LCD_WIDTHI2 then RGB:=GREEN, end if;

---------- our image
RGB :=DARKBLUE;

if y<LCD_HEIGHTI2 then RGB:=YELLOW, end if;

if x<<LCD_WIDTHI2 then RGB:=RGB xor GREEN,; end if;

.......... our image
RGB :=DARKBLUE;

if (x>=300) and (x<500) then RGB:= GREEN,; end if;

.......... our image
RGB :=DARKBLUE;

if (y>=200) and (y<280) then RGB:= GREEN, end if;

---------- our image

RGB :=DARKBLUE;

if (x>=300) and (x<500) and (y>=200) and (y<280)
then RGB:= GREEN; end if;

---------- our image
RGB :=DARKBLUE;

if ((x<300) or (x>=500)) and ((y<200) or (y>=280))
then RGB:= GREEN; end if;

12

.......... our image
RGB :=DARKBLUE;

if (x<300) or (x>=500)) xor ((y<200) or (y>=280))
then RGB:= GREEN; end if;

.......... our image
RGB :=DARKBLUE;

if (x>=300) and (x<500) and (y>=200) and (y<280) then RGB:= GREEN, end if;
if (x>=200) and (x<400) and (y>=150) and (y<250) then RGB:= YELLOW, end if;

.......... our image
RGB :=DARKBLUE;

if (x>=200) and (x<400) and (y>=150) and (y<250) then RGB:= YELLOW, end if;
if (x>=300) and (x<500) and (y>=200) and (y<280) then RGB:= GREEN; end if;

---------- our image
RGB :=DARKBLUE;
if (x>=200) and (x<400) and (y>=150) and (y<250) then RGB:= YELLOW, end if;

if (x>=300) and (x<500) and (y>=200) and (y<280) then RGB:=RGB xor RED; end if;

LCD Geometry Rulers from FPGA-LCD Utils also find the coefficients of slanted line segments. Open an image
with LCD dimensions of 800x480 pixels, for example, saved from Testbench Viewer. Insert our line and
optimize its position (steering wheel icon). The optimizer will vary the line's end point X2, Y2 to find

a greater gcd.

For example, the 641/480 slope line has gdc 1 (the greatest common divisor). The line with slope 640/480
is better and differs by only 0.07 degrees. We shorten its slope by 160 to 4/3. The implementation will
multiply by smaller numbers, reducing the required logic elements.

#£ Try to find a line with a bigger GCD = O X
Initial Line Segment Ruler Coordinates

X1 |o X2 |641 AX= [641| ged(AX AY)=

v1 [480 Y2 [0 AY= |-480 n

Test lines with [X2+/-xdiff.Y2+/-ydiff] constrained by +/- angle deviation [degrees)

1633 +[-diffx WGE’C +[-diffy 15»03: +[-angle p Repeat Tests |

Deviation [deg] | ~ Equation | - X2 ‘ - Y2 | - AX | - AY | |
-0.07 3*x+4"y=1920 640 0 640 -480 160
0.06 80*x+107*y=51360 642 0 642 -480 6
0.04 95*x+127* y = 60960 635 5 635 -475 5
0.02 119*x+159* y = 76320 636 4 636 476 4
0 158 *x+211*y=101280 633 6 633 -474 3

-@‘ Selected row to LINE SEGMENT O Return to initial [X2, 2] point ‘ Close

437 results. Showina onlv the best 5.

Figure 11 - Line optimization dialog in LCD Geometry Rulers from FPGA-LCD Utils

13

https://github.com/cvut/FPGA-LCD_Utils

If we replace the = equality with a suitable inequality in the line equation, it can be used as a condition for
assigning a color to the entire LCD area. Combining conditions allows us to create shapes bounded by lines,
as shown in the following figures, which were saved from the Testbench Viewer outputs.

[® LCD Geometry Rulers - C:\SPS\VeekMT2_LCD_QuartusV20\images\Blue_TestbenchResult.png o (] X
File Zoom Explanatory Notes to the Equations
[@ D& Zoom [100%100% xy [005.165 RGp [0<00002b (0.0.139:DarkBlue) =]

Rectangular Ruler Line Segment Ruler [Elhptvcal Ruler |

Points X1 [0 x2 B 640 AX= [640/160=4 Q= [-307200/160--1920 |
1 B 480 Y2 0 AY= [480/160-3 gcd= [160=gcd(AXAY) Visible ¥ Reset
Equation @ | 3°x+4"y=-1920

Loaded W*H=800 * 480 = 384000 pixels

Figure 12 - LCD Geometry Rulers — Optimal line equation

---------- our image
RGB:=DARKBLUE;
if 3*x+4*y<1920 then RGB:=GREEN; end if;

---------- our image
RGB:=DARKBLUE;

if 3*x+4*y<1920 then RGB:=GREEN; end if;
if 2*x+5%y>2400 then RGB:=RED; end if;

---------- our image
RGB:=DARKBLUE;

if x -y >=640 then RGB:=YELLOW; end if;

if 3*x+4%y<1920 then RGB:=GREEN; end if;
if 2*x+5%y>2400 then RGB:=RED; end if;

14

Ellipse templates

If an ellipse has horizontal and perpendicular axes, it is in canonical form. Its hardware implementation is
again better if the coefficients of its equation can be divided by their greatest common divisor (gcd).
Xc=Xcenter LCD x-axis

-
B semiaxis . .
Ye=\ [/ {_Asemiaxis N\ | T
ycenter P y; &
i -
2] : I L e N
& 3 W =width=2A s N
> ~ > m

) Standard Equation of Ellipse

@)

2V Bx(x-Xc)+ A*(y-Yo) = (Ax B)
We can simplify the equation if gcd(A,B)>1 (the greatest common divider)
(Bigcd)* (x-Xc) + (A/ged)* (y-Yc) = (A* Biged)

Figure 13 - Ellipse equation in canonical form

We can again use LCD Geometric Rulers to optimize searching for nearby ellipses with higher gdc and more
advantageous hardware implementation (steering wheel icon).

® | CD Geometry Rulers - C:\SPS\VeekMT2_LCD_QuartusV20\images\Blue_TestbenchResult.png = a X

File Zoom Explanatory Notes to the Equations

IQ D& Zoom [100%100% xy [099.49% Rge [0x000000 (0.0.0:Black) Q

B [120: 8/60%2

Fectraer | U Sgrer P Bt e | S S
SelectingRP position Xref 5] 400 Width 5] 600 :A [300:A%60-5 ocdAB) | |
o yref [240 Height [240 1B [120:8/60=2 60 : Visible ¥ Reset

Equation @ [2727640072+ 5727524072 - 30022

Figure 14 - Finding the equation of the ellipse

---------- our image
RGB:=DARKBLUE;

-- (2=B/gdc)**2 (5=A/gdc)**2 (A*(B/gdc))**2

if 2**2 *(x-400)**2 + 5**2 *(y-240)**2 < (300*2)**2 then RGB:=GREEN; end if;

A general ellipse has axes rotated by an angle 6, and its quadratic equation can be derived from the
canonical form when a Euclidean rotation of coordinates is applied to it. You can find the necessary
formulas, into which the canonical A and B coefficients and the angle 6 are entered, for example, on the
English Wiki page, in the General Ellipse section, or on WolframCloud, in the Details and Options section.

However, if we design our LCD background, we should compose it from fragments of ellipses in canonical
form, which will be more convenient.

15

https://en.wikipedia.org/wiki/Ellipse
https://resources.wolframcloud.com/FunctionRepository/resources/RotatedEllipseMatrix/

---------- our image
RGB:=DARKBLUE;
-- (B/gdc)**2 (A/gdc)**2 (A*B/gdc)**2
if 2**2 *(x-400)**2 + 5**2 *(y-240)**2 < (300*2)**2
and 32 *(x-400)**2 + 10**2 *(y-240)**2 > (250*3)**2
then RGB:=YELLOW, end if;

---------- our image

RGB:=DARKBLUE;

if 2**2 *(x-400)**2 + 5**2 *(y-240)**2 < (300*2)**2
then RGB:=YELLOW: end if;

if 3**2 *(x-400)**2 + 10**2 *(y-240)**2 < (250*3)**2
then RGB:=GREEN; end if;

RGB:=DARKBLUE;
if (x<300) or (x>=500) then
if 2°*2 *(x-400)**2 + 5**2 *(y-240)**2 < (300*2)**2
then RGB:=YELLOW, end if;
if 3**2 *(x-400)**2 + 10**2 *(y-240)**2 < (250*3)**2
then RGB:=GREEN; end if;
end if;

The following image has a complex code, so we insert its entire architecture, not just its "our image" part

architecture behavioral of LCDlogic0 is
constant DARKBLUE: RGB_t := ToRGB(0, 0, 139); -- the background
begin
LSPimage : process(xcolumn, yrow, LCD_DE)
variable RGB :RGB_t :=BLACK; -- the color of current pixel
variable x : integer range 0 to XCOLUMN_MAX:=0;
variable y : integer range 0 to YROW_MAX:=0;
variable isAboveLine: boolean:=false; -- Above our straight line
begin -- process
x := to_integer(xcolumn); y := to_integer(yrow); -- converting unsigned inputs to integers
---------- our image
RGB:=DARKBLUE; isAboveLine:=(x - 10*y >=-2000);
if (x<300) or (x>=500) then
if 2°*2 *(x-400)**2 + 5**2 *(y-240)**2 < (300*2)**2 then
if isAboveLine then RGB:=YELLOW: else RGB:=GREEN; end if;
end if;
if 3**2 *(x-400)**2 + 10**2 *(y-240)**2 < (250*3)**2 then
if isSAboveLine then RGB:=GREEN; else RGB:=YELLOW: end if;
end if;
end if; - if (x<300) or (x>=500)) then

RGBcolor <= RGB; - assigning the output signal
end process;

end architecture;

The Veek-MT2 development board has the Cyclone IV FPGA, which contains 115,000 logic elements (LE).

The image above only needed 177 LE, which is roughly 360 bytes. Ten hardware 9-bit multipliers were used

for this, which is only 2% of all those in the FPGA.

The image saved as a PNG file would take up about 6.6 KB, and a JPEG file with 80% quality would take up
as much as 15 KB.

16

Question: Why didn't we use the conditional assignment as when - else?

VHDL-2008 allows when-else conditional assignments, the equivalent of an ? : operator in the C language.
The VHDL code could look like this:

---------- our image
RGB:=DARKBLUE; isAboveLine:=(x - 10 * y >=-2000);
if (x<300) or (x>=500) then
if 2**2 *(x-400)**2 + 5**2 *(y-240)**2 < (300*2)**2 then
-- if isAboveLine then RGB:=YELLOW: else RGB:=GREEN; end if:
. RGB:=YELLOW when isAboveLine else GREEN;
end if;
if 3**2 *(x-400)**2 + 10**2 *(y-240)**2 < (250*3)**2 then
-- if isAboveLine then RGB:=GREEN; else RGB:=YELLOW: end if;
B RGB:=GREEN when isAboveLine else YELLOW,
end if;
end if; --if (x<300) or (x>=500)) then

The GHDL simulator supports almost all of VHDL-2008, and we can use shorter when-else statements.
Unfortunately, the free version of Quartus Lite only allows fragments from VHDL 2008 and does not support
this handy operation :-(It is only present in its paid version. And if we want to upload the result to the
board, we must compile it in Quartus, so we omitted the construction that the free version would reject.

But we can replace when-else with a handy function:

function assignlf(cond:boolean; colorTrue, colorFalse:RGB t) return RGB tis
begin

if cond then return colorTrue; else return colorFalse; end if;
end function;

It is included in LcdPackV2 version V2.1 and higher.

architecture behavioral of LCDlogic0 is
constant DARKBLUE: RGB_t := ToRGB(0, 0, 139); -- the background
begin -- architecture

LSPimage : process(xcolumn, yrow, LCD_DE)
variable RGB :RGB_t :=BLACK; -- the color of current pixel
variable x : integer range 0 to XCOLUMN_MAX:=0;
variable y : integer range 0 to YROW_MAX:=0;
variable isAboveLine: boolean:=false; -- Above straight line
begin -- process
x := to_integer(xcolumn); y := to_integer(yrow); -- converting unsigned inputs to integers
---------- our image
RGB:=DARKBLUE; isAboveLine:=(x - 10*y >=-2000);
if (x<300) or (x>=500) then
if 2°*2 *(x-400)**2 + 5**2 *(y-240)**2 < (300*2)**2 then
RGB:= assignlf(isAboveLine, YELLOW, GREEN);
end if;
if 3**2 *(x-400)**2 + 10**2 *(y-240)**2 < (250*3)**2 then
RGB:= assignlf(isAboveLine, GREEN, YELLOW);
end if;
end if; - if (x<300) or (x>=500)) then

RGBcolor <= RGB; -- assigning the output signal
end process;

end architecture;

The assignlf must be defined for each type, which is its disadvantage compared to the more universal
when-else, but it can be overloaded, similarly to C. The package contains assignlf for integers.

17

Pattern generator using division by powers of 2

Logic equations effectively create shapes that repeat themselves. It uses the fact that each LCD frame is
generated as a stream of pixels. If we change the coordinates sent to the selected element to periodic
ones, it will repeat itself. For example, we change the color according to the even result of integer division
x by 8=23In hardware, the expression ((x / 8) mod 2)=0 is implemented by testing bit 3, xcolumn(3)='0".

---------- OUr IMage --------------=====--
RGB:=DARKBLUE;
if (x / 8) mod 2)=0 then RGB:=GREEN; end if;
if LCD_DE="0"then RGB:=BLACK; end if;

---------- our image
RGB:=DARKBLUE;

if (xcolumn(3) xor yrow(3))='0' then RGB:=GREEN; end if;
if LCD_DE="0"then RGB:=BLACK; end if;

---------- our image
RGB:=DARKBLUE;

if (xcolumn(5) xor yrow(5))='0' then RGB:=GREEN; end if;
if LCD_DE="'0'then RGB:=BLACK; end if;

We can also repeat more complex shapes by duplicating them across the entire area. Let's start with a
single occurrence:

---------- our image
RGB:=DARKBLUE;

if (x-16)**2+(y-16)**2< 16**2 then RGB:=GREEN; end if;
if LCD_DE="'0' then RGB:=BLACK; end if;

Now, instead of x and y, we will use their remainders after dividing them by 32.

---------- our image

RGB:=DARKBLUE;

if (x mod 32-16)**2+(y mod 32 -16)**2< 16**2 then RGB:=GREEN; end if;
if LCD_DE='0' then RGB:=BLACK; end if;

---------- our image
RGB:=DARKBLUE;
if (x mod 32 -16)**2+(y mod 32-16)**2< 16**2 then
if ((x/32) mod 2= 0) xor ((y/32) mod 2= 0) then
RGB:=GREEN; else RGB:=YELLOW; end if;
end if;
if LCD_DE="0" then RGB:=BLACK; end if;

The complexity of implementing the last image in LCDlogicO is only nine logic elements and two 9-bit
multipliers. The entire drawing, including the generator and register, is created with 77 logic elements and

18

the two 9-bit multipliers mentioned above. PNG would store the motif with circles in 41 KB and JPEG in as
much as 141 KB.

Such distinctive circles are probably suitable only for demonstrating the capabilities of logic :-) To make
them more usable, we can reduce color differences. We choose new colors, for example, from Figure 9,
page 10, with colors ordered by their hues. The resulting background has a softer decorative motif:

LSPimage : process(xcolumn, yrow, LCD_DE)
variable RGB :RGB_t :=BLACK; -- the color of current pixel
variable x, y : integer range 0 to XCOLUMN_MAX:=0;
variable eqcicle : integer range 0 to 2*(16**2):=0;
begin -- process
x := to_integer(xcolumn); y := to_integer(yrow); -- converting unsigned inputs to integers
---------- our image
RGB:=DARKBLUE;
eqcicle := (x mod 32 -16)**2+(y mod 32-16)**2;
if eqcicle<16**2 and eqcicle>=12*2 then
if ((x/32) mod 2=0) xor ((y/32) mod 2=0) then RGB:=X"0000FF", else RGB:=X"0000CD"; end if;
end if;
if LCD_DE='0' then RGB:=BLACK; end if;

RGBcolor <= RGB; -- assigning the output signal
end process;
end architecture;

O
5

O
- BEEE

Figure 15 - Technical motifs: code creation at the top left, bottom right

We can decorate technical control panels with such dot-dashed grid analogies. The conditions for vertical
and horizontal lines are separate — after all, their drawing is independent of each other! The dot-dashed
are created by inserting a condition on the variable running along the line axis, e.g., y or x.
--------- our image
RGB:=DARKBLUE;
if (y mod 16>=14) and (x mod 4)<2 then
if ((y/16) mod 2) = 0 then RGB:=X"0000FF"; else RGB:=X"4169E1"; end if;
end if;
if (x mod 16>=14) and (y mod 4)<2 then
if (x/16) mod 2) = 0 then RGB:=X"0000FF"; else RGB:=X"4169E1", end if;
end if;
if LCD_DE='0' then RGB:=BLACK; end if;

19

Progress bars are a common feature of panels, see the image below.

Progress=0 % Progress=1 % Progress=10

Progress=51% Progress=99% Progress=100%

Figure 16 - Linear indicator

To implement this, we will use the remainder after dividing by 2**6=64. The result is asymmetrical because
64 does not divide the width LCD_WIDTH=800 without a remainder. The if statement on the right, which
uses a different color for differentiation, centered the motif by shifting it by 80 = (800-10*64)/2

if y<(x mod 2**6) then RGB:=RED; end if; if y<((x-80) mod 2**6) then RGB:=GREEN; end if;

If we introduce constants PO for the origin on the x-axis and step ST = 64, then the architecture will be:
architecture indicator of LCDlogic0 is

signal progress:integer range 0 to 100:=51; -- the value is created from another process
begin -- architecture

LSPimage : process(xcolumn, yrow, progress)
variable RGB :RGB_t :=BLACK; -- the color of pixel
variable x : integer range 0 to 1023:=0;
variable y : integer range 0 to 524:=0; -- YROW_MAX-1
constant PO: integer := 80; constant ST: integer := 2**6; --P-origin, Step
begin x := to_integer(xcolumn); y := to_integer(yrow); RGB := NAVY;
---------- progress bar
if y>=8T and y<ST+ST/2 and x>=P0 and x<P0+10*ST then-- height, in <64,96) width, in <80,720)
RGB:=assignlf(((x-P0) mod ST)<ST - 4, GREEN, AQUA); --gaps
if x<((progress*205+16)/32 + P0) then RGB:=RGB xor YELLOW; end if;
end if;

RGBcolor <= RGB;
end process;

iProgress : process(YEND_N) -- the dynamic simulation of a progress signal
constant MD:integer:=2**5; variable cntr : integer range 0 to MD*100:=0;
begin if falling_edge(YEND_N) then
if cntr< MD*100 then cntr:=cntr+1; else cntr:=0; end if;
end if;
progress<=cntr/MD;
end process;

end architecture;

20

Repeated shapes generated by a counter
In the previous code, the value stored in progress was converted to the length in the x-axis using a complex
formula: (progress*205+16)/32, where adding 16 emulated rounding. The relationship that stretches the
progress value, which runs from 0 to 100%, to an interval of 0 to 640 pixels can be rewritten as
round(progress*205.0/2**5)= progress*205.0/32= progress*6.40625= progress*6.4.

A more advantageous conversion would be if the ST (step) value was 60, then progress would be multiplied
by 6, but the circuit calculating (x mod 60) would require many logic elements in the hardware. We will
replace modulo with a counter. The coordinates of pixels xcolumn and yrow change to the rising edge of
LCD_DCLK, so we let the counter run to the falling edge of LCD_DCLK, when they are stable and can be
tested without the risk of metastability. We assign the result to the xbarmod signal at the rising edge of
LCD_DCLK, i.e., in line with the changes in pixel coordinates.
architecture bar60 of LCDlogic0 is

signal progress:integer range 0 to 100:=1; -- from another process

constant P0: integer := 100; constant ST:integer:=60;

signal xbarmod : integer range 0 to ST-1:=0;
begin -- architecture

iModulo : process(LCD_DCLK)

variable cntr : integer range 0 to ST-1:=0;

begin if falling_edge(LCD_DCLK) then cntr:=assignlf(cntr>=ST-1 or xcolumn<P0, 0, cntr+1); end if;
if rising_edge(LCD_DCLK) then xbarmod<=cntr; end if;

end process;

LSPimage : process(xcolumn, yrow, progress, xbarmod)
variable RGB :RGB_t :=BLACK; -- the color of pixel
variable x : integer range 0 to 1023:=0; -- XCOLUMN_MAX-1
variable y : integer range 0 to 524:=0; -- YROW_MAX-1
begin x := to_integer(xcolumn); y := to_integer(yrow); RGB := NAVY;
---------- our image
if y>=ST and y<ST+ST/2 and x>=P0 and x<P0+10*ST then -- height + width
RGB:=assignlf(xbarmod<ST-4, GREEN, AQUA);--gaps
if(x<(6*progress + P0)) then RGB:=RGB xor YELLOW; end if;
end if;

RGBcolor <= RGB;
end process;

iProgress : process(YEND_N) -- the dynamic simulation of a progress signal
constant MD:integer:=2**5;
variable cntr : integer range 0 to MD*100:=0;
begin if falling_edge(YEND_N) then cntr:=assignlf(cntr< MD*100,cntr+1,0); end if;
progress<=cntr/MD;
end process;

end architecture;

If we want to see the outputs of the iModulo process, we write a testbench, into which we insert its code
together with the necessary definitions:

21

library ieee; use ieee.std_logic_1164.all; use ieee.numeric_std.all; library work;
entity testbench_Modulo is end entity;
architecture rtl of testbench_Modulo is

signal xcolumn: unsigned(9 downto 0):=(others=>'0'); -- the simulation of LCDgen output
signal LCD_DCLK : std_logic:='0";

constant PO: integer := 100; constant ST:integer:=60;

signal xbarmod : integer range 0 to ST-1:=0;

begin -- architecture
iModulo : process(LCD_DCLK) -- the copy of tested code
variable cntr : integer range 0 to ST-1:=0;
begin if falling_edge(LCD_DCLK) then cntr:=assignlf(cntr>= ST-1 or xcolumn< PO, 0, cnir+1); end if;
if rising_edge(LCD_DCLK) then xbarmod<= cntr; end if;
end process;
LCD_DCLK<=not LCD_DCLK after (1 sec)/(2*33000000); -- the period/2 of 33 MHz signal
xcolumn<= xcolumn + 1 when rising_edge(LCD_DCLK);
end architecture;
Simulation in GHDL shows the following curves in GTKView. (The colors have been partially inverted for

printing.) The value of xbarmod is not calculated until xcolumn=100; we do not need it before that:

Signals Waves

3100 ns 3200 ns

CEN N Cr I T

It grows to xcolumn = 159, then starts from O:

Signals Waves
5 0 ns 4600 ns 4700 ns 4500 ns 4900 ns 5 us

T r L umer L rire
xcolumn[9:0] = | X148 {158 }151 152 {153 {154 Y155 ¥156 Y157 Y158 J159 ¥160 }161 {162 {163 164 }165 {166 (167

xbarmod = 449 450 451 452 53 54 55 456 57 458 4559 @ 1 2 x3 4 5 e A7

Exactly at xcolumn=699, where our pointer ends on the LCD, xbarmod = 59

Signals Waves
20800 ns 20900 ns 21 us 21108 ns 21200 ns 21300 ns

T L ir L
xcolumn[9:0] =|| | J&86 Ye&7)E6s feEo JEop Yee1 fEs2 Y593 JE94 Y65 696 fa97)66)29 {7ee {761 762 {763 {704

|

xbarmod = i86 (47 148 349 50§51 p52 §53 j54 US55 56 {57 458 458 B J1 42 i3 IZ

In GTKWave, we can also select the interpretation of xbarmod and xcolumn as analog signals. Select one
signal and right-click to display its context menu, where you select: Data Format - Analog—>Step. Then
add "Insert Analog Height Extension for each signal. Now you can clearly see the waveforms in the LCD line.
The vertical mark is in the same position as in the previous figure, at xcolumn=699.

Signals Waves

e B 10 us 20 us 30 us 40 us
led_delk=

Figure 17 - - GTKView interpreting xcolumn and xbarmod values of analog signals

22

Inserting an image from FPGA ROM memory

Some more demanding parts are worth converting to memory and reading when rendering the image.
Inside the FPGA, we have two options for storing them:

e Logic elements (LE) allow the fastest access to data. However, they have a much more flexible use
than simply storing values, thus saving more demanding operations that memory cannot perform.

e Memory blocks are primarily used in FPGAs for large amounts of data. Even the Quartus development
environment sometimes converts logic parts to memory reads. These achieve higher information
density for data because less silicon is used to produce them. They can also have multiple port
accesses, allowing independent data manipulation at different addresses. However, each memory

block is used entirely, even if it is only occupied by a bit. It's all about designing the memory content.

The Cyclone IV circuit includes M9K memory blocks configurable for different output data widths. The
possible variants of a single M9K block, listed as the number of words x bits in a word, are:

8192 x1,4096 x 2, 2048 x 4, 1024 x 8, 1024 x 9,512 x 16, 512 x 18, 256 x 32, 256 x 36
For example, 1024 x 8 indicates a memory configuration where 8-bit words are selected using a 10-bit

address (2%°= 1024). Thus, it has 1024 words with a width of 8 bits, i.e., 8192 bits. M9K memory can also be
set to 9-bit output (i.e., with possible parity), using all 9216 bits, see Cyclone4 _memoryM9Kblocks.pdf.

Reading from memory is always synchronous — the selection matrix requires this. We write the address to
one clock edge, and the data appears at the memory output after a delay. They are stored in a register in
the figure below, which delays them by one clock period, but they will always have constant values during
clock periods, which is more suitable for implementation.

Address_in g_out .
= ;?; Address DataOut ;f’ < Address_in _Ao XAt XA2XA3 XA4 XASX A6)
e 1 x M9K e MIK:Address :°
11 bits Memory 2 bits MIK:DataOut 2 o bt b2 D3 D4 D5 D6
register Block register q_out 7 Xoo X1 X2 XD3 X4 X D5 X6
.) -
clock_in cockin _FH LML L

Figure 18 - - Cyclone IV memory block M9k in 4096x2 configuration

Larger memories are assembled from multiple M9K blocks, and it is worth monitoring their consumption
size, because even a slight increase in data volume can add many M9K blocks, as they are always used in
their entirety. However, we need to initialize the memory blocks somehow. There are two options in the
Quartus environment:

1) Select the memory type from the manufacturer's IP catalog, see the P Catalog
image on the left. The catalog launches the MegaWizard Plug-In | & memory !
Manager tool in Quartus, where we enter the necessary memory v & inetalled P
parameters and the initialization file of type *.MIF, Memory Initialization v E:br;::ic Functions
File. The procedure is more laborious, but you can choose from Bridges and Adaptors
several options. However, this complicates simulation in GHDL, as von C.hip;llmw
Quartus' internal libraries must be inserted, which is not simple. # RAM: 1-PORT

2) If 1-Port ROM memory is sufficient, a VHDL file can be generated. ' RAM: 2-PORT
Quartus converts it to memory. This way also allows easier GHDL) :3: ;:Z;
simulation, which we will demonstrate here. The previous steps can # Shift register (RAM-based)

be found in the aforementioned M9K memory manual.

Bitmap2VHDL from FPGA-LCD Utils can create both an initialization *.MIF
file and a *.vhd file that Quartus can convert to ROM: 1-Port.

23

https://dcenet.fel.cvut.cz/edu/fpga/doc/cyiv-51003_Cyclone4_memoryM9Kblocks.pdf

Bitmap conversion

If there are few colors, the data volume is reduced by assigning indices to them and storing only those.
They are directed to a color table, allowing easy changes. For more details, see
https://en.wikipedia.org/wiki/Indexed color.

Indexed Color Model

INDEXED IMAGE

Index Red Green Blue

0 0 12 3
WIDTH: 4 PIXELS R
2 30 64 78
INDEX 3 40 12 12
-
HEIGHT: :
4 PIXELS 5 y = =
—— 100 53 156 83)—>
2 Pixel Value
Used as Index
254 225 142 228
255 230 150 234
Note: Both images come from idlcoyote.com Color Table
— a website that no longer exists. Color Palette

Figure 19 - Indexed colors

Images stored without rasterization, "spatial anti-aliasing" (see below), which increases the number of

colors, are best suited for indexing. If the selected image has rasterization, it is advisable to reduce the
number of colors, which can be done with many graphics tools, such as the free FastStone Image Viewer.

Graphic tools can visually smooth edges by adding
transitional color shades through rasterization. The Anti-gliasing

opposite of this is "dithering," which is a kind of

(24

Mo anti-aliasing

dispersion that creates halftones to substitute
missing colors and smooths the image. In terms of

hardware, it is relatively easy to implement 3 x 3 or
5 x 5 Gaussian blur convolution matrix . The Veek-
MT2 LCD panel can also do this.

VeekMT2_LCDregV2 turns off its dithering so that you
can see exactly what has been created on it. It can
be turned on by setting its LCD_DITH output to '0'.

Figure 20- Anti-aliasing

Cut out the selected part of the image using a graphics tool and save it as a bitmap.

[® LCD Geometry Rulers - o LA o LCD_testbmp -

File Zoom Explanatory Not

Ig {@| zoom [23n206% xv [646.130 RGR [DAOD (255.255.0:Yelow)

—

Rectangular Ruler I Line Segment Ruler I Bliptical Ruler I

RF Posifion RP = Reference Point |nner Dimensions

OB o L
‘sl ol o) Yref =] 59 Y Height [=] 138 Visible ¥ Reset

Figure 21- Cropping to a file using the LSP Geometry Rulers tool

24

https://en.wikipedia.org/wiki/Indexed_color
https://en.wikipedia.org/wiki/Anti-aliasing
https://en.wikipedia.org/wiki/Anti-aliasing
https://www.faststone.org/
https://www.faststone.org/
https://en.wikipedia.org/wiki/Kernel_(image_processing)
https://en.wikipedia.org/wiki/Kernel_(image_processing)

Then we can run the BMP converter from FPGA-LCD UtiIs:E and load the bitmap.

3 LSPtool bitmap: L10.bmp [CA ™ s TR] wmaL10.bmp] - O X
File Memory Help
Opened Bitmap i F F .

i X Preview of Conversion Magnifier
= X o vy o 2 =
|Width x Height = (x87 x (x82 = 135 x 130; Size (x448E = 17550 bits

4 different colors in Paletie

Required FPGA Memory

135x 130 bitmap uses only 53.56 of 8 necessary M3K memary blocks
that contain 32768 x 2 data bits = 69536 [(x 10000] ROM bits

‘KO: ROM width is not 2n or (27n+2""m}! The nearest better widths are 136 or 132

Operning the last bitmap file f mmm e le —
n a B B "o s "™ nnm o

Loaded bitmap is suitable for storing into ROM.

I width [135 T Height 130
i Colors of added pixels .hﬁveindex 0

Figure 22 - FPGA-LCD tool Bitmap to VHDL

The image uses four colors, which we encode into two data bits. However, the resulting memory would
consume 8 M9K memory blocks, which would be used only half of their capacity. We crop the image,
remembering that we will multiply by its width, so we choose a power of 2 or the sum of two powers of 2,
leading to more straightforward hardware implementation, see also section 6.3.2 Logic circuits on FPGA.

Adjust the dimensions using the up and down controls. Leave the leftmost one free, because we will read
the data from memory with a delay of 1 clock cycle.

& LSPtool bitmap: L10.bmp [CA™ man LB] wamaL10.brmp] = O x
File | Memory Help
Open Save as 1-port ROM VHDL Entity... Ctrl+5 i i -

|_| . MP e :I)’ X Preview of Conversion Magnifier
ave as Memory Initializatinn file " - -
Create VHDL file the Quartus compiles || Y X |I|'1 Y |I|“4 |2 II

F Copy memory sizes gto FPGA Cyclone IV memory MK blocks

| 4 different colors in Palette

Required FPGA Memory

132 x 122 bitmap uses 98.29 % of 4 necessary MSK memory blocks
that contain 16384 x 2 data bits = 32768 [(x8000] ROM bits

OK: The width allows calculating memery addresses without a hardware multiplier.

Opening the last bitman file ! i el el W —
n a B By "o ™ lammm o

Loaded bitmap is suitable for storing into ROM.

I+l Width 132 T Height 2122
Colors of added pixels .hﬁveindax o

Save the modified bitmap via the menu "Memory->Save as 1-port ROM VHDL Entity", for example, under the
name L10rom.vhd in the main directory of the Quartus project!

@ 3p: @ Save as VHDL Entity
File Memory &« v [« » VeekMT2_Quartus20_LCD 5
Opened Bitmap——|
L10bmp Organize » New folder
Width x Height ~ Name
4 di B VeekMT2_LCDregV2.vhd

B VeekMT2_LCDgenV2.vhd
[testbenchV2_LCDlogic.vhd
@ LCDpackV2vhd

25

https://dcenet.fel.cvut.cz/edu/fpga/doc/LogicCircuitsOnFPGAs.pdf#page=107

Never modify the generated VHDL L10rom.vhd in any way to not disrupt its precise structure specified in
the Quartus development environment documentation as suitable for implementation using M9K blocks.
However, we can read its header, which contains information about the memory size and color palette.
-- FPGA-LCD Utils generated file from bitmap L10.bmp
-- adjusted to the sizes: Width x Height= 132x122=16104 [0x3EE8] pixels.
-- 32768 [0x8000] bit memory is arranged for a 14-bit address bus reading a 2-bit data output.
-- The color palette in the index order as std_logic_vector(23 downto 0) items:
-- X"000000", X"696969", X"FFO000", X"006400" --0to 3
library ieee, work; use ieee.std_logic_1164.all; use ieee.numeric_std.all;
entity L10rom is
port (address: in std_logic_vector(13 downto 0):=(others=>'0");
clock: in std_logic:="1";
q: out std_logic_vector(1 downto 0):=(others=>"'0"));
end entity;
architecture rtl of L10rom is
type arr_tis array(0 to 2**address'LENGTH-1) of std_logic_vector(q'RANGE);
constant arr :arr_t:=(0 to 484=> "11", 485 to 492=> "00", 493 to 614=> "11", 615 to 626=> "00",

-- another rows with the definitions of memory content
15741 to 15753=> "00", 15754 to 15875=> "11", 15876 to 15882=> "00",
others=> "11");

begin
process(clock)
variable ix:integer range 0 to 2**address'LENGTH-1:=0;
begin
if rising_edge(clock) then
ix := to_integer(unsigned(address));
q<= arr(ix);
end if;
end process;
end architecture;

We wisely left the first column of the converted image free, so that the value highlighted in green at the
beginning of the initialization of the constant arr array corresponds to the index of the image's background
color, which we leave transparent.

The process code raises the question of why we introduced a new variable ix, and did not use a compound
command:

q<= arr(to_integer(unsigned(address))); ?

The recommended coding style, see the Quartus Inferring ROM Functions from HDL Code manual, requires

the address input of the std_logic_vector type. Instead, we wrote a shorter code using the ix variable of
integer type, for which the to ranges in addresses are defined. Then, the ix variable is also correctly
compiled by Quartus because we add the subtype that contains precise information about its value range.

Note: Quartus also allows writing the to ranges also for the std_logic_vector types. However, the VHDL
standard does not include them. Using something like this would create non-portable code dependent on
the compiler, known as "compiler-dependent code."

26

https://www.intel.com/content/www/us/en/docs/programmable/683082/22-1/inferring-rom-functions-from-hdl-code.html

How is an image read from memory?

The figure below shows the situation where a 4x3 pixel bitmap was converted. It was stored in memory as
a one-dimensional vector by rows, precisely how images are written on an LCD. This method of storing a
multidimensional array, called " row-major order" is also used by the C language.

The memory contains only two-bit color indices, i.e., values from 0 to 3. We send the memory the address
from which to read the data. The address relationship maps the stored image to the resulting display on
the LCD. On the right, we have two of many possible variants. The upper image is positioned with its upper
left corner at yrow=1, xcolumn=2 on the LCD. The memory is read sequentially. If we set x=xcolumn and
y=yrow, then we first convert x and y to relative coordinates relative to the corner of the image, from
which we calculate the address in the ROM memory:

Memory address = (y-rect1.Y)*img.Width + (x-rect1.X)
We multiply by the width of the image; here, we have advantageously chosen the sum of two powers of
two, which is easier to implement in the circuit. The second image is inverted; its relative y-axis runs in the
opposite direction:

Memory address = (img.Height-1-(y-rect2.Y))*img.Width+ (x-rect2.X)

img.Width
. yrow
image 4x3
—) ‘v rect1.X rect2.X
img.Height[xcolumn==== o0 1ii2 3 4 5i6 ¥ 8 9 10
= 0 v
=3 P >
H o F ettt [0]A1213
i N img.Height 2 415(6|7
img.Width = 4 3 8[9|10
4 v =
3
rect2.Y® »1819 10 |
)))]) o 6 415|167 g
img.Width : img.Width : img.Width 7 0/1/2]3 %
i 8
Memory address [e[a]z[=2[=]5]e[7 [= [[iolkHl 9
ccolorindex |oJa[afa[a[a[a 11 [1 [B
q | - img.Width

Figure 23 - Image 1: normal 2: inverted

There are many positioning options, all of which only involve changes to the address calculation, which also
applies to rotations in the 90-degree module. For 180 degrees, both axes are read backwards. For 90
degrees, only one axis is rotated, but they are swapped. We also need to modify the test for the rectangle
in which it is drawn.

lv ; rect1.X rect2.X
xcolumn == o 1iz 3 4 5.6 ¥ 8 910
0 \4
4 > 101918
img.Height rect1.Y 2 716l5]4
3 3[2[1]0
4 v
b1 »[8]4]0 5
rect2.Y 5 K i
7 10162 =
8 713 =
9 .
img Height

Figure 24 - Rotation 1: 180 degrees 2: 90 degrees

Rotation by 90 degrees will be in the code in the next chapter.

27

https://en.wikipedia.org/wiki/Row-_and_column-major_order

VHDL code with images inserted from memory

If we have a graphic template, we determine the coordinates of the image from it. Of course, we can only
estimate their positions and correct them according to the testbench result, for example, using LCD
Geometry Rulers, until we are satisfied with the positions:

[® LCD Geometry Rulers - —-— < gt TBimageResult.png -

File Zoom Explanatory Notes tc

£9: D Zoom [100%100% xy [585.005 RGR |0x0OD0BO (0.0.128Navy)

Rectangular Ruler | Line Segment Ruler | liptical Ruler |

RF Position RP = Reference Paint |nner Dimensions

e C C =

- | xer & 536 XWidth 5] z [2 crvtorie-
=

()

=
St
Yref 284 Y Height B 132 Visible [Reset

When writing code, we pay attention to variable names. We use VHDL record types, which are direct
analogies of C structures. The entity has not changed, so we will start with the architecture:

architecture img of LCDlogic0 is
type sizes_tis record Width, Height: integer; end record;
constant L10img : sizes_t:=(132,122);

The constant of type sizes_t contains the width and height so that both values are together.

constant L10r1 : rect_t :=(140, 64, L10img.Width, L10img.Height);
constant L10r2 : rect_t :=(538, 284, L10img.Height, L10img.Width);

We define the sizes of rect_t rectangles for both positions. In the constant L10r2, the memory sizes are
swapped because it refers to the position of the image that will be rotated by 90 degrees.
-- type rect_t and function inRect that uses it, are in LcdPackV2 version V2.1 and higher

function inRect(r:rect_t; x,y:integer) return boolean is
begin return x>=r.X and x<r.X+r.W and y>=r.Y and y<r.Y+r.H;
end function;

Let's simplify the main code by defining a function that tests whether the current coordinates lie within

the rectangle.

type palette4_tis array (0 to 3) of RGB_t;
constant L10p1:palette4_t:=(BLACK, X"696969", X"FF0000", X"006400");
constant L10p2:palette4_t:=(BLACK, AQUA, X"696969", X"006400")

We created the first basic palette based on the data in the VHDL file of the converted bitmap. In the
second palette, we recolored some items.

signal L10addr: std_logic_vector(13 downto 0):=(others=>'0');
signal L10q, L10q0: std_logic_vector(1 downto 0):=(others=>"'0");

We will send the address to the memory and retrieve data from it. Both signals' size must be created
according to the inputs and outputs of the memory file L10rom.vhd.

function toSIv(n:integer; slvWidth:positive) return std_logic_vector is
begin return std_logic_vector(to_unsigned(n,slvWidth));
end function;

We will calculate the address using integers, but the memory has it as an input of type std_logic_vector,
so we have defined a conversion function to simplify the main code.

28

begin -- architecture

In the code, we will create an instance of the memory entity and place the output value register behind
it. We will also insert a DFF circuit, whose D input will be the L10q0 signal and output the L10q signal.

iL10rom : entity work.L10rom port map(L10addr, LCD_DCLK, L10q0);
L10g<=L10q0 when rising_edge(LCD_DCLK);

The circuit created by the pair of commands above is shown in the figure below:
iL10rom : entity work.L10rom port map(L10addr, LCD_DCLK, L10q0);

L10rom

|] |/

| | | |

| L10addr |address g L10g0 | | | DFF |-1Pq: ‘

: 7 — T2 D Q%’M Address DataOut 2 % : : DQ ‘S

@ i c 4% MIK | b .

| |

| LCD_DCLK nis Memory 1 |

| . |

i iL10img ~ register SHocK | i |
ST T T DT T T T T T T T T T T i I

L10g<=L10q0 when rising_edge(LCD_DCLK);

LSPimage : process(xcolumn, yrow, L10q)

variable RGB :RGB_t :=BLACK; -- the color of pixel

variable x : integer range 0 to 1023:=0; -- fo XCOLUMN_MAX-1
variable y : integer range 0 to 524:=0; -- to YROW_MAX-1

We added L10q, i.e., the value read from memory, to the sensitivity list of the process, on which the
output of the RGBcolor process with the pixel color also depends. Then, we inserted the definitions of the
x and y variables that were already known.

variable L10idRect : integer range 0 to 2:=0; -- the flag that the x,y pixel is inside a rectangle, 0 - no
variable L10ixColor : integer range L10p1'RANGE:=0; -- the index of a color read from memory

The first variable L10idRect list will be an identifier that the X,y coordinates of a pixel are located in a
rectangle of the image, where 0 means outside the image. The second variable is the color index
converted to an integer.

begin -- process
x := to_integer(xcolumn); y := to_integer(yrow);
L10idRect:=0; -- not inside a rectangle
if INnRect(L10r1, x, y) then L10idRect:=1; elsif InRect(L10r2,x,y) then L10idRect:=2; end if;

We have assign the rectangle identifier L10idRect by successive tests of the position inside one of them.

L10ixColor := to_integer(unsigned(L10q)); --index into palette

We converted the value read from memory to an integer, which we will use to index the palettes.

---------- our image

RGB := NAVY;

if L10idRect> 0 and L10ixColor/=3 then -- Is the current pixel in any rectangle and a color-index is an opacity color?
if L10idRect= 1 then RGB:=L10p1(L10ixColor); else RGB:=L10p2(L10ixColor); end if;

end if;

If [x, y] pixel is located in any image rectangle (L10idRect> 0) and at the same time the color read from
the image memory is different from 3, i.e., from the color index of the background we want to make
transparent (L10ixColor/=3), we overwrite the RGB value from the corresponding palette.

29

case L10idRect is
when 1=> L10addr<=toSIv((y-L10r1.Y)*L10img.Width+(x-L10r1.X), L10addr'LENGTH);

when 2=> L10addr<=toSIv((L10img.Height-1-(x-L10r2.X))*L10img.Width+(y-L10r2.Y), L10addr'LENGTH);
when others> L10addr<=(others=>"'0");
end case;

We calculate the memory address in the first rectangle by directly converting the index of the two-
dimensional array to a vector. The second rectangle is rotated by 90 degrees, so its relative x and y axes

are swapped, with the x-axis read backwards by lines from L10img.Height-1 to 0, while the y-axis runs in
the direction of the lines in the image.

RGBcolor <= RGB;
end process;
end architecture;

Advice from the GHDL buddies about -a parameter: You must also add the memory file to the list of files
in the runLCD.bat batch file before LCDlogic*, otherwise it will not be compiled.

set FILES=../LCDpackV2.vhd ../L1@rom.vhd ../LCDlogic@.vhd
However, the memory does not have to remain in the list permanently. My parameter colleagues -e and -r
only need the *.0 (object files), which are the results of my compilations. From them, they create the exe

successfully. Run my full compilation only once, then modify runLCD.bat or create a new *.bat file with a
modified FILES line, leaving only ../LCDlogic@.vhd

rem set FILES=../LCDpackV2.vhd ../L1@rom.vhd ../LCDlogic@.vhd
set FILES= ../LCDlogic@.vhd

You will see the result faster. The previous example saved 4 seconds of my precious time!
A complete compilation of all files will be necessary only after changing L10rom.vhd and LCDpackV2.vhd.

Addendum from Quartus Lite: Similar tricks don't work for me — I'm no free-thinking GHDL buddy!
| insist on the exactness! The memory (here ../L1@rom.vhd) will always be in the file list on my Files tab.

If it is not there, add it quickly. Either right-click on Files to open their associated context menu or use my
main menu:

Il Quartus Prime Lite Edition - C:/5P5/Uleha_LCDbackground.

File Edit View Project Assignments Processing

Add Current File to Project

inl

]
' £ AddfRemove Files in Project...

Project Navigator =
L E ﬂ-l Revisions...

Files Copy Project...

=l @READMEL Clean Project...

B3 Demo_LcDE _
o = Archive Project...

.k
Restore Archived Project...

e LCDpackv2y Import Database...

testbenchv2 Export Database...

Figure 25 - Adding memory to the file list

Translation and simulation of VHDL code takes about 7 seconds in GHDL, and we perform only one step —
we run the batch file from the Visual Studio Code terminal. The Quartus also offers installing the Intel Questa
simulator, but obtaining its free license is as complex as its usage. Questa offers minor advantages, as it

30

sometimes detects more timing errors, but its free version only catches a few more. However, working
with GHDL is much faster and simpler. ©

Note: 1/ We can load the debugged VHDL in Quartus into the board if we compile it.

2/ However, it is possible that the FPGA board is not working, even if the VHDL code has a beautiful

simulation, because any simulation is only a simulation. The hardware is the final judge of whether you

have met all the timing requirements.

3/ If you see Quartus compiler messages warning about incomplete timing definitions:

Critical Warning (332168): The following clock transfers have no clock uncertainty assignment. For more

accurate results, apply clock uncertainty assignments or use the derive _clock uncertainty command...

or

Critical Warning (332049): Ignored create_generated_clock at VeekMT2_LCD.sdc(50): Argument <targets>

is an empty collection

Then, you have an incorrect instance in the top-level entity in the BDF schema, see Figure 2 on page 4:-)
» VeekMT2_LCDgenV2 must have an instance name iLCDgenerator.

Only this instance name has definitions for TimeQuest Analyzer in the file VeekMT2_LCD.sdc. If you change
the instance name, you must regenerate sdc-file ... Oh, changing the instance is much simpler and faster.

END OF TEXTBOOK

Protest of student Maxo Groucho: The ending is in the most suspenseful moment, like in a jumpy horror
series?! You can't be serious. You're gonna bathe us in it for a Very Hard, Depressing, Long time!
Somewhere, there will be ready-made solutions for individual backgrounds to be 'copied’ quickly, right?

Answer: Not at all! GHDL simulation is quick; you can experiment freely and use the template for fun
creations.

Maxo Groucho's horror: | can't find the VHDL codes for the individual backgrounds from the template
anywhere on the website that | could quickly copy!

Answer: They are not there and will not be there, to save you time. If we don't count comments, the entire
background, including image insertion, will be less than 2,000 characters (including spaces). You can create
it in a few minutes, as the editor's auto-complete feature will fill in many of the keywords for you. And you
will better understand how it works.

Create your own code! After all, you surely have different images with different sizes and possibly different
addresses and data ranges. Copying the original code would also copy the original numbers, and it would
take a long time to find out where the error occurred!

Jhat's all...

31

	Introduction
	LCD circuits version 2
	LCDpackV2.vhd – definition library
	VeekMT2_LCDgenV2 — Synchronization Generator
	VeekMT2_LCDregV2 — sending color to LCD
	LCDlogic0 — the image drawing circuit
	File testbenchV2_LCDlogic.vhd

	The code prototype
	The runlcd.bat file
	Running the GHDL simulation

	Color table
	Templates with straight lines
	Ellipse templates
	Question: Why didn't we use the conditional assignment as when - else?

	Pattern generator using division by powers of 2
	Repeated shapes generated by a counter
	Inserting an image from FPGA ROM memory
	Bitmap conversion
	How is an image read from memory?
	VHDL code with images inserted from memory

