
Using ModelSim to Simulate Logic
Circuits in VHDL Designs

For Quartus II 13.0

1 Introduction

This tutorial is a basic introduction to ModelSim, a Mentor Graphics simulation tool for logic circuits. We show
how to perform functional and timing simulations of logic circuits implemented by using Quartus II CAD software.

The reader is expected to have the basic knowledge of VHDL, and the Altera Quartus® II CAD software.

Contents:

• Introduction to simulation

• What is ModelSim?

• Functional simulation using ModelSim

• Timing simulation using ModelSim

Altera Corporation - University Program
May 2013

1

http://www.altera.com/education/univ/

USING MODELSIM TO SIMULATE LOGIC CIRCUITS IN VHDL DESIGNS For Quartus II 13.0

2 Background

Designers of digital systems are inevitably faced with the task of testing their designs. Each design can be composed
of many components, each of which has to be tested in isolation and then integrated into a design when it operates
correctly.

To verify that a design operates correctly we use simulation, which is a process of testing the design by applying
inputs to a circuit and observing its behavior. The output of a simulation is a set of waveforms that show how a
circuit behaves based on a given sequence of inputs. The general flow of a simulation is shown in Figure 1.

There are two main types of simulation: functional and timing simulation. The functional simulation tests the logical
operation of a circuit without accounting for delays in the circuit. Signals are propagated through the circuit using
logic and wiring delays of zero. This simulation is fast and useful for checking the fundamental correctness of the
designed circuit.

The second step of the simulation process is the timing simulation. It is a more complex type of simulation, where
logic components and wires take some time to respond to input stimuli. In addition to testing the logical operation of
the circuit, it shows the timing of signals in the circuit. This type of simulation is more realistic than the functional
simulation; however, it takes longer to perform.

2 Altera Corporation - University Program
May 2013

http://www.altera.com/education/univ/

USING MODELSIM TO SIMULATE LOGIC CIRCUITS IN VHDL DESIGNS For Quartus II 13.0

Figure 1. The simulation flow.

In this tutorial, we show how to simulate circuits using ModelSim. You need Quartus II CAD software and ModelSim
software, or ModelSim-Altera software that comes with Quartus II, to work through the tutorial.

3 Example Design

Our example design is a serial adder. It takes 8-bit inputs A and B and adds them in a serial fashion when the start
input is set to 1. The result of the operation is stored in a 9-bit sum register.

Altera Corporation - University Program
May 2013

3

http://www.altera.com/education/univ/

USING MODELSIM TO SIMULATE LOGIC CIRCUITS IN VHDL DESIGNS For Quartus II 13.0

A block diagram of the circuit is shown in Figure 2. It consists of three shift registers, a full adder, a flip-flop to store
carry-out signal from the full adder, and a finite state machine (FSM). The shift registers A and B are loaded with
the values of A and B. After the start signal is set high, these registers are shifted right one bit at a time. At the same
time the least-significant bits of A and B are added and the result is stored into the shift register sum. Once all bits of
A and B have been added, the circuit stops and displays the sum until a new addition is requested.

Figure 2. Block diagram of a serial-adder circuit.

The VHDL code for the top-level entity of this design is shown in Figure 3. It consists of the instances of the shift
registers, an adder, and a finite state machine (FSM) to control this design. The component declarations for these
instances on lines 32-63 have been omitted from Figure 3, as the declarations for the shift register and FSM will be
shown in Figures 4 and 5.

4 Altera Corporation - University Program
May 2013

http://www.altera.com/education/univ/

USING MODELSIM TO SIMULATE LOGIC CIRCUITS IN VHDL DESIGNS For Quartus II 13.0

1. LIBRARY ieee;
2. USE ieee.std_logic_1164.all;
3.
4. - - This is an example of a serial adder.
5. ENTITY serial IS
6. PORT(
7. A :IN STD_LOGIC_VECTOR(7 DOWNTO 0);
8. B :IN STD_LOGIC_VECTOR(7 DOWNTO 0);
9. start :IN STD_LOGIC;
10. resetn :IN STD_LOGIC;
11. clock :IN STD_LOGIC;
12. sum :OUT STD_LOGIC_VECTOR(8 DOWNTO 0)
13.);
14. END serial;
15.
16. ARCHITECTURE Behaviour OF serial IS
17.
18. - - Registers
19. SIGNAL A_reg :STD_LOGIC_VECTOR(7 DOWNTO 0);
20. SIGNAL B_reg :STD_LOGIC_VECTOR(7 DOWNTO 0);
21. SIGNAL sum_reg :STD_LOGIC_VECTOR(8 DOWNTO 0);
22. SIGNAL cin :STD_LOGIC;
23.
24. - - Wires
25. SIGNAL reset :STD_LOGIC;
26. SIGNAL enable :STD_LOGIC;
27. SIGNAL load :STD_LOGIC;
28. SIGNAL bit_sum :STD_LOGIC;
29. SIGNAL bit_carry:STD_LOGIC;
30.
31. - - Component declarations
32.-63. - - (...)

Figure 3. VHDL code for the top-level entity of the serial adder (Part a).

Altera Corporation - University Program
May 2013

5

http://www.altera.com/education/univ/

USING MODELSIM TO SIMULATE LOGIC CIRCUITS IN VHDL DESIGNS For Quartus II 13.0

64. BEGIN
65. PROCESS (clock)
66. BEGIN
67. IF clock’EVENT AND clock = ’1’ THEN
68. IF (enable = ’1’) THEN
69. IF (reset = ’1’) THEN
70. cin <= ’0’;
71. ELSE
72. cin <= bit_carry;
73. END IF;
74. END IF;
75. END IF;
76. END PROCESS;
77.
78. - - Component instantiations
79. - - Control FSM
80. my_control : FSM
81. PORT MAP(start, clock, resetn, reset, enable, load);
82.
83. - - Datapath
84. reg_A :shift_reg
85. PORT MAP(clock, ’0’, A, ’0’, enable, load, A_reg);
86.
87. reg_B :shift_reg
88. PORT MAP(clock, ’0’, B, ’0’, enable, load, B_reg);
89.
90. - - a full adder
91. bit_carry <= (A_reg(0) AND B_reg(0)) OR (A_reg(0) AND cin) OR (B_reg(0) AND cin);
92. bit_sum <= A_reg(0) XOR B_reg(0) XOR cin;
93.
94. reg_sum :shift_reg
95. GENERIC MAP(9)
96. PORT MAP(clock, reset, B"000000000", bit_sum, enable, ’0’, sum);
97.
98. END Behaviour;

Figure 3. VHDL code for the top-level entity of the serial adder (Part b).

The VHDL code for the FSM is shown in Figure 4. The FSM is a 3-state Mealy finite state machine, where the first
and the third state waits for the start input to be set to 1 or 0, respectively. The computation of the sum of A and B
happens during the second state, called WORK_STATE. The FSM completes computation when the counter reaches
a value of 8, indicating that inputs A and B have been added. The state diagram for the FSM is shown in Figure 5.

6 Altera Corporation - University Program
May 2013

http://www.altera.com/education/univ/

USING MODELSIM TO SIMULATE LOGIC CIRCUITS IN VHDL DESIGNS For Quartus II 13.0

1. LIBRARY ieee;
2. USE ieee.std_logic_1164.all;
3. USE ieee.std_logic_unsigned.all;
4. USE ieee.numeric_std.all;
5.
6. ENTITY FSM IS
7. GENERIC(
8. WAIT_STATE :STD_LOGIC_VECTOR(1 DOWNTO 0) := B"00";
9. WORK_STATE :STD_LOGIC_VECTOR(1 DOWNTO 0) := B"01";
10. END_STATE :STD_LOGIC_VECTOR(1 DOWNTO 0) := B"11"
11.);
12. PORT(
13. start :IN STD_LOGIC;
14. clock :IN STD_LOGIC;
15. resetn :IN STD_LOGIC;
16. reset :BUFFER STD_LOGIC;
17. enable :BUFFER STD_LOGIC;
18. load :BUFFER STD_LOGIC
19.);
20. END FSM;
21.
22. ARCHITECTURE Behaviour OF FSM IS
23. SIGNAL current_state :STD_LOGIC_VECTOR(1 DOWNTO 0);
24. SIGNAL next_state :STD_LOGIC_VECTOR(1 DOWNTO 0);
25. SIGNAL counter :STD_LOGIC_VECTOR(3 DOWNTO 0);
26.
27. BEGIN
28. - - next state logic
29. PROCESS(current_state, start, next_state, counter)
30. BEGIN
31. CASE(current_state) IS
32. WHEN WAIT_STATE =>
33. IF (start = ’1’) THEN
34. next_state <= WORK_STATE;
35. ELSE
36. next_state <= WAIT_STATE;
37. END IF;

Figure 4. VHDL code for the FSM to control the serial adder (Part a).

Altera Corporation - University Program
May 2013

7

http://www.altera.com/education/univ/

USING MODELSIM TO SIMULATE LOGIC CIRCUITS IN VHDL DESIGNS For Quartus II 13.0

38. WHEN WORK_STATE =>
39. IF (counter = B"1000") THEN
40. next_state <= END_STATE;
41. ELSE
42. next_state <= WORK_STATE;
43. END IF;
44. WHEN END_STATE =>
45. IF (start = ’0’) THEN
46. next_state <= WAIT_STATE;
47. ELSE
48. next_state <= END_STATE;
49. END IF;
50. WHEN OTHERS =>
51. next_state <= ’-’ & ’-’; – don’t care
52. END CASE;
53. END PROCESS;
54.
55. - - state registers and a counter
56. PROCESS(clock, resetn)
57. BEGIN
58. IF (resetn = ’0’) THEN
59. current_state <= WAIT_STATE;
60. counter <= (OTHERS => ’0’);
61. ELSIF (clock’EVENT AND clock = ’1’) THEN
62. current_state <= next_state;
63. IF (current_state = WAIT_STATE) THEN
64. counter <= (OTHERS => ’0’);
65. ELSIF (current_state = WORK_STATE) THEN
66. counter <= counter + ’1’;
67. END IF;
68. END IF;
69. END PROCESS;
70.
71. - - Outputs
72. reset <= ’1’ WHEN (current_state = WAIT_STATE) AND (start = ’1’) ELSE ’0’;
73. load <= ’1’ WHEN (current_state = WAIT_STATE) AND (start = ’1’) ELSE ’0’;
74. enable <= ’1’ WHEN (load = ’1’) OR (current_state = WORK_STATE) ELSE ’0’;
75. END Behaviour;

Figure 4. VHDL code for the FSM to control the serial adder (Part b).

8 Altera Corporation - University Program
May 2013

http://www.altera.com/education/univ/

USING MODELSIM TO SIMULATE LOGIC CIRCUITS IN VHDL DESIGNS For Quartus II 13.0

Figure 5. State diagram.

The VHDL code for the shift register is given in Figure 6. It consists of synchronous control signals to allow data to
be loaded into the shift register, or reset to 0. When enable input is set to 1 and the data is not being loaded or reset,
the contents of the shift register are moved one bit to the right (towards the least-significant bit).

Altera Corporation - University Program
May 2013

9

http://www.altera.com/education/univ/

USING MODELSIM TO SIMULATE LOGIC CIRCUITS IN VHDL DESIGNS For Quartus II 13.0

1. LIBRARY ieee;
2. USE ieee.std_logic_1164.all;
3.
4. ENTITY shift_reg IS
5. GENERIC(
6. n :INTEGER := 8
7.);
8. PORT(
9. clock :IN STD_LOGIC;
10. reset :IN STD_LOGIC;
11. data :IN STD_LOGIC_VECTOR(n-1 DOWNTO 0);
12. bit_in :IN STD_LOGIC;
13. enable :IN STD_LOGIC;
14. load :IN STD_LOGIC;
15. q :BUFFER STD_LOGIC_VECTOR(n-1 DOWNTO 0)
16.);
17. END shift_reg;
18.
19. ARCHITECTURE Behaviour OF shift_reg IS
20. BEGIN
21. PROCESS (clock)
22. BEGIN
23. IF clock’EVENT AND clock = ’1’ THEN
24. IF (enable = ’1’) THEN
25. IF (reset = ’1’) THEN
26. q <= (OTHERS => ’0’);
27. ELSE
28. IF (load = ’1’) THEN
29. q <= data;
30. ELSE
31. q(n-2 DOWNTO 0) <= q(n-1 DOWNTO 1);
32. q(n-1) <= bit_in;
33. END IF;
34. END IF;
35. END IF;
36. END IF;
37. END PROCESS;
38. END Behaviour;

Figure 6. VHDL code for the shift register.

10 Altera Corporation - University Program
May 2013

http://www.altera.com/education/univ/

USING MODELSIM TO SIMULATE LOGIC CIRCUITS IN VHDL DESIGNS For Quartus II 13.0

The design is located in the example/functional and example/timing subdirectories provided with this tutorial. A
Quartus II project for this design has been created as well.

In the following sections, we use the serial adder example to demonstrate how to perform simulation using Mod-
elSim. We begin by describing a procedure to perform a functional simulation, and then discuss how to perform a
timing simulation.

4 Functional Simulation with ModelSim

We begin this tutorial by showing how to perform a functional simulation of the example design. We start by opening
the ModelSim program.

Figure 7. ModelSim window.

The ModelSim program window, shown in Figure 7, consists of three sections: the main menu at the top, a set of
workspace tabs, and a command prompt at the bottom. The menu is used to access functions available in ModelSim.
The workspace contains a list of entities and libraries of entities available to you, as well as details of the project
you are working on. A new work area will appear on the right of the libraries of entities when needed to display
waveforms and/or text files. Finally, the command prompt at the bottom shows feedback from the simulation tool
and allows users to enter commands.

To perform simulation with ModelSim follow a basic flow shown in Figure 1. We begin by creating a project where
all design files to be simulated are included. We compile the design and then run the simulation. Based on the results
of the simulation, the design can be altered until it meets the desired specifications.

Altera Corporation - University Program
May 2013

11

http://www.altera.com/education/univ/

USING MODELSIM TO SIMULATE LOGIC CIRCUITS IN VHDL DESIGNS For Quartus II 13.0

4.1 Creating a Project

To create a project in ModelSim, select File > New > Project.... A Create Project window shown in Figure 8 will
appear.

Figure 8. Creating a new project.

The create project window consists of several fields: project name, project location, default library name, and copy
settings field. Project name is a user selected name and the location is the directory where the source files are located.
For our example, we choose the project name to be serial, to match the top-level entity name of our example design,
and the location of the project is the example/functional subdirectory.

The default library name field specifies a name by which ModelSim catalogues designs. For example, a set of files
that describe the logical behaviour of components in an Altera Cyclone II device are stored in the cycloneii library.
This allows the simulator to include a set of files in simulation as libraries rather than individual files, which is
particularly useful for timing simulations where device-specific data is required. For the purpose of this tutorial,
specify tutorial as the library name for your project.

The last field in the create project window is the copy settings field. This allows default settings to be copied from
the initialization file and applied to your project. Now, click OK to proceed to add files to the project using the
window shown in Figure 9.

12 Altera Corporation - University Program
May 2013

http://www.altera.com/education/univ/

USING MODELSIM TO SIMULATE LOGIC CIRCUITS IN VHDL DESIGNS For Quartus II 13.0

Figure 9. Add a file to project window.

The window in Figure 9 gives several options to add files to the project, including creating new files and directories,
or adding existing files. Since the file for this tutorial exists, click Add Existing File and select serial.vhd file.
Once the file is added to the project, it will appear in the Project tab on the left-hand side of the screen, as shown in
Figure 10.

Figure 10. Workspace window after the project is created.

Now that all design files have been included in the project, click Close to close the window in Figure 9.

4.2 Compiling a Project

Once the project has been created, it is necessary to compile it. Compilation in ModelSim checks if the project
files are correct and creates intermediate data that will be used during simulation. To perform compilation, select
Compile All from the Compile menu. When the compilation is successful, a green check mark will appear to the
right of the serial.vhd file in the Project tab.

Altera Corporation - University Program
May 2013

13

http://www.altera.com/education/univ/

USING MODELSIM TO SIMULATE LOGIC CIRCUITS IN VHDL DESIGNS For Quartus II 13.0

4.3 Simulation

To begin a simulation of the design, the software needs to be put in simulation mode. To do this, select Simulate >
Start Simulation... . The window in Figure 11 will appear.

Figure 11. Start simulation mode in ModelSim.

The window to start simulation consists of many tabs. These include a Design tab that lists designs available for
simulation, VHDL and Verilog tabs to specify language-specific options, a Libraries tab to include any additional
libraries, and timing and other options in the remaining two tabs. For the purposes of the functional simulation, we
only need to look at the Design tab.

In the Design tab you will see a list of libraries and entities you can simulate. In this tutorial, we want to simulate
a entity called serial, described in serial.vhd file. To select this entity, scroll down and locate the tutorial library and
click on the plus (+) sign. You will see three entities available for simulation: FSM, serial, and shift_reg. Select the
serial entity, as shown in Figure 11 and click OK to begin simulation.

When you click OK, ModelSim will begin loading the selected libraries and preparing to simulate the circuit. For the
example in this tutorial, the preparation should complete quickly. Once ModelSim is ready to simulate your design,
you will notice that several new tabs on the left-hand side of the screen and a new Objects window have appeared,
as shown in Figure 12.

14 Altera Corporation - University Program
May 2013

http://www.altera.com/education/univ/

USING MODELSIM TO SIMULATE LOGIC CIRCUITS IN VHDL DESIGNS For Quartus II 13.0

Figure 12. New displays in the simulation mode.

A key new tab on the left-hand side is the sim tab. It contains a hierarchical display of design units in your circuit in
a form of a table. The columns of the table include the instance name, design unit and design unit type names. The
rows of the table take a form of an expandable tree. The tree is rooted in the top-level entity called serial. Each entity
instance has a plus (+) sign next to its name to indicate it can be expanded to allow users to examine the contents of
that entity instance.

Expanding the top-level entity in this view gives a list of components and/or constructs within it. For example, in
Figure 12 the top-level entity serial is shown to contain an instance of the FSM entity, called my_control, three
instances of a shift_reg entity, two assignment statements, and a process block. Double-clicking on any of the
constructs will cause ModelSim to open a source file and locate the given construct within it. Double-clicking on an
entity/component will open a source file and point to the description of the entity in the source file.

In addition to showing entities and/or constructs, the sim tab can be used to locate signals for simulation. Notice
that when the serial entity is highlighted, a list of signals (inputs, outputs, and local wires) is shown in the Objects
window. The signals are displayed as a table with four columns: name, value, kind, and mode. The name of a signal
may be preceded by a plus (+) sign to indicate that it is a bus. The top-level entity comprises signals A, B, resetn,
start, and clock as inputs, a sum output and a number of internal signals.

We can also locate signals inside of components in the design. To do this, highlight a component whose signals you
wish to see in the Objects window. For example, to see the signals in the my_control instance of the FSM entity,
highlight the my_control instance in the sim tab. This will give a list of signals inside of the instance as shown in
Figure 13.

Altera Corporation - University Program
May 2013

15

http://www.altera.com/education/univ/

USING MODELSIM TO SIMULATE LOGIC CIRCUITS IN VHDL DESIGNS For Quartus II 13.0

Figure 13. Expanded my_control instance.

Using the sim tab and the Objects window we can select signals for simulation. To add a signal to simulation, right-
click on the signal name in the Objects window and select Add > To Wave > Selected Signals from the pop-up
menu. Using this method, add signals A, B, resetn, start, clock, sum, and current_state to the simulation. When
you do so, a waveform window will appear in the work area. Once you have added these signals to the simulation,
press the Undock button in the top-right corner of the waveform window to make it a separate window, as shown in
Figure 14.

16 Altera Corporation - University Program
May 2013

http://www.altera.com/education/univ/

USING MODELSIM TO SIMULATE LOGIC CIRCUITS IN VHDL DESIGNS For Quartus II 13.0

Figure 14. A simulation window.

Now that we set up a set of signals to observe we can begin simulating the circuit. There are two ways to run
a simulation in ModelSim: manually or by using scripts. A manual simulation allows users to apply inputs and
advance the simulation time to see the results of the simulation in a step-by-step fashion. A scripted simulation
allows the user to create a script where the sequence of input stimuli are defined in a file. ModelSim can read the file
and apply input stimuli to appropriate signals and then run the simulation from beginning to end, displaying results
only when the simulation is completed. In this tutorial, we perform the simulation manually.

In this simulation, we use a clock with a 100 ps period. At every negative edge of the clock we assign new values
to circuit inputs to see how the circuit behaves. To set the clock period, right-click on the clock signal and select
Clock... from the pop-up menu. In the window that appears, set the clock period to 100 ps and the first edge to be
the falling edge, as shown in Figure 15. Then click OK.

Altera Corporation - University Program
May 2013

17

http://www.altera.com/education/univ/

USING MODELSIM TO SIMULATE LOGIC CIRCUITS IN VHDL DESIGNS For Quartus II 13.0

Figure 15. Set the clock period.

We begin the simulation by resetting the circuit. To reset the circuit, set the resetn signal low by right-clicking on it
and selecting the Force... option from the pop-up menu. In the window that appears, set Value to 0 and click OK.
In a similar manner, set the value of the start signal to 0. Now that the initial values for some of the signals are set,
we can perform the first step of the simulation. To do this, locate the toolbar buttons shown in Figure 16.

Figure 16. Simulation control buttons on the toolbar.

The toolbar buttons shown in Figure 16 are used to step through the simulation. The left-most button is the restart
button, which causes the simulation window to be cleared and the simulation to be restarted. The text field, shown
with a 100 ps string inside it, defines the amount of time that the simulation should run for when the Run button (to
the right of the text field) is pressed. The remaining three buttons, Continue, Run -All and Break, can be used to
resume, start and interrupt a simulation, respectively. We will not need them in this tutorial.

To run a simulation for 100 ps, set the value in the text field to 100 ps and press the Run button. After the simulation
run for 100 ps completes, you will see the state of the circuit as shown in Figure 17. You can change the time scale
of your waveform by going to View > Zoom > Zoom Range.... Change the end time to 1200 ps and press OK.

18 Altera Corporation - University Program
May 2013

http://www.altera.com/education/univ/

USING MODELSIM TO SIMULATE LOGIC CIRCUITS IN VHDL DESIGNS For Quartus II 13.0

Figure 17. Simulation results after 100 ps.

In the figure, each signal has a logic state. The first two signals, A and B, are assigned an unknown value represented
by Us. This value indicates these signals are not driven to any logic state. The start and resetn signals are at a logic
0 value thereby resetting the circuit. The clock signal toggles state every 50 ps, starting with a falling edge at time 0,
a rising edge at time 50 ps and another falling edge at 100 ps.

Now that the circuit is reset, we can begin testing to see if it operates correctly for desired inputs. To test the serial
adder we will add numbers 143 and 57, which should result in a sum of 200. We can set A and B to 143 and 57,
respectively, using decimal notation. To specify a value for A in decimal, right-click on it, and choose Force...
from the pop-up menu. Then, in the Value field put 10#143. The 10# prefix indicates that the value that follows is
specified in decimal. Similarly, set the Value field of B to 10#57.

To see the decimal, rather than binary, values of buses in the waveform window we need to change the Radix of A
and B to unsigned. To change the radix of these signals, highlight them in the simulation window and select Format
> Radix > Unsigned, as shown in Figure 18. Change the radix of the sum signal to unsigned as well.

Altera Corporation - University Program
May 2013

19

http://www.altera.com/education/univ/

USING MODELSIM TO SIMULATE LOGIC CIRCUITS IN VHDL DESIGNS For Quartus II 13.0

Figure 18. Changing the radix of A, B and sum signals.

Now that inputs A and B are specified, set resetn to 1 to stop the circuit from resetting. Then set start to 1 to begin
serial addition, and press the Run button to run the simulation for another 100 ps. The output should be as illustrated
in Figure 19. Notice that the values of inputs A and B are shown in decimal as is the sum. The circuit also recognized
a start signal and moved to state 01 to begin computing the sum of the two inputs.

20 Altera Corporation - University Program
May 2013

http://www.altera.com/education/univ/

USING MODELSIM TO SIMULATE LOGIC CIRCUITS IN VHDL DESIGNS For Quartus II 13.0

Figure 19. Simulation results after 200 ps.

To complete the operation, the circuit will require 9 clock cycles. To fast forward the simulation to see the result,
specify 900 ps in the text field next to the run button, and press the run button. This brings the simulation to time
1100 ps, at which point a result of summation is shown on the sum signal, as illustrated in Figure 20.

Altera Corporation - University Program
May 2013

21

http://www.altera.com/education/univ/

USING MODELSIM TO SIMULATE LOGIC CIRCUITS IN VHDL DESIGNS For Quartus II 13.0

Figure 20. Simulation results after 1100 ps.

We can see that the result is correct and the finite state machine controlling the serial adder entered state 11, in which
it awaits the start signal to become 0. Once we set the start signal to 0 and advance the simulation by 100 ps, the
circuit will enter state 00 and await a new set of inputs for addition. The simulation result after 1200 ps is shown in
Figure 21.

22 Altera Corporation - University Program
May 2013

http://www.altera.com/education/univ/

USING MODELSIM TO SIMULATE LOGIC CIRCUITS IN VHDL DESIGNS For Quartus II 13.0

Figure 21. Simulation results after 1200 ps.

At this point, we can begin the simulation for a new set of inputs as needed, repeating the steps described above. We
can also restart the simulation by pressing the restart button to begin again from time 0.

By using the functional simulation we have shown that the serial.vhd file contains an accurate VHDL description
of a serial adder. However, this simulation did not verify if the circuit implemented on an FPGA is correct. This
is because we did not use a synthesized, placed and routed circuit as input to the simulator. The correctness of the
implementation, including timing constraints can be verified using timing simulation.

5 Timing Simulation with ModelSim

Timing simulation is an enhanced simulation, where the logical functionality of a design is tested in the presence of
delays. Any change in logic state of a wire will take as much time as it would on a real device. This forces the inputs
to the simulation be realistic not only in terms of input values and the sequence of inputs, but also the time when the
inputs are applied to the circuit.

For example, in the previous section we simulated the sample design and used a clock period of 100 ps. This clock

Altera Corporation - University Program
May 2013

23

http://www.altera.com/education/univ/

USING MODELSIM TO SIMULATE LOGIC CIRCUITS IN VHDL DESIGNS For Quartus II 13.0

period is shorter than the minimum clock period for this design, and hence the timing simulation would fail to
produce the correct result. To obtain the correct result, we have to account for delays when running the simulation
and use a clock frequency for which the circuit operates correctly.

For Altera FPGA-based designs the delay information is available after the design is synthesized, placed and routed,
and is generated by Quartus II CAD software. The project for this part of the tutorial has been created for you in the
example/timing subdirectory.

5.1 Setting up a Quartus II Project for Timing Simulation with ModelSim

To perform timing simulation we need to set up Quartus II software to generate the necessary delay information for
ModelSim by setting up EDA Tools for simulation in the Quartus II project. To set up EDA Tools for simulation,
open the Quartus II project in example/timing subdirectory, and select Assignment > Settings.... A window shown
in Figure 22 will appear.

The window in the figure consists of a list on the left-hand side to select the settings category and a window area
on the right-hand side that displays the settings for a given category. Select Simulation from the EDA Tool Settings
category to see the screen shown on the right-hand side of Figure 22.

The right-hand side of the figure contains the tool name at the top, EDA Netlist Writer settings in the middle, and
NativeLink settings at the bottom. The tool name is a drop-down list containing the names of simulation tools for
which Quartus II can produce a netlist with timing information automatically. This list contains many well-known
simulation tools, including ModelSim. From the drop-down list select ModelSim-Altera.

Once a simulation tool is selected, EDA Netlist Writer settings become available. These settings configure Quartus
II to produce input for the simulation tool. Quartus II will use these parameters to describe an implemented design
using a given HDL language, and annotate it with delay information obtained after compilation. The settings we can
define are the HDL language, simulation time scale that defines time step size for the simulator to use, the location
where the writer saves design and delay information, and others. Set these settings to match those shown in Figure 22
and click OK.

With the EDA Tools Settings specified, we can proceed to compile the project in Quartus II. The compilation process
synthesizes, places, and routes the design, and performs timing analysis. Then it stores the compilation result in the
simulation directory for ModelSim to use. Take a moment to examine the files generated for simulation using a text
editor. The two main files are serial.vo, and serial_v.sdo.

The serial.vo file is a Verilog file for the design. The file looks close to the original VHDL file, except that the
design now contains a wide array of modules with a cycloneii_ prefix. These entities describe resources on an Altera
Cyclone II FPGA, on which the design was implemented using lookup tables, flip-flops, wires and I/O ports. The
list of delays for each module instance in the design is described in the serial_v.sdo file.

24 Altera Corporation - University Program
May 2013

http://www.altera.com/education/univ/

USING MODELSIM TO SIMULATE LOGIC CIRCUITS IN VHDL DESIGNS For Quartus II 13.0

Figure 22. Quartus II EDA simulation tool settings.

5.2 Running a Timing Simulation

To simulate the design using timing simulation we must create a ModelSim project. The steps are the same as in
the previous section; however, the project is located in the example/timing/simulation/modelsim subdirectory, and
the source file is serial.vo. We do not need to include the serial_v.sdo file in the project, because a reference to it
is included in the serial.vo file. Once you added the source file to the project, compile it by selecting Compile >
Compile All.

The next step in the simulation procedure is to place the ModelSim software in simulation mode. In the previous
section, we did this by selecting Simulate > Start Simulation..., and specifying the project name. To run a timing
simulation there is an additional step required to include the Altera Cyclone II device library in the simulation. This
library contains information about the logical operation of entities with the cycloneii_ prefix. To include the Cyclone
II library in the project, select Simulate > Start Simulation... and select the Libraries tab as shown in Figure 23.

Altera Corporation - University Program
May 2013

25

http://www.altera.com/education/univ/

USING MODELSIM TO SIMULATE LOGIC CIRCUITS IN VHDL DESIGNS For Quartus II 13.0

Figure 23. Including Altera Cyclone II library in ModelSim project.

The Altera Cyclone II library is located in the altera/verilog/cycloneii directory in the ModelSim-Altera software.
To add this library to your project, include the altera/verilog/cycloneii directory using the Add... button. Then, click
on the Design tab, select your project for simulation (tutorial > serial), and click OK.

When the ModelSim software enters simulation mode, you will see a significant difference in the contents of the
workspace tabs on the left-hand side of the window as compared to when you ran the functional simulation. In
particular, notice the sim tab and the Objects window shown in Figure 24. The list of entities in the sim tab is
larger, and the objects window contains more signals. This is due to the fact that the design is constructed using
components on an FPGA and is more detailed in comparison to an abstract description we used in the previous
section of the tutorial.

26 Altera Corporation - University Program
May 2013

http://www.altera.com/education/univ/

USING MODELSIM TO SIMULATE LOGIC CIRCUITS IN VHDL DESIGNS For Quartus II 13.0

Figure 24. Workspace tabs and Objects window for timing simulation.

We simulate the circuit by creating a waveform that includes signals sum, A, B, start, and resetn as before. In
addition, we include the clock, reg_sum|q, reg_A|q, and reg_B|q signals from the Objects window. Signals reg_A|q
and reg_B|q are registers that store A and B at the positive edge of the clock. The reg_sum|q signal is a register that
stores the resulting sum.

Begin the simulation by resetting the circuit. To do this, set start and resetn signals to 0. Also, set the clock input to
have a period of 20 ns, whose first edge is a falling edge. To run the simulation, set the simulation step to 20 ns and
press the Run button. The simulation result is shown in Figure 25.

Altera Corporation - University Program
May 2013

27

http://www.altera.com/education/univ/

USING MODELSIM TO SIMULATE LOGIC CIRCUITS IN VHDL DESIGNS For Quartus II 13.0

Figure 25. Timing Simulation after 20 ns.

To proceed with the simulation deassert the resetn signal by setting it to 1, and apply data to inputs A and B. Set
them to 143 and 57, and assign a value of 1 to the start input as described in the Functional Simulation section of the
tutorial. Then run the simulation for a period of 20 ns, by pressing the Run button. The simulation result is shown
in Figure 26. Remember to change the radix of A, B, sum, and their corresponding registers to unsigned.

28 Altera Corporation - University Program
May 2013

http://www.altera.com/education/univ/

USING MODELSIM TO SIMULATE LOGIC CIRCUITS IN VHDL DESIGNS For Quartus II 13.0

Figure 26. Timing Simulation after 40 ns.

In Figure 26 the data is stored in registers reg_A|q and reg_B|q at the positive edge of the clock. Notice that the
simulation indicated that the data in those registers changes some time after the positive edge of the clock, unlike in
the functional simulation. The reason for this difference are the delays in the circuit. We can use the zoom buttons
to see this more clearly.

When we zoom in on the time when registers reg_A|q and reg_B|q change value, we see the register values change
as shown in Figure 27. In the figure, register reg_B|q stabilizes on a value of 57 at time 32918 ps. This is 2918 ps
after the positive edge of the clock appeared at the clock input. Part of the difference in times between the clock edge
and the change of data in register reg_B|q comes from the fact that the clock signal must travel from the input pin
on the FPGA device to the registers. The other part of the time is due to the clock-to-Q time of the register, which is
the time it takes for a register to change output after it sees a positive edge on the clock input.

Altera Corporation - University Program
May 2013

29

http://www.altera.com/education/univ/

USING MODELSIM TO SIMULATE LOGIC CIRCUITS IN VHDL DESIGNS For Quartus II 13.0

Figure 27. Zoomed-in Timing Simulation after 40ns.

Another interesting aspect of the timing simulation can also be observed in Figure 27. Notice that register reg_A|q
first changes value to 128 and a few picoseconds later assumes the value 143. This is because the clock signal does
not get to every flip-flop at exactly the same time - this is called clock skew.

6 Concluding Remarks

This tutorial discussed the basic use of ModelSim simulator. We demonstrated how to perform a functional sim-
ulation using a user-written VHDL code, as well as a detailed timing simulation. For the timing simulation, we
presented a simple method to generate design description using Altera Quartus II CAD software, which includes the
low-level design details and circuit delays.

There are more advanced options for simulation available in ModelSim software. They can help automate and speed
up the simulation of larger more complex designs. These features are covered in the tutorials provided with the
ModelSim tool, and are beyond the scope of this introductory tutorial.

30 Altera Corporation - University Program
May 2013

http://www.altera.com/education/univ/

USING MODELSIM TO SIMULATE LOGIC CIRCUITS IN VHDL DESIGNS For Quartus II 13.0

Copyright ©1991-2013 Altera Corporation. All rights reserved. Altera, The Programmable Solutions Company, the
stylized Altera logo, specific device designations, and all other words and logos that are identified as trademarks
and/or service marks are, unless noted otherwise, the trademarks and service marks of Altera Corporation in the
U.S. and other countries. All other product or service names are the property of their respective holders. Altera
products are protected under numerous U.S. and foreign patents and pending applications, mask work rights, and
copyrights. Altera warrants performance of its semiconductor products to current specifications in accordance with
Altera’s standard warranty, but reserves the right to make changes to any products and services at any time without
notice. Altera assumes no responsibility or liability arising out of the application or use of any information, product,
or service described herein except as expressly agreed to in writing by Altera Corporation. Altera customers are
advised to obtain the latest version of device specifications before relying on any published information and before
placing orders for products or services.

This document is being provided on an ”as-is” basis and as an accommodation and therefore all warranties, repre-
sentations or guarantees of any kind (whether express, implied or statutory) including, without limitation, warranties
of merchantability, non-infringement, or fitness for a particular purpose, are specifically disclaimed.

Altera Corporation - University Program
May 2013

31

http://www.altera.com/education/univ/

	1 Introduction
	2 Background
	3 Example Design
	4 Functional Simulation with ModelSim
	4.1 Creating a Project
	4.2 Compiling a Project
	4.3 Simulation

	5 Timing Simulation with ModelSim
	5.1 Setting up a Quartus II Project for Timing Simulation with ModelSim
	5.2 Running a Timing Simulation

	6 Concluding Remarks

