
101 Innovation Drive
San Jose, CA 95134
www.altera.com

 

NII5V1-13.1
 

Handbook

Nios II Processor Reference

Document last updated for Altera Complete Design Suite version:
Document publication date:

13.1
February 2014

Nios II Processor Reference Handbook

http://www.altera.com


Nios II Processor Reference Handbook February 2014 Altera Corporation

© 2014 Altera Corporation. All rights reserved. ALTERA, ARRIA, CYCLONE, HARDCOPY, MAX, MEGACORE, NIOS, QUARTUS and STRATIX are Reg. U.S. Pat.
& Tm. Off. and/or trademarks of Altera Corporation in the U.S. and other countries. All other trademarks and service marks are the property of their respective
holders as described at www.altera.com/common/legal.html. Altera warrants performance of its semiconductor products to current specifications in accordance
with Altera’s standard warranty, but reserves the right to make changes to any products and services at any time without notice. Altera assumes no responsibility or
liability arising out of the application or use of any information, product, or service described herein except as expressly agreed to in writing by Altera. Altera
customers are advised to obtain the latest version of device specifications before relying on any published information and before placing orders for products or
services.

http://www.altera.com/common/legal.html


February 2014 Altera Corporation
Contents
Chapter Revision Dates . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . v

Section I. Nios II Processor Design

Chapter 1. Introduction
Nios II Processor System Basics  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1–1
Getting Started with the Nios II Processor  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1–2
Customizing Nios II Processor Designs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1–3
Configurable Soft Processor Core Concepts  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1–4
OpenCore Plus Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1–6
Document Revision History  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1–6

Chapter 2. Processor Architecture
Processor Implementation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2–2
Register File  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2–3
Arithmetic Logic Unit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2–4
Reset and Debug Signals  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2–9
Exception and Interrupt Controllers  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2–9
Memory and I/O Organization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2–11
JTAG Debug Module  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2–18
Document Revision History  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2–22

Chapter 3. Programming Model
Operating Modes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3–1
Memory Management Unit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3–2
Memory Protection Unit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3–8
Registers  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3–10
Working with the MPU  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3–28
Working with ECC  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3–29
Exception Processing  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3–31
Memory and Peripheral Access  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3–55
Instruction Set Categories  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3–57
Document Revision History  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3–62

Chapter 4. Instantiating the Nios II Processor
Core Nios II Tab . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4–1
Caches and Memory Interfaces Tab . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4–5
Advanced Features Tab  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4–7
MMU and MPU Settings Tab  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4–11
JTAG Debug Module Tab . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4–13
Custom Instruction Tab  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4–15
The Quartus II IP File  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4–18
Document Revision History  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4–18
Nios II Processor Reference Handbook



iv Contents
Section II. Nios II Processor Implementation and Reference

Chapter 5. Nios II Core Implementation Details
Device Family Support . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5–3
Nios II/f Core . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5–4
Nios II/s Core  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5–15
Nios II/e Core  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5–20
Document Revision History  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5–22

Chapter 6. Nios II Processor Revision History
Nios II Versions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6–1
Architecture Revisions  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6–2
Core Revisions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6–3
JTAG Debug Module Revisions  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6–7
Document Revision History  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6–8

Chapter 7. Application Binary Interface
Data Types  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7–1
Memory Alignment . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7–1
Register Usage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7–2
Stacks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7–3
Arguments and Return Values  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7–6
DWARF-2 Definition  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7–8
Object Files . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7–8
Relocation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7–8
ABI for Linux Systems  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7–10
Document Revision History  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7–20

Chapter 8. Instruction Set Reference
Word Formats  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8–1
Instruction Opcodes  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8–3
Assembler Pseudo-Instructions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8–4
Assembler Macros . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8–5
Instruction Set Reference  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8–5
Document Revision History  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8–104
How to Find Further Information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  Info–1
How to Contact Altera  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  Info–1
Typographic Conventions  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  Info–2
Nios II Processor Reference Handbook February 2014 Altera Corporation



February 2014 Altera Corporation
Chapter Revision Dates
The chapters in this document, Nios II Processor Reference Handbook, were revised 
on the following dates. Where chapters or groups of chapters are available separately, 
part numbers are listed.

Chapter 1. Introduction
Revised: February 2014
Part Number: NII51001-13.1.0

Chapter 2. Processor Architecture
Revised: February 2014
Part Number: NII51002-13.1.0

Chapter 3. Programming Model
Revised: February 2014
Part Number: NII51003-13.1.0

Chapter 4. Instantiating the Nios II Processor
Revised: February 2014
Part Number: NII51004-13.1.0

Chapter 5. Nios II Core Implementation Details
Revised: February 2014
Part Number: NII51015-13.1.0

Chapter 6. Nios II Processor Revision History
Revised: February 2014
Part Number: NII51018-13.1.0

Chapter 7. Application Binary Interface
Revised: February 2014
Part Number: NII51016-13.1.0

Chapter 8. Instruction Set Reference
Revised: February 2014
Part Number: NII51017-13.1.0
Nios II Processor Reference Handbook



vi Chapter Revision Dates
Nios II Processor Reference Handbook February 2014 Altera Corporation



February 2014 Altera Corporation
Section I. Nios II Processor Design
This section provides information about the Nios® II processor. 

This section includes the following chapters:

■ Chapter 1, Introduction

■ Chapter 2, Processor Architecture

■ Chapter 3, Programming Model

■ Chapter 4, Instantiating the Nios II Processor

f For information about the revision history for chapters in this section, refer to 
“Document Revision History” in each individual chapter.
Nios II Processor Reference Handbook



I–2 Section I: Nios II Processor Design
Nios II Processor Reference Handbook February 2014 Altera Corporation



Nios II Processor Reference Handbook
February 2014

NII51001-13.1.0

© 2014 Altera Corporation. All rights reserved. ALTERA, ARR
and/or trademarks of Altera Corporation in the U.S. and other
www.altera.com/common/legal.html. Altera warrants perform
reserves the right to make changes to any products and services
information, product, or service described herein except as exp
specifications before relying on any published information and

February 2014
NII51001-13.1.0
1. Introduction
This handbook describes the Nios II processor from a high-level conceptual 
description to the low-level details of implementation. The chapters in this handbook 
describe the Nios II processor architecture, the programming model, and the 
instruction set. 

f This handbook is the primary reference for the Nios® II family of embedded 
processors and is part of a larger collection of documents covering the Nios II 
processor and its usage that you can find on the Literature: Nios II Processor page of 
the Altera® website.

This handbook assumes you have a basic familiarity with embedded processor 
concepts. You do not need to be familiar with any specific Altera technology or with 
Altera development tools. This handbook limits discussion of hardware 
implementation details of the processor system. The Nios II processors are designed 
for Altera FPGA devices, and so this handbook does describe some FPGA 
implementation concepts. Your familiarity with FPGA technology provides a deeper 
understanding of the engineering trade-offs related to the design and implementation 
of the Nios II processor.

This chapter introduces the Altera Nios II embedded processor family and describes 
the similarities and differences between the Nios II processor and traditional 
embedded processors.

Nios II Processor System Basics
The Nios II processor is a general-purpose RISC processor core with the following 
features:

■ Full 32-bit instruction set, data path, and address space

■ 32 general-purpose registers

■ Optional shadow register sets

■ 32 interrupt sources

■ External interrupt controller interface for more interrupt sources

■ Single-instruction 32 × 32 multiply and divide producing a 32-bit result

■ Dedicated instructions for computing 64-bit and 128-bit products of multiplication

■ Optional floating-point instructions for single-precision floating-point operations

■ Single-instruction barrel shifter

■ Access to a variety of on-chip peripherals, and interfaces to off-chip memories and 
peripherals

■ Hardware-assisted debug module enabling processor start, stop, step, and trace 
under control of the Nios II software development tools
Subscribe

IA, CYCLONE, HARDCOPY, MAX, MEGACORE, NIOS, QUARTUS and STRATIX are Reg. U.S. Pat. & Tm. Off. 
 countries. All other trademarks and service marks are the property of their respective holders as described at 

ance of its semiconductor products to current specifications in accordance with Altera’s standard warranty, but 
 at any time without notice. Altera assumes no responsibility or liability arising out of the application or use of any 
ressly agreed to in writing by Altera. Altera customers are advised to obtain the latest version of device 
 before placing orders for products or services.

http://www.altera.com/common/legal.html
http://www.altera.com/literature/lit-nio2.jsp
https://www.altera.com/servlets/subscriptions/alert?id=NII51001


1–2 Chapter 1: Introduction
Getting Started with the Nios II Processor
■ Optional memory management unit (MMU) to support operating systems that 
require MMUs

■ Optional memory protection unit (MPU)

■ Software development environment based on the GNU C/C++ tool chain and the 
Nios II Software Build Tools (SBT) for Eclipse

■ Integration with Altera’s SignalTap® II Embedded Logic Analyzer, enabling 
real-time analysis of instructions and data along with other signals in the FPGA 
design

■ Instruction set architecture (ISA) compatible across all Nios II processor systems

■ Performance up to 250 DMIPS

■ Optional error correcting code (ECC) support for a subset of Nios II processor 
internal RAM blocks

A Nios II processor system is equivalent to a microcontroller or “computer on a chip” 
that includes a processor and a combination of peripherals and memory on a single 
chip. A Nios II processor system consists of a Nios II processor core, a set of on-chip 
peripherals, on-chip memory, and interfaces to off-chip memory, all implemented on a 
single Altera device. Like a microcontroller family, all Nios II processor systems use a 
consistent instruction set and programming model. 

Getting Started with the Nios II Processor
The easiest way to start designing effectively is to use an Altera development kit that 
includes a ready-made development board and the Nios II Embedded Design Suite 
(EDS) containing all the software development tools necessary to write Nios II 
software.

f For a list of available development kits, refer to the All Development Kits page of the 
Altera website.

The Nios II EDS includes the following two closely-related software development tool 
flows:

■ The Nios II SBT 

■ The Nios II SBT for Eclipse

Both tools flows are based on the GNU C/C++ compiler. The Nios II SBT for Eclipse 
provides a familiar and established environment for software development. Using the 
Nios II SBT for Eclipse, you can immediately begin developing and simulating Nios II 
software applications.

The Nios II SBT also provides a command line interface.
Nios II Processor Reference Handbook February 2014 Altera Corporation

http://www.altera.com/products/devkits/kit-dev_platforms.jsp


Chapter 1: Introduction 1–3
Customizing Nios II Processor Designs
Using the Nios II hardware reference designs included in an Altera development kit, 
you can prototype an application running on a board before building a custom 
hardware platform.

If the prototype system adequately meets design requirements using an 
Altera-provided reference design, you can copy the reference design and use it 
without modification in the final hardware platform. Otherwise, you can customize 
the Nios II processor system until it meets cost or performance requirements.

Customizing Nios II Processor Designs
In practice, most FPGA designs implement some extra logic in addition to the 
processor system. Altera FPGAs provide flexibility to add features and enhance 
performance of the Nios II processor system. You can also eliminate unnecessary 
processor features and peripherals to fit the design in a smaller, lower-cost device.

Because the pins and logic resources in Altera devices are programmable, many 
customizations are possible:

■ You can rearrange the pins on the chip to simplify the board design. For example, 
you can move address and data pins for external SDRAM memory to any side of 
the chip to shorten board traces. 

■ You can use extra pins and logic resources on the chip for functions unrelated to 
the processor. Extra resources can provide a few extra gates and registers as glue 
logic for the board design; or extra resources can implement entire systems. For 
example, a Nios II processor system consumes only 5% of a large Altera FPGA, 
leaving the rest of the chip’s resources available to implement other functions.

Figure 1–1. Example of a Nios II Processor System

        Nios II
Processor Core

 SDRAM
Controller

On-Chip ROM

Tristate bridge to
off-chip memory

S
ys

te
m

 In
te

rc
on

ne
ct

 F
ab

ric

           JTAG
   Debug Module

SDRAM
Memory

  Flash
Memory

 SRAM
Memory

UART

Timer1

Timer2

LCD Display Driver

General-Purpose I/O

Ethernet Interface

CompactFlash
     Interface

  LCD 
Screen

 Ethernet
MAC/PHY

Compact
   Flash

  Buttons, 
LEDs, etc.

TXD
RXD

   JTAG connection
to software debugger

C
lo

ck

R
es

et

Data

Inst.
February 2014 Altera Corporation Nios II Processor Reference Handbook



1–4 Chapter 1: Introduction
Configurable Soft Processor Core Concepts
■ You can use extra pins and logic on the chip to implement additional peripherals 
for the Nios II processor system. Altera offers a library of peripherals that easily 
connect to Nios II processor systems.

Configurable Soft Processor Core Concepts
This section introduces Nios II concepts that are unique or different from other 
discrete microcontrollers. The concepts described in this section provide a foundation 
for understanding the rest of the features discussed in this handbook.

Configurable Soft Processor Core
The Nios II processor is a configurable soft IP core, as opposed to a fixed, off-the-shelf 
microcontroller. You can add or remove features on a system-by-system basis to meet 
performance or price goals. Soft means the processor core is not fixed in silicon and 
can be targeted to any Altera FPGA family.

You are not required to create a new Nios II processor configuration for every new 
design. Altera provides ready-made Nios II system designs that you can use as is. If 
these designs meet your system requirements, there is no need to configure the design 
further. In addition, you can use the Nios II instruction set simulator to begin writing 
and debugging Nios II applications before the final hardware configuration is 
determined.

Flexible Peripheral Set and Address Map
A flexible peripheral set is one of the most notable differences between Nios II 
processor systems and fixed microcontrollers. Because the Nios II processor is 
implemented in programmable logic, you can easily build made-to-order Nios II 
processor systems with the exact peripheral set required for the target applications. 

A corollary of flexible peripherals is a flexible address map. Altera provides software 
constructs to access memory and peripherals generically, independently of address 
location. Therefore, the flexible peripheral set and address map does not affect 
application developers.

There are two broad classes of peripherals: standard peripherals and custom 
peripherals.

Standard Peripherals
Altera provides a set of peripherals commonly used in microcontrollers, such as 
timers, serial communication interfaces, general-purpose I/O, SDRAM controllers, 
and other memory interfaces. The list of available peripherals continues to increase as 
Altera and third-party vendors release new peripherals.

f For information about the Altera-provided cores, refer to the Embedded Peripherals IP 
User Guide.
Nios II Processor Reference Handbook February 2014 Altera Corporation

http://www.altera.com/literature/ug/ug_embedded_ip.pdf
http://www.altera.com/literature/ug/ug_embedded_ip.pdf


Chapter 1: Introduction 1–5
Configurable Soft Processor Core Concepts
Custom Components
You can also create custom components and integrate them in Nios II processor 
systems. For performance-critical systems that spend most CPU cycles executing a 
specific section of code, it is a common technique to create a custom peripheral that 
implements the same function in hardware. This approach offers a double 
performance benefit: the hardware implementation is faster than software; and the 
processor is free to perform other functions in parallel while the custom peripheral 
operates on data.

f For information about creating custom components in Qsys, refer to the Creating Qsys 
Components chapter in volume 1 of the Quartus II Handbook.

Custom Instructions
Like custom peripherals, custom instructions allow you to increase system 
performance by augmenting the processor with custom hardware. You can achieve 
significant performance improvements, often on the order of 10 to 100 times, by 
implementing performance-critical operations in hardware using custom instruction 
logic.

The custom logic is integrated into the Nios II processor’s arithmetic logic unit (ALU). 
Similar to native Nios II instructions, custom instruction logic can take values from up 
to two source registers and optionally write back a result to a destination register. 

Because the processor is implemented on reprogrammable Altera FPGAs, software 
and hardware engineers can work together to iteratively optimize the hardware and 
test the results of software running on hardware.

From the software perspective, custom instructions appear as machine-generated 
assembly macros or C functions, so programmers do not need to understand 
assembly language to use custom instructions.

Automated System Generation
Altera’s Qsys system integration tools fully automate the process of configuring 
processor features and generating a hardware design that you program in an Altera 
device. The Qsys graphical user interface (GUI) enables you to configure Nios II 
processor systems with any number of peripherals and memory interfaces. You can 
create entire processor systems without performing any schematic or HDL design 
entry. Qsys can also import HDL design files, providing an easy mechanism to 
integrate custom logic in a Nios II processor system.

After system generation, you can download the design onto a board, and debug 
software executing on the board. To the software developer, the processor architecture 
of the design is set. Software development proceeds in the same manner as for 
traditional, nonconfigurable processors.
February 2014 Altera Corporation Nios II Processor Reference Handbook

http://www.altera.com/literature/hb/qts/qsys_components.pdf
http://www.altera.com/literature/hb/qts/qsys_components.pdf


1–6 Chapter 1: Introduction
OpenCore Plus Evaluation
OpenCore Plus Evaluation
You can evaluate the Nios II processor without a license. With Altera's free OpenCore 
Plus evaluation feature, you can perform the following actions:

■ Simulate the behavior of a Nios II processor within your system.

■ Verify the functionality of your design, as well as evaluate its size and speed 
quickly and easily.

■ Generate time-limited device programming files for designs that include Nios II 
processors.

■ Program a device and verify your design in hardware.

You only need to purchase a license for the Nios II processor when you are completely 
satisfied with its functionality and performance, and want to take your design to 
production.

f For more information about OpenCore Plus, refer to AN 320: OpenCore Plus Evaluation 
of Megafunctions.

Document Revision History
Table 1–1. Document Revision History (Part 1 of 2)

Date Version Changes

February 2014 13.1.0

■ Added information on ECC support.

■ Removed HardCopy information.

■ Removed references to SOPC Builder.

May 2011 11.0.0 Added references to new Qsys system integration tool. 

December 2010 10.1.0 Maintenance release. 

July 2010 10.0.0 Maintenance release. 

November 2009 9.1.0
■ Added external interrupt controller interface information.

■ Added shadow register set information.

March 2009 9.0.0 Maintenance release. 

November 2008 8.1.0 Maintenance release. 

May 2008 8.0.0 Added MMU and MPU to bullet list of features.

October 2007 7.2.0 Added OpenCore Plus section.

May 2007 7.1.0
■ Added table of contents to Introduction section.

■ Added Referenced Documents section.

March 2007 7.0.0 Maintenance release. 

November 2006 6.1.0 Maintenance release. 

May 2006 6.0.0
■ Added single precision floating-point and integration with SignalTap® II logic analyzer to 

features list. 

■ Updated performance to 250 DMIPS.

October 2005 5.1.0 Maintenance release.

May 2005 5.0.0 Maintenance release.
Nios II Processor Reference Handbook February 2014 Altera Corporation

http://www.altera.com/literature/an/an320.pdf
http://www.altera.com/literature/an/an320.pdf


Chapter 1: Introduction 1–7
Document Revision History
September 2004 1.1 Maintenance release.

May 2004 1.0 Initial release.

Table 1–1. Document Revision History (Part 2 of 2)

Date Version Changes
February 2014 Altera Corporation Nios II Processor Reference Handbook



1–8 Chapter 1: Introduction
Document Revision History
Nios II Processor Reference Handbook February 2014 Altera Corporation



Nios II Processor Reference Handbook
February 2014

NII51002-13.1.0

© 2014 Altera Corporation. All rights reserved. ALTERA, ARR
and/or trademarks of Altera Corporation in the U.S. and other
www.altera.com/common/legal.html. Altera warrants perform
reserves the right to make changes to any products and services
information, product, or service described herein except as exp
specifications before relying on any published information and

February 2014
NII51002-13.1.0
2. Processor Architecture
This chapter describes the hardware structure of the Nios® II processor, including a 
discussion of all the functional units of the Nios II architecture and the fundamentals 
of the Nios II processor hardware implementation.

The Nios II architecture describes an instruction set architecture (ISA). The ISA in turn 
necessitates a set of functional units that implement the instructions. A Nios II 
processor core is a hardware design that implements the Nios II instruction set and 
supports the functional units described in this document. The processor core does not 
include peripherals or the connection logic to the outside world. It includes only the 
circuits required to implement the Nios II architecture.

The Nios II architecture defines the following functional units:

■ Register file

■ Arithmetic logic unit (ALU)

■ Interface to custom instruction logic

■ Exception controller

■ Internal or external interrupt controller

■ Instruction bus 

■ Data bus 

■ Memory management unit (MMU)

■ Memory protection unit (MPU)

■ Instruction and data cache memories

■ Tightly-coupled memory interfaces for instructions and data

■ JTAG debug module
Subscribe

IA, CYCLONE, HARDCOPY, MAX, MEGACORE, NIOS, QUARTUS and STRATIX are Reg. U.S. Pat. & Tm. Off. 
 countries. All other trademarks and service marks are the property of their respective holders as described at 

ance of its semiconductor products to current specifications in accordance with Altera’s standard warranty, but 
 at any time without notice. Altera assumes no responsibility or liability arising out of the application or use of any 
ressly agreed to in writing by Altera. Altera customers are advised to obtain the latest version of device 
 before placing orders for products or services.

http://www.altera.com/common/legal.html
https://www.altera.com/servlets/subscriptions/alert?id=NII51002


2–2 Chapter 2: Processor Architecture
Processor Implementation
Processor Implementation
The functional units of the Nios II architecture form the foundation for the Nios II 
instruction set. However, this does not indicate that any unit is implemented in 
hardware. The Nios II architecture describes an instruction set, not a particular 
hardware implementation. A functional unit can be implemented in hardware, 
emulated in software, or omitted entirely. 

A Nios II implementation is a set of design choices embodied by a particular Nios II 
processor core. All implementations support the instruction set defined in the 
Instruction Set Reference chapter of the Nios II Processor Reference Handbook. Each 
implementation achieves specific objectives, such as smaller core size or higher 
performance. This flexibility allows the Nios II architecture to adapt to different target 
applications. 

Figure 2–1. Nios II Processor Core Block Diagram

Exception
Controller

Internal
Interrupt

Controller

Arithmetic
Logic Unit

General
Purpose
Registers

 Control 
Registers

Nios II Processor Core

reset
clock

JTAG
interface

to software
debugger

 Custom
I/O

Signals

irq[31..0]

JTAG
Debug Module

Program
Controller

&
Address

Generation

Custom
Instruction

Logic

Data Bus

Tightly Coupled
Data Memory

Tightly Coupled
Data Memory

Data
Cache

Instruction
Cache

Instruction Bus

Tightly Coupled
Instruction Memory

Tightly Coupled
Instruction Memory

cpu_resetrequest
cpu_resettaken

Memory
Management

Unit

Translation
 Lookaside

Buffer

 Instruction
Regions

Memory
Protection

Unit

 Data
Regions

External
Interrupt

Controller
Interface

eic_port_data[44..0]

eic_port_valid

Shadow
Register

Sets

Required
  Module

Optional
 Module

Key
Nios II Processor Reference Handbook February 2014 Altera Corporation

http://www.altera.com/literature/hb/nios2/n2cpu_nii51017.pdf


Chapter 2: Processor Architecture 2–3
Register File
Implementation variables generally fit one of three trade-off patterns: more or less of a 
feature; inclusion or exclusion of a feature; hardware implementation or software 
emulation of a feature. An example of each trade-off follows: 

■ More or less of a feature—For example, to fine-tune performance, you can increase or 
decrease the amount of instruction cache memory. A larger cache increases 
execution speed of large programs, while a smaller cache conserves on-chip 
memory resources.

■ Inclusion or exclusion of a feature—For example, to reduce cost, you can choose to 
omit the JTAG debug module. This decision conserves on-chip logic and memory 
resources, but it eliminates the ability to use a software debugger to debug 
applications.

■ Hardware implementation or software emulation—For example, in control applications 
that rarely perform complex arithmetic, you can choose for the division instruction 
to be emulated in software. Removing the divide hardware conserves on-chip 
resources but increases the execution time of division operations. 

f For information about which Nios II cores supports what features, refer to the Nios II 
Core Implementation Details chapter of the Nios II Processor Reference Handbook. 

For complete details about user-selectable parameters for the Nios II processor, refer 
to the Instantiating the Nios II Processor chapter of the Nios II Processor Reference 
Handbook.

Register File
The Nios II architecture supports a flat register file, consisting of thirty-two 32-bit 
general-purpose integer registers, and up to thirty-two 32-bit control registers. The 
architecture supports supervisor and user modes that allow system code to protect 
the control registers from errant applications.

The Nios II processor can optionally have one or more shadow register sets. A 
shadow register set is a complete set of Nios II general-purpose registers. When 
shadow register sets are implemented, the CRS field of the status register indicates 
which register set is currently in use. An instruction access to a general-purpose 
register uses whichever register set is active.

A typical use of shadow register sets is to accelerate context switching. When shadow 
register sets are implemented, the Nios II processor has two special instructions, 
rdprs and wrprs, for moving data between register sets. Shadow register sets are 
typically manipulated by an operating system kernel, and are transparent to 
application code. A Nios II processor can have up to 63 shadow register sets.

f For details about shadow register set implementation and usage, refer to “Registers” 
and “Exception Processing” in the Programming Model chapter of the Nios II Processor 
Reference Handbook. 

For details about the rdprs and wrprs instructions, refer to the Instruction Set Reference 
chapter of the Nios II Processor Reference Handbook. 

The Nios II architecture allows for the future addition of floating-point registers. 
February 2014 Altera Corporation Nios II Processor Reference Handbook

http://www.altera.com/literature/hb/nios2/n2cpu_nii51015.pdf
http://www.altera.com/literature/hb/nios2/n2cpu_nii51015.pdf
http://www.altera.com/literature/hb/nios2/n2cpu_nii51004.pdf
http://www.altera.com/literature/hb/nios2/n2cpu_nii51003.pdf
http://www.altera.com/literature/hb/nios2/n2cpu_nii51017.pdf


2–4 Chapter 2: Processor Architecture
Arithmetic Logic Unit
Arithmetic Logic Unit
The Nios II ALU operates on data stored in general-purpose registers. ALU 
operations take one or two inputs from registers, and store a result back in a register. 
The ALU supports the data operations described in the table below. To implement any 
other operation, software computes the result by performing a combination of the 
fundamental operations.

Unimplemented Instructions
Some Nios II processor core implementations do not provide hardware to support the 
entire Nios II instruction set. In such a core, instructions without hardware support 
are known as unimplemented instructions.

The processor generates an exception whenever it issues an unimplemented 
instruction so your exception handler can call a routine that emulates the operation in 
software. Unimplemented instructions do not affect the programmer’s view of the 
processor.

f For a list of potential unimplemented instructions, refer to the Programming Model 
chapter of the Nios II Processor Reference Handbook.

Custom Instructions
The Nios II architecture supports user-defined custom instructions. The Nios II ALU 
connects directly to custom instruction logic, enabling you to implement operations in 
hardware that are accessed and used exactly like native instructions. 

f For more information, refer to the Nios II Custom Instruction User Guide 

Refer to “Custom Instruction Tab” in the Instantiating the Nios II Processor chapter of 
the Nios II Processor Reference Handbook. for additional information.

Table 2–1. Operations Supported by the Nios II ALU

Category Details

Arithmetic The ALU supports addition, subtraction, multiplication, and division on signed and unsigned operands.

Relational The ALU supports the equal, not-equal, greater-than-or-equal, and less-than relational operations (==, 
!= >=, <) on signed and unsigned operands.

Logical The ALU supports AND, OR, NOR, and XOR logical operations.

Shift and Rotate
The ALU supports shift and rotate operations, and can shift/rotate data by 0 to 31 bit positions per 
instruction. The ALU supports arithmetic shift right and logical shift right/left. The ALU supports rotate 
left/right. 
Nios II Processor Reference Handbook February 2014 Altera Corporation

http://www.altera.com/literature/hb/nios2/n2cpu_nii51003.pdf
http://www.altera.com/literature/ug/ug_nios2_custom_instruction.pdf
http://www.altera.com/literature/hb/nios2/n2cpu_nii51004.pdf


Chapter 2: Processor Architecture 2–5
Arithmetic Logic Unit
Floating-Point Instructions
The Nios II architecture supports single precision floating-point instructions with two 
components:

■ Floating Point Hardware 2—This component supports floating-point instructions as 
specified by the IEEE Std 754-2008 but with simplified, non-standard rounding 
modes. The basic set of floating-point custom instructions includes single 
precision floating-point addition, subtraction, multiplication, division, square root, 
integer to float conversion, float to integer conversion, minimum, maximum, 
negate, absolute, and comparisons.

■ Floating Point Hardware—This component supports floating-point instructions as 
specified by the IEEE Std 754-1985. The basic set of floating-point custom 
instructions includes single precision floating-point addition, subtraction, and 
multiplication. Floating-point division is available as an extension to the basic 
instruction set. 

These floating-point instructions are implemented as custom instructions. The 
Hardware Conformance table below lists a detailed description of the conformance to 
the IEEE standards.

f For more information about using floating-point custom instructions in software, 
refer to the Nios II Custom Instruction User Guide.

Table 2–2. Hardware Conformance with IEEE 754-1985 and IEEE 754-2008 Floating-Point Standard (Part 1 of 2)

Feature Floating-Point Hardware 
Implementation with IEEE 754-1985

Floating-Point Hardware 2 
Implementation with IEEE 754-2008

Operations

Addition/subtraction Implemented Implemented

Multiplication Implemented Implemented

Division Optional Implemented

Square root Not implemented, this operation is 
implemented in software. Implemented

Integer to float/float 
to integer

Not implemented, this operation is 
implemented in software. Implemented

Minimum/maximum Not implemented, this operation is 
implemented in software. Implemented

Negate/absolute Not implemented, this operation is 
implemented in software. Implemented

Comparisons Not implemented, this operation is 
implemented in software. Implemented

Precision
Single Implemented Implemented

Double Not implemented. Double precision 
operations are implemented in software.

Not implemented. Double precision 
operations are implemented in software.

Exception 
conditions

Invalid operation Result is Not a Number (NaN) Result is Not a Number (NaN)

Division by zero Result is ±infinity Result is ±infinity

Overflow Result is ±infinity Result is ±infinity

Inexact Result is a normal number Result is a normal number

Underflow Result is ±0 Result is ±0
February 2014 Altera Corporation Nios II Processor Reference Handbook

http://www.altera.com/literature/ug/ug_nios2_custom_instruction.pdf


2–6 Chapter 2: Processor Architecture
Arithmetic Logic Unit
Floating Point Custom Instruction 2 Component
You can add floating-point custom instructions to any Nios II processor design. The 
floating-point division hardware requires more resources than the other instructions. 
The Floating Point Hardware 2 component supports the following single-precision 
floating-point operations:

■ Add

■ Subtract

Rounding 
Modes (1)

Round to nearest Implemented Implemented (roundTiesToAway mode)

Round toward zero Not implemented Implemented (truncation mode)

Round toward 
+infinity Not implemented Not implemented

Round toward 
–infinity Not implemented Not implemented

NaN

Quiet Implemented No distinction is made between 
signaling and quiet NaNs as input 
operands. A result that produces a NaN 
may produce either a signaling or quiet 
NaN. (2)

Signaling Not implemented

Subnormal 
(denormalized) 
numbers

Subnormal operands are treated as zero. 
The floating-point custom instructions 
do not generate subnormal numbers.

■ The comparison, minimum, 
maximum, negate, and absolute 
operations support subnormal 
numbers.

■ The add, subtract, multiply, divide, 
square root, and float to integer 
operations do NOT support 
subnormal numbers. Subnormal 
operands are treated as signed zero. 
The floating-point custom 
instructions do not generate 
subnormal numbers. (2)

■ The integer to float operation cannot 
create subnormal numbers.

Software 
exceptions

Not implemented. IEEE 754-1985 
exception conditions are detected and 
handled as described elsewhere in this 
table.

Not implemented. IEEE 754-2008 
exception conditions are detected and 
handled as described elsewhere in this 
table. (2)

Status flags

Not implemented. IEEE 754-1985 
exception conditions are detected and 
handled as described elsewhere in this 
table.

Not implemented. IEEE 754-2008 
exception conditions are detected and 
handled as described elsewhere in this 
table. (2)

Note to Table 2–2:

(1) The Floating Point Hardware 2 component also supports faithful rounding, which is not an IEEE 754-defined rounding mode. Faithful rounding 
rounds results to either the upper or lower nearest single-precision numbers. Therefore, the result produced is one of two possible values and 
the choice between the two is not defined. The maximum error of faithful rounding is 1 unit in the last place (ulp). Errors may not be evenly 
distributed.

(2) This operation is not fully compliant with IEEE 754-2008.

Table 2–2. Hardware Conformance with IEEE 754-1985 and IEEE 754-2008 Floating-Point Standard (Part 2 of 2)

Feature Floating-Point Hardware 
Implementation with IEEE 754-1985

Floating-Point Hardware 2 
Implementation with IEEE 754-2008
Nios II Processor Reference Handbook February 2014 Altera Corporation



Chapter 2: Processor Architecture 2–7
Arithmetic Logic Unit
■ Multiply

■ Divide

■ Square root

■ Comparison

■ Integer conversion

■ Minimum

■ Maximum

■ Negate

■ Absolute

Other floating-point operations (including double-precision operations) are 
implemented with software emulation. The component requires the following device 
resources:

■ ~2,500 4-input LEs

■ 9 x 9 bit multipliers

■ 3x M9K memories

In the following table, a and b are assumed to be single-precision floating-point 
values.

Table 2–3. Floating Point Custom Instruction 2 Operation Summary (Part 1 of 2)

Operation (1) N Cycles (3) Result Subnormal Rounding GCC Inference

fdivs 255 16  a ÷ b Flush to 0 Nearest a / b

fsubs 254 5  a – b Flush to 0 Faithful a – b

fadds 253 5  a + b Flush to 0 Faithful a + b

fmuls 252 4  a × b Flush to 0 Faithful a * b

fsqrts 251 8 Flush to 0 Faithful sqrtf() (4)

floatis 250 4  int_to_float(a) Not applicable Not applicable Casting

fixsi 249 2 float_to_int(a) Flush to 0 Truncation Casting

round 248 2 float_to_int(a) Flush to 0 Nearest lroundf() (4)

Reserved 234 to 247 Undefined  Undefined

fmins 233 1  (a < b) ? a : b Supported None
fminf()

(4)

fmaxs 232 1  (a < b) ? b : a Supported None
fmaxf()

(4)

fcmplts 231 1  (a < b) ? 1 : 0 Supported None a < b

fcmples 230 1  (a ≤ b) ? 1 : 0 Supported None a <= b

fcmpgts 229 1  (a > b) ? 1 : 0 Supported None a > b

fcmpges 228 1  (a ≥ b) ? 1 : 0 Supported None a >= b

fcmpeqs 227 1  (a = b) ? 1 : 0 Supported None a == b

fcmpnes 226 1  (a ≠ b) ? 1 : 0 Supported None a != b

a

February 2014 Altera Corporation Nios II Processor Reference Handbook



2–8 Chapter 2: Processor Architecture
Arithmetic Logic Unit
In Qsys, the Floating Point Hardware 2 component is under Embedded Processors 
on the Component Library tab.

The Nios II Software Build Tools (SBT) include software support for the Floating Point 
Custom Instruction 2 component. When the Floating Point Custom Instruction 2 
component is present in hardware, the Nios II compiler compiles the software codes 
to use the custom instructions for floating point operations.

Floating Point Custom Instruction Component
The Floating Point Hardware component supports addition, subtraction, 
multiplication, and (optionally) division. The Floating Point Hardware parameter 
editor allows you to omit the floating-point division hardware for cases in which code 
running on your hardware design does not make heavy use of floating-point division. 
When you omit the floating-point divide instruction, the Nios II compiler implements 
floating-point division in software.

In Qsys, the Floating Point Hardware component is under Embedded Processors on 
the Component Library tab.

The Nios II floating-point custom instructions are based on the Altera® floating-point 
megafunctions: ALTFP_MULT, ALTFP_ADD_SUB, and ALTFP_DIV. 

f For information about each individual floating-point megafunction, including 
acceleration factors and device resource usage, refer to the megafunction user guides, 
available on the IP and Megafunctions literature page of the Altera website.

The Nios II software development tools recognize C code that takes advantage of the 
floating-point instructions present in the processor core. When the floating-point 
custom instructions are present in your target hardware, the Nios II compiler 
compiles your code to use the custom instructions for floating-point operations and 
the newlib math library.

fnegs 225 1  -a Supported None -a

fabss 224 1  |a| Supported None fabsf()

Notes:

(1) These names match the names of the corresponding GCC command-line options except for round, which GCC does not support. 
(2) Specifies the 8 bit fixed custom instruction for the operation.
(3) Specifies the number of cycles required to execute the instruction. A combinatorial custom instruction takes 1 cycle. A multi-cycle custom 

instruction requires at least 2 cycles. An N-cycle multi-cycle custom instruction has N - 2 register stages inside the custom instruction because 
the Nios II processor registers the result from the custom instruction and allows another cycle for g wire delays in the source operand bypass 
multiplexers. The number of cycles does not include the extra cycles (maximum of 2) that an instruction following the multi-cycle custom 
instruction is stalled by the Nios II/f if the instruction uses the result within 2 cycles. These extra cycles occur because multi-cycle instructions 
are late result instructions.

(4) Nios II GCC version 4.7.3 is not able to reliably replace calls to newlib floating-point functions with the equivalent custom instruction even 
though it has -mcustom-<operation> command-line options and pragma support for these operations. Instead, the custom instruction must 
be invoked directly using the GCC __builtin_custom_* facility. The Floating Point Custom Instruction 2 component includes a C header file 
that provides the required #define macros to invoke the custom instruction directly.

Table 2–3. Floating Point Custom Instruction 2 Operation Summary (Part 2 of 2)

Operation (1) N Cycles (3) Result Subnormal Rounding GCC Inference
Nios II Processor Reference Handbook February 2014 Altera Corporation

http://www.altera.com/literature/lit-ip.jsp


Chapter 2: Processor Architecture 2–9
Reset and Debug Signals
Reset and Debug Signals
The table below describes the reset and debug signals that the Nios II processor core 
supports.

f For more information on adding reset signals to the Nios II processor, refer to 
“Advanced Features Tab” in the Instantiating the Nios II Processor chapter of the Nios II 
Processor Reference Handbook. 

For more information on the break vector and adding debug signals to the Nios II 
processor, refer to “JTAG Debug Module Tab” in the Instantiating the Nios II Processor 
chapter of the Nios II Processor Reference Handbook.

Exception and Interrupt Controllers
The Nios II processor includes hardware for handling exceptions, including hardware 
interrupts. It also includes an optional external interrupt controller (EIC) interface. 
The EIC interface enables you to speed up interrupt handling in a complex system by 
adding a custom interrupt controller.

Table 2–4. Nios II Processor Debug and Reset Signals

Signal Name Type Purpose

reset Reset This is a global hardware reset signal that forces the processor core to reset 
immediately.

cpu_resetrequest Reset

This is an optional, local reset signal that causes the processor to reset without 
affecting other components in the Nios II system. The processor finishes executing any 
instructions in the pipeline, and then enters the reset state. This process can take 
several clock cycles, so be sure to continue asserting the cpu_resetrequest signal 
until the processor core asserts a cpu_resettaken signal. 

The processor core asserts a cpu_resettaken signal for 1 cycle when the reset is 
complete and then periodically if cpu_resetrequest remains asserted. The processor 
remains in the reset state for as long as cpu_resetrequest is asserted. While the 
processor is in the reset state, it periodically reads from the reset address. It discards 
the result of the read, and remains in the reset state.

The processor does not respond to cpu_resetrequest when the processor is under 
the control of the JTAG debug module, that is, when the processor is paused. The 
processor responds to the cpu_resetrequest signal if the signal is asserted when 
the JTAG debug module relinquishes control, both momentarily during each single step 
as well as when you resume execution.

debugreq Debug

This is an optional signal that temporarily suspends the processor for debugging 
purposes. When you assert the signal, the processor pauses in the same manner as 
when a breakpoint is encountered, transfers execution to the routine located at the 
break address, and asserts a debugack signal. Asserting the debugreq signal when 
the processor is already paused has no effect.

reset_req Reset This optional signal prevents the memory corruption by performing a reset handshake 
before the processor resets.
February 2014 Altera Corporation Nios II Processor Reference Handbook

http://www.altera.com/literature/hb/nios2/n2cpu_nii51004.pdf
http://www.altera.com/literature/hb/nios2/n2cpu_nii51004.pdf


2–10 Chapter 2: Processor Architecture
Exception and Interrupt Controllers
Exception Controller
The Nios II architecture provides a simple, nonvectored exception controller to handle 
all exception types. Each exception, including internal hardware interrupts, causes the 
processor to transfer execution to an exception address. An exception handler at this 
address determines the cause of the exception and dispatches an appropriate 
exception routine.

Exception addresses are specified with the Qsys Nios II Processor parameter editor.

All exceptions are precise. Precise means that the processor has completed execution 
of all instructions preceding the faulting instruction and not started execution of 
instructions following the faulting instruction. Precise exceptions allow the processor 
to resume program execution once the exception handler clears the exception.

EIC Interface
An EIC provides high performance hardware interrupts to reduce your program's 
interrupt latency. An EIC is typically used in conjunction with shadow register sets 
and when you need more than the 32 interrupts provided by the Nios II internal 
interrupt controller.

The Nios II processor connects to an EIC through the EIC interface. When an EIC is 
present, the internal interrupt controller is not implemented; Qsys connects interrupts 
to the EIC.

The EIC selects among active interrupts and presents one interrupt to the Nios II 
processor, with interrupt handler address and register set selection information. The 
interrupt selection algorithm is specific to the EIC implementation, and is typically 
based on interrupt priorities. The Nios II processor does not depend on any specific 
interrupt prioritization scheme in the EIC. 

For every external interrupt, the EIC presents an interrupt level. The Nios II processor 
uses the interrupt level in determining when to service the interrupt.

Any external interrupt can be configured as an NMI. NMIs are not masked by the 
status.PIE bit, and have no interrupt level.

An EIC can be software-configurable.

1 When the EIC interface and shadow register sets are implemented on the Nios II core, 
you must ensure that your software is built with the Nios II EDS version 9.0 or higher. 
Earlier versions have an implementation of the eret instruction that is incompatible 
with shadow register sets.

f For a typical example of an EIC, refer to the Vectored Interrupt Controller chapter in the 
Embedded Peripherals IP User Guide. 

For details about EIC usage, refer to “Exception Processing” in the Programming Model 
chapter of the Nios II Processor Reference Handbook. 
Nios II Processor Reference Handbook February 2014 Altera Corporation

http://www.altera.com/literature/hb/nios2/n2cpu_nii51003.pdf
http://www.altera.com/literature/ug/ug_embedded_ip.pdf


Chapter 2: Processor Architecture 2–11
Memory and I/O Organization
Internal Interrupt Controller
The Nios II architecture supports 32 internal hardware interrupts. The processor core 
has 32 level-sensitive interrupt request (IRQ) inputs, irq0 through irq31, providing a 
unique input for each interrupt source. IRQ priority is determined by software. The 
architecture supports nested interrupts. 

Your software can enable and disable any interrupt source individually through the 
ienable control register, which contains an interrupt-enable bit for each of the IRQ 
inputs. Software can enable and disable interrupts globally using the PIE bit of the 
status control register. A hardware interrupt is generated if and only if all of the 
following conditions are true: 

■ The PIE bit of the status register is 1

■ An interrupt-request input, irq<n>, is asserted

■ The corresponding bit n of the ienable register is 1

The interrupt vector custom instruction is less efficient than using the EIC interface 
with the Altera vectored interrupt controller component, and thus is deprecated in 
Qsys. Altera recommends using the EIC interface.

Memory and I/O Organization
This section explains hardware implementation details of the Nios II memory and 
I/O organization. The discussion covers both general concepts true of all Nios II 
processor systems, as well as features that might change from system to system. 

The flexible nature of the Nios II memory and I/O organization are the most notable 
difference between Nios II processor systems and traditional microcontrollers. 
Because Nios II processor systems are configurable, the memories and peripherals 
vary from system to system. As a result, the memory and I/O organization varies 
from system to system.

A Nios II core uses one or more of the following to provide memory and I/O access:

■ Instruction master port—An Avalon® Memory-Mapped (Avalon-MM) master port 
that connects to instruction memory via system interconnect fabric

■ Instruction cache—Fast cache memory internal to the Nios II core

■ Data master port—An Avalon-MM master port that connects to data memory and 
peripherals via system interconnect fabric

■ Data cache—Fast cache memory internal to the Nios II core

■ Tightly-coupled instruction or data memory port—Interface to fast on-chip memory 
outside the Nios II core

The Nios II architecture handles the hardware details for the programmer, so 
programmers can develop Nios II applications without specific knowledge of the 
hardware implementation.
February 2014 Altera Corporation Nios II Processor Reference Handbook



2–12 Chapter 2: Processor Architecture
Memory and I/O Organization
f For details that affect programming issues, refer to the Programming Model chapter of 
the Nios II Processor Reference Handbook.

Instruction and Data Buses
The Nios II architecture supports separate instruction and data buses, classifying it as 
a Harvard architecture. Both the instruction and data buses are implemented as 
Avalon-MM master ports that adhere to the Avalon-MM interface specification. The 
data master port connects to both memory and peripheral components, while the 
instruction master port connects only to memory components. 

f Refer to the Avalon Interface Specifications for details of the Avalon-MM interface.

Figure 2–2. Nios II Memory and I/O Organization

S

MemoryS

Slave
Peripheral

Avalon Master Port

Avalon Slave Port

M

S

M

M

Tightly Coupled
Instruction
Memory N

Tightly Coupled
Data

Memory 1

Instruction
Cache

Data
Cache

Nios II Processor Core

Avalon System 
Interconnect

Fabric
Program
Counter

General
Purpose
Register

File

Instruction
Bus

Selector
Logic

Tightly Coupled
Data

Memory N

Tightly Coupled
Instruction 
Memory 1

Data
Bus

Selector
Logic

MMU
Translation

Lookaside Buffer

M

M

M

M

Data
Cache
Bypass
Logic

MPU Instruction Regions

MPU Data Regions
Nios II Processor Reference Handbook February 2014 Altera Corporation

http://www.altera.com/literature/hb/nios2/n2cpu_nii51003.pdf
http://www.altera.com/literature/manual/mnl_avalon_spec.pdf


Chapter 2: Processor Architecture 2–13
Memory and I/O Organization
Memory and Peripheral Access
The Nios II architecture provides memory-mapped I/O access. Both data memory 
and peripherals are mapped into the address space of the data master port. The 
Nios II architecture uses little-endian byte ordering. Words and halfwords are stored 
in memory with the more-significant bytes at higher addresses.

The Nios II architecture does not specify anything about the existence of memory and 
peripherals; the quantity, type, and connection of memory and peripherals are 
system-dependent. Typically, Nios II processor systems contain a mix of fast on-chip 
memory and slower off-chip memory. Peripherals typically reside on-chip, although 
interfaces to off-chip peripherals also exist.

Instruction Master Port
The Nios II instruction bus is implemented as a 32-bit Avalon-MM master port. The 
instruction master port performs a single function: it fetches instructions to be 
executed by the processor. The instruction master port does not perform any write 
operations. 

The instruction master port is a pipelined Avalon-MM master port. Support for 
pipelined Avalon-MM transfers minimizes the impact of synchronous memory with 
pipeline latency and increases the overall fMAX of the system. The instruction master 
port can issue successive read requests before data has returned from prior requests. 
The Nios II processor can prefetch sequential instructions and perform branch 
prediction to keep the instruction pipe as active as possible.

The instruction master port always retrieves 32 bits of data. The instruction master 
port relies on dynamic bus-sizing logic contained in the system interconnect fabric. By 
virtue of dynamic bus sizing, every instruction fetch returns a full instruction word, 
regardless of the width of the target memory. Consequently, programs do not need to 
be aware of the widths of memory in the Nios II processor system.

The Nios II architecture supports on-chip cache memory for improving average 
instruction fetch performance when accessing slower memory. Refer to “Cache 
Memory” on page 2–14 for details. 

The Nios II architecture supports tightly-coupled memory, which provides 
guaranteed low-latency access to on-chip memory. Refer to “Tightly-Coupled 
Memory” on page 2–15 for details.

Data Master Port
The Nios II data bus is implemented as a 32-bit Avalon-MM master port. The data 
master port performs two functions:

■ Read data from memory or a peripheral when the processor executes a load 
instruction

■ Write data to memory or a peripheral when the processor executes a store 
instruction
February 2014 Altera Corporation Nios II Processor Reference Handbook



2–14 Chapter 2: Processor Architecture
Memory and I/O Organization
Byte-enable signals on the master port specify which of the four byte-lane(s) to write 
during store operations. When the Nios II core is configured with a data cache line 
size greater than four bytes, the data master port supports pipelined Avalon-MM 
transfers. When the data cache line size is only four bytes, any memory pipeline 
latency is perceived by the data master port as wait states. Load and store operations 
can complete in a single clock cycle when the data master port is connected to 
zero-wait-state memory.

The Nios II architecture supports on-chip cache memory for improving average data 
transfer performance when accessing slower memory. Refer to “Cache Memory” on 
page 2–14 for details. 

The Nios II architecture supports tightly-coupled memory, which provides 
guaranteed low-latency access to on-chip memory. Refer to “Tightly-Coupled 
Memory” on page 2–15 for details.

Shared Memory for Instructions and Data 
Usually the instruction and data master ports share a single memory that contains 
both instructions and data. While the processor core has separate instruction and data 
buses, the overall Nios II processor system might present a single, shared 
instruction/data bus to the outside world. The outside view of the Nios II processor 
system depends on the memory and peripherals in the system and the structure of the 
system interconnect fabric.

The data and instruction master ports never cause a gridlock condition in which one 
port starves the other. For highest performance, assign the data master port higher 
arbitration priority on any memory that is shared by both instruction and data master 
ports.

Cache Memory
The Nios II architecture supports cache memories on both the instruction master port 
(instruction cache) and the data master port (data cache). Cache memory resides 
on-chip as an integral part of the Nios II processor core. The cache memories can 
improve the average memory access time for Nios II processor systems that use slow 
off-chip memory such as SDRAM for program and data storage.

The instruction and data caches are enabled perpetually at run-time, but methods are 
provided for software to bypass the data cache so that peripheral accesses do not 
return cached data. Cache management and cache coherency are handled by software. 
The Nios II instruction set provides instructions for cache management. 

Configurable Cache Memory Options
The cache memories are optional. The need for higher memory performance (and by 
association, the need for cache memory) is application dependent. Many applications 
require the smallest possible processor core, and can trade-off performance for size. 

A Nios II processor core might include one, both, or neither of the cache memories. 
Furthermore, for cores that provide data and/or instruction cache, the sizes of the 
cache memories are user-configurable. The inclusion of cache memory does not affect 
the functionality of programs, but it does affect the speed at which the processor 
fetches instructions and reads/writes data. 
Nios II Processor Reference Handbook February 2014 Altera Corporation



Chapter 2: Processor Architecture 2–15
Memory and I/O Organization
Effective Use of Cache Memory
The effectiveness of cache memory to improve performance is based on the following 
premises:

■ Regular memory is located off-chip, and access time is long compared to on-chip 
memory

■ The largest, performance-critical instruction loop is smaller than the instruction 
cache

■ The largest block of performance-critical data is smaller than the data cache

Optimal cache configuration is application specific, although you can make decisions 
that are effective across a range of applications. For example, if a Nios II processor 
system includes only fast, on-chip memory (i.e., it never accesses slow, off-chip 
memory), an instruction or data cache is unlikely to offer any performance gain. As 
another example, if the critical loop of a program is 2 KB, but the size of the 
instruction cache is 1 KB, an instruction cache does not improve execution speed. In 
fact, an instruction cache may degrade performance in this situation.

If an application always requires certain data or sections of code to be located in cache 
memory for performance reasons, the tightly-coupled memory feature might provide 
a more appropriate solution. Refer to the Tightly-Coupled Memory section for details. 

Cache Bypass Methods
The Nios II architecture provides the following methods for bypassing the data cache:

■ I/O load and store instructions

■ Bit-31 cache bypass

I/O Load and Store Instructions Method

The load and store I/O instructions such as ldio and stio bypass the data cache and 
force an Avalon-MM data transfer to a specified address. 

The Bit-31 Cache Bypass Method

The bit-31 cache bypass method on the data master port uses bit 31 of the address as a 
tag that indicates whether the processor should transfer data to/from cache, or bypass 
it. This is a convenience for software, which might need to cache certain addresses 
and bypass others. Software can pass addresses as parameters between functions, 
without having to specify any further information about whether the addressed data 
is cached or not. 

f To determine which cores implement which cache bypass methods, refer to the Nios II 
Core Implementation Details chapter of the Nios II Processor Reference Handbook.

Tightly-Coupled Memory
Tightly-coupled memory provides guaranteed low-latency memory access for 
performance-critical applications. Compared to cache memory, tightly-coupled 
memory provides the following benefits:

■ Performance similar to cache memory
February 2014 Altera Corporation Nios II Processor Reference Handbook

http://www.altera.com/literature/hb/nios2/n2cpu_nii51015.pdf
http://www.altera.com/literature/hb/nios2/n2cpu_nii51015.pdf


2–16 Chapter 2: Processor Architecture
Memory and I/O Organization
■ Software can guarantee that performance-critical code or data is located in 
tightly-coupled memory

■ No real-time caching overhead, such as loading, invalidating, or flushing memory

Physically, a tightly-coupled memory port is a separate master port on the Nios II 
processor core, similar to the instruction or data master port. A Nios II core can have 
zero, one, or multiple tightly-coupled memories. The Nios II architecture supports 
tightly-coupled memory for both instruction and data access. Each tightly-coupled 
memory port connects directly to exactly one memory with guaranteed low, fixed 
latency. The memory is external to the Nios II core and is located on chip.

Accessing Tightly-Coupled Memory
Tightly-coupled memories occupy normal address space, the same as other memory 
devices connected via system interconnect fabric. The address ranges for 
tightly-coupled memories (if any) are determined at system generation time. 

Software accesses tightly-coupled memory using regular load and store instructions. 
From the software’s perspective, there is no difference accessing tightly-coupled 
memory compared to other memory.

Effective Use of Tightly-Coupled Memory
A system can use tightly-coupled memory to achieve maximum performance for 
accessing a specific section of code or data. For example, interrupt-intensive 
applications can place exception handler code into a tightly-coupled memory to 
minimize interrupt latency. Similarly, compute-intensive digital signal processing 
(DSP) applications can place data buffers into tightly-coupled memory for the fastest 
possible data access. 

If the application’s memory requirements are small enough to fit entirely on chip, it is 
possible to use tightly-coupled memory exclusively for code and data. Larger 
applications must selectively choose what to include in tightly-coupled memory to 
maximize the cost-performance trade-off. 

f For additional tightly-coupled memory guidelines, refer to the Using Tightly Coupled 
Memory with the Nios II Processor tutorial.

Address Map
The address map for memories and peripherals in a Nios II processor system is design 
dependent. You specify the address map in Qsys.

There are three addresses that are part of the processor and deserve special mention:

■ Reset address

■ Exception address

■ Break handler address

Programmers access memories and peripherals by using macros and drivers. 
Therefore, the flexible address map does not affect application developers.
Nios II Processor Reference Handbook February 2014 Altera Corporation

http://www.altera.com/literature/tt/tt_nios2_tightly_coupled_memory_tutorial.pdf
http://www.altera.com/literature/tt/tt_nios2_tightly_coupled_memory_tutorial.pdf


Chapter 2: Processor Architecture 2–17
Memory and I/O Organization
Memory Management Unit
The optional Nios II MMU provides the following features and functionality:

■ Virtual to physical address mapping

■ Memory protection

■ 32-bit virtual and physical addresses, mapping a 4-GB virtual address space into 
as much as 4 GB of physical memory

■ 4-KB page and frame size

■ Low 512 MB of physical address space available for direct access

■ Hardware translation lookaside buffers (TLBs), accelerating address translation

■ Separate TLBs for instruction and data accesses

■ Read, write, and execute permissions controlled per page

■ Default caching behavior controlled per page

■ TLBs acting as n-way set-associative caches for software page tables

■ TLB sizes and associativities configurable in the Nios II Processor parameter 
editor

■ Format of page tables (or equivalent data structures) determined by system 
software

■ Replacement policy for TLB entries determined by system software

■ Write policy for TLB entries determined by system software

f For more information about the MMU implementation, refer to the Programming 
Model chapter of the Nios II Processor Reference Handbook.

You can optionally include the MMU when you instantiate the Nios II processor in 
your Nios II hardware system. When present, the MMU is always enabled, and the 
data and instruction caches are virtually-indexed, physically-tagged caches. Several 
parameters are available, allowing you to optimize the MMU for your system needs.

For complete details about user-selectable parameters for the Nios II MMU, refer to 
the Instantiating the Nios II Processor chapter of the Nios II Processor Reference Handbook.

1 The Nios II MMU is optional and mutually exclusive from the Nios II MPU. Nios II 
systems can include either an MMU or MPU, but cannot include both an MMU and 
MPU on the same Nios II processor core.

Memory Protection Unit
The optional Nios II MPU provides the following features and functionality:

■ Memory protection

■ Up to 32 instruction regions and 32 data regions

■ Variable instruction and data region sizes

■ Amount of region memory defined by size or upper address limit
February 2014 Altera Corporation Nios II Processor Reference Handbook

http://www.altera.com/literature/hb/nios2/n2cpu_nii51003.pdf
http://www.altera.com/literature/hb/nios2/n2cpu_nii51003.pdf
http://www.altera.com/literature/hb/nios2/n2cpu_nii51004.pdf


2–18 Chapter 2: Processor Architecture
JTAG Debug Module
■ Read and write access permissions for data regions

■ Execute access permissions for instruction regions

■ Overlapping regions

f For more information about the MPU implementation, refer to the Programming Model 
chapter of the Nios II Processor Reference Handbook.

You can optionally include the MPU when you instantiate the Nios II processor in 
your Nios II hardware system. When present, the MPU is always enabled. Several 
parameters are available, allowing you to optimize the MPU for your system needs.

f For complete details about user-selectable parameters for the Nios II MPU, refer to the 
Instantiating the Nios II Processor chapter of the Nios II Processor Reference Handbook.

1 The Nios II MPU is optional and mutually exclusive from the Nios II MMU. Nios II 
systems can include either an MPU or MMU, but cannot include both an MPU and 
MMU on the same Nios II processor core. 

JTAG Debug Module
The Nios II architecture supports a JTAG debug module that provides on-chip 
emulation features to control the processor remotely from a host PC. PC-based 
software debugging tools communicate with the JTAG debug module and provide 
facilities, such as the following features:

■ Downloading programs to memory

■ Starting and stopping execution

■ Setting breakpoints and watchpoints

■ Analyzing registers and memory

■ Collecting real-time execution trace data

1 The Nios II MMU does not support the JTAG debug module trace.

The debug module connects to the JTAG circuitry in an Altera FPGA. External 
debugging probes can then access the processor via the standard JTAG interface on 
the FPGA. On the processor side, the debug module connects to signals inside the 
processor core. The debug module has nonmaskable control over the processor, and 
does not require a software stub linked into the application under test. All system 
resources visible to the processor in supervisor mode are available to the debug 
module. For trace data collection, the debug module stores trace data in memory 
either on-chip or in the debug probe.

The debug module gains control of the processor either by asserting a hardware break 
signal, or by writing a break instruction into program memory to be executed. In both 
cases, the processor transfers execution to the routine located at the break address. 
The break address is specified with the Nios II Processor parameter editor in Qsys.
Nios II Processor Reference Handbook February 2014 Altera Corporation

http://www.altera.com/literature/hb/nios2/n2cpu_nii51003.pdf
http://www.altera.com/literature/hb/nios2/n2cpu_nii51004.pdf


Chapter 2: Processor Architecture 2–19
JTAG Debug Module
Soft processor cores such as the Nios II processor offer unique debug capabilities 
beyond the features of traditional, fixed processors. The soft nature of the Nios II 
processor allows you to debug a system in development using a full-featured debug 
core, and later remove the debug features to conserve logic resources. For the release 
version of a product, the JTAG debug module functionality can be reduced, or 
removed altogether. 

The following sections describe the capabilities of the Nios II JTAG debug module 
hardware. The usage of all hardware features is dependent on host software, such as 
the Nios II Software Build Tools for Eclipse, which manages the connection to the 
target processor and controls the debug process. 

JTAG Target Connection
The JTAG target connection provides the ability to connect to the processor through 
the standard JTAG pins on the Altera FPGA. This provides basic capabilities to start 
and stop the processor, and examine and edit registers and memory. The JTAG target 
connection is the minimum requirement for the Nios II flash programmer.

1 While the processor has no minimum clock frequency requirements, Altera 
recommends that your design’s system clock frequency be at least four times the 
JTAG clock frequency to ensure that the on-chip instrumentation (OCI) core functions 
properly.

Download and Execute Software
Downloading software refers to the ability to download executable code and data to 
the processor’s memory via the JTAG connection. After downloading software to 
memory, the JTAG debug module can then exit debug mode and transfer execution to 
the start of executable code.

Software Breakpoints
Software breakpoints allow you to set a breakpoint on instructions residing in RAM. 
The software breakpoint mechanism writes a break instruction into executable code 
stored in RAM. When the processor executes the break instruction, control is 
transferred to the JTAG debug module. 

Hardware Breakpoints
Hardware breakpoints allow you to set a breakpoint on instructions residing in 
nonvolatile memory, such as flash memory. The hardware breakpoint mechanism 
continuously monitors the processor’s current instruction address. If the instruction 
address matches the hardware breakpoint address, the JTAG debug module takes 
control of the processor.

Hardware breakpoints are implemented using the JTAG debug module’s hardware 
trigger feature.
February 2014 Altera Corporation Nios II Processor Reference Handbook



2–20 Chapter 2: Processor Architecture
JTAG Debug Module
Hardware Triggers
Hardware triggers activate a debug action based on conditions on the instruction or 
data bus during real-time program execution. Triggers can do more than halt 
processor execution. For example, a trigger can be used to enable trace data collection 
during real-time processor execution. 

Hardware trigger conditions are based on either the instruction or data bus. Trigger 
conditions on the same bus can be logically ANDed, enabling the JTAG debug 
module to trigger, for example, only on write cycles to a specific address. 

When a trigger condition occurs during processor execution, the JTAG debug module 
triggers an action, such as halting execution, or starting trace capture. The table below 
lists the trigger actions supported by the Nios II JTAG debug module. 

Armed Triggers 
The JTAG debug module provides a two-level trigger capability, called armed 
triggers. Armed triggers enable the JTAG debug module to trigger on event B, only 
after event A. In this example, event A causes a trigger action that enables the trigger 
for event B.

Table 2–5. Trigger Conditions

Condition Bus Description

Specific address Data, 
Instruction Trigger when the bus accesses a specific address.

Specific data value Data Trigger when a specific data value appears on the bus.

Read cycle Data Trigger on a read bus cycle.

Write cycle Data Trigger on a write bus cycle.

Armed Data, 
Instruction

Trigger only after an armed trigger event. Refer to the Armed 
Triggers section. 

Range Data Trigger on a range of address values, data values, or both. Refer 
to the Triggering on Ranges of Values section.

Table 2–6. Trigger Actions

Action Description

Break Halt execution and transfer control to the JTAG debug module.

External trigger Assert a trigger signal output. This trigger output can be used, for example, 
to trigger an external logic analyzer. 

Trace on Turn on trace collection. 

Trace off Turn off trace collection.

Trace sample (1) Store one sample of the bus to trace buffer. 

Arm Enable an armed trigger. 

Note to Table 2–6:

(1) Only conditions on the data bus can trigger this action. 
Nios II Processor Reference Handbook February 2014 Altera Corporation



Chapter 2: Processor Architecture 2–21
JTAG Debug Module
Triggering on Ranges of Values 
The JTAG debug module can trigger on ranges of data or address values on the data 
bus. This mechanism uses two hardware triggers together to create a trigger condition 
that activates on a range of values within a specified range.

Trace Capture
Trace capture refers to ability to record the instruction-by-instruction execution of the 
processor as it executes code in real-time. The JTAG debug module offers the 
following trace features:

■ Capture execution trace (instruction bus cycles).

■ Capture data trace (data bus cycles).

■ For each data bus cycle, capture address, data, or both.

■ Start and stop capturing trace in real time, based on triggers.

■ Manually start and stop trace under host control.

■ Optionally stop capturing trace when trace buffer is full, leaving the processor 
executing.

■ Store trace data in on-chip memory buffer in the JTAG debug module. (This 
memory is accessible only through the JTAG connection.)

■ Store trace data to larger buffers in an off-chip debug probe.

Certain trace features require additional licensing or debug tools from third-party 
debug providers. For example, an on-chip trace buffer is a standard feature of the 
Nios II processor, but using an off-chip trace buffer requires additional debug 
software and hardware provided by MIPS Technologies or Lauterbach GmbH. 

f For more information, refer to the Lauterbach GmbH website (www.lauterbach.com).

Execution vs. Data Trace 
The JTAG debug module supports tracing the instruction bus (execution trace), the 
data bus (data trace), or both simultaneously. Execution trace records only the 
addresses of the instructions executed, enabling you to analyze where in memory 
(that is, in which functions) code executed. Data trace records the data associated with 
each load and store operation on the data bus. 

The JTAG debug module can filter the data bus trace in real time to capture the 
following:

■ Load addresses only

■ Store addresses only

■ Both load and store addresses

■ Load data only

■ Load address and data

■ Store address and data

■ Address and data for both loads and stores
February 2014 Altera Corporation Nios II Processor Reference Handbook

www.lauterbach.com


2–22 Chapter 2: Processor Architecture
Document Revision History
■ Single sample of the data bus upon trigger event

Trace Frames
A frame is a unit of memory allocated for collecting trace data. However, a frame is 
not an absolute measure of the trace depth. 

To keep pace with the processor executing in real time, execution trace is optimized to 
store only selected addresses, such as branches, calls, traps, and interrupts. From 
these addresses, host-side debug software can later reconstruct an exact 
instruction-by-instruction execution trace. Furthermore, execution trace data is stored 
in a compressed format, such that one frame represents more than one instruction. As 
a result of these optimizations, the actual start and stop points for trace collection 
during execution might vary slightly from the user-specified start and stop points.

Data trace stores 100% of requested loads and stores to the trace buffer in real time. 
When storing to the trace buffer, data trace frames have lower priority than execution 
trace frames. Therefore, while data frames are always stored in chronological order, 
execution and data trace are not guaranteed to be exactly synchronized with each 
other.

Document Revision History
Table 2–7. Document Revision History (Part 1 of 2)

Date Version Changes

February 2014 13.1.0

■ Added information on ECC support.

■ Added information on enhanced floating-point custom instructions.

■ Removed HardCopy information.

■ Removed references to SOPC Builder.

May 2011 11.0.0
■ Added references to new Qsys system integration tool.

■ Moved interrupt vector custom instruction information to the Instantiating the Nios II 
Processor chapter.

December 2010 10.1.0 Added reference to tightly-coupled memory tutorial.

July 2010 10.0.0 Maintenance release. 

November 2009 9.1.0
■ Added external interrupt controller interface information.

■ Added shadow register set information.

March 2009 9.0.0 Maintenance release. 

November 2008 8.1.0

■ Expanded floating-point instructions information.

■ Updated description of optional cpu_resetrequest and cpu_resettaken signals. 

■ Added description of optional debugreq and debugack signals. 

May 2008 8.0.0 Added MMU and MPU sections.

October 2007 7.2.0 Maintenance release.

May 2007 7.1.0
■ Added table of contents to Introduction section.

■ Added Referenced Documents section.

March 2007 7.0.0 Maintenance release. 

November 2006 6.1.0 Described interrupt vector custom instruction. 
Nios II Processor Reference Handbook February 2014 Altera Corporation



Chapter 2: Processor Architecture 2–23
Document Revision History
May 2006 6.0.0
■ Added description of optional cpu_resetrequest and cpu_resettaken.

■ Added section on single precision floating-point instructions.

October 2005 5.1.0 Maintenance release.

May 2005 5.0.0 Added tightly-coupled memory.

December 2004 1.2 Added new control register ctl5.

September 2004 1.1 Updates for Nios II 1.01 release.

May 2004 1.0 Initial release. 

Table 2–7. Document Revision History (Part 2 of 2)

Date Version Changes
February 2014 Altera Corporation Nios II Processor Reference Handbook



2–24 Chapter 2: Processor Architecture
Document Revision History
Nios II Processor Reference Handbook February 2014 Altera Corporation



Nios II Processor Reference Handbook
February 2014

NII51003-13.1.0

© 2014 Altera Corporation. All rights reserved. ALTERA, ARR
and/or trademarks of Altera Corporation in the U.S. and other
www.altera.com/common/legal.html. Altera warrants perform
reserves the right to make changes to any products and services
information, product, or service described herein except as exp
specifications before relying on any published information and

February 2014
NII51003-13.1.0
3. Programming Model
This chapter describes the Nios® II programming model, covering processor features 
at the assembly language level. Fully understanding the contents of this chapter 
requires prior knowledge of computer architecture, operating systems, virtual 
memory and memory management, software processes and process management, 
exception handling, and instruction sets. This chapter assumes you have a detailed 
understanding of these concepts and focuses on how these concepts are specifically 
implemented in the Nios II processor. Where possible, this chapter uses 
industry-standard terminology.

1 Because of the flexibility and capability range of the Nios II processor, this chapter 
covers topics that support a variety of operating systems and runtime environments. 
While reading, be aware that all sections might not apply to you. For example, if you 
are using a minimal system runtime environment, you can ignore the sections 
covering operating modes, the MMU, the MPU, or the control registers exclusively 
used by the MMU and MPU.

f High-level software development tools are not discussed here. Refer to the Nios II 
Software Developer’s Handbook for information about developing software.

Operating Modes
Operating modes control how the processor operates, manages system memory, and 
accesses peripherals. The Nios II architecture supports these operating modes: 

■ Supervisor mode

■ User mode

The following sections define the modes, their relationship to your system software 
and application code, and their relationship to the Nios II MMU and Nios II MPU. 

Supervisor Mode
Supervisor mode allows unrestricted operation of the processor. All code has access to 
all processor instructions and resources. The processor may perform any operation 
the Nios II architecture provides. Any instruction may be executed, any I/O operation 
may be initiated, and any area of memory may be accessed.

Operating systems and other system software run in supervisor mode. In systems 
with an MMU, application code runs in user mode, and the operating system, 
running in supervisor mode, controls the application’s access to memory and 
peripherals. In systems with an MPU, your system software controls the mode in 
which your application code runs. In Nios II systems without an MMU or MPU, all 
application and system code runs in supervisor mode. 
Subscribe

IA, CYCLONE, HARDCOPY, MAX, MEGACORE, NIOS, QUARTUS and STRATIX are Reg. U.S. Pat. & Tm. Off. 
 countries. All other trademarks and service marks are the property of their respective holders as described at 

ance of its semiconductor products to current specifications in accordance with Altera’s standard warranty, but 
 at any time without notice. Altera assumes no responsibility or liability arising out of the application or use of any 
ressly agreed to in writing by Altera. Altera customers are advised to obtain the latest version of device 
 before placing orders for products or services.

http://www.altera.com/common/legal.html
https://www.altera.com/servlets/subscriptions/alert?id=NII51003
http://www.altera.com/literature/hb/nios2/n2sw_nii5v2.pdf
http://www.altera.com/literature/hb/nios2/n2sw_nii5v2.pdf


3–2 Chapter 3: Programming Model
Memory Management Unit
Code that needs direct access to and control of the processor runs in supervisor mode. 
For example, the processor enters supervisor mode whenever a processor exception 
(including processor reset or break) occurs. Software debugging tools also use 
supervisor mode to implement features such as breakpoints and watchpoints.

1 For systems without an MMU or MPU, all code runs in supervisor mode.

User Mode
User mode is available only when the Nios II processor in your hardware design 
includes an MMU or MPU. User mode exists solely to support operating systems. 
Operating systems (that make use of the processor’s user mode) run your application 
code in user mode. The user mode capabilities of the processor are a subset of the 
supervisor mode capabilities. Only a subset of the instruction set is available in user 
mode.

The operating system determines which memory addresses are accessible to user 
mode applications. Attempts by user mode applications to access memory locations 
without user access enabled are not permitted and cause an exception. Code running 
in user mode uses system calls to make requests to the operating system to perform 
I/O operations, manage memory, and access other system functionality in the 
supervisor memory.

The Nios II MMU statically divides the 32-bit virtual address space into user and 
supervisor partitions. Refer to Address Space and Memory Partitions section for more 
information about the MMU memory partitions. The MMU provides operating 
systems access permissions on a per-page basis. Refer to Virtual Addressing for more 
information about MMU pages.

The Nios II MPU supervisor and user memory divisions are determined by the 
operating system or runtime environment. The MPU provides user access 
permissions on a region basis. Refer to Memory Regions for more information about 
MPU regions.

Memory Management Unit
The Nios II processor provides an MMU to support full-featured operating systems. 
Operating systems that require virtual memory rely on an MMU to manage the 
virtual memory. When present, the MMU manages memory accesses including 
translation of virtual addresses to physical addresses, memory protection, cache 
control, and software process memory allocation.

Recommended Usage
Including the Nios II MMU in your Nios II hardware system is optional. The MMU is 
only useful with an operating system that takes advantage of it.

Many Nios II systems have simpler requirements where minimal system software or a 
small-footprint operating system (such as the Altera® hardware abstraction library 
(HAL) or a third party real-time operating system) is sufficient. Such software is 
unlikely to function correctly in a hardware system with an MMU-based Nios II 
processor. Do not include an MMU in your Nios II system unless your operating 
system requires it.
Nios II Processor Reference Handbook February 2014 Altera Corporation



Chapter 3: Programming Model 3–3
Memory Management Unit
1 The Altera HAL and HAL-based real-time operating systems do not support the 
MMU.

If your system needs memory protection, but not virtual memory management, refer 
to Memory Protection Unit section.

Memory Management
Memory management comprises two key functions:

■ Virtual addressing—Mapping a virtual memory space into a physical memory 
space

■ Memory protection—Allowing access only to certain memory under certain 
conditions

Virtual Addressing
A virtual address is the address that software uses. A physical address is the address 
which the hardware outputs on the address lines of the Avalon® bus. The Nios II 
MMU divides virtual memory into 4-KB pages and physical memory into 4-KB 
frames.

The MMU contains a hardware translation lookaside buffer (TLB). The operating 
system is responsible for creating and maintaining a page table (or equivalent data 
structures) in memory. The hardware TLB acts as a software managed cache for the 
page table. The MMU does not perform any operations on the page table, such as 
hardware table walks. Therefore the operating system is free to implement its page 
table in any appropriate manner. 

There is a 20 bit virtual page number (VPN) and a 12 bit page offset.

As input, the TLB takes a VPN plus a process identifier (to guarantee uniqueness). As 
output, the TLB provides the corresponding physical frame number (PFN). 

Distinct processes can use the same virtual address space. The process identifier, 
concatenated with the virtual address, distinguishes identical virtual addresses in 
separate processes. To determine the physical address, the Nios II MMU translates a 
VPN to a PFN and then concatenates the PFN with the page offset. The bits in the 
page offset are not translated.

Memory Protection
The Nios II MMU maintains read, write, and execute permissions for each page. The 
TLB provides the permission information when translating a VPN. The operating 
system can control whether or not each process is allowed to read data from, write 
data to, or execute instructions on each particular page. The MMU also controls 
whether accesses to each data page are cacheable or uncacheable by default.

Table 3–1. MMU Virtual Address Fields

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Virtual Page Number Page Offset
February 2014 Altera Corporation Nios II Processor Reference Handbook



3–4 Chapter 3: Programming Model
Memory Management Unit
Whenever an instruction attempts to access a page that either has no TLB mapping, or 
lacks the appropriate permissions, the MMU generates an exception. The Nios II 
processor’s precise exceptions enable the system software to update the TLB, and then 
re-execute the instruction if desired.

Address Space and Memory Partitions
The MMU provides a 4-GB virtual address space, and is capable of addressing up to 
4 GB of physical memory.

1 The amount of actual physical memory, determined by the configuration of your 
hardware system, might be less than the available 4 GB of physical address space.

Virtual Memory Address Space
The 4-GB virtual memory space is divided into partitions. The upper 2 GB of memory 
is reserved for the operating system and the lower 2 GB is reserved for user processes.

Each partition has a specific size, purpose, and relationship to the TLB:

■ The 512-MB I/O partition provides access to peripherals. 

■ The 512-MB kernel partition provides space for the operating system kernel.

■ The 1-GB kernel MMU partition is used by the TLB miss handler and kernel 
processes.

■ The 2-GB user partition is used by application processes.

I/O and kernel partitions bypass the TLB. The kernel MMU and user partitions use 
the TLB. If all software runs in the kernel partition, the MMU is effectively disabled.

Table 3–2. Virtual Memory Partitions

Partition Virtual Address Range Used By Memory Access User Mode 
Access

Default Data 
Cacheability

I/O (1) 0xE0000000–0xFFFFFFFF Operating 
system Bypasses TLB No Disabled

Kernel (1) 0xC0000000–0xDFFFFFFF Operating 
system Bypasses TLB No Enabled

Kernel MMU (1) 0x80000000–0xBFFFFFFF Operating 
system Uses TLB No Set by TLB

User 0x00000000–0x7FFFFFFF User 
processes Uses TLB Set by TLB Set by TLB

Note to Table 3–2:

(1) Supervisor-only partition
Nios II Processor Reference Handbook February 2014 Altera Corporation



Chapter 3: Programming Model 3–5
Memory Management Unit
Physical Memory Address Space
The 4-GB physical memory is divided into low memory and high memory. The lowest 
½ GB of physical address space is low memory. The upper 3½ GB of physical address 
space is high memory.

High physical memory can only be accessed through the TLB. Any physical address 
in low memory (29-bits or less) can be accessed through the TLB or by bypassing the 
TLB. When bypassing the TLB, a 29-bit physical address is computed by clearing the 
top three bits of the 32-bit virtual address.

1 To function correctly, the base physical address of all exception vectors (reset, general 
exception, break, and fast TLB miss) must point to low physical memory so that 
hardware can correctly map their virtual addresses into the kernel partition. The 
Nios II Processor parameter editor in Qsys prevents you from choosing an address 
outside of low physical memory.

Data Cacheability
Each partition has a rule that determines the default data cacheability property of 
each memory access. When data cacheability is enabled on a partition of the address 
space, a data access to that partition can be cached, if a data cache is present in the 
system. When data cacheability is disabled, all access to that partition goes directly to 
the Avalon switch fabric. Bit 31 is not used to specify data cacheability, as it is in 
Nios II cores without MMUs. Virtual memory partitions that bypass the TLB have a 
default data cacheability property, as described in the abmove table, Virtual Memory 
Partitions. For partitions that are mapped through the TLB, data cacheability is 
controlled by the TLB on a per-page basis.

Non-I/O load and store instructions use the default data cacheability property. I/O 
load and store instructions are always noncacheable, so they ignore the default data 
cacheability property.

Figure 3–1. Division of Physical Memory

0x1FFFFFFF

0x00000000
0.5 GByte Low Memory

3.5 GByte High Memory

0xFFFFFFFF

0x20000000

Accessed directly or via TLB

Accessed only via TLB
February 2014 Altera Corporation Nios II Processor Reference Handbook



3–6 Chapter 3: Programming Model
Memory Management Unit
TLB Organization
A TLB functions as a cache for the operating system’s page table. In Nios II processors 
with an MMU, one main TLB is shared by instruction and data accesses. The TLB is 
stored in on-chip RAM and handles translations for instruction fetches and 
instructions that perform data accesses.

The TLB is organized as an n-way set-associative cache. The software specifies the 
way (set) when loading a new entry.

1 You can configure the number of TLB entries and the number of ways (set 
associativity) of the TLB with the Nios II Processor parameter editor in Qsys. By 
default, the TLB is a 16-way cache. The default number of entries depends on the 
target device, as follows:

■ Cyclone® II, Stratix® II, Stratix II GX—128 entries, requiring one M4K RAM

■ Cyclone III, Stratix III, Stratix IV—256 entries, requiring one M9K RAM

For more information, refer to the Instantiating the Nios II Processor chapter of 
the Nios II Processor Reference Handbook.

The operating system software is responsible for guaranteeing that multiple TLB 
entries do not map the same virtual address. The hardware behavior is undefined 
when multiple entries map the same virtual address.

Each TLB entry consists of a tag and data portion. This is analogous to the tag and 
data portion of instruction and data caches.

f Refer to the Nios II Core Implementation Details chapter of the Nios II Processor Reference 
Handbook for information about instruction and data caches.

The tag portion of a TLB entry contains information used when matching a virtual 
address to a TLB entry.

Table 3–3. TLB Tag Portion Contents

Field Name Description

VPN
VPN is the virtual page number field. This field is compared with the top 20 bits of 
the virtual address.

PID

PID is the process identifier field. This field is compared with the value of the 
current process identifier stored in the tlbmisc control register, effectively 
extending the virtual address. The field size is configurable in the Nios_II 
Processor parameter editor, and can be between 8 and 14 bits.

G G is the global flag. When G = 1, the PID is ignored in the TLB lookup.
Nios II Processor Reference Handbook February 2014 Altera Corporation

http://www.altera.com/literature/hb/nios2/n2cpu_nii51004.pdf
http://www.altera.com/literature/hb/nios2/n2cpu_nii51015.pdf


Chapter 3: Programming Model 3–7
Memory Management Unit
The TLB data portion determines how to translate a matching virtual address to a 
physical address.

1 Because there is no “valid bit” in the TLB entry, the operating system software 
invalidates the TLB by writing unique VPN values from the I/O partition of virtual 
addresses into each TLB entry.

TLB Lookups
A TLB lookup attempts to convert a virtual address (VADDR) to a physical address 
(PADDR).

f Refer to “Instruction-Related Exceptions” on page 3–40 for information about TLB 
exceptions.

Table 3–4. TLB Data Portion Contents

Field Name Description

PFN
PFN is the physical frame number field. This field specifies the upper bits of the 
physical address. The size of this field depends on the range of physical addresses 
present in the system. The maximum size is 20 bits.

C
C is the cacheable flag. Determines the default data cacheability of a page. Can be 
overridden for data accesses using I/O load and store family of Nios II instructions.

R R is the readable flag. Allows load instructions to read a page.

W W is the writable flag. Allows store instructions to write a page.

X X is the executable flag. Allows instruction fetches from a page.

Example 3–1. TLB Lookup Algorithm for Instruction Fetches

if (VPN match && (G == 1 || PID match))
if (X == 1)

PADDR = concat(PFN, VADDR[11:0])
else

take TLB permission violation exception
else

if (EH bit of status register == 1)
take double TLB miss exception

else
take fast TLB miss exception

Example 3–2. TLB Lookup Algorithm for Data Access Operations

if (VPN match && (G == 1 || PID match))
if ((load && R == 1) || (store && W == 1) || flushda)

PADDR = concatenate(PFN, VADDR[11:0])
else

take TLB permission violation exception
else

if (EH bit of status register == 1)
take double TLB miss exception

else
take fast TLB miss exception
February 2014 Altera Corporation Nios II Processor Reference Handbook



3–8 Chapter 3: Programming Model
Memory Protection Unit
Memory Protection Unit
The Nios II processor provides an MPU for operating systems and runtime 
environments that desire memory protection but do not require virtual memory 
management. For information about memory protection with virtual memory 
management, refer to the Memory Management Unit section.

When present and enabled, the MPU monitors all Nios II instruction fetches and data 
memory accesses to protect against errant software execution. The MPU is a hardware 
facility that system software uses to define memory regions and their associated 
access permissions. The MPU triggers an exception if software attempts to access a 
memory region in violation of its permissions, allowing you to intervene and handle 
the exception as appropriate. The precise exception effectively prevents the illegal 
access to memory.

The MPU extends the Nios II processor to support user mode and supervisor mode. 
Typically, system software runs in supervisor mode and end-user applications run in 
user mode, although all software can run in supervisor mode if desired. System 
software defines which MPU regions belong to supervisor mode and which belong to 
user mode.

Memory Regions
The MPU contains up to 32 instruction regions and 32 data regions. Each region is 
defined by the following attributes:

■ Base address

■ Region type

■ Region index

■ Region size or upper address limit

■ Access permissions

■ Default cacheability (data regions only)

Base Address
The base address specifies the lowest address of the region. The base address is 
aligned on a region-sized boundary. For example, a 4-KB region must have a base 
address that is a multiple of 4 KB. If the base address is not properly aligned, the 
behavior is undefined.

Region Type
Each region is identified as either an instruction region or a data region. 

Region Index
Each region has an index ranging from zero to the number of regions of its region type 
minus one. Index zero has the highest priority. 
Nios II Processor Reference Handbook February 2014 Altera Corporation



Chapter 3: Programming Model 3–9
Memory Protection Unit
Region Size or Upper Address Limit
A Qsys generation-time option controls whether the amount of memory in the region 
is defined by size or upper address limit. The size is an integer power of two bytes. 
The limit is the highest address of the region plus one. The minimum supported 
region size is 64 bytes but can be configured for larger minimum sizes to save logic 
resources. The maximum supported region size equals the Nios II address space (a 
function of the address ranges of slaves connected to the Nios II masters). Any access 
outside of the Nios II address space is considered not to match any region and triggers 
an MPU region violation exception.

When regions are defined by size, the size is encoded as a binary mask to facilitate the 
following MPU region address range matching:

(address & region_mask) == region_base_address

When regions are defined by limit, the limit is encoded as an unsigned integer to 
facilitate the following MPU region address range matching:

(address >= region_base) && (address < region_limit)

The region limit uses a less-than instead of a less-than-or-equal-to comparison 
because less-than provides a more efficient implementation. The limit is one bit larger 
than the address so that full address range may be included in a range. Defining the 
region by limit results in slower and larger address range match logic than defining 
by size but allows finer granularity in region sizes.

Access Permissions
The access permissions consist of execute permissions for instruction regions and 
read/write permissions for data regions. Any instruction that performs a memory 
access that violates the access permissions triggers an exception. Additionally, any 
instruction that performs a memory access that does not match any region triggers an 
exception.

Default Cacheability
The default cacheability specifies whether normal load and store instructions access 
the data cache or bypass the data cache. The default cacheability is only present for 
data regions. You can override the default cacheability by using the ldio or stio 
instructions. The bit 31 cache bypass feature is available when the MPU is present. 
Refer to the Cache Memory section for more information on cache bypass.

Overlapping Regions
The memory addresses of regions can overlap. Overlapping regions have several uses 
including placing markers or small holes inside of a larger region. For example, the 
stack and heap may be located in the same region, growing from opposite ends of the 
address range. To detect stack/heap overflows, you can define a small region between 
the stack and heap with no access permissions and assign it a higher priority than the 
larger region. Any access attempts to the hole region trigger an exception informing 
system software about the stack/heap overflow.

If regions overlap so that a particular access matches more than one region, the region 
with the highest priority (lowest index) determines the access permissions and default 
cacheability.
February 2014 Altera Corporation Nios II Processor Reference Handbook



3–10 Chapter 3: Programming Model
Registers
Enabling the MPU
The MPU is disabled on system reset. System software enables and disables the MPU 
by writing to a control register. Before enabling the MPU, you must create at least one 
instruction and one data region, otherwise unexpected results can occur. Refer to the 
Working with the MPU section for more information.

Registers
The Nios II register set includes general-purpose registers and control registers. In 
addition, the Nios II/f core can optionally have shadow register sets. This section 
discusses each register type.

General-Purpose Registers
The Nios II architecture provides thirty-two 32-bit general-purpose registers, r0 
through r31. Some registers have names recognized by the assembler. For example, 
the zero register (r0) always returns the value zero, and writing to zero has no effect. 
The ra register (r31) holds the return address used by procedure calls and is implicitly 
accessed by the call, callr and ret instructions. C and C++ compilers use a common 
procedure-call convention, assigning specific meaning to registers r1 through r23 and 
r26 through r28.

Table 3–5. The Nios II General-Purpose Registers

Register Name Function Register Name Function

r0 zero 0x00000000 r16 Callee-saved register

r1 at Assembler temporary r17 Callee-saved register

r2 Return value r18 Callee-saved register

r3 Return value r19 Callee-saved register

r4 Register arguments r20 Callee-saved register

r5 Register arguments r21 Callee-saved register

r6 Register arguments r22 Callee-saved register

r7 Register arguments r23 Callee-saved register

r8 Caller-saved register r24 et Exception temporary 

r9 Caller-saved register r25 bt Breakpoint temporary (1)

r10 Caller-saved register r26 gp Global pointer

r11 Caller-saved register r27 sp Stack pointer

r12 Caller-saved register r28 fp Frame pointer

r13 Caller-saved register r29 ea Exception return address 

r14 Caller-saved register r30 ba Breakpoint return address (2)

r15 Caller-saved register r31 ra Return address

Notes:

(1) r25 is used exclusively by the JTAG debug module. It is used as the breakpoint temporary (bt) register in the normal register set. In shadow 
register sets, r25 is reserved.

(2) r30 is used as the breakpoint return address (ba) in the normal register set, and as the shadow register set status (sstatus) in each shadow 
register set. For details about sstatus, refer to The Status Register section.
Nios II Processor Reference Handbook February 2014 Altera Corporation



Chapter 3: Programming Model 3–11
Registers
f For more information, refer to the Application Binary Interface chapter of the Nios II 
Processor Reference Handbook.

Control Registers
Control registers report the status and change the behavior of the processor. Control 
registers are accessed differently than the general-purpose registers. The special 
instructions rdctl and wrctl provide the only means to read and write to the control 
registers and are only available in supervisor mode.

1 When writing to control registers, all undefined bits must be written as zero.

The Nios II architecture supports up to 32 control registers. All nonreserved control 
registers have names recognized by the assembler. 
 

The following sections describe the nonreserved control registers.

Table 3–6. Control Register Names and Bits

Register Name Register Contents

0 status Refer to Table 3–7 on page 3–12

1 estatus Refer to Table 3–9 on page 3–13

2 bstatus Refer to Table 3–10 on page 3–14

3 ienable Internal interrupt-enable bits (1)

4 ipending Pending internal interrupt bits (1)

5 cpuid Unique processor identifier

6 Reserved Reserved

7 exception Refer to Table 3–12 on page 3–15

8 pteaddr (2) Refer to Table 3–13 on page 3–15

9 tlbacc (2) Refer to Table 3–15 on page 3–16

10 tlbmisc (2) Refer to Table 3–17 on page 3–17

11 eccinj (3) Refer to Table 3–31 on page 3–25

12 badaddr Refer to Table 3–19 on page 3–20

13 config (4) Refer to Table 3–21 on page 3–20

14 mpubase (4) Refer to Table 3–23 on page 3–21

15 mpuacc (4) Refer to Table 3–25 on page 3–22

16–31 Reserved Reserved

Notes:

(1) Available only when the external interrupt controller interface is not present. Otherwise reserved.
(2) Available only when the MMU is present. Otherwise reserved.
(3) Available only when ECC is present.
(4) Available only when the MPU is present. Otherwise reserved.
February 2014 Altera Corporation Nios II Processor Reference Handbook

http://www.altera.com/literature/hb/nios2/n2cpu_nii51016.pdf


3–12 Chapter 3: Programming Model
Registers
The status Register
The value in the status register determines the state of the Nios II processor. All 
status bits are set to predefined values at processor reset. Some bits are exclusively 
used by and available only to certain features of the processor, such as the MMU, 
MPU or external interrupt controller (EIC) interface.

Table 3–7. status Control Register Fields

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Reserved
RS
IE

NM
I PRS CRS IL IH EH U PI
E

Table 3–8. status Control Register Field Descriptions (Part 1 of 2)

Bit Description Access Reset Available

RSIE 

RSIE is the register set interrupt-enable bit. When set to 1, this bit allows 
the processor to service external interrupts requesting the register set that 
is currently in use. When set to 0, this bit disallows servicing of such 
interrupts. 

Read/Write 1

EIC 
interface 

and shadow 
register 

sets 
only (4)

NMI NMI is the nonmaskable interrupt mode bit. The processor sets NMI to 1 
when it takes a nonmaskable interrupt. Read 0

EIC 
interface 
only (3)

PRS 

PRS is the previous register set field. The processor copies the CRS field to 
the PRS field upon one of the following events:

■ In a processor with no MMU, on any exception

■ In a processor with an MMU, on one of the following:

■ Break exception

■ Nonbreak exception when status.EH is zero

The processor copies CRS to PRS immediately after copying the status 
register to estatus, bstatus or sstatus.

The number of significant bits in the CRS and PRS fields depends on the 
number of shadow register sets implemented in the Nios II core. The value 
of CRS and PRS can range from 0 to n-1, where n is the number of 
implemented register sets. The processor core implements the number of 
significant bits needed to represent n-1. Unused high-order bits are always 
read as 0, and must be written as 0.

1 Ensure that system software writes only valid register set numbers to 
the PRS field. Processor behavior is undefined with an unimplemented 
register set number.

Read/Write 0

Shadow 
register 

sets 
only (3)

CRS 

CRS is the current register set field. CRS indicates which register set is 
currently in use. Register set 0 is the normal register set, while register sets 
1 and higher are shadow register sets. The processor sets CRS to zero on 
any noninterrupt exception.

The number of significant bits in the CRS and PRS fields depends on the 
number of shadow register sets implemented in the Nios II core. Unused 
high-order bits are always read as 0, and must be written as 0. 

Read (1) 0

Shadow 
register 

sets 
only (3)
Nios II Processor Reference Handbook February 2014 Altera Corporation



Chapter 3: Programming Model 3–13
Registers
The estatus Register
The estatus register holds a saved copy of the status register during nonbreak 
exception processing.

All fields in the estatus register have read/write access. All fields reset to 0.

When the Nios II processor takes an interrupt, if status.eh is zero (that is, the MMU 
is in nonexception mode), the processor copies the contents of the status register to 
estatus.

1 If shadow register sets are implemented, and the interrupt requests a shadow register 
set, the Nios II processor copies status to sstatus, not to estatus.

f For details about the sstatus register, refer to The sstauts Register section.

IL 
IL is the interrupt level field. The IL field controls what level of external 
maskable interrupts can be serviced. The processor services a maskable 
interrupt only if its requested interrupt level is greater than IL. 

Read/Write 0
EIC 

interface 
only (3)

IH 
IH is the interrupt handler mode bit. The processor sets IH to one when it 
takes an external interrupt. Read/Write 0

EIC 
interface 
only (3)

EH (2)

EH is the exception handler mode bit. The processor sets EH to one when an 
exception occurs (including breaks). Software clears EH to zero when ready 
to handle exceptions again. EH is used by the MMU to determine whether a 
TLB miss exception is a fast TLB miss or a double TLB miss. In systems 
without an MMU, EH is always zero.

Read/Write 0
MMU or 

ECC 
only (3)

U (2)
U is the user mode bit. When U = 1, the processor operates in user mode. 
When U = 0, the processor operates in supervisor mode. In systems without 
an MMU, U is always zero.

Read/Write 0
MMU or 

MPU 
only (3)

PIE

PIE is the processor interrupt-enable bit. When PIE = 0, internal and 
maskable external interrupts and noninterrupt exceptions are ignored. 
When PIE = 1, internal and maskable external interrupts can be taken, 
depending on the status of the interrupt controller. Noninterrupt exceptions 
are unaffected by PIE.

Read/Write 0 Always

Notes:

(1) The CRS field is read-only. For information about manually changing register sets, refer to the External Interrupt Controller Interface section.
(2) The state where both EH and U are one is illegal and causes undefined results.
(3) When this field is unimplemented, the field value always reads as 0, and the processor behaves accordingly.
(4) When this field is unimplemented, the field value always reads as 1, and the processor behaves accordingly.

Table 3–8. status Control Register Field Descriptions (Part 2 of 2)

Bit Description Access Reset Available

Table 3–9. estatus Control Register Fields

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Reserved

RS
IE

NM
I

PRS CRS IL IH EH U PI
E

February 2014 Altera Corporation Nios II Processor Reference Handbook



3–14 Chapter 3: Programming Model
Registers
The exception handler can examine estatus to determine the pre-exception status of 
the processor. When returning from an exception, the eret instruction restores the 
pre-exception value of status. The instruction restores the pre-exception value by 
copying either estatus or sstatus back to status, depending on the value of 
status.CRS.

Refer to the Exception Processing section for more information. 

The bstatus Register
The bstatus register holds a saved copy of the status register during break exception 
processing.

All fields in the bstatus register have read/write access. All fields reset to 0.

The Status Control Register Field Description table describes the details of the fields 
defined in the bstatus register.

When a break occurs, the value of the status register is copied into bstatus. Using 
bstatus, the debugger can restore the status register to the value prior to the break. 
The bret instruction causes the processor to copy bstatus back to status. Refer to the 
Processing a Break section for more information.

The ienable Register
The ienable register controls the handling of internal hardware interrupts. Each bit of 
the ienable register corresponds to one of the interrupt inputs, irq0 through irq31. A 
value of one in bit n means that the corresponding irqn interrupt is enabled; a bit 
value of zero means that the corresponding interrupt is disabled. Refer to the 
Exception Processing section for more information.

1 When the internal interrupt controller is not implemented, the value of the ienable 
register is always 0.

The ipending Register
The value of the ipending register indicates the value of the interrupt signals driven 
into the processor. A value of one in bit n means that the corresponding irqn input is 
asserted. Writing a value to the ipending register has no effect. 

1 The ipending register is present only when the internal interrupt controller is 
implemented.

The cpuid Register
The cpuid register holds a constant value that you define in the Nios II Processor 
parameter editor to uniquely identify each processor in a multiprocessor system. In 
Qsys, unique values must be assigned manually. Writing to the cpuid register has no 
effect.

Table 3–10. bstatus Control Register Fields

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Reserved

RS
IE

NM
I PRS CRS IL IH EH U PI
E

Nios II Processor Reference Handbook February 2014 Altera Corporation



Chapter 3: Programming Model 3–15
Registers
The exception Register
When the extra exception information option is enabled, the Nios II processor 
provides information useful to system software for exception processing in the 
exception and badaddr registers when an exception occurs. When your system 
contains an MMU or MPU, the extra exception information is always enabled. When 
no MMU or MPU is present, the Nios II Processor parameter editor gives you the 
option to have the processor provide the extra exception information.

For information about controlling the extra exception information option, refer to the 
Instantiating the Nios II Processor chapter of the Nios II Processor Reference Handbook.

The pteaddr Register
The pteaddr register contains the virtual address of the operating system’s page table 
and is only available in systems with an MMU. The pteaddr register layout 
accelerates fast TLB miss exception handling. 

Software writes to the PTBASE field when switching processes. Hardware never writes 
to the PTBASE field.

Table 3–11. exception Control Register Fields

EC
CF

TL

30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Reserved CAUSE Rsvd

Table 3–12. exception Control Register Field Descriptions

Field Description Access Reset Available

ECCFTL

The Nios II processor writes to ECCFTL when it detects a potentially 
fatal ECC error. When ECCFTL = 1, the Nios II processor detects an 
ECC register file error. When ECCFTL = 0, another ECC exception 
occurred. 

Read 0 Only with ECC

CAUSE

CAUSE is written by the Nios II processor when certain exceptions 
occur. CAUSE contains a code for the highest-priority exception 
occurring at the time. The Cause column in the Nios II Exceptions 
(In Decreasing Priority Order table lists the CAUSE field value for 
each exception.

CAUSE is not written on a break or an external interrupt.

Read 0

Only with 
extra 

exception 
information 

Table 3–13. pteaddr Control Register Fields

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

PTBASE VPN Rsvd

Table 3–14. pteaddr Control Register Field Descriptions

Field Description Access Reset Available

PTBASE PTBASE is the base virtual address of the page table. Read/Write 0 Only with 
MMU 

VPN
VPN is the virtual page number. VPN can be set by both hardware 
and software. Read/Write 0 Only with 

MMU
February 2014 Altera Corporation Nios II Processor Reference Handbook

http://www.altera.com/literature/hb/nios2/n2cpu_nii51004.pdf


3–16 Chapter 3: Programming Model
Registers
Software writes to the VPN field when writing a TLB entry. Hardware writes to the VPN 
field on a fast TLB miss exception, a TLB permission violation exception, or on a TLB 
read operation. The VPN field is not written on any exceptions taken when an 
exception is already active, that is, when status.EH is already one.

The tlbacc Register
The tlbacc register is used to access TLB entries and is only available in systems with 
an MMU. The tlbacc register holds values that software will write into a TLB entry or 
has previously read from a TLB entry. The tlbacc register provides access to only a 
portion of a complete TLB entry. pteaddr.VPN and tlbmisc.PID hold the remaining 
TLB entry fields.

Issuing a wrctl instruction to the tlbacc register writes the tlbacc register with the 
specified value. If tlbmisc.WE = 1, the wrctl instruction also initiates a TLB write 
operation, which writes a TLB entry. The TLB entry written is specified by the line 
portion of pteaddr.VPN and the tlbmisc.WAY field. The value written is specified by 
the value written into tlbacc along with the values of pteaddr.VPN and tlbmisc.PID. 
A TLB write operation also increments tlbmisc.WAY, allowing software to quickly 
modify TLB entries.

Issuing a rdctl instruction to the tlbacc register returns the value of the tlbacc 
register. The tlbacc register is written by hardware when software triggers a TLB 
read operation (that is, when wrctl sets tlbmisc.RD to one). 

Table 3–15. tlbacc Control Register Fields

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

IG C R W X G PFN

Table 3–16. tlbacc Control Register Field Descriptions

Field Description Access Reset Available

IG
IG is ignored by hardware and available to hold operating system 
specific information. Read as zero but can be written as nonzero. Read/Write 0 Only with 

MMU 

C
C is the data cacheable flag. When C = 0, data accesses are 
uncacheable. When C = 1, data accesses are cacheable. Read/Write 0 Only with 

MMU 

R
R is the readable flag. When R = 0, load instructions are not allowed 
to access memory. When R = 1, load instructions are allowed to 
access memory.

Read/Write 0 Only with 
MMU 

W
W is the writable flag. When W = 0, store instructions are not allowed 
to access memory. When W = 1, store instructions are allowed to 
access memory.

Read/Write 0 Only with 
MMU 

X
X is the executable flag. When X = 0, instructions are not allowed to 
execute. When X = 1, instructions are allowed to execute. Read/Write 0 Only with 

MMU 

G
G is the global flag. When G = 0, tlbmisc.PID is included in the 
TLB lookup. When G = 1, tlbmisc.PID is ignored and only the 
virtual page number is used in the TLB lookup. 

Read/Write 0 Only with 
MMU 

PFN
PFN is the physical frame number field. All unused upper bits must 
be zero. Read/Write 0 Only with 

MMU 
Nios II Processor Reference Handbook February 2014 Altera Corporation



Chapter 3: Programming Model 3–17
Registers
The tlbacc register format is the recommended format for entries in the operating 
system page table. The IG bits are ignored by the hardware on wrctl to tlbacc and 
read back as zero on rdctl from tlbacc. The operating system can use the IG bits to 
hold operating system specific information without having to clear these bits to zero 
on a TLB write operation.

The tlbmisc Register
The tlbmisc register contains the remaining TLB-related fields and is only available in 
systems with an MMU. 

The following sections provide more information about the tlbmisc fields.

The RD Flag

System software triggers a TLB read operation by setting tlbmisc.RD (with a wrctl 
instruction). A TLB read operation loads the following register fields with the 
contents of a TLB entry:

Table 3–17. tlbmisc Control Register Fields

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Reserved EE WAY (1) RD WE PID (1) DB
L

BA
D

PE
RM D

Note:

(1) This field size is variable. Unused upper bits must be written as zero.

Table 3–18. tlbmisc Control Register Field Descriptions

Field Description Access Reset Available

EE
If this field is a 1, a software-triggered ECC error (1, 2, or 3 bit error) 
occurred because software initiated a TLB read operation. Only set 
this field to 1 if CONFIG.ECCEN is 1.

Read/Write 0 Only with 
MMU and EEC 

WAY
The WAY field controls the mapping from the VPN to a particular TLB 
entry. Read/Write 0 Only with 

MMU 

RD RD is the read flag. Setting RD to one triggers a TLB read operation. Write 0 Only with 
MMU 

WE
WE is the TLB write enable flag. When WE = 1, a write to tlbacc 
writes through to a TLB entry. Read/Write 0 Only with 

MMU 

PID PID is the process identifier field. Read/Write 0 Only with 
MMU 

DBL (1) DBL is the double TLB miss exception flag. Read 0 Only with 
MMU 

BAD (1) BAD is the bad virtual address exception flag. Read 0 Only with 
MMU 

PERM (1) PERM is the TLB permission violation exception flag. Read 0 Only with 
MMU 

D
D is the data access exception flag. When D = 1, the exception is a 
data access exception. When D = 0, the exception is an instruction 
access exception.

Read 0 Only with 
MMU 

Note:

(1) You can also use exception.CAUSE to determine these exceptions.
February 2014 Altera Corporation Nios II Processor Reference Handbook



3–18 Chapter 3: Programming Model
Registers
■ The tag portion of pteaddr.VPN

■ tlbmisc.PID

■ The tlbacc register

The TLB entry to be read is specified by the following values:

■ the line portion of pteaddr.VPN

■ tlbmisc.WAY

When system software changes the fields that specify the TLB entry, there is no 
immediate effect on pteaddr.VPN, tlbmisc.PID, or the tlbacc register. The registers 
retain their previous values until the next TLB read operation is initiated. For 
example, when the operating system sets pteaddr.VPN to a new value, the contents of 
tlbacc continues to reflect the previous TLB entry. tlbacc does not contain the new 
TLB entry until after an explicit TLB read.

The WE Flag

When WE = 1, a write to tlbacc writes the tlbacc register and a TLB entry. When WE = 
0, a write to tlbacc only writes the tlbacc register.

Hardware sets the WE flag to one on a TLB permission violation exception, and on a 
TLB miss exception when status.EH = 0. When a TLB write operation writes the 
tlbacc register, the write operation also writes to a TLB entry when WE = 1. 

The WAY Field

The WAY field controls the mapping from the VPN to a particular TLB entry. WAY 
specifies the set to be written to in the TLB. The MMU increments WAY when system 
software performs a TLB write operation. Unused upper bits in WAY must be written as 
zero.

1 The number of ways (sets) is configurable in Qsys at generation time, up to a 
maximum of 16. 

The PID Field

PID is a unique identifier for the current process that effectively extends the virtual 
address. The process identifier can be less than 14 bits. Any unused upper bits must 
be zero.

tlbmisc.PID contains the PID field from a TLB tag. The operating system must set the 
PID field when switching processes, and before each TLB write operation.

1 Use of the process identifier is optional. To implement memory management without 
process identifiers, clear tlbmisc.PID to zero. Without a process identifier, all 
processes share the same virtual address space.

The MMU sets tlbmisc.PID on a TLB read operation. When the software triggers a 
TLB read, by setting tlbmisc.RD to one with the wrctl instruction, the PID value read 
from the TLB has priority over the value written by the wrctl instruction.

The size of the PID field is configured in Qsys at system generation, and can be from 8 
to 14 bits. If system software defines a process identifier smaller than the PID field, 
unused upper bits must be written as zero.
Nios II Processor Reference Handbook February 2014 Altera Corporation



Chapter 3: Programming Model 3–19
Registers
The DBL Flag

During a general exception, the processor sets DBL to one when a double TLB miss 
condition exists. Otherwise, the processor clears DBL to zero.

The DBL flag indicates whether the most recent exception is a double TLB miss 
condition. When a general exception occurs, the MMU sets DBL to one if a double TLB 
miss is detected, and clears DBL to zero otherwise.

The BAD Flag

During a general exception, the processor sets BAD to one when a bad virtual address 
condition exists, and clears BAD to zero otherwise. The following exceptions set the BAD 
flag to one:

■ Supervisor-only instruction address

■ Supervisor-only data address

■ Misaligned data address

■ Misaligned destination address

Refer to Nios II Exceptions (In Decreasing Priority Order) table for more information on these 
exceptions.

The PERM Flag

During a general exception, the processor sets PERM to one for a TLB permission 
violation exception, and clears PERM to zero otherwise.

The D Flag

The D flag indicates whether the exception is an instruction access exception or a data 
access exception. During a general exception, the processor sets D to one when the 
exception is related to a data access, and clears D to zero for all other nonbreak 
exceptions.

The following exceptions set the D flag to one:

■ Fast TLB miss (data)

■ Double TLB miss (data)

■ TLB permission violation (read or write)

■ Misaligned data address

■ Supervisor-only data address

The badaddr Register
When the extra exception information option is enabled, the Nios II processor 
provides information useful to system software for exception processing in the 
exception and badaddr registers when an exception occurs. When your system 
contains an MMU or MPU, the extra exception information is always enabled. When 
no MMU or MPU is present, the Nios II Processor parameter editor gives you the 
option to have the processor provide the extra exception information.

For information about controlling the extra exception information option, refer to the 
Instantiating the Nios II Processor chapter of the Nios II Processor Reference Handbook.
February 2014 Altera Corporation Nios II Processor Reference Handbook

http://www.altera.com/literature/hb/nios2/n2cpu_nii51004.pdf


3–20 Chapter 3: Programming Model
Registers
When the option for extra exception information is enabled and a processor exception 
occurs, the badaddr register contains the byte instruction or data address associated 
with certain exceptions at the time the exception occurred. Table 3–35 on page 3–33 
lists which exceptions write the badaddr register along with the value written. 

The BADDR field allows up to a 32-bit instruction address or data address. If an MMU 
or MPU is present, the BADDR field is 32 bits because MMU and MPU instruction and 
data addresses are always full 32-bit values. When an MMU is present, the BADDR field 
contains the virtual address.

If there is no MMU or MPU and the Nios II address space is less than 32 bits, unused 
high-order bits are written and read as zero. If there is no MMU, bit 31 of a data 
address (used to bypass the data cache) is always zero in the BADDR field.

The config Register
The config register configures Nios II runtime behaviors that do not need to be 
preserved during exception processing (in contrast to the information in the status 
register). 

Table 3–19. badaddr Control Register Fields

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

BADDR

Table 3–20. badaddr Control Register Field Descriptions

Field Description Access Reset Available

BADDR

BADDR contains the byte instruction address or data address 
associated with an exception when certain exceptions occur. The 
Address column of Table 3–35 on page 3–33 lists which exceptions 
write the BADDR field. 

Read 0

Only with 
extra 

exception 
information

Table 3–21. config Control Register Fields

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Reserved

EC
CE
XE

EC
CE
N

AN
I

PE

Table 3–22. config Control Register Field Descriptions (Part 1 of 2)

Field Description Access Reset Available

ANI 

ANI is the automatic nested interrupt mode bit. If ANI is set to zero, 
the processor clears status.PIE on each interrupt, disabling fast 
nested interrupts. If ANI is set to one, the processor keeps 
status.PIE set to one at the time of an interrupt, enabling fast 
nested interrupts.

If the EIC interface and shadow register sets are not implemented in 
the Nios II core, ANI always reads as zero, disabling fast nested 
interrupts.

Read/Write 0

Only with the 
EIC interface 
and shadow 
register sets

ECCEXE
ECCEX is the ECC error exception enable bit. When ECCEXE = 1, the 
Nios II processor generates ECC error exceptions. Read/Write 0 Only with ECC
Nios II Processor Reference Handbook February 2014 Altera Corporation



Chapter 3: Programming Model 3–21
Registers
The mpubase Register
The mpubase register works in conjunction with the mpuacc register to set and retrieve 
MPU region information and is only available in systems with an MPU.

.

The BASE field specifies the base address of an MPU region. The 25-bit BASE field 
corresponds to bits 6 through 30 of the base address, making the base address always 
a multiple of 64 bytes. If the minimum region size set in Qsys at generation time is 
larger than 64 bytes, unused low-order bits of the BASE field must be written as zero 
and are read as zero. For example, if the minimum region size is 1024 bytes, the four 
least-significant bits of the BASE field (bits 6 though 9 of the mpubase register) must be 
zero. Similarly, if the Nios II address space is less than 31 bits, unused high-order bits 
must also be written as zero and are read as zero.

The INDEX and D fields specify the region information to access when an MPU region 
read or write operation is performed. The D field specifies whether the region is a data 
region or an instruction region. The INDEX field specifies which of the 32 data or 
instruction regions to access. If there are fewer than 32 instruction or 32 data regions, 
unused high-order bits must be written as zero and are read as zero.

Refer to the MPU Regoin Read and Write Operations section for more information on 
MPU region read and write operations.

ECCEN
ECCEN is the ECC enable bit. When ECCEN = 0, the Nios II processor 
ignores all ECC errors. When ECCEN = 1, the Nios II processor 
recovers all recoverable ECC errors.

Read/Write 0 Only with ECC

PE
PE is the memory protection enable bit. When PE =1, the MPU is 
enabled. When PE = 0, the MPU is disabled. In systems without an 
MPU, PE is always zero.

Read/Write 0 Only with 
MPU

Table 3–22. config Control Register Field Descriptions (Part 2 of 2)

Field Description Access Reset Available

Table 3–23. mpubase Control Register Fields

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 BASE (2) INDEX (1) D

Notes:

(1) This field size is variable. Unused upper bits must be written as zero.
(2) This field size is variable. Unused upper bits and unused lower bits must be written as zero.

Table 3–24. mpubase Control Register Field Descriptions

Field Description Access Reset Available

BASE
BASE is the base memory address of the region identified by the 
INDEX and D fields. Read/Write 0 Only with 

MPU

INDEX INDEX is the region index number. Read/Write 0 Only with 
MPU

D
D is the region access bit. When D =1, INDEX refers to a data region. 
When D = 0, INDEX refers to an instruction region. Read/Write 0 Only with 

MPU
February 2014 Altera Corporation Nios II Processor Reference Handbook



3–22 Chapter 3: Programming Model
Registers
The mpuacc Register
The mpuacc register works in conjunction with the mpubase register to set and retrieve 
MPU region information and is only available in systems with an MPU. The mpuacc 
register consists of attributes that will be set or have been retrieved which define the 
MPU region. The mpuacc register only holds a portion of the attributes that define an 
MPU region. The remaining portion of the MPU region definition is held by the BASE 
field of the mpubase register.

A Qsys generation-time option controls whether the mpuacc register contains a MASK or 
LIMIT field.

The following sections provide more information about the mpuacc fields.

Table 3–25. mpuacc Control Register Fields for MASK Variation

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 MASK (1) C PERM RD WR

Note:

(1) This field size is variable. Unused upper bits and unused lower bits must be written as zero.

Table 3–26. mpuacc Control Register Fields for LIMIT Variation

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

LIMIT (1) C PERM RD WR

Note:

(1) This field size is variable. Unused upper bits and unused lower bits must be written as zero.

Table 3–27. mpuacc Control Register Field Descriptions

Field Description Access Reset Available

MASK (1) MASK specifies the size of the region. Read/Write 0 Only with 
MPU

LIMIT (1) LIMIT specifies the upper address limit of the region. Read/Write 0 Only with 
MPU

C

C is the data cacheable flag. C only applies to MPU data regions and 
determines the default cacheability of a data region. When C = 0, the 
data region is uncacheable. When C = 1, the data region is 
cacheable.

Read/Write 0 Only with 
MPU

PERM PERM specifies the access permissions for the region. Read/Write 0 Only with 
MPU

RD
RD is the read region flag. When RD = 1, wrctl instructions to the 
mpuacc register perform a read operation. Write 0 Only with 

MPU

WR
WR is the write region flag. When WR = 1, wrctl instructions to the 
mpuacc register perform a write operation. Write 0 Only with 

MPU

Note:

(1) The MASK and LIMIT fields are mutually exclusive. Refer to mpucc Control Register Field for MASK Variation Table and mpuacc Control Register 
Field for LIMIT Variation Table.
Nios II Processor Reference Handbook February 2014 Altera Corporation



Chapter 3: Programming Model 3–23
Registers
The MASK Field

When the amount of memory reserved for a region is defined by size, the MASK field 
specifies the size of the memory region. The MASK field is the same number of bits as 
the BASE field of the mpubase register.

1 Unused high-order or low-order bits must be written as zero and are read as zero.

MASK Region Size Encodings Table lists the MASK field encodings for all possible region 
sizes in a full 31-bit byte address space.

Bit 31 of the mpuacc register is not used by the MASK field. Because memory region size 
is already a power of two, one less bit is needed. The MASK field contains the following 
value, where region_size is in bytes:

MASK = 0x1FFFFFF << log2(region_size >> 6)

Table 3–28. MASK Region Size Encodings

MASK Encoding Region Size

0x1FFFFFF 64 bytes

0x1FFFFFE 128 bytes

0x1FFFFFC 256 bytes

0x1FFFFF8 512 bytes

0x1FFFFF0 1 KB

0x1FFFFE0 2 KB

0x1FFFFC0 4 KB

0x1FFFF80 8 KB

0x1FFFF00 16 KB

0x1FFFE00 32 KB

0x1FFFC00 64 KB

0x1FFF800 128 KB

0x1FFF000 256 KB

0x1FFE000 512 KB

0x1FFC000 1 MB

0x1FF8000 2 MB

0x1FF0000 4 MB

0x1FE0000 8 MB

0x1FC0000 16 MB

0x1F80000 32 MB

0x1F00000 64 MB

0x1E00000 128 MB

0x1C00000 256 MB

0x1800000 512 MB

0x1000000 1 GB

0x0000000 2 GB
February 2014 Altera Corporation Nios II Processor Reference Handbook



3–24 Chapter 3: Programming Model
Registers
The LIMIT Field

When the amount of memory reserved for a region is defined by an upper address 
limit, the LIMIT field specifies the upper address of the memory region plus one. For 
example, to achieve a memory range for byte addresses 0x4000 to 0x4fff with a 256 
byte minimum region size, the BASE field of the mpubase register is set to 0x40 (0x4000 
>> 8) and the LIMIT field is set to 0x50 (0x5000 >> 8). Because the LIMIT field is one 
more bit than the number of bits of the BASE field of the mpubase register, bit 31 of the 
mpuacc register is available to the LIMIT field.

The C Flag

The C flag determines the default data cacheability of an MPU region. The C flag only 
applies to data regions. For instruction regions, the C bit must be written with 0 and is 
always read as 0.

When data cacheability is enabled on a data region, a data access to that region can be 
cached, if a data cache is present in the system. You can override the default 
cacheability and force an address to noncacheable with an ldio or stio instruction.

1 The bit 31 cache bypass feature is supported when the MPU is present. Refer to the 
Cache memory section for more information on cache bypass.

The PERM Field

The PERM field specifies the allowed access permissions.

1 Unlisted table values are reserved and must not be used. If you use reserved values, 
the resulting behavior is undefined.

The RD Flag

Setting the RD flag signifies that an MPU region read operation should be performed 
when a wrctl instruction is issued to the mpuacc register. Refer to the MPU Region 
Read and Write Operations section for more information. The RD flag always returns 0 
when read by a rdctl instruction.

Table 3–29. Instruction Region Permission Values

Value Supervisor Permissions User Permissions

0 None None

1 Execute None

2 Execute Execute

Table 3–30. Data Region Permission Values

Value Supervisor Permissions User Permissions

0 None None

1 Read None

2 Read Read

4 Read/Write None

5 Read/Write Read

6 Read/Write Read/Write
Nios II Processor Reference Handbook February 2014 Altera Corporation



Chapter 3: Programming Model 3–25
Registers
The WR Flag

Setting the WR flag signifies that an MPU region write operation should be performed 
when a wrctl instruction is issued to the mpuacc register. Refer to the MPU Region 
Read and Write Operations section for more information. The WR flag always returns 0 
when read by a rdctl instruction.

1 Setting both the RD and WR flags to one results in undefined behavior.

The eccinj Register
The eccinj register injects 1 and 2 bit errors to the Nios II processor’s internal RAM 
blocks that support ECC. Injecting errors allows the software to test the ECC error 
exception handling code. The error(s) are injected in the data bits, not the parity bits. 
The eccinj register is only available when ECC is present.

Software writes 0x1 to inject a 1 bit ECC error or 0x2 to inject a 2-bit ECC error to the 
RAM field. Hardware sets the value of the inject field to 0x0 after the error injection 
has occurred.

f Refer to “Working with ECC” on page 3–29 for more information about when errors 
are injected.

Shadow Register Sets
The Nios II processor can optionally have one or more shadow register sets. A 
shadow register set is a complete alternate set of Nios II general-purpose registers, 
which can be used to maintain a separate runtime context for an interrupt service 
routine (ISR).

When shadow register sets are implemented, status.CRS indicates the register set 
currently in use. A Nios II core can have up to 63 shadow register sets. If n is the 
configured number of shadow register sets, the shadow register sets are numbered 
from 1 to n. Register set 0 is the normal register set.

A shadow register set behaves precisely the same as the normal register set. The 
register set currently in use can only be determined by examining status.CRS.

Table 3–31. eccinj Control Register Fields

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Reserved TLB Reserved ICDAT ICTAG RF

Table 3–32. eccinj Control Register Field Descriptions

Field Description Access Reset Available

RF Inject an ECC error in the register file’s RAM. Read/Write 0 Only with ECC

ICTAG Inject an ECC error in the instruction cache RAM. Read/Write 0 Only with ECC

ICDAT Inject an ECC error in the instruction cache data RAM. Read/Write 0 Only with ECC

TLB
Inject an ECC error in the MMU TLB RAM. Errors are injected in the 
tag portion of the VPN field. Read/Write 0 Only with ECC
February 2014 Altera Corporation Nios II Processor Reference Handbook



3–26 Chapter 3: Programming Model
Registers
1 When shadow register sets and the EIC interface are implemented on the Nios II core, 
you must ensure that your software is built with the Nios II EDS version 9.0 or later. 
Earlier versions have an implementation of the eret instruction that is incompatible 
with shadow register sets.

Shadow register sets are typically used in conjunction with the EIC interface. This 
combination can substantially reduce interrupt latency.

f For details of EIC interface usage, refer to the Exception Processing section.

System software can read from and write to any shadow register set by setting 
status.PRS and using the rdprs and wrprs instructions. 

f For details of the rdprs and wrprs instructions, refer to the Instruction Set Reference 
chapter of the Nios II Processor Reference Handbook. 

The sstatus Register
The value in the sstatus register preserves the state of the Nios II processor during 
external interrupt handling. The value of sstatus is undefined at processor reset. 
Some bits are exclusively used by and available only to certain features of the 
processor. 

The sstatus register is physically stored in general-purpose register r30 in each 
shadow register set. The normal register set does not have an sstatus register, but 
each shadow register set has a separate sstatus register.

Table 3–33. sstatus Control Register Fields

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

SR
S Reserved

RS
IE

NM
I PRS CRS IL IH EH U PI
E

Table 3–34. sstatus Control Register Field Descriptions (Part 1 of 2)

Bit Description Access Reset Available

SRS (2) 
SRS is the switched register set bit. The processor sets SRS to 1 when 
an external interrupt occurs, if the interrupt required the processor to 
switch to a different register set. 

Read/Write Undefined

EIC interface 
and shadow 
register sets 

only

RSIE (1) Read/Write Undefined (1)

NMI (1) Read/Write Undefined (1)

PRS (1) Read/Write Undefined (1)

CRS (1) Read/Write Undefined (1)

IL (1) Read/Write Undefined (1)

IH (1) Read/Write Undefined (1)

EH (1) Read/Write Undefined (1)

U (1) Read/Write Undefined (1)
Nios II Processor Reference Handbook February 2014 Altera Corporation

http://www.altera.com/literature/hb/nios2/n2cpu_nii51017.pdf


Chapter 3: Programming Model 3–27
Registers
The sstatus register is present in the Nios II core if both the EIC interface and shadow 
register sets are implemented. There is one copy of sstatus for each shadow register 
set.

When the Nios II processor takes an interrupt, if a shadow register set is requested 
(RRS = 0) and the MMU is not in exception handler mode (status.EH = 0), the 
processor copies status to sstatus.

f For details about RRS, refer to “Requested Register Set” on page 3–38. For details 
about status.EH, refer to Table 3–37 on page 3–48.

Changing Register Sets

Modifying status.CRS immediately switches the Nios II processor to another register 
set. However, software cannot write to status.CRS directly. To modify status.CRS, 
insert the desired value into the saved copy of the status register, and then execute 
the eret instruction, as follows:

■ If the processor is currently running in the normal register set, insert the new 
register set number in estatus.CRS, and execute eret.

■ If the processor is currently running in a shadow register set, insert the new 
register set number in sstatus.CRS, and execute eret.

Before executing eret to change the register set, system software must set individual 
external interrupt masks correctly to ensure that registers in the shadow register set 
cannot be corrupted. If an interrupt is assigned to the register set, system software 
must ensure that one of the following conditions is true:

■ The ISR is written to preserve register contents.

■ The individual interrupt is disabled. The method for disabling an individual 
external interrupt is specific to the EIC implementation.

Stacks and Shadow Register Sets

Depending on system requirements, the system software can create a dedicated stack 
for each register set, or share a stack among several register sets. If a stack is shared, 
the system software must copy the stack pointer each time the register set changes. 
Use the rdprs instruction to copy the stack register between the current register set 
and another register set.

Initialization with Shadow Register Sets
At initialization, system software must carry out the following tasks to ensure correct 
software functioning with shadow register sets:

■ After the gp register is initialized in the normal register set, copy it to all shadow 
register sets, to ensure that all code can correctly address the small data sections.

PIE (1) Read/Write Undefined (1)

Notes:

(1) Refer to Table 3–8 on page 3–12.
(2) If the EIC interface and shadow register sets are not present, SRS always reads as 0, and the processor behaves accordingly.

Table 3–34. sstatus Control Register Field Descriptions (Part 2 of 2)

Bit Description Access Reset Available
February 2014 Altera Corporation Nios II Processor Reference Handbook



3–28 Chapter 3: Programming Model
Working with the MPU
■ Copy the zero register from the normal register set to all shadow register sets, 
using the wrprs instruction.

Working with the MPU
This section provides a basic overview of MPU initialization and the MPU region read 
and write operations.

MPU Region Read and Write Operations
MPU region read and write operations are operations that access MPU region 
attributes through the mpubase and mpuacc control registers. The mpubase.BASE, 
mpuacc.MASK, mpuacc.LIMIT, mpuacc.C, and mpuacc.PERM fields comprise the MPU 
region attributes.

MPU region read operations retrieve the current values for the attributes of a region. 
Each MPU region read operation consists of the following actions:

■ Execute a wrctl instruction to the mpubase register with the mpubase.INDEX and 
mpubase.D fields set to identify the MPU region.

■ Execute a wrctl instruction to the mpuacc register with the mpuacc.RD field set to 
one and the mpuacc.WR field cleared to zero. This action loads the mpubase and 
mpuacc register values.

■ Execute a rdctl instruction to the mpubase register to read the loaded the mpubase 
register value.

■ Execute a rdctl instruction to the mpuacc register to read the loaded the mpuacc 
register value.

The MPU region read operation retrieves mpubase.BASE, mpuacc.MASK or 
mpuacc.LIMIT, mpuacc.C, and mpuacc.PERM values for the MPU region.

1 Values for the mpubase register are not actually retrieved until the wrctl instruction to 
the mpuacc register is performed.

MPU region write operations set new values for the attributes of a region. Each MPU 
region write operation consists of the following actions:

■ Execute a wrctl instruction to the mpubase register with the mpubase.INDEX and 
mpubase.D fields set to identify the MPU region.

■ Execute a wrctl instruction to the mpuacc register with the mpuacc.WR field set to 
one and the mpuacc.RD field cleared to zero.

The MPU region write operation sets the values for mpubase.BASE, mpuacc.MASK or 
mpuacc.LIMIT, mpuacc.C, and mpuacc.PERM as the new attributes for the MPU region.
Nios II Processor Reference Handbook February 2014 Altera Corporation



Chapter 3: Programming Model 3–29
Working with ECC
Normally, a wrctl instruction flushes the pipeline to guarantee that any side effects of 
writing control registers take effect immediately after the wrctl instruction completes 
execution. However, wrctl instructions to the mpubase and mpuacc control registers do 
not automatically flush the pipeline. Instead, system software is responsible for 
flushing the pipeline as needed (either by using a flushp instruction or a wrctl 
instruction to a register that does flush the pipeline). Because a context switch 
typically requires reprogramming the MPU regions for the new thread, flushing the 
pipeline on each wrctl instruction would create unnecessary overhead.

MPU Initialization
Your system software must provide a data structure that contains the region 
information described in “Memory Regions” on page 3–8 for each active thread. The 
data structure ideally contains two 32-bit values that correspond to the mpubase and 
mpuacc register formats.

The MPU is disabled on system reset. Before enabling the MPU, Altera recommends 
initializing all MPU regions. Enable desired instruction and data regions by writing 
each region’s attributes to the mpubase and mpuacc registers as described in “MPU 
Region Read and Write Operations” on page 3–28. You must also disable unused 
regions. When using region size, clear mpuacc.MASK to zero. When using limit, set the 
mpubase.BASE to a nonzero value and clear mpuacc.LIMIT to zero.

1 You must enable at least one instruction and one data region, otherwise unpredictable 
behavior might occur.

To perform a context switch, use a wrctl to write a zero to the PE field of the config 
register to disable the MPU, define all MPU regions from the new thread’s data 
structure, and then use another wrctl to write a one to config.PE to enable the MPU.

Define each region using the pair of wrctl instructions described in “MPU Region 
Read and Write Operations” on page 3–28. Repeat this dual wrctl instruction 
sequence until all desired regions are defined.

Debugger Access
The debugger can access all MPU-related control registers using the normal wrctl and 
rdctl instructions. During debugging, the Nios II ignores the MPU, effectively 
temporarily disabling it.

Working with ECC

Enabling ECC
The ECC is disabled on system reset. Before enabling the ECC, initialize the Nios II 
RAM blocks to avoid spurious ECC errors.

The Nios II processor executes the INITI instruction on each cache line, which 
initializes the instruction cache RAM. The RAM does not require special initialization 
because any detected ECC errors are ignored if the line is invalid; the line is invalid 
after INITI instructions initialize the tag RAM.
February 2014 Altera Corporation Nios II Processor Reference Handbook



3–30 Chapter 3: Programming Model
Working with ECC
Nios II processor instructions that write to every register (except register 0) initialize 
the register file RAM blocks. If shadow register sets are present, this step is performed 
for all registers in the shadow register set using the WRPRS instruction.

Nios II processor instructions that write every TLB RAM location initialize the MMU 
TLB RAM. This RAM does not require special initialization.

Disabling ECC
Disable ECC in software by writing 0 to CONFIG.ECCEN. Software can re-enable ECC 
without reinitializing the ECC-protected RAMs because the ECC parity bits are 
written to the RAM blocks even if ECC is disabled.

Handling ECC errors
ECC error exceptions occur when unrecoverable ECC errors are detected. The 
software’s ability to recover from the ECC error depends on the nature of the error.

Typically, software can recover from an unrecoverable MMU TLB ECC error (2 bit 
error) because the TLB is a software-managed cache of the operating system page 
tables stored in the main memory (e.g., SDRAM). Software can invalid the TLB entry, 
return to the instruction that took the ECC error exception, and execute the TLB’s 
mishandled code to load a TLB entry from the page tables.

In general, software cannot recover from a register file ECC error (2 bit error) because 
the correct value of a register is not known. If the exception handler reads a register 
that has a 2 bit ECC error associated with it, another ECC error occurs and an 
exception handler loop can occur.

Exception handler loops occur when an ECC error exception occurs in the exception 
handler before it is ready to handle nested exceptions. To minimize the occurrence or 
exception handler loops, locate the ECC error exception handler code in normal 
cacheable memory, ensure that all data accesses are to non-cacheable memory, and 
minimize register reading.

The ECC error signals (ecc_event_bus) provide the EEH signal for external logic to 
detect a possible exception handler loop and reset the Nios II processor.

Injecting ECC Errors
This section describes the code sequence for injecting ECC errors for each ECC-
protected RAM, assuming the ECC is enabled and interrupts are disabled for the 
duration of the code sequence.

Instruction Cache Tag RAM
■ Ensure all code up to the JMP instruction is in the same instruction cache line or is 

located in an ITCM.

■ Use a FLUSHI instruction to flush an instruction cache line other than the line 
containing the executing code.

■ Use a FLUSHP instruction to flush the pipeline.

■ Use a WRCTL instruction to set ECCINJ.ICTAG to INJS or INJD (as desired). This 
setting causes an ECC error to occur on the start of the next line fill.
Nios II Processor Reference Handbook February 2014 Altera Corporation



Chapter 3: Programming Model 3–31
Exception Processing
■ Use a JMP instruction to jump to an instruction address in the flushed line.

■ The ECC error is injected when writing the tag RAM at the start of the line fill.

■ Use a RDCTL instruction to ensure that the value of ECCINJ.ICTAG is NOINJ.

■ The ECC error triggers after the target of the JMP instruction.

Instruction Cache Data RAM
Use the same procedure as for the instruction cache tag RAM with the following 
changes:

■ Access the ECCINJ.ICDAT field instead of ECCINJ.ICTAG.

■ Execute the target of the JMP instruction twice (first to inject the ECC error and 
second to be triggered by it).

MMU TLB RAM
■ Use a WRCTL instruction to set ECCINJ.TLB to INJS or INJD (as desired).

■ Use a WRCTL instruction to write a TLB entry. The ECC error is injected at this time 
and any associated uTLB entry is flushed.

■ Use a RDCTL instruction to ensure that the value of ECCINJ.TLB is NOINJ.

■ Perform an instruction/data access to cause the hardware to read the TLB entry 
(copied into uTLB). The ECC decoder should detect the ECC error at this time. 
Alternatively, initiate read the TLB with software (by writing TLBMISC.RD to 1).

■ If a software read was initiated, set the TLBMISC.EE field to 1 on any instruction 
after the WRCTL that triggered the event.

Register File RAM Blocks
■ Use a WRCTL instruction to set ECCINJ.RF to INJS or INJD (as desired).

■ Execute any instruction that writes any register except R0.

■ Use a RDCTL instruction to ensure that the value of ECCINJ.RF is NOINJ.

■ Use an instruction to read the desired register from rA such as OR rd, r0, rx 
where rx is the register written in the previous step. This action triggers the ECC 
error.

■ Use an instruction to read the desired register from rB such as OR rd, rx, r0 
where rx is the register written in the previous step. 

Exception Processing
Exception processing is the act of responding to an exception, and then returning, if 
possible, to the pre-exception execution state.

All Nios II exceptions are precise. Precise exceptions enable the system software to 
re-execute the instruction, if desired, after handling the exception.
February 2014 Altera Corporation Nios II Processor Reference Handbook



3–32 Chapter 3: Programming Model
Exception Processing
Terminology
Altera Nios II documentation uses the following terminology to discuss exception 
processing:

■ Exception—a transfer of control away from a program’s normal flow of execution, 
caused by an event, either internal or external to the processor, which requires 
immediate attention.

■ Interrupt—an exception caused by an explicit request signal from an external 
device; also: hardware interrupt.

■ Interrupt controller—hardware that interfaces the processor to interrupt request 
signals from external devices.

■ Internal interrupt controller—the nonvectored interrupt controller that is integral to 
the Nios II processor. The internal interrupt controller is available in all revisions 
of the Nios II processor.

■ Vectored interrupt controller (VIC)—an Altera-provided external interrupt controller.

■ Exception (interrupt) latency—The time elapsed between the event that causes the 
exception (assertion of an interrupt request) and the execution of the first 
instruction at the handler address.

■ Exception (interrupt) response time—The time elapsed between the event that causes 
the exception (assertion of an interrupt request) and the execution of nonoverhead 
exception code, that is, specific to the exception type (device).

■ Global interrupts—All maskable exceptions on the Nios II processor, including 
internal interrupts and maskable external interrupts, but not including 
nonmaskable interrupts.

■ Worst-case latency—The value of the exception (interrupt) latency, assuming the 
maximum disabled time or maximum masked time, and assuming that the 
exception (interrupt) occurs at the beginning of the masked/disabled time.

■ Maximum disabled time—The maximum amount of continuous time that the system 
spends with maskable interrupts disabled.

■ Maximum masked time—The maximum amount of continuous time that the system 
spends with a single interrupt masked.

■ Shadow register set—a complete alternate set of Nios II general-purpose registers, 
which can be used to maintain a separate runtime context for an ISR.

Exception Overview
Each of the Nios II exceptions falls into one of the following categories: 

■ Reset exception—Occurs when the Nios II processor is reset. Control is transferred 
to the reset address you specify in the Nios II processor IP core setup parameters.

■ Break exception—Occurs when the JTAG debug module requests control. Control is 
transferred to the break address you specify in the Nios II processor IP core setup 
parameters.

■ Interrupt exception—Occurs when a peripheral device signals a condition requiring 
service
Nios II Processor Reference Handbook February 2014 Altera Corporation



Chapter 3: Programming Model 3–33
Exception Processing
■ Instruction-related exception—Occurs when any of several internal conditions 
occurs, as detailed in Table 3–35 on page 3–33. Control is transferred to the 
exception address you specify in the Nios II processor IP core setup parameters.

The following table columns specify information for the exceptions:

■ Exception—Gives the name of the exception.

■ Type—Specifies the exception type. 

■ Available—Specifies when support for that exception is present. 

■ Cause—Specifies the value of the CAUSE field of the exception register, for 
exceptions that write the exception.CAUSE field. 

■ Address—Specifies the instruction or data address associated with the exception.

■ Vector—Specifies which exception vector address the processor passes control to 
when the exception occurs.

Table 3–35. Nios II Exceptions (In Decreasing Priority Order) (Part 1 of 2)

Exception  Type Available Cause Address  Vector

Reset Reset Always 0 Reset

Hardware break Break Always — Break

Processor-only reset 
request Reset Always 1 Reset

Internal interrupt Interrupt
Internal 
interrupt 
controller

2 ea–4 (2) General exception

External nonmaskable 
interrupt Interrupt

External 
interrupt 
controller 
interface

— ea–4 (2) Requested handler 
address (3)

External maskable interrupt Interrupt

External 
interrupt 
controller 
interface

2 ea–4 (2) Requested handler 
address (3)

ECC TLB error (instruction) Instruction-related MMU and ECC 18 ea–4 (2) General exception

Supervisor-only instruction 
address (1) Instruction-related MMU 9 ea–4 (2) General exception

Fast TLB miss 
(instruction) (1) Instruction-related MMU 12 pteaddr.VPN, 

ea–4 (2)
Fast TLB Miss 
exception

Double TLB miss 
(instruction) (1) Instruction-related MMU 12 pteaddr.VPN, 

ea–4 (2) General exception

TLB permission violation 
(execute) (1) Instruction-related MMU 13 pteaddr.VPN, 

ea–4 (2) General exception

ECC register file error Instruction-related ECC 20 ea–4 (2) General exception

MPU region violation 
(instruction) (1) Instruction-related MPU 16 ea–4 (2) General exception

Supervisor-only instruction Instruction-related MMU or MPU 10 ea–4 (2) General exception

Trap instruction Instruction-related Always 3 ea–4 (2) General exception
February 2014 Altera Corporation Nios II Processor Reference Handbook



3–34 Chapter 3: Programming Model
Exception Processing
Exception Latency
Exception latency specifies how quickly the system can respond to an exception. 
Exception latency depends on the type of exception, the software and hardware 
configuration, and the processor state.

Illegal instruction Instruction-related

Illegal 
instruction 
detection on, 
MMU, or MPU

5 ea–4 (2) General exception

Unimplemented instruction Instruction-related Always 4 ea–4 (2) General exception

Break instruction Instruction-related Always — ba–4 (2) Break

Supervisor-only data 
address Instruction-related MMU 11 badaddr (data 

address) General exception

Misaligned data address Instruction-related

Illegal memory 
access 
detection on, 
MMU, or MPU

6 badaddr (data 
address) General exception

Misaligned destination 
address Instruction-related

Illegal memory 
access 
detection on, 
MMU, or MPU

7
badaddr 
(destination 
address)

General exception

ECC TLB error (data) Instruction-related MMU and ECC 18 badaddr (data 
address) General exception

Division error Instruction-related Division error 
detection on 8 ea–4 (2) General exception

Fast TLB miss (data) Instruction-related MMU 12
pteaddr.VPN, 
badaddr (data 
address)

Fast TLB Miss 
exception

Double TLB miss (data) Instruction-related MMU 12
pteaddr.VPN, 
badaddr (data 
address)

General exception

TLB permission violation 
(read) Instruction-related MMU 14

pteaddr.VPN, 
badaddr (data 
address)

General exception

TLB permission violation 
(write) Instruction-related MMU 15

pteaddr.VPN, 
badaddr (data 
address)

General exception

MPU region violation (data) Instruction-related MPU 17 badaddr (data 
address) General exception

Notes to Table 3–35:

(1) It is possible for any instruction fetch to cause this exception.
(2) Refer to Table 3–5 on page 3–10 for descriptions of the ea and ba registers.
(3) For a description of the requested handler address, refer to “Requested Handler Address” on page 3–38.

Table 3–35. Nios II Exceptions (In Decreasing Priority Order) (Part 2 of 2)

Exception  Type Available Cause Address  Vector
Nios II Processor Reference Handbook February 2014 Altera Corporation



Chapter 3: Programming Model 3–35
Exception Processing
Interrupt Latency
The interrupt controller can mask individual interrupts. Each interrupt can have a 
different maximum masked time. The worst-case interrupt latency for interrupt i is 
determined by that interrupt’s maximum masked time, or by the maximum disabled 
time, whichever is greater.

Reset Exceptions
When a processor reset signal is asserted, the Nios II processor performs the following 
steps:

1. Sets status.RSIE to 1, and clears all other fields of the status register.

2. Invalidates the instruction cache line associated with the reset vector.

3. Begins executing the reset handler, located at the reset vector.

1 All noninterrupt exception handlers must run in the normal register set.

Clearing the status.PIE field disables maskable interrupts. If the MMU or MPU is 
present, clearing the status.U field forces the processor into supervisor mode.

1 Nonmaskable interrupts (NMIs) are not affected by status.PIE, and can be taken 
while processing a reset exception.

Invalidating the reset cache line guarantees that instruction fetches for reset code 
comes from uncached memory.

Aside from the instruction cache line associated with the reset vector, the contents of 
the cache memories are indeterminate after reset. To ensure cache coherency after 
reset, the reset handler located at the reset vector must immediately initialize the 
instruction cache. Next, either the reset handler or a subsequent routine should 
proceed to initialize the data cache.

The reset state is undefined for all other system components, including but not 
limited to:

■ General-purpose registers, except for zero (r0) in the normal register set, which is 
permanently zero.

■ Control registers, except for status. status.RSIE is reset to 1, and the remaining 
fields are reset to 0.

■ Instruction and data memory.

■ Cache memory, except for the instruction cache line associated with the reset 
vector.

■ Peripherals. Refer to the appropriate peripheral data sheet or specification for reset 
conditions.

■ Custom instruction logic. Refer to the Nios II Custom Instruction User Guide for reset 
conditions.

■ Nios II C-to-hardware (C2H) acceleration compiler logic.
February 2014 Altera Corporation Nios II Processor Reference Handbook

http://www.altera.com/literature/ug/ug_nios2_custom_instruction.pdf


3–36 Chapter 3: Programming Model
Exception Processing
Break Exceptions
A break is a transfer of control away from a program’s normal flow of execution for 
the purpose of debugging. Software debugging tools can take control of the Nios II 
processor via the JTAG debug module.

Break processing is the means by which software debugging tools implement debug 
and diagnostic features, such as breakpoints and watchpoints. Break processing is a 
type of exception processing, but the break mechanism is independent from general 
exception processing. A break can occur during exception processing, enabling debug 
tools to debug exception handlers.

The processor enters the break processing state under either of the following 
conditions:

■ The processor executes the break instruction. This is often referred to as a software 
break.

■ The JTAG debug module asserts a hardware break.

Processing a Break
A break causes the processor to take the following steps:

1. Stores the contents of the status register to bstatus.

2. Clears status.PIE to zero, disabling maskable interrupts.

1 Nonmaskable interrupts (NMIs) are not affected by status.PIE, and can be 
taken while processing a break exception.

3. Writes the address of the instruction following the break to the ba register (r30) in 
the normal register set.

4. Clears status.U to zero, forcing the processor into supervisor mode, when the 
system contains an MMU or MPU.

5. Sets status.EH to one, indicating the processor is handling an exception, when the 
system contains an MMU.

6. Copies status.CRS to status.PRS and then sets status.CRS to 0.

7. Transfers execution to the break handler, stored at the break vector specified in the 
Nios II Processor parameter editor.

1 All noninterrupt exception handlers, including the break handler, must run in the 
normal register set.

Understanding Register Usage
The bstatus control register and general-purpose registers bt (r25) and ba (r30) in the 
normal register set are reserved for debugging. Code is not prevented from writing to 
these registers, but debug code might overwrite the values. The break handler can use 
bt (r25) to help save additional registers.
Nios II Processor Reference Handbook February 2014 Altera Corporation



Chapter 3: Programming Model 3–37
Exception Processing
Returning From a Break
After processing a break, the break handler releases control of the processor by 
executing a bret instruction. The bret instruction restores status by copying the 
contents of bstatus and returns program execution to the address in the ba register 
(r30) in the normal register set. Aside from bt and ba, all registers are guaranteed to 
be returned to their pre-break state after returning from the break handler. 

Interrupt Exceptions
A peripheral device can request an interrupt by asserting an interrupt request (IRQ) 
signal. IRQs interface to the Nios II processor through an interrupt controller. You can 
configure the Nios II processor with either of the following interrupt controller 
options:

■ The external interrupt controller interface

■ The internal interrupt controller

External Interrupt Controller Interface
The Nios II EIC interface enables you to connect the Nios II processor to an external 
interrupt controller component. The EIC can monitor and prioritize IRQ signals, and 
determine which interrupt to present to the Nios II processor. An EIC can be 
software-configurable.

The Nios II processor does not depend on any particular implementation of an EIC. 
The degree of EIC configurability, and EIC configuration methods, are 
implementation-specific. This section discusses the EIC interface, and general features 
of EICs. For usage details, refer to the documentation for the specific EIC in your 
system.

f For a typical EIC implementation, refer to the Vectored Interrupt Controller chapter in 
the Embedded Peripherals IP User Guide.

When an IRQ is asserted, the EIC presents the following information to the Nios II 
processor:

■ The requested handler address (RHA)—Refer to “Requested Handler Address”

■ The requested interrupt level (RIL)—Refer to “Requested Interrupt Level”

■ The requested register set (RRS)—Refer to “Requested Register Set”

■ Requested nonmaskable interrupt (RNMI) mode—Refer to “Requested NMI Mode”

The Nios II processor EIC interface connects to a single EIC, but an EIC can support a 
daisy-chained configuration. In a daisy-chained configuration, multiple EICs can 
monitor and prioritize interrupts. The EIC directly connected to the processor 
presents the processor with the highest-priority interrupt from all EICs in the daisy 
chain.

An EIC component can support an arbitrary level of daisy-chaining, potentially 
allowing the Nios II processor to handle an arbitrary number of prioritized interrupts.
February 2014 Altera Corporation Nios II Processor Reference Handbook

http://www.altera.com/literature/ug/ug_embedded_ip.pdf


3–38 Chapter 3: Programming Model
Exception Processing
Requested Handler Address

The RHA specifies the address of the handler associated with the interrupt. The 
availability of an RHA for each interrupt allows the Nios II processor to jump directly 
to the interrupt handler, reducing interrupt latency. 

The RHA for each interrupt is typically software-configurable. The method for 
specifying the RHA is dependent on the specific EIC implementation.

If the Nios II processor is implemented with an MMU, the processor treats handler 
addresses as virtual addresses.

Requested Interrupt Level

The Nios II processor uses the RIL to decide when to take a maskable interrupt. The 
interrupt is taken only when the RIL is greater than status.IL.

The RIL is ignored for nonmaskable interrupts. 

Requested Register Set

If shadow register sets are implemented on the Nios II core, the EIC specifies a 
register set when it asserts an interrupt request. When it takes the interrupt, the 
Nios II processor switches to the requested register set. When an interrupt has a 
dedicated register set, the interrupt handler avoids the overhead of saving registers.

The method of assigning register sets to interrupts depends on the specific EIC 
implementation. Register set assignments can be software-configurable.

Multiple interrupts can be configured to share a register set. In this case, the interrupt 
handlers must be written so as to avoid register corruption. For example, one of the 
following conditions must be true:

■ The interrupts cannot pre-empt one another. For example, all interrupts are at the 
same level.

■ Registers are saved in software. For example, each interrupt handler saves its own 
registers on entry, and restores them on exit.

Typically, the Nios II processor is configured so that when it takes an interrupt, other 
interrupts in the same register set are disabled. If interrupt preemption within a 
register set is desired, the interrupt handler can re-enable interrupts in its register set. 

By default, the Nios II processor disables maskable interrupts when it takes an 
interrupt request. To enable nested interrupts, system software or the ISR itself must 
re-enable interrupts after the interrupt is taken.

Alternatively, to take full advantage of nested interrupts with shadow register sets, 
system software can set the config.ANI flag. When config.ANI = 1, the Nios II 
processor keeps maskable interrupts enabled after it takes an interrupt.

Requested NMI Mode

Any interrupt can be nonmaskable, depending on the configuration of the EIC. An 
NMI typically signals a critical system event requiring immediate handling, to ensure 
either system stability or real-time performance. 

status.IL and RIL are ignored for nonmaskable interrupts.
Nios II Processor Reference Handbook February 2014 Altera Corporation



Chapter 3: Programming Model 3–39
Exception Processing
Shadow Register Sets

Although shadow register sets can be implemented independently of the EIC 
interface, typically the two features are used together. Combining shadow register 
sets with an appropriate EIC, you can minimize or eliminate the context switch 
overhead for critical interrupts.

For the best interrupt performance, assign a dedicated register set to each of the most 
time-critical interrupts. Less-critical interrupts can share register sets, provided the 
ISRs are protected from register corruption as noted in “Requested Register Set”.

The method for mapping interrupts to register sets is specific to the particular EIC 
implementation.

Internal Interrupt Controller
When the internal interrupt controller is implemented, a peripheral device can 
request a hardware interrupt by asserting one of the Nios II processor’s 32 
interrupt-request inputs, irq0 through irq31. A hardware interrupt is generated if 
and only if all three of these conditions are true: 

■ The PIE bit of the status control register is one.

■ An interrupt-request input, irqn, is asserted.

■ The corresponding bit n of the ienable control register is one.

Upon hardware interrupt, the processor clears the PIE bit to zero, disabling further 
interrupts, and performs the other steps outlined in “Exception Processing Flow” on 
page 3–45.

The value of the ipending control register shows which interrupt requests (IRQ) are 
pending. By peripheral design, an IRQ bit is guaranteed to remain asserted until the 
processor explicitly responds to the peripheral.
February 2014 Altera Corporation Nios II Processor Reference Handbook



3–40 Chapter 3: Programming Model
Exception Processing
1 Although shadow register sets can be implemented in any Nios II/f processor, the 
internal interrupt controller does not have features to take advantage of it as external 
interrupt controllers do.

Instruction-Related Exceptions
Instruction-related exceptions occur during execution of Nios II instructions. When 
they occur, the processor perform the steps outlined in “Exception Processing Flow” 
on page 3–45.

The Nios II processor generates the following instruction-related exceptions:

■ Trap instruction

■ Break instruction

■ Unimplemented instruction

■ Illegal instruction

■ Supervisor-only instruction

■ Supervisor-only instruction address

■ Supervisor-only data address

■ Misaligned data address

Figure 3–2. Relationship Between ienable, ipending, PIE and Hardware Interrupts
IP

E
N

D
IN

G
0

IP
E

N
D

IN
G

1

IP
E

N
D

IN
G

2

ipending Register

IP
E

N
D

IN
G

31

irq0

irq1

irq2

irq31

31 0

IE
N

A
B

LE
0

IE
N

A
B

LE
1

IE
N

A
B

LE
2

31 0

ienable Register

External hardware
interrupt request
inputs irq[31..0]

. . .

. . .

. . .

PIE bit

Generate
Hardware
 Interrupt

IE
N

A
B

LE
31
Nios II Processor Reference Handbook February 2014 Altera Corporation



Chapter 3: Programming Model 3–41
Exception Processing
■ Misaligned destination address

■ Division error

■ Fast TLB miss

■ Double TLB miss

■ TLB permission violation

■ MPU region violation

1 All noninterrupt exception handlers must run in the normal register set.

Trap Instruction
When a program issues the trap instruction, the processor generates a software trap 
exception. A program typically issues a software trap when the program requires 
servicing by the operating system. The general exception handler for the operating 
system determines the reason for the trap and responds appropriately.

Break Instruction
The break instruction is treated as a break exception. For more information, refer to 
“Break Exceptions” on page 3–36.

Unimplemented Instruction
When the processor issues a valid instruction that is not implemented in hardware, an 
unimplemented instruction exception is generated. The general exception handler 
determines which instruction generated the exception. If the instruction is not 
implemented in hardware, control is passed to an exception routine that might choose 
to emulate the instruction in software. For more information, refer to “Potential 
Unimplemented Instructions” on page 3–62.

Illegal Instruction
Illegal instructions are instructions with an undefined opcode or opcode-extension 
field. The Nios II processor can check for illegal instructions and generate an 
exception when an illegal instruction is encountered. When your system contains an 
MMU or MPU, illegal instruction checking is always on. When no MMU or MPU is 
present, you have the option to have the processor check for illegal instructions.

f For information about controlling this option, refer to the Instantiating the Nios II 
Processor chapter of the Nios II Processor Reference Handbook.

When the processor issues an instruction with an undefined opcode or 
opcode-extension field, and illegal instruction exception checking is turned on, an 
illegal instruction exception is generated.

f Refer to the OP Encodings and OPX Encodings for R-Type Instructions tables in the 
Instruction Set Reference chapter of the Nios II Processor Reference Handbook to see the 
unused opcodes and opcode extensions.
February 2014 Altera Corporation Nios II Processor Reference Handbook

http://www.altera.com/literature/hb/nios2/n2cpu_nii51004.pdf
http://www.altera.com/literature/hb/nios2/n2cpu_nii51004.pdf
http://www.altera.com/literature/hb/nios2/n2cpu_nii51017.pdf


3–42 Chapter 3: Programming Model
Exception Processing
1 All undefined opcodes are reserved. The processor does occasionally use some 
undefined encodings internally. Executing one of these undefined opcodes does not 
trigger an illegal instruction exception. Refer to the Nios II Core Implementation Details 
chapter of the Nios II Processor Reference Handbook for information about each specific 
Nios II core.

Supervisor-Only Instruction
When your system contains an MMU or MPU and the processor is in user mode 
(status.U = 1), executing a supervisor-only instruction results in a supervisor-only 
instruction exception. The supervisor-only instructions are initd, initi, eret, bret, 
rdctl, and wrctl.

This exception is implemented only in Nios II processors configured to use supervisor 
mode and user mode. Refer to “Operating Modes” on page 3–1 for more information.

Supervisor-Only Instruction Address
When your system contains an MMU and the processor is in user mode (status.U = 
1), attempts to access a supervisor-only instruction address result in a supervisor-only 
instruction address exception. Any instruction fetch can cause this exception. For 
definitions of supervisor-only address ranges, refer to Table 3–2 on page 3–4.

This exception is implemented only in Nios II processors that include the MMU.

Supervisor-Only Data Address
When your system contains an MMU and the processor is in user mode (status.U = 
1), any attempt to access a supervisor-only data address results in a supervisor-only 
data address exception. Instructions that can cause a supervisor-only data address 
exception are all loads, all stores, and flushda.

This exception is implemented only in Nios II processors that include the MMU.

Misaligned Data Address
The Nios II processor can check for misaligned data addresses of load and store 
instructions and generate an exception when a misaligned data address is 
encountered. When your system contains an MMU or MPU, misaligned data address 
checking is always on. When no MMU or MPU is present, you have the option to have 
the processor check for misaligned data addresses.

f For information about controlling this option, refer to the Instantiating the Nios II 
Processor chapter of the Nios II Processor Reference Handbook.

A data address is considered misaligned if the byte address is not a multiple of the 
width of the load or store instruction data width (four bytes for word, two bytes for 
half-word). Byte load and store instructions are always aligned so never take a 
misaligned address exception.
Nios II Processor Reference Handbook February 2014 Altera Corporation

http://www.altera.com/literature/hb/nios2/n2cpu_nii51015.pdf
http://www.altera.com/literature/hb/nios2/n2cpu_nii51004.pdf
http://www.altera.com/literature/hb/nios2/n2cpu_nii51004.pdf


Chapter 3: Programming Model 3–43
Exception Processing
Misaligned Destination Address
The Nios II processor can check for misaligned destination addresses of the callr, 
jmp, ret, eret, bret, and all branch instructions and generate an exception when a 
misaligned destination address is encountered. When your system contains an MMU 
or MPU, misaligned destination address checking is always on. When no MMU or 
MPU is present, you have the option to have the processor check for misaligned 
destination addresses.

f For information about controlling this option, refer to the Instantiating the Nios II 
Processor chapter of the Nios II Processor Reference Handbook.

A destination address is considered misaligned if the target byte address of the 
instruction is not a multiple of four.

Division Error
The Nios II processor can check for division errors and generate an exception when a 
division error is encountered.

f For information about controlling this option, refer to the Instantiating the Nios II 
Processor chapter of the Nios II Processor Reference Handbook.

The division error exception detects divide instructions that produce a quotient that 
can't be represented. The two cases are divide by zero and a signed division that 
divides the largest negative number -2147483648 (0x80000000) by -1 (0xffffffff). 
Division error detection is only available if divide instructions are supported by 
hardware.

Fast TLB Miss
Fast TLB miss exceptions are implemented only in Nios II processors that include the 
MMU. The MMU has a special exception vector (fast TLB miss), specified with the 
Nios II Processor parameter editor in Qsys, specifically to handle TLB miss exceptions 
quickly. Whenever the processor cannot find a TLB entry matching the VPN 
(optionally extended by a process identifier), the result is a TLB miss exception. At the 
time of the exception, the processor first checks status.EH. When status.EH = 0, no 
other exception is already in process, so the processor considers the TLB miss a fast 
TLB miss, sets status.EH to one, and transfers control to the fast TLB miss exception 
handler (rather than to the general exception handler).

There are two kinds of fast TLB miss exceptions:

■ Fast TLB miss (instruction)—Any instruction fetch can cause this exception.

■ Fast TLB miss (data)—Load, store, initda, and flushda instructions can cause this 
exception.

The fast TLB miss exception handler can inspect the tlbmisc.D field to determine 
which kind of fast TLB miss exception occurred.
February 2014 Altera Corporation Nios II Processor Reference Handbook

http://www.altera.com/literature/hb/nios2/n2cpu_nii51004.pdf
http://www.altera.com/literature/hb/nios2/n2cpu_nii51004.pdf
http://www.altera.com/literature/hb/nios2/n2cpu_nii51004.pdf
http://www.altera.com/literature/hb/nios2/n2cpu_nii51004.pdf


3–44 Chapter 3: Programming Model
Exception Processing
Double TLB Miss
Double TLB miss exceptions are implemented only in Nios II processors that include 
the MMU. When a TLB miss exception occurs while software is currently processing 
an exception (that is, when status.EH = 1), a double TLB miss exception is generated. 
Specifically, whenever the processor cannot find a TLB entry matching the VPN 
(optionally extended by a process identifier) and status.EH = 1, the result is a double 
TLB miss exception. The most common scenario is that a double TLB miss exception 
occurs during processing of a fast TLB miss exception. The processor preserves 
register values from the original exception and transfers control to the general 
exception handler which processes the newly-generated exception.

There are two kinds of double TLB miss exceptions:

■ Double TLB miss (instruction)—Any instruction fetch can cause this exception.

■ Double TLB miss (data)—Load, store, initda, and flushda instructions can cause 
this exception.

The general exception handler can inspect either the exception.CAUSE or tlbmisc.D 
field to determine which kind of double TLB miss exception occurred.

TLB Permission Violation
TLB permission violation exceptions are implemented only in Nios II processors that 
include the MMU. When a TLB entry is found matching the VPN (optionally 
extended by a process identifier), but the permissions do not allow the access to 
complete, a TLB permission violation exception is generated.

There are three kinds of TLB permission violation exceptions:

■ TLB permission violation (execute)—Any instruction fetch can cause this exception.

■ TLB permission violation (read)—Any load instruction can cause this exception. 

■ TLB permission violation (write)—Any store instruction can cause this exception.

The general exception handler can inspect the exception.CAUSE field to determine 
which permissions were violated.

1 The data cache management instructions (initd, initda, flushd, and flushda) ignore 
the TLB permissions and do not generate TLB permission violation exceptions.

MPU Region Violation
MPU region violation exceptions are implemented only in Nios II processors that 
include the MPU. An MPU region violation exception is generated under any of the 
following conditions:

■ An instruction fetch or data address matched a region but the permissions for that 
region did not allow the action to complete.

■ An instruction fetch or data address did not match any region.

The general exception handler reads the MPU region attributes to determine if the 
address did not match any region or which permissions were violated.

There are two kinds of MPU region violation exceptions:

■ MPU region violation (instruction)—Any instruction fetch can cause this exception.
Nios II Processor Reference Handbook February 2014 Altera Corporation



Chapter 3: Programming Model 3–45
Exception Processing
■ MPU region violation (data)—Load, store, initda, and flushda instructions can 
cause this exception.

The general exception handler can inspect the exception.CAUSE field to determine 
which kind of MPU region violation exception occurred.

Other Exceptions
The preceding sections describe all of the exception types defined by the Nios II 
architecture at the time of publishing. However, some processor implementations 
might generate exceptions that do not fall into the categories listed in the preceding 
sections. Therefore, a robust exception handler must provide a safe response (such as 
issuing a warning) in the event that it cannot identify the cause of an exception.

Exception Processing Flow
Except for the break exception (refer to “Processing a Break” on page 3–36), this 
section describes how the processor responds to exceptions, including interrupts and 
instruction-related exceptions.

f For details about writing programs to take advantage of exception and interrupt 
handling, refer to the Exception Handling chapter of the Nios II Software Developer’s 
Handbook.

Processing General Exceptions
The general exception handler is a routine that determines the cause of each exception 
(including the double TLB miss exception), and then dispatches an exception routine 
to respond to the exception. The address of the general exception handler, specified 
with the Nios II Processor parameter editor in Qsys, is called the exception vector in 
the Nios II Processor parameter editor. At run time this address is fixed, and software 
cannot modify it. Programmers do not directly access exception vectors, and can write 
programs without awareness of the address.

1 If the EIC interface is present, the general exception handler processes only 
noninterrupt exceptions.

The fast TLB miss exception handler only handles the fast TLB miss exception. It is 
built for speed to process TLB misses quickly. The fast TLB miss exception handler 
address, specified with the Nios II Processor parameter editor in Qsys, is called the 
fast TLB miss exception vector in the Nios II Processor parameter editor.

Exception Flow with the EIC Interface
If the EIC interface is present, interrupt processing differs markedly from 
noninterrupt exception processing. The EIC interface provides the following 
information to the Nios II processor for each interrupt request:

■ RHA—The requested handler address for the interrupt handler assigned to the 
requested interrupt.

■ RRS—The requested register set to be used when the interrupt handler executes. If 
shadow register sets are not implemented, RRS must always be 0.
February 2014 Altera Corporation Nios II Processor Reference Handbook

http://www.altera.com/literature/hb/nios2/n2sw_nii52006.pdf


3–46 Chapter 3: Programming Model
Exception Processing
■ RIL—The requested interrupt level specifies the priority of the interrupt.

■ RNMI—The requested NMI flag specifies whether to treat the interrupt as 
nonmaskable.

f For further information about the RHA, RRS, RIL and RNMI, refer to “The Nios II/f 
Core” in the Nios II Core Implementation Details chapter of the Nios II Processor Reference 
Handbook.

When the EIC interface presents an interrupt to the Nios II processor, the processor 
uses several criteria, as follows, to determine whether to take the interrupt:

■ Nonmaskable interrupts—The processor takes any NMI as long as it is not 
processing a previous NMI.

■ Maskable interrupts—The processor takes a maskable interrupt if maskable 
interrupts are enabled, and if the requested interrupt level is higher than that of 
the interrupt currently being processed (if any). However, if shadow register sets 
are implemented, the processor takes the interrupt only if the interrupt requests a 
register set different from the current register set, or if the register set interrupt 
enable flag (status.RSIE) is set.

The Nios II processor supports fast nested interrupts with shadow register sets, as 
described in “Shadow Register Sets” on page 3–25. When shadow register sets are 
implemented, the config.ANI field is set to 0 at reset. 

Software must set config.ANI to 1 to enable fast nested interrupts. If config.ANI is set 
to 1 when a maskable external interrupt occurs, status.PIE not cleared. Keeping 
status.PIE set allows higher level interrupts to be taken immediate, without 
requiring the interrupt handler to set status.PIE to 1. 

System software can disable fast nested interrupts by setting config.ANI to 0. In this 
state, the processor disables maskable interrupts when taking an exception, just as it 
does without shadow register sets. An individual interrupt handler can re-enable 
interrupts by setting status.PIE to 1, if desired.

Table 3–36. Conditions Required to Take External Interrupt

RNMI == 1 RNMI == 0

status.NMI 
== 0

status.NMI 
== 1

status.PIE 
== 0

status.PIE == 1

RIL <= 
status.IL

RIL > status.IL

Processor Has Shadow Register Sets No Shadow 
Register 

Sets
RRS == status.CRS RRS != 

status.CRSstatus.RSIE 
== 0

status.RSIE 
== 1

Yes No No No No (1) Yes Yes Yes

Note to Table 3–36:

(1) Nested interrupts using the same register set are allowed only if system software has explicitly permitted them by setting status.RSIE. This 
restriction ensures that such interrupts are taken only if the handler is coded to save the register context.
Nios II Processor Reference Handbook February 2014 Altera Corporation

http://www.altera.com/literature/hb/nios2/n2cpu_nii51015.pdf


Chapter 3: Programming Model 3–47
Exception Processing
Exception Flow with the Internal Interrupt Controller
A general exception handler determines which of the pending interrupts has the 
highest priority, and then transfers control to the appropriate ISR. The ISR stops the 
interrupt from being visible (either by clearing it at the source or masking it using 
ienable) before returning and/or before re-enabling PIE. The ISR also saves estatus 
and ea (r29) before re-enabling PIE. 

Interrupts can be re-enabled by writing one to the PIE bit, thereby allowing the 
current ISR to be interrupted. Typically, the exception routine adjusts ienable so that 
IRQs of equal or lower priority are disabled before re-enabling interrupts. Refer to 
“Handling Nested Exceptions” on page 3–50 for more information.
February 2014 Altera Corporation Nios II Processor Reference Handbook



3–48 Chapter 3: Programming Model
Exception Processing
Exceptions and Processor Status
Table 3–37 lists all changes to the Nios II processor state as a result of nonbreak 
exception processing actions performed by hardware. For systems with an MMU, 
status.EH indicates whether or not exception processing is already in progress. When 
status.EH = 1, exception processing is already in progress and the states of the 
exception registers are preserved to retain the original exception states.

Table 3–37. Nios II Processor Status After Taking Exception

Processor Status 
Register or Field

System Status Before Taking Exception

External Interrupt Asserted (1) Internal Interrupt Asserted or Noninterrupt Exception

status.EH==1 (2) status.EH==0 status.EH==1 status.EH==0

TLB Miss 
(4)

No TLB Miss

RRS==0 
(3) RRS!=0 RRS==0 RRS!=0

TLB 
Permission 
Violation 

(4)

No TLB 
Permission 
Violation

pteaddr.VPN (5) No change VPN (6) No change

status.PRS (3) No change status.CRS (3) (7) No change

pc RHA
General 

exception 
vector (8)

Fast TLB 
exception 

vector 
(9)

General exception 
vector (3)

sstatus (10) (11) No change status 
(7) (12) No change

estatus (11) No change status 
(7) No change status (7)

ea No change return address (13) No change return address

tlbmisc.D (2) No change (14)

tlbmisc.DBL (2) No change (15)

tlbmisc.PERM (2) No change (16)

tlbmisc.BAD (2) No change (17)

status.PIE config.ANI (18) 0 (19)

status.EH (2) No change 1 (20)

status.IH (21) 1 No change

status.NMI (21) RNMI No change

status.IL (21) RIL No change

status.RSIE 
(3) (21) 0 No change

status.CRS (3) RRS No change

status.U (2) 0 (22) 
Nios II Processor Reference Handbook February 2014 Altera Corporation



Chapter 3: Programming Model 3–49
Exception Processing
Determining the Cause of Interrupt and Instruction-Related Exceptions
The general exception handler must determine the cause of each exception and then 
transfer control to an appropriate exception routine.

With Extra Exception Information
When you have included the extra exception information in your Nios II system, the 
CAUSE field of the exception register (refer to “The exception Register” on page 3–15) 
contains a code for the highest-priority exception occurring at the time and the BADDR 
field of the badaddr register (refer to “The badaddr Register” on page 3–19) contains 
the byte instruction address or data address for certain exceptions. Refer to Table 3–35 
on page 3–33 for more information.

1 External interrupts do not set exception.CAUSE.

To determine the cause of an exception, simply read the cause of the exception from 
exception.CAUSE and then transfer control to the appropriate exception routine.

1 Extra exception information is always enabled in Nios II systems containing an MMU 
or MPU.

Table 3–1.

Notes to Table 3–37:

(1) If the Nios II processor does not have an EIC interface, external interrupts do not occur.
(2) If the Nios II processor does not have an MMU, this field is not implemented. Its value is always 0, and the processor behaves accordingly.
(3) If the Nios II processor does not have shadow register sets, this field is not implemented. Its value is always 0, and the processor behaves 

accordingly.
(4) If the Nios II processor does not have an MMU, TLB-related exceptions do not occur.
(5) If the Nios II processor does not have an MMU, this register is not implemented.
(6) The VPN of the address triggering the exception
(7) The pre-exception value

(8) Invokes the general exception handler
(9) Invokes the fast TLB miss exception handler
(10) If the Nios II processor does not have shadow register sets, this register is not implemented.
(11) Saves the processor’s pre-exception status
(12) sstatus.SRS is set to 1 if RRS is not equal to status.CRS.
(13) The address following the instruction being executed when the exception occurs
(14) Set to 1 on a data access exception, set to 0 otherwise
(15) Set to 1 on a double TLB miss, set to 0 otherwise
(16) Set to 1 on a TLB permission violation, set to 0 otherwise
(17) Set to 1 on a bad virtual address exception, set to 0 otherwise
(18) Disables exceptions and nonmaskable interrupts, unless automatic nested interrupts are explicitly enabled by config.ANI
(19) Disables exceptions and nonmaskable interrupts
(20) If the MMU is implemented, indicates that the processor is handling an exception.
(21) If the Nios II processor does not have an EIC interface, this field is not implemented.
(22) Puts the processor in supervisor mode.
February 2014 Altera Corporation Nios II Processor Reference Handbook



3–50 Chapter 3: Programming Model
Exception Processing
Without Extra Exception Information
When you have not included the extra exception information in your Nios II system, 
your exception handler must determine the cause of exception itself. For this reason, 
Altera recommends always enabling the extra exception information.

When the extra exception information is not available, use the sequence in 
Example 3–3 on page 3–50 to determine the cause of an exception.

Handling Nested Exceptions
The Nios II processor supports several types of nested exceptions, depending on 
which optional features are implemented. Nested exceptions can occur under the 
following circumstances:

■ An exception handler enables maskable interrupts

■ An EIC is present, and an NMI occurs

■ An EIC is present, and the processor is configured to keep maskable interrupts 
enabled when taking an interrupt

■ An exception handler triggers an instruction-related exception

Example 3–3. Determining Exception Cause Without Extra Exception Information

/* With an internal interrupt controller, check for interrupt
exceptions. With an external interrupt controller, ipending is
always 0, and this check can be omitted. */

if (estatus.PIE == 1 and ipending != 0) {
handle interrupt

/* Decode exception from instruction */
/* Note: Because the exception register is included with the MMU and */
/* MPU, you never need to determine MMU or MPU exceptions by decoding */
} else {

decode instruction at $ea-4
if (instruction is trap)

handle trap exception
else if (instruction is load or store)

handle misaligned data address exception
else if (instruction is branch, bret, callr, eret, jmp, or ret)

handle misaligned destination address exception
else if (instruction is unimplemented)

handle unimplemented instruction exception
else if (instruction is illegal)

handle illegal instruction exception
else if (instruction is divide) {

if (denominator == 0)
handle division error exception

else if (instruction is signed divide and numerator == 0x80000000
and denominator == 0xffffffff)

handle division error exception
}

}

/* Not any known exception */
} else {

handle unknown exception (If internal interrupt controller 
is implemented, could be spurious interrupt)

}
}

Nios II Processor Reference Handbook February 2014 Altera Corporation



Chapter 3: Programming Model 3–51
Exception Processing
f For details about when the Nios II processor takes exceptions, refer to “Exception 
Processing Flow” on page 3–45. For details about unimplemented instructions, refer 
to the Processor Architecture chapter of the Nios II Processor Reference Handbook. For 
details about MMU and MPU exceptions, refer to “Instruction-Related Exceptions” on 
page 3–40.

A system can be designed to eliminate the possibility of nested exceptions. However, 
if nested exceptions are possible, the exception handlers must be carefully written to 
prevent each handler from corrupting the context in which a pre-empted handler 
runs.

If an exception handler issues a trap instruction, an optional instruction, or an 
instruction which could generate an MMU or MPU exception, it must save and restore 
the contents of the estatus and ea registers.

Nested Exceptions with the Internal Interrupt Controller
You can enable nested exceptions in each exception handler on a case-by-case basis. If 
you want to allow a given exception handler to be pre-empted, set status.PIE to 1 
near the beginning of the handler. Enabling maskable interrupts early in the handler 
minimizes the worst-case latency of any nested exceptions.

1 Ensure that all pre-empting handlers preserve the register contents.

Nested Exceptions with an External Interrupt Controller
With an EIC, handling of nested interrupts is more sophisticated than with the 
internal interrupt controller. Handling of noninterrupt exceptions, however, is the 
same.

When individual external interrupts have dedicated shadow register sets, the Nios II 
processor supports fast interrupt handling with no overhead for saving register 
contents. To take full advantage of fast interrupt handling, system software must set 
up certain conditions. With the following conditions satisfied, ISRs need not save and 
restore register contents on entry and exit:

■ Automatic nested interrupts are enabled (config.ANI is set to 1).

■ Each interrupt is assigned to a dedicated shadow register set.

■ All interrupts with the same RIL are assigned to dedicated shadow register sets.
February 2014 Altera Corporation Nios II Processor Reference Handbook

http://www.altera.com/literature/hb/nios2/n2cpu_nii51002.pdf


3–52 Chapter 3: Programming Model
Exception Processing
■ Multiple interrupts with different RILs can be assigned to a single shadow register 
set. However, with multiple register sets, you must not allow the RILs assigned to 
one shadow register set to overlap the RILs assigned to another register set.

The following tables demonstrate the validity of register set assignments when 
preemption within a register set is enabled.

1 Noninterrupt exception handlers must always save and restore the register contents, 
because they run in the normal register set.

Multiple interrupts can share a register set, with some loss of performance. There are 
two techniques for sharing register sets:

■ Set status.RSIE to 0. When an ISR is running in a given register set, the processor 
does not take any maskable interrupt assigned to the same register set. Such 
interrupts must wait for the running ISR to complete, regardless of their interrupt 
level.

1 This technique can result in a priority inversion.

■ Ensure that each ISR saves and restores registers on entry and exit, and set 
status.RSIE to 1 after registers are saved. When an ISR is running in a given 
register set, the processor takes an interrupt in the same register set if it has a 
higher interrupt level.

Table 3–38. Example of Illegal RIL Assignment

RIL Register Set 1 Register Set 2

1 IRQ0

2 IRQ1

3 IRQ2

4 IRQ3

5 IRQ4

6 IRQ5

7 IRQ6

Table 3–39. Example of Legal RIL Assignment

RIL Register Set 1 Register Set 2

1 IRQ0

2 IRQ1

3 IRQ3

4 IRQ2

5 IRQ4

6 IRQ5

7 IRQ6
Nios II Processor Reference Handbook February 2014 Altera Corporation



Chapter 3: Programming Model 3–53
Exception Processing
System software can globally disable fast nested interrupts by setting config.ANI to 0. 
In this state, the Nios II processor disables interrupts when taking a maskable 
interrupt (nonmaskable interrupts always disable maskable interrupts). Individual 
ISRs can re-enable nested interrupts by setting status.PIE to 1, as described in 
“Nested Exceptions with the Internal Interrupt Controller” on page 3–51. 

Handling Nonmaskable Interrupts
Writing an NMI handler involves the same basic techniques as writing any other 
interrupt handler. However, nonmaskable interrupts always preempt maskable 
interrupts, and cannot be preempted. This knowledge can simplify handler design in 
some ways, but it means that an NMI handler can have a significant impact on overall 
interrupt latency. For the best system performance, perform the absolute minimum of 
processing in your NMI handlers, and defer less-critical processing to maskable 
interrupt handlers or foreground software.

NMIs leave intact the processor state associated with maskable interrupts and other 
exceptions, as well as normal, nonexception processing, when each NMI is assigned 
to a dedicated shadow register set. Therefore, NMIs can be handled transparently.

1 If not assigned to a dedicated shadow register set, an NMI can overwrite the 
processor status associated with exception processing, making it impossible to return 
to the interrupted exception. 

1 Do not set status.PIE in a nonmaskable ISR. If status.PIE is set, a maskable 
interrupt can pre-empt an NMI, and the processor exits NMI mode. It cannot be 
returned to NMI mode until the next nonmaskable interrupt.

Returning From Interrupt and Instruction-Related Exceptions
The eret instruction is used to resume execution at the pre-exception address. 

You must ensure that when an exception handler modifies registers, they are restored 
when it returns. This can be taken care of in either of the following ways:

■ In the case of ISRs, if the EIC interface and shadow register sets are implemented, 
and the ISR has a dedicated register set, no software action is required. The Nios II 
processor returns to the previous register set when it executes eret, which restores 
the register contents. For details, refer to “Nested Exceptions with an External 
Interrupt Controller”. 

■ In the case of noninterrupt exceptions, for ISRs in a system with the internal 
interrupt controller, and for ISRs without a dedicated shadow register set, the 
exception handler must save registers on entry and restore them on exit. Saving 
the register contents on the stack is a typical, re-entrant implementation.

1 It is not necessary to save and restore the exception temporary (et or r24) register.

When executing the eret instruction, the processor performs the following tasks:

1. Restores the previous contents of status as follows:

■ If status.CRS is 0, copies estatus to status 

■ If status.CRS is nonzero, copies sstatus to status 
February 2014 Altera Corporation Nios II Processor Reference Handbook



3–54 Chapter 3: Programming Model
Exception Processing
2. Transfers program execution to the address in the ea register (r29) in the register 
set specified by the original value of status.CRS.

1 The eret instruction can cause the processor to exit NMI mode. However, it cannot 
make the processor enter NMI mode. In other words, if status.NMI is 0 and 
estatus.NMI (or sstatus.NMI) is 1, after an eret, status.NMI is still 0. This restriction 
prevents the processor from accidentally entering NMI mode.

1 When the EIC interface and shadow register sets are implemented on the Nios II core, 
you must ensure that your software, including ISRs, is built with the version of the 
GCC compiler included in Nios II EDS version 9.0 or later. Earlier versions have an 
implementation of the eret instruction that is incompatible with shadow register sets.

Return Address Considerations
The return address requires some consideration when returning from exception 
processing routines. After an exception occurs, ea contains the address of the 
instruction following the point where the exception occurred.

When returning from instruction-related exceptions, execution must resume from the 
instruction following the instruction where the exception occurred. Therefore, ea 
contains the correct return address.

On the other hand, hardware interrupt exceptions must resume execution from the 
interrupted instruction itself. In this case, the exception handler must subtract 4 from 
ea to point to the interrupted instruction. 

Masking and Disabling Exceptions
The Nios II processor provides several methods for temporarily turning off some or 
all exceptions from software. The available methods depend on the hardware 
configuration. This section discusses all potentially available methods.

Disabling Maskable Interrupts 
Software can disable and enable maskable interrupts with the status.PIE bit. When 
PIE = 0, maskable interrupts are ignored. When PIE = 1, internal and maskable 
external interrupts can be taken, depending on the status of the interrupt controller.

Masking Interrupts with an External Interrupt Controller
Typical EIC implementations allow system software to mask individual interrupts. 
The method of masking individual interrupts is implementation-specific.

The status.IL field controls what level of external maskable interrupts can be 
serviced. The processor services a maskable interrupt only if its requested interrupt 
level is greater than status.IL. 

An ISR can make run-time adjustments to interrupt nesting by manipulating 
status.IL. For example, if an ISR is running at level 5, to temporarily allow 
pre-emption by another level 5 interrupt, it can set status.IL to 4. 

To enable all external interrupts, set status.IL to 0. To disable all external interrupts, 
set status.IL to 63.
Nios II Processor Reference Handbook February 2014 Altera Corporation



Chapter 3: Programming Model 3–55
Memory and Peripheral Access
Masking Interrupts with the Internal Interrupt Controller
The ienable register controls the handling of internal hardware interrupts. Each bit of 
the ienable register corresponds to one of the interrupt inputs, irq0 through irq31. A 
value of one in bit n means that the corresponding irqn interrupt is enabled; a bit 
value of zero means that the corresponding interrupt is disabled. Refer to “Exception 
Processing” on page 3–31 for more information.

An ISR can adjust ienable so that IRQs of equal or lower priority are disabled. Refer 
to “Handling Nested Exceptions” on page 3–50 for more information.

Memory and Peripheral Access
Nios II addresses are 32 bits, allowing access up to a 4-gigabyte address space. Nios II 
core implementations without MMUs restrict addresses to 31 bits or fewer. The MMU 
supports the full 32-bit physical address.

f For details, refer to the Nios II Core Implementation Details chapter of the Nios II 
Processor Reference Handbook.

Peripherals, data memory, and program memory are mapped into the same address 
space. The locations of memory and peripherals within the address space are 
determined at system generation time. Reading or writing to an address that does not 
map to a memory or peripheral produces an undefined result.

The processor’s data bus is 32 bits wide. Instructions are available to read and write 
byte, half-word (16-bit), or word (32-bit) data. 

The Nios II architecture uses little-endian byte ordering. For data wider than 8 bits 
stored in memory, the more-significant bits are located in higher addresses.

The Nios II architecture supports register+immediate addressing.

Cache Memory
The Nios II architecture and instruction set accommodate the presence of data cache 
and instruction cache memories. Cache management is implemented in software by 
using cache management instructions. Instructions are provided to initialize the 
cache, flush the caches whenever necessary, and to bypass the data cache to properly 
access memory-mapped peripherals. 

The Nios II architecture provides the following mechanisms to bypass the cache: 

■ When no MMU is present, bit 31 of the address is reserved for bit-31 cache bypass. 
With bit-31 cache bypass, the address space of processor cores is 2 GB, and the 
high bit of the address controls the caching of data memory accesses.

■ When the MMU is present, cacheability is controlled by the MMU, and bit 31 
functions as a normal address bit. For details, refer to “Address Space and 
Memory Partitions” on page 3–4, and “TLB Organization” on page 3–6.

■ Cache bypass instructions, such as ldwio and stwio.
February 2014 Altera Corporation Nios II Processor Reference Handbook

http://www.altera.com/literature/hb/nios2/n2cpu_nii51015.pdf


3–56 Chapter 3: Programming Model
Memory and Peripheral Access
f Refer to the Nios II Core Implementation Details chapter of the Nios II Processor Reference 
Handbook for details of which processor cores implement bit-31 cache bypass. Refer to 
Instruction Set Reference chapter of the Nios II Processor Reference Handbook for details of 
the cache bypass instructions.

Code written for a processor core with cache memory behaves correctly on a 
processor core without cache memory. The reverse is not true. If it is necessary for a 
program to work properly on multiple Nios II processor core implementations, the 
program must behave as if the instruction and data caches exist. In systems without 
cache memory, the cache management instructions perform no operation, and their 
effects are benign.

f For a complete discussion of cache management, refer to the Cache and Tightly Coupled 
Memory chapter of the Nios II Software Developer’s Handbook. 

Some consideration is necessary to ensure cache coherency after processor reset. Refer 
to “Reset Exceptions” on page 3–35 for more information.

f For information about the cache architecture and the memory hierarchy refer to the 
Processor Architecture chapter of the Nios II Processor Reference Handbook.

Virtual Address Aliasing
A virtual address alias occurs when two virtual addresses map to the same physical 
address. When an MMU and caches are present and the caches are larger than a page 
(4 KB), the operating system must prevent illegal virtual address aliases. Because the 
caches are virtually-indexed and physically-tagged, a portion of the virtual address is 
used to select the cache line. If the cache is 4 KB or less in size, the portion of the 
virtual address used to select the cache line fits with bits 11:0 of the virtual address 
which have the same value as bits 11:0 of the physical address (they are untranslated 
bits of the page offset). However, if the cache is larger than 4 KB, bits beyond the page 
offset (bits 12 and up) are used to select the cache line and these bits are allowed to be 
different than the corresponding physical address.

For example, in a 64-KB direct-mapped cache with a 16-byte line, bits 15:4 are used to 
select the line. Assume that virtual address 0x1000 is mapped to physical address 
0xF000 and virtual address 0x2000 is also mapped to physical address 0xF000. This is 
an illegal virtual address alias because accesses to virtual address 0x1000 use line 0x1 
and accesses to virtual address 0x2000 use line 0x2 even though they map to the same 
physical address. This results in two copies of the same physical address in the cache. 
With an n-byte direct-mapped cache, there could be n/4096 copies of the same 
physical address in the cache if illegal virtual address aliases are not prevented. The 
bits of the virtual address that are used to select the line and are translated bits (bits 12 
and up) are known as the color of the address. An operating system avoids illegal 
virtual address aliases by ensuring that if multiple virtual addresses map the same 
physical address, the virtual addresses have the same color. Note though, the color of 
the virtual addresses does not need to be the same as the color as the physical address 
because the cache tag contains all the bits of the PFN.
Nios II Processor Reference Handbook February 2014 Altera Corporation

http://www.altera.com/literature/hb/nios2/n2cpu_nii51015.pdf
http://www.altera.com/literature/hb/nios2/n2cpu_nii51017.pdf
http://www.altera.com/literature/hb/nios2/n2sw_nii52007.pdf
http://www.altera.com/literature/hb/nios2/n2sw_nii52007.pdf
http://www.altera.com/literature/hb/nios2/n2cpu_nii51002.pdf


Chapter 3: Programming Model 3–57
Instruction Set Categories
Instruction Set Categories
This section introduces the Nios II instructions categorized by type of operation 
performed. 

Data Transfer Instructions
The Nios II architecture is a load-store architecture. Load and store instructions 
handle all data movement between registers, memory, and peripherals. Memories and 
peripherals share a common address space. Some Nios II processor cores use memory 
caching and/or write buffering to improve memory bandwidth. The architecture 
provides instructions for both cached and uncached accesses.

Table 3–40. Wide Data Transfer Instructions

Instruction Description

ldw

stw

The ldw and stw instructions load and store 32-bit data words from/to memory. The effective address is the 
sum of a register's contents and a signed immediate value contained in the instruction. Memory transfers can 
be cached or buffered to improve program performance. This caching and buffering might cause memory 
cycles to occur out of order, and caching might suppress some cycles entirely. 

Data transfers for I/O peripherals should use ldwio and stwio.

ldwio

stwio

ldwio and stwio instructions load and store 32-bit data words from/to peripherals without caching and 
buffering. Access cycles for ldwio and stwio instructions are guaranteed to occur in instruction order and 
are never suppressed.

Table 3–41. Narrow Data Transfer Instructions

Instruction Description

ldb
ldbu
stb 
ldh
ldhu
sth

ldb, ldbu, ldh and ldhu load a byte or half-word from memory to a register. ldb and ldh sign-extend the 
value to 32 bits, and ldbu and ldhu zero-extend the value to 32 bits. 

stb and sth store byte and half-word values, respectively.

Memory accesses can be cached or buffered to improve performance. To transfer data to I/O peripherals, 
use the io versions of the instructions, described in the following table cell.

ldbio
ldbuio
stbio
ldhio
ldhuio
sthio

These operations load/store byte and half-word data from/to peripherals without caching or buffering. 
February 2014 Altera Corporation Nios II Processor Reference Handbook



3–58 Chapter 3: Programming Model
Instruction Set Categories
Arithmetic and Logical Instructions
Logical instructions support and, or, xor, and nor operations. Arithmetic instructions 
support addition, subtraction, multiplication, and division operations. 

Move Instructions
These instructions provide move operations to copy the value of a register or an 
immediate value to another register.

Table 3–42. Arithmetic and Logical Instructions

Instruction Description

and
or
xor
nor

These are the standard 32-bit logical operations. These operations take two register values and combine 
them bit-wise to form a result for a third register.

andi
ori
xori

These operations are immediate versions of the and, or, and xor instructions. The 16-bit immediate value 
is zero-extended to 32 bits, and then combined with a register value to form the result.

andhi
orhi
xorhi

In these versions of and, or, and xor, the 16-bit immediate value is shifted logically left by 16 bits to form a 
32-bit operand. Zeroes are shifted in from the right.

add
sub
mul
div
divu

These are the standard 32-bit arithmetic operations. These operations take two registers as input and store 
the result in a third register. 

addi
subi
muli

These instructions are immediate versions of the add, sub, and mul instructions. The instruction word 
includes a 16-bit signed value.

mulxss
mulxuu

These instructions provide access to the upper 32 bits of a 32x32 multiplication operation. Choose the 
appropriate instruction depending on whether the operands should be treated as signed or unsigned 
values. It is not necessary to precede these instructions with a mul.

mulxsu This instruction is used in computing a 128-bit result of a 64x64 signed multiplication. 

Table 3–43. Move Instructions

Instruction Description

mov
movhi
movi
movui
movia

mov copies the value of one register to another register. movi moves a 16-bit signed immediate value to a 
register, and sign-extends the value to 32 bits. movui and movhi move a 16-bit immediate value into the 
lower or upper 16-bits of a register, inserting zeros in the remaining bit positions. Use movia to load a 
register with an address.
Nios II Processor Reference Handbook February 2014 Altera Corporation



Chapter 3: Programming Model 3–59
Instruction Set Categories
Comparison Instructions
The Nios II architecture supports a number of comparison instructions. All of these 
compare two registers or a register and an immediate value, and write either one (if 
true) or zero to the result register. These instructions perform all the equality and 
relational operators of the C programming language. 

Shift and Rotate Instructions
The following instructions provide shift and rotate operations. The number of bits to 
rotate or shift can be specified in a register or an immediate value.

Table 3–44. Comparison Instructions

Instruction Description

cmpeq == 

cmpne !=

cmpge signed >= 

cmpgeu unsigned >= 

cmpgt signed >

cmpgtu unsigned >

cmple unsigned <=

cmpleu unsigned <=

cmplt signed <

cmpltu unsigned <

cmpeqi
cmpnei
cmpgei
cmpgeui
cmpgti
cmpgtui
cmplei
cmpleui
cmplti
cmpltui

These instructions are immediate versions of the comparison operations. They compare the value of 
a register and a 16-bit immediate value. Signed operations sign-extend the immediate value to 
32-bits. Unsigned operations fill the upper bits with zero.

Table 3–45. Shift and Rotate Instructions

Instruction Description

rol
ror
roli

The rol and roli instructions provide left bit-rotation. roli uses an immediate value to specify the number 
of bits to rotate. The ror instructions provides right bit-rotation. 

There is no immediate version of ror, because roli can be used to implement the equivalent operation.

sll
slli
sra
srl
srai
srli

These shift instructions implement the << and >> operators of the C programming language. The sll, slli, 
srl, srli instructions provide left and right logical bit-shifting operations, inserting zeros. The sra and 
srai instructions provide arithmetic right bit-shifting, duplicating the sign bit in the most significant bit. 
slli, srli and srai use an immediate value to specify the number of bits to shift.
February 2014 Altera Corporation Nios II Processor Reference Handbook



3–60 Chapter 3: Programming Model
Instruction Set Categories
Program Control Instructions
The Nios II architecture supports the unconditional jump, branch, and call 
instructions. These instructions do not have delay slots.

The conditional branch instructions compare register values directly, and branch if the 
expression is true. The conditional branches support the following equality and 
relational comparisons of the C programming language:

■ == and !=

■ < and <= (signed and unsigned)

■ > and >= (signed and unsigned)

The conditional branch instructions do not have delay slots.

Table 3–46. Unconditional Jump and Call Instructions

Instruction Description

call
This instruction calls a subroutine using an immediate value as the subroutine's absolute address, and 
stores the return address in register ra.

callr
This instruction calls a subroutine at the absolute address contained in a register, and stores the return 
address in register ra. This instruction serves the roll of dereferencing a C function pointer. 

ret
The ret instruction is used to return from subroutines called by call or callr. ret loads and executes the 
instruction specified by the address in register ra.

jmp
The jmp instruction jumps to an absolute address contained in a register. jmp is used to implement switch 
statements of the C programming language.

jmpi
The jmpi instruction jumps to an absolute address using an immediate value to determine the absolute 
address.

br
This instruction branches relative to the current instruction. A signed immediate value gives the offset of the 
next instruction to execute.

Table 3–47. Conditional Branch Instructions

Instruction Description

bge
bgeu
bgt
bgtu
ble
bleu
blt
bltu
beq
bne

These instructions provide relative branches that compare two register values and branch if the 
expression is true. Refer to “Comparison Instructions” on page 3–59 for a description of the 
relational operations implemented.
Nios II Processor Reference Handbook February 2014 Altera Corporation



Chapter 3: Programming Model 3–61
Instruction Set Categories
Other Control Instructions

Custom Instructions
The custom instruction provides low-level access to custom instruction logic. The 
inclusion of custom instructions is specified with the Nios II Processor parameter 
editor in Qsys, and the function implemented by custom instruction logic is design 
dependent.

f For more information, refer to the “Custom Instructions” section of the Processor 
Architecture chapter of the Nios II Processor Reference Handbook and to the Nios II Custom 
Instruction User Guide.

Machine-generated C functions and assembly language macros provide access to 
custom instructions, and hide implementation details from the user. Therefore, most 
software developers never use the custom assembly language instruction directly. 

No-Operation Instruction
The Nios II assembler provides a no-operation instruction, nop.

Table 3–48. Other Control Instructions

Instruction Description

trap
eret

The trap and eret instructions generate and return from exceptions. These instructions are similar to the 
call/ret pair, but are used for exceptions. trap saves the status register in the estatus register, saves 
the return address in the ea register, and then transfers execution to the general exception handler. eret 
returns from exception processing by restoring status from estatus, and executing the instruction 
specified by the address in ea. 

break
bret

The break and bret instructions generate and return from breaks. break and bret are used exclusively 
by software debugging tools. Programmers never use these instructions in application code. 

rdctl
wrctl

These instructions read and write control registers, such as the status register. The value is read from or 
stored to a general-purpose register.

flushd
flushda
flushi
initd
initda
initi

These instructions are used to manage the data and instruction cache memories. 

flushp
This instruction flushes all prefetched instructions from the pipeline. This is necessary before jumping to 
recently-modified instruction memory.

sync
This instruction ensures that all previously-issued operations have completed before allowing execution of 
subsequent load and store operations.

rdprs
wrprs

These instructions read and write a general-purpose registers between the current register set and another 
register set.

wrprs can set r0 to 0 in a shadow register set. System software must use wrprs to initialize r0 to 0 in 
each shadow register set before using that register set.
February 2014 Altera Corporation Nios II Processor Reference Handbook

http://www.altera.com/literature/hb/nios2/n2cpu_nii51002.pdf
http://www.altera.com/literature/hb/nios2/n2cpu_nii51002.pdf
http://www.altera.com/literature/ug/ug_nios2_custom_instruction.pdf
http://www.altera.com/literature/ug/ug_nios2_custom_instruction.pdf


3–62 Chapter 3: Programming Model
Document Revision History
Potential Unimplemented Instructions
Some Nios II processor cores do not support all instructions in hardware. In this case, 
the processor generates an exception after issuing an unimplemented instruction. 
Only the following instructions can generate an unimplemented instruction 
exception:

■ mul

■ muli

■ mulxss

■ mulxsu

■ mulxuu

■ div

■ divu

■ initda

All other instructions are guaranteed not to generate an unimplemented instruction 
exception. 

An exception routine must exercise caution if it uses these instructions, because they 
could generate another exception before the previous exception is properly handled. 
Refer to “Unimplemented Instruction” on page 3–41 for more information regarding 
unimplemented instruction processing. 

Document Revision History
Table 3–49. Document Revision History (Part 1 of 2)

Date Version Changes

February 2014 13.1.0

■ Added information on ECC support.

■ Removed HardCopy information.

■ Removed references to SOPC Builder.

May 2011 11.0.0 Added references to new Qsys system integration tool.

December 2010 10.1.0 Maintenance release. 

July 2010 10.0.0 Maintenance release. 

November 2009 9.1.0
■ Added external interrupt controller interface information.

■ Added shadow register set information.

March 2009 9.0.0 Maintenance release. 

November 2008 8.1.0 Maintenance release. 

May 2008 8.0.0 Added text to describe the MMU, MPU, and advanced exceptions.

October 2007 7.2.0

■ Reworked text to refer to break and reset as exceptions.

■ Grouped exceptions, break, reset, and interrupts all under Exception Processing.

■ Added table showing all Nios II exceptions (by priority).

■ Removed “ctl” references to control registers.

■ Added jmpi instruction to tables.
Nios II Processor Reference Handbook February 2014 Altera Corporation



Chapter 3: Programming Model 3–63
Document Revision History
May 2007 7.1.0
■ Added table of contents to Introduction section.

■ Added Referenced Documents section.

March 2007 7.0.0 Maintenance release. 

November 2006 6.1.0 Maintenance release. 

May 2006 6.0.0 Maintenance release.

October 2005 5.1.0 Maintenance release.

May 2005 5.0.0 Maintenance release.

September 2004 1.1
■ Added details for new control register ctl5. 

■ Updated details of debug and break processing to reflect new behavior of the break 
instruction.

May 2004 1.0 Initial release.

Table 3–49. Document Revision History (Part 2 of 2)

Date Version Changes
February 2014 Altera Corporation Nios II Processor Reference Handbook



3–64 Chapter 3: Programming Model
Document Revision History
Nios II Processor Reference Handbook February 2014 Altera Corporation



Nios II Processor Reference Handbook
February 2014

NII51004-13.1.0

© 2014 Altera Corporation. All rights reserved. ALTERA, ARR
and/or trademarks of Altera Corporation in the U.S. and other
www.altera.com/common/legal.html. Altera warrants perform
reserves the right to make changes to any products and services
information, product, or service described herein except as exp
specifications before relying on any published information and

February 2014
NII51004-13.1.0
4. Instantiating the Nios II Processor
This chapter describes the Nios® II Processor parameter editor in Qsys. The Nios II 
Processor parameter editor allows you to specify the processor features for a 
particular Nios II hardware system. This chapter covers the features of the Nios II 
processor that you can configure with the Nios II Processor parameter editor; it is not 
a user guide for creating complete Nios II processor systems.

f To get started designing custom Nios II systems, refer to the Nios II Hardware 
Development Tutorial. 

Development kits for Altera devices, available on the All Development Kits page of 
the Altera website, also provide ready-made hardware design examples that 
demonstrate different configurations of the Nios II processor.

Core Nios II Tab
The Core Nios II tab presents the main settings for configuring the Nios II processor.

Table 4–1. Core Nios II Tab Parameters (Part 1 of 2)

Name Description

Select a Nios II Core

Nios II Core Refer to “Core Selection” on page 4–2.

Hardware Arithmetic Operation

Hardware multiplication type
Refer to “Multiply and Divide Settings” on page 4–2.

Hardware divide

Reset Vector

Reset vector memory

Refer to “Reset Vector” on page 4–3.Reset vector offset

Reset vector

Exception Vector

Exception vector memory

Refer to “General Exception Vector” on page 4–3.Exception vector offset

Exception vector
Subscribe

IA, CYCLONE, HARDCOPY, MAX, MEGACORE, NIOS, QUARTUS and STRATIX are Reg. U.S. Pat. & Tm. Off. 
 countries. All other trademarks and service marks are the property of their respective holders as described at 

ance of its semiconductor products to current specifications in accordance with Altera’s standard warranty, but 
 at any time without notice. Altera assumes no responsibility or liability arising out of the application or use of any 
ressly agreed to in writing by Altera. Altera customers are advised to obtain the latest version of device 
 before placing orders for products or services.

http://www.altera.com/common/legal.html
https://www.altera.com/servlets/subscriptions/alert?id=NII51004
http://www.altera.com/literature/tt/tt_nios2_hardware_tutorial.pdf
http://www.altera.com/literature/tt/tt_nios2_hardware_tutorial.pdf
http://www.altera.com/products/devkits/kit-dev_platforms.jsp


4–2 Chapter 4: Instantiating the Nios II Processor
Core Nios II Tab
The following sections describe the configuration settings available.

Core Selection
The main purpose of the Core Nios II tab is to select the processor core. The core you 
select on this tab affects other options available on this and other tabs. 

Altera offers the following Nios II cores:

■ Nios II/f—The Nios II/f fast core is designed for fast performance. As a result, this 
core presents the most configuration options allowing you to fine tune the 
processor for performance.

■ Nios II/s—The Nios II/s standard core is designed for small size while 
maintaining performance. 

■ Nios II/e—The Nios II/e economy core is designed to achieve the smallest 
possible core size. As a result, this core has a limited feature set, and many settings 
are not available when the Nios II/e core is selected. 

The Core Nios II tab displays a selector guide table that lists the basic properties of 
each core.

f For implementation information about each core, refer to the Nios II Core 
Implementation Details chapter of the Nios II Processor Reference Handbook. 

Multiply and Divide Settings
The Nios II/s and Nios II/f cores offer hardware multiply and divide options. You 
can choose the best option to balance embedded multiplier usage, logic element (LE) 
usage, and performance.

The Hardware multiplication type parameter for each core provides the following 
list:

■ DSP Block—Include DSP block multipliers in the arithmetic logic unit (ALU). 
This option is only selectable when targeting devices that have DSP block 
multipliers.

■ Embedded Multipliers—Include embedded multipliers in the ALU. This option is 
only present when targeting FPGA devices that have embedded multipliers.

MMU and MPU

Include MMU

Refer to “Memory Management Unit Settings” on page 4–4.

Fast TLB Miss Exception vector 
memory

Fast TLB Miss Exception vector 
offset

Fast TLB Miss Exception vector

Include MPU Refer to “Memory Protection Unit Settings” on page 4–5.

Table 4–1. Core Nios II Tab Parameters (Part 2 of 2)

Name Description
Nios II Processor Reference Handbook February 2014 Altera Corporation

http://www.altera.com/literature/hb/nios2/n2cpu_nii51015.pdf
http://www.altera.com/literature/hb/nios2/n2cpu_nii51015.pdf


Chapter 4: Instantiating the Nios II Processor 4–3
Core Nios II Tab
■ Logic Elements—Include LE-based multipliers in the ALU. This option achieves 
high multiply performance without consuming embedded multiplier resources, 
but with reduced fMAX. 

■ None—This option conserves logic resources by eliminating multiply hardware. 
Multiply operations are implemented in software.

1 Shift operations use the multiplier. So, Hardware multiplication type affects shift 
instruction speed.

Turning on Hardware divide includes LE-based divide hardware in the ALU. The 
Hardware divide option achieves much greater performance than software emulation 
of divide operations.

f For information about the performance effects of the hardware multiply and divide 
options, refer to the Nios II Core Implementation Details chapter of the Nios II Processor 
Reference Handbook.

Reset Vector
Parameters in this section select the memory module where the reset code (boot 
loader) resides, and the location of the reset vector (reset address). The reset vector 
cannot be configured until your system memory components are in place.

The Reset vector memory list, which includes all memory modules mastered by the 
Nios II processor, selects the reset vector memory module. In a typical system, select a 
nonvolatile memory module for the reset code.

1 Qsys provides an Absolute option, which allows you to specify an absolute address 
in Reset vector offset. Use an absolute address when the memory storing the reset 
handler is located outside of the processor system and subsystems of the processor 
system.

Reset vector offset specifies the location of the reset vector relative to the memory 
module’s base address. Qsys calculates the physical address of the reset vector when 
you modify the memory module, the offset, or the memory module’s base address. In 
Qsys, Reset vector displays the read-only, calculated address. The address is always a 
physical address, even when an MMU is present.

f For information about reset exceptions, refer to the Programming Model chapter of the 
Nios II Processor Reference Handbook.

General Exception Vector
Parameters in this section select the memory module where the general exception 
vector (exception address) resides, and the location of the general exception vector. 
The general exception vector cannot be configured until your system memory 
components are in place.

The Exception vector memory list, which includes all memory modules mastered by 
the Nios II processor, selects the exception vector memory module. In a typical 
system, select a low-latency memory module for the exception code.
February 2014 Altera Corporation Nios II Processor Reference Handbook

http://www.altera.com/literature/hb/nios2/n2cpu_nii51015.pdf
http://www.altera.com/literature/hb/nios2/n2cpu_nii51003.pdf


4–4 Chapter 4: Instantiating the Nios II Processor
Core Nios II Tab
1 Qsys provides an Absolute option, which allows you to specify an absolute address 
in Exception vector offset. Use an absolute address when the memory storing the 
exception handler is located outside of the processor system and subsystems of the 
processor system.

Exception vector offset specifies the location of the exception vector relative to the 
memory module’s base address. Qsys calculates the physical address of the exception 
vector when you modify the memory module, the offset, or the memory module’s 
base address. In Qsys, Exception vector displays the read-only, calculated address.. 
The address is always a physical address, even when an MMU is present.

For information about exceptions, refer to the Programming Model chapter of the 
Nios II Processor Reference Handbook.

Memory Management Unit Settings
The Nios II/f core offers a memory management unit (MMU) to support full-featured 
operating systems. Turning on Include MMU includes the Nios II MMU in your 
Nios II hardware system.

1 Do not include an MMU in your Nios II system unless your operating system requires 
it. The MMU is only useful with software that takes advantage of it. Many Nios II 
systems involve simpler system software, such as Altera® HAL or MicroC/OS-II. 
Such software is unlikely to function correctly with an MMU-based Nios II processor.

Fast TLB Miss Exception Vector
The fast TLB miss exception vector is a special exception vector used exclusively by 
the MMU to handle TLB miss exceptions. Parameters in this section select the 
memory module where the fast TLB miss exception vector (exception address) 
resides, and the location of the fast TLB miss exception vector. The fast TLB miss 
exception vector cannot be configured until your system memory components are in 
place.

The Fast TLB Miss Exception vector memory list, which includes all memory 
modules mastered by the Nios II processor, selects the exception vector memory 
module. In a typical system, select a low-latency memory module for the exception 
code.

1 Qsys provides an Absolute option, which allows you to specify an absolute address 
in Fast TLB Miss Exception vector offset. Use an absolute address when the memory 
storing the exception handler is located outside of the processor system and 
subsystems of the processor system.

Fast TLB Miss Exception vector offset specifies the location of the exception vector 
relative to the memory module’s base address. Qsys calculates the physical address of 
the exception vector when you modify the memory module, the offset, or the memory 
module’s base address. In Qsys, Fast TLB Miss Exception vector displays the read-
only, calculated address. The address is always a physical address, even when an 
MMU is present.
Nios II Processor Reference Handbook February 2014 Altera Corporation

http://www.altera.com/literature/hb/nios2/n2cpu_nii51003.pdf


Chapter 4: Instantiating the Nios II Processor 4–5
Caches and Memory Interfaces Tab
1 The Nios II MMU is optional and mutually exclusive from the Nios II MPU. Nios II 
systems can include either an MMU or MPU, but cannot include both an MMU and 
MPU in the same design. 

f For information about the Nios II MMU, refer to the Programming Model chapter of the 
Nios II Processor Reference Handbook.

1 To function correctly with the MMU, the base physical address of all exception vectors 
(reset, general exception, break, and fast TLB miss) must point to low physical 
memory so that hardware can correctly map their virtual addresses into the kernel 
partition. This restriction is enforced by the Nios II Processor parameter editor.

Memory Protection Unit Settings
The Nios II/f core offers a memory protection unit (MPU) to support operating 
systems and runtime environments that desire memory protection without the 
overhead of virtual memory management. Turning on Include MPU includes the 
Nios II MPU in your Nios II hardware system.

1 The Nios II MPU is optional and mutually exclusive from the Nios II MMU. Nios II 
systems can include either an MPU or MMU, but cannot include both an MPU and 
MMU in the same design. 

f For information about the Nios II MPU, refer to the Programming Model chapter of the 
Nios II Processor Reference Handbook.

Caches and Memory Interfaces Tab
The Caches and Memory Interfaces tab allows you to configure the cache and 
tightly-coupled memory usage for the instruction and data master ports.

Table 4–2. Caches and Memory Interfaces Tab Parameters

Name Description

Instruction Master

Instruction cache

Refer to “Instruction Master Settings” on page 4–6.Burst transfers

Number of tightly coupled 
instruction master port(s)

Data Master

Omit data master port

Refer to “Data Master Settings” on page 4–6.

Data cache

Data cache line size

Burst transfers

Data cache victim buffer 
implementation

Number of tightly coupled 
instruction master port(s)
February 2014 Altera Corporation Nios II Processor Reference Handbook

http://www.altera.com/literature/hb/nios2/n2cpu_nii51003.pdf
http://www.altera.com/literature/hb/nios2/n2cpu_nii51003.pdf


4–6 Chapter 4: Instantiating the Nios II Processor
Caches and Memory Interfaces Tab
The following sections describe the configuration settings available.

Instruction Master Settings
The Instruction Master parameters provide the following options for the Nios II/f 
and Nios II/s cores:

■ Instruction cache—Specifies the size of the instruction cache. Valid sizes are from 
512 bytes to 64 KBytes, or None. 

Choosing None disables the instruction cache, which also removes the 
Avalon-MM instruction master port from the Nios II processor. In this case, you 
must include a tightly-coupled instruction memory.

■ Burst transfers —The Nios II processor can fill its instruction cache lines using 
burst transfers. Usually you enable bursts on the processor's instruction master 
when instructions are stored in DRAM, and disable bursts when instructions are 
stored in SRAM.

Bursting to DRAM typically improves memory bandwidth, but might consume 
additional FPGA resources. Be aware that when bursts are enabled, accesses to 
slaves might go through additional hardware (called burst adapters) which might 
decrease your fMAX. 

When the Nios II processor transfers execution to the first word of a cache line, the 
processor fills the line by executing a sequence of word transfers that have 
ascending addresses, such as 0, 4, 8, 12, 16, 20, 24, 28.

However, when the Nios II processor transfers execution to an instruction that is 
not the first word of a cache line, the processor fetches the required (or “critical”) 
instruction first, and then fills the rest of the cache line. The addresses of a burst 
increase until the last word of the cache line is filled, and then continue with the 
first word of the cache line. For example, with a 32-byte cache line, transferring 
control to address 8 results in a burst with the following address sequence: 8, 12, 
16, 20, 24, 28, 0, 4.

■ Data cache victim buffer implementation—Specifies whether to use RAM or 
registers. The data cache victim buffer temporarily holds a dirty cache line while 
the data is written back to external memory.

■ Number of tightly coupled instruction master port(s) (Include tightly coupled 
instruction master port(s))—Specifies one to four tightly-coupled instruction 
master ports for the Nios II processor. In Qsys, select the number from the 
Number of tightly coupled instruction master port(s) list. Tightly-coupled 
memory ports appear on the connection panel of the Nios II processor on the Qsys 
System Contents tab. You must connect each port to exactly one memory 
component in the system.

Data Master Settings
The Data Master parameters provide the following options for the Nios II/f core:

■ Omit data master port—Removes the Avalon-MM data master port from the 
Nios II processor. The port is only successfully removed when Data cache is set 
to None and Number of tightly coupled data master port(s) is greater than 
zero.
Nios II Processor Reference Handbook February 2014 Altera Corporation



Chapter 4: Instantiating the Nios II Processor 4–7
Advanced Features Tab
1 Although the Nios II processor can operate entirely out of tightly-coupled 
memory without the need for Avalon-MM instruction or data masters, 
software debug is not possible when either the Avalon-MM instruction or 
data master is omitted.

■ Data cache—Specifies the size of the data cache. Valid sizes are from 512 bytes to 
64 KBytes, or None. Depending on the value specified for Data cache, the 
following options are available: 

■ Data cache line size—Valid sizes are 4 bytes, 16 bytes, or 32 bytes.

■ Burst transfers —The Nios II processor can fill its data cache lines using burst 
transfers. Usually you enable bursts on the processor's data bus when 
processor data is stored in DRAM, and disable bursts when processor data is 
stored in SRAM.

Bursting to DRAM typically improves memory bandwidth but might consume 
additional FPGA resources. Be aware that when bursts are enabled, accesses to 
slaves might go through additional hardware (called burst adapters) which 
might decrease your fMAX. 

Bursting is only enabled for data cache line sizes greater than 4 bytes. The burst 
length is 4 for a 16 byte line size and 8 for a 32 byte line size. Data cache bursts 
are always aligned on the cache line boundary. For example, with a 32-byte 
Nios II data cache line, a cache miss to the address 8 results in a burst with the 
following address sequence: 0, 4, 8, 12, 16, 20, 24 and 28.

■ Number of tightly coupled data master port(s) (Include tightly coupled data 
master port(s))—Specifies one to four tightly-coupled data master ports for the 
Nios II processor. In Qsys, select the number from the Number of tightly coupled 
data master port(s) list. Tightly-coupled memory ports appear on the connection 
panel of the Nios II processor on the Qsys System Contents tab. You must connect 
each port to exactly one memory component in the system.

Advanced Features Tab
The Advanced Features tab allows you to enable specialized features of the Nios II 
processor.

Table 4–3. Advanced Features Tab Parameters (Part 1 of 2)

Name Description

General

Interrupt controller Refer to “Interrupt Controller Interfaces” on page 4–10.

Number of shadow register sets Refer to “Shadow Register Sets” on page 4–10.

Include cpu_resetrequest and 
cpu_resettaken signals Refer to “Reset Signals” on page 4–8.

Assign cpuid control register 
value manually Refer to “Control Registers” on page 4–8.
cpuid control register value
February 2014 Altera Corporation Nios II Processor Reference Handbook



4–8 Chapter 4: Instantiating the Nios II Processor
Advanced Features Tab
Reset Signals
The Include cpu_resetrequest and cpu_resettaken signals reset signals setting 
provides the following functionality. When on, the Nios II processor includes 
processor-only reset request signals. These signals let another device individually 
reset the Nios II processor without resetting the entire system. The signals are 
exported to the top level of your system.

1 You must manually connect these signals to logic external to your Qsys system.

f For more information on the reset signals, refer to the Processor Architecture chapter of 
the Nios II Processor Reference Handbook.

Control Registers
The Assign cpuid control register value manually control register setting allows you 
to assign the cpuid control register value yourself. In Qsys, the automatically-assigned 
value is always 0x00000000, so Altera recommends always assigning the value 
manually. 

To assign the value yourself, turn on Assign cpuid control register value manually 
and type a 32-bit value (in hexadecimal or decimal format) in the cpuid control 
register value box.

1 For information about upgrading IDs that were manually-assigned values in Qsys, 
refer to the SOPC Builder to Qsys Migration Guidelines.

Exception Checking
The Exception Checking settings provide the following options:

■ Illegal instruction—When Illegal instruction is on, the processor generates an 
illegal instruction exception when an instruction with an undefined opcode or 
opcode-extension field is executed. 

Exception Checking

Illegal instruction

Refer to “Exception Checking” on page 4–8.
Division error

Misaligned memory access

Extra exception information

HardCopy Compatibility

HardCopy compatible Refer to “HardCopy Compatible” on page 4–10.

ECC

ECC present Refer to “ECC” on page 4–11.

Table 4–3. Advanced Features Tab Parameters (Part 2 of 2)

Name Description
Nios II Processor Reference Handbook February 2014 Altera Corporation

http://www.altera.com/literature/an/an632.pdf
http://www.altera.com/literature/hb/nios2/n2cpu_nii51002.pdf


Chapter 4: Instantiating the Nios II Processor 4–9
Advanced Features Tab
1 When your system contains an MMU or MPU, the processor automatically 
generates illegal instruction exceptions. Therefore, the Illegal instruction 
setting is always disabled when the Core Nios II tab Include MMU or 
Include MPU are on.

■ Division error—Division error detection is only available for the Nios II/f core, 
and only then when Hardware divide on the Core Nios II tab is on. When divide 
instructions are not supported by hardware, the Division error setting is disabled.

When Division error is on, the processor generates a division error exception 
when it detects divide instructions that produce a result that cannot be represented 
in the destination register. This only happens in the following two cases:

■ Divide by zero

■ Divide overflow—A signed division that divides the largest negative number 
-2147483648 (0x80000000) by -1 (0xffffffff).

■ Misaligned memory access—Misaligned memory access detection is only 
available for the Nios II/f core. When Misaligned memory access is on, the 
processor checks for misaligned memory accesses. 

1 When your system contains an MMU or MPU, the processor automatically 
generates misaligned memory access exceptions. Therefore, the Misaligned 
memory access check box is always disabled when Include MMU or 
Include MPU on the Core Nios II tab are on.

There are two misaligned memory address exceptions:

■ Misaligned data address—Data addresses of load and store instructions are 
checked for misalignment. A data address is considered misaligned if the byte 
address is not a multiple of the data width of the load or store instruction (4 
bytes for word, 2 bytes for half-word). Byte load and store instructions are 
always aligned so never generate a misaligned data address exception.

■ Misaligned destination address—Destination instruction addresses of br, 
callr, jmp, ret, eret, and bret instructions are checked for misalignment. A 
destination instruction address is considered misaligned if the target byte 
address of the instruction is not a multiple of four.

■ Extra exception information—When Extra exception information is on, nonbreak 
exceptions store a code in the CAUSE field of the exception control register to 
indicate the cause of the exception.

1 When your system contains an MMU or MPU, the processor automatically 
generates extra exception information. Therefore, the Extra exception 
information setting is always disabled when the Core Nios II tab Include 
MMU or Include MPU are on.

Your exception handler can use this code to quickly determine the proper action to 
take, rather than have to determine the cause of an exception through instruction 
decoding. Additionally, some exceptions also store the instruction or data address 
associated with the exception in the badaddr register.
February 2014 Altera Corporation Nios II Processor Reference Handbook



4–10 Chapter 4: Instantiating the Nios II Processor
Advanced Features Tab
f For further descriptions of exceptions, exception handling, and control registers, refer 
to the Programming Model chapter of the Nios II Processor Reference Handbook.

Interrupt Controller Interfaces
The Interrupt controller setting determines which of the following configurations is 
implemented:

■ Internal interrupt controller

■ External interrupt controller (EIC) interface

The EIC interface is available only on the Nios II/f core.

1 When the EIC interface and shadow register sets are implemented on the Nios II core, 
you must ensure that your software is built with the Nios II Embedded Design Suite 
(EDS) version 9.0 or higher. Earlier versions have an implementation of the eret 
instruction that is incompatible with shadow register sets.

f For details about the EIC interface, refer to “Exception Processing” in the Programming 
Model chapter of the Nios II Processor Reference Handbook.

Shadow Register Sets
The Number of shadow register sets setting determines whether the Nios II core 
implements shadow register sets. The Nios II core can be configured with up to 63 
shadow register sets.

Shadow register sets are available only on the Nios II/f core.

1 When the EIC interface and shadow register sets are implemented on the Nios II core, 
you must ensure that your software is built with the Nios II EDS version 9.0 or higher. 

f For details about shadow register sets, refer to “Registers” in the Programming Model 
chapter of the Nios II Processor Reference Handbook.

HardCopy Compatible
The HardCopy Compatible parameter determines whether the instantiated Nios II 
core is compatible with HardCopy® devices without recompilation. This feature 
allows you to migrate from an FPGA device to HardCopy device without any RTL 
changes to the Nios II core. When HardCopy Compatible is on, any generated Nios II 
core and JTAG debug module RAM blocks are not pre-initialized. 

1 When Device family on the Qsys Project Settings tab is a HardCopy device, 
HardCopy Compatible is automatically turned on and uneditable.

w Altera no longer offers HardCopy structured ASIC products for new design starts. 
Altera continues to support HardCopy for existing designs. Customers can find 
product documentation for the HardCopy structured ASIC series in the Altera mature 
devices product listing.

f www.altera.com/devices/asic/asic-index.html
Nios II Processor Reference Handbook February 2014 Altera Corporation

http://www.altera.com/literature/hb/nios2/n2cpu_nii51003.pdf
http://www.altera.com/literature/hb/nios2/n2cpu_nii51003.pdf
http://www.altera.com/literature/hb/nios2/n2cpu_nii51003.pdf
http://www.altera.com/literature/hb/nios2/n2cpu_nii51003.pdf
http://www.altera.com/devices/asic/asic-index.html


Chapter 4: Instantiating the Nios II Processor 4–11
MMU and MPU Settings Tab
ECC
ECC is only available for the Nios II/f core and provides ECC support for Nios II 
internal RAM blocks, such as instruction cache, MMU TLB, and register file. The 
SECDED ECC algorithm is based on Hamming codes, which detect 1 or 2 bit errors 
and corrects 1 bit errors. If the Nios II processor does not attempt to correct any errors 
and only detects them, the ECC algorithm can detect 3 bit errors.

f Refer to “ECC” on page 5–13 for more information about ECC support in the Nios II/f 
core.

MMU and MPU Settings Tab
The MMU and MPU Settings tab presents settings for configuring the MMU and 
MPU on the Nios II processor. You can select the features appropriate for your target 
application.

MMU
When Include MMU on the Core Nios II tab is on, the MMU settings on the MMU 
and MPU Settings tab provide the following options for the MMU in the Nios II/f 
core. Typically, you should not need to change any of these settings from their default 
values.

■ Process ID (PID) bits—Specifies the number of bits to use to represent the process 
identifier.

■ Optimize number of TLB entries based on device family—When on, specifies 
the optimal number of TLB entries to allocate based on the device family of the 
target hardware and disables TLB entries.

Table 4–4. MMU and MPU Settings Tab Parameters

Name Description

MMU

Process ID (PID) bits

Refer to “MMU” on page 4–11.

Optimize number of TLB entries 
based on device family

TLB entries

TLB Set-Associativity

Micro DTLB entries

Micro ITLB entries

MPU

Use Limit for region range

Refer to “MPU” on page 4–12.

Number of data regions

Minimum data region size

Number of instruction regions

Minimum instruction region 
size
February 2014 Altera Corporation Nios II Processor Reference Handbook



4–12 Chapter 4: Instantiating the Nios II Processor
MMU and MPU Settings Tab
■ TLB entries—Specifies the number of entries in the translation lookaside buffer 
(TLB).

■ TLB Set-Associativity—Specifies the number of set-associativity ways in the TLB.

■ Micro DTLB entries—Specifies the number of entries in the micro data TLB.

■ Micro ITLB entries—Specifies the number of entries in the micro instruction TLB.

f For information about the MMU, refer to the Programming Model chapter of the Nios II 
Processor Reference Handbook. 

For specifics on the Nios II/f core, refer to the Nios II Core Implementation Details 
chapter of the Nios II Processor Reference Handbook.

MPU
When Include MPU on the Core Nios II tab is on, the MPU settings on the MMU and 
MPU Settings tab provide the following options for the MPU in the Nios II/f core.

■ Use Limit for region range—Controls whether the amount of memory in the 
region is defined by size or by upper address limit. When on, the amount of 
memory is based on the given upper address limit. When off, the amount of 
memory is based on the given size.

■ Number of data regions—Specifies the number of data regions to allocate. 
Allowed values range from 2 to 32.

■ Minimum data region size—Specifies the minimum data region size. Allowed 
values range from 64 bytes to 1 MB and must be a power of two.

■ Number of instruction regions—Specifies the number of instruction regions to 
allocate. Allowed values range from 2 to 32.

■ Minimum instruction region size—Specifies the minimum instruction region 
size. Allowed values range from 64 bytes to 1 MB and must be a power of two.

1 The maximum region size is the size of the Nios II instruction and data addresses 
automatically determined when the Nios II system is generated in Qsys. Maximum 
region size is based on the address range of slaves connected to the Nios II instruction 
and data masters.

f For information about the MPU, refer to the Programming Model chapter of the Nios II 
Processor Reference Handbook. 

For specifics on the Nios II/f core, refer to the Nios II Core Implementation Details 
chapter of the Nios II Processor Reference Handbook.
Nios II Processor Reference Handbook February 2014 Altera Corporation

http://www.altera.com/literature/hb/nios2/n2cpu_nii51003.pdf
http://www.altera.com/literature/hb/nios2/n2cpu_nii51015.pdf
http://www.altera.com/literature/hb/nios2/n2cpu_nii51003.pdf
http://www.altera.com/literature/hb/nios2/n2cpu_nii51015.pdf


Chapter 4: Instantiating the Nios II Processor 4–13
JTAG Debug Module Tab
JTAG Debug Module Tab
The JTAG Debug Module tab presents settings for configuring the JTAG debug 
module on the Nios II processor. You can select the debug features appropriate for 
your target application.  

Soft processor cores such as the Nios II processor offer unique debug capabilities 
beyond the features of traditional fixed processors. The soft nature of the Nios II 
processor allows you to debug a system in development using a full-featured debug 
core, and later remove the debug features to conserve logic resources. For the release 
version of a product, you might choose to reduce the JTAG debug module 
functionality, or remove it altogether.

Table 4–5. JTAG Debug Module Tab Parameters

Name Description

Select a Debugging Level

Debug level Refer to “Debug Level Settings” on page 4–14.

Include debugreq and debugack 
Signals Refer to “Debug Signals” on page 4–15.

Break Vector

Break vector memory

Refer to “Break Vector” on page 4–15.Break vector offset

Break vector

Advanced Debug Settings

OCI Onchip Trace
Refer to “Advanced Debug Settings” on page 4–15.Automatically generate internal 

2x clock signal

Table 4–6. Debug Configuration Features 

Feature Description

JTAG Target Connection
Connects to the processor through the standard JTAG pins on the Altera FPGA. This connection 
provides the basic capabilities to start and stop the processor, and examine/edit registers and 
memory.

Download Software Downloads executable code to the processor’s memory via the JTAG connection.

Software Breakpoints Sets a breakpoint on instructions residing in RAM.

Hardware Breakpoints Sets a breakpoint on instructions residing in nonvolatile memory, such as flash memory.

Data Triggers

Triggers based on address value, data value, or read or write cycle. You can use a trigger to halt 
the processor on specific events or conditions, or to activate other events, such as starting 
execution trace, or sending a trigger signal to an external logic analyzer. Two data triggers can be 
combined to form a trigger that activates on a range of data or addresses.

Instruction Trace Captures the sequence of instructions executing on the processor in real time.

Data Trace Captures the addresses and data associated with read and write operations executed by the 
processor in real time.

On-Chip Trace Stores trace data in on-chip memory.

Off-Chip Trace Stores trace data in an external debug probe. Off-chip trace instantiates a PLL inside the Nios II 
core. Off-chip trace requires a debug probe from MIPS Technologies or Lauterbach GmbH. 
February 2014 Altera Corporation Nios II Processor Reference Handbook



4–14 Chapter 4: Instantiating the Nios II Processor
JTAG Debug Module Tab
The following sections describe the configuration settings available.

Debug Level Settings
The following debug levels are available in the JTAG Debug Module tab:

■ No Debugger

■ Level 1

■ Level 2

■ Level 3

■ Level 4

The table is a detailed list of the characteristics of each debug level. Different levels 
consume different amounts of on-chip resources. Certain Nios II cores have restricted 
debug options, and certain options require debug tools provided by MIPS 
Technologies or Lauterbach GmbH.

f For information about debug features available from these third parties, search for 
“Nios II” on the MIPS Technologies website (www.mips.com) and the Lauterbach 
GmbH website (www.lauterbach.com).

Table 4–7. JTAG Debug Module Levels

Debug Feature No Debug Level 1 Level 2 Level 3 Level 4 (1)

Logic Usage 0 300—400 LEs 800—900 LEs 2,400—2,700 LEs 3,100—3,700 LEs

On-Chip Memory Usage 0 Two M4Ks Two M4Ks Four M4Ks Four M4Ks

External I/O Pins Required (2) 0 0 0 0 20

JTAG Target Connection No Yes Yes Yes Yes

Download Software No Yes Yes Yes Yes

Software Breakpoints None Unlimited Unlimited Unlimited Unlimited

Hardware Execution 
Breakpoints 0 None 2 2 4

Data Triggers 0 None 2 2 4

On-Chip Trace 0 None None Up to 64-KB 
frames (3) 

Up to 64-KB 
frames

Off-Chip Trace (4) 0 None None None 128-KB frames

Notes to Table 4–7:

(1) Level 4 requires the purchase of a software upgrade from MIPS Technologies or Lauterbach.
(2) Not including the dedicated JTAG pins on the Altera FPGA.
(3) An additional license from MIPS Technologies is required to use more than 16 frames. 
(4) Off-chip trace requires the purchase of additional hardware from MIPS Technologies or Lauterbach.
Nios II Processor Reference Handbook February 2014 Altera Corporation

www.mips.com
www.lauterbach.com


Chapter 4: Instantiating the Nios II Processor 4–15
Custom Instruction Tab
Debug Signals
The Include debugreq and debugack signals debug signals setting provides the 
following functionality. When on, the Nios II processor includes debug request and 
acknowledge signals. These signals let another device temporarily suspend the 
Nios II processor for debug purposes. The signals are exported to the top level of your 
Qsys system.

f For more information about the debug signals, refer to the Processor Architecture 
chapter of the Nios II Processor Reference Handbook.

Break Vector
When the Nios II processor contains a JTAG debug module, Qsys determines a break 
vector (break address). Break vector memory is always the processor core you are 
configuring. Break vector offset is fixed at 0x20. Qsys calculates the physical address 
of the break vector from the memory module’s base address and the offset.

When the Nios II processor does not contain a JTAG debug module, you can edit the 
break vector parameters in the manner described in “General Exception Vector” on 
page 4–3.

Advanced Debug Settings
Debug levels 3 and 4 support trace data collection into an on-chip memory buffer. You 
can set the on-chip trace buffer size to sizes from 128 to 64K trace frames, using OCI 
Onchip Trace. Larger buffer sizes consume more on-chip M4K RAM blocks. Every 
M4K RAM block can store up to 128 trace frames.

1 The Nios II MMU does not support the JTAG debug module trace.

Debug level 4 also supports manual 2X clock signal specification. If you want to use a 
specific 2X clock signal in your FPGA design, turn off Automatically generate 
internal 2x clock signal and drive a 2X clock signal into your system manually.

f For more information about trace frames, refer to the Processor Architecture chapter of 
the Nios II Processor Reference Handbook.

Custom Instruction Tab
In Qsys, custom instructions are components in your design that you manually 
connect to the processor in the Qsys System Contents tab. Existing custom instruction 
components are available on the Component Library tab under Custom Instruction 
Modules. Thus, the Custom Instruction tab in the Nios II Processor parameter editor 
is not used in Qsys.

To create your own custom instruction using the component editor, click New 
Component on the File menu in Qsys. After finishing in the component editor, the 
new instruction appears on the Component Library tab under Custom Instruction 
Modules in Qsys.
February 2014 Altera Corporation Nios II Processor Reference Handbook

http://www.altera.com/literature/hb/nios2/n2cpu_nii51002.pdf
http://www.altera.com/literature/an/an632.pdf
http://www.altera.com/literature/hb/nios2/n2cpu_nii51002.pdf


4–16 Chapter 4: Instantiating the Nios II Processor
Custom Instruction Tab
1 All signals in Nios II custom instructions must have the Custom Instruction Slave 
interface type. To guarantee the component editor automatically selects the Custom 
Instruction Slave interface type for your signals correctly during import, begin your 
signal names with the prefix ncs_. This prefix allows the component editor to 
determine the connection point type: a Nios II custom instruction slave. For example, 
if a custom instruction component has two data signals plus clock, reset, and result 
signals, an appropriate set of signal names is ncs_dataa, ncs_datab, ncs_clk, 
ncs_reset, and ncs_result.

f A complete discussion of the hardware and software design process for custom 
instructions is beyond the scope of this chapter. For full details on the topic of custom 
instructions, including working example designs, refer to the Nios II Custom 
Instruction User Guide.

Altera-Provided Custom Instructions
The following sections describe the custom instructions Altera provides.

1 The Endian Converter Custom Instruction and Interrupt Vector Custom Instruction 
are not available in Qsys. For information about converting SOPC Builder designs to 
Qsys, refer to the SOPC Builder to Qsys Migration Guidelines.

Floating Point Hardware 2 Custom Instruction
The Nios II processor offers a set of optional predefined custom instructions that 
implement floating-point arithmetic operations. You can include these custom 
instructions to support computation-intensive floating-point applications. 

The Floating Point Hardware 2 Custom Instruction is a high performance component 
with predefined custom instructions that implement single-precision floating-point 
operations. This component offers improved performance with lower cycle counts for 
addition, subtraction, multiplication and division, and also supports floating-point 
operations such as square root, comparison, minimum/maximum, negate/absolute, 
and conversion. 

The Floating Point Hardware 2 component is composed of two custom instructions:

■ Combinational custom instruction—Implements the minimum, maximum, compare, 
negate, and absolute operations.

■ Multi-cycle custom instruction—Implements the add, substract, multiply, divide, 
square root, and convert operations. 

The component has two slaves, one slave for the combinatorial custom instruction 
and the other slave for the multi-cycle custom instruction.

The opcode extensions for the Floating Point Hardware 2 custom instructions are 224 
through 255. Refer to Table 2–3 on page 2–7 for details.

To add the Floating Point Hardware 2 custom instruction to the Nios II processor in 
Qsys, select Floating Point Hardware 2 under Embedded Processors in the 
Component Library tab. Connect the two slave interfaces to the Nios II custom 
instruction master.
Nios II Processor Reference Handbook February 2014 Altera Corporation

http://www.altera.com/literature/an/an632.pdf
http://www.altera.com/literature/ug/ug_nios2_custom_instruction.pdf
http://www.altera.com/literature/ug/ug_nios2_custom_instruction.pdf


Chapter 4: Instantiating the Nios II Processor 4–17
Custom Instruction Tab
Floating-Point Hardware Custom Instruction
The Nios II processor offers a set of optional predefined custom instructions that 
implement floating-point arithmetic operations. You can include these custom 
instructions to support computation-intensive floating-point applications. 

The basic set of floating-point custom instructions includes single precision (32-bit) 
floating-point addition, subtraction, and multiplication. Floating-point division is 
available as an extension to the basic instruction set. The best choice for your 
hardware design depends on a balance among floating-point usage, hardware 
resource usage, and performance.

If the target device includes on-chip multiplier blocks, the floating-point custom 
instructions incorporate them as needed. If there are no on-chip multiplier blocks, the 
floating-point custom instructions are entirely based on general-purpose logic 
elements.

1 The opcode extensions for the floating-point custom instructions are 252 through 255 
(0xFC through 0xFF). These opcode extensions cannot be modified.

To add the floating-point custom instructions to the Nios II processor in Qsys, select 
Floating Point Hardware under Custom Instruction Modules on the Component 
Library tab, and click Add. By default, Qsys includes floating-point addition, 
subtraction, and multiplication, but omit the more resource intensive floating-point 
division. The Floating Point Hardware parameter editor appears, giving you the 
option to include the floating-point division hardware.

Turn on Use floating point division hardware to include floating-point division 
hardware. The floating-point division hardware requires more resources than the 
other instructions, so you might wish to omit it if your application does not make 
heavy use of floating-point division. 

Click Finish to add the floating-point custom instructions to the Nios II processor.

f For more information about the floating-point custom instructions, refer to the 
Processor Architecture chapter of the Nios II Processor Reference Handbook.

Bitswap Custom Instruction
The Nios II processor core offers a bitswap custom instruction to reduce the time 
spent performing bit reversal operations.

To add the bitswap custom instruction to the Nios II processor in Qsys, select Bitswap 
under Custom Instruction Modules on the Component Library tab, and click Add. 

The bitswap custom instruction reverses a 32-bit value in a single clock cycle. To 
perform the equivalent operation in software requires many mask and shift 
operations.

Table 4–8. Floating Point Hardware Parameters

Name Values Description

Parameters

Use floating point division hardware On/Off Specifies inclusion of floating-point division hardware.
February 2014 Altera Corporation Nios II Processor Reference Handbook

http://www.altera.com/literature/hb/nios2/n2cpu_nii51002.pdf


4–18 Chapter 4: Instantiating the Nios II Processor
The Quartus II IP File
f For details about integrating the bitswap custom instruction into your own algorithm, 
refer to the Nios II Custom Instruction User Guide.

The Quartus II IP File
The Quartus® II IP file (.qip) is a file generated by the MegaWizard™ Plug-In 
Manager, that contains information about a generated IP core. You are prompted to 
add this .qip file to the current project at the time of Quartus II file generation. In most 
cases, the .qip file contains all of the necessary assignments and information required 
to process the core or system in the Quartus II compiler. Generally, a single .qip file is 
generated for each MegaCore function and for each Qsys system. However, some 
complex components generate a separate .qip file, so the system .qip file references 
the component .qip file.

Document Revision History
Table 4–9. Document Revision History (Part 1 of 2)

Date Version Changes

February 2014 13.1.0

■ Added information about the Floating Point Custom Instruction 2 Component

■ Added information about ECC support.

■ Removed references to SOPC Builder.

May 2011 11.0.0

■ Revised the entire chapter for the new Qsys system integration tool. 

■ Replaced GUI screen shots with parameter tables.

■ Incorporated interrupt vector custom instruction information from the Processor 
Architecture chapter.

December 2010 10.1.0 Maintenance release. 

July 2010 10.0.0 Maintenance release. 

November 2009 9.1.0
■ Added external interrupt controller interface information.

■ Added shadow register set information.

March 2009 9.0.0 Maintenance release. 

November 2008 8.1.0
■ Added debugreq and debugack signal options to Advanced Features tab. 

■ Added cpuid manual override options to Advanced Features tab. 

May 2008 8.0.0
■ Added MMU options to Nios II Core and Advanced Features tabs.

■ Added exception handling options Advanced Features tab.

October 2007 7.2.0 Changed title to match other Altera documentation.

May 2007 7.1.0

■ Revised to reflect new MegaWizard interface. 

■ Added “Endian Converter Custom Instruction” on page 4–17 and “Bitswap Custom 
Instruction” on page 4–17.

■ Added table of contents to Introduction section.

■ Added Referenced Documents section.

March 2007 7.0.0 Maintenance release. 

November 2006 6.1.0
■ Add section on interrupt vector custom instruction.

■ Add section on system-dependent Nios II processor settings.
Nios II Processor Reference Handbook February 2014 Altera Corporation

http://www.altera.com/literature/ug/ug_nios2_custom_instruction.pdf


Chapter 4: Instantiating the Nios II Processor 4–19
Document Revision History
May 2006 6.0.0
■ Added details on floating-point custom instructions.

■ Added section on Advanced Features tab.

October 2005 5.1.0 Maintenance release.

May 2005 5.0.0
■ Updates to reflect new GUI options in Nios II processor version 5.0. 

■ New details in “Caches and Tightly-Coupled Memory” section.

September 2004 1.1
■ Updates to reflect new GUI options in Nios II processor version 1.1. 

■ New details in section “Multiply and Divide Settings.”

May 2004 1.0 Initial release.

Table 4–9. Document Revision History (Part 2 of 2)

Date Version Changes
February 2014 Altera Corporation Nios II Processor Reference Handbook



4–20 Chapter 4: Instantiating the Nios II Processor
Document Revision History
Nios II Processor Reference Handbook February 2014 Altera Corporation



February 2014 Altera Corporation
Section II. Nios II Processor
Implementation and Reference
This section provides additional information about the Nios® II processor.

This section includes the following chapters:

■ Chapter 5, Nios II Core Implementation Details

■ Chapter 6, Nios II Processor Revision History

■ Chapter 7, Application Binary Interface

■ Chapter 8, Instruction Set Reference

f For information about the revision history for chapters in this section, refer to 
“Document Revision History” in each individual chapter.
Nios II Processor Reference Handbook



II–2 Section II: Nios II Processor Implementation and Reference
Nios II Processor Reference Handbook February 2014 Altera Corporation



Nios II Processor Reference Handbook
February 2014

NII51015-13.1.0

© 2014 Altera Corporation. All rights reserved. ALTERA, ARR
and/or trademarks of Altera Corporation in the U.S. and other
www.altera.com/common/legal.html. Altera warrants perform
reserves the right to make changes to any products and services
information, product, or service described herein except as exp
specifications before relying on any published information and

February 2014
NII51015-13.1.0
5. Nios II Core Implementation Details
This document describes all of the Nios® II processor core implementations available 
at the time of publishing. This document describes only implementation-specific 
features of each processor core. All cores support the Nios II instruction set 
architecture.

f For more information regarding the Nios II instruction set architecture, refer to the 
Instruction Set Reference chapter of the Nios II Processor Reference Handbook.

For common core information and details on a specific core, refer to the appropriate 
section:

Table 5–1. Nios II Processor Cores (Part 1 of 3)

Feature
Core

Nios II/e Nios II/s Nios II/f

Objective Minimal core size Small core size Fast execution speed

Performance

DMIPS/MHz (1) 0.15 0.74 1.16 

Max. DMIPS (2) 31 127 218

Max. fMAX (2) 200 MHz 165 MHz 185 MHz

Area 
< 700 LEs;

< 350 ALMs

< 1400 LEs;

< 700 ALMs

 Without MMU or MPU:

< 1800 LEs;

< 900 ALMs

With MMU:

< 3000 LEs;

< 1500 ALMs

With MPU:

< 2400 LEs;

< 1200 ALMs

Pipeline 1 stage 5 stages 6 stages

External Address Space 2 GB 2 GB
2 GB without MMU

4 GB with MMU

Instruction 
Bus

Cache – 512 bytes to 64 KB 512 bytes to 64 KB

Pipelined Memory Access – Yes Yes

Branch Prediction – Static Dynamic

Tightly-Coupled Memory – Optional Optional
Subscribe

IA, CYCLONE, HARDCOPY, MAX, MEGACORE, NIOS, QUARTUS and STRATIX are Reg. U.S. Pat. & Tm. Off. 
 countries. All other trademarks and service marks are the property of their respective holders as described at 

ance of its semiconductor products to current specifications in accordance with Altera’s standard warranty, but 
 at any time without notice. Altera assumes no responsibility or liability arising out of the application or use of any 
ressly agreed to in writing by Altera. Altera customers are advised to obtain the latest version of device 
 before placing orders for products or services.

http://www.altera.com/literature/hb/nios2/n2cpu_nii51017.pdf
http://www.altera.com/common/legal.html
https://www.altera.com/servlets/subscriptions/alert?id=NII51015


5–2 Chapter 5: Nios II Core Implementation Details
Data Bus

Cache – – 512 bytes to 64 KB

Pipelined Memory Access – – –

Cache Bypass Methods – –

■ I/O instructions

■ Bit-31 cache bypass

■ Optional MMU

Tightly-Coupled Memory – – Optional

Arithmetic 
Logic Unit

Hardware Multiply – 3-cycle (3) 1-cycle (3)

Hardware Divide – Optional Optional 

Shifter 1 cycle-per-bit 3-cycle shift (3)
1-cycle barrel 

shifter (3)

JTAG Debug 
Module

JTAG interface, run control, 
software breakpoints Optional Optional Optional

Hardware Breakpoints – Optional Optional

Off-Chip Trace Buffer – Optional Optional

Memory Management Unit – – Optional

Memory Protection Unit – – Optional

Exception 
Handling

Exception Types

Software trap, 
unimplemented 
instruction, illegal 
instruction, hardware 
interrupt

Software trap, 
unimplemented 
instruction, illegal 
instruction, hardware 
interrupt

Software trap, 
unimplemented 
instruction, illegal 
instruction, 
supervisor-only 
instruction, 
supervisor-only instruction 
address, supervisor-only 
data address, misaligned 
destination address, 
misaligned data address, 
division error, fast TLB 
miss, double TLB miss, 
TLB permission violation, 
MPU region violation, 
internal hardware interrupt, 
external hardware 
interrupt, nonmaskable 
interrupt

Integrated Interrupt 
Controller Yes Yes Yes

External Interrupt Controller 
Interface No No Optional

Shadow Register Sets No No Optional, up to 63

User Mode Support No; Permanently in 
supervisor mode

No; Permanently in 
supervisor mode

Yes; When MMU or MPU 
present

Custom Instruction Support Yes Yes Yes

Table 5–1. Nios II Processor Cores (Part 2 of 3)

Feature
Core

Nios II/e Nios II/s Nios II/f
Nios II Processor Reference Handbook February 2014 Altera Corporation



Chapter 5: Nios II Core Implementation Details 5–3
Device Family Support
Device Family Support
All Nios II cores provide the same support for target Altera® device families.

ECC support No No Yes

Notes to Table 5–1:

(1) DMIPS performance for the Nios II/s and Nios II/f cores depends on the hardware multiply option. 
(2) Using the fastest hardware multiply option, and targeting a Stratix® II FPGA in the fastest speed grade.
(3) Multiply and shift performance depends on the hardware multiply option you use. If no hardware multiply option is used, multiply operations 

are emulated in software, and shift operations require one cycle per bit. For details, refer to the arithmetic logic unit description for each core.

Table 5–1. Nios II Processor Cores (Part 3 of 3)

Feature
Core

Nios II/e Nios II/s Nios II/f

Table 5–2. Device Family Support

Device Family Support (1)

Arria® GX Final

Arria II GX Final

Arria II GZ Final

Cyclone® II Final

Cyclone III Final

Cyclone III LS Final

Cyclone IV GX Final

Stratix II Final

Stratix II GX Final

Stratix III Final

Stratix IV E Final

Stratix IV GT Final

Stratix IV GX Final

Stratix V Preliminary

Other device families No support

Note to Table 5–2:

(1) Device support levels are defined in Table 5–3.

Table 5–3. Altera IP Core Device Support Levels

FPGA Device Families

Preliminary support—The core is verified with preliminary timing models for this device family. The core meets all 
functional requirements, but might still be undergoing timing analysis for the device family. It can be used in production 
designs with caution.

Final support—The core is verified with final timing models for this device family. The core meets all functional and timing 
requirements for the device family and can be used in production designs.
February 2014 Altera Corporation Nios II Processor Reference Handbook



5–4 Chapter 5: Nios II Core Implementation Details
Nios II/f Core
Nios II/f Core
The Nios II/f fast core is designed for high execution performance. Performance is 
gained at the expense of core size. The base Nios II/f core, without the memory 
management unit (MMU) or memory protection unit (MPU), is approximately 25% 
larger than the Nios II/s core. Altera designed the Nios II/f core with the following 
design goals in mind: 

■ Maximize the instructions-per-cycle execution efficiency

■ Optimize interrupt latency

■ Maximize fMAX performance of the processor core

The resulting core is optimal for performance-critical applications, as well as for 
applications with large amounts of code and/or data, such as systems running a 
full-featured operating system.

Overview
The Nios II/f core:

■ Has separate optional instruction and data caches

■ Provides optional MMU to support operating systems that require an MMU

■ Provides optional MPU to support operating systems and runtime environments 
that desire memory protection but do not need virtual memory management

■ Can access up to 2 GB of external address space when no MMU is present and 
4 GB when the MMU is present

■ Supports optional external interrupt controller (EIC) interface to provide 
customizable interrupt prioritization

■ Supports optional shadow register sets to improve interrupt latency

■ Supports optional tightly-coupled memory for instructions and data 

■ Employs a 6-stage pipeline to achieve maximum DMIPS/MHz

■ Performs dynamic branch prediction

■ Provides optional hardware multiply, divide, and shift options to improve 
arithmetic performance

■ Supports the addition of custom instructions

■ Optional ECC support for internal RAM blocks (instruction cache, MMU TLB, and 
register file)

■ Supports the JTAG debug module

■ Supports optional JTAG debug module enhancements, including hardware 
breakpoints and real-time trace

The following sections discuss the noteworthy details of the Nios II/f core 
implementation. This document does not discuss low-level design issues or 
implementation details that do not affect Nios II hardware or software designers.
Nios II Processor Reference Handbook February 2014 Altera Corporation



Chapter 5: Nios II Core Implementation Details 5–5
Nios II/f Core
Arithmetic Logic Unit
The Nios II/f core provides several arithmetic logic unit (ALU) options to improve the 
performance of multiply, divide, and shift operations.

Multiply and Divide Performance
The Nios II/f core provides the following hardware multiplier options:

■ DSP Block—Includes DSP block multipliers available on the target device. This 
option is available only on Altera FPGAs that have DSP Blocks.

■ Embedded Multipliers—Includes dedicated embedded multipliers available on the 
target device. This option is available only on Altera FPGAs that have embedded 
multipliers.

■ Logic Elements—Includes hardware multipliers built from logic element (LE) 
resources.

■ None—Does not include multiply hardware. In this case, multiply operations are 
emulated in software.

The Nios II/f core also provides a hardware divide option that includes LE-based 
divide circuitry in the ALU. 

Including an ALU option improves the performance of one or more arithmetic 
instructions. 

1 The performance of the embedded multipliers differ, depending on the target FPGA 
family. 

The cycles per instruction value determines the maximum rate at which the ALU can 
dispatch instructions and produce each result. The latency value determines when the 
result becomes available. If there is no data dependency between the results and 
operands for back-to-back instructions, then the latency does not affect throughput. 
However, if an instruction depends on the result of an earlier instruction, then the 
processor stalls through any result latency cycles until the result is ready. 

Table 5–4. Hardware Multiply and Divide Details for the Nios II/f Core

ALU Option Hardware Details Cycles per 
Instruction

Result Latency 
Cycles

Supported 
Instructions

No hardware multiply or 
divide

Multiply and divide 
instructions generate an 
exception

– – None

Logic elements ALU includes 32 x 4-bit 
multiplier 11 +2 mul, muli

DSP block on Stratix II 
and Stratix III families

ALU includes 32 x 32-bit 
multiplier 1 +2 mul, muli, mulxss, 

mulxsu, mulxuu

Embedded multipliers on 
Cyclone II and 
Cyclone III families

ALU includes 32 x 16-bit 
multiplier 5 +2 mul, muli

Hardware divide ALU includes multicycle 
divide circuit 4 – 66 +2 div, divu
February 2014 Altera Corporation Nios II Processor Reference Handbook



5–6 Chapter 5: Nios II Core Implementation Details
Nios II/f Core
In the following code example, a multiply operation (with 1 instruction cycle and 2 
result latency cycles) is followed immediately by an add operation that uses the result 
of the multiply. On the Nios II/f core, the addi instruction, like most ALU 
instructions, executes in a single cycle. However, in this code example, execution of 
the addi instruction is delayed by two additional cycles until the multiply operation 
completes.

mul r1, r2, r3 ; r1 = r2 * r3
addi r1, r1, 100 ; r1 = r1 + 100 (Depends on result of mul)

In contrast, the following code does not stall the processor.

mul r1, r2, r3 ; r1 = r2 * r3
or r5, r5, r6 ; No dependency on previous results
or r7, r7, r8 ; No dependency on previous results
addi r1, r1, 100 ; r1 = r1 + 100 (Depends on result of mul)

Shift and Rotate Performance
The performance of shift operations depends on the hardware multiply option. When 
a hardware multiplier is present, the ALU achieves shift and rotate operations in one 
or two clock cycles. Otherwise, the ALU includes dedicated shift circuitry that 
achieves one-bit-per-cycle shift and rotate performance. Refer to Table 5–10 on 
page 5–11 for details.

Memory Access
The Nios II/f core provides optional instruction and data caches. The cache size for 
each is user-definable, between 512 bytes and 64 KB.

The memory address width in the Nios II/f core depends on whether the optional 
MMU is present. Without an MMU, the Nios II/f core supports the bit-31 cache 
bypass method for accessing I/O on the data master port. Therefore addresses are 31 
bits wide, reserving bit 31 for the cache bypass function. With an MMU, cache bypass 
is a function of the memory partition and the contents of the translation lookaside 
buffer (TLB). Therefore bit-31 cache bypass is disabled, and 32 address bits are 
available to address memory.

Instruction and Data Master Ports
The instruction master port is a pipelined Avalon® Memory-Mapped (Avalon-MM) 
master port. If the core includes data cache with a line size greater than four bytes, 
then the data master port is a pipelined Avalon-MM master port. Otherwise, the data 
master port is not pipelined.

The instruction and data master ports on the Nios II/f core are optional. A master port 
can be excluded, as long as the core includes at least one tightly-coupled memory to 
take the place of the missing master port.

1 Although the Nios II processor can operate entirely out of tightly-coupled memory 
without the need for Avalon-MM instruction or data masters, software debug is not 
possible when either the Avalon-MM instruction or data master is omitted.

Support for pipelined Avalon-MM transfers minimizes the impact of synchronous 
memory with pipeline latency. The pipelined instruction and data master ports can 
issue successive read requests before prior requests complete.
Nios II Processor Reference Handbook February 2014 Altera Corporation



Chapter 5: Nios II Core Implementation Details 5–7
Nios II/f Core
Instruction and Data Caches
This section first describes the similar characteristics of the instruction and data cache 
memories, and then describes the differences.

Both the instruction and data cache addresses are divided into fields based on 
whether or not an MMU is present in your system. 

Instruction Cache

The instruction cache memory has the following characteristics:

■ Direct-mapped cache implementation.

■ 32 bytes (8 words) per cache line.

■ The instruction master port reads an entire cache line at a time from memory, and 
issues one read per clock cycle.

■ Critical word first.

■ Virtually-indexed, physically-tagged, when MMU present.

The size of the tag field depends on the size of the cache memory and the physical 
address size. The size of the line field depends only on the size of the cache memory. 
The offset field is always five bits (i.e., a 32-byte line). The maximum instruction byte 
address size is 31 bits in systems without an MMU present. In systems with an MMU, 
the maximum instruction byte address size is 32 bits and the tag field always includes 
all the bits of the physical frame number (PFN).

The instruction cache is optional. However, excluding instruction cache from the 
Nios II/f core requires that the core include at least one tightly-coupled instruction 
memory.

Data Cache

The data cache memory has the following characteristics:

■ Direct-mapped cache implementation

■ Configurable line size of 4, 16, or 32 bytes

■ The data master port reads an entire cache line at a time from memory, and issues 
one read per clock cycle.

Table 5–5. Cache Byte Address Fields

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

tag line offset

Table 5–6. Cache Virtual Byte Address Fields

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

line offset

Table 5–7. Cache Physical Byte Address Fields

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

tag offset
February 2014 Altera Corporation Nios II Processor Reference Handbook



5–8 Chapter 5: Nios II Core Implementation Details
Nios II/f Core
■ Write-back

■ Write-allocate (i.e., on a store instruction, a cache miss allocates the line for that 
address)

■ Virtually-indexed, physically-tagged, when MMU present

The size of the tag field depends on the size of the cache memory and the physical 
address size. The size of the line field depends only on the size of the cache memory. 
The size of the offset field depends on the line size. Line sizes of 4, 16, and 32 bytes 
have offset widths of 2, 4, and 5 bits respectively. The maximum data byte address size 
is 31 bits in systems without an MMU present. In systems with an MMU, the 
maximum data byte address size is 32 bits and the tag field always includes all the bits 
of the PFN.

The data cache is optional. If the data cache is excluded from the core, the data master 
port can also be excluded.

The Nios II instruction set provides several different instructions to clear the data 
cache. There are two important questions to answer when determining the instruction 
to use. Do you need to consider the tag field when looking for a cache match? Do you 
need to write dirty cache lines back to memory before clearing? Below the table lists 
the most appropriate instruction to use for each case. 

1 The 4-byte line data cache implementation substitutes the flushd instruction for the 
flushda instruction and triggers an unimplemented instruction exception for the 
initda instruction. The 16-byte and 32-byte line data cache implementations fully 
support the flushda and initda instructions.

f For more information regarding the Nios II instruction set, refer to the Instruction Set 
Reference chapter of the Nios II Processor Reference Handbook.

The Nios II/f core implements all the data cache bypass methods.

f For information regarding the data cache bypass methods, refer to the Processor 
Architecture chapter of the Nios II Processor Reference Handbook

Mixing cached and uncached accesses to the same cache line can result in invalid data 
reads. For example, the following sequence of events causes cache incoherency. 

1. The Nios II core writes data to cache, creating a dirty data cache line.

2. The Nios II core reads data from the same address, but bypasses the cache.

1 Avoid mixing cached and uncached accesses to the same cache line, regardless 
whether you are reading from or writing to the cache line. If it is necessary to mix 
cached and uncached data accesses, flush the corresponding line of the data cache 
after completing the cached accesses and before performing the uncached accesses.

Table 5–8. Data Cache Clearing Instructions

Ignore Tag Field Consider Tag Field

Write Dirty Lines flushd flushda

Do Not Write Dirty Lines initd initda
Nios II Processor Reference Handbook February 2014 Altera Corporation

http://www.altera.com/literature/hb/nios2/n2cpu_nii51017.pdf
http://www.altera.com/literature/hb/nios2/n2cpu_nii51017.pdf
http://www.altera.com/literature/hb/nios2/n2cpu_nii51002.pdf
http://www.altera.com/literature/hb/nios2/n2cpu_nii51002.pdf


Chapter 5: Nios II Core Implementation Details 5–9
Nios II/f Core
Bursting
When the data cache is enabled, you can enable bursting on the data master port. 
Consult the documentation for memory devices connected to the data master port to 
determine whether bursting can improve performance.

Tightly-Coupled Memory
The Nios II/f core provides optional tightly-coupled memory interfaces for both 
instructions and data. A Nios II/f core can use up to four each of instruction and data 
tightly-coupled memories. When a tightly-coupled memory interface is enabled, the 
Nios II core includes an additional memory interface master port. Each 
tightly-coupled memory interface must connect directly to exactly one memory slave 
port. 

When tightly-coupled memory is present, the Nios II core decodes addresses 
internally to determine if requested instructions or data reside in tightly-coupled 
memory. If the address resides in tightly-coupled memory, the Nios II core fetches the 
instruction or data through the tightly-coupled memory interface. Software accesses 
tightly-coupled memory with the usual load and store instructions, such as ldw or 
ldwio. 

Accessing tightly-coupled memory bypasses cache memory. The processor core 
functions as if cache were not present for the address span of the tightly-coupled 
memory. Instructions for managing cache, such as initd and flushd, do not affect the 
tightly-coupled memory, even if the instruction specifies an address in 
tightly-coupled memory. 

When the MMU is present, tightly-coupled memories are always mapped into the 
kernel partition and can only be accessed in supervisor mode.

Memory Management Unit
The Nios II/f core provides options to improve the performance of the Nios II MMU. 

f For information about the MMU architecture, refer to the Programming Model chapter 
of the Nios II Processor Reference Handbook.

Micro Translation Lookaside Buffers
The translation lookaside buffer (TLB) consists of one main TLB stored in on-chip 
RAM and two separate micro TLBs (μTLB) for instructions (μITLB) and data (μDTLB) 
stored in LE-based registers.

The μTLBs have a configurable number of entries and are fully associative. The 
default configuration has 6 μDTLB entries and 4 μITLB entries. The hardware chooses 
the least-recently used μTLB entry when loading a new entry.

The μTLBs are not visible to software. They act as an inclusive cache of the main TLB. 
The processor firsts look for a hit in the μTLB. If it misses, it then looks for a hit in the 
main TLB. If the main TLB misses, the processor takes an exception. If the main TLB 
hits, the TLB entry is copied into the μTLB for future accesses.

The hardware automatically flushes the μTLB on each TLB write operation and on a 
wrctl to the tlbmisc register in case the process identifier (PID) has changed.
February 2014 Altera Corporation Nios II Processor Reference Handbook

http://www.altera.com/literature/hb/nios2/n2cpu_nii51003.pdf


5–10 Chapter 5: Nios II Core Implementation Details
Nios II/f Core
Memory Protection Unit
The Nios II/f core provides options to improve the performance of the Nios II MPU. 
For information about the MPU architecture, refer to the Programming Model chapter 
of the Nios II Processor Reference Handbook.

Execution Pipeline
This section provides an overview of the pipeline behavior for the benefit of 
performance-critical applications. Designers can use this information to minimize 
unnecessary processor stalling. Most application programmers never need to analyze 
the performance of individual instructions.

The Nios II/f core employs a 6-stage pipeline.

Up to one instruction is dispatched and/or retired per cycle. Instructions are 
dispatched and retired in order. Dynamic branch prediction is implemented using a 
2-bit branch history table. The pipeline stalls for the following conditions:

■ Multicycle instructions

■ Avalon-MM instruction master port read accesses

■ Avalon-MM data master port read/write accesses

■ Data dependencies on long latency instructions (e.g., load, multiply, shift).

Pipeline Stalls
The pipeline is set up so that if a stage stalls, no new values enter that stage or any 
earlier stages. No “catching up” of pipeline stages is allowed, even if a pipeline stage 
is empty. 

Only the A-stage and D-stage are allowed to create stalls.

The A-stage stall occurs if any of the following conditions occurs:

■ An A-stage memory instruction is waiting for Avalon-MM data master requests to 
complete. Typically this happens when a load or store misses in the data cache, or 
a flushd instruction needs to write back a dirty line.

■ An A-stage shift/rotate instruction is still performing its operation. This only 
occurs with the multicycle shift circuitry (i.e., when the hardware multiplier is not 
available). 

■ An A-stage divide instruction is still performing its operation. This only occurs 
when the optional divide circuitry is available.

Table 5–9. Implementation Pipeline Stages for Nios II/f Core

Stage Letter Stage Name

F Fetch

D Decode

E Execute

M Memory

A Align

W Writeback
Nios II Processor Reference Handbook February 2014 Altera Corporation

http://www.altera.com/literature/hb/nios2/n2cpu_nii51003.pdf


Chapter 5: Nios II Core Implementation Details 5–11
Nios II/f Core
■ An A-stage multicycle custom instruction is asserting its stall signal. This only 
occurs if the design includes multicycle custom instructions.

The D-stage stall occurs if an instruction is trying to use the result of a late result 
instruction too early and no M-stage pipeline flush is active. The late result 
instructions are loads, shifts, rotates, rdctl, multiplies (if hardware multiply is 
supported), divides (if hardware divide is supported), and multicycle custom 
instructions (if present).

Branch Prediction
The Nios II/f core performs dynamic branch prediction to minimize the cycle penalty 
associated with taken branches.

Instruction Performance
All instructions take one or more cycles to execute. Some instructions have other 
penalties associated with their execution. Late result instructions have two cycles 
placed between them and an instruction that uses their result. Instructions that flush 
the pipeline cause up to three instructions after them to be cancelled. This creates a 
three-cycle penalty and an execution time of four cycles. Instructions that require 
Avalon-MM transfers are stalled until any required Avalon-MM transfers (up to one 
write and one read) are completed. 

Table 5–10. Instruction Execution Performance for Nios II/f Core 4byte/line data cache (Part 1 of 2)

Instruction Cycles Penalties

Normal ALU instructions (e.g., add, cmplt) 1

Combinatorial custom instructions 1

Multicycle custom instructions > 1 Late result

Branch (correctly predicted, taken) 2

Branch (correctly predicted, not taken) 1

Branch (mispredicted) 4 Pipeline flush

trap, break, eret, bret, flushp, wrctl, wrprs; illegal and unimplemented instructions 4 or 5 (2) Pipeline flush

call, jmpi, rdprs 2

jmp, ret, callr 3

rdctl 1 Late result

load (without Avalon-MM transfer) 1 Late result

load (with Avalon-MM transfer) > 1 Late result

store (without Avalon-MM transfer) 1

store (with Avalon-MM transfer) > 1

flushd, flushda (without Avalon-MM transfer) 2

flushd, flushda (with Avalon-MM transfer) > 2

initd, initda 2

flushi, initi 4

Multiply (1) Late result

Divide (1) Late result

Shift/rotate (with hardware multiply using embedded multipliers) 1 Late result
February 2014 Altera Corporation Nios II Processor Reference Handbook



5–12 Chapter 5: Nios II Core Implementation Details
Nios II/f Core
Exception Handling
The Nios II/f core supports the following exception types:

■ Hardware interrupts

■ Software trap

■ Illegal instruction

■ Unimplemented instruction

■ Supervisor-only instruction (MMU or MPU only)

■ Supervisor-only instruction address (MMU or MPU only)

■ Supervisor-only data address (MMU or MPU only)

■ Misaligned data address

■ Misaligned destination address

■ Division error

■ Fast translation lookaside buffer (TLB) miss (MMU only)

■ Double TLB miss (MMU only)

■ TLB permission violation (MMU only)

■ MPU region violation (MPU only)

External Interrupt Controller Interface
The EIC interface enables you to speed up interrupt handling in a complex system by 
adding a custom interrupt controller.

The EIC interface is an Avalon-ST sink with the following input signals:

■ eic_port_valid 

■ eic_port_data 

Shift/rotate (with hardware multiply using LE-based multipliers) 2 Late result

Shift/rotate (without hardware multiply present) 1 to 32 Late result 

All other instructions 1

Notes to Table 5–10:

(1) Depends on the hardware multiply or divide option. Refer to Table 5–4 on page 5–5 for details.
(2) In the default Nios II/f configuration, these instructions require four clock cycles. If any of the following options are present, they require five 

clock cycles:
■ MMU

■ MPU

■ Division exception

■ Misaligned load/store address exception

■ Extra exception information

■ EIC port

■ Shadow register sets

Table 5–10. Instruction Execution Performance for Nios II/f Core 4byte/line data cache (Part 2 of 2)

Instruction Cycles Penalties
Nios II Processor Reference Handbook February 2014 Altera Corporation



Chapter 5: Nios II Core Implementation Details 5–13
Nios II/f Core
Signals are rising-edge triggered, and synchronized with the Nios II clock input.

The EIC interface presents the following signals to the Nios II processor through the 
eic_port_data signal:

■ Requested handler address (RHA)—The 32-bit address of the interrupt handler 
associated with the requested interrupt.

■ Requested register set (RRS)—The six-bit number of the register set associated with 
the requested interrupt.

■ Requested interrupt level (RIL)—The six-bit interrupt level. If RIL is 0, no interrupt is 
requested.

■ Requested nonmaskable interrupt (RNMI) flag—A one-bit flag indicating whether the 
interrupt is to be treated as nonmaskable.

Following Avalon-ST protocol requirements, the EIC interface samples eic_port_data 
only when eic_port_valid is asserted (high). When eic_port_valid is not asserted, 
the processor latches the previous values of RHA, RRS, RIL and RNMI. To present 
new values on eic_port_data, the EIC must transmit a new packet, asserting 
eic_port_valid. An EIC can transmit a new packet once per clock cycle.

f For an example of an EIC implementation, refer to the Vectored Interrupt Controller 
chapter in the Embedded Peripherals IP User Guide.

ECC
The Nios II/f core has the option to add ECC support for the following Nios II 
internal RAM blocks.

■ Instruction cache

■ ECC errors (1, 2, or 3 bits) that occur in the instruction cache are recoverable; 
the Nios II processor flushes the cache line and reads from external memory 
instead of correcting the ECC error. 

■ Register file

■ 1 bit ECC errors are recoverable

■ 2 bit ECC errors are not recoverable and generate ECC exceptions

■ MMU TLB

■ 1 bit ECC errors triggered by hardware reads are recoverable

■ 2 bit ECC errors triggered by hardware reads are not recoverable and generate 
ECC exception. 

■ 1 or 2 bit ECC errors triggered by software reads to the TLBMISC register do 
not trigger an exception, instead, TLBMISC.EE is set to 1. Software must read 
this field and invalidate/overwrite the TLB entry.

Table 5–11. eic_port_data Signal

44 ... 13 12 ... 7 6 5 ... 0

RHA RRS

RN
MI RIL
February 2014 Altera Corporation Nios II Processor Reference Handbook

http://www.altera.com/literature/ug/ug_embedded_ip.pdf


5–14 Chapter 5: Nios II Core Implementation Details
Nios II/f Core
The ECC interface is an Avalon-ST source with the output signal ecc_event_bus. This 
interface allows external logic to monitor ECC errors in the Nios II processor.

The ecc_event_bus contains the ECC error signals that are driven to 1 even if ECC 
checking is disabled in the Nios II processor (when CONFIG.ECCEN or CONFIG.ECCEXC is 
0). The following table describes the ECC error signals.

Table 5–12. ECC Error Signals 

Bit Field Description Effect on 
Software Available

0 EEH
ECC error exception while in exception handler mode (i.e., 
STATUS.EH = 1). Likely fatal Always

1 RF_RE Recoverable (1 bit) ECC error in register file RAM None Always

2 RF_UE Unrecoverable (2 bit) ECC error in register file RAM Likely fatal Always

3 ICTAG_RE Recoverable (1, 2, or 3 bit) ECC error in instruction cache tag RAM None Instruction cache 
present

4 ICDAT_RE Recoverable (1, 2, or 3 bit) ECC error in instruction cache data RAM. None Instruction cache 
present

5 Reserved

6 Reserved

7 Reserved

8 Reserved

9 Reserved

10 Reserved

11 Reserved

12 Reserved

13 Reserved

14 Reserved

15 Reserved

16 Reserved

17 Reserved

18 Reserved

19 TLB_RE Recoverable (1 bit) ECC error in TLB RAM (hardware read of TLB) None MMU present

20 TLB_UE Unrecoverable (2 bit) ECC error in TLB RAM (hardware read of TLB) Possibly fatal MMU present

21 TLB_SW Software-triggered (1, 2, or 3 bit) ECC error in software read of TLB Possibly fatal MMU present

22 Reserved

23 Reserved

24 Reserved

25 Reserved

26 Reserved

27 Reserved

28 Reserved

29 Reserved
Nios II Processor Reference Handbook February 2014 Altera Corporation



Chapter 5: Nios II Core Implementation Details 5–15
Nios II/s Core
JTAG Debug Module
The Nios II/f core supports the JTAG debug module to provide a JTAG interface to 
software debugging tools. The Nios II/f core supports an optional enhanced interface 
that allows real-time trace data to be routed out of the processor and stored in an 
external debug probe.

1 The Nios II MMU does not support the JTAG debug module trace.

Nios II/s Core
The Nios II/s standard core is designed for small core size. On-chip logic and memory 
resources are conserved at the expense of execution performance. The Nios II/s core 
uses approximately 20% less logic than the Nios II/f core, but execution performance 
also drops by roughly 40%. Altera designed the Nios II/s core with the following 
design goals in mind:

■ Do not cripple performance for the sake of size.

■ Remove hardware features that have the highest ratio of resource usage to 
performance impact.

The resulting core is optimal for cost-sensitive, medium-performance applications. 
This includes applications with large amounts of code and/or data, such as systems 
running an operating system in which performance is not the highest priority.

Overview
The Nios II/s core:

■ Has an instruction cache, but no data cache

■ Can access up to 2 GB of external address space

■ Supports optional tightly-coupled memory for instructions

■ Employs a 5-stage pipeline

■ Performs static branch prediction

■ Provides hardware multiply, divide, and shift options to improve arithmetic 
performance

■ Supports the addition of custom instructions

■ Supports the JTAG debug module

■ Supports optional JTAG debug module enhancements, including hardware 
breakpoints and real-time trace

The following sections discuss the noteworthy details of the Nios II/s core 
implementation. This document does not discuss low-level design issues or 
implementation details that do not affect Nios II hardware or software designers.

Arithmetic Logic Unit
The Nios II/s core provides several ALU options to improve the performance of 
multiply, divide, and shift operations.
February 2014 Altera Corporation Nios II Processor Reference Handbook



5–16 Chapter 5: Nios II Core Implementation Details
Nios II/s Core
Multiply and Divide Performance
The Nios II/s core provides the following hardware multiplier options:

■ DSP Block—Includes DSP block multipliers available on the target device. This 
option is available only on Altera FPGAs that have DSP Blocks.

■ Embedded Multipliers—Includes dedicated embedded multipliers available on the 
target device. This option is available only on Altera FPGAs that have embedded 
multipliers.

■ Logic Elements—Includes hardware multipliers built from logic element (LE) 
resources.

■ None—Does not include multiply hardware. In this case, multiply operations are 
emulated in software.

The Nios II/s core also provides a hardware divide option that includes LE-based 
divide circuitry in the ALU. 

Including an ALU option improves the performance of one or more arithmetic 
instructions. 

1 The performance of the embedded multipliers differ, depending on the target FPGA 
family.

Shift and Rotate Performance 
The performance of shift operations depends on the hardware multiply option. When 
a hardware multiplier is present, the ALU achieves shift and rotate operations in three 
or four clock cycles. Otherwise, the ALU includes dedicated shift circuitry that 
achieves one-bit-per-cycle shift and rotate performance. Refer to Table 5–16 on 
page 5–19 for details.

Table 5–13. Hardware Multiply and Divide Details for the Nios II/s Core

ALU Option Hardware Details Cycles per 
instruction Supported Instructions

No hardware multiply or divide Multiply and divide instructions 
generate an exception – None

LE-based multiplier ALU includes 32 x 4-bit 
multiplier 11 mul, muli

Embedded multiplier on 
Stratix II and Stratix III families

ALU includes 32 x 32-bit 
multiplier 3 mul, muli, mulxss, mulxsu, 

mulxuu

Embedded multiplier on 
Cyclone II and Cyclone III 
families

ALU includes 32 x 16-bit 
multiplier 5 mul, muli

Hardware divide ALU includes multicycle divide 
circuit 4 – 66 div, divu
Nios II Processor Reference Handbook February 2014 Altera Corporation



Chapter 5: Nios II Core Implementation Details 5–17
Nios II/s Core
Memory Access
The Nios II/s core provides instruction cache, but no data cache. The instruction 
cache size is user-definable, between 512 bytes and 64 KB. The Nios II/s core can 
address up to 2 GB of external memory. The Nios II architecture reserves the 
most-significant bit of data addresses for the bit-31 cache bypass method. In the 
Nios II/s core, bit 31 is always zero.

f For information regarding data cache bypass methods, refer to the Processor 
Architecture chapter of the Nios II Processor Reference Handbook.

Instruction and Data Master Ports
The instruction port on the Nios II/s core is optional. The instruction master port can 
be excluded, as long as the core includes at least one tightly-coupled instruction 
memory. The instruction master port is a pipelined Avalon-MM master port. 

Support for pipelined Avalon-MM transfers minimizes the impact of synchronous 
memory with pipeline latency. The pipelined instruction master port can issue 
successive read requests before prior requests complete. 

The data master port on the Nios II/s core is always present.

Instruction Cache
The instruction cache for the Nios II/s core is nearly identical to the instruction cache 
in the Nios II/f core. The instruction cache memory has the following characteristics:

■ Direct-mapped cache implementation

■ The instruction master port reads an entire cache line at a time from memory, and 
issues one read per clock cycle.

■ Critical word first

The size of the tag field depends on the size of the cache memory and the physical 
address size. The size of the line field depends only on the size of the cache memory. 
The offset field is always five bits (i.e., a 32-byte line). The maximum instruction byte 
address size is 31 bits.

The instruction cache is optional. However, excluding instruction cache from the 
Nios II/s core requires that the core include at least one tightly-coupled instruction 
memory. 

Tightly-Coupled Memory
The Nios II/s core provides optional tightly-coupled memory interfaces for 
instructions. A Nios II/s core can use up to four tightly-coupled instruction 
memories. When a tightly-coupled memory interface is enabled, the Nios II core 
includes an additional memory interface master port. Each tightly-coupled memory 
interface must connect directly to exactly one memory slave port. 

Table 5–14. Instruction Byte Address Fields

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

tag line offset
February 2014 Altera Corporation Nios II Processor Reference Handbook

http://www.altera.com/literature/hb/nios2/n2cpu_nii51002.pdf
http://www.altera.com/literature/hb/nios2/n2cpu_nii51002.pdf


5–18 Chapter 5: Nios II Core Implementation Details
Nios II/s Core
When tightly-coupled memory is present, the Nios II core decodes addresses 
internally to determine if requested instructions reside in tightly-coupled memory. If 
the address resides in tightly-coupled memory, the Nios II core fetches the instruction 
through the tightly-coupled memory interface. Software does not require awareness 
of whether code resides in tightly-coupled memory or not.

Accessing tightly-coupled memory bypasses cache memory. The processor core 
functions as if cache were not present for the address span of the tightly-coupled 
memory. Instructions for managing cache, such as initi and flushi, do not affect the 
tightly-coupled memory, even if the instruction specifies an address in 
tightly-coupled memory. 

Execution Pipeline
This section provides an overview of the pipeline behavior for the benefit of 
performance-critical applications. Designers can use this information to minimize 
unnecessary processor stalling. Most application programmers never need to analyze 
the performance of individual instructions.

The Nios II/s core employs a 5-stage pipeline.

Up to one instruction is dispatched and/or retired per cycle. Instructions are 
dispatched and retired in-order. Static branch prediction is implemented using the 
branch offset direction; a negative offset (backward branch) is predicted as taken, and 
a positive offset (forward branch) is predicted as not taken. The pipeline stalls for the 
following conditions:

■ Multicycle instructions (e.g., shift/rotate without hardware multiply)

■ Avalon-MM instruction master port read accesses

■ Avalon-MM data master port read/write accesses

■ Data dependencies on long latency instructions (e.g., load, multiply, shift 
operations)

Pipeline Stalls
The pipeline is set up so that if a stage stalls, no new values enter that stage or any 
earlier stages. No “catching up” of pipeline stages is allowed, even if a pipeline stage 
is empty.

Only the M-stage is allowed to create stalls.

The M-stage stall occurs if any of the following conditions occurs:

Table 5–15. Implementation Pipeline Stages for Nios II/s Core

Stage Letter Stage Name

F Fetch

D Decode

E Execute

M Memory

W Writeback
Nios II Processor Reference Handbook February 2014 Altera Corporation



Chapter 5: Nios II Core Implementation Details 5–19
Nios II/s Core
■ An M-stage load/store instruction is waiting for Avalon-MM data master transfer 
to complete.

■ An M-stage shift/rotate instruction is still performing its operation when using 
the multicycle shift circuitry (i.e., when the hardware multiplier is not available).

■ An M-stage shift/rotate/multiply instruction is still performing its operation 
when using the hardware multiplier (which takes three cycles).

■ An M-stage multicycle custom instruction is asserting its stall signal. This only 
occurs if the design includes multicycle custom instructions.

Branch Prediction
The Nios II/s core performs static branch prediction to minimize the cycle penalty 
associated with taken branches.

Instruction Performance
All instructions take one or more cycles to execute. Some instructions have other 
penalties associated with their execution. Instructions that flush the pipeline cause up 
to three instructions after them to be cancelled. This creates a three-cycle penalty and 
an execution time of four cycles. Instructions that require an Avalon-MM transfer are 
stalled until the transfer completes.

Table 5–16. Instruction Execution Performance for Nios II/s Core

Instruction Cycles Penalties

Normal ALU instructions (e.g., add, cmplt) 1

Combinatorial custom instructions 1

Multicycle custom instructions > 1

Branch (correctly predicted taken) 2

Branch (correctly predicted not taken) 1

Branch (mispredicted) 4 Pipeline flush

trap, break, eret, bret, 
flushp, wrctl, unimplemented 4 Pipeline flush

jmp, jmpi, ret, call, callr 4 Pipeline flush

rdctl 1

load, store > 1

flushi, initi 4

Multiply (1)

Divide (1)

Shift/rotate (with hardware multiply using embedded 
multipliers) 3

Shift/rotate (with hardware multiply using LE-based multipliers) 4

Shift/rotate (without hardware multiply present) 1 to 32

All other instructions 1

Note to Table 5–16:

(1) Depends on the hardware multiply or divide option. Refer to Table 5–13 on page 5–16 for details.
February 2014 Altera Corporation Nios II Processor Reference Handbook



5–20 Chapter 5: Nios II Core Implementation Details
Nios II/e Core
Exception Handling
The Nios II/s core supports the following exception types:

■ Internal hardware interrupt

■ Software trap

■ Illegal instruction

■ Unimplemented instruction

JTAG Debug Module
The Nios II/s core supports the JTAG debug module to provide a JTAG interface to 
software debugging tools. The Nios II/s core supports an optional enhanced interface 
that allows real-time trace data to be routed out of the processor and stored in an 
external debug probe.

Nios II/e Core
The Nios II/e economy core is designed to achieve the smallest possible core size. 
Altera designed the Nios II/e core with a singular design goal: reduce resource 
utilization any way possible, while still maintaining compatibility with the Nios II 
instruction set architecture. Hardware resources are conserved at the expense of 
execution performance. The Nios II/e core is roughly half the size of the Nios II/s 
core, but the execution performance is substantially lower.

The resulting core is optimal for cost-sensitive applications as well as applications that 
require simple control logic. 

Overview
The Nios II/e core:

■ Executes at most one instruction per six clock cycles

■ Can access up to 2 GB of external address space

■ Supports the addition of custom instructions

■ Supports the JTAG debug module

■ Does not provide hardware support for potential unimplemented instructions 

■ Has no instruction cache or data cache

■ Does not perform branch prediction

The following sections discuss the noteworthy details of the Nios II/e core 
implementation. This document does not discuss low-level design issues, or 
implementation details that do not affect Nios II hardware or software designers.

Arithmetic Logic Unit
The Nios II/e core does not provide hardware support for any of the potential 
unimplemented instructions. All unimplemented instructions are emulated in 
software.
Nios II Processor Reference Handbook February 2014 Altera Corporation



Chapter 5: Nios II Core Implementation Details 5–21
Nios II/e Core
The Nios II/e core employs dedicated shift circuitry to perform shift and rotate 
operations. The dedicated shift circuitry achieves one-bit-per-cycle shift and rotate 
operations.

Memory Access
The Nios II/e core does not provide instruction cache or data cache. All memory and 
peripheral accesses generate an Avalon-MM transfer. The Nios II/e core can address 
up to 2 GB of external memory. The Nios II architecture reserves the most-significant 
bit of data addresses for the bit-31 cache bypass method. In the Nios II/e core, bit 31 is 
always zero.

f For information regarding data cache bypass methods, refer to the Processor 
Architecture chapter of the Nios II Processor Reference Handbook.

Instruction Execution Stages
This section provides an overview of the pipeline behavior as a means of estimating 
assembly execution time. Most application programmers never need to analyze the 
performance of individual instructions. 

Instruction Performance
The Nios II/e core dispatches a single instruction at a time, and the processor waits 
for an instruction to complete before fetching and dispatching the next instruction. 
Because each instruction completes before the next instruction is dispatched, branch 
prediction is not necessary. This greatly simplifies the consideration of processor 
stalls. Maximum performance is one instruction per six clock cycles. To achieve six 
cycles, the Avalon-MM instruction master port must fetch an instruction in one clock 
cycle. A stall on the Avalon-MM instruction master port directly extends the execution 
time of the instruction.

Table 5–17. Instruction Execution Performance for Nios II/e Core

Instruction Cycles

Normal ALU instructions (e.g., add, cmplt) 6

All branch, jmp, jmpi, ret, call, callr 6

trap, break, eret, bret,
flushp, wrctl, rdctl,
unimplemented

6

All load word 6 + Duration of Avalon-MM read transfer

All load halfword 9 + Duration of Avalon-MM read transfer

All load byte 10 + Duration of Avalon-MM read transfer

All store 6 + Duration of Avalon-MM write transfer

All shift, all rotate 7 to 38

All other instructions 6

Combinatorial custom instructions 6

Multicycle custom instructions 6
February 2014 Altera Corporation Nios II Processor Reference Handbook

http://www.altera.com/literature/hb/nios2/n2cpu_nii51002.pdf
http://www.altera.com/literature/hb/nios2/n2cpu_nii51002.pdf


5–22 Chapter 5: Nios II Core Implementation Details
Document Revision History
Exception Handling
The Nios II/e core supports the following exception types:

■ Internal hardware interrupt

■ Software trap

■ Illegal instruction

■ Unimplemented instruction

JTAG Debug Module
The Nios II/e core supports the JTAG debug module to provide a JTAG interface to 
software debugging tools. The JTAG debug module on the Nios II/e core does not 
support hardware breakpoints or trace. 

Document Revision History
Table 5–18 lists the revision history for this document.

Table 5–18. Document Revision History (Part 1 of 2)

Date Version Changes

February 2014 13.1.0

■ Added information on ECC support

■ Removed HardCopy support information

■ Removed references to SOPC Builder

May 2011 11.0.0 Maintenance release. 

December 2010 10.1.0 Maintenance release.

July 2010 10.0.0
■ Updated device support nomenclature

■ Corrected HardCopy support information 

November 2009 9.1.0
■ Added external interrupt controller interface information.

■ Added shadow register set information.

March 2009 9.0.0 Maintenance release. 

November 2008 8.1.0 Maintenance release. 

May 2008 8.0.0 Added text for MMU and MPU.

October 2007 7.2.0 Added jmpi instruction to tables.

May 2007 7.1.0
■ Added table of contents to Introduction section.

■ Added Referenced Documents section.

March 2007 7.0.0 Add preliminary Cyclone III device family support

November 2006 6.1.0 Add preliminary Stratix III device family support

May 2006 6.0.0 Performance for flushi and initi instructions changes from 1 to 4 cycles for Nios II/s 
and Nios II/f cores.

October 2005 5.1.0 Maintenance release. 

May 2005 5.0.0 Updates to Nios II/f and Nios II/s cores. Added tightly-coupled memory and new data cache 
options. Corrected cycle counts for shift/rotate operations.

December 2004 1.2 Updates to Multiply and Divide Performance section for Nios II/f and Nios II/s cores.
Nios II Processor Reference Handbook February 2014 Altera Corporation



Chapter 5: Nios II Core Implementation Details 5–23
Document Revision History
September 2004 1.1 Updates for Nios II 1.01 release.

May 2004 1.0 Initial release.

Table 5–18. Document Revision History (Part 2 of 2)

Date Version Changes
February 2014 Altera Corporation Nios II Processor Reference Handbook



5–24 Chapter 5: Nios II Core Implementation Details
Document Revision History
Nios II Processor Reference Handbook February 2014 Altera Corporation



Nios II Processor Reference Handbook
February 2014

NII51018-13.1.0

© 2014 Altera Corporation. All rights reserved. ALTERA, ARR
and/or trademarks of Altera Corporation in the U.S. and other
www.altera.com/common/legal.html. Altera warrants perform
reserves the right to make changes to any products and services
information, product, or service described herein except as exp
specifications before relying on any published information and

February 2014
NII51018-13.1.0
6. Nios II Processor Revision History
Each release of the Nios® II Embedded Design Suite (EDS) introduces improvements 
to the Nios II processor, the software development tools, or both. This chapter 
catalogs the history of revisions to the Nios II processor; it does not track revisions to 
development tools, such as the Nios II Software Build Tools (SBT).

Improvements to the Nios II processor might affect:

■ Features of the Nios II architecture—An example of an architecture revision is 
adding instructions to support floating-point arithmetic.

■ Implementation of a specific Nios II core—An example of a core revision is 
increasing the maximum possible size of the data cache memory for the Nios II/f 
core.

■ Features of the JTAG debug module—An example of a JTAG debug module 
revision is adding an additional trigger input to the JTAG debug module, allowing 
it to halt processor execution on a new type of trigger event.

Altera implements Nios II revisions such that code written for an existing Nios II core 
also works on future revisions of the same core. 

Nios II Versions
The number for any version of the Nios II processor is determined by the version of 
the Nios II EDS. For example, in the Nios II EDS version 8.0, all Nios II cores are also 
version 8.0. 

Table 6–1. Nios II Processor Revision History (Part 1 of 2)

Version Release Date Notes

13.1 November 2013
■ Added ECC support for internal RAM blocks (instruction cache, MMU TLB, 

and register file)

■ Added support for enhanced floating-point custom instructions

11.0 May 2011 No changes.

10.1 December 2010 No changes.

10.0 July 2010 No changes.

9.1 November 2009
■ Added optional external interrupt controller interface.

■ Added optional shadow register sets.

9.0 March 2009 No changes.

8.1 November 2008 No changes.

8.0 May 2008

■ Added an optional memory management unit (MMU).

■ Added an optional memory protection unit (MPU).

■ Added advanced exception checking.

■ Added the initda instruction.
Subscribe

IA, CYCLONE, HARDCOPY, MAX, MEGACORE, NIOS, QUARTUS and STRATIX are Reg. U.S. Pat. & Tm. Off. 
 countries. All other trademarks and service marks are the property of their respective holders as described at 

ance of its semiconductor products to current specifications in accordance with Altera’s standard warranty, but 
 at any time without notice. Altera assumes no responsibility or liability arising out of the application or use of any 
ressly agreed to in writing by Altera. Altera customers are advised to obtain the latest version of device 
 before placing orders for products or services.

http://www.altera.com/common/legal.html
https://www.altera.com/servlets/subscriptions/alert?id=NII51018


6–2 Chapter 6: Nios II Processor Revision History
Architecture Revisions
Architecture Revisions
Architecture revisions augment the fundamental capabilities of the Nios II 
architecture, and affect all Nios II cores. A change in the architecture mandates a 
revision to all Nios II cores to accommodate the new architectural enhancement. For 
example, when Altera adds a new instruction to the instruction set, Altera 
consequently must update all Nios II cores to recognize the new instruction.

7.2 October 2007 Added the jmpi instruction.

7.1 May 2007 No changes.

7.0 March 2007 No changes.

6.1 November 2006 No changes.

6.0 May 2006 The name Nios II Development Kit describing the software development tools 
changed to Nios II Embedded Design Suite.

5.1 SP1 January 2006 Bug fix for Nios II/f core.

5.1 October 2005 No changes.

5.0 May 2005

■ Changed version nomenclature. Altera now aligns the Nios II processor 
version with Altera's Quartus® II software version.

■ Memory structure enhancements: 

(1) Added tightly-coupled memory.

(2) Made data cache line size configurable.

(3) Made cache optional in Nios II/f and Nios II/s cores.

■ Support for HardCopy® devices.

1.1 December 2004

■ Minor enhancements to the architecture: Added cpuid control register, 
and updated the break instruction. 

■ Increased user control of multiply and shift hardware in the arithmetic 
logic unit (ALU) for Nios II/s and Nios II/f cores.

■ Minor bug fixes.

1.01 September 2004 ■ Minor bug fixes.

1.0 May2004 Initial release of the Nios II processor.

Table 6–1. Nios II Processor Revision History (Part 2 of 2)

Version Release Date Notes

Table 6–2. Nios II Architecture Revisions (Part 1 of 2)

Version Release Date Notes

13.1 November 2013
■ Added ECC support for internal RAM blocks (instruction cache, MMU TLB, and 

register file)

■ Added support for enhanced floating-point custom instructions

11.0 May 2011 No changes.

10.1 December 2010 No changes.

10.0 July 2010 No changes.

9.1 November 2009
■ Added optional external interrupt controller interface.

■ Added optional shadow register sets.

9.0 March 2009 No changes.
Nios II Processor Reference Handbook February 2014 Altera Corporation



Chapter 6: Nios II Processor Revision History 6–3
Core Revisions
Core Revisions
Core revisions introduce changes to an existing Nios II core. Core revisions most 
commonly fix identified bugs, or add support for an architecture revision. Not every 
Nios II core is revised with every release of the Nios II architecture. 

Nios II/f Core

8.1 November 2008 No changes.

8.0 May 2008

■ Added an optional MMU.

■ Added an optional MPU.

■ Added advanced exception checking to detect division errors, illegal 
instructions, misaligned memory accesses, and provide extra exception 
information.

■ Added the initda instruction.

7.2 October 2007 Added the jmpi instruction.

7.1 May 2007 No changes.

7.0 March 2007 No changes.

6.1 November 2006 No changes.

6.0 May 2006 Added optional cpu_resetrequest and cpu_resettaken signals to all 
processor cores.

5.1 October 2005 No changes.

5.0 May 2005 Added the flushda instruction.

1.1 December 2004
■ Added cpuid control register.

■ Updated break instruction specification to accept an immediate argument for 
use by debugging tools.

1.01 September 2004 No changes.

1.0 May 2004 Initial release of the Nios II processor architecture.

Table 6–2. Nios II Architecture Revisions (Part 2 of 2)

Version Release Date Notes

Table 6–3. Nios II/f Core Revisions (Part 1 of 3)

Version Release Date Notes

13.1 November 2013
■ Added ECC support for internal RAM blocks (instruction cache, MMU TLB, and 

register file)

■ Added support for enhanced floating-point custom instructions

11.0 May 2011 No changes.

10.1 December 2010 No changes.

10.0 July 2010 No changes.

9.1 November 2009
■ Added optional external interrupt controller interface.

■ Added optional shadow register sets.

9.0 March 2009 No changes.

8.1 November 2008 No changes.
February 2014 Altera Corporation Nios II Processor Reference Handbook



6–4 Chapter 6: Nios II Processor Revision History
Core Revisions
8.0 May 2008

■ Implemented the optional MMU.

■ Implemented the optional MPU.

■ Implemented advanced exception checking.

■ Implemented the initda instruction.

7.2 October 2007 Implemented the jmpi instruction.

7.1 May 2007 No changes.

7.0 March 2007 No changes.

6.1 November 2006 No changes.

6.0 May 2006 Cycle count for flushi and initi instructions changes from 1 to 4 cycles.

5.1 SP1 January 2006

Bug Fix:

Back-to-back store instructions can cause memory corruption to the stored data. 
If the first store is not to the last word of a cache line and the second store is to the 
last word of the line, memory corruption occurs.

5.1 October 2005 No changes.

5.0 May 2005

■ Added optional tightly-coupled memory ports. Designers can add zero to four 
tightly-coupled instruction master ports, and zero to four tightly-coupled data 
master ports.

■ Made the data cache line size configurable. Designers can configure the data 
cache with the following line sizes: 4, 16, or 32 bytes. Previously, the data 
cache line size was fixed at 4 bytes. 

■ Made instruction and data caches optional (previously, cache memories were 
always present). If the instruction cache is not present, the Nios II core does 
not have an instruction master port, and must use a tightly-coupled instruction 
memory.

■ Support for HardCopy devices (previous versions required a workaround to 
support HardCopy devices).

1.1 December 2004

■ Added user-configurable options affecting multiply and shift operations. Now 
designers can choose one of three options:

(1) Use embedded multiplier resources available in the target device family 
(previously available).

(2) Use logic elements to implement multiply and shift hardware (new option). 

(3) Omit multiply hardware. Shift operations take one cycle per bit shifted; 
multiply operations are emulated in software (new option).

■ Added cpuid control register.

■ Bug Fix:

Interrupts that were disabled by wrctl ienable remained enabled for one 
clock cycle following the wrctl instruction. Now the instruction following such 
a wrctl cannot be interrupted.

Table 6–3. Nios II/f Core Revisions (Part 2 of 3)

Version Release Date Notes
Nios II Processor Reference Handbook February 2014 Altera Corporation



Chapter 6: Nios II Processor Revision History 6–5
Core Revisions
Nios II/s Core

1.01 September 2004

■ Bug Fixes:

(1) When a store to memory is followed immediately in the pipeline by a load 
from the same memory location, and the memory location is held in the data 
cache, the load may return invalid data. This situation can occur in C code 
compiled with optimization off (-O0).

(2) The SOPC Builder top-level system module included an extra, unnecessary 
output port for systems with very small address spaces.

1.0 May 2004 Initial release of the Nios II/f core.

Table 6–4. Nios II/s Core Revisions (Part 1 of 2)

Version Release Date Notes

13.1 November 2013 ■ Added support for enhanced floating-point custom instructions

11.0 May 2011 No changes.

10.1 December 2010 No changes.

10.0 July 2010 No changes.

9.1 November 2009 No changes.

9.0 March 2009 No changes.

8.1 November 2008 No changes.

8.0 May 2008 Implemented the illegal instruction exception.

7.2 October 2007 Implemented the jmpi instruction.

7.1 May 2007 No changes.

7.0 March 2007 No changes.

6.1 November 2006 No changes.

6.0 May 2006 Cycle count for flushi and initi instructions changes from 1 to 4 cycles.

5.1 October 2005 No changes.

5.0 May 2005

■ Added optional tightly-coupled memory ports. Designers can add zero to four 
tightly-coupled instruction master ports.

■ Made instruction cache optional (previously instruction cache was always 
present). If the instruction cache is not present, the Nios II core does not have an 
instruction master port, and must use a tightly-coupled instruction memory.

■ Support for HardCopy devices (previous versions required a workaround to 
support HardCopy devices).

Table 6–3. Nios II/f Core Revisions (Part 3 of 3)

Version Release Date Notes
February 2014 Altera Corporation Nios II Processor Reference Handbook



6–6 Chapter 6: Nios II Processor Revision History
Core Revisions
Nios II/e Core

1.1 December 2004

■ Added user-configurable options affecting multiply and shift operations. Now 
designers can choose one of three options:

(1) Use embedded multiplier resources available in the target device family 
(previously available).

(2) Use logic elements to implement multiply and shift hardware (new option). 

(3) Omit multiply hardware. Shift operations take one cycle per bit shifted; 
multiply operations are emulated in software (new option).

■ Added user-configurable option to include divide hardware in the ALU. Previously 
this option was available for only the Nios II/f core.

■ Added cpuid control register.

1.01 September 2004
Bug fix:

The SOPC Builder top-level system module included an extra, unnecessary output 
port for systems with very small address spaces.

1.0 May 2004 Initial release of the Nios II/s core.

Table 6–5. Nios II/e Core Revisions

Version Release Date Notes

13.1 November 2013 ■ Added support for enhanced floating-point custom instructions

11.0 May 2011 No changes.

10.1 December 2010 No changes.

10.0 July 2010 No changes.

9.1 November 2009 No changes.

9.0 March 2009 No changes.

8.1 November 2008 No changes.

8.0 May 2008 Implemented the illegal instruction exception.

7.2 October 2007 Implemented the jmpi instruction.

7.1 May 2007 No changes.

7.0 March 2007 No changes.

6.1 November 2006 No changes.

6.0 May 2006 No changes.

5.1 October 2005 No changes.

5.0 May 2005 Support for HardCopy devices (previous versions required a workaround to support 
HardCopy devices).

1.1 December 2004 Added cpuid control register. 

1.01 September 2004
Bug fix:

The SOPC Builder top-level system module included an extra, unnecessary output 
port for systems with very small address spaces.

1.0 May 2004 Initial release of the Nios II/e core.

Table 6–4. Nios II/s Core Revisions (Part 2 of 2)

Version Release Date Notes
Nios II Processor Reference Handbook February 2014 Altera Corporation



Chapter 6: Nios II Processor Revision History 6–7
JTAG Debug Module Revisions
JTAG Debug Module Revisions
JTAG debug module revisions augment the debug capabilities of the Nios II 
processor, or fix bugs isolated within the JTAG debug module logic. 

Table 6–6. JTAG Debug Module Revisions

Version Release Date Notes

11.0 May 2011 No changes.

10.1 December 2010 No changes.

10.0 July 2010 No changes.

9.1 November 2009 No changes.

9.0 March 2009 No changes.

8.1 November 2008 No changes.

8.0 May 2008 No changes.

7.2 October 2007 No changes.

7.1 May 2007 No changes.

7.0 March 2007 No changes.

6.1 November 2006 No changes.

6.0 May 2006 No changes.

5.1 October 2005 No changes.

5.0 May 2005 Support for HardCopy devices (previous versions of the JTAG debug module did not 
support HardCopy devices).

1.1 December 2004

Bug fix:

When using the Nios II/s and Nios II/f cores, hardware breakpoints may have falsely 
triggered when placed on the instruction sequentially following a jmp, trap, or any 
branch instruction.

1.01 September 2004

■ Feature enhancements: 

(1) Added the ability to trigger based on the instruction address. Uses include 
triggering trace control (trace on/off), sequential triggers, and trigger in/out 
signal generation.

(2) Enhanced trace collection such that collection can be stopped when the trace 
buffer is full without halting the Nios II processor.

(3) Armed triggers – Enhanced trigger logic to support two levels of triggers, or 
"armed triggers"; enabling the use of "Event A then event B" trigger definitions.

■ Bug fixes:

(1) On the Nios II/s core, trace data sometimes recorded incorrect addresses 
during interrupt processing.

(2) Under certain circumstances, captured trace data appeared to start earlier or 
later than the desired trigger location.

(3) During debugging, the processor would hang if a hardware breakpoint and an 
interrupt occurred simultaneously.

1.0 May 2004 Initial release of the JTAG debug module.
February 2014 Altera Corporation Nios II Processor Reference Handbook



6–8 Chapter 6: Nios II Processor Revision History
Document Revision History
Document Revision History
Table 6–7. Document Revision History

Date Version Changes

February 2014 13.1.0

■ Added information on ECC support.

■ Removed HardCopy information.

■ Removed references to SOPC Builder.

May 2011 11.0.0 Maintenance release. 

December 2010 10.1.0 Maintenance release.

July 2010 10.0.0 Maintenance release. 

November 2009 9.1.0
■ Added external interrupt controller interface information.

■ Added shadow register set information.

March 2009 9.0.0 Maintenance release. 

November 2008 8.1.0 Maintenance release. 

May 2008 8.0.0

■ Added MMU information.

■ Added MPU information.

■ Added advanced exception checking information.

■ Added initda instruction information.

October 2007 7.2.0
■ Added jmpi instruction information.

■ Added exception handling information.

May 2007 7.1.0

■ Updated tables to reflect no changes to cores. 

■ Added table of contents to Introduction section.

■ Added Referenced Documents section.

March 2007 7.0.0 Updated tables to reflect no changes to cores. 

November 2006 6.1.0 Updated tables to reflect no changes to cores. 

May 2006 6.0.0 Updates for Nios II cores version 6.0.

October 2005 5.1.0 Updates for Nios II cores version 5.1.

May 2005 5.0.0 Updates for Nios II cores version 5.0.

September 2004 1.1 Updates for Nios II cores version 1.1. 

May 2004 1.0 Initial release.
Nios II Processor Reference Handbook February 2014 Altera Corporation



Nios II Processor Reference Handbook
February 2014

NII51016-13.1.0

© 2014 Altera Corporation. All rights reserved. ALTERA, ARR
and/or trademarks of Altera Corporation in the U.S. and other
www.altera.com/common/legal.html. Altera warrants perform
reserves the right to make changes to any products and services
information, product, or service described herein except as exp
specifications before relying on any published information and

February 2014
NII51016-13.1.0
7. Application Binary Interface
This chapter describes the Application Binary Interface (ABI) for the Nios® II 
processor. The ABI describes:

■ How data is arranged in memory

■ Behavior and structure of the stack

■ Function calling conventions

Data Types

Memory Alignment
Contents in memory are aligned as follows:

■ A function must be aligned to a minimum of 32-bit boundary. 

■ The minimum alignment of a data element is its natural size. A data element larger 
than 32 bits need only be aligned to a 32-bit boundary. 

■ Structures, unions, and strings must be aligned to a minimum of 32 bits. 

■ Bit fields inside structures are always 32-bit aligned. 

Table 7–1. Representation of Data C/C++ Types

Type Size (Bytes) Representation

char, signed char 1 two’s complement (ASCII)

unsigned char 1 binary (ASCII)

short, signed short 2 two’s complement

unsigned short 2 binary

int, signed int 4 two’s complement

unsigned int 4 binary

long, signed long 4 two’s complement

unsigned long 4 binary

float 4 IEEE

double 8 IEEE

pointer 4 binary

long long 8 two’s complement

unsigned long long 8 binary
Subscribe

IA, CYCLONE, HARDCOPY, MAX, MEGACORE, NIOS, QUARTUS and STRATIX are Reg. U.S. Pat. & Tm. Off. 
 countries. All other trademarks and service marks are the property of their respective holders as described at 

ance of its semiconductor products to current specifications in accordance with Altera’s standard warranty, but 
 at any time without notice. Altera assumes no responsibility or liability arising out of the application or use of any 
ressly agreed to in writing by Altera. Altera customers are advised to obtain the latest version of device 
 before placing orders for products or services.

http://www.altera.com/common/legal.html
https://www.altera.com/servlets/subscriptions/alert?id=NII51016


7–2 Chapter 7: Application Binary Interface
Register Usage
Register Usage
The ABI adds additional usage conventions to the Nios II register file defined in the 
Programming Model chapter of the Nios II Processor Reference Handbook.

Table 7–2. Nios II ABI Register Usage (Part 1 of 2)

Register Name Used by 
Compiler

Callee 
Saved (1) Normal Usage

r0 zero v 0x00000000

r1 at Assembler temporary

r2 v Return value (least-significant 32 bits)

r3 v Return value (most-significant 32 bits)

r4 v Register arguments (first 32 bits)

r5 v Register arguments (second 32 bits)

r6 v Register arguments (third 32 bits)

r7 v Register arguments (fourth 32 bits)

r8 v

Caller-saved general-purpose registers

r9 v
r10 v
r11 v
r12 v
r13 v
r14 v
r15 v
r16 v v

Callee-saved general-purpose registers

r17 v v
r18 v v
r19 v v
r20 v v
r21 v v
r22 v (2)

r23 v (3)

r24 et Exception temporary

r25 bt Break temporary

r26 gp v Global pointer

r27 sp v Stack pointer

r28 fp v (4) Frame pointer 

r29 ea Exception return address

r30 ba
■ Normal register set: Break return address

■ Shadow register sets: SSTATUS register
Nios II Processor Reference Handbook February 2014 Altera Corporation

http://www.altera.com/literature/hb/nios2/n2cpu_nii51003.pdf


Chapter 7: Application Binary Interface 7–3
Stacks
The endianness of values greater than 8 bits is little endian. The upper 8 bits of a value 
are stored at the higher byte address. 

Stacks
The stack grows downward (i.e. towards lower addresses). The stack pointer points to 
the last used slot. The frame pointer points to the saved frame pointer near the top of 
the stack frame.

Figure 7–1 shows an example of the structure of a current frame. In this case, function 
a() calls function b(), and the stack is shown before the call and after the prologue in 
the called function has completed.

Each section of the current frame is aligned to a 32-bit boundary. The ABI requires the 
stack pointer be 32-bit aligned at all times. 

r31 ra v Return address

Notes to Table 7–2:

(1) A function can use one of these registers if it saves it first. The function must restore the register’s original value 
before exiting. 

(2) In the GNU Linux operating system, r22 points to the global offset table (GOT). Otherwise, it is available as a 
callee-saved general-purpose register.

(3) In the GNU Linux operating system, r23 is used as the thread pointer. Otherwise, it is available as a callee-saved 
general-purpose register.

(4) If the frame pointer is not used, the register is available as a callee-saved temporary register. Refer to “Frame 
Pointer Elimination” on page 7–4. 

Table 7–2. Nios II ABI Register Usage (Part 2 of 2)

Register Name Used by 
Compiler

Callee 
Saved (1) Normal Usage

Figure 7–1. Stack Pointer, Frame Pointer and the Current Frame

In function a()
Just prior to calling b()

In function b()
Just after executing prologue

Incoming
stack

arguments

Other saved
registers

Space for
outgoing

stack
arguments

Allocated and freed by a()
(i.e. the calling function)

Allocated and freed by b()
(i.e. the current function)

Stack pointer

Outgoing
stack

arguments

Higher addresses

Stack pointer

Lower addresses

Space for 
stack

temporaries

Return address

Saved frame
pointerFrame pointer
February 2014 Altera Corporation Nios II Processor Reference Handbook



7–4 Chapter 7: Application Binary Interface
Stacks
Frame Pointer Elimination
The frame pointer is provided for debugger support. If you are not using a debugger, 
you can optimize your code by eliminating the frame pointer, using the 
-fomit-frame-pointer compiler option. When the frame pointer is eliminated, 
register fp is available as a temporary register.

Call Saved Registers
The compiler is responsible for saving registers that need to be saved in a function. If 
there are any such registers, they are saved on the stack, from high to low addresses, 
in the following order: ra, fp, r2, r3, r4, r5, r6, r7, r8, r9, r10, r11, r12, r13, r14, r15, 
r16, r17, r18, r19, r20, r21, r22, r23, r24, r25, gp, and sp. Stack space is not allocated 
for registers that are not saved.

Further Examples of Stacks
There are a number of special cases for stack layout, which are described in this 
section.

Stack Frame for a Function With alloca()
The Nios II stack frame implementation provides support for the alloca() function, 
defined in the Berkeley Software Distribution (BSD) extension to C, and implemented 
by the gcc compiler. The space allocated by alloca() replaces the outgoing arguments 
and the outgoing arguments get new space allocated at the bottom of the frame. 

1 The Nios II C/C++ compiler maintains a frame pointer for any function that calls 
alloca(), even if -fomit-frame-pointer is spec if ed

Stack Frame for a Function with Variable Arguments
Functions that take variable arguments (varargs) still have their first 16 bytes of 
arguments arriving in registers r4 through r7, just like other functions.

Figure 7–2. Stack Frame after Calling alloca()

higher addresses

lower addresses

space for
outgoing 

stack
 arguments

sp

sp

space for
outgoing 

stack
 arguments

memory
allocated

by
alloca()

Before After calling alloca()
Nios II Processor Reference Handbook February 2014 Altera Corporation



Chapter 7: Application Binary Interface 7–5
Stacks
In order for varargs to work, functions that take variable arguments allocate 16 extra 
bytes of storage on the stack. They copy to the stack the first 16 bytes of their 
arguments from registers r4 through r7 as shown in Figure 7–3. 

Stack Frame for a Function with Structures Passed By Value
Functions that take struct value arguments still have their first 16 bytes of arguments 
arriving in registers r4 through r7, just like other functions.

If part of a structure is passed using registers, the function might need to copy the 
register contents back to the stack. This operation is similar to that required in the 
variable arguments case as shown in Figure 7–3. 

Function Prologues
The Nios II C/C++ compiler generates function prologues that allocate the stack 
frame of a function for storage of stack temporaries and outgoing arguments. In 
addition, each prologue is responsible for saving the state of the calling function. This 
entails saving certain registers on the stack. These registers, the callee-saved registers, 
are listed in Table 7–2 on page 7–2. A function prologue is required to save a 
callee-saved register only if the function uses the register.

Given the function prologue algorithm, when doing a back trace, a debugger can 
disassemble instructions and reconstruct the processor state of the calling function. 

Figure 7–3. Stack Frame Using Variable Arguments

In function a()
Just prior to calling b()

In function b()
Just after executing prologue

Incoming
stack

arguments

Other saved
registers

Space for
outgoing

stack
arguments

Allocated and freed by a()
(i.e. the calling function)

Allocated and freed by b()
(i.e. the current function)

Outgoing
stack

arguments

Higher addresses

Lower addresses

Stack pointer

Copy of r7
Copy of r6
Copy of r5
Copy of r4

Space for
stack

temporaries

Stack pointer

Return address

Saved frame
pointerFrame pointer
February 2014 Altera Corporation Nios II Processor Reference Handbook



7–6 Chapter 7: Application Binary Interface
Arguments and Return Values
1 An even better way to find out what the prologue has done is to use information 
stored in the DWARF-2 debugging fields of the executable and linkable format (.elf) 
file.

The instructions found in a Nios II function prologue perform the following tasks:

■ Adjust the stack pointer (to allocate the frame)

■ Store registers to the frame

■ Set the frame pointer to the location of the saved frame pointer

Prologue Variations
The following variations can occur in a prologue:

■ If the function’s frame size is greater than 32,767 bytes, extra temporary registers 
are used in the calculation of the new stack pointer as well as for the offsets of 
where to store callee-saved registers. The extra registers are needed because of the 
maximum size of immediate values allowed by the Nios II processor.

■ If the frame pointer is not in use, the final instruction, recalculating the frame 
pointer, is not generated.

■ If variable arguments are used, extra instructions store the argument registers on 
the stack.

■ If the compiler designates the function as a leaf function, the return address is not 
saved.

■ If optimizations are on, especially instruction scheduling, the order of the 
instructions might change and become interlaced with instructions located after 
the prologue.

Arguments and Return Values
This section discusses the details of passing arguments to functions and returning 
values from functions.

Example 7–1. A function prologue

/* Adjust the stack pointer */
addi sp, sp, -16 /* make a 16-byte frame */

/* Store registers to the frame */
stw ra, 12(sp) /* store the return address */
stw fp, 8(sp) /* store the frame pointer*/
stw r16, 4(sp) /* store callee-saved register */
stw r17, 0(sp) /* store callee-saved register */

/* Set the new frame pointer */
addi fp, sp, 8
Nios II Processor Reference Handbook February 2014 Altera Corporation



Chapter 7: Application Binary Interface 7–7
Arguments and Return Values
Arguments
The first 16 bytes to a function are passed in registers r4 through r7. The arguments 
are passed as if a structure containing the types of the arguments were constructed, 
and the first 16 bytes of the structure are located in r4 through r7. 

A simple example: 

int function (int a, int b);

The equivalent structure representing the arguments is:

struct { int a; int b; };

The first 16 bytes of the struct are assigned to r4 through r7. Therefore r4 is assigned 
the value of a and r5 the value of b.

The first 16 bytes to a function taking variable arguments are passed the same way as 
a function not taking variable arguments. The called function must clean up the stack 
as necessary to support the variable arguments. Refer to “Stack Frame for a Function 
with Variable Arguments” on page 7–4.

Return Values
Return values of types up to 8 bytes are returned in r2 and r3. For return values 
greater than 8 bytes, the caller must allocate memory for the result and must pass the 
address of the result memory as a hidden zero argument. 

The hidden zero argument is best explained through an example.

In Example 7–2, if the result type is no larger than 8 bytes, b() returns its result in r2 
and r3. 

Example 7–2. Returned struct

/* b() computes a structure-type result and returns it */
STRUCT b(int i, int j)
{

...
return result;

}

void a(...)
{

...
value = b(i, j);

}

February 2014 Altera Corporation Nios II Processor Reference Handbook



7–8 Chapter 7: Application Binary Interface
DWARF-2 Definition
If the return type is larger than 8 bytes, the Nios II C/C++ compiler treats this 
program as if a() had passed a pointer to b(). Example 7–3 shows how the Nios II 
C/C++ compiler sees the code in Example 7–2.

DWARF-2 Definition
Registers r0 through r31 are assigned numbers 0 through 31 in all DWARF-2 
debugging sections.

Object Files

Relocation
In a Nios II object file, each relocatable address reference possesses a relocation type. 
The relocation type specifies how to calculate the relocated address. The bit mask 
specifies where the address is found in the instruction.

Example 7–3. Returned struct is Larger than 8 Bytes

void b(STRUCT *p_result, int i, int j)
{

...
*p_result = result;

}

void a(...)
{

STRUCT value;
...
b(*value, i, j);

}

Table 7–3. Nios II-Specific ELF Header Values

Member Value

e_ident[EI_CLASS] ELFCLASS32

e_ident[EI_DATA] ELFDATA2LSB

e_machine EM_ALTERA_NIOS2 == 113

Table 7–4. Nios II Relocation Calculation (Part 1 of 3)

Name Value Overflow
check (1)

Relocated Address
R (2)

Bit Mask
M

Bit Shift
B

R_NIOS2_NONE 0 n/a None n/a n/a

R_NIOS2_S16 1 Yes S + A 0x003FFFC0 6

R_NIOS2_U16 2 Yes S + A 0x003FFFC0 6

R_NIOS2_PCREL16 3 Yes ((S + A) – 4) – PC 0x003FFFC0 6

R_NIOS2_CALL26 4 No (S + A) >> 2 0xFFFFFFC0 6

R_NIOS2_IMM5 5 Yes (S + A) & 0x1F 0x000007C0 6

R_NIOS2_CACHE_OPX 6 Yes (S + A) & 0x1F 0x07C00000 22
Nios II Processor Reference Handbook February 2014 Altera Corporation



Chapter 7: Application Binary Interface 7–9
Relocation
R_NIOS2_IMM6 7 Yes (S + A) & 0x3F 0x00000FC0 6

R_NIOS2_IMM8 8 Yes (S + A) & 0xFF 0x00003FC0 6

R_NIOS2_HI16 9 No ((S + A) >> 16) & 0xFFFF 0x003FFFC0 6

R_NIOS2_LO16 10 No (S + A) & 0xFFFF 0x003FFFC0 6

R_NIOS2_HIADJ16 11 No Adj(S+A) 0x003FFFC0 6

R_NIOS2_BFD_RELOC_32 12 No S + A 0xFFFFFFFF 0

R_NIOS2_BFD_RELOC_16 13 Yes (S + A) & 0xFFFF 0x0000FFFF 0

R_NIOS2_BFD_RELOC_8 14 Yes (S + A) & 0xFF 0x000000FF 0

R_NIOS2_GPREL 15 No (S + A – GP) & 0xFFFF 0x003FFFC0 6

R_NIOS2_GNU_VTINHERIT 16 n/a None n/a n/a

R_NIOS2_GNU_VTENTRY 17 n/a None n/a n/a

R_NIOS2_UJMP 18 No
((S + A) >> 16) & 0xFFFF,

(S + A + 4) & 0xFFFF
0x003FFFC0 6

R_NIOS2_CJMP 19 No
((S + A) >> 16) & 0xFFFF,

(S + A + 4) & 0xFFFF
0x003FFFC0 6

R_NIOS2_CALLR 20 No
((S + A) >> 16) & 0xFFFF)

(S + A + 4) & 0xFFFF
0x003FFFC0 6

R_NIOS2_ALIGN 21 n/a None n/a n/a

R_NIOS2_GOT16 (3) 22 Yes G 0x003FFFC0 6

R_NIOS2_CALL16 (3) 23 Yes G 0x003FFFC0 6

R_NIOS2_GOTOFF_LO (3) 24 No (S + A – GOT) & 0xFFFF 0x003FFFC0 6

R_NIOS2_GOTOFF_HA (3) 25 No Adj (S + A – GOT) 0x003FFFC0 6

R_NIOS2_PCREL_LO (3) 26 No (S + A – PC) & 0xFFFF 0x003FFFC0 6

R_NIOS2_PCREL_HA (3) 27 No Adj (S + A – PC) 0x003FFFC0 6

R_NIOS2_TLS_GD16 (3) 28 Yes Refer to “Thread-Local Storage” on 
page 7–12 0x003FFFC0 6

R_NIOS2_TLS_LDM16 (3) 29 Yes Refer to “Thread-Local Storage” on 
page 7–12 0x003FFFC0 6

R_NIOS2_TLS_LDO16 (3) 30 Yes Refer to “Thread-Local Storage” on 
page 7–12 0x003FFFC0 6

R_NIOS2_TLS_IE16 (3) 31 Yes Refer to “Thread-Local Storage” on 
page 7–12 0x003FFFC0 6

R_NIOS2_TLS_LE16 (3) 32 Yes Refer to “Thread-Local Storage” on 
page 7–12 0x003FFFC0 6

R_NIOS2_TLS_DTPMOD (3) 33 No Refer to “Thread-Local Storage” on 
page 7–12 0xFFFFFFFF 0

R_NIOS2_TLS_DTPREL (3) 34 No Refer to “Thread-Local Storage” on 
page 7–12 0xFFFFFFFF 0

R_NIOS2_TLS_TPREL (3) 35 No Refer to “Thread-Local Storage” on 
page 7–12 0xFFFFFFFF 0

Table 7–4. Nios II Relocation Calculation (Part 2 of 3)

Name Value Overflow
check (1)

Relocated Address
R (2)

Bit Mask
M

Bit Shift
B

February 2014 Altera Corporation Nios II Processor Reference Handbook



7–10 Chapter 7: Application Binary Interface
ABI for Linux Systems
With the information in Table 7–4, any Nios II instruction can be relocated by 
manipulating it as an unsigned 32-bit integer, as follows:

Xr = (( R << B ) & M | ( X & ~M ));

where:

■ R is the relocated address, calculated as listed in Table 7–4

■ B is the bit shift listed in Table 7–4

■ M is the bit mask listed in Table 7–4

■ X is the original instruction

■ Xr is the relocated instruction

ABI for Linux Systems
This section describes details specific to Linux systems beyond the Linux-specific 
information in Table 7–2 on page 7–2 and Table 7–4 on page 7–8.

R_NIOS2_COPY (3) 36 No Refer to “Copy Relocation” on 
page 7–12 n/a n/a

R_NIOS2_GLOB_DAT (3) 37 No S 0xFFFFFFFF 0

R_NIOS2_JUMP_SLOT (3) 38 No Refer to “Jump Slot Relocation” on 
page 7–12 0xFFFFFFFF 0

R_NIOS2_RELATIVE (3) 39 No BA+A 0xFFFFFFFF 0

R_NIOS2_GOTOFF (3) 40 No S+A 0xFFFFFFFF 0

Notes to Table 7–4:

(1) For relocation types where no overflow check is performed, the relocated address is truncated to fit the instruction.
(2) Expressions in this column use the following conventions:

■ S: Symbol address

■ A: Addend

■ PC: Program counter

■ GP: Global pointer

■ Adj(X): (((X >> 16) & 0xFFFF) + ((X >> 15) & 0x1)) & 0xFFFF 

■ BA: The base address at which a shared library is loaded

■ GOT: The value of the Global Offset Table (GOT) pointer (Linux only)

■ G: The offset into the GOT for the GOT slot for symbol S (Linux only)

(3) Relocation support is provided for Linux systems.

Table 7–4. Nios II Relocation Calculation (Part 3 of 3)

Name Value Overflow
check (1)

Relocated Address
R (2)

Bit Mask
M

Bit Shift
B

Nios II Processor Reference Handbook February 2014 Altera Corporation



Chapter 7: Application Binary Interface 7–11
ABI for Linux Systems
Linux Toolchain Relocation Information
Dynamic relocations can appear in the runtime relocation sections of executables and 
shared objects, but never appear in object files (with the exception of 
R_NIOS2_TLS_DTPREL, which is used for debug information). No other relocations 
are dynamic.

A global offset table (GOT) entry referenced using R_NIOS2_GOT16 must be resolved 
at load time. A GOT entry referenced only using R_NIOS2_CALL16 can initially refer 
to a procedure linkage table (PLT) entry and then be resolved lazily.

Because the GOT-relative and TP-relative relocations are 16-bit relocations, no single 
object file can require more than 64 KB of GOT and no dynamic object using local 
dynamic or local executable thread-local storage (TLS) can have more than 64 KB of 
TLS data. New relocations might be added to support this in the future.

Several new assembler operators are defined to generate the Linux-specific 
relocations, as listed in Table 7–6.

Table 7–5. Dynamic Relocations

R_NIOS2_TLS_DTPMOD

R_NIOS2_TLS_DTPREL

R_NIOS2_TLS_TPREL

R_NIOS2_COPY

R_NIOS2_GLOB_DAT

R_NIOS2_JUMP_SLOT

R_NIOS2_RELATIVE

Table 7–6.

Relocation Operator

R_NIOS2_GOT16 %got

R_NIOS2_CALL16 %call

R_NIOS2_GOTOFF_LO %gotoff_hiadj

R_NIOS2_GOTOFF_HA %gotoff_lo

R_NIOS2_PCREL_LO %hiadj

R_NIOS2_PCREL_HA %lo

R_NIOS2_TLS_GD16 %tls_gd

R_NIOS2_TLS_LDM16 %tls_ldm

R_NIOS2_TLS_LDO16 %tls_ldo

R_NIOS2_TLS_IE16 %tls_ie

R_NIOS2_TLS_LE16 %tls_le

R_NIOS2_TLS_DTPREL %tls_ldo

R_NIOS2_GOTOFF %gotoff
February 2014 Altera Corporation Nios II Processor Reference Handbook



7–12 Chapter 7: Application Binary Interface
ABI for Linux Systems
The %hiadj and %lo operators generate PC-relative or non-PC-relative relocations, 
depending whether the expression being relocated is PC-relative. For 
instance, %hiadj(_gp_got - .) generates R_NIOS2_PCREL_HA. %tls_ldo 
generates R_NIOS2_TLS_LDO16 when used as an immediate operand, and 
R_NIOS2_TLS_DTPREL when used with the .word directive.

Copy Relocation
The R_NIOS2_COPY relocation is used to mark variables allocated in the executable 
that are defined in a shared library. The variable’s initial value is copied from the 
shared library to the relocated location.

Jump Slot Relocation
Jump slot relocations are used for the PLT. For information about the PLT, refer to 
“Procedure Linkage Table” on page 7–17.

Thread-Local Storage
The Nios II processor uses the Variant I model for thread-local storage. The end of the 
thread control block (TCB) is located 0x7000 bytes before the thread pointer. The TCB 
is eight bytes long. The first word is the dynamic thread pointer (DTV) pointer and 
the second word is reserved. Each module’s dynamic thread pointer is biased by 
0x8000 (when retrieved using __tls_get_addr). The thread library can store 
additional private information before the TCB.

In the GNU Linux toolchain, the GOT pointer (_gp_got) is always kept in r22, and the 
thread pointer is always kept in r23.

In the following examples, any registers can be used, except that the argument to 
__tls_get_addr is always passed in r4 and its return value is always returned in r2. 
Calls to __tls_get_addr must use the normal position-independent code (PIC) calling 
convention in PIC code; these sequences are for example only, and the compiler might 
generate different sequences. No linker relaxations are defined.

Example 7–4. General Dynamic Model

addi   r4, r22, %tls_gd(x)      # R_NIOS2_TLS_GD16 x
call   __tls_get_addr           # R_NIOS2_CALL26 __tls_get_addr
# Address of x in r2
Nios II Processor Reference Handbook February 2014 Altera Corporation



Chapter 7: Application Binary Interface 7–13
ABI for Linux Systems
In the general dynamic model, a two-word GOT slot is allocated for x, as shown in 
Example 7–5.

One 2-word GOT slot is allocated for all R_NIOS2_TLS_LDM16 operations in the 
linked object. Any thread-local symbol in this object can be used, as shown in 
Example 7–7.

A single GOT slot is allocated to hold the offset of x from the thread pointer, as shown 
in Example 7–9.

There is no GOT slot associated with the local exec model.

Debug information uses the GNU extension DW_OP_GNU_push_tls_address, as 
shown in Example 7–11.

Example 7–5. GOT Slot for General Dynamic Model

GOT[n]                            R_NIOS2_TLS_DTPMOD x
GOT[n+1]                          R_NIOS2_TLS_DTPREL x

Example 7–6. Local Dynamic Model

addi   r4, r22, %tls_ldm(x)     # R_NIOS2_TLS_LDM16 x
call   __tls_get_addr           # R_NIOS2_CALL26 __tls_get_addr
addi   r5, r2, %tls_ldo(x)      # R_NIOS2_TLS_LDO16 x
# Address of x in r5
ldw    r6, %tls_ldo(x2)(r2)     # R_NIOS2_TLS_LDO16 x2
# Value of x2 in r6

Example 7–7. GOT Slot with Thread-Local Storage

GOT[n]                            R_NIOS2_TLS_DTPMOD x
GOT[n+1]                          0

Example 7–8. Initial Exec Model

ldw    r4, %tls_ie(x)(r22)     # R_NIOS2_TLS_IE16 x
add    r4, r23, r4
# Address of x in r4

Example 7–9. GOT Slot for Initial Exec Model

GOT[n]                            R_NIOS2_TLS_TPREL x

Example 7–10. Local Exec Model

addi   r4, r23, %tls_le(x)      # R_NIOS2_TLS_LE16 x
# Address of x in r4

Example 7–11. Debug Information

.byte 0x03                      # DW_OP_addr

.word %tls_ldo(x)               # R_NIOS2_TLS_DTPREL x

.byte 0xe0                      # DW_OP_GNU_push_tls_address
February 2014 Altera Corporation Nios II Processor Reference Handbook



7–14 Chapter 7: Application Binary Interface
ABI for Linux Systems
Linux Function Calls 
Register r23 is reserved for the thread pointer on GNU Linux systems. It is initialized 
by the C library and it may be used directly for TLS access, but not modified. On non-
Linux systems r23 is a general-purpose, callee-saved register.

The global pointer, r26 or gp, is globally fixed. It is initialized in startup code and 
always valid on entry to a function. This method does not allow for multiple gp 
values, so gp-relative data references are only possible in the main application (that is, 
from position dependent code). gp is only used for small data access, not GOT access, 
because code compiled as PIC may be used from shared libraries. The linker may take 
advantage of gp for shorter PLT sequences when the addresses are in range. The 
compiler needs an option to disable use of gprel; the option is necessary for 
applications with excessive amounts of small data. For comparison, XUL (Mozilla 
display engine, 16 MB code, 2 MB data) has only 27 KB of small data and the limit is 
64 KB. This option is separate from -G 0, because -G 0 creates ABI incompatibility. A 
file compiled with -G 0 puts global int variables into .data but files compiled with 
-G 8 expect such int variables to be in .sdata.

PIC code which needs a GOT pointer needs to initialize the pointer locally using 
nextpc; the GOT pointer is not passed during function calls. This approach is 
compatible with both static relocatable binaries and System V style shared objects. A 
separate ABI is needed for shared objects with independently relocatable text and 
data.

Stack alignment is 32-bit. The frame pointer points at the top of the stack when it is in 
use, to simplify backtracing. Insert alloca between the local variables and the 
outgoing arguments. The stack pointer points to the bottom of the outgoing argument 
area.

A large struct return value is handled by passing a pointer in the first argument 
register (not the disjoint return value register).

Linux Operating System Call Interface 

Table 7–7. Signals for Unhandled Instruction-Related Exceptions

Exception Signal

Supervisor-only instruction address SIGSEGV

TLB permission violation (execute) SIGSEGV

Supervisor-only instruction SIGILL

Unimplemented instruction SIGILL

Illegal instruction SIGILL

Break instruction SIGTRAP

Supervisor-only data address SIGSEGV

Misaligned data address SIGBUS

Misaligned destination address SIGBUS

Division error SIGFPE

TLB Permission Violation (read) SIGSEGV

TLB Permission Violation (write) SIGSEGV
Nios II Processor Reference Handbook February 2014 Altera Corporation



Chapter 7: Application Binary Interface 7–15
ABI for Linux Systems
There are no floating-point exceptions. The optional floating point unit (FPU) does not 
support exceptions and any process wanting exact IEEE conformance needs to use a 
soft-float library (possibly accelerated by use of the attached FPU).

The break instruction in a user process might generate a SIGTRAP signal for that 
process, but is not required to. Userspace programs should not use the break 
instruction and userspace debuggers should not insert one. If no hardware debugger 
is connected, the OS should assure that the break instruction does not cause the 
system to stop responding. For information about userspace debugging, refer to 
“Userspace Breakpoints” on page 7–20.

The page size is 4 KB. Virtual addresses in user mode are all below 2 GB due to the 
MMU design. The NULL page is not mapped.

Linux Process Initialization
The stack pointer, sp, points to the argument count on the stack.

If the application should register a destructor function with atexit, the pointer is 
placed in r4. Otherwise r4 is zero.

The contents of all other registers are unspecified. User code should set fp to zero to 
mark the end of the frame chain.

The auxiliary vector is a series of pairs of 32-bit tag and 32-bit value, terminated by an 
AT_NULL tag.

Linux Position-Independent Code 
Every position-independent code (PIC) function which uses global data or global 
functions must load the value of the GOT pointer into a register. Any available 
register may be used. If a caller-saved register is used the function must save and 
restore it around calls. If a callee-saved register is used it must be saved and restored 
around the current function. Examples in this document use r22 for the GOT pointer.

Table 7–8. Stack Initial State at User Process Start

Purpose Start Address Length

Unspecified High addresses

Referenced strings Varies

Unspecified

Null auxilliary vector entry 4 bytes

Auxilliary vector entries 8 bytes each

NULL terminator for envp 4 bytes

Environment pointers sp + 8 + 4 × argc 4 bytes each

NULL terminator for argv sp + 4 + 4 × argc 4 bytes

Argument pointers sp + 4 4 bytes each

Argument count sp 4 bytes

Unspecified Low addresses
February 2014 Altera Corporation Nios II Processor Reference Handbook



7–16 Chapter 7: Application Binary Interface
ABI for Linux Systems
The GOT pointer is loaded using a PC-relative offset to the _gp_got symbol, as shown 
in Example 7–12.

Data may be accessed by loading its location from the GOT. A single word GOT entry 
is generated for each referenced symbol.

For local symbols, the symbolic reference to x is replaced by a relative relocation 
against symbol zero, with the link time address of x as an addend, as shown in 
Example 7–14.

The call and jmpi instructions are not available in position-independent code. 
Instead, all calls are made through the GOT. Function addresses may be loaded with 
%call, which allows lazy binding. To initialize a function pointer, load the address of 
the function with %got instead. If no input object requires the address of the function 
its GOT entry is placed in the PLT GOT for lazy binding, as shown in Example 7–15. 
For information about the PLT, refer to “Procedure Linkage Table” on page 7–17.

When a function or variable resides in the current shared object at compile time, it can 
be accessed via a PC-relative or GOT-relative offset, as shown in Example 7–16.

Example 7–12. Loading the GOT Pointer

nextpc r22
1:
  orhi   r1, %hiadj(_gp_got - 1b)   # R_NIOS2_PCREL_HA _gp_got
  addi   r1, r1, %lo(_gp_got - 1b)  # R_NIOS2_PCREL_LO _gp_got - 4
  add    r22, r22, r1
  # GOT pointer in r22

Example 7–13. GOT Entry for Global Symbols

addi   r3, r22, %got(x)           # R_NIOS2_GOT16

GOT[n]                              R_NIOS2_GLOB_DAT x

Example 7–14. Local Symbols

addi   r3, r22, %got(x)           # R_NIOS2_GOT16

GOT[n]                              R_NIOS2_RELATIVE +x

Example 7–15. GOT entry in PLT GOT

ldw    r3, %call(fun)(r22)        # R_NIOS2_CALL16 fun
callr  r3

PLTGOT[n]                           R_NIOS_JUMP_SLOT fun

Example 7–16. Accessing Function or Variable in Current Shared Object

orhi   r3, %gotoff_hiadj(x)       # R_NIOS2_GOTOFF_HA x
addi   r3, r3, %gotoff_lo(x)      # R_NIOS2_GOTOFF_LO x
add    r3, r22, r3
# Address of x in r3
Nios II Processor Reference Handbook February 2014 Altera Corporation



Chapter 7: Application Binary Interface 7–17
ABI for Linux Systems
Multiway branches such as switch statements can be implemented with a table of 
GOT-relative offsets, as shown in Example 7–17.

Linux Program Loading and Dynamic Linking 

Global Offset Table
Because shared libraries are position-independent, they can not contain absolute 
addresses for symbols. Instead, addresses are loaded from the GOT.

The first word of the GOT is filled in by the link editor with the unrelocated address of 
the _DYNAMIC, which is at the start of the dynamic section. The second and third words 
are reserved for the dynamic linker. For information about the dynamic linker, refer to 
“Procedure Linkage Table” on page 7–17.

The linker-defined symbol _GLOBAL_OFFSET_TABLE_ points to the reserved entries at 
the beginning of the GOT. The linker-defined symbol _gp_got points to the base 
address used for GOT-relative relocations. The value of _gp_got might vary between 
object files if the linker creates multiple GOT sections.

Function Addresses
Function addresses use the same SHN_UNDEF and st_value convention for PLT entries 
as in other architectures, such as x86_64.

Procedure Linkage Table
Function calls in a position-dependent executable may use the call and jmpi 
instructions, which address the contents of a 256-MB segment. They may also use the 
%lo, %hi, and %hiadj operators to take the address of a function. If the function is in 
another shared object, the link editor creates a callable stub in the executable called a 
PLT entry. The PLT entry loads the address of the called function from the PLT GOT (a 
region at the start of the GOT) and transfers control to it.

The PLT GOT entry needs a relocation referring to the final symbol, of type 
R_NIOS2_JUMP_SLOT. The dynamic linker may immediately resolve it, or may leave 
it unmodified for lazy binding. The link editor fills in an initial value pointing to the 
lazy binding stubs at the start of the PLT section.

Example 7–17. Switch Statement Implemented with Table

# Scaled table offset in r4
 orhi   r3, %gotoff_hiadj(Ltable)  # R_NIOS2_GOTOFF_HA Ltable
 addi   r3, r3, %gotoff_lo(Ltable) # R_NIOS2_GOTOFF_LO Ltable
 add    r3, r22, r3                # r3 == &Ltable
 add    r3, r3, r4
 ldw    r4, 0(r3)                  # r3 == Ltable[index]
 add    r4, r4, r22                # Convert offset into destination
 jmp    r4
 ...
Ltable:
 .word  %gotoff(Label1)
 .word  %gotoff(Label2)
 .word  %gotoff(Label3)
February 2014 Altera Corporation Nios II Processor Reference Handbook



7–18 Chapter 7: Application Binary Interface
ABI for Linux Systems
Each PLT entry appears as shown in Example 7–18.

Example 7–19 shows the PLT entry when the PLT GOT is close enough to the small 
data area for a relative jump.

In front of the initial PLT entry, a series of branches start of the initial entry (the nextpc 
instruction). There is one branch for each PLT entry, labelled res_0 through res_N. The 
last several branches may be replaced by nop instructions to improve performance. 
The link editor arranges for the Nth PLT entry to point to the Nth branch; res_N – 
res_0 is four times the index into the .rela.plt section for the corresponding 
R_JUMP_SLOT relocation.

The dynamic linker initializes GOT[1] to a unique identifier for each library and 
GOT[2] to the address of the runtime resolver routine. In order for the two loads in 
.PLTresolve to share the same %hiadj, _GLOBAL_OFFSET_TABLE_ must be aligned to a 
16-byte boundary.

The runtime resolver receives the original function arguments in r4 through r7, the 
shared library identifier from GOT[1] in r14, and the relocation index times four in 
r15. The resolver updates the corresponding PLT GOT entry so that the PLT entry 
transfers control directly to the target in the future, and then transfers control to the 
target.

Example 7–18. PLT Entry

.PLTn:
  orhi   r15, r0, %hiadj(plt_got_slot_address)
  ldw    r15, %lo(plt_got_slot_address)(r15)
  jmp    r15

Example 7–19. PLT Entry Near Small Data Area

.PLTn:
  ldw    r15, %gprel(plt_got_slot_address)(gp)
  jmp    r15

Example 7–20. Initial PLT Entry

res_0:
  br     .PLTresolve
  ...
.PLTresolve:
  orhi   r14, r0, %hiadj(res_0)
  addi   r14, r14, %lo(res_0)
  sub    r15, r15, r14
  orhi   r13, %hiadj(_GLOBAL_OFFSET_TABLE_)
  ldw    r14, %lo(_GLOBAL_OFFSET_TABLE_+4)(r13)
  ldw    r13, %lo(_GLOBAL_OFFSET_TABLE_+8)(r13)
  jmp    r13
Nios II Processor Reference Handbook February 2014 Altera Corporation



Chapter 7: Application Binary Interface 7–19
ABI for Linux Systems
In shared objects, the call and jmpi instructions can not be used because the library 
load address is not known at link time. Calls to functions outside the current shared 
object must pass through the GOT. The program loads function addresses using 
%call, and the link editor may arrange for such entries to be lazily bound. Because 
PLT entries are only used for lazy binding, shared object PLTs are smaller, as shown in 
Example 7–21.

Example 7–22 shows the initial PLT entry.

If the initial PLT entry is out of range, the resolver can be inline, because it is only one 
instruction longer than a long branch, as shown in Example 7–23.

Linux Program Interpreter 
The program interpreter is /lib/ld.so.1.

Linux Initialization and Termination Functions 
The implementation is responsible for calling DT_INIT(), DT_INIT_ARRAY(), 
DT_PREINIT_ARRAY(), DT_FINI(), and DT_FINI_ARRAY().

Example 7–21. Shared Object PLT

.PLTn:
  orhi   r15, r0, %hiadj(index * 4)
  addi   r15, r15, %lo(index * 4)
  br     .PLTresolve

Example 7–22. Initial PLT Entry

.PLTresolve:
  nextpc r14
  orhi   r13, r0, %hiadj(_GLOBAL_OFFSET_TABLE_)
  add    r13, r13, r14
  ldw    r14, %lo(_GLOBAL_OFFSET_TABLE_+4)(r13)
  ldw    r13, %lo(_GLOBAL_OFFSET_TABLE_+8)(r13)
  jmp    r13

Example 7–23. Initial PLT Entry Out of Range

.PLTn:
  orhi   r15, r0, %hiadj(index * 4)
  addi   r15, r15, %lo(index * 4)
  nextpc r14
  orhi   r13, r0, %hiadj(_GLOBAL_OFFSET_TABLE_)
  add    r13, r13, r14
  ldw    r14, %lo(_GLOBAL_OFFSET_TABLE_+4)(r13)
  ldw    r13, %lo(_GLOBAL_OFFSET_TABLE_+8)(r13)
  jmp    r13
February 2014 Altera Corporation Nios II Processor Reference Handbook



7–20 Chapter 7: Application Binary Interface
Document Revision History
Linux Conventions

System Calls
The Linux system call interface relies on the trap instruction with immediate 
argument zero. The system call number is passed in register r2. The arguments are 
passed in r4, r5, r6, r7, r8, and r9 as necessary. The return value is written in r2 on 
success, or a positive error number is written to r2 on failure. A flag indicating 
successful completion, to distinguish error values from valid results, is written to r7; 0 
indicates syscall success and 1 indicates r2 contains a positive errno value.

Userspace Breakpoints
Userspace breakpoints are accomplished using the trap instruction with immediate 
operand 31 (all ones). The OS must distinguish this instruction from a trap 0 system 
call and generate a trap signal.

Atomic Operations
The Nios II architecture does not have atomic operations (such as load linked and 
store conditional). Atomic operations are emulated using a kernel system call via the 
trap instruction. The toolchain provides intrinsic functions which perform the system 
call. Applications must use those functions rather than the system call directly. 
Atomic operations may be added in a future processor extension.

Processor Requirements
Linux requires that a hardware multiplier be present. The full 64-bit multiplier (mulx 
instructions) is not required.

Development Environment
The following symbols are defined:

■ __nios2

■ __nios2__

■ __NIOS2

■ __NIOS2__

Document Revision History
Table 7–9. Document Revision History (Part 1 of 2)

Date Version Changes

February 2014 13.1.0 Removed references to SOPC Builder.

May 2011 11.0.0 Maintenance release. 

December 2010 10.1.0 Added Linux ABI section.
Nios II Processor Reference Handbook February 2014 Altera Corporation



Chapter 7: Application Binary Interface 7–21
Document Revision History
July 2010 10.0.0

■ DWARF-2 register assignments

■ ELF header values

■ r23 used as thread pointer for Linux

■ Linux toolchain relocation information

■ Symbol definitions for development environment

November 2009 9.1.0 Maintenance release.

March 2009 9.0.0 Backwards-compatible change to the eret instruction B field encoding.

November 2008 8.1.0 Maintenance release. 

May 2008 8.0.0
■ Frame pointer description updated.

■ Relocation table added.

October 2007 7.2.0 Maintenance release.

May 2007 7.1.0
■ Added table of contents to Introduction section.

■ Added Referenced Documents section.

March 2007 7.0.0 Maintenance release. 

November 2006 6.1.0 Maintenance release. 

May 2006 6.0.0 Maintenance release. 

October 2005 5.1.0 Maintenance release. 

May 2005 5.0.0 Maintenance release. 

September 2004 1.1 Maintenance release.

May 2004 1.0 Initial release.

Table 7–9. Document Revision History (Part 2 of 2)

Date Version Changes
February 2014 Altera Corporation Nios II Processor Reference Handbook



7–22 Chapter 7: Application Binary Interface
Document Revision History
Nios II Processor Reference Handbook February 2014 Altera Corporation



Nios II Processor Reference Handbook
February 2014

NII51017-13.1.0

© 2014 Altera Corporation. All rights reserved. ALTERA, ARR
and/or trademarks of Altera Corporation in the U.S. and other
www.altera.com/common/legal.html. Altera warrants perform
reserves the right to make changes to any products and services
information, product, or service described herein except as exp
specifications before relying on any published information and

February 2014
NII51017-13.1.0
8. Instruction Set Reference
This section introduces the Nios® II instruction word format and provides a detailed 
reference of the Nios II instruction set. 

Word Formats
There are three types of Nios II instruction word format: I-type, R-type, and J-type.

I-Type
The defining characteristic of the I-type instruction word format is that it contains an 
immediate value embedded within the instruction word. I-type instructions words 
contain:

■ A 6-bit opcode field OP

■ Two 5-bit register fields A and B

■ A 16-bit immediate data field IMM16

In most cases, fields A and IMM16 specify the source operands, and field B specifies 
the destination register. IMM16 is considered signed except for logical operations and 
unsigned comparisons.

I-type instructions include arithmetic and logical operations such as addi and andi; 
branch operations; load and store operations; and cache management operations. 

R-Type
The defining characteristic of the R-type instruction word format is that all arguments 
and results are specified as registers. R-type instructions contain:

■ A 6-bit opcode field OP

■ Three 5-bit register fields A, B, and C

■ An 11-bit opcode-extension field OPX

In most cases, fields A and B specify the source operands, and field C specifies the 
destination register. 

Some R-Type instructions embed a small immediate value in the five low-order bits of 
OPX. Unused bits in OPX are always 0.

Table 8–1. I-Type Instruction Format

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

A B IMM16 OP
Subscribe

IA, CYCLONE, HARDCOPY, MAX, MEGACORE, NIOS, QUARTUS and STRATIX are Reg. U.S. Pat. & Tm. Off. 
 countries. All other trademarks and service marks are the property of their respective holders as described at 

ance of its semiconductor products to current specifications in accordance with Altera’s standard warranty, but 
 at any time without notice. Altera assumes no responsibility or liability arising out of the application or use of any 
ressly agreed to in writing by Altera. Altera customers are advised to obtain the latest version of device 
 before placing orders for products or services.

http://www.altera.com/common/legal.html
https://www.altera.com/servlets/subscriptions/alert?id=NII51017


8–2 Chapter 8: Instruction Set Reference
Word Formats
R-type instructions include arithmetic and logical operations such as add and nor; 
comparison operations such as cmpeq and cmplt; the custom instruction; and other 
operations that need only register operands.

J-Type
J-type instructions contain:

■ A 6-bit opcode field 

■ A 26-bit immediate data field

J-type instructions, such as call and jmpi, transfer execution anywhere within a 
256-MB range.

Table 8–2. R-Type Instruction Format

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

A B C OPX OP

Table 8–3. J-Type Instruction Format

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

IMM26 OP
Nios II Processor Reference Handbook February 2014 Altera Corporation



Chapter 8: Instruction Set Reference 8–3
Instruction Opcodes
Instruction Opcodes
The OP field in the Nios II instruction word specifies the major class of an opcode as 
listed in Table 8–1 and Table 8–2. Most values of OP are encodings for I-type 
instructions. One encoding, OP = 0x00, is the J-type instruction call. Another 
encoding, OP = 0x3a, is used for all R-type instructions, in which case, the OPX field 
differentiates the instructions. All undefined encodings of OP and OPX are reserved.

Table 8–1. OP Encodings

OP Instruction OP Instruction OP Instruction OP Instruction

0x00 call 0x10 cmplti 0x20 cmpeqi 0x30 cmpltui

0x01 jmpi 0x11 0x21 0x31

0x02 0x12 0x22 0x32 custom

0x03 ldbu 0x13 initda 0x23 ldbuio 0x33 initd

0x04 addi 0x14 ori 0x24 muli 0x34 orhi

0x05 stb 0x15 stw 0x25 stbio 0x35 stwio

0x06 br 0x16 blt 0x26 beq 0x36 bltu

0x07 ldb 0x17 ldw 0x27 ldbio 0x37 ldwio

0x08 cmpgei 0x18 cmpnei 0x28 cmpgeui 0x38 rdprs

0x09 0x19 0x29 0x39

0x0A 0x1A 0x2A 0x3A R-type

0x0B ldhu 0x1B flushda 0x2B ldhuio 0x3B flushd

0x0C andi 0x1C xori 0x2C andhi 0x3C xorhi

0x0D sth 0x1D 0x2D sthio 0x3D

0x0E bge 0x1E bne 0x2E bgeu 0x3E

0x0F ldh 0x1F 0x2F ldhio 0x3F

Table 8–2. OPX Encodings for R-Type Instructions (Part 1 of 2)

OPX Instruction OPX Instruction OPX Instruction OPX Instruction

0x00 0x10 cmplt 0x20 cmpeq 0x30 cmpltu

0x01 eret 0x11 0x21 0x31 add

0x02 roli 0x12 slli 0x22 0x32

0x03 rol 0x13 sll 0x23 0x33

0x04 flushp 0x14 wrprs 0x24 divu 0x34 break

0x05 ret 0x15 0x25 div 0x35

0x06 nor 0x16 or 0x26 rdctl 0x36 sync

0x07 mulxuu 0x17 mulxsu 0x27 mul 0x37

0x08 cmpge 0x18 cmpne 0x28 cmpgeu 0x38

0x09 bret 0x19 0x29 initi 0x39 sub

0x0A 0x1A srli 0x2A 0x3A srai

0x0B ror 0x1B srl 0x2B 0x3B sra

0x0C flushi 0x1C nextpc 0x2C 0x3C

0x0D jmp 0x1D callr 0x2D trap 0x3D 
February 2014 Altera Corporation Nios II Processor Reference Handbook



8–4 Chapter 8: Instruction Set Reference
Assembler Pseudo-Instructions
Assembler Pseudo-Instructions
Pseudo-instructions are used in assembly source code like regular assembly 
instructions. Each pseudo-instruction is implemented at the machine level using an 
equivalent instruction. The movia pseudo-instruction is the only exception, being 
implemented with two instructions. Most pseudo-instructions do not appear in 
disassembly views of machine code.

0x0E and 0x1E xor 0x2E wrctl 0x3E

0x0F 0x1F mulxss 0x2F 0x3F

Table 8–2. OPX Encodings for R-Type Instructions (Part 2 of 2)

OPX Instruction OPX Instruction OPX Instruction OPX Instruction

Table 8–3. Assembler Pseudo-Instructions

Pseudo-Instruction Equivalent Instruction

bgt rA, rB, label blt rB, rA, label

bgtu rA, rB, label bltu rB, rA, label

ble rA, rB, label bge rB, rA, label

bleu rA, rB, label bgeu rB, rA, label

cmpgt rC, rA, rB cmplt rC, rB, rA

cmpgti rB, rA, IMMED cmpgei rB, rA, (IMMED+1)

cmpgtu rC, rA, rB cmpltu rC, rB, rA

cmpgtui rB, rA, IMMED cmpgeui rB, rA, (IMMED+1)

cmple rC, rA, rB cmpge rC, rB, rA

cmplei rB, rA, IMMED cmplti rB, rA, (IMMED+1)

cmpleu rC, rA, rB cmpgeu rC, rB, rA

cmpleui rB, rA, IMMED cmpltui rB, rA, (IMMED+1)

mov rC, rA add rC, rA, r0

movhi rB, IMMED orhi rB, r0, IMMED

movi rB, IMMED addi, rB, r0, IMMED

movia rB, label
orhi rB, r0, %hiadj(label)

addi, rB, r0, %lo(label)

movui rB, IMMED ori rB, r0, IMMED

nop add r0, r0, r0

subi rB, rA, IMMED addi rB, rA, (-IMMED)
Nios II Processor Reference Handbook February 2014 Altera Corporation



Chapter 8: Instruction Set Reference 8–5
Assembler Macros
Assembler Macros
The Nios II assembler provides macros to extract halfwords from labels and from 
32-bit immediate values. These macros return 16-bit signed values or 16-bit unsigned 
values depending on where they are used. When used with an instruction that 
requires a 16-bit signed immediate value, these macros return a value ranging from 
–32768 to 32767. When used with an instruction that requires a 16-bit unsigned 
immediate value, these macros return a value ranging from 0 to 65535.

Instruction Set Reference
The following pages list all Nios II instruction mnemonics in alphabetical order. 

Table 8–4. Assembler Macros

Macro Description Operation

%lo(immed32) Extract bits [15..0] of immed32 immed32 & 0xFFFF

%hi(immed32) Extract bits [31..16] of immed32 (immed32 >> 16) & 0xFFFF

%hiadj(immed32) Extract bits [31..16] and adds bit 15 of immed32
((immed32 >> 16) & 0xFFFF) + 

((immed32 >> 15) & 0x1)

%gprel(immed32)
Replace the immed32 address with an offset from 
the global pointer (1) immed32 –_gp

Note to Table 8–4:

(1) Refer to the Application Binary Interface chapter of the Nios II Processor Reference Handbook for more information about global pointers.

Table 8–5. Notation Conventions (Part 1 of 2) (Note 1)

Notation Meaning

X ← Y X is written with Y

PC ← X The program counter (PC) is written with address X; the instruction at X is 
the next instruction to execute

PC The address of the assembly instruction in question 

rA, rB, rC One of the 32-bit general-purpose registers

prs.rA General-purpose register rA in the previous register set

IMMn An n-bit immediate value, embedded in the instruction word

IMMED An immediate value

Xn The nth bit of X, where n = 0 is the LSB

Xn..m Consecutive bits n through m of X

0xNNMM Hexadecimal notation 

X : Y Bitwise concatenation 
For example, (0x12 : 0x34) = 0x1234

σ (X) The value of X after being sign-extended to a full register-sized signed integer

X >> n The value X after being right-shifted n bit positions

X << n The value X after being left-shifted n bit positions

X & Y Bitwise logical AND

X | Y Bitwise logical OR

X ^ Y Bitwise logical XOR
February 2014 Altera Corporation Nios II Processor Reference Handbook

http://www.altera.com/literature/hb/nios2/n2cpu_nii51016.pdf


8–6 Chapter 8: Instruction Set Reference
Instruction Set Reference
The following exceptions are not listed for each instruction because they can occur on 
any instruction fetch:

■ Supervisor-only instruction address

■ Fast TLB miss (instruction)

■ Double TLB miss (instruction)

■ TLB permission violation (execute)

■ MPU region violation (instruction)

f For information about these and all Nios II exceptions, refer to the Programming Model 
chapter of the Nios II Processor Reference Handbook.

~X Bitwise logical NOT (one’s complement)

Mem8[X] The byte located in data memory at byte address X

Mem16[X] The halfword located in data memory at byte address X

Mem32[X] The word located in data memory at byte address X

label An address label specified in the assembly file

(signed) rX The value of rX treated as a signed number

(unsigned) rX The value of rX treated as an unsigned number

Note to Table 8–5:

(1) All register operations apply to the current register set, except as noted.

Table 8–5. Notation Conventions (Part 2 of 2) (Note 1)

Notation Meaning
Nios II Processor Reference Handbook February 2014 Altera Corporation

http://www.altera.com/literature/hb/nios2/n2cpu_nii51003.pdf


Chapter 8: Instruction Set Reference 8–7
Instruction Set Reference
add add
Operation: rC ← rA + rB

Assembler Syntax: add rC, rA, rB

Example: add r6, r7, r8

Description: Calculates the sum of rA and rB. Stores the result in rC. Used for both signed and unsigned 
addition.

Usage: Carry Detection (unsigned operands):

Following an add operation, a carry out of the MSB can be detected by checking whether the 
unsigned sum is less than one of the unsigned operands. The carry bit can be written to a 
register, or a conditional branch can be taken based on the carry condition. The following code 
shows both cases:

add rC, rA, rB

cmpltu rD, rC, rA

add rC, rA, rB

bltu rC, rA, label

# The original add operation

# rD is written with the carry bit

# The original add operation

# Branch if carry generated

Overflow Detection (signed operands): 

An overflow is detected when two positives are added and the sum is negative, or when two 
negatives are added and the sum is positive. The overflow condition can control a conditional 
branch, as shown in the following code:

add rC, rA, rB 

xor rD, rC, rA 

xor rE, rC, rB 

and rD, rD, rE 

blt rD, r0,label

# The original add operation

# Compare signs of sum and rA

# Compare signs of sum and rB

# Combine comparisons

# Branch if overflow occurred

Exceptions: None

Instruction Type: R

Instruction Fields: A = Register index of operand rA

B = Register index of operand rB

C = Register index of operand rC

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

A B C 0x31 0 0x3a
February 2014 Altera Corporation Nios II Processor Reference Handbook



8–8 Chapter 8: Instruction Set Reference
Instruction Set Reference
addi add immediate
Operation: rB ← rA + σ (IMM16)

Assembler Syntax: addi rB, rA, IMM16

Example: addi r6, r7, -100

Description: Sign-extends the 16-bit immediate value and adds it to the value of rA. Stores the sum in rB.

Usage: Carry Detection (unsigned operands):

Following an addi operation, a carry out of the MSB can be detected by checking whether the 
unsigned sum is less than one of the unsigned operands. The carry bit can be written to a 
register, or a conditional branch can be taken based on the carry condition. The following code 
shows both cases:

addi rB, rA, IMM16

cmpltu rD, rB, rA

addi rB, rA, IMM16

bltu rB, rA, label

# The original add operation

# rD is written with the carry bit

# The original add operation

# Branch if carry generated

Overflow Detection (signed operands): 

An overflow is detected when two positives are added and the sum is negative, or when two 
negatives are added and the sum is positive. The overflow condition can control a conditional 
branch, as shown in the following code:

addi rB, rA, IMM16 

xor rC, rB, rA 

xorhi rD, rB, IMM16 

and rC, rC, rD 

blt rC, r0,label

# The original add operation

# Compare signs of sum and rA

# Compare signs of sum and IMM16

# Combine comparisons

# Branch if overflow occurred

Exceptions: None

Instruction Type: I

Instruction Fields: A = Register index of operand rA

B = Register index of operand rB

IMM16 = 16-bit signed immediate value

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

A B IMM16 0x04
Nios II Processor Reference Handbook February 2014 Altera Corporation



Chapter 8: Instruction Set Reference 8–9
Instruction Set Reference
and bitwise logical and
Operation: rC ← rA & rB

Assembler Syntax: and rC, rA, rB

Example: and r6, r7, r8

Description: Calculates the bitwise logical AND of rA and rB and stores the result in rC.

Exceptions: None

Instruction Type: R

Instruction Fields: A = Register index of operand rA

B = Register index of operand rB

C = Register index of operand rC

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

A B C 0x0e 0 0x3a
February 2014 Altera Corporation Nios II Processor Reference Handbook



8–10 Chapter 8: Instruction Set Reference
Instruction Set Reference
andhi bitwise logical and immediate into high halfword
Operation: rB ← rA & (IMM16 : 0x0000)

Assembler Syntax: andhi rB, rA, IMM16

Example: andhi r6, r7, 100

Description: Calculates the bitwise logical AND of rA and (IMM16 : 0x0000) and stores the result in rB.

Exceptions: None

Instruction Type: I

Instruction Fields: A = Register index of operand rA

B = Register index of operand rB

IMM16 = 16-bit unsigned immediate value

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

A B IMM16 0x2c
Nios II Processor Reference Handbook February 2014 Altera Corporation



Chapter 8: Instruction Set Reference 8–11
Instruction Set Reference
andi bitwise logical and immediate
Operation: rB ← rA & (0x0000 : IMM16)

Assembler Syntax: andi rB, rA, IMM16

Example: andi r6, r7, 100

Description: Calculates the bitwise logical AND of rA and (0x0000 : IMM16) and stores the result in rB.

Exceptions: None

Instruction Type: I

Instruction Fields: A = Register index of operand rA 

B = Register index of operand rB 

IMM16 = 16-bit unsigned immediate value

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

A B IMM16 0x0c
February 2014 Altera Corporation Nios II Processor Reference Handbook



8–12 Chapter 8: Instruction Set Reference
Instruction Set Reference
beq branch if equal 
Operation: if (rA == rB)

then PC ← PC + 4 + σ (IMM16)

else PC ← PC + 4

Assembler Syntax: beq rA, rB, label

Example: beq r6, r7, label

Description: If rA == rB, then beq transfers program control to the instruction at label. In the instruction 
encoding, the offset given by IMM16 is treated as a signed number of bytes relative to the 
instruction immediately following beq. The two least-significant bits of IMM16 are always zero, 
because instruction addresses must be word-aligned.

Exceptions: Misaligned destination address

Instruction Type: I

Instruction Fields: A = Register index of operand rA

B = Register index of operand rB

IMM16 = 16-bit signed immediate value

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

A B IMM16 0x26
Nios II Processor Reference Handbook February 2014 Altera Corporation



Chapter 8: Instruction Set Reference 8–13
Instruction Set Reference
bge branch if greater than or equal signed
Operation: if ((signed) rA >= (signed) rB)

then PC ← PC + 4 + σ (IMM16)

else PC ← PC + 4

Assembler Syntax: bge rA, rB, label

Example: bge r6, r7, top_of_loop

Description: If (signed) rA >= (signed) rB, then bge transfers program control to the instruction at label. In 
the instruction encoding, the offset given by IMM16 is treated as a signed number of bytes 
relative to the instruction immediately following bge. The two least-significant bits of IMM16 
are always zero, because instruction addresses must be word-aligned.

Exceptions: Misaligned destination address

Instruction Type: I

Instruction Fields: A = Register index of operand rA

B = Register index of operand rB

IMM16 = 16-bit signed immediate value

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

A B IMM16 0x0e
February 2014 Altera Corporation Nios II Processor Reference Handbook



8–14 Chapter 8: Instruction Set Reference
Instruction Set Reference
bgeu branch if greater than or equal unsigned
Operation: if ((unsigned) rA >= (unsigned) rB)

then PC ← PC + 4 + σ (IMM16) 

else PC ← PC + 4

Assembler Syntax: bgeu rA, rB, label

Example: bgeu r6, r7, top_of_loop

Description: If (unsigned) rA >= (unsigned) rB, then bgeu transfers program control to the instruction at 
label. In the instruction encoding, the offset given by IMM16 is treated as a signed number of 
bytes relative to the instruction immediately following bgeu. The two least-significant bits of 
IMM16 are always zero, because instruction addresses must be word-aligned.

Exceptions: Misaligned destination address

Instruction Type: I

Instruction Fields: A = Register index of operand rA

B = Register index of operand rB

IMM16 = 16-bit signed immediate value

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

A B IMM16 0x2e
Nios II Processor Reference Handbook February 2014 Altera Corporation



Chapter 8: Instruction Set Reference 8–15
Instruction Set Reference
bgt branch if greater than signed 
Operation: if ((signed) rA > (signed) rB)

then PC ← label

else PC ← PC + 4

Assembler Syntax: bgt rA, rB, label

Example: bgt r6, r7, top_of_loop

Description: If (signed) rA > (signed) rB, then bgt transfers program control to the instruction at label. 

Pseudo-instruction: bgt is implemented with the blt instruction by swapping the register operands.
February 2014 Altera Corporation Nios II Processor Reference Handbook



8–16 Chapter 8: Instruction Set Reference
Instruction Set Reference
bgtu branch if greater than unsigned
Operation: if ((unsigned) rA > (unsigned) rB)

then PC ← label

else PC ← PC + 4

Assembler Syntax: bgtu rA, rB, label

Example: bgtu r6, r7, top_of_loop

Description: If (unsigned) rA > (unsigned) rB, then bgtu transfers program control to the instruction at 
label. 

Pseudo-instruction: bgtu is implemented with the bltu instruction by swapping the register operands.
Nios II Processor Reference Handbook February 2014 Altera Corporation



Chapter 8: Instruction Set Reference 8–17
Instruction Set Reference
ble branch if less than or equal signed
Operation: if ((signed) rA <= (signed) rB)

then PC ← label 

else PC ← PC + 4

Assembler Syntax: ble rA, rB, label

Example: ble r6, r7, top_of_loop

Description: If (signed) rA <= (signed) rB, then ble transfers program control to the instruction at label. 

Pseudo-instruction: ble is implemented with the bge instruction by swapping the register operands.
February 2014 Altera Corporation Nios II Processor Reference Handbook



8–18 Chapter 8: Instruction Set Reference
Instruction Set Reference
bleu branch if less than or equal to unsigned
Operation: if ((unsigned) rA <= (unsigned) rB)

then PC ← label

else PC ← PC + 4

Assembler Syntax: bleu rA, rB, label

Example: bleu r6, r7, top_of_loop

Description: If (unsigned) rA <= (unsigned) rB, then bleu transfers program counter to the instruction at 
label. 

Pseudo-instruction: bleu is implemented with the bgeu instruction by swapping the register operands.
Nios II Processor Reference Handbook February 2014 Altera Corporation



Chapter 8: Instruction Set Reference 8–19
Instruction Set Reference
blt branch if less than signed
Operation: if ((signed) rA < (signed) rB)

then PC ← PC + 4 + σ (IMM16)

else PC ← PC + 4

Assembler Syntax: blt rA, rB, label

Example: blt r6, r7, top_of_loop

Description: If (signed) rA < (signed) rB, then blt transfers program control to the instruction at label. In 
the instruction encoding, the offset given by IMM16 is treated as a signed number of bytes 
relative to the instruction immediately following blt. The two least-significant bits of IMM16 
are always zero, because instruction addresses must be word-aligned.

Exceptions: Misaligned destination address

Instruction Type: I

Instruction Fields: A = Register index of operand rA

B = Register index of operand rB

IMM16 = 16-bit signed immediate value

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

A B IMM16 0x16
February 2014 Altera Corporation Nios II Processor Reference Handbook



8–20 Chapter 8: Instruction Set Reference
Instruction Set Reference
bltu branch if less than unsigned
Operation: if ((unsigned) rA < (unsigned) rB)

then PC ← PC + 4 + σ (IMM16)

else PC ← PC + 4

Assembler Syntax: bltu rA, rB, label

Example: bltu r6, r7, top_of_loop

Description: If (unsigned) rA < (unsigned) rB, then bltu transfers program control to the instruction at 
label. In the instruction encoding, the offset given by IMM16 is treated as a signed number of 
bytes relative to the instruction immediately following bltu. The two least-significant bits of 
IMM16 are always zero, because instruction addresses must be word-aligned.

Exceptions: Misaligned destination address

Instruction Type: I

Instruction Fields: A = Register index of operand rA

B = Register index of operand rB

IMM16 = 16-bit signed immediate value

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

A B IMM16 0x36
Nios II Processor Reference Handbook February 2014 Altera Corporation



Chapter 8: Instruction Set Reference 8–21
Instruction Set Reference
bne branch if not equal
Operation: if (rA != rB)

then PC ← PC + 4 + σ (IMM16)

else PC ← PC + 4

Assembler Syntax: bne rA, rB, label

Example: bne r6, r7, top_of_loop

Description: If rA != rB, then bne transfers program control to the instruction at label. In the instruction 
encoding, the offset given by IMM16 is treated as a signed number of bytes relative to the 
instruction immediately following bne. The two least-significant bits of IMM16 are always zero, 
because instruction addresses must be word-aligned. 

Exceptions: Misaligned destination address

Instruction Type: I

Instruction Fields: A = Register index of operand rA

B = Register index of operand rB

IMM16 = 16-bit signed immediate value

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

A B IMM16 0x1e
February 2014 Altera Corporation Nios II Processor Reference Handbook



8–22 Chapter 8: Instruction Set Reference
Instruction Set Reference
br unconditional branch
Operation: PC ← PC + 4 + σ (IMM16)

Assembler Syntax: br label

Example: br top_of_loop

Description: Transfers program control to the instruction at label. In the instruction encoding, the offset 
given by IMM16 is treated as a signed number of bytes relative to the instruction immediately 
following br. The two least-significant bits of IMM16 are always zero, because instruction 
addresses must be word-aligned.

Exceptions: Misaligned destination address

Instruction Type: I

Instruction Fields: IMM16 = 16-bit signed immediate value

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 0 IMM16 0x06
Nios II Processor Reference Handbook February 2014 Altera Corporation



Chapter 8: Instruction Set Reference 8–23
Instruction Set Reference
break debugging breakpoint
Operation: bstatus ← status

PIE ← 0

U ← 0

ba ← PC + 4 

PC ← break handler address

Assembler Syntax: break

break imm5

Example: break

Description: Breaks program execution and transfers control to the debugger break-processing routine. 
Saves the address of the next instruction in register ba and saves the contents of the status 
register in bstatus. Disables interrupts, then transfers execution to the break handler.

The 5-bit immediate field imm5 is ignored by the processor, but it can be used by the debugger.

break with no argument is the same as break 0.

Usage: break is used by debuggers exclusively. Only debuggers should place break in a user 
program, operating system, or exception handler. The address of the break handler is specified 
with the Nios_II Processor parameter editor in Qsys.

Some debuggers support break and break 0 instructions in source code. These debuggers 
treat the break instruction as a normal breakpoint.

Exceptions: Break

Instruction Type: R

Instruction Fields: IMM5 = Type of breakpoint

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 0 0x1e 0x34 IMM5 0x3a
February 2014 Altera Corporation Nios II Processor Reference Handbook



8–24 Chapter 8: Instruction Set Reference
Instruction Set Reference
bret breakpoint return
Operation: status ← bstatus

PC ← ba

Assembler Syntax: bret

Example: bret

Description: Copies the value of bstatus to the status register, then transfers execution to the address in 
ba.

Usage: bret is used by debuggers exclusively and should not appear in user programs, operating 
systems, or exception handlers.

Exceptions: Misaligned destination address

Supervisor-only instruction

Instruction Type: R

Instruction Fields: None

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0x1e 0 0 0x09 0 0x3a
Nios II Processor Reference Handbook February 2014 Altera Corporation



Chapter 8: Instruction Set Reference 8–25
Instruction Set Reference
call call subroutine
Operation: ra ← PC + 4

PC ← (PC31..28 : IMM26 × 4)

Assembler Syntax: call label

Example: call write_char

Description: Saves the address of the next instruction in register ra, and transfers execution to the 
instruction at address (PC31..28 : IMM26 × 4). 

Usage: call can transfer execution anywhere within the 256-MB range determined by PC31..28. The 
Nios II GNU linker does not automatically handle cases in which the address is out of this range.

Exceptions: None

Instruction Type: J

Instruction Fields: IMM26 = 26-bit unsigned immediate value

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

IMM26 0
February 2014 Altera Corporation Nios II Processor Reference Handbook



8–26 Chapter 8: Instruction Set Reference
Instruction Set Reference
callr call subroutine in register
Operation: ra ← PC + 4

PC ← rA

Assembler Syntax: callr rA

Example: callr r6

Description: Saves the address of the next instruction in the return address register, and transfers execution 
to the address contained in register rA. 

Usage: callr is used to dereference C-language function pointers. 

Exceptions: Misaligned destination address

Instruction Type: R

Instruction Fields: A = Register index of operand rA

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

A 0 0x1f 0x1d 0 0x3a
Nios II Processor Reference Handbook February 2014 Altera Corporation



Chapter 8: Instruction Set Reference 8–27
Instruction Set Reference
cmpeq compare equal
Operation: if (rA == rB)

then rC ← 1

else rC ← 0

Assembler Syntax: cmpeq rC, rA, rB

Example: cmpeq r6, r7, r8

Description: If rA == rB, then stores 1 to rC; otherwise, stores 0 to rC. 

Usage: cmpeq performs the == operation of the C programming language. Also, cmpeq can be used to 
implement the C logical negation operator “!”.

cmpeq rC, rA, r0 # Implements rC = !rA

Exceptions: None

Instruction Type: R

Instruction Fields: A = Register index of operand rA

B = Register index of operand rB

C = Register index of operand rC

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

A B C 0x20 0 0x3a
February 2014 Altera Corporation Nios II Processor Reference Handbook



8–28 Chapter 8: Instruction Set Reference
Instruction Set Reference
cmpeqi compare equal immediate
Operation: if (rA σ (IMM16))

then rB ← 1

else rB ← 0

Assembler Syntax: cmpeqi rB, rA, IMM16

Example: cmpeqi r6, r7, 100

Description: Sign-extends the 16-bit immediate value IMM16 to 32 bits and compares it to the value of rA. If 
rA == σ (IMM16), cmpeqi stores 1 to rB; otherwise stores 0 to rB. 

Usage: cmpeqi performs the == operation of the C programming language.

Exceptions: None

Instruction Type: I

Instruction Fields: A = Register index of operand rA 

B = Register index of operand rB

IMM16 = 16-bit signed immediate value

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

A B IMM16 0x20
Nios II Processor Reference Handbook February 2014 Altera Corporation



Chapter 8: Instruction Set Reference 8–29
Instruction Set Reference
cmpge compare greater than or equal signed
Operation: if ((signed) rA >= (signed) rB)

then rC ← 1

else rC ← 0

Assembler Syntax: cmpge rC, rA, rB

Example: cmpge r6, r7, r8

Description: If rA >= rB, then stores 1 to rC; otherwise stores 0 to rC. 

Usage: cmpge performs the signed >= operation of the C programming language.

Exceptions: None

Instruction Type: I

Instruction Fields: A = Register index of operand rA

B = Register index of operand rB

C = Register index of operand rC

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

A B C 0x08 0 0x3a
February 2014 Altera Corporation Nios II Processor Reference Handbook



8–30 Chapter 8: Instruction Set Reference
Instruction Set Reference
cmpgei compare greater than or equal signed immediate
Operation: if ((signed) rA >= (signed) σ (IMM16))

then rB ← 1

else rB ← 0

Assembler Syntax: cmpgei rB, rA, IMM16

Example: cmpgei r6, r7, 100

Description: Sign-extends the 16-bit immediate value IMM16 to 32 bits and compares it to the value of rA. If 
rA >= σ(IMM16), then cmpgei stores 1 to rB; otherwise stores 0 to rB. 

Usage: cmpgei performs the signed >= operation of the C programming language.

Exceptions: None

Instruction Type: R

Instruction Fields: A = Register index of operand rA

B = Register index of operand rB

IMM16 = 16-bit signed immediate value

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

A B IMM16 0x08
Nios II Processor Reference Handbook February 2014 Altera Corporation



Chapter 8: Instruction Set Reference 8–31
Instruction Set Reference
cmpgeu compare greater than or equal unsigned
Operation: if ((unsigned) rA >= (unsigned) rB)

then rC ← 1

else rC ← 0

Assembler Syntax: cmpgeu rC, rA, rB

Example: cmpgeu r6, r7, r8

Description: If rA >= rB, then stores 1 to rC; otherwise stores 0 to rC. 

Usage: cmpgeu performs the unsigned >= operation of the C programming language.

Exceptions: None

Instruction Type: R

Instruction Fields: A = Register index of operand rA

B = Register index of operand rB

C = Register index of operand rC

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

A B C 0x28 0 0x3a
February 2014 Altera Corporation Nios II Processor Reference Handbook



8–32 Chapter 8: Instruction Set Reference
Instruction Set Reference
cmpgeui compare greater than or equal unsigned immediate
Operation: if ((unsigned) rA >= (unsigned) (0x0000 : IMM16))

then rB ← 1

else rB ← 0

Assembler Syntax: cmpgeui rB, rA, IMM16

Example: cmpgeui r6, r7, 100

Description: Zero-extends the 16-bit immediate value IMM16 to 32 bits and compares it to the value of rA. If 
rA >= (0x0000 : IMM16), then cmpgeui stores 1 to rB; otherwise stores 0 to rB. 

Usage: cmpgeui performs the unsigned >= operation of the C programming language.

Exceptions: None

Instruction Type: I

Instruction Fields: A = Register index of operand rA 

B = Register index of operand rB

IMM16 = 16-bit unsigned immediate value

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

A B IMM16 0x28
Nios II Processor Reference Handbook February 2014 Altera Corporation



Chapter 8: Instruction Set Reference 8–33
Instruction Set Reference
cmpgt compare greater than signed
Operation: if ((signed) rA > (signed) rB)

then rC ← 1

else rC ← 0

Assembler Syntax: cmpgt rC, rA, rB

Example: cmpgt r6, r7, r8

Description: If rA > rB, then stores 1 to rC; otherwise stores 0 to rC. 

Usage: cmpgt performs the signed > operation of the C programming language. 

Pseudo-instruction: cmpgt is implemented with the cmplt instruction by swapping its rA and rB operands.
February 2014 Altera Corporation Nios II Processor Reference Handbook



8–34 Chapter 8: Instruction Set Reference
Instruction Set Reference
cmpgti compare greater than signed immediate
Operation: if ((signed) rA > (signed) IMMED)

then rB ← 1

else rB ← 0

Assembler Syntax: cmpgti rB, rA, IMMED

Example: cmpgti r6, r7, 100

Description: Sign-extends the immediate value IMMED to 32 bits and compares it to the value of rA. If rA > 
σ(IMMED), then cmpgti stores 1 to rB; otherwise stores 0 to rB. 

Usage: cmpgti performs the signed > operation of the C programming language. The maximum 
allowed value of IMMED is 32766. The minimum allowed value is –32769.

Pseudo-instruction: cmpgti is implemented using a cmpgei instruction with an IMM16 immediate value of 
IMMED + 1. 
Nios II Processor Reference Handbook February 2014 Altera Corporation



Chapter 8: Instruction Set Reference 8–35
Instruction Set Reference
cmpgtu compare greater than unsigned
Operation: if ((unsigned) rA > (unsigned) rB)

then rC ← 1

else rC ← 0

Assembler Syntax: cmpgtu rC, rA, rB

Example: cmpgtu r6, r7, r8

Description: If rA > rB, then stores 1 to rC; otherwise stores 0 to rC. 

Usage: cmpgtu performs the unsigned > operation of the C programming language. 

Pseudo-instruction: cmpgtu is implemented with the cmpltu instruction by swapping its rA and rB operands.
February 2014 Altera Corporation Nios II Processor Reference Handbook



8–36 Chapter 8: Instruction Set Reference
Instruction Set Reference
cmpgtui compare greater than unsigned immediate

Operation: if ((unsigned) rA > (unsigned) IMMED)

then rB ← 1

else rB ← 0

Assembler Syntax: cmpgtui rB, rA, IMMED

Example: cmpgtui r6, r7, 100

Description: Zero-extends the immediate value IMMED to 32 bits and compares it to the value of rA. If rA > 
IMMED, then cmpgtui stores 1 to rB; otherwise stores 0 to rB. 

Usage: cmpgtui performs the unsigned > operation of the C programming language. The maximum 
allowed value of IMMED is 65534. The minimum allowed value is 0.

Pseudo-instruction: cmpgtui is implemented using a cmpgeui instruction with an IMM16 immediate value of 
IMMED + 1. 
Nios II Processor Reference Handbook February 2014 Altera Corporation



Chapter 8: Instruction Set Reference 8–37
Instruction Set Reference
cmple compare less than or equal signed 
Operation: if ((signed) rA <= (signed) rB)

then rC ← 1

else rC ← 0

Assembler Syntax: cmple rC, rA, rB

Example: cmple r6, r7, r8

Description: If rA <= rB, then stores 1 to rC; otherwise stores 0 to rC. 

Usage: cmple performs the signed <= operation of the C programming language. 

Pseudo-instruction: cmple is implemented with the cmpge instruction by swapping its rA and rB operands.
February 2014 Altera Corporation Nios II Processor Reference Handbook



8–38 Chapter 8: Instruction Set Reference
Instruction Set Reference
cmplei compare less than or equal signed immediate
Operation: if ((signed) rA < (signed) IMMED)

then rB ← 1

else rB ← 0

Assembler Syntax: cmplei rB, rA, IMMED

Example: cmplei r6, r7, 100

Description: Sign-extends the immediate value IMMED to 32 bits and compares it to the value of rA. If rA <= 
σ (IMMED), then cmplei stores 1 to rB; otherwise stores 0 to rB. 

Usage: cmplei performs the signed <= operation of the C programming language. The maximum 
allowed value of IMMED is 32766. The minimum allowed value is –32769.

Pseudo-instruction: cmplei is implemented using a cmplti instruction with an IMM16 immediate value of IMMED 
+ 1. 
Nios II Processor Reference Handbook February 2014 Altera Corporation



Chapter 8: Instruction Set Reference 8–39
Instruction Set Reference
cmpleu compare less than or equal unsigned 
Operation: if ((unsigned) rA < (unsigned) rB)

then rC ← 1

else rC ← 0

Assembler Syntax: cmpleu rC, rA, rB

Example: cmpleu r6, r7, r8

Description: If rA <= rB, then stores 1 to rC; otherwise stores 0 to rC. 

Usage: cmpleu performs the unsigned <= operation of the C programming language. 

Pseudo-instruction: cmpleu is implemented with the cmpgeu instruction by swapping its rA and rB operands.
February 2014 Altera Corporation Nios II Processor Reference Handbook



8–40 Chapter 8: Instruction Set Reference
Instruction Set Reference
cmpleui compare less than or equal unsigned immediate
Operation: if ((unsigned) rA <= (unsigned) IMMED)

then rB ← 1

else rB ← 0

Assembler Syntax: cmpleui rB, rA, IMMED

Example: cmpleui r6, r7, 100

Description: Zero-extends the immediate value IMMED to 32 bits and compares it to the value of rA. If rA <= 
IMMED, then cmpleui stores 1 to rB; otherwise stores 0 to rB. 

Usage: cmpleui performs the unsigned <= operation of the C programming language. The maximum 
allowed value of IMMED is 65534. The minimum allowed value is 0.

Pseudo-instruction: cmpleui is implemented using a cmpltui instruction with an IMM16 immediate value of 
IMMED + 1. 
Nios II Processor Reference Handbook February 2014 Altera Corporation



Chapter 8: Instruction Set Reference 8–41
Instruction Set Reference
cmplt compare less than signed
Operation: if ((signed) rA < (signed) rB)

then rC ← 1

else rC ← 0

Assembler Syntax: cmplt rC, rA, rB

Example: cmplt r6, r7, r8

Description: If rA < rB, then stores 1 to rC; otherwise stores 0 to rC. 

Usage: cmplt performs the signed < operation of the C programming language.

Exceptions: None

Instruction Type: R

Instruction Fields: A = Register index of operand rA

B = Register index of operand rB

C = Register index of operand rC

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

A B C 0x10 0 0x3a
February 2014 Altera Corporation Nios II Processor Reference Handbook



8–42 Chapter 8: Instruction Set Reference
Instruction Set Reference
cmplti compare less than signed immediate
Operation: if ((signed) rA < (signed) σ (IMM16))

then rB ← 1

else rB ← 0

Assembler Syntax: cmplti rB, rA, IMM16

Example: cmplti r6, r7, 100

Description: Sign-extends the 16-bit immediate value IMM16 to 32 bits and compares it to the value of rA. If 
rA < σ (IMM16), then cmplti stores 1 to rB; otherwise stores 0 to rB. 

Usage: cmplti performs the signed < operation of the C programming language.

Exceptions: None

Instruction Type: I

Instruction Fields: A = Register index of operand rA

B = Register index of operand rB

IMM16 = 16-bit signed immediate value

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

A B IMM16 0x10
Nios II Processor Reference Handbook February 2014 Altera Corporation



Chapter 8: Instruction Set Reference 8–43
Instruction Set Reference
cmpltu compare less than unsigned
Operation: if ((unsigned) rA < (unsigned) rB)

then rC ← 1

else rC ← 0

Assembler Syntax: cmpltu rC, rA, rB

Example: cmpltu r6, r7, r8

Description: If rA < rB, then stores 1 to rC; otherwise stores 0 to rC. 

Usage: cmpltu performs the unsigned < operation of the C programming language.

Exceptions: None

Instruction Type: R

Instruction Fields: A = Register index of operand rA

B = Register index of operand rB

C = Register index of operand rC

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

A B C 0x30 0 0x3a
February 2014 Altera Corporation Nios II Processor Reference Handbook



8–44 Chapter 8: Instruction Set Reference
Instruction Set Reference
cmpltui compare less than unsigned immediate
Operation: if ((unsigned) rA < (unsigned) (0x0000 : IMM16))

then rB ← 1

else rB ← 0

Assembler Syntax: cmpltui rB, rA, IMM16

Example: cmpltui r6, r7, 100

Description: Zero-extends the 16-bit immediate value IMM16 to 32 bits and compares it to the value of rA. If 
rA < (0x0000 : IMM16), then cmpltui stores 1 to rB; otherwise stores 0 to rB. 

Usage: cmpltui performs the unsigned < operation of the C programming language.

Exceptions: None

Instruction Type: I

Instruction Fields: A = Register index of operand rA

B = Register index of operand rB

IMM16 = 16-bit unsigned immediate value

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

A B IMM16 0x30
Nios II Processor Reference Handbook February 2014 Altera Corporation



Chapter 8: Instruction Set Reference 8–45
Instruction Set Reference
cmpne compare not equal
Operation: if (rA != rB)

then rC ← 1

else rC ← 0

Assembler Syntax: cmpne rC, rA, rB

Example: cmpne r6, r7, r8

Description: If rA != rB, then stores 1 to rC; otherwise stores 0 to rC. 

Usage: cmpne performs the != operation of the C programming language.

Exceptions: None

Instruction Type: R

Instruction Fields: A = Register index of operand rA

B = Register index of operand rB

C = Register index of operand rC

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

A B C 0x18 0 0x3a
February 2014 Altera Corporation Nios II Processor Reference Handbook



8–46 Chapter 8: Instruction Set Reference
Instruction Set Reference
cmpnei compare not equal immediate
Operation: if (rA != σ (IMM16))

then rB ← 1

else rB ← 0

Assembler Syntax: cmpnei rB, rA, IMM16

Example: cmpnei r6, r7, 100

Description: Sign-extends the 16-bit immediate value IMM16 to 32 bits and compares it to the value of rA. If 
rA != σ (IMM16), then cmpnei stores 1 to rB; otherwise stores 0 to rB. 

Usage: cmpnei performs the != operation of the C programming language.

Exceptions: None

Instruction Type: I

Instruction Fields: A = Register index of operand rA

B = Register index of operand rB

IMM16 = 16-bit signed immediate value

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

A B IMM16 0x18
Nios II Processor Reference Handbook February 2014 Altera Corporation



Chapter 8: Instruction Set Reference 8–47
Instruction Set Reference
custom custom instruction
Operation: if c == 1

then rC ← fN(rA, rB, A, B, C)

else Ø ← fN(rA, rB, A, B, C)

Assembler Syntax: custom N, xC, xA, xB

Where xA means either general purpose register rA, or custom register cA.

Example: custom 0, c6, r7, r8

Description: The custom opcode provides access to up to 256 custom instructions allowed by the Nios II 
architecture. The function implemented by a custom instruction is user-defined and is specified 
with the Nios_II Processor parameter editor in Qsys. The 8-bit immediate N field specifies 
which custom instruction to use. Custom instructions can use up to two parameters, xA and 
xB, and can optionally write the result to a register xC.

Usage: To access a custom register inside the custom instruction logic, clear the bit readra, readrb, or 
writerc that corresponds to the register field. In assembler syntax, the notation cN refers to 
register N in the custom register file and causes the assembler to clear the c bit of the opcode. 
For example, custom 0, c3, r5, r0 performs custom instruction 0, operating on 
general-purpose registers r5 and r0, and stores the result in custom register 3.

Exceptions: None

Instruction Type: R

Instruction Fields: A = Register index of operand A

B = Register index of operand B

C = Register index of operand C

readra = 1 if instruction uses rA, 0 otherwise

readrb = 1 if instruction uses rB, 0 otherwise

writerc = 1 if instruction provides result for rC, 0 otherwise

N = 8-bit number that selects instruction

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

A B C

re
ad
ra

re
ad
rb

re
ad
rc

N 0x32
February 2014 Altera Corporation Nios II Processor Reference Handbook



8–48 Chapter 8: Instruction Set Reference
Instruction Set Reference
div divide
Operation: rC ← rA ÷ rB

Assembler Syntax: div rC, rA, rB

Example: div r6, r7, r8

Description: Treating rA and rB as signed integers, this instruction divides rA by rB and then stores the 
integer portion of the resulting quotient to rC. After attempted division by zero, the value of rC 
is undefined. There is no divide-by-zero exception. After dividing –2147483648 by –1, the 
value of rC is undefined (the number +2147483648 is not representable in 32 bits). There is 
no overflow exception. 

Nios II processors that do not implement the div instruction cause an unimplemented 
instruction exception.

Usage: Remainder of Division:

If the result of the division is defined, then the remainder can be computed in rD using the 
following instruction sequence:

div rC, rA, rB

mul rD, rC, rB

sub rD, rA, rD

# The original div operation

# rD = remainder

Exceptions: Division error

Unimplemented instruction

Instruction Type: R

Instruction Fields: A = Register index of operand rA

B = Register index of operand rB

C = Register index of operand rC

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

A B C 0x25 0 0x3a
Nios II Processor Reference Handbook February 2014 Altera Corporation



Chapter 8: Instruction Set Reference 8–49
Instruction Set Reference
divu divide unsigned
Operation: rC ← rA ÷ rB

Assembler Syntax: divu rC, rA, rB

Example: divu r6, r7, r8

Description: Treating rA and rB as unsigned integers, this instruction divides rA by rB and then stores the 
integer portion of the resulting quotient to rC. After attempted division by zero, the value of rC 
is undefined. There is no divide-by-zero exception.

Nios II processors that do not implement the divu instruction cause an unimplemented 
instruction exception.

Usage: Remainder of Division:

If the result of the division is defined, then the remainder can be computed in rD using the 
following instruction sequence:

divu rC, rA, rB

mul rD, rC, rB

sub rD, rA, rD

# The original divu operation

# rD = remainder

Exceptions: Division error

Unimplemented instruction

Instruction Type: R

Instruction Fields: A = Register index of operand rA

B = Register index of operand rB

C = Register index of operand rC

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

A B C 0x24 0 0x3a
February 2014 Altera Corporation Nios II Processor Reference Handbook



8–50 Chapter 8: Instruction Set Reference
Instruction Set Reference
eret exception return
Operation: status ← estatus

PC ← ea

Assembler Syntax: eret

Example: eret

Description: Copies the value of estatus into the status register, and transfers execution to the address in 
ea.

Usage: Use eret to return from traps, external interrupts, and other exception handling routines. Note 
that before returning from hardware interrupt exceptions, the exception handler must adjust the 
ea register.

Exceptions: Misaligned destination address

Supervisor-only instruction

Instruction Type: R

Instruction Fields: None

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0x1d 0x1e 0 0x01 0 0x3a
Nios II Processor Reference Handbook February 2014 Altera Corporation



Chapter 8: Instruction Set Reference 8–51
Instruction Set Reference
flushd flush data cache line
Operation: Flushes the data cache line associated with address rA + σ (IMM16).

Assembler Syntax: flushd IMM16(rA)

Example: flushd -100(r6)

Description: If the Nios II processor implements a direct mapped data cache, flushd writes the data cache 
line that is mapped to the specified address back to memory if the line is dirty, and then clears 
the data cache line. Unlike flushda, flushd writes the dirty data back to memory even when 
the addressed data is not currently in the cache. This process comprises the following steps:

■ Compute the effective address specified by the sum of rA and the signed 16-bit immediate 
value.

■ Identify the data cache line associated with the computed effective address. Each data cache 
effective address comprises a tag field and a line field. When identifying the data cache 
line, flushd ignores the tag field and only uses the line field to select the data cache line 
to clear. 

■ Skip comparing the cache line tag with the effective address to determine if the addressed 
data is currently cached. Because flushd ignores the cache line tag, flushd flushes the 
cache line regardless of whether the specified data location is currently cached.

■ If the data cache line is dirty, write the line back to memory. A cache line is dirty when one or 
more words of the cache line have been modified by the processor, but are not yet written to 
memory.

■ Clear the valid bit for the line.

If the Nios II processor core does not have a data cache, the flushd instruction performs no 
operation.

Usage: Use flushd to write dirty lines back to memory even if the addressed memory location is not in 
the cache, and then flush the cache line. By contrast, refer to “flushda flush data cache 
address” on page 8–52, “initd initialize data cache line” on page 8–55, and “initda initialize data 
cache address” on page 8–56 for other cache-clearing options.

For more information on data cache, refer to the Cache and Tightly Coupled Memory chapter of 
the Nios II Software Developer’s Handbook.

Exceptions: None

Instruction Type: I

Instruction Fields: A = Register index of operand rA

IMM16 = 16-bit signed immediate value

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

A 0 IMM16 0x3b
February 2014 Altera Corporation Nios II Processor Reference Handbook

http://www.altera.com/literature/hb/nios2/n2sw_nii52007.pdf


8–52 Chapter 8: Instruction Set Reference
Instruction Set Reference
flushda flush data cache address
Operation: Flushes the data cache line currently caching address rA + σ (IMM16)

Assembler Syntax: flushda IMM16(rA)

Example: flushda -100(r6)

Description: If the Nios II processor implements a direct mapped data cache, flushda writes the data cache 
line that is mapped to the specified address back to memory if the line is dirty, and then clears 
the data cache line. Unlike flushd, flushda writes the dirty data back to memory only when 
the addressed data is currently in the cache. This process comprises the following steps:

■ Compute the effective address specified by the sum of rA and the signed 16-bit immediate 
value.

■ Identify the data cache line associated with the computed effective address. Each data cache 
effective address comprises a tag field and a line field. When identifying the line, flushda 
uses both the tag field and the line field.

■ Compare the cache line tag with the effective address to determine if the addressed data is 
currently cached. If the tag fields do not match, the effective address is not currently 
cached, so the instruction does nothing.

■ If the data cache line is dirty and the tag fields match, write the dirty cache line back to 
memory. A cache line is dirty when one or more words of the cache line have been modified 
by the processor, but are not yet written to memory. 

■ Clear the valid bit for the line.

If the Nios II processor core does not have a data cache, the flushda instruction performs no 
operation.

Usage: Use flushda to write dirty lines back to memory only if the addressed memory location is 
currently in the cache, and then flush the cache line. By contrast, refer to “flushd flush data 
cache line” on page 8–51, “initd initialize data cache line” on page 8–55, and “initda initialize 
data cache address” on page 8–56 for other cache-clearing options.

For more information on the Nios II data cache, refer to the Cache and Tightly Coupled Memory 
chapter of the Nios II Software Developer’s Handbook.

Exceptions: Supervisor-only data address

Fast TLB miss (data)

Double TLB miss (data)

MPU region violation (data)

Instruction Type: I

Instruction Fields: A = Register index of operand rA

IMM16 = 16-bit signed immediate value

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

A 0 IMM16 0x1b
Nios II Processor Reference Handbook February 2014 Altera Corporation

http://www.altera.com/literature/hb/nios2/n2sw_nii52007.pdf


Chapter 8: Instruction Set Reference 8–53
Instruction Set Reference
flushi flush instruction cache line
Operation: Flushes the instruction cache line associated with address rA.

Assembler Syntax: flushi rA

Example: flushi r6

Description: Ignoring the tag, flushi identifies the instruction cache line associated with the byte address 
in rA, and invalidates that line. 

If the Nios II processor core does not have an instruction cache, the flushi instruction 
performs no operation.

For more information about the data cache, refer to the Cache and Tightly Coupled Memory 
chapter of the Nios II Software Developer’s Handbook.

Exceptions: None

Instruction Type: R

Instruction Fields: A = Register index of operand rA

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

A 0 0 0x0c 0 0x3a
February 2014 Altera Corporation Nios II Processor Reference Handbook

http://www.altera.com/literature/hb/nios2/n2sw_nii52007.pdf


8–54 Chapter 8: Instruction Set Reference
Instruction Set Reference
flushp flush pipeline
Operation: Flushes the processor pipeline of any prefetched instructions.

Assembler Syntax: flushp

Example: flushp

Description: Ensures that any instructions prefetched after the flushp instruction are removed from the 
pipeline. 

Usage: Use flushp before transferring control to newly updated instruction memory.

Exceptions: None

Instruction Type: R

Instruction Fields: None

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 0 0 0x04 0 0x3a
Nios II Processor Reference Handbook February 2014 Altera Corporation



Chapter 8: Instruction Set Reference 8–55
Instruction Set Reference
initd initialize data cache line
Operation: Initializes the data cache line associated with address rA + σ (IMM16).

Assembler Syntax: initd IMM16(rA)

Example: initd 0(r6)

Description: If the Nios II processor implements a direct mapped data cache, initd clears the data cache 
line without checking for (or writing) a dirty data cache line that is mapped to the specified 
address back to memory. Unlike initda, initd clears the cache line regardless of whether the 
addressed data is currently cached. This process comprises the following steps:

■ Compute the effective address specified by the sum of rA and the signed 16-bit immediate 
value.

■ Identify the data cache line associated with the computed effective address. Each data cache 
effective address comprises a tag field and a line field. When identifying the line, initd 
ignores the tag field and only uses the line field to select the data cache line to clear.

■ Skip comparing the cache line tag with the effective address to determine if the addressed 
data is currently cached. Because initd ignores the cache line tag, initd flushes the cache 
line regardless of whether the specified data location is currently cached.

■ Skip checking if the data cache line is dirty. Because initd skips the dirty cache line check, 
data that has been modified by the processor, but not yet written to memory is lost.

■ Clear the valid bit for the line.

If the Nios II processor core does not have a data cache, the initd instruction performs no 
operation.

Usage: Use initd after processor reset and before accessing data memory to initialize the processor’s 
data cache. Use initd with caution because it does not write back dirty data. By contrast, refer 
to “flushd flush data cache line” on page 8–51, “flushda flush data cache address” on 
page 8–52, and “initda initialize data cache address” on page 8–56 for other cache-clearing 
options. Altera recommends using initd only when the processor comes out of reset.

For more information on data cache, refer to the Cache and Tightly Coupled Memory chapter of 
the Nios II Software Developer’s Handbook.

Exceptions: Supervisor-only instruction

Instruction Type: I

Instruction Fields: A = Register index of operand rA

IMM16 = 16-bit signed immediate value

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

A 0 IMM16 0x33
February 2014 Altera Corporation Nios II Processor Reference Handbook

http://www.altera.com/literature/hb/nios2/n2sw_nii52007.pdf


8–56 Chapter 8: Instruction Set Reference
Instruction Set Reference
initda initialize data cache address
Operation: Initializes the data cache line currently caching address rA + σ (IMM16)

Assembler Syntax: initda IMM16(rA)

Example: initda -100(r6)

Description: If the Nios II processor implements a direct mapped data cache, initda clears the data cache 
line without checking for (or writing) a dirty data cache line that is mapped to the specified 
address back to memory. Unlike initd, initda clears the cache line only when the addressed 
data is currently cached. This process comprises the following steps:

■ Compute the effective address specified by the sum of rA and the signed 16-bit immediate 
value.

■ Identify the data cache line associated with the computed effective address. Each data cache 
effective address comprises a tag field and a line field. When identifying the line, initda 
uses both the tag field and the line field.

■ Compare the cache line tag with the effective address to determine if the addressed data is 
currently cached. If the tag fields do not match, the effective address is not currently 
cached, so the instruction does nothing.

■ Skip checking if the data cache line is dirty. Because initd skips the dirty cache line check, 
data that has been modified by the processor, but not yet written to memory is lost.

■ Clear the valid bit for the line.

If the Nios II processor core does not have a data cache, the initda instruction performs no 
operation.

Usage: Use initda to skip writing dirty lines back to memory and to flush the cache line only if the 
addressed memory location is currently in the cache. By contrast, refer to “flushd flush data 
cache line” on page 8–51, “flushda flush data cache address” on page 8–52, and “initd initialize 
data cache line” on page 8–55 for other cache-clearing options. Use initda with caution 
because it does not write back dirty data.

For more information on the Nios II data cache, refer to the Cache and Tightly Coupled Memory 
chapter of the Nios II Software Developer’s Handbook.

Exceptions: Supervisor-only data address

Fast TLB miss (data)

Double TLB miss (data)

MPU region violation (data)

Unimplemented instruction

Instruction Type: I

Instruction Fields: A = Register index of operand rA

IMM16 = 16-bit signed immediate value

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

A 0 IMM16 0x13
Nios II Processor Reference Handbook February 2014 Altera Corporation

http://www.altera.com/literature/hb/nios2/n2sw_nii52007.pdf


Chapter 8: Instruction Set Reference 8–57
Instruction Set Reference
initi initialize instruction cache line
Operation: Initializes the instruction cache line associated with address rA.

Assembler Syntax: initi rA

Example: initi r6

Description: Ignoring the tag, initi identifies the instruction cache line associated with the byte address in 
ra, and initi invalidates that line.

If the Nios II processor core does not have an instruction cache, the initi instruction 
performs no operation.

Usage: This instruction is used to initialize the processor’s instruction cache. Immediately after 
processor reset, use initi to invalidate each line of the instruction cache. 

For more information on instruction cache, refer to the Cache and Tightly Coupled Memory 
chapter of the Nios II Software Developer’s Handbook.

Exceptions: Supervisor-only instruction

Instruction Type: R

Instruction Fields: A = Register index of operand rA

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

A 0 0 0x29 0 0x3a
February 2014 Altera Corporation Nios II Processor Reference Handbook

http://www.altera.com/literature/hb/nios2/n2sw_nii52007.pdf


8–58 Chapter 8: Instruction Set Reference
Instruction Set Reference
jmp computed jump
Operation: PC ← rA

Assembler Syntax: jmp rA

Example: jmp r12

Description: Transfers execution to the address contained in register rA. 

Usage: It is illegal to jump to the address contained in register r31. To return from subroutines called 
by call or callr, use ret instead of jmp. 

Exceptions: Misaligned destination address

Instruction Type: R

Instruction Fields: A = Register index of operand rA

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

A 0 0 0x0d 0 0x3a
Nios II Processor Reference Handbook February 2014 Altera Corporation



Chapter 8: Instruction Set Reference 8–59
Instruction Set Reference
jmpi jump immediate
Operation: PC ← (PC31..28 : IMM26 × 4)

Assembler Syntax: jmpi label

Example: jmpi write_char

Description: Transfers execution to the instruction at address (PC31..28 : IMM26 × 4). 

Usage: jmpi is a low-overhead local jump. jmpi can transfer execution anywhere within the 256-MB 
range determined by PC31..28. The Nios II GNU linker does not automatically handle cases in 
which the address is out of this range.

Exceptions: None

Instruction Type: J

Instruction Fields: IMM26 = 26-bit unsigned immediate value

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

IMM26 0x01
February 2014 Altera Corporation Nios II Processor Reference Handbook



8–60 Chapter 8: Instruction Set Reference
Instruction Set Reference
ldb / ldbio load byte from memory or I/O peripheral
Operation: rB ← σ (Mem8[rA + σ (IMM16)])

Assembler Syntax: ldb rB, byte_offset(rA)

ldbio rB, byte_offset(rA)

Example: ldb r6, 100(r5)

Description: Computes the effective byte address specified by the sum of rA and the instruction's signed 
16-bit immediate value. Loads register rB with the desired memory byte, sign extending the 
8-bit value to 32 bits. In Nios II processor cores with a data cache, this instruction may retrieve 
the desired data from the cache instead of from memory.

Usage: Use the ldbio instruction for peripheral I/O. In processors with a data cache, ldbio bypasses 
the cache and is guaranteed to generate an Avalon-MM data transfer. In processors without a 
data cache, ldbio acts like ldb. 

For more information on data cache, refer to the Cache and Tightly Coupled Memory chapter of 
the Nios II Software Developer’s Handbook.

Exceptions: Supervisor-only data address

Misaligned data address

TLB permission violation (read)

Fast TLB miss (data)

Double TLB miss (data)

MPU region violation (data)

Instruction Type: I

Instruction Fields: A = Register index of operand rA

B = Register index of operand rB

IMM16 = 16-bit signed immediate value

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

A B IMM16 0x07

Instruction format for ldb

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

A B IMM16 0x27

Instruction format for ldbio
Nios II Processor Reference Handbook February 2014 Altera Corporation

http://www.altera.com/literature/hb/nios2/n2sw_nii52007.pdf


Chapter 8: Instruction Set Reference 8–61
Instruction Set Reference
ldbu / ldbuio load unsigned byte from memory or I/O peripheral
Operation: rB ← 0x000000 : Mem8[rA + σ (IMM16)]

Assembler Syntax: ldbu rB, byte_offset(rA)

ldbuio rB, byte_offset(rA)

Example: ldbu r6, 100(r5)

Description: Computes the effective byte address specified by the sum of rA and the instruction's signed 
16-bit immediate value. Loads register rB with the desired memory byte, zero extending the 
8-bit value to 32 bits. 

Usage: In processors with a data cache, this instruction may retrieve the desired data from the cache 
instead of from memory. Use the ldbuio instruction for peripheral I/O. In processors with a 
data cache, ldbuio bypasses the cache and is guaranteed to generate an Avalon-MM data 
transfer. In processors without a data cache, ldbuio acts like ldbu. 

For more information on data cache, refer to the Cache and Tightly Coupled Memory chapter of 
the Nios II Software Developer’s Handbook.

Exceptions: Supervisor-only data address

Misaligned data address

TLB permission violation (read)

Fast TLB miss (data)

Double TLB miss (data)

MPU region violation (data)

Instruction Type: I

Instruction Fields: A = Register index of operand rA 

B = Register index of operand rB

IMM16 = 16-bit signed immediate value

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

A B IMM16 0x03

Instruction format for ldbu

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

A B IMM16 0x23

Instruction format for ldbuio
February 2014 Altera Corporation Nios II Processor Reference Handbook

http://www.altera.com/literature/hb/nios2/n2sw_nii52007.pdf


8–62 Chapter 8: Instruction Set Reference
Instruction Set Reference
ldh / ldhio load halfword from memory or I/O peripheral
Operation: rB ← σ (Mem16[rA + σ (IMM16)])

Assembler Syntax: ldh rB, byte_offset(rA)

ldhio rB, byte_offset(rA)

Example: ldh r6, 100(r5)

Description: Computes the effective byte address specified by the sum of rA and the instruction's signed 
16-bit immediate value. Loads register rB with the memory halfword located at the effective byte 
address, sign extending the 16-bit value to 32 bits. The effective byte address must be halfword 
aligned. If the byte address is not a multiple of 2, the operation is undefined. 

Usage: In processors with a data cache, this instruction may retrieve the desired data from the cache 
instead of from memory. Use the ldhio instruction for peripheral I/O. In processors with a data 
cache, ldhio bypasses the cache and is guaranteed to generate an Avalon-MM data transfer. In 
processors without a data cache, ldhio acts like ldh.

For more information on data cache, refer to the Cache and Tightly Coupled Memory chapter of 
the Nios II Software Developer’s Handbook.

Exceptions: Supervisor-only data address

Misaligned data address

TLB permission violation (read)

Fast TLB miss (data)

Double TLB miss (data)

MPU region violation (data)

Instruction Type: I

Instruction Fields: A = Register index of operand rA 

B = Register index of operand rB

IMM16 = 16-bit signed immediate value

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

A B IMM16 0x0f

Instruction format for ldh

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

A B IMM16 0x2f

Instruction format for ldhio
Nios II Processor Reference Handbook February 2014 Altera Corporation

http://www.altera.com/literature/hb/nios2/n2sw_nii52007.pdf


Chapter 8: Instruction Set Reference 8–63
Instruction Set Reference
ldhu / ldhuio load unsigned halfword from memory or I/O peripheral
Operation: rB ← 0x0000 : Mem16[rA + σ (IMM16)]

Assembler Syntax: ldhu rB, byte_offset(rA)

ldhuio rB, byte_offset(rA)

Example: ldhu r6, 100(r5)

Description: Computes the effective byte address specified by the sum of rA and the instruction's signed 
16-bit immediate value. Loads register rB with the memory halfword located at the effective 
byte address, zero extending the 16-bit value to 32 bits. The effective byte address must be 
halfword aligned. If the byte address is not a multiple of 2, the operation is undefined.

Usage: In processors with a data cache, this instruction may retrieve the desired data from the cache 
instead of from memory. Use the ldhuio instruction for peripheral I/O. In processors with a 
data cache, ldhuio bypasses the cache and is guaranteed to generate an Avalon-MM data 
transfer. In processors without a data cache, ldhuio acts like ldhu. 

For more information on data cache, refer to the Cache and Tightly Coupled Memory chapter of 
the Nios II Software Developer’s Handbook.

Exceptions: Supervisor-only data address

Misaligned data address

TLB permission violation (read)

Fast TLB miss (data)

Double TLB miss (data)

MPU region violation (data)

Instruction Type: I

Instruction Fields: A = Register index of operand rA

B = Register index of operand rB

IMM16 = 16-bit signed immediate value

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

A B IMM16 0x0b

Instruction format for ldhu

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

A B IMM16 0x2b

Instruction format for ldhuio
February 2014 Altera Corporation Nios II Processor Reference Handbook

http://www.altera.com/literature/hb/nios2/n2sw_nii52007.pdf


8–64 Chapter 8: Instruction Set Reference
Instruction Set Reference
ldw / ldwio load 32-bit word from memory or I/O peripheral
Operation: rB ← Mem32[rA + σ (IMM14)]

Assembler Syntax: ldw rB, byte_offset(rA)

ldwio rB, byte_offset(rA)

Example: ldw r6, 100(r5)

Description: Computes the effective byte address specified by the sum of rA and the instruction's signed 
16-bit immediate value. Loads register rB with the memory word located at the effective byte 
address. The effective byte address must be word aligned. If the byte address is not a multiple 
of 4, the operation is undefined.

Usage: In processors with a data cache, this instruction may retrieve the desired data from the cache 
instead of from memory. Use the ldwio instruction for peripheral I/O. In processors with a data 
cache, ldwio bypasses the cache and memory. Use the ldwio instruction for peripheral I/O. In 
processors with a data cache, ldwio bypasses the cache and is guaranteed to generate an 
Avalon-MM data transfer. In processors without a data cache, ldwio acts like ldw.

For more information on data cache, refer to the Cache and Tightly Coupled Memory chapter of 
the Nios II Software Developer’s Handbook.

Exceptions: Supervisor-only data address

Misaligned data address

TLB permission violation (read)

Fast TLB miss (data)

Double TLB miss (data)

MPU region violation (data)

Instruction Type: I

Instruction Fields: A = Register index of operand rA

B = Register index of operand rB

IMM16 = 16-bit signed immediate value

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

A B IMM16 0x17

Instruction format for ldw

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

A B IMM16 0x37

Instruction format for ldwio
Nios II Processor Reference Handbook February 2014 Altera Corporation

http://www.altera.com/literature/hb/nios2/n2sw_nii52007.pdf


Chapter 8: Instruction Set Reference 8–65
Instruction Set Reference
mov move register to register
Operation: rC ← rA

Assembler Syntax: mov rC, rA

Example: mov r6, r7

Description: Moves the contents of rA to rC. 

Pseudo-instruction: mov is implemented as add rC, rA, r0.
February 2014 Altera Corporation Nios II Processor Reference Handbook



8–66 Chapter 8: Instruction Set Reference
Instruction Set Reference
movhi move immediate into high halfword
Operation: rB ← (IMMED : 0x0000)

Assembler Syntax: movhi rB, IMMED

Example: movhi r6, 0x8000

Description: Writes the immediate value IMMED into the high halfword of rB, and clears the lower halfword 
of rB to 0x0000. 

Usage: The maximum allowed value of IMMED is 65535. The minimum allowed value is 0. To load a 
32-bit constant into a register, first load the upper 16 bits using a movhi pseudo-instruction. 
The %hi() macro can be used to extract the upper 16 bits of a constant or a label. Then, load 
the lower 16 bits with an ori instruction. The %lo() macro can be used to extract the lower 
16 bits of a constant or label as shown in the following code:

movhi rB, %hi(value)

ori rB, rB, %lo(value)

An alternative method to load a 32-bit constant into a register uses the %hiadj() macro and the 
addi instruction as shown in the following code:

movhi rB, %hiadj(value)

addi rB, rB, %lo(value)

Pseudo-instruction: movhi is implemented as orhi rB, r0, IMMED.
Nios II Processor Reference Handbook February 2014 Altera Corporation



Chapter 8: Instruction Set Reference 8–67
Instruction Set Reference
movi move signed immediate into word
Operation: rB ← σ (IMMED)

Assembler Syntax: movi rB, IMMED

Example: movi r6, -30

Description: Sign-extends the immediate value IMMED to 32 bits and writes it to rB. 

Usage: The maximum allowed value of IMMED is 32767. The minimum allowed value is

–32768. To load a 32-bit constant into a register, refer to the movhi instruction.

Pseudo-instruction: movi is implemented as addi rB, r0, IMMED.
February 2014 Altera Corporation Nios II Processor Reference Handbook



8–68 Chapter 8: Instruction Set Reference
Instruction Set Reference
movia move immediate address into word 
Operation: rB ← label

Assembler Syntax: movia rB, label

Example: movia r6, function_address

Description: Writes the address of label to rB. 

Pseudo-instruction: movia is implemented as:

orhi rB, r0, %hiadj(label)

addi rB, rB, %lo(label)
Nios II Processor Reference Handbook February 2014 Altera Corporation



Chapter 8: Instruction Set Reference 8–69
Instruction Set Reference
movui move unsigned immediate into word
Operation: rB ← (0x0000 : IMMED)

Assembler Syntax: movui rB, IMMED

Example: movui r6, 100

Description: Zero-extends the immediate value IMMED to 32 bits and writes it to rB. 

Usage: The maximum allowed value of IMMED is 65535. The minimum allowed value is 0. To load a 
32-bit constant into a register, refer to the movhi instruction.

Pseudo-instruction: movui is implemented as ori rB, r0, IMMED.
February 2014 Altera Corporation Nios II Processor Reference Handbook



8–70 Chapter 8: Instruction Set Reference
Instruction Set Reference
mul multiply
Operation: rC ← (rA × rB) 31..0

Assembler Syntax: mul rC, rA, rB

Example: mul r6, r7, r8

Description: Multiplies rA times rB and stores the 32 low-order bits of the product to rC. The result is the 
same whether the operands are treated as signed or unsigned integers. 

Nios II processors that do not implement the mul instruction cause an unimplemented 
instruction exception.

Usage: Carry Detection (unsigned operands): 

Before or after the multiply operation, the carry out of the MSB of rC can be detected using the 
following instruction sequence:

mul rC, rA, rB

mulxuu rD, rA, rB

cmpne rD, rD, r0

# The mul operation (optional)

# rD is nonzero if carry occurred

# rD is 1 if carry occurred, 0 if not

The mulxuu instruction writes a nonzero value into rD if the multiplication of unsigned 
numbers generates a carry (unsigned overflow). If a 0/1 result is desired, follow the mulxuu 
with the cmpne instruction. 

Overflow Detection (signed operands): 

After the multiply operation, overflow can be detected using the following instruction sequence:

mul rC, rA, rB

cmplt rD, rC, r0

mulxss rE, rA, rB

add rD, rD, rE

cmpne rD, rD, r0

# The original mul operation

# rD is nonzero if overflow

# rD is 1 if overflow, 0 if not

The cmplt–mulxss–add instruction sequence writes a nonzero value into rD if the product in 
rC cannot be represented in 32 bits (signed overflow). If a 0/1 result is desired, follow the 
instruction sequence with the cmpne instruction.

Exceptions: Unimplemented instruction

Instruction Type: R

Instruction Fields: A = Register index of operand rA

B = Register index of operand rB

C = Register index of operand rC

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

A B C 0x27 0 0x3a
Nios II Processor Reference Handbook February 2014 Altera Corporation



Chapter 8: Instruction Set Reference 8–71
Instruction Set Reference
muli multiply immediate
Operation: rB ← (rA × σ(IMM16)) 31..0

Assembler Syntax: muli rB, rA, IMM16

Example: muli r6, r7, -100

Description: Sign-extends the 16-bit immediate value IMM16 to 32 bits and multiplies it by the value of rA. 
Stores the 32 low-order bits of the product to rB. The result is independent of whether rA is 
treated as a signed or unsigned number. 

Nios II processors that do not implement the muli instruction cause an unimplemented 
instruction exception.

Carry Detection and Overflow Detection:

For a discussion of carry and overflow detection, refer to the mul instruction.

Exceptions: Unimplemented instruction

Instruction Type: I

Instruction Fields: A = Register index of operand rA 

B = Register index of operand rB

IMM16 = 16-bit signed immediate value

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

A B IMM16 0x24
February 2014 Altera Corporation Nios II Processor Reference Handbook



8–72 Chapter 8: Instruction Set Reference
Instruction Set Reference
mulxss multiply extended signed/signed
Operation: rC ← ((signed) rA) × ((signed) rB)) 63..32

Assembler Syntax: mulxss rC, rA, rB

Example: mulxss r6, r7, r8

Description: Treating rA and rB as signed integers, mulxss multiplies rA times rB, and stores the 32 
high-order bits of the product to rC. 

Nios II processors that do not implement the mulxss instruction cause an unimplemented 
instruction exception.

Usage: Use mulxss and mul to compute the full 64-bit product of two 32-bit signed integers. 
Furthermore, mulxss can be used as part of the calculation of a 128-bit product of two 64-bit 
signed integers. Given two 64-bit integers, each contained in a pair of 32-bit registers, 
(S1 : U1) and (S2 : U2), their 128-bit product is (U1 × U2) + ((S1 × U2) << 32) + ((U1 × S2) << 
32) + ((S1 × S2) << 64). The mulxss and mul instructions are used to calculate the 64-bit 
product S1 × S2.

Exceptions: Unimplemented instruction

Instruction Type: R

Instruction Fields: A = Register index of operand rA

B = Register index of operand rB

C = Register index of operand rC

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

A B C 0x1f 0 0x3a
Nios II Processor Reference Handbook February 2014 Altera Corporation



Chapter 8: Instruction Set Reference 8–73
Instruction Set Reference
mulxsu multiply extended signed/unsigned
Operation: rC ← ((signed) rA) × ((unsigned) rB)) 63..32

Assembler Syntax: mulxsu rC, rA, rB

Example: mulxsu r6, r7, r8

Description: Treating rA as a signed integer and rB as an unsigned integer, mulxsu multiplies rA times rB, 
and stores the 32 high-order bits of the product to rC. 

Nios II processors that do not implement the mulxsu instruction cause an unimplemented 
instruction exception.

Usage: mulxsu can be used as part of the calculation of a 128-bit product of two 64-bit signed 
integers. Given two 64-bit integers, each contained in a pair of 32-bit registers, (S1 : U1) and 
(S2 : U2), their 128-bit product is: (U1 × U2) + ((S1 × U2) << 32) + ((U1 × S2) << 32) + ((S1 × 
S2) << 64). The mulxsu and mul instructions are used to calculate the two 64-bit products S1 
× U2 and U1 × S2.

Exceptions: Unimplemented instruction

Instruction Type: R

Instruction Fields: A = Register index of operand rA

B = Register index of operand rB

C = Register index of operand rC

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

A B C 0x17 0 0x3a
February 2014 Altera Corporation Nios II Processor Reference Handbook



8–74 Chapter 8: Instruction Set Reference
Instruction Set Reference
mulxuu multiply extended unsigned/unsigned
Operation: rC ← ((unsigned) rA) × ((unsigned) rB)) 63..32

Assembler Syntax: mulxuu rC, rA, rB

Example: mulxuu r6, r7, r8

Description: Treating rA and rB as unsigned integers, mulxuu multiplies rA times rB and stores the 32 
high-order bits of the product to rC. 

Nios II processors that do not implement the mulxuu instruction cause an unimplemented 
instruction exception.

Usage: Use mulxuu and mul to compute the 64-bit product of two 32-bit unsigned integers. 
Furthermore, mulxuu can be used as part of the calculation of a 128-bit product of two 64-bit 
signed integers. Given two 64-bit signed integers, each contained in a pair of 32-bit registers, 
(S1 : U1) and (S2 : U2), their 128-bit product is (U1 × U2) + ((S1 × U2) << 32) + ((U1 × S2) << 
32) + ((S1 × S2) << 64). The mulxuu and mul instructions are used to calculate the 64-bit 
product U1 × U2.

mulxuu also can be used as part of the calculation of a 128-bit product of two 64-bit unsigned 
integers. Given two 64-bit unsigned integers, each contained in a pair of 32-bit registers, (T1 : 
U1) and (T2 : U2), their 128-bit product is (U1 × U2) + ((U1 × T2) << 32) + ((T1 × U2) << 32) + 
((T1 × T2) << 64). The mulxuu and mul instructions are used to calculate the four 64-bit 
products U1 × U2, U1 × T2, T1 × U2, and T1 × T2.

Exceptions: Unimplemented instruction

Instruction Type: R

Instruction Fields: A = Register index of operand rA

B = Register index of operand rB

C = Register index of operand rC

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

A B C 0x07 0 0x3a
Nios II Processor Reference Handbook February 2014 Altera Corporation



Chapter 8: Instruction Set Reference 8–75
Instruction Set Reference
nextpc get address of following instruction
Operation: rC ← PC + 4

Assembler Syntax: nextpc rC

Example: nextpc r6

Description: Stores the address of the next instruction to register rC. 

Usage: A relocatable code fragment can use nextpc to calculate the address of its data segment. 
nextpc is the only way to access the PC directly.

Exceptions: None

Instruction Type: R

Instruction Fields: C = Register index of operand rC

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 0 C 0x1c 0 0x3a
February 2014 Altera Corporation Nios II Processor Reference Handbook



8–76 Chapter 8: Instruction Set Reference
Instruction Set Reference
nop no operation
Operation: None 

Assembler Syntax: nop

Example: nop

Description: nop does nothing. 

Pseudo-instruction: nop is implemented as add r0, r0, r0.
Nios II Processor Reference Handbook February 2014 Altera Corporation



Chapter 8: Instruction Set Reference 8–77
Instruction Set Reference
nor bitwise logical nor
Operation: rC ← ~(rA | rB)

Assembler Syntax: nor rC, rA, rB

Example: nor r6, r7, r8

Description: Calculates the bitwise logical NOR of rA and rB and stores the result in rC.

Exceptions: None

Instruction Type: R

Instruction Fields: A = Register index of operand rA

B = Register index of operand rB

C = Register index of operand rC

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

A B C 0x06 0 0x3a
February 2014 Altera Corporation Nios II Processor Reference Handbook



8–78 Chapter 8: Instruction Set Reference
Instruction Set Reference
or bitwise logical or
Operation: rC ← rA | rB

Assembler Syntax: or rC, rA, rB

Example: or r6, r7, r8

Description: Calculates the bitwise logical OR of rA and rB and stores the result in rC.

Exceptions: None

Instruction Type: R

Instruction Fields: A = Register index of operand rA

B = Register index of operand rB

C = Register index of operand rC

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

A B C 0x16 0 0x3a
Nios II Processor Reference Handbook February 2014 Altera Corporation



Chapter 8: Instruction Set Reference 8–79
Instruction Set Reference
orhi bitwise logical or immediate into high halfword
Operation: rB ← rA | (IMM16 : 0x0000)

Assembler Syntax: orhi rB, rA, IMM16

Example: orhi r6, r7, 100

Description: Calculates the bitwise logical OR of rA and (IMM16 : 0x0000) and stores the result in rB.

Exceptions: None

Instruction Type: I

Instruction Fields: A = Register index of operand rA

B = Register index of operand rB

IMM16 = 16-bit signed immediate value

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

A B IMM16 0x34
February 2014 Altera Corporation Nios II Processor Reference Handbook



8–80 Chapter 8: Instruction Set Reference
Instruction Set Reference
ori bitwise logical or immediate
Operation: rB ← rA | (0x0000 : IMM16)

Assembler Syntax: ori rB, rA, IMM16

Example: ori r6, r7, 100

Description: Calculates the bitwise logical OR of rA and (0x0000 : IMM16) and stores the result in rB.

Exceptions: None

Instruction Type: I

Instruction Fields: A = Register index of operand rA 

B = Register index of operand rB

IMM16 = 16-bit unsigned immediate value

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

A B IMM16 0x14
Nios II Processor Reference Handbook February 2014 Altera Corporation



Chapter 8: Instruction Set Reference 8–81
Instruction Set Reference
rdctl read from control register
Operation: rC ← ctlN

Assembler Syntax: rdctl rC, ctlN

Example: rdctl r3, ctl31

Description: Reads the value contained in control register ctlN and writes it to register rC.

Exceptions: Supervisor-only instruction

Instruction Type: R

Instruction Fields: C = Register index of operand rC

N = Control register index of operand ctlN

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 0 C 0x26 N 0x3a
February 2014 Altera Corporation Nios II Processor Reference Handbook



8–82 Chapter 8: Instruction Set Reference
Instruction Set Reference
rdprs read from previous register set
Operation: rB ← prs.rA + σ (IMM16)

Assembler Syntax: rdprs rB, rA, IMM16

Example: rdprs r6, r7, 0

Description: Sign-extends the 16-bit immediate value IMM16 to 32 bits, and adds it to the value of rA from 
the previous register set. Places the result in rB in the current register set.

Usage: The previous register set is specified by status.PRS. By default, status.PRS indicates 
the register set in use before an exception, such as an external interrupt, caused a 
register set change.

To read from an arbitrary register set, software can insert the desired register set number in 
status.PRS prior to executing rdprs. 

If shadow register sets are not implemented on the Nios II core, rdprs is an illegal instruction.

Exceptions: Supervisor-only instruction

Illegal instruction

Instruction Type: I

Instruction Fields: A = Register index of operand rA 

B = Register index of operand rB

IMM16 = 16-bit signed immediate value

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

A B IMM16 0x38
Nios II Processor Reference Handbook February 2014 Altera Corporation



Chapter 8: Instruction Set Reference 8–83
Instruction Set Reference
ret return from subroutine
Operation: PC ← ra

Assembler Syntax: ret

Example: ret

Description: Transfers execution to the address in ra. 

Usage: Any subroutine called by call or callr must use ret to return. 

Exceptions: Misaligned destination address

Instruction Type: R

Instruction Fields: None

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0x1f 0 0 0x05 0 0x3a
February 2014 Altera Corporation Nios II Processor Reference Handbook



8–84 Chapter 8: Instruction Set Reference
Instruction Set Reference
rol rotate left
Operation: rC ← rA rotated left rB4..0 bit positions

Assembler Syntax: rol rC, rA, rB

Example: rol r6, r7, r8

Description: Rotates rA left by the number of bits specified in rB4..0 and stores the result in rC. The bits that 
shift out of the register rotate into the least-significant bit positions. Bits 31–5 of rB are 
ignored.

Exceptions: None

Instruction Type: R

Instruction Fields: A = Register index of operand rA 

B = Register index of operand rB

C = Register index of operand rC

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

A B C 0x03 0 0x3a
Nios II Processor Reference Handbook February 2014 Altera Corporation



Chapter 8: Instruction Set Reference 8–85
Instruction Set Reference
roli rotate left immediate
Operation: rC ← rA rotated left IMM5 bit positions

Assembler Syntax: roli rC, rA, IMM5

Example: roli r6, r7, 3

Description: Rotates rA left by the number of bits specified in IMM5 and stores the result in rC. The bits that 
shift out of the register rotate into the least-significant bit positions.

Usage: In addition to the rotate-left operation, roli can be used to implement a rotate-right operation. 
Rotating left by (32 – IMM5) bits is the equivalent of rotating right by IMM5 bits. 

Exceptions: None

Instruction Type: R

Instruction Fields: A = Register index of operand rA 

C = Register index of operand rC

IMM5 = 5-bit unsigned immediate value

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

A 0 C 0x02 IMM5 0x3a
February 2014 Altera Corporation Nios II Processor Reference Handbook



8–86 Chapter 8: Instruction Set Reference
Instruction Set Reference
ror rotate right
Operation: rC ← rA rotated right rB4..0 bit positions

Assembler Syntax: ror rC, rA, rB

Example: ror r6, r7, r8

Description: Rotates rA right by the number of bits specified in rB4..0 and stores the result in rC. The bits that 
shift out of the register rotate into the most-significant bit positions. Bits 31– 5 of rB are 
ignored.

Exceptions: None

Instruction Type: R

Instruction Fields: A = Register index of operand rA 

B = Register index of operand rB

C = Register index of operand rC

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

A B C 0x0b 0 0x3a
Nios II Processor Reference Handbook February 2014 Altera Corporation



Chapter 8: Instruction Set Reference 8–87
Instruction Set Reference
sll shift left logical
Operation: rC ← rA << (rB4..0)

Assembler Syntax: sll rC, rA, rB

Example: sll r6, r7, r8

Description: Shifts rA left by the number of bits specified in rB4..0 (inserting zeroes), and then stores the 
result in rC. sll performs the << operation of the C programming language. 

Exceptions: None

Instruction Type: R

Instruction Fields: A = Register index of operand rA 

B = Register index of operand rB

C = Register index of operand rC

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

A B C 0x13 0 0x3a
February 2014 Altera Corporation Nios II Processor Reference Handbook



8–88 Chapter 8: Instruction Set Reference
Instruction Set Reference
slli shift left logical immediate
Operation: rC ← rA << IMM5

Assembler Syntax: slli rC, rA, IMM5

Example: slli r6, r7, 3

Description: Shifts rA left by the number of bits specified in IMM5 (inserting zeroes), and then stores the 
result in rC.

Usage: slli performs the << operation of the C programming language. 

 

Exceptions: None

Instruction Type: R 

Instruction Fields: A = Register index of operand rA 

C = Register index of operand rC

IMM5 = 5-bit unsigned immediate value

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

A 0 C 0x12 IMM5 0x3a
Nios II Processor Reference Handbook February 2014 Altera Corporation



Chapter 8: Instruction Set Reference 8–89
Instruction Set Reference
sra shift right arithmetic
Operation: rC ← (signed) rA >> ((unsigned) rB4..0)

Assembler Syntax: sra rC, rA, rB

Example: sra r6, r7, r8

Description: Shifts rA right by the number of bits specified in rB4..0 (duplicating the sign bit), and then stores 
the result in rC. Bits 31–5 are ignored.

Usage: sra performs the signed >> operation of the C programming language.

Exceptions: None

Instruction Type: R

Instruction Fields: A = Register index of operand rA 

B = Register index of operand rB

C = Register index of operand rC

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

A B C 0x3b 0 0x3a
February 2014 Altera Corporation Nios II Processor Reference Handbook



8–90 Chapter 8: Instruction Set Reference
Instruction Set Reference
srai shift right arithmetic immediate
Operation: rC ← (signed) rA >> ((unsigned) IMM5)

Assembler Syntax: srai rC, rA, IMM5

Example: srai r6, r7, 3

Description: Shifts rA right by the number of bits specified in IMM5 (duplicating the sign bit), and then 
stores the result in rC.

Usage: srai performs the signed >> operation of the C programming language. 

Exceptions: None

Instruction Type: R 

Instruction Fields: A = Register index of operand rA

C = Register index of operand rC

IMM5 = 5-bit unsigned immediate value

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

A 0 C 0x3a IMM5 0x3a
Nios II Processor Reference Handbook February 2014 Altera Corporation



Chapter 8: Instruction Set Reference 8–91
Instruction Set Reference
srl shift right logical
Operation: rC ← (unsigned) rA >> ((unsigned) rB4..0)

Assembler Syntax: srl rC, rA, rB

Example: srl r6, r7, r8

Description: Shifts rA right by the number of bits specified in rB4..0 (inserting zeroes), and then stores the 
result in rC. Bits 31–5 are ignored.

Usage: srl performs the unsigned >> operation of the C programming language. 

Exceptions: None

Instruction Type: R

Instruction Fields: A = Register index of operand rA

B = Register index of operand rB

C = Register index of operand rC

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

A B C 0x1b 0 0x3a
February 2014 Altera Corporation Nios II Processor Reference Handbook



8–92 Chapter 8: Instruction Set Reference
Instruction Set Reference
srli shift right logical immediate
Operation: rC ← (unsigned) rA >> ((unsigned) IMM5)

Assembler Syntax: srli rC, rA, IMM5

Example: srli r6, r7, 3

Description: Shifts rA right by the number of bits specified in IMM5 (inserting zeroes), and then stores the 
result in rC.

Usage: srli performs the unsigned >> operation of the C programming language. 

Exceptions: None

Instruction Type: R 

Instruction Fields: A = Register index of operand rA 

C = Register index of operand rC

IMM5 = 5-bit unsigned immediate value

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

A 0 C 0x1a IMM5 0x3a
Nios II Processor Reference Handbook February 2014 Altera Corporation



Chapter 8: Instruction Set Reference 8–93
Instruction Set Reference
stb / stbio store byte to memory or I/O peripheral
Operation: Mem8[rA + σ (IMM16)] ← rB7..0

Assembler Syntax: stb rB, byte_offset(rA)

stbio rB, byte_offset(rA)

Example: stb r6, 100(r5)

Description: Computes the effective byte address specified by the sum of rA and the instruction's signed 
16-bit immediate value. Stores the low byte of rB to the memory byte specified by the effective 
address. 

Usage: In processors with a data cache, this instruction may not generate an Avalon-MM bus cycle to 
noncache data memory immediately. Use the stbio instruction for peripheral I/O. In 
processors with a data cache, stbio bypasses the cache and is guaranteed to generate an 
Avalon-MM data transfer. In processors without a data cache, stbio acts like stb.

Exceptions: Supervisor-only data address

Misaligned data address

TLB permission violation (write)

Fast TLB miss (data)

Double TLB miss (data)

MPU region violation (data)

Instruction Type: I

Instruction Fields: A = Register index of operand rA

B = Register index of operand rB

IMM16 = 16-bit signed immediate value

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

A B IMM16 0x05

Instruction format for stb

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

A B IMM16 0x25

Instruction format for stbio
February 2014 Altera Corporation Nios II Processor Reference Handbook



8–94 Chapter 8: Instruction Set Reference
Instruction Set Reference
sth / sthio store halfword to memory or I/O peripheral
Operation: Mem16[rA + σ (IMM16)] ← rB15..0

Assembler Syntax: sth rB, byte_offset(rA)

sthio rB, byte_offset(rA)

Example: sth r6, 100(r5)

Description: Computes the effective byte address specified by the sum of rA and the instruction's signed 
16-bit immediate value. Stores the low halfword of rB to the memory location specified by the 
effective byte address. The effective byte address must be halfword aligned. If the byte address 
is not a multiple of 2, the operation is undefined. 

Usage: In processors with a data cache, this instruction may not generate an Avalon-MM data transfer 
immediately. Use the sthio instruction for peripheral I/O. In processors with a data cache, 
sthio bypasses the cache and is guaranteed to generate an Avalon-MM data transfer. In 
processors without a data cache, sthio acts like sth. 

 

Exceptions: Supervisor-only data address

Misaligned data address

TLB permission violation (write)

Fast TLB miss (data)

Double TLB miss (data)

MPU region violation (data)

Instruction Type: I

Instruction Fields: A = Register index of operand rA 

B = Register index of operand rB

IMM16 = 16-bit signed immediate value

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

A B IMM16 0x0d

Instruction format for sth

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

A B IMM16 0x2d

Instruction format for sthio
Nios II Processor Reference Handbook February 2014 Altera Corporation



Chapter 8: Instruction Set Reference 8–95
Instruction Set Reference
stw / stwio store word to memory or I/O peripheral
Operation: Mem32[rA + σ (IMM16)] ← rB

Assembler Syntax: stw rB, byte_offset(rA)

stwio rB, byte_offset(rA)

Example: stw r6, 100(r5)

Description: Computes the effective byte address specified by the sum of rA and the instruction's signed 
16-bit immediate value. Stores rB to the memory location specified by the effective byte 
address. The effective byte address must be word aligned. If the byte address is not a multiple 
of 4, the operation is undefined.

Usage: In processors with a data cache, this instruction may not generate an Avalon-MM data transfer 
immediately. Use the stwio instruction for peripheral I/O. In processors with a data cache, 
stwio bypasses the cache and is guaranteed to generate an Avalon-MM bus cycle. In 
processors without a data cache, stwio acts like stw.

Exceptions: Supervisor-only data address

Misaligned data address

TLB permission violation (write)

Fast TLB miss (data)

Double TLB miss (data)

MPU region violation (data)

Instruction Type: I

Instruction Fields: A = Register index of operand rA 

B = Register index of operand rB

IMM16 = 16-bit signed immediate value 

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

A B IMM16 0x15

Instruction format for stw

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

A B IMM16 0x35

Instruction format for stwio
February 2014 Altera Corporation Nios II Processor Reference Handbook



8–96 Chapter 8: Instruction Set Reference
Instruction Set Reference
sub subtract
Operation: rC ← rA – rB

Assembler Syntax: sub rC, rA, rB

Example: sub r6, r7, r8

Description: Subtract rB from rA and store the result in rC.

Usage: Carry Detection (unsigned operands): 

The carry bit indicates an unsigned overflow. Before or after a sub operation, a carry out of 
the MSB can be detected by checking whether the first operand is less than the second 
operand. The carry bit can be written to a register, or a conditional branch can be taken based 
on the carry condition. Both cases are shown in the following code:

sub rC, rA, rB

cmpltu rD, rA, rB

sub rC, rA, rB

bltu rA, rB, label

# The original sub operation (optional)

# rD is written with the carry bit

# The original sub operation (optional) 

# Branch if carry generated

Overflow Detection (signed operands): 

Detect overflow of signed subtraction by comparing the sign of the difference that is written 
to rC with the signs of the operands. If rA and rB have different signs, and the sign of rC is 
different than the sign of rA, an overflow occurred. The overflow condition can control a 
conditional branch, as shown in the following code: 

sub rC, rA, rB 

xor rD, rA, rB 

xor rE, rA, rC 

and rD, rD, rE 

blt rD, r0, label

# The original sub operation

# Compare signs of rA and rB

# Compare signs of rA and rC

# Combine comparisons

# Branch if overflow occurred

Exceptions: None

Instruction Type: R

Instruction Fields: A = Register index of operand rA

B = Register index of operand rB

C = Register index of operand rC

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

A B C 0x39 0 0x3a
Nios II Processor Reference Handbook February 2014 Altera Corporation



Chapter 8: Instruction Set Reference 8–97
Instruction Set Reference
subi subtract immediate
Operation: rB ← rA – σ (IMMED)

Assembler Syntax: subi rB, rA, IMMED 

Example: subi r8, r8, 4

Description: Sign-extends the immediate value IMMED to 32 bits, subtracts it from the value of rA and then 
stores the result in rB.

Usage: The maximum allowed value of IMMED is 32768. The minimum allowed value is 

–32767. 

Pseudo-instruction: subi is implemented as addi rB, rA, -IMMED
February 2014 Altera Corporation Nios II Processor Reference Handbook



8–98 Chapter 8: Instruction Set Reference
Instruction Set Reference
sync memory synchronization
Operation: None

Assembler Syntax: sync

Example: sync

Description: Forces all pending memory accesses to complete before allowing execution of subsequent 
instructions. In processor cores that support in-order memory accesses only, this instruction 
performs no operation.

Exceptions: None

Instruction Type: R

Instruction Fields: None

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 0 0 0x36 0 0x3a
Nios II Processor Reference Handbook February 2014 Altera Corporation



Chapter 8: Instruction Set Reference 8–99
Instruction Set Reference
trap trap
Operation: estatus ← status

PIE ← 0

U ← 0

ea ← PC + 4

PC ← exception handler address

Assembler Syntax: trap

trap imm5

Example: trap

Description: Saves the address of the next instruction in register ea, saves the contents of the status 
register in estatus, disables interrupts, and transfers execution to the exception handler. The 
address of the exception handler is specified with the Nios_II Processor parameter editor in 
Qsys.

The 5-bit immediate field imm5 is ignored by the processor, but it can be used by the debugger.

trap with no argument is the same as trap 0.

Usage: To return from the exception handler, execute an eret instruction.

Exceptions: Trap

Instruction Type: R

Instruction Fields: IMM5 = Type of breakpoint

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 0 0x1d 0x2d IMM5 0x3a
February 2014 Altera Corporation Nios II Processor Reference Handbook



8–100 Chapter 8: Instruction Set Reference
Instruction Set Reference
wrctl write to control register
Operation: ctlN ← rA

Assembler Syntax: wrctl ctlN, rA

Example: wrctl ctl6, r3

Description: Writes the value contained in register rA to the control register ctlN.

Exceptions: Supervisor-only instruction

Instruction Type: R

Instruction Fields: A = Register index of operand rA

N = Control register index of operand ctlN

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

A 0 0 0x2e N 0x3a
Nios II Processor Reference Handbook February 2014 Altera Corporation



Chapter 8: Instruction Set Reference 8–101
Instruction Set Reference
wrprs write to previous register set

Operation: prs.rC ← rA

Assembler Syntax: wrprs rC, rA

Example: wrprs r6, r7

Description: Copies the value of rA in the current register set to rC in the previous register set. This 
instruction can set r0 to 0 in a shadow register set.

Usage: The previous register set is specified by status.PRS. By default, status.PRS indicates 
the register set in use before an exception, such as an external interrupt, caused a 
register set change.

To write to an arbitrary register set, software can insert the desired register set number in 
status.PRS prior to executing wrprs. 

System software must use wrprs to initialize r0 to 0 in each shadow register set before using 
that register set.

If shadow register sets are not implemented on the Nios II core, wrprs is an illegal instruction.

Exceptions: Supervisor-only instruction

Illegal instruction

Instruction Type: R

Instruction Fields: A = Register index of operand rA

C = Register index of operand rC

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

A 0 C 0x14 0 0x3a
February 2014 Altera Corporation Nios II Processor Reference Handbook



8–102 Chapter 8: Instruction Set Reference
Instruction Set Reference
xor bitwise logical exclusive or
Operation: rC ← rA ^ rB

Assembler Syntax: xor rC, rA, rB

Example: xor r6, r7, r8

Description: Calculates the bitwise logical exclusive-or of rA and rB and stores the result in rC.

Exceptions: None

Instruction Type: R

Instruction Fields: A = Register index of operand rA

B = Register index of operand rB

C = Register index of operand rC

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

A B C 0x1e 0 0x3a
Nios II Processor Reference Handbook February 2014 Altera Corporation



Chapter 8: Instruction Set Reference 8–103
Instruction Set Reference
xorhi bitwise logical exclusive or immediate into high halfword
Operation: rB ← rA ^ (IMM16 : 0x0000)

Assembler Syntax: xorhi rB, rA, IMM16

Example: xorhi r6, r7, 100

Description: Calculates the bitwise logical exclusive XOR of rA and (IMM16 : 0x0000) and stores the result 
in rB.

Exceptions: None

Instruction Type: I

Instruction Fields: A = Register index of operand rA 

B = Register index of operand rB

IMM16 = 16-bit unsigned immediate value

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

A B IMM16 0x3c
February 2014 Altera Corporation Nios II Processor Reference Handbook



8–104 Chapter 8: Instruction Set Reference
Document Revision History
xori bitwise logical exclusive or immediate

Document Revision History

Operation: rB ← rA ^ (0x0000 : IMM16)

Assembler Syntax: xori rB, rA, IMM16

Example: xori r6, r7, 100

Description: Calculates the bitwise logical exclusive OR of rA and (0x0000 : IMM16) and stores the result in 
rB.

Exceptions: None

Instruction Type: I

Instruction Fields: A = Register index of operand rA 

B = Register index of operand rB

IMM16 = 16-bit unsigned immediate value

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

A B IMM16 0x1c

Table 8–6. Document Revision History (Part 1 of 2)

Date Version Changes

February 2014 13.1.0 Removed references to SOPC Builder.

May 2011 11.0.0 Maintenance release. 

December 2010 10.1.0 Corrected comments delimiter (#) in instruction usage.

July 2010 10.0.0 Corrected typographical error in cmpgei instruction type. 

November 2009 9.1.0 Added shadow register sets and external interrupt controller support, including rdprs and 
wrprs instructions.

March 2009 9.0.0 Backwards-compatible change to the eret instruction B field encoding.

November 2008 8.1.0 Maintenance release. 

May 2008 8.0.0
■ Added MMU.

■ Added an Exceptions section to all instructions.

October 2007 7.2.0 Added jmpi instruction.

May 2007 7.1.0
■ Added table of contents to Introduction section.

■ Added Referenced Documents section.

March 2007 7.0.0 Maintenance release. 

November 2006 6.1.0 Maintenance release. 

May 2006 6.0.0 Maintenance release.

October 2005 5.1.0
■ Correction to the blt instruction.

■ Added U bit operation for break and trap instructions.
Nios II Processor Reference Handbook February 2014 Altera Corporation



Chapter 8: Instruction Set Reference 8–105
Document Revision History
July 2005 5.0.1

■ Added new flushda instruction.

■ Updated flushd instruction.

■ Instruction Opcode table updated with flushda instruction.

May 2005 5.0.0 Maintenance release. 

December 2004 1.2
■ break instruction update. 

■ srli instruction correction. 

September 2004 1.1 Updates for Nios II 1.01 release.

May 2004 1.0 Initial release.

Table 8–6. Document Revision History (Part 2 of 2)

Date Version Changes
February 2014 Altera Corporation Nios II Processor Reference Handbook



8–106 Chapter 8: Instruction Set Reference
Document Revision History
Nios II Processor Reference Handbook February 2014 Altera Corporation



February 2014 Altera Corporation
Additional Information
This chapter provides additional information about the document and Altera.

How to Find Further Information
This handbook is one part of the complete Nios II processor documentation. The 
following references are also available:

■ The Nios II Software Developer’s Handbook describes the software development 
environment, and discusses application programming for the Nios II processor.

■ The Embedded Peripherals IP User Guide discusses Altera-provided peripherals and 
Nios II drivers which are included with the Quartus II software. 

■ Altera’s online solutions database is an internet resource that offers solutions to 
frequently asked questions via an easy-to-use search engine. You can access the 
database from the Knowledge Database page of the Altera website.

■ Altera application notes and tutorials offer step-by-step instructions on using the 
Nios II processor for a specific application or purpose. You can obtain these 
documents from the Literature: Nios II Processor page of the Altera website.

How to Contact Altera
To locate the most up-to-date information about Altera products, refer to the 
following table.

Contact (1) Contact Method Address

Technical support Website www.altera.com/support

Technical training
Website www.altera.com/training

Email custrain@altera.com

Product literature Website www.altera.com/literature

Nontechnical support (General) Email nacomp@altera.com

(Software Licensing) Email authorization@altera.com

Note to Table:

(1) You can also contact your local Altera sales office or sales representative. 
Nios II Processor Reference Handbook

http://www.altera.com/support
http://www.altera.com/training
mailto:custrain@altera.com
http://www.altera.com/literature/
mailto:nacomp@altera.com
mailto:authorization@altera.com
http://www.altera.com/literature/hb/nios2/n2sw_nii5v2.pdf
http://www.altera.com/literature/ug/ug_embedded_ip.pdf
http://www.altera.com/support/kdb/kdb-index.jsp
http://www.altera.com/literature/lit-nio2.jsp


Info–2 Additional Information
Typographic Conventions
Typographic Conventions
The following table describes the typographic conventions this document uses.

Visual Cue Meaning

Bold Type with Initial Capital 
Letters

Indicate command names, dialog box titles, dialog box options, and other GUI 
labels. For example, Save As dialog box. For GUI elements, capitalization matches 
the GUI.

bold type
Indicates directory names, project names, disk drive names, file names, file name 
extensions, software utility names, and GUI labels. For example, \qdesigns 
directory, D: drive, and chiptrip.gdf file.

Italic Type with Initial Capital Letters Indicate document titles. For example, Stratix IV Design Guidelines.

italic type
Indicates variables. For example, n + 1.

Variable names are enclosed in angle brackets (< >). For example, <file name> and 
<project name>.pof file. 

Initial Capital Letters Indicate keyboard keys and menu names. For example, the Delete key and the 
Options menu. 

“Subheading Title” Quotation marks indicate references to sections within a document and titles of 
Quartus II Help topics. For example, “Typographic Conventions.”

Courier type

Indicates signal, port, register, bit, block, and primitive names. For example, data1, 
tdi, and input. The suffix n denotes an active-low signal. For example, resetn.

Indicates command line commands and anything that must be typed exactly as it 
appears. For example, c:\qdesigns\tutorial\chiptrip.gdf. 

Also indicates sections of an actual file, such as a Report File, references to parts of 
files (for example, the AHDL keyword SUBDESIGN), and logic function names (for 
example, TRI). 

r An angled arrow instructs you to press the Enter key.

1., 2., 3., and
a., b., c., and so on

Numbered steps indicate a list of items when the sequence of the items is important, 
such as the steps listed in a procedure. 

■ ■ ■ Bullets indicate a list of items when the sequence of the items is not important. 

1 The hand points to information that requires special attention. 

h A question mark directs you to a software help system with related information. 

f The feet direct you to another document or website with related information. 

c A caution calls attention to a condition or possible situation that can damage or 
destroy the product or your work.

w A warning calls attention to a condition or possible situation that can cause you 
injury.

The envelope links to the Email Subscription Management Center page of the Altera 
website, where you can sign up to receive update notifications for Altera documents.
Nios II Processor Reference Handbook February 2014 Altera Corporation

https://www.altera.com/subscriptions/email/signup/eml-index.jsp

	Nios II Processor Reference Handbook
	Contents
	Chapter Revision Dates
	Section I. Nios II Processor Design
	1. Introduction
	Nios II Processor System Basics
	Getting Started with the Nios II Processor
	Customizing Nios II Processor Designs
	Configurable Soft Processor Core Concepts
	Configurable Soft Processor Core
	Flexible Peripheral Set and Address Map
	Standard Peripherals
	Custom Components
	Custom Instructions

	Automated System Generation

	OpenCore Plus Evaluation
	Document Revision History

	2. Processor Architecture
	Processor Implementation
	Register File
	Arithmetic Logic Unit
	Unimplemented Instructions
	Custom Instructions
	Floating-Point Instructions
	Floating Point Custom Instruction 2 Component
	Floating Point Custom Instruction Component


	Reset and Debug Signals
	Exception and Interrupt Controllers
	Exception Controller
	EIC Interface
	Internal Interrupt Controller

	Memory and I/O Organization
	Instruction and Data Buses
	Memory and Peripheral Access
	Instruction Master Port
	Data Master Port
	Shared Memory for Instructions and Data

	Cache Memory
	Configurable Cache Memory Options
	Effective Use of Cache Memory
	Cache Bypass Methods

	Tightly-Coupled Memory
	Accessing Tightly-Coupled Memory
	Effective Use of Tightly-Coupled Memory

	Address Map
	Memory Management Unit
	Memory Protection Unit

	JTAG Debug Module
	JTAG Target Connection
	Download and Execute Software
	Software Breakpoints
	Hardware Breakpoints
	Hardware Triggers
	Armed Triggers
	Triggering on Ranges of Values

	Trace Capture
	Execution vs. Data Trace
	Trace Frames


	Document Revision History

	3. Programming Model
	Operating Modes
	Supervisor Mode
	User Mode

	Memory Management Unit
	Recommended Usage
	Memory Management
	Virtual Addressing
	Memory Protection

	Address Space and Memory Partitions
	Virtual Memory Address Space
	Physical Memory Address Space
	Data Cacheability

	TLB Organization
	TLB Lookups

	Memory Protection Unit
	Memory Regions
	Base Address
	Region Type
	Region Index
	Region Size or Upper Address Limit
	Access Permissions
	Default Cacheability

	Overlapping Regions
	Enabling the MPU

	Registers
	General-Purpose Registers
	Control Registers
	The status Register
	The estatus Register
	The bstatus Register
	The ienable Register
	The ipending Register
	The cpuid Register
	The exception Register
	The pteaddr Register
	The tlbacc Register
	The tlbmisc Register
	The badaddr Register
	The config Register
	The mpubase Register
	The mpuacc Register
	The eccinj Register

	Shadow Register Sets
	The sstatus Register
	Initialization with Shadow Register Sets


	Working with the MPU
	MPU Region Read and Write Operations
	MPU Initialization
	Debugger Access

	Working with ECC
	Enabling ECC
	Disabling ECC

	Handling ECC errors
	Injecting ECC Errors
	Instruction Cache Tag RAM
	Instruction Cache Data RAM
	MMU TLB RAM
	Register File RAM Blocks


	Exception Processing
	Terminology
	Exception Overview
	Exception Latency
	Interrupt Latency

	Reset Exceptions
	Break Exceptions
	Processing a Break
	Understanding Register Usage
	Returning From a Break

	Interrupt Exceptions
	External Interrupt Controller Interface
	Internal Interrupt Controller

	Instruction-Related Exceptions
	Trap Instruction
	Break Instruction
	Unimplemented Instruction
	Illegal Instruction
	Supervisor-Only Instruction
	Supervisor-Only Instruction Address
	Supervisor-Only Data Address
	Misaligned Data Address
	Misaligned Destination Address
	Division Error
	Fast TLB Miss
	Double TLB Miss
	TLB Permission Violation
	MPU Region Violation

	Other Exceptions
	Exception Processing Flow
	Processing General Exceptions
	Exception Flow with the EIC Interface
	Exception Flow with the Internal Interrupt Controller
	Exceptions and Processor Status

	Determining the Cause of Interrupt and Instruction-Related Exceptions
	With Extra Exception Information
	Without Extra Exception Information

	Handling Nested Exceptions
	Nested Exceptions with the Internal Interrupt Controller
	Nested Exceptions with an External Interrupt Controller

	Handling Nonmaskable Interrupts
	Returning From Interrupt and Instruction-Related Exceptions
	Return Address Considerations

	Masking and Disabling Exceptions
	Disabling Maskable Interrupts
	Masking Interrupts with an External Interrupt Controller
	Masking Interrupts with the Internal Interrupt Controller


	Memory and Peripheral Access
	Cache Memory
	Virtual Address Aliasing


	Instruction Set Categories
	Data Transfer Instructions
	Arithmetic and Logical Instructions
	Move Instructions
	Comparison Instructions
	Shift and Rotate Instructions
	Program Control Instructions
	Other Control Instructions
	Custom Instructions
	No-Operation Instruction
	Potential Unimplemented Instructions

	Document Revision History

	4. Instantiating the Nios II Processor
	Core Nios II Tab
	Core Selection
	Multiply and Divide Settings
	Reset Vector
	General Exception Vector
	Memory Management Unit Settings
	Fast TLB Miss Exception Vector

	Memory Protection Unit Settings

	Caches and Memory Interfaces Tab
	Instruction Master Settings
	Data Master Settings

	Advanced Features Tab
	Reset Signals
	Control Registers
	Exception Checking
	Interrupt Controller Interfaces
	Shadow Register Sets
	HardCopy Compatible
	ECC

	MMU and MPU Settings Tab
	MMU
	MPU

	JTAG Debug Module Tab
	Debug Level Settings
	Debug Signals
	Break Vector
	Advanced Debug Settings

	Custom Instruction Tab
	Altera-Provided Custom Instructions
	Floating Point Hardware 2 Custom Instruction
	Floating-Point Hardware Custom Instruction
	Bitswap Custom Instruction


	The Quartus II IP File
	Document Revision History


	Section II. Nios II Processor Implementation and Reference
	5. Nios II Core Implementation Details
	Device Family Support
	Nios II/f Core
	Overview
	Arithmetic Logic Unit
	Multiply and Divide Performance
	Shift and Rotate Performance

	Memory Access
	Instruction and Data Master Ports
	Instruction and Data Caches
	Bursting

	Tightly-Coupled Memory
	Memory Management Unit
	Micro Translation Lookaside Buffers

	Memory Protection Unit
	Execution Pipeline
	Pipeline Stalls
	Branch Prediction

	Instruction Performance
	Exception Handling
	External Interrupt Controller Interface

	ECC
	JTAG Debug Module

	Nios II/s Core
	Overview
	Arithmetic Logic Unit
	Multiply and Divide Performance
	Shift and Rotate Performance

	Memory Access
	Instruction and Data Master Ports
	Instruction Cache

	Tightly-Coupled Memory
	Execution Pipeline
	Pipeline Stalls
	Branch Prediction

	Instruction Performance
	Exception Handling
	JTAG Debug Module

	Nios II/e Core
	Overview
	Arithmetic Logic Unit
	Memory Access
	Instruction Execution Stages
	Instruction Performance
	Exception Handling
	JTAG Debug Module

	Document Revision History

	6. Nios II Processor Revision History
	Nios II Versions
	Architecture Revisions
	Core Revisions
	Nios II/f Core
	Nios II/s Core
	Nios II/e Core

	JTAG Debug Module Revisions
	Document Revision History

	7. Application Binary Interface
	Data Types
	Memory Alignment
	Register Usage
	Stacks
	Frame Pointer Elimination
	Call Saved Registers
	Further Examples of Stacks
	Stack Frame for a Function With alloca()
	Stack Frame for a Function with Variable Arguments
	Stack Frame for a Function with Structures Passed By Value

	Function Prologues
	Prologue Variations


	Arguments and Return Values
	Arguments
	Return Values

	DWARF-2 Definition
	Object Files
	Relocation
	ABI for Linux Systems
	Linux Toolchain Relocation Information
	Copy Relocation
	Jump Slot Relocation
	Thread-Local Storage

	Linux Function Calls
	Linux Operating System Call Interface
	Linux Process Initialization
	Linux Position-Independent Code
	Linux Program Loading and Dynamic Linking
	Global Offset Table
	Function Addresses
	Procedure Linkage Table
	Linux Program Interpreter
	Linux Initialization and Termination Functions

	Linux Conventions
	System Calls
	Userspace Breakpoints
	Atomic Operations
	Processor Requirements

	Development Environment

	Document Revision History

	8. Instruction Set Reference
	Word Formats
	I-Type
	R-Type
	J-Type

	Instruction Opcodes
	Assembler Pseudo-Instructions
	Assembler Macros
	Instruction Set Reference
	add add
	addi add immediate
	and bitwise logical and
	andhi bitwise logical and immediate into high halfword
	andi bitwise logical and immediate
	beq branch if equal
	bge branch if greater than or equal signed
	bgeu branch if greater than or equal unsigned
	bgt branch if greater than signed
	bgtu branch if greater than unsigned
	ble branch if less than or equal signed
	bleu branch if less than or equal to unsigned
	blt branch if less than signed
	bltu branch if less than unsigned
	bne branch if not equal
	br unconditional branch
	break debugging breakpoint
	bret breakpoint return
	call call subroutine
	callr call subroutine in register
	cmpeq compare equal
	cmpeqi compare equal immediate
	cmpge compare greater than or equal signed
	cmpgei compare greater than or equal signed immediate
	cmpgeu compare greater than or equal unsigned
	cmpgeui compare greater than or equal unsigned immediate
	cmpgt compare greater than signed
	cmpgti compare greater than signed immediate
	cmpgtu compare greater than unsigned
	cmpgtui compare greater than unsigned immediate
	cmple compare less than or equal signed
	cmplei compare less than or equal signed immediate
	cmpleu compare less than or equal unsigned
	cmpleui compare less than or equal unsigned immediate
	cmplt compare less than signed
	cmplti compare less than signed immediate
	cmpltu compare less than unsigned
	cmpltui compare less than unsigned immediate
	cmpne compare not equal
	cmpnei compare not equal immediate
	custom custom instruction
	div divide
	divu divide unsigned
	eret exception return
	flushd flush data cache line
	flushda flush data cache address
	flushi flush instruction cache line
	flushp flush pipeline
	initd initialize data cache line
	initda initialize data cache address
	initi initialize instruction cache line
	jmp computed jump
	jmpi jump immediate
	ldb / ldbio load byte from memory or I/O peripheral
	ldbu / ldbuio load unsigned byte from memory or I/O peripheral
	ldh / ldhio load halfword from memory or I/O peripheral
	ldhu / ldhuio load unsigned halfword from memory or I/O peripheral
	ldw / ldwio load 32-bit word from memory or I/O peripheral
	mov move register to register
	movhi move immediate into high halfword
	movi move signed immediate into word
	movia move immediate address into word
	movui move unsigned immediate into word
	mul multiply
	muli multiply immediate
	mulxss multiply extended signed/signed
	mulxsu multiply extended signed/unsigned
	mulxuu multiply extended unsigned/unsigned
	nextpc get address of following instruction
	nop no operation
	nor bitwise logical nor
	or bitwise logical or
	orhi bitwise logical or immediate into high halfword
	ori bitwise logical or immediate
	rdctl read from control register
	rdprs read from previous register set
	ret return from subroutine
	rol rotate left
	roli rotate left immediate
	ror rotate right
	sll shift left logical
	slli shift left logical immediate
	sra shift right arithmetic
	srai shift right arithmetic immediate
	srl shift right logical
	srli shift right logical immediate
	stb / stbio store byte to memory or I/O peripheral
	sth / sthio store halfword to memory or I/O peripheral
	stw / stwio store word to memory or I/O peripheral
	sub subtract
	subi subtract immediate
	sync memory synchronization
	trap trap
	wrctl write to control register
	wrprs write to previous register set
	xor bitwise logical exclusive or
	xorhi bitwise logical exclusive or immediate into high halfword
	xori bitwise logical exclusive or immediate

	Document Revision History


	Additional Information
	How to Find Further Information
	How to Contact Altera
	Typographic Conventions



