
101 Innovation Drive
San Jose, CA 95134
www.altera.com

QII5V1-13.1.0

Volume 1: Design and Synthesis

Quartus II Handbook Version 13.1

http://www.altera.com

© 2013 Altera Corporation. All rights reserved. ALTERA, ARRIA, CYCLONE, HARDCOPY, MAX, MEGACORE, NIOS, QUARTUS and STRATIX words and logos
are trademarks of Altera Corporation and registered in the U.S. Patent and Trademark Office and in other countries. All other words and logos identified as
trademarks or service marks are the property of their respective holders as described at www.altera.com/common/legal.html. Altera warrants performance of its
semiconductor products to current specifications in accordance with Altera's standard warranty, but reserves the right to make changes to any products and
services at any time without notice. Altera assumes no responsibility or liability arising out of the application or use of any information, product, or service
described herein except as expressly agreed to in writing by Altera. Altera customers are advised to obtain the latest version of device specifications before relying
on any published information and before placing orders for products or services.

November 2013 Altera Corporation Quartus II Handbook Version 13.1
Volume 1: Design and Synthesis

ISO
9001:2008
Registered

http://www.altera.com/common/legal.html
http://www.altera.com/support/devices/reliability/certifications/rel-certifications.html
http://www.altera.com/support/devices/reliability/certifications/rel-certifications.html

November 2013 Altera Corporation
Chapter Revision Dates
The chapters in this document were revised on the following dates.

Chapter 1. Managing Quartus II Projects
Revised: November2013
Part Number: QII52012-13.1.0

Chapter 2. Design Planning with the Quartus II Software
Revised: November 2012
Part Number: QII51016-12.1.0

Chapter 3. Quartus II Incremental Compilation for Hierarchical and Team-Based Design
Revised: November 2013
Part Number: QII51015-13.1.0

Chapter 4. Design Planning for Partial Reconfiguration
Revised: November 2013
Part Number: QII51026-13.1.0

Chapter 5. Quartus II Design Separation Flow
Revised: June 2012
Part Number: QII51019-12.0.0

Chapter 6. Creating a System With Qsys
Revised: November 2013
Part Number: QII51020-13.1.0

Chapter 7. Creating Qsys Components
Revised: November 2013
Part Number: QII51022-13.1.0

Chapter 8. Qsys Interconnect
Revised: November 2013
Part Number: QII51021-13.1.0

Chapter 9. Optimizing Qsys System Performance
Revised: May 2013
Part Number: QII51024-13.1.0

Chapter 10. Component Interface Tcl Reference
Revised: November 2013
Part Number: QII51023-13.1.0

Chapter 11. Qsys System Design Components
Revised: November 2013
Part Number: QII51025-13.1.0

Chapter 12. Recommended Design Practices
Revised: November 2013
Part Number: QII51006-13.1.0
Quartus II Handbook Version 13.1
Volume 1: Design and Synthesis

iv Chapter Revision Dates
Chapter 13. Recommended HDL Coding Styles
Revised: November 2013
Part Number: QII51007-13.1.0

Chapter 14. Managing Metastability with the Quartus II Software
Revised: June 2012
Part Number: QII51018-12.0.0

Chapter 15. Best Practices for Incremental Compilation Partitions and Floorplan Assignments
Revised: November 2013
Part Number: QII51017-13.1.0

Chapter 16. Quartus II Integrated Synthesis
Revised: May 2013
Part Number: QII51008-13.0.0

Chapter 17. Synopsys Synplify Support
Revised: November 2013
Part Number: QII51009-13.1.0

Chapter 18. Mentor Graphics Precision Synthesis Support
Revised: June 2012
Part Number: QII51011-12.0.0

Chapter 19. Analyzing Designs with Quartus II Netlist Viewers
Revised: November 2013
Part Number: QII51013-13.1.0
Quartus II Handbook Version 13.1 November 2013 Altera Corporation
Volume 1: Design and Synthesis

© 2013 Altera Corporation. All rights reserved. ALTERA, ARRI
are trademarks of Altera Corporation and registered in the U.S
trademarks or service marks are the property of their respectiv
semiconductor products to current specifications in accordance
services at any time without notice. Altera assumes no respons
described herein except as expressly agreed to in writing by Al
on any published information and before placing orders for pr

Quartus II Handbook Version 13.1
Volume 1: Design and Synthesis
November 2013
Section I. Design Flows
The Altera® Quartus® II design software provides a complete design environment
that easily adapts to your specific design requirements. This handbook is arranged in
chapters, sections, and volumes that correspond to the major stages in the overall
design flow. For a general introduction to features and the standard design flow in the
software, refer to the Introduction to the Quartus II Software manual.

This section is an introduction to design planning. It documents various specialized
design flows in the following chapters:

■ Chapter 1, Managing Quartus II Projects

Describes how to manage all the elements in your Quartus II project. You can save
multiple revisions of your project to experiment with settings that achieve your
design goals. Quartus II projects also support team-based, distributed work flows
and a scripting interface

■ Chapter 2, Design Planning with the Quartus II Software

This chapter is an overview of various design planning considerations: device
selection, early power estimation, I/O pin planning, and design planning. To help
you improve design productivity, it provides recommendations and describes
various tools available for Altera FPGAs.

■ Chapter 3, Quartus II Incremental Compilation for Hierarchical and Team-Based
Design

This chapter documents Altera’s incremental design and compilation flow, which
allows you to preserve the results and performance for unchanged logic in your
design as you make changes elsewhere, reduces design iteration time by up to 70%
so you achieve timing closure efficiently, and facilitates modular hierarchical and
team-based design flows using top-down or bottom-up methodologies.

■ Chapter 4, Design Planning for Partial Reconfiguration

This chapter provides a high-level guide to the use of partial reconfiguration in the
Quartus II software. Partial reconfiguration allows you to reconfigure a portion of
the FPGA dynamically, while the remainder of the device continues to operate.

■ Chapter 5, Quartus II Design Separation Flow

This chapter describes rules and guidelines for creating a floorplan with the
Design Separation flow. The Quartus II Design Separation flow provides the
ability to design physically independent structures on a single device. This allows
system designers to achieve a higher level of integration on a single FPGA, and
alleviates increasingly strict Size Weight and Power (SWaP) requirements.
A, CYCLONE, HARDCOPY, MAX, MEGACORE, NIOS, QUARTUS and STRATIX words and logos
. Patent and Trademark Office and in other countries. All other words and logos identified as
e holders as described at www.altera.com/common/legal.html. Altera warrants performance of its
 with Altera's standard warranty, but reserves the right to make changes to any products and
ibility or liability arising out of the application or use of any information, product, or service
tera. Altera customers are advised to obtain the latest version of device specifications before relying
oducts or services.

ISO
9001:2008
Registered

http://www.altera.com/literature/manual/quartus2_introduction.pdf
http://www.altera.com/common/legal.html
http://www.altera.com/support/devices/reliability/certifications/rel-certifications.html
http://www.altera.com/support/devices/reliability/certifications/rel-certifications.html

1Managing Quartus II Projects

2013.11.4

QII52012 Subscribe Send Feedback

The Quartus II software organizes and manages the elements of your design within a project. The project
encapsulates information about your design hierarchy, libraries, constraints, and project settings. Click File
> New Project Wizard to quickly create a new project and specify basic project settings

When you open a project, a unified GUI displays integrated project information. The Project Navigator
allows you to view and edit the elements of your project. The Messages window lists important information
about project processing.

You can save multiple revisions of your project to experiment with settings that achieve your design goals.
Quartus II projects support team-based, distributed work flows and a scripting interface.

Quick Start
To quickly create a project and specify basic settings, click File > New Project Wizard.

ISO
9001:2008
Registered

© 2013 Altera Corporation. All rights reserved. ALTERA, ARRIA, CYCLONE, HARDCOPY, MAX, MEGACORE, NIOS, QUARTUS and STRATIX words
and logos are trademarks of Altera Corporation and registered in the U.S. Patent and Trademark Office and in other countries. All other
words and logos identified as trademarks or service marks are the property of their respective holders as described at
www.altera.com/common/legal.html. Altera warrants performance of its semiconductor products to current specifications in accordance with
Altera's standard warranty, but reserves the right to make changes to any products and services at any time without notice. Altera assumes
no responsibility or liability arising out of the application or use of any information, product, or service described herein except as expressly
agreed to in writing by Altera. Altera customers are advised to obtain the latest version of device specifications before relying on any published
information and before placing orders for products or services.

www.altera.com

101 Innovation Drive, San Jose, CA 95134

https://www.altera.com/servlets/subscriptions/alert?id=QII52012
mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20(QII52012%202013.11.4)%20Managing%20Quartus%20II%20Projects&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.
http://www.altera.com/support/devices/reliability/certifications/rel-certifications.html
http://www.altera.com/support/devices/reliability/certifications/rel-certifications.html
http://www.altera.com/support/devices/reliability/certifications/rel-certifications.html

Understanding Quartus II Projects
A single Quartus II Project File (.qpf) represents each project. The text-based . qpf references the Quartus
II Settings File (.qsf), that lists all project files and stores project and entity settings. When you make project
changes in the GUI, these text files automatically store the changes. The GUI provides access to all project
settings and helps to manage all aspects of your project, including:

• Managing logic design, EDA, IP core, and Qsys system files
• Specifying and optimizing project settings and constraints
• Archiving and migrating projects

Figure 1-1: Quartus II Project Files

Managing Quartus II ProjectsAltera Corporation

Send Feedback

QII52012
Understanding Quartus II Projects1-2 2013.11.4

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Managing%20Quartus%20II%20Projects%20(QII52012%202013.11.4)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Figure 1-2: Basic Project Directory (Gray Files and Directories Optional)

Viewing Basic Project Information
View basic information about your project in the Project Navigator, Report panel, and Messages window.
View project elements in the Project Navigator (View>UtilityWindows >ProjectNavigator). The Project
Navigator displays key project information, including design files, IP components, and revisions of your
project. Use the Project Navigator to:

• View and modify the design hierarchy (right-click > Set as Top-Level Entity)
• Set the project revision (right-click > Set Current Revision)
• View and update logic design files and constraint files (right-click > Open)
• Update IP component version information (right-click > Upgrade IP Component)

Figure 1-3: Project Navigator Hierarchy, Files, Revisions, and IP

Altera CorporationManaging Quartus II Projects

Send Feedback

1-3Viewing Basic Project Information
QII52012
2013.11.4

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Managing%20Quartus%20II%20Projects%20(QII52012%202013.11.4)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Viewing Project Reports
The Report panel (Processing > Compilation Report) displays detailed reports after project processing,
including the following:

• Analysis & Synthesis reports
• Fitter reports
• Timing analysis reports
• Power analysis reports
• Signal integrity reports

Analyze the detailed project information in these reports to determine correct implementation. Right-click
report data to locate and edit the source in project files.

Figure 1-4: Report Panel

Related Information
List of Compilation Reports

Viewing Project Messages
The Messages window (View > Utility Windows > Messages) displays information, warning, and error
messages about Quartus II processes. Right-click messages to locate the source or get message help.

• Processing tab—displays messages from the most recent process
• System tab—displays messages unrelated to design processing
• Search—locates specific messages

Messages are written to stdout when you use command-line executables.

Managing Quartus II ProjectsAltera Corporation

Send Feedback

QII52012
Viewing Project Reports1-4 2013.11.4

http://quartushelp.altera.com/current/master.htm#mergedProjects/report/rpt/rpt_list_format.htm
mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Managing%20Quartus%20II%20Projects%20(QII52012%202013.11.4)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Figure 1-5: Messages Window

You can suppress display of unimportant messages so they do not obscure valid messages.

Figure 1-6: Message Suppression by Message ID Number

Suppressing Messages
To supress messages, right-click a message and choose any of the following:

Altera CorporationManaging Quartus II Projects

Send Feedback

1-5Suppressing Messages
QII52012
2013.11.4

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Managing%20Quartus%20II%20Projects%20(QII52012%202013.11.4)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

• Suppress Message—suppresses all messages matching exact text
• Suppress Messages with Matching ID—suppresses all messages matching the message ID number,

ignoring variables
• Suppress Messages with Matching Keyword—suppresses all messages matching keyword or hierarchy

Message Suppression Guidelines

• You cannot suppress error or Altera legal agreement messages.
• Suppressing a message also suppresses any submessages.
• Message suppression is revision-specific. Derivative revisions inherit any suppression.
• You cannot edit messages or suppression rules during compilation.

Managing Logic Design Files
The Quartus II software helps you create and manage the logic design files in your project. Logic design files
contain the logic that implements your design. When you add a logic design file to the project, the Compiler
automatically compiles that file as part of the project. The Compiler synthesizes your logic design files to
generate programming files for your target device.

The Quartus II software includes full-featured schematic and text editors, as well as HDL templates to
accelerate your design work. The Quartus II software supports VHDL Design Files (.vhd), Verilog HDL
Design Files (.v), SystemVerilog (. sv) and schematic Block Design Files (. bdf). The Quartus II software also
supports Verilog Quartus Mapping (.vqm) design files generated by other design entry and synthesis tools.
In addition, you can combine your logic design files withAltera and third-party IP core design files, including
combining components into a Qsys system (. qsys).

The New Project Wizard prompts you to identify logic design files. Add or remove project files by clicking
Project > Add/Remove Files in Project. View the project’s logic design files in the Project Navigator.

Figure 1-7: Design and IP Files in Project Navigator

Managing Quartus II ProjectsAltera Corporation

Send Feedback

QII52012
Message Suppression Guidelines1-6 2013.11.4

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Managing%20Quartus%20II%20Projects%20(QII52012%202013.11.4)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Right-click files in the Project Navigator to:

• Open and edit the file
• Remove File from Project
• Set as Top-Level Entity for the project revision
• Create a Symbol File for Current File for display in schematic editors
• Edit file Properties

Including Design Libraries
You can include design files libraries in your project. Specify libraries for a single project, or for all Quartus
II projects. The.qsf stores project library information.

The quartus2.ini file stores global library information.

Related Information
Design Library Migration Guidelines on page 1-21

Specifying Design Libraries
To specify project libraries from the GUI:

1. Click Assignment > Settings.
2. Click Libraries andspecify the Project Library name or Global Library name.Alternatively, you can

specify project libraries with SEARCH_PATH in the .qsf, and global libraries in the quartus2.ini file.

Related Information

• Recommended Design Practices

• Recommended HDL Coding Styles

Managing Project Settings
The New Project Wizard helps you initially assign basic project settings. Optimizing project settings enables
the Compiler to generate programming files that meet or exceed your specifications.

The .qsf stores each revision’s project settings.

Click Assignments > Settings to access global project settings, including:

• Project files list
• Synthesis directives and constraints
• Logic options and compiler effort levels
• Placement constraints
• Timing constraint files
• Operating temperature limits and conditions
• File generation for other EDA tools
• Target device (click Assignments > Device)

The Quartus II Default Settings File (<revision name>_assignment_defaults.qdf) stores initial settings and
constraints for each new project revision.

Altera CorporationManaging Quartus II Projects

Send Feedback

1-7Including Design Libraries
QII52012
2013.11.4

http://www.altera.com/literature/hb/qts/qts_qii51006.pdf
http://www.altera.com/literature/hb/qts/qts_qii51007.pdf
mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Managing%20Quartus%20II%20Projects%20(QII52012%202013.11.4)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Figure 1-8: Settings Dialog Box for Global Project Settings

The Assignment Editor (Tools > Assignment Editor) provides a spreadsheet-like interface for assigning all
instance-specific settings and constraints.

Figure 1-9: Assignment Editor Spreadsheet

Managing Quartus II ProjectsAltera Corporation

Send Feedback

QII52012
Managing Project Settings1-8 2013.11.4

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Managing%20Quartus%20II%20Projects%20(QII52012%202013.11.4)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Optimizing Project Settings
Optimize project settings tomeet your design goals. TheQuartus IIDesign Space Explorer iteratively compiles
your project with various setting combinations to find the optimal setting for your goals. Alternatively, you
can create a project revision or project copy to manually compare various project settings and design
combinations.

Optimizing with Design Space Explorer
Use the Design Space Explorer (Tools > Launch Design Space Explorer) to find optimal project settings
for resource, performance, or power optimization goals. Design Space Explorer (DSE) processes your design
using various setting and constraint combinations, and reports the best settings for your design.

DSE attemptsmultiple seeds to identify onemeeting your requirements. DSE can run different compilations
on multiple computers in parallel to streamline timing closure.

Figure 1-10: Design Space Explorer

Optimizing with Project Revisions
You can save multiple, named project revisions within your Quartus II project (Project > Revisions).

Each revision captures a unique set of project settings and constraints, but does not capture any logic design
file changes. Use revisions to experimentwith different settingswhile preserving the original.You can compare

Altera CorporationManaging Quartus II Projects

Send Feedback

1-9Optimizing Project Settings
QII52012
2013.11.4

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Managing%20Quartus%20II%20Projects%20(QII52012%202013.11.4)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

revisions to determine the best combination, or optimize different revisions for various applications. Use
revisions for the following:

• Create a unique revision to optimize a design for different criteria, such as by area in one revision and
by fMAX in another revision.

• When you create a new revision the default Quartus II settings initially apply.
• Create a revision of a revision to experiment with settings and constraints. The child revision includes

all the assignments and settings of the parent revision.

You create, delete, specify current, and compare revisions in the Revisions dialog box. Each time you create
a new project revision, the Quartus II software creates a new .qsf using the revision name.

To compare each revision’s synthesis, fitting, and timing analysis results side-by-side, clickProject >Revisions
and then click Compare.

In addition to viewing the compilation results of each revision, you can also compare the assignments for
each revision. This comparison reveals how different optimization options affect your design.

Figure 1-11: Comparing Project Revisions

Copying Your Project
Click Project > Copy Project to create a separate copy of your project, rather than just a revision within the
same project.

The project copy includes all design files, .qsf(s), and project revisions. Use this technique to optimize project
copies for different applications. For example, optimize one project to interface with a 32-bit data bus, and
optimize a project copy to interface with a 64-bit data bus.

Managing Timing Constraints
View basic information about your project in the Project Navigator, Report panel, and Messages window.

Apply appropriate timing constraints to correctly optimize fitting and analyze timing for your design. The
Fitter optimizes the placement of logic in the device to meet your specified timing and routing constraints.

Managing Quartus II ProjectsAltera Corporation

Send Feedback

QII52012
Copying Your Project1-10 2013.11.4

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Managing%20Quartus%20II%20Projects%20(QII52012%202013.11.4)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Specify timing constraints in the TimeQuest Timing Analyzer (Tools > TimeQuest Timing Analyzer), or
in an .sdc file. Specify constraints for clock characteristics, timing exceptions, and external signal setup and
hold times before running analysis. TimeQuest reports the detailed information about the performance of
your design compared with constraints in the Compilation Report panel.

Save the constraints you specify in the GUI in an industry-standard Synopsys Design Constraints File (.sdc).
You can subsequently edit the text-based .sdc file directly.

Figure 1-12: TimeQuest Timing Analyzer and SDC Syntax Example

Related Information
Quartus II TimeQuest Timing Analyzer

Managing System and IP Components
Virtually all complex FPGA designs include integrated IP cores. The Quartus II GUI helps you define,
integrate, and update the IP files in your project. Use Altera’s optimized and verified IP in your project to
shorten design cycles and maximize performance.

The Quartus II software includes many basic and complex IP cores, and supports IP from other sources.
You can combine IP with other design elements to quickly create a complete system using the Qsys system
integration tool.

Altera CorporationManaging Quartus II Projects

Send Feedback

1-11Managing System and IP Components
QII52012
2013.11.4

http://www.altera.com/literature/hb/qts/qts_qii53018.pdf
mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Managing%20Quartus%20II%20Projects%20(QII52012%202013.11.4)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Integrating System and IP Files
You can easily customize and quickly integrate Qsys system and IP core files in your project. The Quartus II
software implements your specified system or IP core parameters and generates files for synthesis and
simulation in the Quartus II software and other EDA tools.

IP components are represented as design elements in your project. The Quartus II software includes the
following IP and system integration tools:

Table 1-1: IP Integration Tools

DescriptionIP Integration Tool

Parameterize individual IP cores and generate HDL
synthesis files, simulation models, and testbenches.

MegaWizard Plug-In Manager

Parameterize and connect all components in a system-
level hardware design, automating integration of
customized HDL components.

Qsys

Figure 1-13: Qsys System Integration Tool and MegaWizard IP Core Editor

Updating Outdated IP Files
Some Altera IP components are version-specific with the Quartus II software. Click Project > Upgrade IP
Components to easily upgrade outdated IP in the Project Navigator.

Managing Quartus II ProjectsAltera Corporation

Send Feedback

QII52012
Integrating System and IP Files1-12 2013.11.4

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Managing%20Quartus%20II%20Projects%20(QII52012%202013.11.4)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Failure to upgrade outdated IP components can result in a mismatch between the outdated IP core variation
and the current supporting libraries.

Altera verifies that the current version of the Quartus II software compiles the previous version of each IP
core. The MegaCore IP Library Release Notes and Errata reports any verification exceptions. Altera does not
verify compilation for IP cores older than the previous release.

Figure 1-14: Upgrading IP Components in Project Navigator

Related Information
MegaCore IP Library Release Notes and Errata

System and IP File Locations
When you generate anAltera IP core variationwith theMegaWizard Plug-InManager orQsys, theQuartus II
software generates files in the following locations.

Figure 1-15: System and IP Files Generated by MegaWizard Plug-In Manager and Qsys

Altera CorporationManaging Quartus II Projects

Send Feedback

1-13System and IP File Locations
QII52012
2013.11.4

http://www.altera.com/literature/rn/rn_ip.pdf
mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Managing%20Quartus%20II%20Projects%20(QII52012%202013.11.4)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Processing Encrypted IP Files
Projects may include encrypted Altera or third-party IP cores that prevent unlicensed viewing of source
code. The Compiler processes encrypted IP files along with the rest of your project. The Quartus II software
provides a black-box representation of Altera megafunctions and encrypted IP cores for synthesis in other
EDA tools.

The Quartus II software also includes IEEE-encrypted Verilog HDL models for both Verilog HDL and
VHDL simulation models for Altera IP cores. Use these files to simulate encrypted IP in other EDA tools.
The Quartus II software does not provide IP core encryption or decryption functions.

IP File Search Path
If your project includes two IP core files of the same name, the search path precedence rules how similarly
named files are resolved. The Quartus II software recognizes the following file naming precedence:

1. Project directory.
2. Project database directory.
3. Project libraries specified inAssignments > Settings >Libraries, or with theSEARCH_PATH assignment

in the revision .qsf.
4. Global libraries specified inAssignments > Settings > Libraries, or with theSEARCH_PATH assignment

in the quartus2.ini file.
5. Quartus II software libraries directory, such as <Quartus II Installation>\libraries.

Use theSEARCH_PATH assignment to define the project libraries. TheQuartus II software supportsmultiple
SEARCH_PATH assignments. Specify only one source directory for each SEARCH_PATH assignment.

Related Information

• IP and Megafunctions Documentation

• Creating a System with Qsys

Integrating Other EDA Tools
You can integrate supported EDA design entry, synthesis, simulation, physical synthesis, and formal
verification tools into the Quartus II design flow. The Quartus II software supports netlist files from other
EDA design entry and synthesis tools. The Quartus II software optionally generates various files for use in
other EDA tools.

The Quartus II software manages EDA tool files and provides the following integration capabilities:

• Automatically generate files for synthesis and simulation and automatically launch other EDA tools
(Assignments > Settings > EDA Tool Settings > NativeLink Settings).

• Compile all RTL and gate-level simulationmodel libraries for your device, simulator, and design language
automatically (Tools > Launch Simulation Library Compiler).

• Include files (.edf, .vqm) generated by other EDA design entry or synthesis tools in your project as
synthesized design files (Project > Add/Remove File from Project) .

• Automatically generate optional filesfor board-level verification (Assignments > Settings > EDA Tool
Settings).

Managing Quartus II ProjectsAltera Corporation

Send Feedback

QII52012
Processing Encrypted IP Files1-14 2013.11.4

http://www.altera.com/literature/lit-ip.jsp
http://www.altera.com/literature/hb/qts/qsys_intro.pdf
mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Managing%20Quartus%20II%20Projects%20(QII52012%202013.11.4)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Figure 1-16: EDA Tool Settings

Figure 1-17: Quartus II Generated Files for Other EDA Tools

Altera CorporationManaging Quartus II Projects

Send Feedback

1-15Integrating Other EDA Tools
QII52012
2013.11.4

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Managing%20Quartus%20II%20Projects%20(QII52012%202013.11.4)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Related Information

• Mentor Graphics Precision Synthesis SupportGraphics

• Simulating Altera Designs

Managing Team-based Projects
The Quartus II software supports multiple designers, design iterations, and platforms. You can use the
following techniques to preserve and track project changes in a team-based environment. These techniques
may also be helpful for individual designers.

Related Information

• Preserving Compilation Results on page 1-16

• Archiving Projects on page 1-18

• Using External Revision Control on page 1-19

• Migrating Projects Across Operating Systems on page 1-20

Preserving Compilation Results
The Quartus II software maintains a database of compilation results for each project revision. The databases
files store results of incremental or full compilation. Do not edit these files directly. However, you can use
the database files in the following ways:

• Preserve compilation results for migration to a new version of the Quartus II software. Export a post-
synthesis or post-fit, version-compatible database (Project > Export Database), and then import it into
a newer version of the Quartus II software (Project > Import Database), or into another project.

• Optimize and lock down the compilation results for individual blocks. Export the post-synthesis or post-
fit netlist as a Quartus II Exported Partition File (.qxp) (Project > Export Design Partition). You can
then import the partition as a new project design file.

• Purge the content of the project database (Project > Clean Project) to remove unwanted previous
compilation results at any time.

Factors Affecting Compilation Results
Changes to any of the following factors can impact compilation results:

• Project Files—project settings (. qsf), design files, and timing constraints (.sdc).
• Hardware—CPU architecture, not including hard disk or memory size differences. Windows XP x32

results are not identical to Windows XP x64 results. Linux x86 results is not identical to Linux x86_64.
• Quartus II Software Version—including build number and installed patches. Click Help > About to

obtain this information.
• Operating System—Windows or Linux operating system, excluding version updates. For example,

Windows XP, Windows Vista, and Windows 7 results are identical. Similarly, Linux RHEL, CentOS 4,
and CentOS 5 results are identical.

Related Information

• Quartus II Incremental Compilation for Hierarchical and Team-Based Design

Managing Quartus II ProjectsAltera Corporation

Send Feedback

QII52012
Managing Team-based Projects1-16 2013.11.4

http://www.altera.com/literature/hb/qts/qts_qii51011.pdf
http://www.altera.com/literature/hb/qts/qts_qii53025.pdf
http://www.altera.com/literature/hb/qts/qts_qii51015.pdf
mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Managing%20Quartus%20II%20Projects%20(QII52012%202013.11.4)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

• Design Planning for Partial Reconfiguration

Migrating Results Across Quartus II Software Versions
View basic information about your project in the Project Navigator, Report panel, and Messages window.

To preserve compilation results for migration to a later version of the Quartus II software, export a version-
compatible database file, and then import it into the later version of the Quartus II software. A few device
families do not support version-compatible database generation, as indicated by project messages.

Exporting and Importing the Results Database
To save the compilation results in a version-compatible format for migration to a later version of the Quartus
II software, follow these steps:

1. Open the project for migration in the original version of the Quartus II software.
2. Generate the project database and netlist with one of the following:

• Click Processing > Start > Start Analysis & Synthesis to generate a post-synthesis netlist.
• Click Processing > Start Compilation to generate a post-fit netlist.

3. Click Project > Export Database and specify the Export directory.
4. In a later version of the Quartus II software, click New ProjectWizard and create a new project with the

same top-level design entity name as the migrated project.
5. Click Project > Import Database and select the <project directory> /export_db/exported database

directory. The Quartus II software opens the compiled project and displays compilation results.

You can turn on Assignments > Settings > Compilation Process Settings > Export version-
compatible database if you want to always export the database following compilation.

Note:

Figure 1-18: Quartus II Version-Compatible Database Structure

Cleaning the Project Database
To clean the project database and remove all prior compilation results, follow these steps:

Altera CorporationManaging Quartus II Projects

Send Feedback

1-17Migrating Results Across Quartus II Software Versions
QII52012
2013.11.4

http://www.altera.com/literature/hb/qts/qts_qii51026.pdf
mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Managing%20Quartus%20II%20Projects%20(QII52012%202013.11.4)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

1. Click Project > Clean Project.
2. Select All revisions to remove the databases for all revisions of the current project, or specify a Revision

name to remove only that revision’s database.
3. Click OK. A message indicates when the database is clean.

Archiving Projects
You can save the elements of a project in a single, compressed Quartus II Archive File (. qar) by clicking
Project > Archive Project.

The .qar captures logic design, project, and settings files required to restore the project.

Use this technique to share projects between designers, or to transfer your project to a new version of the
Quartus II software, or to Altera support. You can optionally add compilation results, Qsys system files, and
third-party EDA tool files to the archive. If you restore the archive in a different version of the Quartus II
software, you must include the original .qdf in the archive to preserve original compilation results.

Manually Adding Files To Archives
To manually add files to an archive:

1. Click Project > Archive Project and specify the archive file name.
2. Click Advanced.
3. Select the File set for archive or select Custom. Turn on File subsets for archive.
4. Click Add and select Qsys system or EDA tool files. Click OK.
5. Click Archive.

Archiving Compilation Results
You can include compilation results in a project archive to avoid recompilation and preserve original results
in the restored project. To archive compilation results, export the post-synthesis or post-fit version compatible
database and include this file in the archive.

1. Export the project database.
2. Click Project > Archive Project and specify the archive file name.
3. Click Advanced.
4. Under File subsets, turn on Version-compatible database files and click OK.
5. Click Archive.

To restore an archive containing a version-compatible database, follow these steps:

1. Click Project > Restore Archived Project.
2. Select the archive name and destination folder and click OK.
3. After restoring the archived project, clickProject > ImportDatabase and import the version-compatible

database.

Related Information
Exporting and Importing the Results Database on page 1-17

Archiving Projects for Altera Service Requests
When archiving projects for an Altera service request, include all of the following file types for proper
debugging by Altera Support:

Managing Quartus II ProjectsAltera Corporation

Send Feedback

QII52012
Archiving Projects1-18 2013.11.4

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Managing%20Quartus%20II%20Projects%20(QII52012%202013.11.4)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

To quickly identify and include appropriate archive files for an Altera service request:

1. Click Project > Archive Project and specify the archive file name.
2. Click Advanced.
3. In File set, select Service Request to include files for Altera Support.

• Project source and setting files (.v, .vhd, .vqm, .qsf, .sdc, .qip, .qpf, .cmp, .sip)
• Automatically detected source files (various)
• Programming output files (. jdi, .sof, .pof)
• Report files (.rpt, .pin, .summary, .smsg)
• Qsys system and IP files (.qsys, . qip)

4. Click OK, and then click Archive.

Figure 1-19: Archiving Project for Service Request

Using External Revision Control
Your project may involve different team members with distributed responsibilities, such as sub-module
design, device and system integration, simulation, and timing closure. In such cases, it may be useful to track
and protect file revisions in an external revision control system.

While Quartus II project revisions preserve various project setting and constraint combinations, external
revision control systems can also track andmerge RTL source code, simulation testbenches, and build scripts.
External revision control supports design file version experimentation through branching and merging
different versions of source code from multiple designers. Refer to your external revision control
documentation for setup information.

Files to Include In External Revision Control
Include the following Quartus II project file types in external revision control systems:

Altera CorporationManaging Quartus II Projects

Send Feedback

1-19Using External Revision Control
QII52012
2013.11.4

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Managing%20Quartus%20II%20Projects%20(QII52012%202013.11.4)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

• Logic design files (.v, .vdh, .bdf, edf, .vqm)
• Timing constraint files (.sdc)
• Quartus II project settings and constraints (.qdf, .qpf, .qsf)
• MegaWizard-generated IP files (.v, .sv, .vhd, .qip, .sip)
• Qsys-generated files (.qsys, .qip, .sip)
• EDA tool files (.vo, .vho)

You can generate or modify these files manually if you use a scripted design flow. If you use an external
source code control system, you can check-in project files anytime you modify assignments and settings in
the Quartus II software.

Migrating Projects Across Operating Systems
Consider the following cross-platform issues when moving your project from one operating system to
another (for example, from Windows to Linux).

Migrating Design Files and Libraries
Consider the following file naming differences when migrating projects across operating systems:

• Use appropriate case for your platform in file path references.
• Use a character set common to both platforms.
• Do not change the forward-slash (/) and back-slash (\) path separators in the .qsf. The Quartus II

software automatically changes all back-slash (\) path separators to forward-slashes (/)in the .qsf.
• Observe the target platform’s file name length limit.
• Use underscore instead of spaces in file and directory names.
• Change library absolute path references to relative paths in the .qsf.
• Ensure that any external project library exists in the new platform’s file system.
• Specify file and directory paths as relative to the project directory. For example, for a project titled

foo_design , specify the source files as: top.v, foo_folder /foo1.v, foo_folder /foo2.v, and
foo_folder/bar_folder/bar1.vhdl.

• Ensure that all the subdirectories are in the same hierarchical structure and relative path as in the original
platform.

Figure 1-20: All Inclusive Project Directory Structure

Use Relative Paths
Express file paths using relative path notation (.. /).

Managing Quartus II ProjectsAltera Corporation

Send Feedback

QII52012
Migrating Projects Across Operating Systems1-20 2013.11.4

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Managing%20Quartus%20II%20Projects%20(QII52012%202013.11.4)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

For example, in the directory structure shown you can specify top.v as ../source/top.v and foo1.v as
../source/foo_folder/foo1.v.

Figure 1-21: Quartus II Project Directory Separate from Design Files

Design Library Migration Guidelines
The following guidelines apply to library migration across computing platforms:

1. The project directory takes precedence over the project libraries.
2. For Linux, the Quartus II software creates the file in the altera.quartus directory under the <home>

directory.
3. All library files are relative to the libraries. For example, if you specify the user_lib1 directory as a project

library and you want to add the /user_lib1/foo1.v file to the library, you can specify the foo1.v file in the
.qsf as foo1.v. The Quartus II software includes files in specified libraries.

4. If the directory is outside of the project directory, an absolute path is created by default. Change the
absolute path to a relative path before migration.

5. When copying projects that include libraries, you must either copy your project library files along with
the project directory or ensure that your project library files exist in the target platform.

• On Windows, the Quartus II software searches for the quartus2.ini file in the following directories
and order:

• USERPROFILE, for example, C:\Documents and Settings\ <user name>
• Directory specified by the TMP environmental variable
• Directory specified by the TEMP environmental variable
• Root directory, for example, C:\

Scripting API
You can use command-line executables or scripts to execute project commands, rather than using the GUI.
The following commands are available for scripting project management.

Altera CorporationManaging Quartus II Projects

Send Feedback

1-21Design Library Migration Guidelines
QII52012
2013.11.4

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Managing%20Quartus%20II%20Projects%20(QII52012%202013.11.4)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Scripting Project Settings
You can use a Tcl script to specify settings and constraints, rather than using the GUI. This can be helpful
if you have many settings and wish to track them in a single file or spreadsheet for iterative comparison. The
.qsf supports only a limited subset of Tcl commands. Therefore, pass settings and constraints using a Tcl
script:

1. Create a text file with the extension.tcl that contains your assignments in Tcl format.
2. Source the Tcl script file by adding the following line to the .qsf:set_global_assignment -name

SOURCE_TCL_SCR IPT_FILE <file name>.

Project Revision Commands
Use the following commands for scripting project revisions.

Create Revision Command on page 1-22

Set Current Revision Command on page 1-22

Get Project Revisions Command on page 1-22

Delete Revision Command on page 1-22

Create Revision Command

create_revision <name> -based_on <revision_name> -copy_results -set_current

DescriptionOption

Specifies the revision name on which the new revision bases
its settings.

based_on (optional)

Sets the new revision as the current revision.copy_results

Copies the results from the "based_on" revision.set_current (optional)

Set Current Revision Command

The -force option enables you to open the revision that you specify under revision name and overwrite
the compilation database if the database version is incompatible.

set_current_revision -force <revision name>

Get Project Revisions Command

get_project_revisions <project_name>

Delete Revision Command

 delete_revision <revision name>

Managing Quartus II ProjectsAltera Corporation

Send Feedback

QII52012
Scripting Project Settings1-22 2013.11.4

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Managing%20Quartus%20II%20Projects%20(QII52012%202013.11.4)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Project Archive Commands
You can use Tcl commands and the quartus_sh executable to create and manage archives of a Quartus
II project.

Creating a Project Archive

in a Tcl script or from a Tcl prompt, you can use the following command to create a Quartus archive:

project_archive <name>.qar

You can specify the following other options:

• -all_revisions
• -include_libraries
• -include_outputs
• -use_file_set <file_set>
• -version_compatible_database

Version-compatible databases are not available for some device families. If you require the database
files to reproduce the compilation results in the same Quartus II software version, use the -
use_file_set full_db option to archive the complete database.

Note:

Restoring an Archived Project
Use the following Tcl command to restore a Quartus II project:

project_restore <name>.qar -destination restored -overwrite

This example restores to a destination directory named "restored".

Project Database Commands
Use the following commands for managing Quartus II project databases:

Import and Export Version-Compatible Databases on page 1-23

Import and Export Version-Compatible Databases from a Flow Package on page 1-23

Generate Version-Compatible Database After Compilation on page 1-24

quartus_cdb and quartus_sh Executables to Manage Version-Compatible Databases on page 1-24

Import and Export Version-Compatible Databases

Use the following commands to import or export a version-compatible database:

• import_database <directory>
• export_database <directory>

Import and Export Version-Compatible Databases from a Flow Package

The following are Tcl commands from theflow package to import or export version-compatible databases.
If you use the flow package, you must specify the database directory variable name. flow and
database_manager packages contain commands to manage version-compatible databases.

Altera CorporationManaging Quartus II Projects

Send Feedback

1-23Project Archive Commands
QII52012
2013.11.4

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Managing%20Quartus%20II%20Projects%20(QII52012%202013.11.4)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

• set_global_assignment -name VER_COMPATIBLE_DB_DIR <directory>
• execute_flow –flow export_database
• execute_flow –flow import_database

Generate Version-Compatible Database After Compilation

Use the following commands to generate a version-compatible database after compilation:

• set_global_assignment -name AUTO_EXPORT_VER_COMPATIBLE_DB ON
• set_global_assignment-name VER_COMPATIBLE_DB_DIR <directory>

quartus_cdb and quartus_sh Executables to Manage Version-Compatible Databases

Use the following commands to manage version-compatible databases:

• quartus_cdb <project> -c <revision>--export_database=<directory>
• quartus_cdb <project> -c <revision> --import_database=<directory>
• quartus_sh –flow export_database <project> -c \ <revision>
• quartus_sh –flow import_database <project> -c \ <revision>

Project Library Commands
Use the following commands to script project library changes.

Specify Project Libraries With SEARCH_PATH Assignment on page 1-24

Report Specified Project Libraries Commands on page 1-24

Specify Project Libraries With SEARCH_PATH Assignment

In Tcl, use commands in the :: quartus ::project package to specify project libraries, and the
set_global_assignment command.

Use the following commands to script project library changes:

• set_global_assignment -name SEARCH_PATH "../other_dir/library1"
• set_global_assignment -name SEARCH_PATH "../other_dir/library2"
• set_global_assignment -name SEARCH_PATH "../other_dir/library3"

Report Specified Project Libraries Commands

To report any project libraries specified for a project and any global libraries specified for the current
installation of the Quartus II software, use the get_global_assignment and get_user_option
Tcl commands.

Use the following commands to report specified project libraries:

• get_global_assignment -name SEARCH_PATH
• get_user_option -name SEARCH_PATH

Document Revision History
View basic information about your project in the Project Navigator, Report panel, and Messages window.

Managing Quartus II ProjectsAltera Corporation

Send Feedback

QII52012
Generate Version-Compatible Database After Compilation1-24 2013.11.4

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Managing%20Quartus%20II%20Projects%20(QII52012%202013.11.4)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Table 1-2: Document Revision History

ChangesVersionDate

• Conversion to DITA format13.1.0November 2013

• Overhaul for improved usability and updated
information.

13.0.0May 2013

• Removed survey link.
• Updated information about VERILOG_

INCLUDE_FILE.

12.0.0June 2012

Template update.10.1.1November 2011

• Changed to new document template.
• Removed Figure 4–1, Figure 4–6, Table 4–2.
• Moved “Hiding Messages” to Help.
• Removed references about the set_user_

option command.
• Removed Classic Timing Analyzer references.

10.1.0December 2010

• Major reorganization done to this chapter.
• Updated “
• Working with Messages” on page 4–17. Added

a link to Help. Removed Figure 4–2 on
page 4–7, Figure 4–11 on page 23, and Figure
4–12 on page.

• Updated “Specifying Libraries” on page 4–14
section. Changed “User Libraries” to
“Libraries”. Removed “Reducing Compilation
Time

• ” on page 4–26.
• Added “Managing Projects in a Team-Based

Design Environment” on page 4–22 and “File
Association

• ” on page 4–2.
• Updated Figure 4–1 on page 4–6, Figure 4–2

on page 4–8, Figure 4–6 on page 4–18,
Figure 4–6 on page 4–19, and Figure 4–7 on
page 4–21.

10.0.0July 2010

• Updated “Creating aNewProject” on page 4–4,
“Archiving a Project” on page 4–9, “Restoring
an Archived Project” on page 4–11.

• Added “Quartus II Text Editor” on page 4–2,
“Reducing Compilation Time” on page 4–32.

• Updated Table 4–1 on page 4–10, Table 4–2 on
page 4–20.

• Updated Figure 4–4 on page 4–9, Figure 4–7
on page 4–19.

9.1.0November 2009

Altera CorporationManaging Quartus II Projects

Send Feedback

1-25Document Revision History
QII52012
2013.11.4

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Managing%20Quartus%20II%20Projects%20(QII52012%202013.11.4)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

ChangesVersionDate

Updated to fix “Document Revision History” for
version 9.0.0.

9.0.0April 2009

• Updated “Managing Quartus II Projects” on
page 4–1, “Creating a New Project” on
page 4–2, “Using Revisions with Your Design

• ” on page 4–3, “
• Creating and Deleting Revisions
• ” on page 4–4, “Creating New Copies of Your

Design
• ” onpage 4–6, “Version-CompatibleDatabases”

on page 4–11, “Quartus II Project Platform
Migration” on page 4–12, “Filenames and
Hierarchies” on page 4–12, “Quartus II Search
Path Precedence Rules” on page 4–15,
“Quartus II-Generated Files for Third-Party
EDATools” onpage 4–15, “MigratingDatabase
Files between Platforms” on page 4–16,
“Message Suppression” on page 4–20,
“Quartus II Settings File” on page 4–24,
“Quartus II Default Settings File” on page 4–25,
“Managing Revisions

• ” on page 4–26, “Archiving Projects
• ” on page 4–26 and “Archiving Projects
• with the Quartus II Archive Project Feature”

on page 4–7, “Importing and Exporting
Version-Compatible Databases

• ” on page 4–27, “Specifying Libraries Using
Scripts” on page 4–28, “

• Conclusion
• ” on page 4–30.
• Updated Figure 4–1, Figure 4–7, Figure 4–8,

and Figure 4–11.
• Updated Table 4–1 and Table 4–2.
• Updated Example 4–3, Example 4–4,

Example 4–5, and Example 4–6.

9.0.0March 2009

Related Information
Quartus II Handbook Archive

Managing Quartus II ProjectsAltera Corporation

Send Feedback

QII52012
Document Revision History1-26 2013.11.4

http://www.altera.com/literature/lit-qts_archive.jsp
mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Managing%20Quartus%20II%20Projects%20(QII52012%202013.11.4)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

QII51016-13.1.0

© 2013 Altera Corporation. All rights reserved. ALTERA, ARRI
are trademarks of Altera Corporation and registered in the U.S
trademarks or service marks are the property of their respectiv
semiconductor products to current specifications in accordance
services at any time without notice. Altera assumes no respons
described herein except as expressly agreed to in writing by Al
on any published information and before placing orders for pr

Quartus II Handbook Version 13.1
Volume 1: Design and Synthesis
November 2013

November 2013
QII51016-13.1.0
2. Design Planning with the
Quartus II Software
This chapter discusses key FPGA design planning considerations, provides
recommendations, and describes various tools available for you to improve your
design productivity with Altera® FPGAs.

Because of the significant increase in FPGA device densities, designs are complex and
can sometimes involve multiple designers. System architects must also resolve design
issues when integrating design blocks. However, you can solve potential problems
early in the design cycle by following the design planning considerations in this
chapter.

This chapter contains the following sections:

■ “Creating Design Specifications” on page 2–2

■ “Selecting Intellectual Property” on page 2–2

■ “Using Qsys and Standard Interfaces in System Design” on page 2–3

■ “Selecting a Device” on page 2–3

■ “Planning for Device Programming or Configuration” on page 2–4

■ “Estimating Power” on page 2–5

■ “Early Pin Planning and I/O Analysis” on page 2–6

■ “Selecting Third-Party EDA Tools” on page 2–8

■ “Planning for On-Chip Debugging Tools” on page 2–10

■ “Design Practices and HDL Coding Styles” on page 2–11

■ “Planning for Hierarchical and Team-Based Design” on page 2–13

■ “Fast Synthesis and Early Timing Estimation” on page 2–15

f This chapter provides only an introduction to various design planning features in the
Quartus® II software. For more information about Quartus II features and
methodologies, this chapter provides references to other appropriate chapters in the
Quartus II Handbook.

Before reading the design planning guidelines discussed in this chapter, consider your
design priorities. More device features, density, or performance requirements can
increase system cost. Signal integrity and board issues can impact I/O pin locations.
Power, timing performance, and area utilization all affect each other, and compilation
time is affected when optimizing these priorities.
A, CYCLONE, HARDCOPY, MAX, MEGACORE, NIOS, QUARTUS and STRATIX words and logos
. Patent and Trademark Office and in other countries. All other words and logos identified as
e holders as described at www.altera.com/common/legal.html. Altera warrants performance of its
with Altera's standard warranty, but reserves the right to make changes to any products and

ibility or liability arising out of the application or use of any information, product, or service
tera. Altera customers are advised to obtain the latest version of device specifications before relying
oducts or services.

Feedback SubscribeTwitter

ISO
9001:2008
Registered

http://www.altera.com/common/legal.html
http://www.altera.com/literature/hb/qts/quartusii_handbook.pdf
http://www.altera.com/support/reliability/certifications/rel-certifications.html
http://www.altera.com/support/reliability/certifications/rel-certifications.html
https://www.altera.com/servlets/subscriptions/alert?id=QII51016
mailto:TechDocFeedback@altera.com?subject=Feedback on QII51016-13.0 (QII HB, Vol 1, Ch2: Design Planning with the Quartus II Software)
http://twitter.com/home/?status=Design+Planning+with+the+Quartus+II+Software+http://www.altera.com/literature/hb/qts/qts_qii51016.pdf?WT.mc_id=gc_so_tw_st_tx_a_011+(via @alteracorp)+%23Altera

2–2 Chapter 2: Design Planning with the Quartus II Software
Creating Design Specifications
The Quartus II software optimizes designs for the best overall results; however, you
can change the settings to better optimize one aspect of your design, such as power
utilization. Certain tools or debugging options can lead to restrictions in your design
flow. Your design priorities help you choose the tools, features, and methodologies to
use for your design.

f After you select a device family, to check if additional guidelines are available, refer to
the design guidelines section of the appropriate device handbook.

Creating Design Specifications
Before you create your design logic or complete your system design, create detailed
design specifications that define the system, specify the I/O interfaces for the FPGA,
identify the different clock domains, and include a block diagram of basic design
functions.

In addition, creating a test plan helps you to design for verification and
manufacturability. For example, you might need to validate interfaces incorporated in
your design. To perform any built-in self-test functions to drive interfaces, you can
use a UART interface with a Nios® II processor inside the FPGA device. For
guidelines related to analyzing and debugging the device after it is in the system, refer
to “Planning for On-Chip Debugging Tools” on page 2–10.

If more than one designer works on your design, you must consider a common design
directory structure or source control system to make design integration easier. For
more suggestions on team-based designs, refer to “Planning for Hierarchical and
Team-Based Design” on page 2–13. Consider whether you want to standardize on an
interface protocol for each design block. To improve reusability and ease of
integration, refer to “Using Qsys and Standard Interfaces in System Design”.

Selecting Intellectual Property
Altera and its third-party intellectual property (IP) partners offer a large selection of
standardized IP cores optimized for Altera devices. The IP you select often affects
system design, especially if the FPGA interfaces with other devices in the system.
Consider which I/O interfaces or other blocks in your system design are implemented
using IP cores, and plan to incorporate these cores in your FPGA design.

The OpenCore Plus feature, which is available for many IP cores, allows you to
program the FPGA to verify your design in the hardware before you purchase the IP
license. The evaluation supports the following modes:

■ Untethered—the design runs for a limited time.

■ Tethered—the design requires an Altera serial JTAG cable connected between the
JTAG port on your board and a host computer running the Quartus II Programmer
for the duration of the hardware evaluation period.

f For descriptions of available IP cores, refer to the Intellectual Property page of the
Altera website.
Quartus II Handbook Version 13.1 November 2013 Altera Corporation
Volume 1: Design and Synthesis

http://www.altera.com/products/ip/ipm-index.html

Chapter 2: Design Planning with the Quartus II Software 2–3
Using Qsys and Standard Interfaces in System Design
Using Qsys and Standard Interfaces in System Design
You can use the Quartus II Qsys system integration tool to create your design with
fast and easy system-level integration. With Qsys, you can specify system components
in a GUI and generate the required interconnect logic automatically, along with
adapters for clock crossing and width differences. Because system design tools change
the design entry methodology, you must plan to start developing your design within
the tool. Ensure all design blocks use appropriate standard interfaces from the
beginning of the design cycle so that you do not need to make changes later.

Qsys components use Avalon® standard interfaces for the physical connection of
components, and you can connect any logical device (either on-chip or off-chip) that
has an Avalon interface. The Avalon Memory-Mapped interface allows a component
to use an address mapped read or write protocol that enables flexible topologies for
connecting master components to any slave components. The Avalon Streaming
interface enables point-to-point connections between streaming components that send
and receive data using a high-speed, unidirectional system interconnect between
source and sink ports.

In addition to enabling the use of a system integration tool such as Qsys, using
standard interfaces ensures compatibility between design blocks from different
design teams or vendors. Standard interfaces simplify the interface logic to each
design block and enable individual team members to test their individual design
blocks against the specification for the interface protocol to ease system integration.

f For more information about using Qsys to improve your productivity, refer to the
System Design with Qsys section in volume 1 of the Quartus II Handbook.

f Qsys replaces the SOPC Builder system integration tool for new designs. For more
information about SOPC Builder, refer to the SOPC Builder User Guide.

Selecting a Device
The device you choose affects board specification and layout. This section provides
guidelines in the device selection process.

Choose the device family that best suits your design requirements. Families differ in
cost, performance, logic and memory density, I/O density, power utilization, and
packaging. You must also consider feature requirements, such as I/O standards
support, high-speed transceivers, global or regional clock networks, and the number
of phase-locked loops (PLLs) available in the device.

f You can use the Altera Product Selector available on the Altera website to help you
choose your device. You can also review important features of each device family in
the Selector Guides page of the Altera website. Each device family also has a device
handbook, including a data sheet, which documents device features in detail. You can
also see a summary of the resources for each device in the Device dialog box in the
Quartus II software.

h For a list of device selection guides, refer to Devices and Adapters in Quartus II Help.
November 2013 Altera Corporation Quartus II Handbook Version 13.1
Volume 1: Design and Synthesis

http://www.altera.com/literature/hb/qts/qsys_section.pdf
http://www.altera.com/literature/ug/ug_sopc_builder.pdf
http://www.altera.com/products/selector/psg-index.html
http://www.altera.com/literature/lit-sg.jsp
http://quartushelp.altera.com/current/master.htm#mergedProjects/device/dev/dev_list_dev_adapt.htm

2–4 Chapter 2: Design Planning with the Quartus II Software
Planning for Device Programming or Configuration
Carefully study the device density requirements for your design. Devices with more
logic resources and higher I/O counts can implement larger and more complex
designs, but at a higher cost. Smaller devices use lower static power. Select a device
larger than what your design requires if you want to add more logic later in the
design cycle to upgrade or expand your design, and reserve logic and memory for
on-chip debugging (refer to “Planning for On-Chip Debugging Tools” on page 2–10).
Consider requirements for types of dedicated logic blocks, such as memory blocks of
different sizes, or digital signal processing (DSP) blocks to implement certain
arithmetic functions.

If you have older designs that target an Altera device, you can use their resources as
an estimate for your design. Compile existing designs in the Quartus II software with
the Auto device selected by the Fitter option in the Settings dialog box. Review the
resource utilization to learn which device density fits your design. Consider coding
style, device architecture, and the optimization options used in the Quartus II
software, which can significantly affect the resource utilization and timing
performance of your design.

f To obtain resource utilization estimates for certain configurations of Altera’s IP, refer
to the user guides for Altera megafunctions and IP MegaCores on the IP and
Megafunctions literature page of the Altera website.

Device Migration Planning
Determine whether you want to migrate your design to another device density to
allow flexibility when your design nears completion. You may want to target a
smaller (and less expensive) device and then move to a larger device if necessary to
meet your design requirements. Other designers may prototype their design in a
larger device to reduce optimization time and achieve timing closure more quickly,
and then migrate to a smaller device after prototyping. If you want the flexibility to
migrate your design, you must specify these migration options in the Quartus II
software at the beginning of your design cycle.

h For more information about specifying the target migration devices, refer to Specifying
Devices for Device Migration in Quartus II Help.

Selecting a migration device impacts pin placement because some pins may serve
different functions in different device densities or package sizes. If you make pin
assignments in the Quartus II software, the Pin Migration View in the Pin Planner
highlights pins that change function between your migration devices. (For more
information, refer to “Early Pin Planning and I/O Analysis” on page 2–6.)

Planning for Device Programming or Configuration
Planning how to program or configure the device in your system allows system and
board designers to determine what companion devices, if any, your system requires.
Your board layout also depends on the type of programming or configuration method
you plan to use for programmable devices. Many programming options require a
JTAG interface to connect to the devices, so you might have to set up a JTAG chain on
the board. Additionally, the Quartus II software uses the settings for the configuration
scheme, configuration device, and configuration device voltage to enable the
Quartus II Handbook Version 13.1 November 2013 Altera Corporation
Volume 1: Design and Synthesis

http://www.altera.com/literature/lit-ip.jsp
http://www.altera.com/literature/lit-ip.jsp
http://quartushelp.altera.com/current/master.htm#mergedProjects/comp/migrate/comp_pro_migration.htm
http://quartushelp.altera.com/current/master.htm#mergedProjects/comp/migrate/comp_pro_migration.htm

Chapter 2: Design Planning with the Quartus II Software 2–5
Estimating Power
appropriate dual purpose pins as regular I/O pins after you complete configuration.
The Quartus II software performs voltage compatibility checks of those pins during
I/O assignment analysis and compilation of your design. You can use the
Configuration tab of the Device and Pin Options dialog box to select your
configuration scheme.

f The device family handbooks describe the configuration options available for a device
family. For more details about configuration options, refer to the Configuration
Handbook. For information about programming CPLD devices, refer to your device
data sheet or handbook.

Estimating Power
You can use the Quartus II power estimation and analysis tools to provide
information to PCB board and system designers. Power consumption in FPGA
devices depends on the design logic, which can make planning difficult. You can
estimate power before you create any source code, or when you have a preliminary
version of the design source code, and then perform the most accurate analysis with
the PowerPlay Power Analyzer when you complete your design.

You must accurately estimate device power consumption to develop an appropriate
power budget and to design the power supplies, voltage regulators, heat sink, and
cooling system. Power estimation and analysis helps you satisfy two important
planning requirements:

■ Thermal—ensure that the cooling solution is sufficient to dissipate the heat
generated by the device. The computed junction temperature must fall within
normal device specifications.

■ Power supply—ensure that the power supplies provide adequate current to
support device operation.

The PowerPlay Early Power Estimator (EPE) spreadsheet allows you to estimate
power utilization for your design.

You can manually enter data into the EPE spreadsheet, or use the Quartus II software
to generate device resource information for your design.

To manually enter data into the EPE spreadsheet, enter the device resources,
operating frequency, toggle rates, and other parameters for your design. If you do not
have an existing design, estimate the number of device resources used in your design,
and then enter the data into the EPE spreadsheet manually.

If you have an existing design or a partially completed design, you can use the
Quartus II software to generate the PowerPlay Early Power Estimator File (.txt, .csv)
to assist you in completing the PowerPlay EPE spreadsheet.

h For more information about generating the PowerPlay EPE File, refer to Performing an
Early Power Estimate Using the PowerPlay Early Power Estimator in Quartus II Help.
November 2013 Altera Corporation Quartus II Handbook Version 13.1
Volume 1: Design and Synthesis

http://www.altera.com/literature/hb/cfg/config_handbook.pdf
http://www.altera.com/literature/hb/cfg/config_handbook.pdf
http://quartushelp.altera.com/current/master.htm#mergedProjects/optimize/pwr/pwr_pro_early_pwr_estimate.htm
http://quartushelp.altera.com/current/master.htm#mergedProjects/optimize/pwr/pwr_pro_early_pwr_estimate.htm

2–6 Chapter 2: Design Planning with the Quartus II Software
Early Pin Planning and I/O Analysis
The PowerPlay EPE spreadsheet includes the Import Data macro that parses the
information in the PowerPlay EPE File and transfers the information into the
spreadsheet. If you do not want to use the macro, you can manually transfer the data
into the EPE spreadsheet. For example, after importing the PowerPlay EPE File
information into the PowerPlay EPE spreadsheet, you can add device resource
information. If the existing Quartus II project represents only a portion of your full
design, manually enter the additional device resources you use in the final design.

Estimating power consumption early in the design cycle allows planning of power
budgets and avoids unexpected results when designing the PCB.

f The PowerPlay EPE spreadsheets for each supported device family are available on
the PowerPlay Early Power Estimator and Power Analyzer page of the Altera
website.

When you complete your design, perform a complete power analysis to check the
power consumption more accurately. The PowerPlay Power Analyzer tool in the
Quartus II software provides an accurate estimation of power, ensuring that thermal
and supply limitations are met.

f For more information about power estimation and analysis, refer to the PowerPlay
Power Analysis chapter in volume 3 of the Quartus II Handbook.

Early Pin Planning and I/O Analysis
This section describes early pin planning and I/O analysis features for different stages
of the design flow.

In many design environments, FPGA designers want to plan the top-level FPGA I/O
pins early to help board designers begin the PCB design and layout. The I/O
capabilities and board layout guidelines of the FPGA device influence pin locations
and other types of assignments. If the board design team specifies an FPGA pin-out,
the pin locations must be verified in the FPGA placement and routing software to
avoid board design changes.

You can create a preliminary pin-out for an Altera FPGA with the Quartus II Pin
Planner before you develop the source code, based on standard I/O interfaces (such
as memory and bus interfaces) and any other I/O requirements for your system. The
Quartus II I/O Assignment Analysis checks that the pin locations and assignments
are supported in the target FPGA architecture. You can then use I/O Assignment
Analysis to validate I/O-related assignments that you create or modify throughout
the design process. When you compile your design in the Quartus II software, I/O
Assignment Analysis runs automatically in the Fitter to validate that the assignments
meet all the device requirements and generates error messages.

Early in the design process, before creating the source code, the system architect has
information about the standard I/O interfaces (such as memory and bus interfaces),
the IP cores in your design, and any other I/O-related assignments defined by system
requirements. You can use this information with the Early Pin Planning feature in the
Pin Planner to specify details about the design I/O interfaces. You can then create a
top-level design file that includes all I/O information.
Quartus II Handbook Version 13.1 November 2013 Altera Corporation
Volume 1: Design and Synthesis

http://www.altera.com/support/devices/estimator/pow-powerplay.jsp
http://www.altera.com/literature/hb/qts/qts_qii53013.pdf
http://www.altera.com/literature/hb/qts/qts_qii53013.pdf

Chapter 2: Design Planning with the Quartus II Software 2–7
Early Pin Planning and I/O Analysis
The Pin Planner interfaces with the IP core parameter editor, which allows you to
create or import custom megafunctions and IP cores that use I/O interfaces. You can
configure how to connect the functions and cores to each other by specifying
matching node names for selected ports. You can create other I/O-related
assignments for these interfaces or other design I/O pins in the Pin Planner, as
described in this section. The Pin Planner creates virtual pin assignments for internal
nodes, so internal nodes are not assigned to device pins during compilation. After
analysis and synthesis of the newly generated top-level wrapper file, use the
generated netlist to perform I/O Analysis with the Start I/O Assignment Analysis
command.

h For more information about setting up the nodes in your design, refer to Set Up
Top-Level Design File Window (Edit Menu) in Quartus II Help.

You can use the I/O analysis results to change pin assignments or IP parameters even
before you create your design, and repeat the checking process until the I/O interface
meets your design requirements and passes the pin checks in the Quartus II software.
When you complete initial pin planning, you can create a revision based on the
Quartus II-generated netlist. You can then use the generated netlist to develop the top-
level design file for your design, or disregard the generated netlist and use the
generated Quartus II Settings File (.qsf) with your design.

During this early pin planning, after you have generated a top-level design file, or
when you have developed your design source code, you can assign pin locations and
assignments with the Pin Planner.

With the Pin Planner, you can identify I/O banks, voltage reference (VREF) groups,
and differential pin pairings to help you through the I/O planning process. If
migration devices are selected as described in “Device Migration Planning” on
page 2–4, the Pin Migration View highlights the pins that have changed functions in
the migration device when compared to the currently selected device. Selecting the
pins in the Device Migration view cross-probes to the rest of the Pin Planner, so that
you can use device migration information when planning your pin assignments. You
can also configure board trace models of selected pins for use in “board-aware” signal
integrity reports generated with the Enable Advanced I/O Timing option. This
option ensures that you get accurate I/O timing analysis. You can use a Microsoft
Excel spreadsheet to start the I/O planning process if you normally use a spreadsheet
in your design flow, and you can export a Comma-Separated Value File (.csv)
containing your I/O assignments for spreadsheet use when you assign all pins.

When you complete your pin planning, you can pass pin location information to PCB
designers. The Pin Planner is tightly integrated with certain PCB design EDA tools,
and can read pin location changes from these tools to check suggested changes. Your
pin assignments must match between the Quartus II software and your schematic and
board layout tools to ensure the FPGA works correctly on the board, especially if you
must make changes to the pin-out. The system architect uses the Quartus II software
to pass pin information to team members designing individual logic blocks, allowing
them to achieve better timing closure when they compile their design.
November 2013 Altera Corporation Quartus II Handbook Version 13.1
Volume 1: Design and Synthesis

http://quartushelp.altera.com/current/master.htm#mergedProjects/assign/asd/asd_com_setup_toplevel.htm
http://quartushelp.altera.com/current/master.htm#mergedProjects/assign/asd/asd_com_setup_toplevel.htm

2–8 Chapter 2: Design Planning with the Quartus II Software
Selecting Third-Party EDA Tools
Start FPGA planning before you complete the HDL for your design to improve the
confidence in early board layouts, reduce the chance of error, and improve the overall
time to market of the design. When you complete your design, use the Fitter reports
for the final sign-off of pin assignments. After compilation, the Quartus II software
generates the Pin-Out File (.pin), and you can use this file to verify that each pin is
correctly connected in board schematics.

f For more information about I/O assignment and analysis, refer to the I/O Management
chapter in volume 2 of the Quartus II Handbook. For more information about passing
I/O information between the Quartus II software and third-party EDA tools, refer to
the Mentor Graphics PCB Design Tools Support and Cadence PCB Design Tools Support
chapters in the I/O and PCB Tools section in volume 2 of the Quartus II Handbook.

Simultaneous Switching Noise Analysis
Simultaneous switching noise (SSN) is a noise voltage inducted onto a victim I/O pin
of a device due to the switching behavior of other aggressor I/O pins in the device.
Altera provides tools for SSN analysis and estimation, including SSN characterization
reports, an Early SSN Estimator (ESE) spreadsheet tool, and the SSN Analyzer in the
Quartus II software. SSN often leads to the degradation of signal integrity by causing
signal distortion, thereby reducing the noise margin of a system. You must address
SSN with estimation early in your system design, to minimize later board design
changes. When your design is complete, verify your board design by performing a
complete SSN analysis of your FPGA in the Quartus II software.

f For more information and device support for the ESE spreadsheet tool, refer to
Altera’s Signal Integrity Center on the Altera website. For more information about the
SSN Analyzer, refer to the Simultaneous Switching Noise (SSN) Analysis and
Optimizations chapter in volume 2 of the Quartus II Handbook.

Selecting Third-Party EDA Tools
Your complete FPGA design flow may include third-party EDA tools in addition to
the Quartus II software. Determine which tools you want to use with the Quartus II
software to ensure that they are supported and set up properly, and that you are
aware of their capabilities.

Synthesis Tool
The Quartus II software includes integrated synthesis that supports Verilog HDL,
VHDL, Altera Hardware Description Language (AHDL), and schematic design entry.
You can also use supported standard third-party EDA synthesis tools to synthesize
your Verilog HDL or VHDL design, and then compile the resulting output netlist file
in the Quartus II software. Different synthesis tools may give different results for each
design. To determine the best tool for your application, you can experiment by
synthesizing typical designs for your application and coding style. Perform
placement and routing in the Quartus II software to get accurate timing analysis and
logic utilization results.
Quartus II Handbook Version 13.1 November 2013 Altera Corporation
Volume 1: Design and Synthesis

http://www.altera.com/literature/hb/qts/qts_qii52013.pdf
http://www.altera.com/literature/hb/qts/qts_qii52015.pdf
http://www.altera.com/literature/hb/qts/qts_qii52014.pdf
http://www.altera.com/literature/hb/qts/qts_qii5v2_02.pdf
http://www.altera.com/technology/signal/sgl-index.html
http://www.altera.com/literature/hb/qts/qts_qii52018.pdf
http://www.altera.com/literature/hb/qts/qts_qii52018.pdf

Chapter 2: Design Planning with the Quartus II Software 2–9
Selecting Third-Party EDA Tools
f Because tool vendors frequently add new features, fix tool issues, and enhance
performance for Altera devices, you must use the most recent version of third-party
synthesis tools. The Quartus II Software Release Notes lists the version of each synthesis
tool that is supported by a given version of the Quartus II software.

The synthesis tool you choose may allow you to create a Quartus II project and pass
constraints, such as the EDA tool setting, device selection, and timing requirements
that you specified in your synthesis project. You can save time when setting up your
Quartus II project for placement and routing.

To use incremental compilation, you must partition your design for synthesis and
generate multiple output netlist files. For more information, refer to “Incremental
Compilation with Design Partitions” on page 2–13.

f For more information about synthesis tool flows, refer to Volume 1: Design and
Synthesis of the Quartus II Handbook.

Simulation Tool
Altera provides the Mentor Graphics ModelSim®-Altera Starter Edition with the
Quartus II software. You can also purchase the ModelSim-Altera Edition or a full
license of the ModelSim software to support large designs and achieve faster
simulation performance. The Quartus II software can generate both functional and
timing netlist files for ModelSim and other third-party simulators.

Use the simulator version that your Quartus II software version supports for best
results. You must also use the model libraries provided with your Quartus II software
version. Libraries can change between versions, which might cause a mismatch with
your simulation netlist.

For a list of the version of each simulation tool that is supported with a given version
of the Quartus II software, refer to the Quartus II Software Release Notes.

f For more information about simulation tool flows, refer to the appropriate chapter in
the Simulation section in volume 3 of the Quartus II Handbook.

Formal Verification Tool
Consider whether the Quartus II software supports the formal verification tool that
you want to use, and whether the flow impacts your design and compilation stages of
your design.

f For more information about formal verification flows and the supported tools, refer to
Volume 3: Verification of the Quartus II Handbook.
November 2013 Altera Corporation Quartus II Handbook Version 13.1
Volume 1: Design and Synthesis

http://www.altera.com/literature/rn/rn_qts.pdf
http://www.altera.com/literature/hb/qts/qts_qii5v1.pdf
http://www.altera.com/literature/hb/qts/qts_qii5v1.pdf
http://www.altera.com/literature/rn/rn_qts.pdf
http://www.altera.com/literature/hb/qts/qts_qii5v3_01.pdf
http://www.altera.com/literature/hb/qts/qts_qii5v3.pdf

2–10 Chapter 2: Design Planning with the Quartus II Software
Planning for On-Chip Debugging Tools
Using a formal verification tool can impact performance results because performing
formal verification requires turning off certain logic optimizations, such as register
retiming, and forces you to preserve hierarchy blocks, which can restrict optimization.
Formal verification treats memory blocks as black boxes. Therefore, you must keep
memory in a separate hierarchy block so other logic does not get incorporated into the
black box for verification. Other restrictions may limit your design, and you must
consult Volume 3: Verification of the Quartus II Handbook for details. If formal
verification is important to your design, plan for limitations and restrictions at the
beginning of the design cycle rather than make changes later.

Planning for On-Chip Debugging Tools
In-system debugging tools offer different advantages and trade-offs. A particular
debugging tool may work better for different systems and designers. You must
evaluate on-chip debugging tools early in your design process, to ensure that your
system board, Quartus II project, and design can support the appropriate tools. You
can reduce debugging time and avoid making changes to accommodate your
preferred debugging tools later.

f For an overview of debugging tools that can help you decide which tools to use, refer
to the System Debugging Tools Overview chapter in volume 3 of the Quartus II Handbook.

If you intend to use any of these tools, you may have to plan for the tools when
developing your system board, Quartus II project, and design. Consider the following
debugging requirements when you plan your design:

■ JTAG connections—required to perform in-system debugging with JTAG tools.
Plan your system and board with JTAG ports that are available for debugging.

■ Additional logic resources—required to implement JTAG hub logic. If you set up
the appropriate tool early in your design cycle, you can include these device
resources in your early resource estimations to ensure that you do not overload the
device with logic.

■ Reserve device memory—required if your tool uses device memory to capture
data during system operation. To ensure that you have enough memory resources
to take advantage of this debugging technique, consider reserving device memory
to use during debugging.

■ Reserve I/O pins—required if you use the Logic Analyzer Interface (LAI) or
SignalProbe tools, which require I/O pins for debugging. If you reserve I/O pins
for debugging, you do not have to later change your design or board. The LAI can
multiplex signals with design I/O pins if required. Ensure that your board
supports a debugging mode, in which debugging signals do not affect system
operation.

■ Instantiate a megafunction in your HDL code—required if your debugging tool
uses a Quartus II megafunction.

■ Instantiate the SignalTap II Logic Analyzer as a megafunction—required if you
want to manually connect the SignalTap II Logic Analyzer to nodes in your design
and ensure that the tapped node names do not change during synthesis. You can
add the analyzer as a separate design partition for incremental compilation to
minimize recompilation times.
Quartus II Handbook Version 13.1 November 2013 Altera Corporation
Volume 1: Design and Synthesis

http://www.altera.com/literature/hb/qts/qts_qii5v3.pdf
http://www.altera.com/literature/hb/qts/qts_qii53027.pdf

Chapter 2: Design Planning with the Quartus II Software 2–11
Design Practices and HDL Coding Styles
f For more information, refer to Design Debugging Using the SignalTap II Logic
Analyzer chapter in volume 3 of the Quartus II Handbook.

Table 2–1 lists which factors are important for each debugging tool.

Design Practices and HDL Coding Styles
When you develop complex FPGA designs, design practices and coding styles have
an enormous impact on the timing performance, logic utilization, and system
reliability of your device.

Design Recommendations
Use synchronous design practices to consistently meet your design goals. Problems
with asynchronous design techniques include reliance on propagation delays in a
device, incomplete timing analysis, and possible glitches. In a synchronous design, a
clock signal triggers all events. When you meet all register timing requirements, a
synchronous design behaves in a predictable and reliable manner for all process,
voltage, and temperature (PVT) conditions. You can easily target synchronous designs
to different device families or speed grades.

Clock signals have a large effect on the timing accuracy, performance, and reliability
of your design. Problems with clock signals can cause functional and timing problems
in your design. Use dedicated clock pins and clock routing for best results, and if you
have PLLs in your target device, use the PLLs for clock inversion, multiplication, and
division. For clock multiplexing and gating, use the dedicated clock control block or
PLL clock switchover feature instead of combinational logic, if these features are
available in your device. If you must use internally-generated clock signals, register
the output of any combinational logic used as a clock signal to reduce glitches.

The Design Assistant in the Quartus II software is a design-rule checking tool that
enables you to verify design issues. The Design Assistant checks your design for
adherence to Altera-recommended design guidelines. You can also use third-party
lint tools to check your coding style.

Table 2–1. Factors to Consider When Using Debugging Tools During Design Planning Stages

Design Planning Factor

Si
gn

ap
Ta

p
II

Lo
gi

c
An

al
yz

er

Sy
st

em
Co

ns
ol

e

In
-S

ys
te

m
M

em
or

y
Co

nt
en

tE
di

to
r

Lo
gi

c
An

al
yz

er
In

te
rf

ac
e

(L
AI

)

Si
gn

al
Pr

ob
e

In
-S

ys
te

m
So

ur
ce

s
an

d
Pr

ob
es

Vi
rt

ua
lJ

TA
G

M
eg

af
un

ct
io

n

JTAG connections v v v v — v v

Additional logic resources — v — — — — v

Reserve device memory v v — — — — —

Reserve I/O pins — — — v v — —

Instantiate a megafunction in your HDL
code — — — — — v v
November 2013 Altera Corporation Quartus II Handbook Version 13.1
Volume 1: Design and Synthesis

www.altera.com/literature/hb/qts/qts_qii53009.pdf
www.altera.com/literature/hb/qts/qts_qii53009.pdf

2–12 Chapter 2: Design Planning with the Quartus II Software
Design Practices and HDL Coding Styles
h For more information about running the Design Assistant, refer to About the Design
Assistant in Quartus II Help.

Consider the architecture of the device you choose so that you can use specific
features in your design. For example, the control signals should use the dedicated
control signals in the device architecture. Sometimes, you might need to limit the
number of different control signals used in your design to achieve the best results.

f For more information about design recommendations and using the Design Assistant,
refer to the Recommended Design Practices chapter in volume 1 of the Quartus II
Handbook. You can also refer to industry papers for more information about multiple
clock design. For a good analysis, refer to Synthesis and Scripting Techniques for
Designing Multi-Asynchronous Clock Designs under Papers (www.sunburst-
design.com).

Recommended HDL Coding Styles
HDL coding styles can have a significant effect on the quality of results for
programmable logic designs. If you design memory and DSP functions, you must
understand the target architecture of your device so you can use the dedicated logic
block sizes and configurations. Follow the coding guidelines for inferring
megafunctions and targeting dedicated device hardware, such as memory and DSP
blocks.

f For HDL coding examples and recommendations, refer to the Recommended HDL
Coding Styles chapter in volume 1 of the Quartus II Handbook. For additional
tool-specific guidelines, refer to the documentation of your synthesis tool.

Managing Metastability
Metastability problems can occur in digital design when a signal is transferred
between circuitry in unrelated or asynchronous clock domains, because the designer
cannot guarantee that the signal meets the setup and hold time requirements during
the signal transfer. Designers commonly use a synchronization chain to minimize the
occurrence of metastable events. Ensure that your design accounts for
synchronization between any asynchronous clock domains. Consider using a
synchronizer chain of more than two registers for high-frequency clocks and
frequently-toggling data signals to reduce the chance of a metastability failure.

You can use the Quartus II software to analyze the average mean time between
failures (MTBF) due to metastability when a design synchronizes asynchronous
signals, and optimize your design to improve the metastability MTBF. The MTBF due
to metastability is an estimate of the average time between instances when
metastability could cause a design failure. A high MTBF (such as hundreds or
thousands of years between metastability failures) indicates a more robust design.
Determine an acceptable target MTBF given the context of your entire system and the
fact that MTBF calculations are statistical estimates.

The Quartus II software can help you determine whether you have enough
synchronization registers in your design to produce a high enough MTBF at your
clock and data frequencies.
Quartus II Handbook Version 13.1 November 2013 Altera Corporation
Volume 1: Design and Synthesis

http://quartushelp.altera.com/current/master.htm#mergedProjects/verify/da/comp_view_doctor.htm
http://quartushelp.altera.com/current/master.htm#mergedProjects/verify/da/comp_view_doctor.htm
http://www.altera.com/literature/hb/qts/qts_qii51006.pdf
http://www.sunburst-design.com
http://www.sunburst-design.com
http://www.altera.com/literature/hb/qts/qts_qii51007.pdf
http://www.altera.com/literature/hb/qts/qts_qii51007.pdf

Chapter 2: Design Planning with the Quartus II Software 2–13
Planning for Hierarchical and Team-Based Design
f For information about metastability analysis, reporting, and optimization features in
the Quartus II software, refer to the Managing Metastability with the Quartus II Software
chapter in volume 1 of the Quartus II Handbook.

Planning for Hierarchical and Team-Based Design
To create a hierarchical design so that you can use compilation-time savings and
performance preservation with the Quartus II software incremental compilation
feature, plan for an incremental compilation flow from the beginning of your design
cycle. The following subsections describe the flat compilation flow, in which the
design hierarchy is flattened without design partitions, and then the incremental
compilation flow that uses design partitions. Incremental compilation flows offer
several advantages, but require more design planning to ensure effective results. The
last subsections discuss planning an incremental compilation flow, planning design
partitions, and optionally creating a design floorplan.

f For information about using the incremental compilation flow methodology in the
Quartus II software, refer to the Quartus II Incremental Compilation for Hierarchical and
Team-Based Design chapter in volume 1 of the Quartus II Handbook.

Flat Compilation Flow with No Design Partitions
In the flat compilation flow with no design partitions in the Quartus II software, the
Quartus II software compiles the entire design in a “flat” netlist. Your source code can
have hierarchy, but the Quartus II software flattens your design during compilation
and synthesizes all the design source code and fits in the target device whenever the
software recompile your design after any change in your design. By processing the
entire design, the software performs all available logic and placement optimizations
on the entire design to improve area and performance. You can use debugging tools in
an incremental design flow, such as the SignalTap II Logic Analyzer, but you do not
specify any design partitions to preserve design hierarchy during compilation.

The flat compilation flow is easy to use; you do not have to plan any design partitions.
However, because the Quartus II software recompiles the entire design whenever you
change your design, compilation times can be slow for large devices. Additionally,
you may find that the results for one part of the design change when you change a
different part of your design. You can turn on the Rapid Recompile option to instruct
the software to preserve compatible placement and routing results when the design
changes in subsequent compilations. This option can reduce your compilation time in
a flat or partitioned design when you make small changes to your design.

Incremental Compilation with Design Partitions
In an incremental compilation flow, the system architect splits a large design into
partitions. When hierarchical design partitions are well chosen and placed in the
device floorplan, you can speed up your design compilation time while maintaining
the quality of results.
November 2013 Altera Corporation Quartus II Handbook Version 13.1
Volume 1: Design and Synthesis

http://www.altera.com/literature/hb/qts/qts_qii51018.pdf
http://www.altera.com/literature/hb/qts/qts_qii51015.pdf
http://www.altera.com/literature/hb/qts/qts_qii51015.pdf

2–14 Chapter 2: Design Planning with the Quartus II Software
Planning for Hierarchical and Team-Based Design
Incremental compilation preserves the compilation results and performance of
unchanged partitions in the design, greatly reducing design iteration time by focusing
new compilations on changed design partitions only. Incremental compilation then
merges new compilation results with the previous compilation results from
unchanged design partitions. Additionally, you can target optimization techniques,
such as physical synthesis, to specific design partitions while leaving other partitions
unchanged. You can also use empty partitions to indicate that parts of your design are
incomplete or missing, while you compile the rest of your design.

Third-party IP designers can also export logic blocks to be integrated into the
top-level design. Team members can work on partitions independently, which can
simplify the design process and reduce compilation time. With exported partitions,
the system architect must provide guidance to designers or IP providers to ensure that
each partition uses the appropriate device resources. Because the designs may be
developed independently, each designer has no information about the overall design
or how their partition connects with other partitions. This lack of information can lead
to problems during system integration. The top-level project information, including
pin locations, physical constraints, and timing requirements, must be communicated
to the designers of lower-level partitions before they start their design.

The system architect plans design partitions at the top level and allows third-party
designs to access the top-level project framework. By designing in a copy of the top-
level project (or by checking out the project files in a source control environment), the
designers of the lower-level block have full information about the entire project,
which helps to ensure optimal results.

When you plan your design code and hierarchy, ensure that each design entity is
created in a separate file so that the entities remain independent when you make
source code changes in the file. If you use a third-party synthesis tool, create separate
Verilog Quartus Mapping or EDIF netlists for each design partition in your synthesis
tool. You may have to create separate projects in your synthesis tool, so that the tool
synthesizes each partition separately and generates separate output netlist files. The
netlists are then considered the source files for incremental compilation.

f For more information about support for Quartus II incremental compilation, refer to
the Quartus II Incremental Compilation for Hierarchical and Team-Based Design chapter of
the Quartus II Handbook.

Planning Design Partitions and Floorplan Location Assignments
Partitioning a design for an FPGA requires planning to ensure optimal results when
you integrate the partitions. Following Altera’s recommendations for creating design
partitions should improve the overall quality of results. For example, registering
partition I/O boundaries keeps critical timing paths inside one partition that can be
optimized independently. When you specify the design partitions, you can use the
Incremental Compilation Advisor to ensure that partitions meet Altera’s
recommendations.

If you have timing-critical partitions that are changing through the design flow, or
partitions exported from another Quartus II project, you can create design floorplan
assignments to constrain the placement of the affected partitions. Good partition and
floorplan design helps partitions meet top-level design requirements when integrated
with the rest of your design, reducing time you spend integrating and verifying the
timing of the top-level design.
Quartus II Handbook Version 13.1 November 2013 Altera Corporation
Volume 1: Design and Synthesis

http://www.altera.com/literature/hb/qts/qts_qii51015.pdf

Chapter 2: Design Planning with the Quartus II Software 2–15
Fast Synthesis and Early Timing Estimation
f For detailed guidelines about creating design partitions and organizing your source
code, as well as information about when and how to create floorplan assignments,
refer to the Best Practices for Incremental Compilation Partitions and Floorplan
Assignments chapter in volume 1 of the Quartus II Handbook.

f For more information about creating floorplan assignments in the Chip Planner, refer
to the Analyzing and Optimizing the Design Floorplan chapter in volume 2 of the
Quartus II Handbook.

Fast Synthesis and Early Timing Estimation
You save time when you find design issues early in the design cycle rather than in the
final timing closure stages. When the first version of the design source code is
complete, you might want to perform a quick compilation to create a kind of silicon
virtual prototype (SVP) that you can use to perform timing analysis.

If you synthesize with the Quartus II software, you can choose to perform a Fast
synthesis, which reduces the compilation time, but may give reduced quality of
results.

h For more information about Fast synthesis, refer to Synthesis Effort logic option in
Quartus II Help.

Regardless of your compilation flow, you can run an early timing estimate to perform
a quick placement and routing, and a timing analysis of your design. The software
chooses a device automatically if required, places any LogicLock regions to create a
floorplan, finds a quick initial placement for all the design logic, and provides a useful
estimate of the final design performance. If you have entered timing constraints,
timing analysis reports on these constraints.

h For more information about how to run an early timing estimate, refer to Running a
Timing Analysis in Quartus II Help.

If you design individual design blocks or partitions separately, you can use the Fast
synthesis and early timing estimate features as you develop your design. Any issues
highlighted in the lower-level design blocks are communicated to the system
architect. Resolving these issues might require allocating additional device resources
to the individual partition, or changing the timing budget of the partition.

Expert designers can also use fast synthesis and early timing estimation to prototype
the entire design. Incomplete partitions are marked as empty in an incremental
compilation flow, while the rest of the design is compiled to get an early timing
estimate and detect any problems with design integration.

Conclusion
Modern FPGAs support large, complex designs with fast timing performance. By
planning several aspects of your design early, you can reduce time in later stages of
the development cycle. Use features of the Quartus II software to quickly plan your
design and achieve the best possible results. Following the guidelines presented in
this chapter can improve productivity, which can reduce cost and development time.
November 2013 Altera Corporation Quartus II Handbook Version 13.1
Volume 1: Design and Synthesis

http://www.altera.com/literature/hb/qts/qts_qii51017.pdf
http://www.altera.com/literature/hb/qts/qts_qii51017.pdf
http://www.altera.com/literature/hb/qts/qts_qii52006.pdf
http://quartushelp.altera.com/current/master.htm#mergedProjects/logicops/logicops/def_synthesis_effort.htm
http://quartushelp.altera.com/current/master.htm#mergedProjects/analyze/sta/sta_pro_run_analysis.htm
http://quartushelp.altera.com/current/master.htm#mergedProjects/analyze/sta/sta_pro_run_analysis.htm

2–16 Chapter 2: Design Planning with the Quartus II Software
Document Revision History
Document Revision History
Table 2–2 shows the revision history for this chapter.

Table 2–2. Document Revision History (Part 1 of 2)

Date Version Changes

November 2013 13.1.0 Removed HardCopy device information.

November, 2012 12.1.0 Update for changes to early pin planning feature

June 2012 12.0.0 Editorial update.

November 2011 11.0.1 Template update.

May 2011 11.0.0

■ Added link to System Design with Qsys in “Creating Design Specifications” on page 1–2

■ Updated “Simultaneous Switching Noise Analysis” on page 1–8

■ Updated “Planning for On-Chip Debugging Tools” on page 1–10

■ Removed information from “Planning Design Partitions and Floorplan Location
Assignments” on page 1–15

December 2010 10.1.0

■ Changed to new document template

■ Updated “System Design and Standard Interfaces” on page 1–3 to include information
about the Qsys system integration tool

■ Added link to the Altera Product Selector in “Device Selection” on page 1–3

■ Converted information into new table (Table 1–1) in “Planning for On-Chip Debugging
Options” on page 1–10

■ Simplified description of incremental compilation usages in “Incremental Compilation
with Design Partitions” on page 1–14

■ Added information about the Rapid Recompile option in “Flat Compilation Flow with No
Design Partitions” on page 1–14

■ Removed details and linked to Quartus II Help in “Fast Synthesis and Early Timing
Estimation” on page 1–16

July 2010 10.0.0

■ Added new section “System Design” on page 1–3

■ Removed details about debugging tools from “Planning for On-Chip Debugging Options”
on page 1–10 and referred to other handbook chapters for more information

■ Updated information on recommended design flows in “Incremental Compilation with
Design Partitions” on page 1–14 and removed “Single-Project Versus Multiple-Project
Incremental Flows” heading

■ Merged the “Planning Design Partitions” section with the “Creating a Design Floorplan”
section. Changed heading title to “Planning Design Partitions and Floorplan Location
Assignments” on page 1–15

■ Removed “Creating a Design Floorplan” section

■ Removed “Referenced Documents” section

■ Minor updates throughout chapter
Quartus II Handbook Version 13.1 November 2013 Altera Corporation
Volume 1: Design and Synthesis

Chapter 2: Design Planning with the Quartus II Software 2–17
Document Revision History
f For previous versions of the Quartus II Handbook, refer to the Quartus II Handbook
Archive.

November 2009 9.1.0

■ Added details to “Creating Design Specifications” on page 1–2

■ Added details to “Intellectual Property Selection” on page 1–2

■ Updated information on “Device Selection” on page 1–3

■ Added reference to “Device Migration Planning” on page 1–4

■ Removed information from “Planning for Device Programming or Configuration” on
page 1–4

■ Added details to “Early Power Estimation” on page 1–5

■ Updated information on “Early Pin Planning and I/O Analysis” on page 1–6

■ Updated information on “Creating a Top-Level Design File for I/O Analysis” on page 1–8

■ Added new “Simultaneous Switching Noise Analysis” section

■ Updated information on “Synthesis Tools” on page 1–9

■ Updated information on “Simulation Tools” on page 1–9

■ Updated information on “Planning for On-Chip Debugging Options” on page 1–10

■ Added new “Managing Metastability” section

■ Changed heading title “Top-Down Versus Bottom-Up Incremental Flows” to “Single-
Project Versus Multiple-Project Incremental Flows”

■ Updated information on “Creating a Design Floorplan” on page 1–18

■ Removed information from “Fast Synthesis and Early Timing Estimation” on page 1–18

March 2009 9.0.0 ■ No change to content

November 2008 8.1.0 ■ Changed to 8-1/2 x 11 page size. No change to content.

May 2008 8.0.0

■ Organization changes

■ Added “Creating Design Specifications” section

■ Added reference to new details in the In-System Design Debugging section of volume 3

■ Added more details to the “Design Practices and HDL Coding Styles” section

■ Added references to the new Best Practices for Incremental Compilation and Floorplan
Assignments chapter

■ Added reference to the Quartus II Language Templates

Table 2–2. Document Revision History (Part 2 of 2)

Date Version Changes
November 2013 Altera Corporation Quartus II Handbook Version 13.1
Volume 1: Design and Synthesis

http://www.altera.com/literature/lit-qts_archive.jsp
http://www.altera.com/literature/lit-qts_archive.jsp

QII51015-13.1.0

© 2013 Altera Corporation. All rights reserved. ALTERA, ARRI
are trademarks of Altera Corporation and registered in the U.S
trademarks or service marks are the property of their respectiv
semiconductor products to current specifications in accordance
services at any time without notice. Altera assumes no respons
described herein except as expressly agreed to in writing by Al
on any published information and before placing orders for pr

Quartus II Handbook Version 13.1
Volume 1: Design and Synthesis
November 2013

November 2013
QII51015-13.1.0
3. Quartus II Incremental Compilation for
Hierarchical and Team-Based Design
This chapter provides information and design scenarios to help you partition your
design to take advantage of the Quartus® II incremental compilation feature.

The ability to iterate rapidly through FPGA design and debugging stages is critical.
The Quartus II software introduced the FPGA industry’s first true incremental design
and compilation flow, with the following benefits:

■ Preserves the results and performance for unchanged logic in your design as you
make changes elsewhere.

■ Reduces design iteration time by an average of 75% for small changes in large
designs, so that you can perform more design iterations per day and achieve
timing closure efficiently.

■ Facilitates modular hierarchical and team-based design flows, as well as design
reuse and intellectual property (IP) delivery.

1 Quartus II incremental compilation supports the Arria®, Stratix®, and Cyclone® series
of devices.

This document contains the following sections:

■ “Deciding Whether to Use an Incremental Compilation Flow” on page 3–1

■ “Incremental Compilation Summary” on page 3–7

■ “Common Design Scenarios Using Incremental Compilation” on page 3–10

■ “Deciding Which Design Blocks Should Be Design Partitions” on page 3–19

■ “Specifying the Level of Results Preservation for Subsequent Compilations” on
page 3–25

■ “Exporting Design Partitions from Separate Quartus II Projects” on page 3–30

■ “Team-Based Design Optimization and Third-Party IP Delivery Scenarios” on
page 3–39

■ “Creating a Design Floorplan With LogicLock Regions” on page 3–48

■ “Incremental Compilation Restrictions” on page 3–51

■ “Scripting Support” on page 3–57

Deciding Whether to Use an Incremental Compilation Flow
The Quartus II incremental compilation feature enhances the standard Quartus II
design flow by allowing you to preserve satisfactory compilation results and
performance of unchanged blocks of your design.
A, CYCLONE, HARDCOPY, MAX, MEGACORE, NIOS, QUARTUS and STRATIX words and logos
. Patent and Trademark Office and in other countries. All other words and logos identified as
e holders as described at www.altera.com/common/legal.html. Altera warrants performance of its
 with Altera's standard warranty, but reserves the right to make changes to any products and
ibility or liability arising out of the application or use of any information, product, or service
tera. Altera customers are advised to obtain the latest version of device specifications before relying
oducts or services.

Feedback SubscribeTwitter

ISO
9001:2008
Registered

https://www.altera.com/servlets/subscriptions/alert?id=QII51015
http://www.altera.com/common/legal.html
mailto:TechDocFeedback@altera.com?subject=Feedback on QII51015-13.1 (QII HB, Vol 1, Ch3: Quartus II Incremental Compilation)
http://twitter.com/home/?status=Quartus+II+Incremental+Compilation+for+Hierarchical+and+Team-Based+Design+http://www.altera.com/literature/hb/qts/qts_qii51015.pdf?WT.mc_id=gc_so_tw_st_tx_a_011+(via @alteracorp)+%23Altera
http://www.altera.com/support/reliability/certifications/rel-certifications.html
http://www.altera.com/support/reliability/certifications/rel-certifications.html

3–2 Chapter 3: Quartus II Incremental Compilation for Hierarchical and Team-Based Design
Deciding Whether to Use an Incremental Compilation Flow
This section outlines the flat compilation flow with no design partitions, the
incremental flow when you divide the design into partitions, and the differences
between the flat compilation and incremental compilation flows. This section also
explains when a flat compilation flow is satisfactory, and highlights some of the
reasons why you might want to create design partitions and use the incremental
compilation flow. A discussion about incremental and team design flows in “Team-
Based Design Flows and IP Delivery” on page 3–6 describes how it is beneficial to
keep your design within one project, as well as when it might be necessary for other
team members or IP providers to develop particular design blocks or partitions
separately, and then later integrate their partitions into the top-level design.

Flat Compilation Flow with No Design Partitions
In the flat compilation flow with no design partitions, all the source code is processed
and mapped during the Analysis and Synthesis stage, and placed and routed during
the Fitter stage whenever the design is recompiled after a change in any part of the
design. One reason for this behavior is to ensure optimal push-button quality of
results. By processing the entire design, the Compiler can perform global
optimizations to improve area and performance.

You can use a flat compilation flow for small designs, such as designs in CPLD
devices or low-density FPGA devices, when the timing requirements are met easily
with a single compilation. A flat design is satisfactory when compilation time and
preserving results for timing closure are not concerns.

f For more information on how to reduce compilation time when you use a flat
compilation for your design, refer to the Reducing Compilation Time chapter in volume
2 of the Quartus II Handbook.

Incremental Capabilities Available When A Design Has No Partitions
The Quartus II software has incremental compilation features available even when
you do not partition your design, including Smart Compilation, incremental
debugging, and Rapid Recompile. These features work in either an incremental or flat
compilation flow.

In any Quartus II compilation flow, you can use Smart Compilation to allow the
Compiler to determine which compilation stages are required, based on the changes
made to the design since the last smart compilation, and then skip any stages that are
not required. For example, when Smart Compilation is turned on, the Compiler skips
the Analysis and Synthesis stage if all the design source files are unchanged. When
Smart Compilation is turned on, if you make any changes to the logic of a design, the
Compiler does not skip any compilation stage. You can turn on Smart Compilation on
the Compilation Process Settings page of the Setting dialog box.

The Quartus II software also includes a Rapid Recompile feature that instructs the
Compiler to reuse the compatible compilation results if most of the design has not
changed since the last compilation. This feature reduces compilation times for small
and isolated design changes. You do not have control over which parts of the design
are recompiled using this option; the Compiler determines which parts of the design
must be recompiled. The Rapid Recompile feature preserves performance and can
save compilation time by reducing the amount of changed logic that must be
recompiled.
Quartus II Handbook Version 13.1 November 2013 Altera Corporation
Volume 1: Design and Synthesis

http://www.altera.com/literature/hb/qts/qts_qii52022.pdf

Chapter 3: Quartus II Incremental Compilation for Hierarchical and Team-Based Design 3–3
Deciding Whether to Use an Incremental Compilation Flow
h For more information on Rapid Recompile, refer to About Rapid Recompile in
Quartus II Help.

During the debugging stage of the design cycle, you can use incremental compilation
to add the SignalTap® II Logic Analyzer incrementally to your design, even if the
design does not have partitions. To preserve the compilation netlist for the entire
design, instruct the software to reuse the compilation results for the
automatically-created "Top" partition that contains the entire design. For more
information, refer to “Debugging Incrementally With the SignalTap II Logic
Analyzer” on page 3–13.

Incremental Compilation Flow With Design Partitions
In the standard incremental compilation design flow, the top-level design is divided
into design partitions, which can be compiled and optimized together in the top-level
Quartus II project. You can preserve fitting results and performance for completed
partitions while other parts of the design are changing, which reduces the compilation
times for each design iteration.

Incremental compilation is recommended for large designs and high resource
densities when preserving results is important to achieve timing closure. The
incremental compilation feature also facilitates team-based design flows that allow
designers to create and optimize design blocks independently, when necessary. Refer
to “Team-Based Design Flows and IP Delivery” on page 3–6 for more information.

To take advantage of incremental compilation, start by splitting your design along
any of its hierarchical boundaries into design blocks to be compiled incrementally,
and set each block as a design partition. The Quartus II software synthesizes each
individual hierarchical design partition separately, and then merges the partitions
into a complete netlist for subsequent stages of the compilation flow. When
recompiling your design, you can use source code, post-synthesis results, or
post-fitting results to preserve satisfactory results for each partition. Refer to
“Incremental Compilation Summary” on page 3–7 for more information.

In a team-based environment, part of your design may be incomplete, or it may have
been developed by another designer or IP provider. In this scenario, you can add the
completed partitions to the design incrementally. Alternatively, other designers or IP
providers can develop and optimize partitions independently and the project lead can
later integrate the partitions into the top-level design. Refer to “Team-Based Design
Flows and IP Delivery” on page 3–6 for more information.

Table 3–1 shows a summary of the impact the Quartus II incremental compilation
feature has on compilation results.

Table 3–1. Impact Summary of Using Incremental Compilation (Part 1 of 2)

Characteristic Impact of Incremental Compilation with Design Partitions

Compilation
Time Savings

Typically saves an average of 75% of compilation time for small design changes in large designs when
post-fit netlists are preserved; there are savings in both Quartus II Integrated Synthesis and the Fitter.
(1)

Performance
Preservation

Excellent performance preservation when timing critical paths are contained within a partition,
because you can preserve post-fitting information for unchanged partitions.

Node Name
Preservation Preserves post-fitting node names for unchanged partitions.
November 2013 Altera Corporation Quartus II Handbook Version 13.1
Volume 1: Design and Synthesis

http://quartushelp.altera.com/current/master.htm#mergedProjects/comp/comp/comp_about_rapid_recompile.htm
http://quartushelp.altera.com/current/master.htm#mergedProjects/comp/increment/comp_tab_qid_incremental_mode.htm

3–4 Chapter 3: Quartus II Incremental Compilation for Hierarchical and Team-Based Design
Deciding Whether to Use an Incremental Compilation Flow
If you use the incremental compilation feature at any point in your design flow, it is
easier to accommodate the guidelines for partitioning a design and creating a
floorplan if you start planning for incremental compilation at the beginning of your
design cycle.

f For more information and recommendations on how to prepare your design to use the
Quartus II incremental compilation feature, and how to avoid negative impact on
your design results, refer to the Best Practices for Incremental Compilation Partitions and
Floorplan Assignments chapter in volume 1 of the Quartus II Handbook.

Area Changes The area (logic resource utilization) might increase because cross-boundary optimizations are limited,
and placement and register packing are restricted.

fMAX Changes The design’s maximum frequency might be reduced because cross-boundary optimizations are
limited. If the design is partitioned and the floorplan location assignments are created appropriately,
there might be no negative impact on fMAX.

Note to Table 3–1:

(1) Quartus II incremental compilation does not reduce processing time for the early "pre-fitter" operations, such as determining pin locations and
clock routing, so the feature cannot reduce compilation time if runtime is dominated by those operations.

Table 3–1. Impact Summary of Using Incremental Compilation (Part 2 of 2)

Characteristic Impact of Incremental Compilation with Design Partitions
Quartus II Handbook Version 13.1 November 2013 Altera Corporation
Volume 1: Design and Synthesis

http://www.altera.com/literature/hb/qts/qts_qii51017.pdf
http://www.altera.com/literature/hb/qts/qts_qii51017.pdf

Chapter 3: Quartus II Incremental Compilation for Hierarchical and Team-Based Design 3–5
Deciding Whether to Use an Incremental Compilation Flow
Figure 3–1 shows a diagram of the Quartus II design flow using incremental
compilation with design partitions.

The diagram in Figure 3–1 shows a top-level partition and two lower-level partitions.
If any part of the design changes, Analysis and Synthesis processes the changed
partitions and keeps the existing netlists for the unchanged partitions. After
completion of Analysis and Synthesis, there is one post-synthesis netlist for each
partition.

Figure 3–1. Quartus II Design Flow Using Incremental Compilation

Note to Figure 3–1:

(1) When you use EDIF or VQM netlists created by third-party EDA synthesis tools, Analysis and Synthesis creates the
design database, but logic synthesis and technology mapping are performed only for black boxes.

System
VHDL
(.vhd)

AHDL
(.tdf)

Block
Design File

(.bdf)

EDIF
Netlist
(.edf)

VQM
Netlist
(.vqm)

Analysis & Synthesis
Synthesize Changed Partitions,

Preserve Others

Partition Merge
Create Complete Netlist Using Appropriate Source Netlists for Each

Partition (Post-Fit, Post-Synthesis, or Imported Netlist)

Single Netlist for
Complete Design

One Post-Fit
Netlist per
Partition

One Post-Synthesis
Netlist per Partition

Single Post-Fit
Netlist for
Complete Design

Fitter
Place-and-Route Changed Partitions,

Preserve Others

Create Individual Netlists and
Complete Netlists

Assembler

Settings &
Assignments

Make Design &
Assignment Modifications

Settings &
Assignments

Design Partition
Assignments

Floorplan
Location

Assignments

Requirements
Satisfied?

Yes

No

Program/Configure Device

Partition Top

Partition 1

Partition 2

(1)

Verilog
HDL
(.sv)

Timing
Analyzerin parellel
November 2013 Altera Corporation Quartus II Handbook Version 13.1
Volume 1: Design and Synthesis

3–6 Chapter 3: Quartus II Incremental Compilation for Hierarchical and Team-Based Design
Deciding Whether to Use an Incremental Compilation Flow
The Partition Merge step creates a single, complete netlist that consists of
post-synthesis netlists, post-fit netlists, and netlists exported from other Quartus II
projects, depending on the netlist type that you specify for each partition.

The Fitter then processes the merged netlist, preserves the placement and routing of
unchanged partitions, and refits only those partitions that have changed. The Fitter
generates the complete netlist for use in future stages of the compilation flow,
including timing analysis and programming file generation, which can take place in
parallel if more than one processor is enabled for use in the Quartus II software. The
Fitter also generates individual netlists for each partition so that the Partition Merge
stage can use the post-fit netlist to preserve the placement and routing of a partition, if
specified, for future compilations.

If you define partitions, but want to check your compilation results without partitions
in a “what if” scenario, you can direct the Compiler to ignore all partitions
assignments in your project and compile the design as a "flat" netlist. When you turn
on the Ignore partitions assignments during compilation option on the Incremental
Compilation page, the Quartus II software disables all design partition assignments
in your project and runs a full compilation ignoring all partition boundaries and
netlists. Turning off the Ignore partitions assignments during compilation option
restores all partition assignments and netlists for subsequent compilations.

h For more information on incremental compilation settings, refer to Incremental
Compilation Page and Design Partition Properties Dialog Box in Quartus II Help.

Team-Based Design Flows and IP Delivery
The Quartus II software supports various design flows to enable team-based design
and third-party IP delivery. A top-level design can include one or more partitions that
are designed or optimized by different designers or IP providers, as well as partitions
that will be developed as part of a standard incremental methodology.

In a team-based environment, part of your design may be incomplete because it is
being developed elsewhere. The project lead or system architect can create empty
placeholders in the top-level design for partitions that are not yet complete. Designers
or IP providers can create and verify HDL code separately, and then the project lead
later integrates the code into the single top-level Quartus II project. In this scenario,
you can add the completed partitions to the design incrementally, however, the design
flow allows all design optimization to occur in the top-level design for easiest design
integration. Altera recommends using a single Quartus II project whenever possible
because using multiple projects can add significant up-front and debugging time to
the development cycle.

Alternatively, partition designers can design their partition in a copy of the top-level
design or in a separate Quartus II project. Designers export their completed partition
as either a post-synthesis netlist or optimized placed and routed netlist, or both, along
with assignments such as LogicLock™ regions, as appropriate. The project lead then
integrates each design block as a design partition into the top-level design. Altera
recommends that designers export and reuse post-synthesis netlists, unless optimized
post-fit results are required in the top-level design, to simplify design optimization.
Quartus II Handbook Version 13.1 November 2013 Altera Corporation
Volume 1: Design and Synthesis

http://quartushelp.altera.com/current/master.htm#mergedProjects/comp/increment/comp_tab_qid_incremental_mode.htm
http://quartushelp.altera.com/current/master.htm#mergedProjects/comp/increment/comp_tab_qid_incremental_mode.htm
http://quartushelp.altera.com/current/master.htm#mergedProjects/comp/increment/comp_tab_qid_incremental_mode.htm
http://quartushelp.altera.com/current/master.htm#mergedProjects/comp/increment/comp_tab_qid_part_window_properties.htm

Chapter 3: Quartus II Incremental Compilation for Hierarchical and Team-Based Design 3–7
Incremental Compilation Summary
Teams with a bottom-up design approach often want to optimize placement and
routing of design partitions independently and may want to create separate
Quartus II projects for each partition. However, optimizing design partitions in
separate Quartus II projects, and then later integrating the results into a top-level
design, can have the following potential drawbacks that require careful planning:

■ Achieving timing closure for the full design may be more difficult if you compile
partitions independently without information about other partitions in the design.
This problem may be avoided by careful timing budgeting and special design
rules, such as always registering the ports at the module boundaries.

■ Resource budgeting and allocation may be required to avoid resource conflicts and
overuse. Creating a floorplan with LogicLock regions is recommended when
design partitions are developed independently in separate Quartus II projects.

■ Maintaining consistency of assignments and timing constraints can be more
difficult if there are separate Quartus II projects. The project lead must ensure that
the top-level design and the separate projects are consistent in their assignments.

A unique challenge of team-based design and IP delivery for FPGAs is the fact that
the partitions being developed independently must share a common set of resources.
To minimize issues that might arise from sharing a common set of resources, you can
design partitions within a single Quartus II project or a copy of the top-level design. A
common project ensures that designers have a consistent view of the top-level project
framework.

For timing-critical partitions being developed and optimized by another designer, it is
important that each designer has complete information about the top-level design in
order to maintain timing closure during integration, and to obtain the best results.
When you want to integrate partitions from separate Quartus II projects, the project
lead can perform most of the design planning, and then pass the top-level design
constraints to the partition designers. Preferably, partition designers can obtain a copy
of the top-level design by checking out the required files from a source control system.
Alternatively, the project lead can provide a copy of the top-level project framework,
or pass design information using Quartus II-generated design partition scripts. In the
case that a third-party designer has no information about the top-level design,
developers can export their partition from an independent project if required.

For more information about managing team-based design flows, refer to “Exporting
Design Partitions from Separate Quartus II Projects” on page 3–30 and “Project
Management—Making the Top-Level Design Available to Other Designers” on
page 3–32.

Incremental Compilation Summary
This section provides a summary of the standard incremental compilation design flow
and describes how to create design partitions.
November 2013 Altera Corporation Quartus II Handbook Version 13.1
Volume 1: Design and Synthesis

3–8 Chapter 3: Quartus II Incremental Compilation for Hierarchical and Team-Based Design
Incremental Compilation Summary
Figure 3–2 illustrates the incremental compilation design flow when all partitions are
contained in one top-level design.

Steps for Incremental Compilation
This section summarizes the steps in an incremental compilation flow; preparing a
design to use the incremental compilation feature, and then preserving satisfactory
results and performance in subsequent incremental compilations.

h For an interactive introduction to implementing an incremental compilation design
flow, refer to the Getting Started Tutorial on the Help menu in the Quartus II
software. For step-by-step instructions on how to use the incremental compilation
feature, refer to Using the Incremental Compilation Design Flow in Quartus II Help.

Preparing a Design for Incremental Compilation
To begin, elaborate your design, or run any compilation flow (such as a full
compilation) that includes the elaboration step. Elaboration is the part of the synthesis
process that identifies your design’s hierarchy.

Next, designate specific instances in the design hierarchy as design partitions, as
described in “Creating Design Partitions” on page 3–9.

If required for your design flow, create a floorplan with LogicLock regions location
assignments for timing-critical partitions that change with future compilations.
Assigning a partition to a physical region on the device can help maintain quality of
results and avoid conflicts in certain situations. For more information about
LogicLock region assignments, refer to “Creating a Design Floorplan With LogicLock
Regions” on page 3–48.

Figure 3–2. Summary of Standard Incremental Compilation Design Flow

Perform Elaboration

Repeat as Needed
During Design, Verification
& Debugging Stages

(Optional) Create Floorplan Location
Assignments using LogicLock Regions

Perform Complete Compilation
(All Partitions are Compiled)

Set Netlist Type for Each Partition

Make Changes to Design

Perform Incremental Compilation
(Partitions are Compiled if Required)

Prepare Design for Incremental Compilation
Quartus II Handbook Version 13.1 November 2013 Altera Corporation
Volume 1: Design and Synthesis

http://quartushelp.altera.com/current/master.htm#mergedProjects/comp/increment/comp_pro_running_incremental_compilation.htm

Chapter 3: Quartus II Incremental Compilation for Hierarchical and Team-Based Design 3–9
Incremental Compilation Summary
Compiling a Design Using Incremental Compilation
The first compilation after making partition assignments is a full compilation, and
prepares the design for subsequent incremental compilations. In subsequent
compilations of your design, you can preserve satisfactory compilation results and
performance of unchanged partitions with the Netlist Type setting in the Design
Partitions window. The Netlist Type setting determines which type of netlist or
source file the Partition Merge stage uses in the next incremental compilation. You can
choose the Source File, Post-Synthesis netlist, or Post-Fit netlist. For more information
about the Netlist Type setting, refer to “Specifying the Level of Results Preservation
for Subsequent Compilations” on page 3–25.

Creating Design Partitions
There are several ways to designate a design instance as a design partition. This
section provides an overview of tools you can use to create partitions in the Quartus II
software. For more information on selecting which design blocks to assign as
partitions and how to analyze the quality of your partition assignments, refer to
“Deciding Which Design Blocks Should Be Design Partitions” on page 3–19.

Creating Design Partitions in the Project Navigator
You can right-click an instance in the list under the Hierarchy tab in the Project
Navigator and use the sub-menu to create and delete design partitions.

h For more information about how to create design partitions in the Quartus II Project
Navigator, refer to Creating Design Partitions in Quartus II Help.

Creating Design Partitions in the Design Partitions Window
The Design Partitions window, available from the Assignments menu, allows you to
create, delete, and merge partitions, and is the main window for setting the netlist
type to specify the level of results preservation for each partition on subsequent
compilations. For information about how to set the netlist type and the available
settings, refer to “Netlist Type for Design Partitions” on page 3–25.

The Design Partitions window also lists recommendations at the bottom of the
window with links to the Incremental Compilation Advisor, where you can view
additional recommendations about partitions. The Color column indicates the color
of each partition as it appears in the Design Partition Planner and Chip Planner.

You can right-click a partition in the window to perform various common tasks, such
as viewing property information about a partition, including the time and date of the
compilation netlists and the partition statistics.

When you create a partition, the Quartus II software automatically generates a name
based on the instance name and hierarchy path. You can edit the partition name in the
Design Partitions Window so that you avoid referring to them by their hierarchy path,
which can sometimes be long. This is especially useful when using command-line
commands or assignments, or when you merge partitions to give the partition a
meaningful name. Partition names can be from 1 to 1024 characters in length and
must be unique. The name can consist of alphanumeric characters and the pipe
(|), colon (:), and underscore (_) characters.
November 2013 Altera Corporation Quartus II Handbook Version 13.1
Volume 1: Design and Synthesis

http://quartushelp.altera.com/current/master.htm#mergedProjects/comp/increment/comp_pro_qid_create_design_partitions.htm

3–10 Chapter 3: Quartus II Incremental Compilation for Hierarchical and Team-Based Design
Common Design Scenarios Using Incremental Compilation
h For more information about how to create and manage design partitions in the Design
Partitions window, refer to Creating Design Partitions in Quartus II Help.

Creating Design Partitions With the Design Partition Planner
The Design Partition Planner allows you to view design connectivity and hierarchy,
and can assist you in creating effective design partitions that follow Altera’s
guidelines.

The Design Partition Planner displays a visual representation of design connectivity
and hierarchy, as well as partitions and entity relationships. You can explore the
connectivity between entities in the design, evaluate existing partitions with respect to
connectivity between entities, and try new partitioning schemes in "what if" scenarios.

When you extract design blocks from the top-level design and drag them into the
Design Partition Planner, connection bundles are drawn between entities, showing
the number of connections existing between pairs of entities. In the Design Partition
Planner, you can then set extracted design blocks as design partitions.

The Design Partition Planner also has an Auto-Partition feature that creates partitions
based on the size and connectivity of the hierarchical design blocks.

f For more information about how to use the Design Partition Planner, refer to Using the
Design Partition Planner in Quartus II Help and the Best Practices for Incremental
Compilation Partitions and Floorplan Assignments chapter in volume 1 of the Quartus II
Handbook.

Creating Design Partitions With Tcl Scripting
You can also create partitions with Tcl scripting commands. For more information
about the command-line and scripting flow, refer to “Scripting Support” on
page 3–57.

Automatically-Generated Partitions
The Compiler creates some partitions automatically as part of the compilation
process, which appear in some post-compilation reports. For example, the sld_hub
partition is created for tools that use JTAG hub connections, such as the SignalTap II
Logic Analyzer. The hard_block partition is created to contain certain "hard" or
dedicated logic blocks in the device that are implemented in a separate partition so
that they can be shared throughout the design.

Common Design Scenarios Using Incremental Compilation
This section provides recommended applications of the incremental compilation flow
after you have set up your design with partitions for incremental compilation as
described in, “Steps for Incremental Compilation” on page 3–8.

This section contains the following design scenarios:

■ “Reducing Compilation Time When Changing Source Files for One Partition” on
page 3–11

■ “Optimizing a Timing-Critical Partition” on page 3–11
Quartus II Handbook Version 13.1 November 2013 Altera Corporation
Volume 1: Design and Synthesis

http://quartushelp.altera.com/current/master.htm#mergedProjects/optimize/dpp/dpp_pro_using_dpp.htm
http://quartushelp.altera.com/current/master.htm#mergedProjects/optimize/dpp/dpp_pro_using_dpp.htm
http://quartushelp.altera.com/current/master.htm#mergedProjects/comp/increment/comp_pro_qid_create_design_partitions.htm
http://www.altera.com/literature/hb/qts/qts_qii51017.pdf
http://www.altera.com/literature/hb/qts/qts_qii51017.pdf

Chapter 3: Quartus II Incremental Compilation for Hierarchical and Team-Based Design 3–11
Common Design Scenarios Using Incremental Compilation
■ “Adding Design Logic Incrementally or Working With an Incomplete Design” on
page 3–12

■ “Debugging Incrementally With the SignalTap II Logic Analyzer” on page 3–13

Reducing Compilation Time When Changing Source Files for One Partition
Scenario background: You set up your design to include partitions for several of the
major design blocks, and now you have just performed a lengthy compilation of the
entire design. An error is found in the HDL source file for one partition and it is being
fixed. Because the design is currently meeting timing requirements, and the fix is not
expected to affect timing performance, it makes sense to compile only the affected
partition and preserve the rest of the design.

Use the flow in this example to update the source file in one partition without having
to recompile the other parts of the design. To reduce the compilation time, instruct the
software to reuse the post-fit netlists for the unchanged partitions. This flow also
preserves the performance of these blocks, which reduces additional timing closure
efforts.

Perform the following steps to update a single source file:

1. Apply and save the fix to the HDL source file.

2. On the Assignments menu, open the Design Partitions window.

3. Change the netlist type of each partition, including the top-level entity, to Post-Fit
to preserve as much as possible for the next compilation.

1 The Quartus II software recompiles partitions by default when changes are
detected in a source file. You can refer to the Partition Dependent Files table
in the Analysis and Synthesis report to determine which partitions were
recompiled. If you change an assignment but do not change the logic in a
source file, you can set the netlist type to Source File for that partition to
instruct the software to recompile the partition's source design files and its
assignments.

h For more information about the Analysis and Synthesis report, refer to List
of Compilation and Simulation Reports in Quartus II Help.

4. Click Start Compilation to incrementally compile the fixed HDL code. This
compilation should take much less time than the initial full compilation.

5. Simulate the design to ensure that the error is fixed, and use the TimeQuest Timing
Analyzer report to ensure that timing results have not degraded.

Optimizing a Timing-Critical Partition
Scenario background: You have just performed a lengthy full compilation of a design
that consists of multiple partitions. The TimeQuest Timing Analyzer reports that the
clock timing requirement is not met, and you have to optimize one particular
partition. You want to try optimization techniques such as raising the Placement
Effort Multiplier, enabling Physical Synthesis, and running the Design Space Explorer.
Because these techniques all involve significant compilation time, you should apply
them to only the partition in question.
November 2013 Altera Corporation Quartus II Handbook Version 13.1
Volume 1: Design and Synthesis

http://quartushelp.altera.com/current/master.htm#mergedProjects/report/rpt/rpt_list_format.htm
http://quartushelp.altera.com/current/master.htm#mergedProjects/report/rpt/rpt_list_format.htm

3–12 Chapter 3: Quartus II Incremental Compilation for Hierarchical and Team-Based Design
Common Design Scenarios Using Incremental Compilation
Use the flow in this example to optimize the results of one partition when the other
partitions in the design have already met their requirements. You can use this flow
iteratively to lock down the performance of one partition, and then move on to
optimization of another partition.

Perform the following steps to preserve the results for partitions that meet their
timing requirements, and to recompile a timing-critical partition with new
optimization settings:

1. Open the Design Partitions window.

2. For the partition in question, set the netlist type to Source File.

1 If you change a setting that affects only the Fitter, you can save additional
compilation time by setting the netlist type to Post-Synthesis to reuse the
synthesis results and refit the partition.

3. For the remaining partitions (including the top-level entity), set the netlist type to
Post-Fit.

1 You can optionally set the Fitter Preservation Level on the Advanced tab in
the Design Partitions Properties dialog box to Placement to allow for the
most flexibility during routing.

4. Apply the desired optimization settings.

5. Click Start Compilation to perform incremental compilation on the design with
the new settings. During this compilation, the Partition Merge stage automatically
merges the critical partition’s new synthesis netlist with the post-fit netlists of the
remaining partitions. The Fitter then refits only the required partition. Because the
effort is reduced as compared to the initial full compilation, the compilation time is
also reduced.

To use the Design Space Explorer, perform the following steps:

1. Repeat steps 1–3 of the previous procedure.

2. Save the project and run the Design Space Explorer.

Adding Design Logic Incrementally or Working With an Incomplete Design
Scenario background: You have one or more partitions that are known to be timing-
critical in your full design. You want to focus on developing and optimizing this
subset of the design first, before adding the rest of the design logic.

Use this flow to compile a timing-critical partition or partitions in isolation, optionally
with extra optimizations turned on. After timing closure is achieved for the critical
logic, you can preserve its content and placement and compile the remaining
partitions with normal or reduced optimization levels. For example, you may want to
compile an IP block that comes with instructions to perform optimization before you
incorporate the rest of your custom logic.
Quartus II Handbook Version 13.1 November 2013 Altera Corporation
Volume 1: Design and Synthesis

Chapter 3: Quartus II Incremental Compilation for Hierarchical and Team-Based Design 3–13
Common Design Scenarios Using Incremental Compilation
To implement this design flow, perform the following steps:

1. Partition the design and create floorplan location assignments. For best results,
ensure that the top-level design includes the entire project framework, even if
some parts of the design are incomplete and are represented by an empty wrapper
file.

2. For the partitions to be compiled first, in the Design Partitions window, set the
netlist type to Source File.

3. For the remaining partitions, set the netlist type to Empty.

4. To compile with the desired optimizations turned on, click Start Compilation.

5. Check the Timing Analyzer reports to ensure that timing requirements are met. If
so, proceed to step 6. Otherwise, repeat steps 4 and 5 until the requirements are
met.

6. In the Design Partitions window, set the netlist type to Post-Fit for the first
partitions. You can set the Fitter Preservation Level on the Advanced tab in the
Design Partitions Properties dialog box to Placement to allow more flexibility
during routing if exact placement and routing preservation is not required.

7. Change the netlist type from Empty to Source File for the remaining partitions,
and ensure that the completed source files are added to the project.

8. Set the appropriate level of optimizations and compile the design. Changing the
optimizations at this point does not affect any fitted partitions, because each
partition has its netlist type set to Post-Fit.

9. Check the Timing Analyzer reports to ensure that timing requirements are met. If
not, make design or option changes and repeat step 8 and step 9 until the
requirements are met.

1 The flow in this example is similar to design flows in which a module is implemented
separately and is later merged into the top-level, such as in the team-based design
flow described in “Designing in a Team-Based Environment” on page 3–42. Generally,
optimization in this flow works only if each critical path is contained within a single
partition due to the effects described in “Deciding Which Design Blocks Should Be
Design Partitions” on page 3–19. Ensure that if there are any partitions representing a
design file that is missing from the project, you create a placeholder wrapper file to
define the port interface. For more information, refer to “Empty Partitions” on
page 3–32.

Debugging Incrementally With the SignalTap II Logic Analyzer
Scenario background: Your design is not functioning as expected, and you want to
debug the design using the SignalTap II Logic Analyzer. To maintain reduced
compilation times and to ensure that you do not negatively affect the current version
of your design, you want to preserve the synthesis and fitting results and add the
SignalTap II Logic Analyzer to your design without recompiling the source code.

Use this flow to reduce compilation times when you add the logic analyzer to debug
your design, or when you want to modify the configuration of the SignalTap II File
without modifying your design logic or its placement.
November 2013 Altera Corporation Quartus II Handbook Version 13.1
Volume 1: Design and Synthesis

3–14 Chapter 3: Quartus II Incremental Compilation for Hierarchical and Team-Based Design
Common Design Scenarios Using Incremental Compilation
It is not necessary to create design partitions in order to use the SignalTap II
incremental compilation feature. The SignalTap II Logic Analyzer acts as its own
separate design partition.

Perform the following steps to use the SignalTap II Logic Analyzer in an incremental
compilation flow:

1. Open the Design Partitions window.

2. Set the netlist type to Post-fit for all partitions to preserve their placement.

1 The netlist type for the top-level partition defaults to Source File, so be sure
to change this “Top” partition in addition to any design partitions that you
have created.

3. If you have not already compiled the design with the current set of partitions,
perform a full compilation. If the design has already been compiled with the
current set of partitions, the design is ready to add the SignalTap II Logic Analyzer.

4. Set up your SignalTap II File using the post-fitting filter in the Node Finder to add
signals for logic analysis. This allows the Fitter to add the SignalTap II logic to the
post-fit netlist without modifying the design results.

To add signals from the pre-synthesis netlist, set the partition’s netlist type to
Source File and use the pre-synthesis filter in the Node Finder. This allows the
software to resynthesize the partition and to tap directly to the pre-synthesis node
names that you choose. In this case, the partition is resynthesized and refit, so the
placement is typically different from previous fitting results.

f For more information about setting up the SignalTap II Logic Analyzer, refer to the
Design Debugging Using the SignalTap II Embedded Logic Analyzer chapter in volume 3 of
the Quartus II Handbook.

Functional Safety IP Implementation
In functional safety designs, recertification is required when logic is modified in safety
or non-safety areas of the design. Recertification is required because the FPGA
programming file has changed. You can reduce the amount of required recertification
if you use the safety/non-safety separation flow in the Quartus II software. By
partitioning your safety IP from non-safety related logic, you ensure that the safety
critical areas of the design remain the same when the non-safety areas in your design
are modified. The safety-critical areas remain the same at the bit level.

IEC61508 Compliance
The Quartus II software can partition your design into safety partitions and non-
safety partitions, but the Quartus II software does not perform any online safety-
related functionality. A bitstream is generated by the Quartus II software that
performs the safety functions and for the purposed of compliance with IEC61508, the
Quartus II software should be considered as an offline support tool.
Quartus II Handbook Version 13.1 November 2013 Altera Corporation
Volume 1: Design and Synthesis

http://www.altera.com/literature/hb/qts/qts_qii53009.pdf

Chapter 3: Quartus II Incremental Compilation for Hierarchical and Team-Based Design 3–15
Common Design Scenarios Using Incremental Compilation
Functional Safety Separation Flow
The functional safety separation flow consists of two separate work flows. The design
creation flow (DCF) and the design modification flow (DMF) both leverage
incremental compilation, but the two flows have different use-case scenarios.

Design Creation Flow

The design creation flow delineates the necessary steps for initial design creation in a
way that allows modifications to be made in your design. Some of the steps are
architectural constraints and the remaining steps are steps that you need to perform in
the Quartus II software. You use DCF for the first pass certification of your product.

c When you make modifications to the safety IP in your design, you are required to use
the design creation flow.

Figure 3–3. Functional Safety Separation Flow

Figure 3–4. Design Creation Flow
November 2013 Altera Corporation Quartus II Handbook Version 13.1
Volume 1: Design and Synthesis

3–16 Chapter 3: Quartus II Incremental Compilation for Hierarchical and Team-Based Design
Common Design Scenarios Using Incremental Compilation
Design Modification Flow

The design modification flow delineates the necessary steps to make modifications to
the non-safety IP in your design. This flow ensures that the previously compiled
Safety IP (SIP) that is used in the project remains unchanged when non-safety IP
(NSIP) changes are made or compiled.

c You can only use the design modification flow after your design has been qualified in
the design creation flow.

How to Turn On the Functional Safety Separation Flow
Every safety related IP component in your design should be implemented in a
partition(s) so the SIPs are protected from recompilation. The global assignment
PARTITION_ENABLE_STRICT_PRESERVATION is used to identify SIP in your design.

■ set_global_assignment -name PARTITION_ENABLE_STRICT_PRESERVATION
<ON/OFF> -section_id <partition_name>

When this global assignment is designated as ON for a partition, the partition is
protected from recompilation, exported as a SIP, and included into the SIP POF mask.
Specifying the value as ON for any partition turns on the functional safety separation
flow.

When this global assignment is designated as OFF, the partition is considered as part
of the NSIP or as not having a PARTITION_ENABLE_STRICT_PRESERVATION assignment
at all. Logic that is not assigned to a partition is considered as part of the top partition
and treated as non-safety logic.

c Only partitions and I/O pins can be assigned to SIP.

Figure 3–5. Design Modification Flow
Quartus II Handbook Version 13.1 November 2013 Altera Corporation
Volume 1: Design and Synthesis

Chapter 3: Quartus II Incremental Compilation for Hierarchical and Team-Based Design 3–17
Common Design Scenarios Using Incremental Compilation
A partition assigned to SIP can contain safety logic only. If the parent partition is
assigned to a SIP, then all the child partitions for this parent partition is considered as
part of the SIP. If a child partition is not specified explicitly as a SIP, a critical warning
is issued to notify you that the child partition is treated as part of a SIP.

A design can contain several SIPs. All the partitions containing logic that implements
a single SIP function should belong with the same top level parent partition.

The functional safety separation flow supports Cyclone IV and Cyclone V device
families.

You can also turn on the functional safety separation flow from the Design Partition
Properties dialog box.

When the functional safety separation flow is active, you can view which partitions in
your design have the Strict Preservation property turned on. The Design Partition
Window displays a on or off value for SIP in your design.

h For more information about the Design Partition Properties dialog box and the Design
Partitions Window, refer to the Quartus II Help.

Preservation of Device Resources
The preservation of the partition’s netlist atoms and the atoms placement and routing,
in the design modification flow, is done be setting the netlist type to Post-fit with the
Fitter preservation level set to Placement and Routing Preserved.

Preservation of Placement in the Device with LogicLock
In order to fix the SIP logic into specific areas of the device, you should define
LogicLock regions. By using preserved LogicLock regions, device placement is
reserved for the SIP to prevent NSIP logic from being placed into the unused
resources of the SIP region. You establish a fixed size and origin to ensure location
preservation. You need to use LogicLock to ensure a valid SIP POF mask is generated,
but the SIP POF mask gets generated when you turn on the functional safety
separation flow. The POF comparison tool for functional safety can check that the
safety region is unchanged between compiles. A LogicLock region assigned to a SIP
can only contain safety IP logic.

Assigning I/O Pins
You can use a global assignment to specify that a pin is assigned to a SIP.

set_instance_assignment ENABLE_STRICT_PRESERVATION ON/OFF - to=<hpath> -
section_id <region_name>

■ <hpath> refers to an I/O pin (pad).

■ <region_name> refers to the top level SIP partition name.

A value of ON indicates that the pin is a safety pin that should be preserved along
with the SIP. A value of OFF indicates that the pin that connects up to the SIP, should
be treated as a non-safety pin, and is not preserved along with the SIP.

All the pins that connect up to a SIP should have an explicit assignment.

An error is reported if a pin that connects up the SIP does not have an assignment or a
pin does not connect up to the specified <region_name>.
November 2013 Altera Corporation Quartus II Handbook Version 13.1
Volume 1: Design and Synthesis

http://quartushelp.altera.com/current/master.htm#mergedProjects/comp/increment/comp_tab_qid_part_window_properties.htm
http://quartushelp.altera.com/current/master.htm#mergedProjects/comp/increment/comp_com_qid_design_partition.htm
http://quartushelp.altera.com/current/master.htm#mergedProjects/comp/increment/comp_com_qid_design_partition.htm

3–18 Chapter 3: Quartus II Incremental Compilation for Hierarchical and Team-Based Design
Common Design Scenarios Using Incremental Compilation
If an IO_REG group contains a pin that is assigned to a SIP, then all the pins in the
IO_REG group are reserved for this SIP. All pins in the IO_REG group need to be
assigned to the same SIP and none of the pins in the group can be assigned to non-
safety signals.

General Guidelines for Implementation
■ An internal clock source, such as a PLL, should be implemented in a safe partition.

■ An I/O pin driving the external clock should be indicated as a safety pin.

■ To export a SIP containing several partitions, the top level partition for the SIP
should be exported. A SIP containing several partitions is flattened and converted
into a single partition during export. This hierarchical SIP is flattened to enure bit-
level settings are preserved.

■ Hard blocks implemented in a safe partition needs to stay with the safe partition.

Reports for SIP
When you have the functional safety separation flow turned on, the Quartus II
software displays SIP and NSIP information in the Fitter report.

Fitter Report

The Fitter report includes information for each SIP and the respective partition and
I/O usage. The report contains the following information:

■ Partition name (with the name of the top level SIP partition used as the SIP name)

■ Number of safety/non-safety inputs to the partitions

■ Number of safety/non-safety outputs to the partitions

■ LogicLock region names along with size and locations for the regions

■ I/O pins used for the respective SIP in your design

■ Safety related error messages

SIP Partial Bitstream Generation
The Programmer generates a bitstream file containing only the bits for a SIP. This
partial preserved bitstream (PPB) file is for the SIP region mask. The command lines
to generate the partial bitstream file are the following:

■ quartus_cpf --gen_ppb safe1.psm design.sof safe1.rbf.ppb

■ quartus_cpf -c safe1.psm safe1.rbf.ppb

The PPB file is generated in two steps.

1. Generation of partial SOF.

2. Generation of PPB file using the partial SOF.
Quartus II Handbook Version 13.1 November 2013 Altera Corporation
Volume 1: Design and Synthesis

Chapter 3: Quartus II Incremental Compilation for Hierarchical and Team-Based Design 3–19
Deciding Which Design Blocks Should Be Design Partitions
POF Comparison Tool for Verification
There is a separate safe/non-safe partitioning verification tool that is licensed to
safety users. Along with the PPB file, a MD5 hash signature file is generated. The MD5
hash signature can be used for verification. For more detailed verification, the POF
comparison tool should be used. This POF comparison tool is available in the Altera
Functional Safety Data Package.

Deciding Which Design Blocks Should Be Design Partitions
The incremental compilation design flow requires more planning than flat
compilations. For example, you might have to structure your source code or design
hierarchy to ensure that logic is grouped correctly for optimization.

It is a common design practice to create modular or hierarchical designs in which you
develop each design entity separately, and then instantiate them in a higher-level
entity, forming a complete design. The Quartus II software does not automatically
consider each design entity or instance to be a design partition for incremental
compilation; instead, you must designate one or more design hierarchies below the
top-level project as a design partition. Creating partitions might prevent the Compiler
from performing optimizations across partition boundaries, as discussed in “Impact
of Design Partitions on Design Optimization” on page 3–20. However, this allows for
separate synthesis and placement for each partition, making incremental compilation
possible.

Partitions must have the same boundaries as hierarchical blocks in the design because
a partition cannot be a portion of the logic within a hierarchical entity. You can merge
partitions that have the same immediate parent partition to create a single partition
that includes more than one hierarchical entity in the design. When you declare a
partition, every hierarchical instance within that partition becomes part of the same
partition. You can create new partitions for hierarchical instances within an existing
partition, in which case the instances within the new partition are no longer included
in the higher-level partition, as described in the following example.

In Figure 3–6, a complete design is made up of instances A, B, C, D, E, F, and G. The
shaded boxes in Representation i indicate design partitions in a “tree” representation
of the hierarchy. In Representation ii, the lower-level instances are represented inside
the higher-level instances, and the partitions are illustrated with different colored
shading. The top-level partition, called “Top”, automatically contains the top-level
entity in the design, and contains any logic not defined as part of another partition.
The design file for the top level may be just a wrapper for the hierarchical instances
November 2013 Altera Corporation Quartus II Handbook Version 13.1
Volume 1: Design and Synthesis

3–20 Chapter 3: Quartus II Incremental Compilation for Hierarchical and Team-Based Design
Deciding Which Design Blocks Should Be Design Partitions
below it, or it may contain its own logic. In this example, partition B contains the logic
in instances B, D, and E. Entities F and G were first identified as separate partitions,
and then merged together to create a partition F-G. The partition for the top-level
entity A, called “Top”, includes the logic in one of its lower-level instances, C, because
C was not defined as part of any other partition.

You can create partition assignments to any design instance. The instance can be
defined in HDL or schematic design, or come from a third-party synthesis tool as a
VQM or EDIF netlist instance.

To take advantage of incremental compilation when source files change, create
separate design files for each partition. If you define two different entities as separate
partitions but they are in the same design file, you cannot maintain incremental
compilation because the software would have to recompile both partitions if you
changed either entity in the design file. Similarly, if two partitions rely on the same
lower-level entity definition, changes in that lower-level affect both partitions.

The remainder of this section provides information to help you choose which design
blocks you should assign as partitions.

Impact of Design Partitions on Design Optimization
The boundaries of your design partitions can impact the design’s quality of results.
Creating partitions might prevent the Compiler from performing logic optimizations
across partition boundaries, which allows the software to synthesize and place each
partition separately in an incremental flow. Therefore, consider partitioning
guidelines to help reduce the effect of partition boundaries.

Figure 3–6. Partitions in a Hierarchical Design

Partition Top

Representation i

Representation ii

Partition B Merged Partition F-G

D

D

E

B

B C

A

A

F

C

E F

G

G

Quartus II Handbook Version 13.1 November 2013 Altera Corporation
Volume 1: Design and Synthesis

Chapter 3: Quartus II Incremental Compilation for Hierarchical and Team-Based Design 3–21
Deciding Which Design Blocks Should Be Design Partitions
Whenever possible, register all inputs and outputs of each partition. This helps avoid
any delay penalty on signals that cross partition boundaries and keeps each
register-to-register timing path within one partition for optimization. In addition,
minimize the number of paths that cross partition boundaries. If there are
timing-critical paths that cross partition boundaries, rework the partitions to avoid
these inter-partition paths. Including as many of the timing-critical connections as
possible inside a partition allows you to effectively apply optimizations to that
partition to improve timing, while leaving the rest of the design unchanged.

Avoid constant partition inputs and outputs. You can also merge two or more
partitions to allow cross-boundary optimizations for paths that cross between the
partitions, as long as the partitions have the same parent partition. Merging related
logic from different hierarchy blocks into one partition can be useful if you cannot
change the design hierarchy to accommodate partition assignments.

The Design Partition Planner can help you create good assignments, as described in
“Creating Design Partitions” on page 3–9. Refer to “Partition Statistics Reports” on
page 3–23 for information about the number of I/O connections and how many are
unregistered or driven by a constant value. For information on timing reports and
additional design guidelines, refer to “Partition Timing Reports” on page 3–24 and
“Incremental Compilation Advisor” on page 3–24.

If critical timing paths cross partition boundaries, you can perform timing budgeting
and make timing assignments to constrain the logic in each partition so that the entire
timing path meets its requirements. In addition, because each partition is optimized
independently during synthesis, you may have to perform resource allocation to
ensure that each partition uses an appropriate number of device resources. If design
partitions are compiled in separate Quartus II projects, there may be conflicts related
to global routing resources for clock signals when the design is integrated into the
top-level design. You can use the Global Signal logic option to specify which clocks
should use global or regional routing, use the ALTCLK_CTRL megafunction to
instantiate a clock control block and connect it appropriately in both the partitions
being developed in separate Quartus II projects, or find the compiler-generated clock
control node in your design and make clock control location assignments in the
Assignment Editor.

Turning On Supported Cross-boundary Optimizations
You can improve the optimizations performed between design partitions by turning
on supported cross-boundary optimizations. These optimizations are turned on a per
partition basis and you can select the optimizations as individual assignments. This
allows the cross-boundary optimization feature to give you more control over the
optimizations that work best for your design. You can turn on the cross-boundary
optimizations for your design partitions on the Advanced tab of the Design Partition
Properties dialog box. Once you change the optimization settings, the Quartus II
software recompiles your partition from source automatically. Cross-boundary
optimizations include the following: propagate constants, propagate inversions on
partition inputs, merge inputs fed by a common source, merge electrically equivalent
bidirectional pins, absorb internal paths, and remove logic connected to dangling
outputs.
November 2013 Altera Corporation Quartus II Handbook Version 13.1
Volume 1: Design and Synthesis

3–22 Chapter 3: Quartus II Incremental Compilation for Hierarchical and Team-Based Design
Deciding Which Design Blocks Should Be Design Partitions
Cross-boundary optimizations are implemented top-down from the parent partition
into the child partition, but not vice-versa. Also, cross-boundary optimizations cannot
be enabled for partitions that allow multiple personas (partial reconfiguration
partitions).

h For more information about cross-boundary optimizations in the Quartus II software,
refer to Design Partition Properties Dialog Box in Quartus II Help.

f For more partitioning guidelines and specific recommendations for fixing common
design issues, as well as information on resource allocation, global signal usage, and
timing budgeting, refer to the Best Practices for Incremental Compilation Partitions and
Floorplan Assignments chapter in volume 1 of the Quartus II Handbook.

Design Partition Assignments Compared to Physical Placement
Assignments

Design partitions for incremental compilation are logical partitions, which is different
from physical placement assignments in the device floorplan. A logical design
partition does not refer to a physical area of the device and does not directly control
the placement of instances. A logical design partition sets up a virtual boundary
between design hierarchies so that each is compiled separately, preventing logical
optimizations from occurring between them. When the software compiles the design
source code, the logic in each partition can be placed anywhere in the device unless
you make additional placement assignments.

If you preserve the compilation results using a Post-Fit netlist, it is not necessary for
you to back-annotate or make any location assignments for specific logic nodes. You
should not use the incremental compilation and logic placement back-annotation
features in the same Quartus II project. The incremental compilation feature does not
use placement “assignments” to preserve placement results; it simply reuses the
netlist database that includes the placement information.

You can assign design partitions to physical regions in the device floorplan using
LogicLock region assignments. In the Quartus II software, LogicLock regions are used
to constrain blocks of a design to a particular region of the device. Altera recommends
using LogicLock regions for timing-critical design blocks that will change in
subsequent compilations, or to improve the quality of results and avoid placement
conflicts in some cases. Creating floorplan location assignments for design partitions
using LogicLock regions is discussed in “Creating a Design Floorplan With LogicLock
Regions” on page 3–48.

f For more information about when and why to create a design floorplan, refer to the
Best Practices for Incremental Compilation Partitions and Floorplan Assignments chapter in
volume 1 of the Quartus II Handbook.

Using Partitions With Third-Party Synthesis Tools
If you are using a third-party synthesis tool, set up your tool to create a separate VQM
or EDIF netlist for each hierarchical partition. In the Quartus II software, assign the
top-level entity from each netlist to be a design partition. The VQM or EDIF netlist file
is treated as the source file for the partition in the Quartus II software.
Quartus II Handbook Version 13.1 November 2013 Altera Corporation
Volume 1: Design and Synthesis

http://www.altera.com/literature/hb/qts/qts_qii51017.pdf
http://www.altera.com/literature/hb/qts/qts_qii51017.pdf
http://www.altera.com/literature/hb/qts/qts_qii51017.pdf
http://quartushelp.altera.com/current/master.htm#mergedProjects/comp/increment/comp_tab_qid_part_window_properties.htm

Chapter 3: Quartus II Incremental Compilation for Hierarchical and Team-Based Design 3–23
Deciding Which Design Blocks Should Be Design Partitions
Synopsys Synplify Pro/Premier and Mentor Graphics Precision RTL Plus
The Synplify Pro and Synplify Premier software include the MultiPoint synthesis
feature to perform incremental synthesis for each design block assigned as a Compile
Point in the user interface or a script. The Precision RTL Plus software includes an
incremental synthesis feature that performs block-based synthesis based on Partition
assignments in the source HDL code. These features provide automated block-based
incremental synthesis flows and create different output netlist files for each block
when set up for an Altera device.

Using incremental synthesis within your synthesis tool ensures that only those
sections of a design that have been updated are resynthesized when the design is
compiled, reducing synthesis run time and preserving the results for the unchanged
blocks. You can change and resynthesize one section of a design without affecting
other sections of the design.

f For more information about these incremental synthesis flows, refer to your tool
vendor’s documentation, or the Synopsys Synplify Support chapter or Mentor Graphics
Precision Synthesis Support chapter in volume 1 of the Quartus II Handbook.

Other Synthesis Tools
You can also partition your design and create different netlist files manually with the
basic Synplify software (non-Pro/Premier), the basic Precision RTL software
(non-Plus), or any other supported synthesis tool by creating a separate project or
implementation for each partition, including the top level. Set up each higher-level
project to instantiate the lower-level VQM/EDIF netlists as black boxes. Synplify,
Precision, and most synthesis tools automatically treat a design block as a black box if
the logic definition is missing from the project. Each tool also includes options or
attributes to specify that the design block should be treated as a black box, which you
can use to avoid warnings about the missing logic.

Assessing Partition Quality
The Quartus II software provides various tools to assess the quality of your assigned
design partitions. You can take advantage of these tools to assess your partition
quality, and use the information to improve your design or assignments as required to
achieve the best results.

Partition Statistics Reports
After compilation, you can view statistics about design partitions in the Partition
Merge Partition Statistics report, and on the Statistics tab in the Design Partitions
Properties dialog box.

The Partition Merge Partition Statistics report lists statistics about each partition. The
statistics for each partition (each row in the table) include the number of logic cells it
contains, as well as the number of input and output pins it contains, and how many
are registered or unconnected. This report is useful when optimizing your design
partitions, ensuring that the partitions meet the guidelines presented in the
Best Practices for Incremental Compilation Partitions and Floorplan Assignments chapter in
volume 1 of the Quartus II Handbook.
November 2013 Altera Corporation Quartus II Handbook Version 13.1
Volume 1: Design and Synthesis

http://www.altera.com/literature/hb/qts/qts_qii51009.pdf
http://www.altera.com/literature/hb/qts/qts_qii51011.pdf
http://www.altera.com/literature/hb/qts/qts_qii51011.pdf
http://www.altera.com/literature/hb/qts/qts_qii51017.pdf

3–24 Chapter 3: Quartus II Incremental Compilation for Hierarchical and Team-Based Design
Deciding Which Design Blocks Should Be Design Partitions
You can also view post-compilation statistics about the resource usage and port
connections for a particular partition on the Statistics tab in the Design Partition
Properties dialog box.

Partition Timing Reports
You can generate a Partition Timing Overview report and a Partition Timing Details
report by clicking Report Partitions in the Tasks pane in the TimeQuest Timing
Analyzer, or using the report_partitions Tcl command.

The Partition Timing Overview report shows the total number of failing paths for
each partition and the worst-case slack for any path involving the partition.

The Partition Timing Details report shows the number of failing partition-to-partition
paths and worst-case slack for partition-to-partition paths, to provide a more detailed
breakdown of where the critical paths in the design are located with respect to design
partitions.

Incremental Compilation Advisor
You can use the Incremental Compilation Advisor to check that your design follows
Altera’s recommendations for creating design partitions and floorplan location
assignments.

Recommendations are split into General Recommendations, Timing
Recommendations, and Team-Based Design Recommendations that apply to design
flows in which partitions are compiled independently in separate Quartus II projects
before being integrated into the top-level design. Each recommendation provides an
explanation, describes the effect of the recommendation, and provides the action
required to make a suggested change. In some cases, there is a link to the appropriate
Quartus II settings page where you can make a suggested change to assignments or
settings. For some items, if your design does not follow the recommendation, the
Check Recommendations operation creates a table that lists any nodes or paths in
your design that could be improved. The relevant timing-independent
recommendations for the design are also listed in the Design Partitions window and
the LogicLock Regions window.

To verify that your design follows the recommendations, go to the Timing
Independent Recommendations page or the Timing Dependent Recommendations
page, and then click Check Recommendations. For large designs, these operations
can take a few minutes.

After you perform a check operation, symbols appear next to each recommendation to
indicate whether the design or project setting follows the recommendations, or if
some or all of the design or project settings do not follow the recommendations.
Following these recommendations is not mandatory to use the incremental
compilation feature. The recommendations are most important to ensure good results
for timing-critical partitions.

For some items in the Advisor, if your design does not follow the recommendation,
the Check Recommendations operation lists any parts of the design that could be
improved. For example, if not all of the partition I/O ports follow the Register All
Non-Global Ports recommendation, the advisor displays a list of unregistered ports
with the partition name and the node name associated with the port.
Quartus II Handbook Version 13.1 November 2013 Altera Corporation
Volume 1: Design and Synthesis

Chapter 3: Quartus II Incremental Compilation for Hierarchical and Team-Based Design 3–25
Specifying the Level of Results Preservation for Subsequent Compilations
When the advisor provides a list of nodes, you can right-click a node, and then click
Locate to cross-probe to other Quartus II features, such as the RTL Viewer, Chip
Planner, or the design source code in the text editor.

1 Opening a new TimeQuest report resets the Incremental Compilation Advisor results,
so you must rerun the Check Recommendations process.

Specifying the Level of Results Preservation for Subsequent
Compilations

As introduced in “Incremental Compilation Summary” on page 3–7 and “Common
Design Scenarios Using Incremental Compilation” on page 3–10, the netlist type of
each design partition allows you to specify the level of results preservation. The
netlist type determines which type of netlist or source file the Partition Merge stage
uses in the next incremental compilation.

When you choose to preserve a post-fit compilation netlist, the default level of Fitter
preservation is the highest degree of placement and routing preservation supported
by the device family. The advanced Fitter Preservation Level setting allows you to
specify the amount of information that you want to preserve from the post-fit netlist
file.

Netlist Type for Design Partitions
Before starting a new compilation, ensure that the appropriate netlist type is set for
each partition to preserve the desired level of compilation results. Table 3–2 describes
the settings for the netlist type, explains the behavior of the Quartus II software for
each setting, and provides guidance on when to use each setting.

Table 3–2. Partition Netlist Type Settings (Part 1 of 2)

Netlist Type Quartus II Software Behavior for Partition During Compilation

Source File Always compiles the partition using the associated design source file(s). (1)

Use this netlist type to recompile a partition from the source code using new synthesis or Fitter settings.

Post-
Synthesis

Preserves post-synthesis results for the partition and reuses the post-synthesis netlist when the
following conditions are true:

■ A post-synthesis netlist is available from a previous synthesis.

■ No change that initiates an automatic resynthesis has been made to the partition since the previous
synthesis. (2) For details, refer to “What Changes Initiate the Automatic Resynthesis of a Partition?” on
page 3–28.

Compiles the partition from the source files if resynthesis is initiated or if a post-synthesis netlist is not
available. (1)

Use this netlist type to preserve the synthesis results unless you make design changes, but allow the
Fitter to refit the partition using any new Fitter settings.
November 2013 Altera Corporation Quartus II Handbook Version 13.1
Volume 1: Design and Synthesis

3–26 Chapter 3: Quartus II Incremental Compilation for Hierarchical and Team-Based Design
Specifying the Level of Results Preservation for Subsequent Compilations
Fitter Preservation Level for Design Partitions
The default Fitter Preservation Level for partitions with a Post-Fit netlist type is the
highest level of preservation available for the target device family and provides the
most compilation time reduction.

Post-Fit Preserves post-fit results for the partition and reuses the post-fit netlist when the following conditions
are true:

■ A post-fit netlist is available from a previous fitting.

■ No change that initiates an automatic resynthesis has been made to the partition since the previous
fitting. (2) For details, refer to “What Changes Initiate the Automatic Resynthesis of a Partition?” on
page 3–28.

When a post-fit netlist is not available, the software reuses the post-synthesis netlist if it is available, or
otherwise compiles from the source files. Compiles the partition from the source files if resynthesis is
initiated. (1)

The Fitter Preservation Level specifies what level of information is preserved from the post-fit netlist. For
details, refer to “Fitter Preservation Level for Design Partitions” on page 3–26.

Assignment changes, such as Fitter optimization settings, do not cause a partition set to Post-Fit to
recompile.

Empty Uses an empty placeholder netlist for the partition. The partition's port interface information is required
during Analysis and Synthesis to connect the partition correctly to other logic and partitions in the
design, and peripheral nodes in the source file including pins and PLLs are preserved to help connect the
empty partition to the rest of the design and preserve timing of any lower-level non-empty partitions
within empty partitions. If the source file is not available, you can create a wrapper file that defines the
design block and specifies the input, output, and bidirectional ports. In Verilog HDL: a module
declaration, and in VHDL: an entity and architecture declaration.

You can use this netlist type to skip the compilation of a partition that is incomplete or missing from the
top-level design. You can also set an empty partition if you want to compile only some partitions in the
design, such as to optimize the placement of a timing-critical block such as an IP core before
incorporating other design logic, or if the compilation time is large for one partition and you want to
exclude it.

If the project database includes a previously generated post-synthesis or post-fit netlist for an unchanged
Empty partition, you can set the netlist type from Empty directly to Post-Synthesis or Post-Fit and the
software reuses the previous netlist information without recompiling from the source files.

Notes to Table 3–2:

(1) If you use Rapid Recompile, the Quartus II software might not recompile the entire partition from the source code as described in this table; it
will reuse compatible results if there have been only small changes to the logic in the partition. Refer to “Incremental Capabilities Available When
A Design Has No Partitions” on page 3–2 for more information.

(2) You can turn on the Ignore changes in source files and strictly use the specified netlist, if available option on the Advanced tab in the Design
Partitions Properties dialog box to specify whether the Compiler should ignore source file changes when deciding whether to recompile the
partition.

Table 3–2. Partition Netlist Type Settings (Part 2 of 2)

Netlist Type Quartus II Software Behavior for Partition During Compilation
Quartus II Handbook Version 13.1 November 2013 Altera Corporation
Volume 1: Design and Synthesis

Chapter 3: Quartus II Incremental Compilation for Hierarchical and Team-Based Design 3–27
Specifying the Level of Results Preservation for Subsequent Compilations
You can change the advanced Fitter Preservation Level setting to provide more
flexibility in the Fitter during placement and routing. You can set the Fitter
Preservation Level on the Advanced tab in the Design Partitions Properties dialog
box. Table 3–3 describes the Fitter Preservation Level settings.

h For more information about how to set the Netlist Type and Fitter Preservation Level
settings in the Quartus II software, refer to Setting the Netlist Type and Fitter
Preservation Level for Design Partitions in Quartus II Help.

Where Are the Netlist Databases Saved?
The incremental compilation database folder (\incremental_db) includes all the
netlist information from previous compilations. To avoid unnecessary recompilations,
these database files must not be altered or deleted.

If you archive or reproduce the project in another location, you can use a Quartus II
Archive File (.qar). Include the incremental compilation database files to preserve
post-synthesis or post-fit compilation results. For more information, refer to “Using
Incremental Compilation With Quartus II Archive Files” on page 3–52.

To manually create a project archive that preserves compilation results without
keeping the incremental compilation database, you can keep all source and settings
files, and create and save a Quartus II Settings File (.qxp) for each partition in the
design that will be integrated into the top-level design. For more information about
how to create a .qxp for a partition within your design, refer to “Exporting Design
Partitions from Separate Quartus II Projects” on page 3–30.

Table 3–3. Fitter Preservation Level Settings

Fitter Preservation
Level Quartus II Behavior for Partition During Compilation

Placement and
Routing

Preserves the design partition’s netlist atoms and their placement and routing.

This setting reduces compilation times compared to Placement only, but provides less flexibility to
the router to make changes if there are changes in other parts of the design.

By default, the Fitter preserves the usage of high-speed programmable power tiles contained
within the selected partition, for devices that support high-speed and low-power tiles. You can turn
off the Preserve high-speed tiles when preserving placement and routing option on the
Advanced tab in the Design Partitions Properties dialog box.

Placement Preserves the netlist atoms and their placement in the design partition. Reroutes the design
partition and does not preserve high-speed power tile usage.

Netlist Only Preserves the netlist atoms of the design partition, but replaces and reroutes the design partition.
A post-fit netlist with the atoms preserved can be different than the Post-Synthesis netlist because
it contains Fitter optimizations; for example, Physical Synthesis changes made during a previous
Fitting.

You can use this setting to:

■ Preserve Fitter optimizations but allow the software to perform placement and routing again.

■ Reapply certain Fitter optimizations that would otherwise be impossible when the placement is
locked down.

■ Resolve resource conflicts between two imported partitions.
November 2013 Altera Corporation Quartus II Handbook Version 13.1
Volume 1: Design and Synthesis

http://quartushelp.altera.com/current/master.htm#mergedProjects/comp/increment/comp_pro_setting_netlist_type_fitter_predervation_level.htm
http://quartushelp.altera.com/current/master.htm#mergedProjects/comp/increment/comp_pro_setting_netlist_type_fitter_predervation_level.htm

3–28 Chapter 3: Quartus II Incremental Compilation for Hierarchical and Team-Based Design
Specifying the Level of Results Preservation for Subsequent Compilations
Deleting Netlists
You can choose to abandon all levels of results preservation and remove all netlists
that exist for a particular partition with the Delete Netlists command in the Design
Partitions window. When you delete netlists for a partition, the partition is compiled
using the associated design source file(s) in the next compilation. Resetting the netlist
type for a partition to Source would have the same effect, though the netlists would
not be permanently deleted and would be available for use in subsequent
compilations. For an imported partition, the Delete Netlists command also optionally
allows you to remove the imported .qxp.

What Changes Initiate the Automatic Resynthesis of a Partition?
A partition is synthesized from its source files if there is no post-synthesis netlist
available from a previous synthesis, or if the netlist type is set to Source File.
Additionally, certain changes to a partition initiate an automatic resynthesis of the
partition when the netlist type is Post-Synthesis or Post-Fit. The software
resynthesizes the partition in these cases to ensure that the design description matches
the post-place-and-route programming files. If you do not want resynthesis to occur
automatically, refer to “Forcing Use of the Compilation Netlist When a Partition has
Changed” on page 3–30.

The following list explains the changes that initiate a partition’s automatic resynthesis
when the netlist type is set to Post-Synthesis or Post-Fit:

■ The device family setting has changed.

■ Any dependent source design file has changed. For more information, refer to
“Resynthesis Due to Source Code Changes” on page 3–29.

■ The partition boundary was changed by an addition, removal, or change to the
port boundaries of a partition (for example, a new partition has been defined for a
lower-level instance within this partition).

■ A dependent source file was compiled into a different library (so it has a different
-library argument).

■ A dependent source file was added or removed; that is, the partition depends on a
different set of source files.

■ The partition’s root instance has a different entity binding. In VHDL, an instance
may be bound to a specific entity and architecture. If the target entity or
architecture changes, it triggers resynthesis.

■ The partition has different parameters on its root hierarchy or on an internal
AHDL hierarchy (AHDL automatically inherits parameters from its parent
hierarchies). This occurs if you modified the parameters on the hierarchy directly,
or if you modified them indirectly by changing the parameters in a parent design
hierarchy.

■ You have moved the project and compiled database between a Windows and
Linux system. Due to the differences in the way new line feeds are handled
between the operating systems, the internal checksum algorithm may detect a
design file change in this case.
Quartus II Handbook Version 13.1 November 2013 Altera Corporation
Volume 1: Design and Synthesis

Chapter 3: Quartus II Incremental Compilation for Hierarchical and Team-Based Design 3–29
Specifying the Level of Results Preservation for Subsequent Compilations
The software reuses the post-synthesis results but re-fits the design if you change the
device setting within the same device family. The software reuses the post-fitting
netlist if you change only the device speed grade.

Synthesis and Fitter assignments, such as optimization settings, timing assignments,
or Fitter location assignments including pin assignments, do not trigger automatic
recompilation in the incremental compilation flow. To recompile a partition with new
assignments, change the netlist type for that partition to one of the following:

■ Source File to recompile with all new settings

■ Post-Synthesis to recompile using existing synthesis results but new Fitter
settings

■ Post-Fit with the Fitter Preservation Level set to Placement to rerun routing using
existing placement results, but new routing settings (such as delay chain settings)

You can use the LogicLock Origin location assignment to change or fine-tune the
previous Fitter results from a Post-Fit netlist. For details about how you can affect
placement with LogicLock regions, refer to “Changing Partition Placement with
LogicLock Changes” on page 3–50.

Resynthesis Due to Source Code Changes
The Quartus II software uses an internal checksum algorithm to determine whether
the contents of a source file have changed. Source files are the design description files
used to create the design, and include Memory Initialization Files (.mif) as well as
.qxp from exported partitions. When design files in a partition have dependencies on
other files, changing one file may initiate an automatic recompilation of another file.
The Partition Dependent Files table in the Analysis and Synthesis report lists the
design files that contribute to each design partition. You can use this table to
determine which partitions are recompiled when a specific file is changed.

For example, if a design has file A.v that contains entity A, B.v that contains entity B,
and C.v that contains entity C, then the Partition Dependent Files table for the
partition containing entity A lists file A.v, the table for the partition containing entity
B lists file B.v, and the table for the partition containing entity C lists file C.v. Any
dependencies are transitive, so if file A.v depends on B.v, and B.v depends on C.v, the
entities in file A.v depend on files B.v and C.v. In this case, files B.v and C.v are listed
in the report table as dependent files for the partition containing entity A.

1 If you use Rapid Recompile, the Quartus II software might not recompile the entire
partition from the source code as described in this section; it will reuse compatible
results if there have been only small changes to the logic in the partition. Refer to
“Incremental Capabilities Available When A Design Has No Partitions” on page 3–2
for more information.

If you define module parameters in a higher-level module, the Quartus II software
checks the parameter values when determining which partitions require resynthesis.
If you change a parameter in a higher-level module that affects a lower-level module,
the lower-level module is resynthesized. Parameter dependencies are tracked
separately from source file dependencies; therefore, parameter definitions are not
listed in the Partition Dependent Files list.
November 2013 Altera Corporation Quartus II Handbook Version 13.1
Volume 1: Design and Synthesis

3–30 Chapter 3: Quartus II Incremental Compilation for Hierarchical and Team-Based Design
Exporting Design Partitions from Separate Quartus II Projects
If a design contains common files, such as an includes.v file that is referenced in each
entity by the command ‘include includes.v, all partitions are dependent on this file.
A change to includes.v causes the entire design to be recompiled. The VHDL
statement use work.all also typically results in unnecessary recompilations, because
it makes all entities in the work library visible in the current entity, which results in
the current entity being dependent on all other entities in the design.

To avoid this type of problem, ensure that files common to all entities, such as a
common include file, contain only the set of information that is truly common to all
entities. Remove use work.all statements in your VHDL file or replace them by
including only the specific design units needed for each entity.

Forcing Use of the Compilation Netlist When a Partition has Changed
Forcing the use of a post-compilation netlist when the contents of a source file has
changed is recommended only for advanced users who understand when a partition
must be recompiled. You might use this assignment, for example, if you are making
source code changes but do not want to recompile the partition until you finish
debugging a different partition, or if you are adding simple comments to the source
file but you know the design logic itself is not being changed and you want to keep
the previous compilation results.

To force the Fitter to use a previously generated netlist even when there are changes to
the source files, right-click the partition in the Design Partitions window and then
click Design Partition Properties. On the Advanced tab, turn on the Ignore changes
in source files and strictly use the specified netlist, if available option.

Turning on this option can result in the generation of a functionally incorrect netlist
when source design files change, because source file updates will not be recompiled.
Use caution when setting this option.

Exporting Design Partitions from Separate Quartus II Projects
Partitions that are developed by other designers or team members in the same
company or third-party IP providers can be exported as design partitions to a
Quartus II Exported Partition File (.qxp), and then integrated into a top-level design.
A .qxp is a binary file that contains compilation results describing the exported design
partition and includes a post-synthesis netlist, a post-fit netlist, or both, and a set of
assignments, sometimes including LogicLock placement constraints. The .qxp does
not contain the source design files from the original Quartus II project.

To enable team-based development and third-party IP delivery, you can design and
optimize partitions in separate copies of the top-level Quartus II project framework,
or even in isolation. If the designers have access to the top-level project framework
through a source control system, they can access project files as read-only and develop
their partition within the source control system. If designers do not have access to a
source control system, the project lead can provide the designer with a copy of the
top-level project framework to use as they develop their partitions. The project lead
also has the option to generate design partition scripts to manage resource and timing
budgets in the top-level design when partitions are developed outside the top-level
project framework.
Quartus II Handbook Version 13.1 November 2013 Altera Corporation
Volume 1: Design and Synthesis

Chapter 3: Quartus II Incremental Compilation for Hierarchical and Team-Based Design 3–31
Exporting Design Partitions from Separate Quartus II Projects
The exported compilation results of completed partitions are given to the project lead,
preferably using a source control system, who is then responsible for integrating them
into the top-level design to obtain a fully functional design. This type of design flow is
required only if partition designers want to optimize their placement and routing
independently, and pass their design to the project lead to reuse placement and
routing results. Otherwise, a project lead can integrate source HDL from several
designers in a single Quartus II project, and use the standard incremental compilation
flow described previously.

The diagram in Figure 3–7 illustrates the team-based incremental compilation design
flow using a methodology in which partitions are compiled in separate Quartus II
projects before being integrated into the top-level design. This flow can be used when
partitions are developed by other designers or IP providers.

1 You cannot export or import partitions that have been merged. For more information
about merged partitions, refer to “Deciding Which Design Blocks Should Be Design
Partitions” on page 3–19.

The topics in this section provide a description of the team-based design flow using
exported partitions, describe how to generate a .qxp for a design partition, and
explain how to integrate the .qxp into the top-level design:

There are some additional restrictions related to design flows using exported
partitions, described in “Incremental Compilation Restrictions” on page 3–51.

Preparing the Top-Level Design
To prepare your design to incorporate exported partitions, first create the top-level
project framework of the design to define the hierarchy for the subdesigns that will be
implemented by other team members, designers, or IP providers.

Figure 3–7. Summary of Team-Based Incremental Compilation Flow

Repeat as Needed
During Design, Verif
& Debugging Stages

Design, Compile, and
Optimize Partition(s)

Export Lower-Level Partition(s)

Integrate Partition(s)
into Top-Level Design

Perform Incremental Compilation
in Top-Level Design

Provide Project Framework or
Constraints to Designers

Prepare Top-Level Design for
 Incremental Compilation
November 2013 Altera Corporation Quartus II Handbook Version 13.1
Volume 1: Design and Synthesis

3–32 Chapter 3: Quartus II Incremental Compilation for Hierarchical and Team-Based Design
Exporting Design Partitions from Separate Quartus II Projects
In the top-level design, create project-wide settings, for example, device selection,
global assignments for clocks and device I/O ports, and any global signal constraints
to specify which signals can use global routing resources.

Next, create the appropriate design partition assignments and set the netlist type for
each design partition that will be developed in a separate Quartus II project to Empty.
Refer to “Empty Partitions” below for details. It may be necessary to constrain the
location of partitions with LogicLock region assignments if they are timing-critical
and are expected to change in future compilations, or if the designer or IP provider
wants to place and route their design partition independently, to avoid location
conflicts. For details, refer to “Creating a Design Floorplan With LogicLock Regions”
on page 3–48.

Finally, provide the top-level project framework to the partition designers, preferably
through a source control system. Refer to “Project Management—Making the Top-
Level Design Available to Other Designers” on page 3–32 for more information.

Empty Partitions
You can use a design flow in which some partitions are set to an Empty netlist type to
develop pieces of the design separately, and then integrate them into the top-level
design at a later time. In a team-based design environment, you can set the netlist type
to Empty for partitions in your design that will be developed by other designers or IP
providers. The Empty setting directs the Compiler to skip the compilation of a
partition and use an empty placeholder netlist for the partition.

When a netlist type is set to Empty, peripheral nodes including pins and PLLs are
preserved and all other logic is removed. The peripheral nodes including pins help
connect the empty partition to the design, and the PLLs help preserve timing of
non-empty partitions within empty partitions.

When you set a design partition to Empty, a design file is required during Analysis
and Synthesis to specify the port interface information so that it can connect the
partition correctly to other logic and partitions in the design. If a partition is exported
from another project, the .qxp contains this information. If there is no .qxp or design
file to represent the design entity, you must create a wrapper file that defines the
design block and specifies the input, output, and bidirectional ports. For example, in
Verilog HDL, you should include a module declaration, and in VHDL, you should
include an entity and architecture declaration.

Project Management—Making the Top-Level Design Available to Other
Designers

In team-based incremental compilation flows, whenever possible, all designers or IP
providers should work within the same top-level project framework. Using the same
project framework among team members ensures that designers have the settings and
constraints needed for their partition, and makes timing closure easier when
integrating the partitions into the top-level design. If other designers do not have
access to the top-level project framework, the Quartus II software provides tools for
passing project information to partition designers.
Quartus II Handbook Version 13.1 November 2013 Altera Corporation
Volume 1: Design and Synthesis

Chapter 3: Quartus II Incremental Compilation for Hierarchical and Team-Based Design 3–33
Exporting Design Partitions from Separate Quartus II Projects
Distributing the Top-Level Quartus II Project
There are several methods that the project lead can use to distribute the “skeleton” or
top-level project framework to other partition designers or IP providers.

■ If partition designers have access to the top-level project framework, the project
will already include all the settings and constraints needed for the design. This
framework should include PLLs and other interface logic if this information is
important to optimize partitions.

■ If designers are part of the same design environment, they can check out the
required project files from the same source control system. This is the
recommended way to share a set of project files.

■ Otherwise, the project lead can provide a copy of the top-level project
framework so that each design develops their partition within the same project
framework.

■ If a partition designer does not have access to the top-level project framework, the
project lead can give the partition designer a Tcl script or other documentation to
create the separate Quartus II project and all the assignments from the top-level
design.

For details about project management scripts you can create with the Quartus II
software, refer to“Optimizing the Placement for a Timing-Critical Partition” on
page 3–60.

If the partition designers provide the project lead with a post-synthesis .qxp and
fitting is performed in the top-level design, integrating the design partitions should be
quite easy. If you plan to develop a partition in a separate Quartus II project and
integrate the optimized post-fitting results into the top-level design, use the following
guidelines to improve the integration process:

■ Ensure that a LogicLock region constrains the partition placement and uses only
the resources allocated by the project lead.

■ Ensure that you know which clocks should be allocated to global routing resources
so that there are no resource conflicts in the top-level design.

■ Set the Global Signal assignment to On for the high fan-out signals that should
be routed on global routing lines.

■ To avoid other signals being placed on global routing lines, turn off Auto
Global Clock and Auto Global Register Controls under More Settings on the
Fitter page in the Settings dialog box. Alternatively, you can set the Global
Signal assignment to Off for signals that should not be placed on global
routing lines.

Placement for LABs depends on whether the inputs to the logic cells within the
LAB use a global clock. You may encounter problems if signals do not use
global lines in the partition, but use global routing in the top-level design.

■ Use the Virtual Pin assignment to indicate pins of a partition that do not drive pins
in the top-level design. This is critical when a partition has more output ports than
the number of pins available in the target device. Using virtual pins also helps
optimize cross-partition paths for a complete design by enabling you to provide
more information about the partition ports, such as location and timing
assignments.
November 2013 Altera Corporation Quartus II Handbook Version 13.1
Volume 1: Design and Synthesis

3–34 Chapter 3: Quartus II Incremental Compilation for Hierarchical and Team-Based Design
Exporting Design Partitions from Separate Quartus II Projects
■ When partitions are compiled independently without any information about each
other, you might need to provide more information about the timing paths that
may be affected by other partitions in the top-level design. You can apply location
assignments for each pin to indicate the port location after incorporation in the
top-level design. You can also apply timing assignments to the I/O ports of the
partition to perform timing budgeting.

f For more information about resource balancing and timing allocation between
partitions, refer to the Best Practices for Incremental Compilation Partitions and Floorplan
Assignments chapter in volume 1 of the Quartus II Handbook.

Generating Design Partition Scripts
If IP providers or designers on a team want to optimize their design blocks
independently and do not have access to a shared project framework, the project lead
must perform some or all of the following tasks to ensure successful integration of the
design blocks:

■ Determine which assignments should be propagated from the top-level design to
the partitions. This requires detailed knowledge of which assignments are
required to set up low-level designs.

■ Communicate the top-level assignments to the partitions. This requires detailed
knowledge of Tcl or other scripting languages to efficiently communicate project
constraints.

■ Determine appropriate timing and location assignments that help overcome the
limitations of team-based design. This requires examination of the logic in the
partitions to determine appropriate timing constraints.

■ Perform final timing closure and resource conflict avoidance in the top-level
design. Because the partitions have no information about each other, meeting
constraints at the lower levels does not guarantee they are met when integrated at
the top-level. It then becomes the project lead’s responsibility to resolve the issues,
even though information about the partition implementation may not be available.

Design partition scripts automate the process of transferring the top-level project
framework to partition designers in a flow where each design block is developed in
separate Quartus II projects before being integrated into the top-level design. If the
project lead cannot provide each designer with a copy of the top-level project
framework, the Quartus II software provides an interface for managing resources and
timing budgets in the top-level design. Design partition scripts make it easier for
partition designers to implement the instructions from the project lead, and avoid
conflicts between projects when integrating the partitions into the top-level design.
This flow also helps to reduce the need to further optimize the designs after
integration.

You can use options in the Generate Design Partition Scripts dialog box to choose
which types of assignments you want to pass down and create in the partitions being
developed in separate Quartus II projects.

For an example design scenario using design partition scripts, refer to “Enabling
Designers on a Team to Optimize Independently” on page 3–43.
Quartus II Handbook Version 13.1 November 2013 Altera Corporation
Volume 1: Design and Synthesis

http://www.altera.com/literature/hb/qts/qts_qii51017.pdf
http://www.altera.com/literature/hb/qts/qts_qii51017.pdf

Chapter 3: Quartus II Incremental Compilation for Hierarchical and Team-Based Design 3–35
Exporting Design Partitions from Separate Quartus II Projects
h For step-by-step information on how to generate design partition scripts, and a
description of each option that can be included in design partition scripts, refer to
Generating Design Partition Scripts for Project Management, and Generate Design Partition
Scripts Dialog Box in Quartus II Help.

Exporting Partitions
When partition designers achieve the design requirements in their separate Quartus II
projects, each designer can export their design as a partition so it can be integrated
into the top-level design by the project lead. The Export Design Partition dialog box,
available from the Project menu, allows designers to export a design partition to a
Quartus II Exported Partition File (.qxp) with a post-synthesis netlist, a post-fit netlist,
or both. The project lead then adds the .qxp to the top-level design to integrate the
partition.

A designer developing a timing-critical partition or who wants to optimize their
partition on their own would opt to export their completed partition with a post-fit
netlist, allowing for the partition to more reliably meet timing requirements after
integration. In this case, you must ensure that resources are allocated appropriately to
avoid conflicts. If the placement and routing optimization can be performed in the
top-level design, exporting a post-synthesis netlist allows the most flexibility in the
top-level design and avoids potential placement or routing conflicts with other
partitions.

When designing the partition logic to be exported into another project, you can add
logic around the design block to be exported as a design partition. You can instantiate
additional design components for the Quartus II project so that it matches the
top-level design environment, especially in cases where you do not have access to the
full top-level design project. For example, you can include a top-level PLL in the
project, outside of the partition to be exported, so that you can optimize the design
with information about the frequency multipliers, phase shifts, compensation delays,
and any other PLL parameters. The software then captures timing and resource
requirements more accurately while ensuring that the timing analysis in the partition
is complete and accurate. You can export the partition for the top-level design without
any auxiliary components that are instantiated outside the partition being exported.

If your design team uses makefiles and design partition scripts, the project lead can
use the make command with the master_makefile command created by the scripts to
export the partitions and create .qxp files. When a partition has been compiled and is
ready to be integrated into the top-level design, you can export the partition with
option on the Export Design Partition dialog box, available from the Project menu.

h For more information about how to export a design partition, refer to Using a Team-
Based Incremental Compilation Design Flow in the Quartus II Help.

Viewing the Contents of a Quartus II Exported Partition File (.qxp)
The QXP report allows you to view a summary of the contents in a .qxp when you
open the file in the Quartus II software. The .qxp is a binary file that contains
compilation results so the file cannot be read in a text editor. The QXP report opens in
the main Quartus II window and contains summary information including a list of
the I/O ports, resource usage summary, and a list of the assignments used for the
exported partition.
November 2013 Altera Corporation Quartus II Handbook Version 13.1
Volume 1: Design and Synthesis

http://quartushelp.altera.com/current/master.htm#mergedProjects/comp/increment/comp_pro_running_bottom-up_compilation.htm
http://quartushelp.altera.com/current/master.htm#mergedProjects/comp/increment/comp_pro_running_bottom-up_compilation.htm
http://quartushelp.altera.com/current/master.htm#mergedProjects/comp/increment/comp_db_generate_bottom-up_scripts.htm
http://quartushelp.altera.com/current/master.htm#mergedProjects/comp/increment/comp_db_generate_bottom-up_scripts.htm
http://quartushelp.altera.com/current/master.htm#mergedProjects/comp/increment/comp_pro_generating_design_partition_scripts.htm

3–36 Chapter 3: Quartus II Incremental Compilation for Hierarchical and Team-Based Design
Exporting Design Partitions from Separate Quartus II Projects
Integrating Partitions into the Top-Level Design
To integrate a partition developed in a separate Quartus II project into the top-level
design, you can simply add the .qxp as a source file in your top-level design (just like
a Verilog or VHDL source file). You can also use the Import Design Partition dialog
box to import the partition, in certain situations, described in “Advanced Importing
Options” on page 3–37.

The .qxp contains the design block exported from the partition and has the same
name as the partition. When you instantiate the design block into a top-level design
and include the .qxp as a source file, the software adds the exported netlist to the
database for the top-level design. The .qxp port names are case sensitive if the original
HDL of the partition was case sensitive.

When you use a .qxp as a source file in this way, you can choose whether you want
the .qxp to be a partition in the top-level design. If you do not designate the .qxp
instance as a partition, the software reuses just the post-synthesis compilation results
from the .qxp, removes unconnected ports and unused logic just like a regular source
file, and then performs placement and routing.

If you assigned the .qxp instance as a partition, you can set the netlist type in the
Design Partitions Window to choose the level of results to preserve from the .qxp. To
preserve the placement and routing results from the exported partition, set the netlist
type to Post-Fit for the .qxp partition in the top-level design. If you assign the instance
as a design partition, the partition boundary is preserved, as discussed in “Impact of
Design Partitions on Design Optimization” on page 3–20.

Integrating Assignments from the .qxp
The Quartus II software filters assignments from .qxp files to include appropriate
assignments in the top-level design. The assignments in the .qxp are treated like
assignments made in an HDL source file, and are not listed in the Quartus II Settings
File (.qsf) for the top-level design. Most assignments from the .qxp can be overridden
by assignments in the top-level design.

The following subsections provide more details about specific assignment types:

Design Partition Assignments Within the Exported Partition

Design partition assignments defined within a separate Quartus II project are not
added to the top-level design. All logic under the exported partition in the project
hierarchy is treated as single instance in the .qxp.

Synopsys Design Constraint Files for the Quartus II TimeQuest Timing Analyzer

Timing assignments made for the Quartus II TimeQuest analyzer in a Synopsys
Design Constraint File (.sdc) in the lower-level partition project are not added to the
top-level design. Ensure that the top-level design includes all of the timing
requirements for the entire project.

f For recommendations about managing SDC constraints for the top-level design and
independent lower-level partition projects, refer to the Best Practices for Incremental
Compilation Partitions and Floorplan Assignments chapter in volume 1 of the Quartus II
Handbook.
Quartus II Handbook Version 13.1 November 2013 Altera Corporation
Volume 1: Design and Synthesis

http://www.altera.com/literature/hb/qts/qts_qii51017.pdf
http://www.altera.com/literature/hb/qts/qts_qii51017.pdf

Chapter 3: Quartus II Incremental Compilation for Hierarchical and Team-Based Design 3–37
Exporting Design Partitions from Separate Quartus II Projects
Global Assignments

The project lead should make all global project-wide assignments in the top-level
design. Global assignments from the exported partition's project are not added to the
top-level design. When it is possible for a particular constraint, the global assignment
is converted to an instance-specific assignment for the exported design partition.

LogicLock Region Assignments

The project lead typically creates LogicLock region assignments in the top-level
design for any lower-level partition designs where designer or IP providers plan to
export post-fit information to be used in the top-level design, to help avoid placement
conflicts between partitions. When you use the .qxp as a source file, LogicLock
constraints from the exported partition are applied in the top-level design, but will
not appear in your .qsf file or LogicLock Regions window for you to view or edit. The
LogicLock region itself is not required to constrain the partition placement in the
top-level design if the netlist type is set to Post-Fit, because the netlist contains all the
placement information. For information on how to control LogicLock region
assignments for exported partitions, refer to the “Advanced Importing Options” on
page 3–37.

Integrating Encrypted IP Cores from .qxp Files
Proper license information is required to compile encrypted IP cores. If an IP core is
exported as a .qxp from another Quartus II project, the top-level designer
instantiating the .qxp must have the correct license. The software requires a full
license to generate an unrestricted programming file. If you do not have a license, but
the IP in the .qxp was compiled with OpenCore Plus hardware evaluation support,
you can generate an evaluation programming file without a license. If the IP supports
OpenCore simulation only, you can fully compile the design and generate a
simulation netlist, but you cannot create programming files unless you have a full
license.

Advanced Importing Options
You can use advanced options in the Import Design Partition dialog box to integrate
a partition developed in a separate Quartus II project into the top-level design. The
import process adds more control than using the .qxp as a source file, and is useful
only in the following circumstances:

■ If you want LogicLock regions in your top-level design (.qsf)—If you have
regions in your partitions that are not also in the top-level design, the regions will
be added to your .qsf during the import process.

■ If you want different settings or placement for different instantiations of the
same entity—You can control the setting import process with the advanced import
options, and specify different settings for different instances of the same .qxp
design block.

When you use the Import Design Partition dialog box to integrate a partition into the
top-level design, the import process sets the partition’s netlist type to Imported in the
Design Partitions window.
November 2013 Altera Corporation Quartus II Handbook Version 13.1
Volume 1: Design and Synthesis

3–38 Chapter 3: Quartus II Incremental Compilation for Hierarchical and Team-Based Design
Exporting Design Partitions from Separate Quartus II Projects
After you compile the entire design, if you make changes to the place-and-route
results (such as movement of an imported LogicLock region), use the Post-Fit netlist
type on subsequent compilations. To discard an imported netlist and recompile from
source code, you can compile the partition with the netlist type set to Source File and
be sure to include the relevant source code in the top-level design. Refer to “Netlist
Type for Design Partitions” on page 3–25 for details. The import process sets the
partition’s Fitter Preservation Level to the setting with the highest degree of
preservation supported by the imported netlist. For example, if a post-fit netlist is
imported with placement information, the Fitter Preservation Level is set to
Placement, but you can change it to the Netlist Only value. For more information
about preserving previous compilation results, refer to “Netlist Type for Design
Partitions” on page 3–25 and “Fitter Preservation Level for Design Partitions” on
page 3–26.

When you import a partition from a .qxp, the .qxp itself is not part of the top-level
design because the netlists from the file have been imported into the project database.
Therefore if a new version of a .qxp is exported, the top-level designer must perform
another import of the .qxp.

When you import a partition into a top-level design with the Import Design Partition
dialog box, the software imports relevant assignments from the partition into the
top-level design, as described for the source file integration flow in “Integrating
Assignments from the .qxp” on page 3–36. If required, you can change the way some
assignments are imported, as described in the following subsections.

Importing LogicLock Assignments

LogicLock regions are set to a fixed size when imported. If you instantiate multiple
instances of a subdesign in the top-level design, the imported LogicLock regions are
set to a Floating location. Otherwise, they are set to a Fixed location. You can change
the location of LogicLock regions after they are imported, or change them to a
Floating location to allow the software to place each region but keep the relative
locations of nodes within the region wherever possible. For details, refer to “Changing
Partition Placement with LogicLock Changes” on page 3–50. To preserve changes
made to a partition after compilation, use the Post-Fit netlist type.

The LogicLock Member State assignment is set to Locked to signify that it is a
preserved region.

LogicLock back-annotation and node location data is not imported because the .qxp
contains all of the relevant placement information. Altera strongly recommends that
you do not add to or delete members from an imported LogicLock region.

Advanced Import Settings

The Advanced Import Settings dialog box allows you to disable assignment import
and specify additional options that control how assignments and regions are
integrated when importing a partition into a top-level design, including how to
resolve assignment conflicts.

h For descriptions of the advanced import options available, refer to Advanced Import
Settings Dialog Box in Quartus II Help.
Quartus II Handbook Version 13.1 November 2013 Altera Corporation
Volume 1: Design and Synthesis

http://quartushelp.altera.com/current/master.htm#mergedProjects/comp/increment/comp_db_qid_advanced_import_settings.htm
http://quartushelp.altera.com/current/master.htm#mergedProjects/comp/increment/comp_db_qid_advanced_import_settings.htm

Chapter 3: Quartus II Incremental Compilation for Hierarchical and Team-Based Design 3–39
Team-Based Design Optimization and Third-Party IP Delivery Scenarios
Team-Based Design Optimization and Third-Party IP Delivery Scenarios
This section includes the following design flows with step-by-step descriptions when
you have partitions being developed in separate Quartus II projects, or by a
third-party IP provider.

■ “Using an Exported Partition to Send to a Design Without Including Source Files”
on page 3–39

■ “Creating Precompiled Design Blocks (or Hard-Wired Macros) for Reuse” on
page 3–40

■ “Designing in a Team-Based Environment” on page 3–42

■ “Enabling Designers on a Team to Optimize Independently” on page 3–43

■ “Performing Design Iterations With Lower-Level Partitions” on page 3–47

Using an Exported Partition to Send to a Design Without Including Source
Files

Scenario background: A designer wants to produce a design block and needs to send
out their design, but to preserve their IP, they prefer to send a synthesized netlist
instead of providing the HDL source code to the recipient. You can use this flow to
implement a black box.

Use this flow to package a full design as a single source file to send to an end
customer or another design location.

As the sender in this scenario perform the following steps to export a design block:

1. Provide the device family name to the recipient. If you send placement
information with the synthesized netlist, also provide the exact device selection so
they can set up their project to match.

2. Create a black box wrapper file that defines the port interface for the design block
and provide it to the recipient for instantiating the block as an empty partition in
the top-level design.

3. Create a Quartus II project for the design block, and complete the design.

4. Export the level of hierarchy into a single .qxp. Following a successful compilation
of the project, you can generate a .qxp from the GUI, the command-line, or with
Tcl commands, as described in the following:

■ If you are using the Quartus II GUI, use the Export Design Partition dialog
box.

■ If you are using command-line executables, run quartus_cdb with the
--incremental_compilation_export option.

■ If you are using Tcl commands, use the following command:
execute_flow -incremental_compilation_export.

5. Select the option to include just the Post-synthesis netlist if you do not have to
send placement information. If the recipient wants to reproduce your exact Fitter
results, you can select the Post-fitting netlist option, and optionally enable Export
routing.
November 2013 Altera Corporation Quartus II Handbook Version 13.1
Volume 1: Design and Synthesis

3–40 Chapter 3: Quartus II Incremental Compilation for Hierarchical and Team-Based Design
Team-Based Design Optimization and Third-Party IP Delivery Scenarios
6. If a partition contains sub-partitions, then the sub-partitions are automatically
flattened and merged into the partition netlist before exporting. You can change
this behavior and preserve the sub-partition hierarchy by turning off the Flatten
sub-partitions option on the Export Design Partition dialog box. Optionally, you
can use the -dont_flatten sub-option for the export_partition Tcl command.

7. Provide the .qxp to the recipient. Note that you do not have to send any of your
design source code.

As the recipient in this example, first create a Quartus II project for your top-level
design and ensure that your project targets the same device (or at least the same
device family if the .qxp does not include placement information), as specified by the
IP designer sending the design block. Instantiate the design block using the port
information provided, and then incorporate the design block into a top-level design.

Add the .qxp from the IP designer as a source file in your Quartus II project to replace
any empty wrapper file. If you want to use just the post-synthesis information, you
can choose whether you want the file to be a partition in the top-level design. To use
the post-fit information from the .qxp, assign the instance as a design partition and set
the netlist type to Post-Fit. Refer to “Creating Design Partitions” on page 3–9 and
“Netlist Type for Design Partitions” on page 3–25.

Creating Precompiled Design Blocks (or Hard-Wired Macros) for Reuse
Scenario background: An IP provider wants to produce and sell an IP core for a
component to be used in higher-level systems. The IP provider wants to optimize the
placement of their block for maximum performance in a specific Altera device and
then deliver the placement information to their end customer. To preserve their IP,
they also prefer to send a compiled netlist instead of providing the HDL source code
to their customer.

Use this design flow to create a precompiled IP block (sometimes known as a
hard-wired macro) that can be instantiated in a top-level design. This flow provides
the ability to export a design block with post-synthesis or placement (and, optionally,
routing) information and to import any number of copies of this pre-compiled block
into another design.

The customer first specifies which Altera device is being used for this project and
provides the design specifications.

As the IP provider in this example, perform the following steps to export a preplaced
IP core (or hard macro):

1. Create a black box wrapper file that defines the port interface for the IP core and
provide the file to the customer to instantiate as an empty partition in the top-level
design.

2. Create a Quartus II project for the IP core.

3. Create a LogicLock region for the design hierarchy to be exported.

1 Using a LogicLock region for the IP core allows the customer to create an
empty placeholder region to reserve space for the IP in the design floorplan
and ensures that there are no conflicts with the top-level design logic.
Reserved space also helps ensure the IP core does not affect the timing
performance of other logic in the top-level design. Additionally, with a
Quartus II Handbook Version 13.1 November 2013 Altera Corporation
Volume 1: Design and Synthesis

Chapter 3: Quartus II Incremental Compilation for Hierarchical and Team-Based Design 3–41
Team-Based Design Optimization and Third-Party IP Delivery Scenarios
LogicLock region, you can preserve placement either absolutely or relative
to the origin of the associated region. This is important when a .qxp is
imported for multiple partition hierarchies in the same project, because in
this case, the location of at least one instance in the top-level design does
not match the location used by the IP provider.

4. If required, add any logic (such as PLLs or other logic defined in the customer’s
top-level design) around the design hierarchy to be exported. If you do so, create a
design partition for the design hierarchy that will exported as an IP core.

5. Optimize the design and close timing to meet the design specifications.

6. Export the level of hierarchy for the IP core into a single .qxp.

7. Provide the .qxp to the customer. Note that you do not have to send any of your
design source code to the customer; the design netlist and placement and routing
information is contained within the .qxp.

As the customer in this example, incorporate the IP core in your design by performing
the following steps:

1. Create a Quartus II project for the top-level design that targets the same device
and instantiate a copy or multiple copies of the IP core. Use a black box wrapper
file to define the port interface of the IP core.

2. Perform Analysis and Elaboration to identify the design hierarchy.

3. Create a design partition for each instance of the IP core (refer to “Creating Design
Partitions” on page 3–57) with the netlist type set to Empty (refer to “Netlist Type
for Design Partitions” on page 3–25).

4. You can now continue work on your part of the design and accept the IP core from
the IP provider when it is ready.

5. Include the .qxp from the IP provider in your project to replace the empty
wrapper-file for the IP instance. Or, if you are importing multiple copies of the
design block and want to import relative placement, follow these additional steps:

a. Use the Import command to select each appropriate partition hierarchy. You
can import a .qxp from the GUI, the command-line, or with Tcl commands:

■ If you are using the Quartus II GUI, use the Import Design Partition
command.

■ If you are using command-line executables, run quartus_cdb with the
--incremental_compilation_import option.

■ If you are using Tcl commands, use the following command:
execute_flow -incremental_compilation_import.

b. When you have multiple instances of the IP block, you can set the imported
LogicLock regions to floating, or move them to a new location, and the
software preserves the relative placement for each of the imported modules
(relative to the origin of the LogicLock region). Routing information is
preserved whenever possible. Refer to “Changing Partition Placement with
LogicLock Changes” on page 3–50
November 2013 Altera Corporation Quartus II Handbook Version 13.1
Volume 1: Design and Synthesis

3–42 Chapter 3: Quartus II Incremental Compilation for Hierarchical and Team-Based Design
Team-Based Design Optimization and Third-Party IP Delivery Scenarios
1 The Fitter ignores relative placement assignments if the LogicLock region’s
location in the top-level design is not compatible with the locations
exported in the .qxp.

6. You can control the level of results preservation with the Netlist Type setting.
Refer to “Netlist Type for Design Partitions” on page 3–25.

1 If the IP provider did not define a LogicLock region in the exported partition, the
software preserves absolute placement locations and this leads to placement conflicts
if the partition is imported for more than one instance.

Designing in a Team-Based Environment
Scenario background: A project includes several lower-level design blocks that are
developed separately by different designers and instantiated exactly once in the
top-level design.

This scenario describes how to use incremental compilation in a team-based design
environment where each designer has access to the top-level project framework, but
wants to optimize their design in a separate Quartus II project before integrating their
design block into the top-level design.

As the project lead in this scenario, perform the following steps to prepare the
top-level design:

1. Create a new Quartus II project to ultimately contain the full implementation of
the entire design and include a "skeleton" or framework of the design that defines
the hierarchy for the subdesigns implemented by separate designers. The top-level
design implements the top-level entity in the design and instantiates wrapper files
that represent each subdesign by defining only the port interfaces but not the
implementation.

2. Make project-wide settings. Select the device, make global assignments such as
device I/O ports, define the top-level timing constraints, and make any global
signal allocation constraints to specify which signals can use global routing
resources.

3. Make design partition assignments for each subdesign and set the netlist type for
each design partition to be imported to Empty in the Design Partitions window.

4. Create LogicLock regions to create a design floorplan for each of the partitions that
will be developed separately. This floorplan should consider the connectivity
between partitions and estimates of the size of each partition based on any initial
implementation numbers and knowledge of the design specifications.
Quartus II Handbook Version 13.1 November 2013 Altera Corporation
Volume 1: Design and Synthesis

Chapter 3: Quartus II Incremental Compilation for Hierarchical and Team-Based Design 3–43
Team-Based Design Optimization and Third-Party IP Delivery Scenarios
5. Provide the top-level project framework to partition designers using one of the
following procedures:

■ Allow access to the full project for all designers through a source control
system. Each designer can check out the projects files as read-only and work on
their blocks independently. This design flow provides each designer with the
most information about the full design, which helps avoid resource conflicts
and makes design integration easy.

■ Provide a copy of the top-level Quartus II project framework for each designer.
You can use the Copy Project command on the Project menu or create a project
archive.

As the designer of a lower-level design block in this scenario, design and optimize
your partition in your copy of the top-level design, and then follow these steps when
you have achieved the desired compilation results:

1. On the Project menu, click Export Design Partition.

2. In the Export Design Partition dialog box, choose the netlist(s) to export. You can
export a Post-synthesis netlist if placement or performance preservation is not
required, to provide the most flexibility for the Fitter in the top-level design. Select
Post-fit netlist to preserve the placement and performance of the lower-level
design block, and turn on Export routing to include the routing information, if
required. One .qxp can include both post-synthesis and post-fitting netlists.

3. Provide the .qxp to the project lead.

Finally, as the project lead in this scenario, perform these steps to integrate the .qxp
files received from designers of each partition:

1. Add the .qxp as a source file in the Quartus II project, to replace any empty
wrapper file for the previously Empty partition.

2. Change the netlist type for the partition from Empty to the required level of results
preservation.

Enabling Designers on a Team to Optimize Independently
Scenario background: A project consists of several lower-level design blocks that are
developed separately by different designers who do not have access to a shared
top-level project framework. This scenario is similar to “Creating Precompiled Design
Blocks (or Hard-Wired Macros) for Reuse” on page 3–40, but assumes that there are
several design blocks being developed independently (instead of just one IP block),
and the project lead can provide some information about the design to the individual
designers. If the designers have shared access to the top-level design, use the previous
scenario “Designing in a Team-Based Environment” on page 3–42.

This scenario describes how to use incremental compilation in a team-based design
environment where designers or IP developers want to fully optimize the placement
and routing of their design independently in a separate Quartus II project before
sending the design to the project lead. This design flow requires more planning and
careful resource allocation because design blocks are developed independently.

As the project lead in this scenario, perform the following steps to prepare the
top-level design:
November 2013 Altera Corporation Quartus II Handbook Version 13.1
Volume 1: Design and Synthesis

3–44 Chapter 3: Quartus II Incremental Compilation for Hierarchical and Team-Based Design
Team-Based Design Optimization and Third-Party IP Delivery Scenarios
1. Create a new Quartus II project to ultimately contain the full implementation of
the entire design and include a “skeleton” or framework of the design that defines
the hierarchy for the subdesigns implemented by separate designers. The top-level
design implements the top-level entity in the design and instantiates wrapper files
that represent each subdesign by defining only the port interfaces but not the
implementation.

2. Make project-wide settings. Select the device, make global assignments such as
device I/O ports, define the top-level timing constraints, and make any global
signal constraints to specify which signals can use global routing resources.

3. Make design partition assignments for each subdesign and set the netlist type for
each design partition to be imported to Empty in the Design Partitions window.

4. Create LogicLock regions. This floorplan should consider the connectivity
between partitions and estimates of the size of each partition based on any initial
implementation numbers and knowledge of the design specifications.

5. Provide the constraints from the top-level design to partition designers using one
of the following procedures:.

■ Use design partition scripts to pass constraints and generate separate
Quartus II projects. On the Project menu, use the Generate Design Partition
Scripts command, or run the script generator from a Tcl or command prompt.
Make changes to the default script options as required for your project. Altera
recommends that you pass all the default constraints, including LogicLock
regions, for all partitions and virtual pin location assignments. If partitions
have not already been created by the other designers, use the partition script to
set up the projects so that you can easily take advantage of makefiles. Provide
each partition designer with the Tcl file to create their project with the
appropriate constraints. If you are using makefiles, provide the makefile for
each partition.

■ Use documentation or manually-created scripts to pass all constraints and
assignments to each partition designer.

As the designer of a lower-level design block in this scenario, perform the appropriate
set of steps to successfully export your design, whether the design team is using
makefiles or exporting and importing the design manually.

If you are using makefiles with the design partition scripts, perform the following
steps:

1. Use the make command and the makefile provided by the project lead to create a
Quartus II project with all design constraints, and compile the project.

2. The information about which source file should be associated with which partition
is not available to the software automatically, so you must specify this information
in the makefile. You must specify the dependencies before the software rebuilds
the project after the initial call to the makefile.

3. When you have achieved the desired compilation results and the design is ready
to be imported into the top-level design, the project lead can use the
master_makefile command to export this partition and create a .qxp, and then
import it into the top-level design.

If you are not using makefiles, perform the following steps:
Quartus II Handbook Version 13.1 November 2013 Altera Corporation
Volume 1: Design and Synthesis

Chapter 3: Quartus II Incremental Compilation for Hierarchical and Team-Based Design 3–45
Team-Based Design Optimization and Third-Party IP Delivery Scenarios
1. If you are using design partition scripts, source the Tcl script provided by the
Project Lead to create a project with the required settings:

■ To source the Tcl script in the Quartus II software, on the Tools menu, click
Utility Windows to open the Tcl console. Navigate to the script’s directory, and
type the following command: source <filename> r

■ To source the Tcl script at the system command prompt, type the following
command: quartus_cdb -t <filename>.tcl r

2. If you are not using design partition scripts, create a new Quartus II project for the
subdesign, and then apply the following settings and constraints to ensure
successful integration:

■ Make LogicLock region assignments and global assignments (including clock
settings) as specified by the project lead.

■ Make Virtual Pin assignments for ports which represent connections to core
logic instead of external device pins in the top-level design.

■ Make floorplan location assignments to the Virtual Pins so they are placed in
their corresponding regions as determined by the top-level design. This
provides the Fitter with more information about the timing constraints
between modules. Alternatively, you can apply timing I/O constraints to the
paths that connect to virtual pins.

3. Proceed to compile and optimize the design as needed.

4. When you have achieved the desired compilation results, on the Project menu,
click Export Design Partition.

5. In the Export Design Partition dialog box, choose the netlist(s) to export. You can
export a Post-synthesis netlist instead if placement or performance preservation is
not required, to provide the most flexibility for the Fitter in the top-level design.
Select Post-fit to preserve the placement and performance of the lower-level
design block, and turn on Export routing to include the routing information, if
required. One .qxp can include both post-synthesis and post-fitting netlists.

6. Provide the .qxp to the project lead.

Finally, as the project lead in this scenario, perform the appropriate set of steps to
import the .qxp files received from designers of each partition.

If you are using makefiles with the design partition scripts, perform the following
steps:

1. Use the master_makefile command to export each partition and create .qxp files,
and then import them into the top-level design.

2. The software does not have all the information about which source files should be
associated with which partition, so you must specify this information in the
makefile. The software cannot rebuild the project if source files change unless you
specify the dependencies.

If you are not using makefiles, perform the following steps:

1. Add the .qxp as a source file in the Quartus II project, to replace any empty
wrapper file for the previously Empty partition.
November 2013 Altera Corporation Quartus II Handbook Version 13.1
Volume 1: Design and Synthesis

3–46 Chapter 3: Quartus II Incremental Compilation for Hierarchical and Team-Based Design
Team-Based Design Optimization and Third-Party IP Delivery Scenarios
2. Change the netlist type for the partition from Empty to the required level of results
preservation.

Resolving Assignment Conflicts During Integration
When integrating lower-level design blocks, the project lead may notice some
assignment conflicts. This can occur, for example, if the lower-level design block
designers changed their LogicLock regions to account for additional logic or
placement constraints, or if the designers applied I/O port timing constraints that
differ from constraints added to the top-level design by the project lead. The project
lead can address these conflicts by explicitly importing the partitions into the
top-level design, and using options in the Advanced Import Settings dialog box, as
described in “Advanced Importing Options” on page 3–37. After the project lead
obtains the .qxp for each lower-level design block from the other designers, use the
Import Design Partition command on the Project menu and specify the partition in
the top-level design that is represented by the lower-level design block .qxp. Repeat
this import process for each partition in the design. After you have imported each
partition once, you can select all the design partitions and use the Reimport using
latest import files at previous locations option to import all the files from their
previous locations at one time. To address assignment conflicts, the project lead can
take one or both of the following actions:

■ Allow new assignments to be imported

■ Allow existing assignments to be replaced or updated

When LogicLock region assignment conflicts occur, the project lead may take one of
the following actions:

■ Allow the imported region to replace the existing region

■ Allow the imported region to update the existing region

■ Skip assignment import for regions with conflicts

If the placement of different lower-level design blocks conflict, the project lead can
also set the set the partition’s Fitter Preservation Level to Netlist Only, which allows
the software to re-perform placement and routing with the imported netlist.

Importing a Partition to be Instantiated Multiple Times
In this variation of the design scenario, one of the lower-level design blocks is
instantiated more than once in the top-level design. The designer of the lower-level
design block may want to compile and optimize the entity once under a partition, and
then import the results as multiple partitions in the top-level design.

If you import multiple instances of a lower-level design block into the top-level
design, the imported LogicLock regions are automatically set to Floating status.

If you resolve conflicts manually, you can use the import options and manual
LogicLock assignments to specify the placement of each instance in the top-level
design.
Quartus II Handbook Version 13.1 November 2013 Altera Corporation
Volume 1: Design and Synthesis

Chapter 3: Quartus II Incremental Compilation for Hierarchical and Team-Based Design 3–47
Team-Based Design Optimization and Third-Party IP Delivery Scenarios
Performing Design Iterations With Lower-Level Partitions
Scenario background: A project consists of several lower-level subdesigns that have
been exported from separate Quartus II projects and imported into the top-level
design. In this example, integration at the top level has failed because the timing
requirements are not met. The timing requirements might have been met in each
individual lower-level project, but critical inter-partition paths in the top-level design
are causing timing requirements to fail.

After trying various optimizations in the top-level design, the project lead determines
that the design cannot meet the timing requirements given the current partition
placements that were imported. The project lead decides to pass additional
information to the lower-level partitions to improve the placement.

Use this flow if you re-optimize partitions exported from separate Quartus II projects
by incorporating additional constraints from the integrated top-level design.

The best way to provide top-level design information to designers of lower-level
partitions is to provide the complete top-level project framework using the following
steps:

1. For all partitions other than the one(s) being optimized by a designer(s) in a
separate Quartus II project(s), set the netlist type to Post-Fit.

2. Make the top-level design directory available in a shared source control system, if
possible. Otherwise, copy the entire top-level design project directory (including
database files), or create a project archive including the post-compilation database.

3. Provide each partition designer with a checked-out version or copy of the
top-level design.

4. The partition designers recompile their designs within the new project framework
that includes the rest of the design's placement and routing information as well
top-level resource allocations and assignments, and optimize as needed.

5. When the results are satisfactory and the timing requirements are met, export the
updated partition as a .qxp.

If this design flow is not possible, you can generate partition-specific scripts for
individual designs to provide information about the top-level project framework with
these steps:

1. In the top-level design, on the Project menu, click Generate Design Partition
Scripts, or launch the script generator from Tcl or the command line.

2. If lower-level projects have already been created for each partition, you can turn
off the Create lower-level project if one does not exist option.

3. Make additional changes to the default script options, as necessary. Altera
recommends that you pass all the default constraints, including LogicLock
regions, for all partitions and virtual pin location assignments. Altera also
recommends that you add a maximum delay timing constraint for the virtual I/O
connections in each partition.
November 2013 Altera Corporation Quartus II Handbook Version 13.1
Volume 1: Design and Synthesis

3–48 Chapter 3: Quartus II Incremental Compilation for Hierarchical and Team-Based Design
Creating a Design Floorplan With LogicLock Regions
4. The Quartus II software generates Tcl scripts for all partitions, but in this scenario,
you would focus on the partitions that make up the cross-partition critical paths.
The following assignments are important in the script:

■ Virtual pin assignments for module pins not connected to device I/O ports in
the top-level design.

■ Location constraints for the virtual pins that reflect the initial top-level
placement of the pin’s source or destination. These help make the lower-level
placement “aware” of its surroundings in the top-level design, leading to a
greater chance of timing closure during integration at the top level.

■ INPUT_MAX_DELAY and OUTPUT_MAX_DELAY timing constraints on the paths to and
from the I/O pins of the partition. These constrain the pins to optimize the
timing paths to and from the pins.

5. The partition designers source the file provided by the project lead.

■ To source the Tcl script from the Quartus II GUI, on the Tools menu, click
Utility Windows and open the Tcl console. Navigate to the script’s directory,
and type the following command: source <filename> r

■ To source the Tcl script at the system command prompt, type the following
command: quartus_cdb -t <filename>.tcl r

6. The partition designers recompile their designs with the new project information
or assignments and optimize as needed. When the results are satisfactory and the
timing requirements are met, export the updated partition as a .qxp.

The project lead obtains the updated .qxp files from the partition designers and adds
them to the top-level design. When a new .qxp is added to the files list, the software
will detect the change in the “source file” and use the new .qxp results during the next
compilation. If the project uses the advanced import flow, the project lead must
perform another import of the new .qxp.

You can now analyze the design to determine whether the timing requirements have
been achieved. Because the partitions were compiled with more information about
connectivity at the top level, it is more likely that the inter-partition paths have
improved placement which helps to meet the timing requirements.

Creating a Design Floorplan With LogicLock Regions
A floorplan represents the layout of the physical resources on the device. Creating a
design floorplan, or floorplanning, describe the process of mapping the logical design
hierarchy onto physical regions in the device floorplan. After you have partitioned the
design, you can create floorplan location assignments for the design to improve the
quality of results when using the incremental compilation design flow. Creating a
design floorplan is not a requirement to use an incremental compilation flow, but it is
recommended in certain cases. Floorplan location planning can be important for a
design that uses incremental compilation for the following reasons:

■ To avoid resource conflicts between partitions, predominantly when partitions are
imported from another Quartus II project

■ To ensure a good quality of results when recompiling individual timing-critical
partitions
Quartus II Handbook Version 13.1 November 2013 Altera Corporation
Volume 1: Design and Synthesis

Chapter 3: Quartus II Incremental Compilation for Hierarchical and Team-Based Design 3–49
Creating a Design Floorplan With LogicLock Regions
Design floorplan assignments prevent the situation in which the Fitter must place a
partition in an area of the device where most resources are already used by other
partitions. A physical region assignment provides a reasonable region to re-place logic
after a change, so the Fitter does not have to scatter logic throughout the available
space in the device.

Floorplan assignments are not required for non-critical partitions compiled as part of
the top-level design. The logic for partitions that are not timing-critical (such as
simple top-level glue logic) can be placed anywhere in the device on each
recompilation, if that is best for your design.

The simplest way to create a floorplan for a partitioned design is to create one
LogicLock region per partition (including the top-level partition). If you have a
compilation result for a partitioned design with no LogicLock regions, you can use the
Chip Planner with the Design Partition Planner to view the partition placement in the
device floorplan. You can draw regions in the floorplan that match the general
location and size of the logic in each partition. Or, initially, you can set each region
with the default settings of Auto size and Floating location to allow the Quartus II
software to determine the preliminary size and location for the regions. Then, after
compilation, use the Fitter-determined size and origin location as a starting point for
your design floorplan. Check the quality of results obtained for your floorplan
location assignments and make changes to the regions as needed. Alternatively, you
can perform synthesis, and then set the regions to the required size based on resource
estimates. In this case, use your knowledge of the connections between partitions to
place the regions in the floorplan.

Once you have created an initial floorplan, you can refine the region using tools in the
Quartus II software. You can also use advanced techniques such as creating
non-rectangular regions by merging LogicLock regions.

f For more information about when creating a design floorplan can be important, as
well as guidelines for creating the floorplan, refer to the Best Practices for Incremental
Compilation Partitions and Floorplan Assignments chapter in volume 1 of the Quartus II
Handbook.

You can use the Incremental Compilation Advisor to check that your LogicLock
regions meet Altera’s guidelines, as described in “Incremental Compilation Advisor”
on page 3–24.

Creating and Manipulating LogicLock Regions
Options in the LogicLock Regions Properties dialog box, available from the
Assignments menu, allow you to enter specific sizing and location requirements for a
region. You can also view and refine the size and location of LogicLock regions in the
Quartus II Chip Planner. You can select a region in the graphical interface in the Chip
Planner and use handles to move or resize the region.

Options in the Layer Settings panel in the Chip Planner allow you to create, delete,
and modify tasks to determine which objects, including LogicLock regions and design
partitions, to display in the Chip Planner.
November 2013 Altera Corporation Quartus II Handbook Version 13.1
Volume 1: Design and Synthesis

http://www.altera.com/literature/hb/qts/qts_qii51017.pdf
http://www.altera.com/literature/hb/qts/qts_qii51017.pdf
http://www.altera.com/literature/hb/qts/qts_qii51017.pdf
http://www.altera.com/literature/hb/qts/qts_qii51017.pdf

3–50 Chapter 3: Quartus II Incremental Compilation for Hierarchical and Team-Based Design
Creating a Design Floorplan With LogicLock Regions
h For more information about creating and viewing LogicLock regions in the LogicLock
Regions window and Chip Planner, refer to Creating and Manipulating LogicLock
Regions in Quartus II Help.

Changing Partition Placement with LogicLock Changes
When a partition is assigned to a LogicLock region as part of a design floorplan, you
can modify the placement of a post-fit partition by moving the LogicLock region. As
described in “What Changes Initiate the Automatic Resynthesis of a Partition?” on
page 3–28, most assignment changes do not initiate a recompilation of a partition if
the netlist type specifies that Fitter results should be preserved. For example,
changing a pin assignment does not initiate a recompilation; therefore, the design
does not use the new pin assignment unless you change the netlist type to
Post-Synthesis or Source File.

Similarly, if a partition’s placement is preserved, and the partition is assigned to a
LogicLock region, the Fitter always reuses the corresponding LogicLock region size
specified in the post-fit netlist. That is, changes to the LogicLock Size setting do not
initiate refitting if a partition’s placement is preserved with the Post-Fit netlist type, or
with .qxp that includes post-fit information.

However, you can use the LogicLock Origin location assignment to change or
fine-tune the previous Fitter results. When you change the Origin setting for a region,
the Fitter can move the region in the following manner, depending upon how the
placement is preserved for that region's members:

■ When you set a new region Origin, the Fitter uses the new origin and replaces the
logic, preserving the relative placement of the member logic.

■ When you set the region Origin to Floating, the following conditions apply:

■ If the region’s member placement is preserved with an imported partition, the
Fitter chooses a new Origin and re-places the logic, preserving the relative
placement of the member logic within the region.

■ If the region’s member placement is preserved with a Post-Fit netlist type, the
Fitter does not change the Origin location, and reuses the previous placement
results.

Taking Advantage of the Early Timing Estimator
When creating a floorplan you can take advantage of the Early Timing Estimator to
enable quick compilations of the design while creating assignments. The Early Timing
Estimator feature provides a timing estimate for a design without having to run a full
compilation. You can use the Chip Planner to view the “placement estimate” created
by this feature, identify critical paths by locating from the timing analyzer reports,
and, if necessary, add or modify floorplan constraints. You can then rerun the Early
Timing Estimator to quickly assess the impact of any floorplan location assignments
or logic changes, enabling rapid iterations on design variants to help you find the best
solution. This faster placement has an impact on the quality of results. If getting the
best quality of results is important in a given design iteration, perform a full
compilation with the Fitter instead of using the Early Timing Estimate feature.
Quartus II Handbook Version 13.1 November 2013 Altera Corporation
Volume 1: Design and Synthesis

http://quartushelp.altera.com/current/master.htm#mergedProjects/optimize/lock/flp_pro_def_logiclock_reg.htm
http://quartushelp.altera.com/current/master.htm#mergedProjects/optimize/lock/flp_pro_def_logiclock_reg.htm

Chapter 3: Quartus II Incremental Compilation for Hierarchical and Team-Based Design 3–51
Incremental Compilation Restrictions
Incremental Compilation Restrictions
This section documents the following restrictions and limitations that you may
encounter when using incremental compilation, including interactions with other
Quartus II features:

■ “When Timing Performance May Not Be Preserved Exactly” on page 3–51

■ “When Placement and Routing May Not Be Preserved Exactly” on page 3–51

■ “Using Incremental Compilation With Quartus II Archive Files” on page 3–52

■ “Formal Verification Support” on page 3–52

■ “SignalProbe Pins and Engineering Change Orders” on page 3–52

■ “SignalTap II Logic Analyzer in Exported Partitions” on page 3–53

■ “External Logic Analyzer Interface in Exported Partitions” on page 3–53

■ “Assignments Made in HDL Source Code in Exported Partitions” on page 3–54

■ “Design Partition Script Limitations” on page 3–54

■ “Restrictions on Megafunction Partitions” on page 3–56

■ “Register Packing and Partition Boundaries” on page 3–56

■ “I/O Register Packing” on page 3–56

When Timing Performance May Not Be Preserved Exactly
Timing performance might change slightly in a partition with placement and routing
preserved when other partitions are incorporated or re-placed and routed. Timing
changes are due to changes in parasitic loading or crosstalk introduced by the other
(changed) partitions. These timing changes are very small, typically less than 30 ps on
a timing path. Additional fan-out on routing lines when partitions are added can also
degrade timing performance.

To ensure that a partition continues to meet its timing requirements when other
partitions change, a very small timing margin might be required. The Fitter
automatically works to achieve such margin when compiling any design, so you do
not need to take any action.

When Placement and Routing May Not Be Preserved Exactly
The Fitter may have to refit affected nodes if the two nodes are assigned to the same
location, due to imported netlists or empty partitions set to re-use a previous post-fit
netlist. There are two cases in which routing information cannot be preserved exactly.
First, when multiple partitions are imported, there might be routing conflicts because
two lower-level blocks could be using the same routing wire, even if the floorplan
assignments of the lower-level blocks do not overlap. These routing conflicts are
automatically resolved by the Quartus II Fitter re-routing on the affected nets. Second,
if an imported LogicLock region is moved in the top-level design, the relative
placement of the nodes is preserved but the routing cannot be preserved, because the
routing connectivity is not perfectly uniform throughout a device.
November 2013 Altera Corporation Quartus II Handbook Version 13.1
Volume 1: Design and Synthesis

3–52 Chapter 3: Quartus II Incremental Compilation for Hierarchical and Team-Based Design
Incremental Compilation Restrictions
Using Incremental Compilation With Quartus II Archive Files
The post-synthesis and post-fitting netlist information for each design partition is
stored in the project database, the incremental_db directory. When you archive a
project, the database information is not included in the archive unless you include the
compilation database in the .qar file.

If you want to re-use post-synthesis or post-fitting results, include the database files in
the Archive Project dialog box so compilation results are preserved. Click Advanced,
and choose a file set that includes the compilation database, or turn on Incremental
compilation database files to create a Custom file set.

When you include the database, the file size of the .qar archive file may be
significantly larger than an archive without the database.

The netlist information for imported partitions is already saved in the corresponding
.qxp. Imported .qxp files are automatically saved in a subdirectory called
imported_partitions, so you do not need to archive the project database to keep the
results for imported partitions. When you restore a project archive, the partition is
automatically reimported from the .qxp in this directory if it is available.

For new device families with advanced support, a version-compatible database might
not be available. In this case, the archive will not include the compilation database. If
you require the database files to reproduce the compilation results in the same
Quartus II version, you can use the following command-line option to archive a full
database:

quartus_sh --archive -use_file_set full_db [-revision <revision name>]
<project name>

Formal Verification Support
You cannot use design partitions for incremental compilation if you are creating a
netlist for a formal verification tool.

SignalProbe Pins and Engineering Change Orders
ECO and SignalProbe changes are performed only during ECO and SignalProbe
compilations. Other compilation flows do not preserve these netlist changes.

When incremental compilation is turned on and your design contains one or more
design partitions, partition boundaries are ignored while making ECO changes and
SignalProbe signal settings. However, the presence of ECO and/or SignalProbe
changes does not affect partition boundaries for incremental compilation. During
subsequent compilations, ECO and SignalProbe changes are not preserved regardless
of the Netlist Type or Fitter Preservation Level settings. To recover ECO changes and
SignalProbe signals, you must use the Change Manager to re-apply the ECOs after
compilation.
Quartus II Handbook Version 13.1 November 2013 Altera Corporation
Volume 1: Design and Synthesis

Chapter 3: Quartus II Incremental Compilation for Hierarchical and Team-Based Design 3–53
Incremental Compilation Restrictions
For partitions developed independently in separate Quartus II projects, the exported
netlist includes all currently saved ECO changes and SignalProbe signals. If you make
any ECO or SignalProbe changes that affect the interface to the lower-level partition,
the software issues a warning message during the export process that this netlist does
not work in the top-level design without modifying the top-level HDL code to reflect
the lower-level change. After integrating the .qxp partition into the top-level design,
the ECO changes will not appear in the Change Manager.

f For more information about using the SignalProbe feature to debug your design, refer
to the Quick Design Debugging Using SignalProbe chapter in volume 3 of the Quartus II
Handbook. For more information about using the Chip Planner and the Resource
Property Editor to make ECOs, refer to the Engineering Change Management with the
Chip Planner chapter in volume 2 of the Quartus II Handbook.

SignalTap II Logic Analyzer in Exported Partitions
You can use the SignalTap II Embedded Logic Analyzer in any project that you can
compile and program into an Altera device.

When incremental compilation is turned on, debugging logic is added to your design
incrementally and you can tap post-fitting nodes and modify triggers and
configuration without recompiling the full design. Use the appropriate filter in the
Node Finder to find your node names. Use SignalTap II: post-fitting if the netlist
type is Post-Fit to incrementally tap node names in the post-fit netlist database. Use
SignalTap II: pre-synthesis if the netlist type is Source File to make connections to
the source file (pre-synthesis) node names when you synthesize the partition from the
source code.

If incremental compilation is turned off, the debugging logic is added to the design
during Analysis and Elaboration, and you cannot tap post-fitting nodes or modify
debug settings without fully compiling the design.

For design partitions that are being developed independently in separate Quartus II
projects and contain the logic analyzer, when you export the partition, the Quartus II
software automatically removes the SignalTap II logic analyzer and related SLD_HUB
logic. You can tap any nodes in a Quartus II project, including nodes within .qxp
partitions. Therefore, you can use the logic analyzer within the full top-level design to
tap signals from the .qxp partition.

You can also instantiate the SignalTap II megafunction directly in your lower-level
design (instead of using an .stp file) and export the entire design to the top level to
include the logic analyzer in the top-level design.

f For details about using the SignalTap II logic analyzer in an incremental design flow,
refer to the Design Debugging Using the SignalTap II Embedded Logic Analyzer chapter in
volume 3 of the Quartus II Handbook.

External Logic Analyzer Interface in Exported Partitions
You can use the Logic Analyzer Interface in any project that you can compile and
program into an Altera device. You cannot export a partition that uses the Logic
Analyzer Interface. You must disable the Logic Analyzer Interface feature and
recompile the design before you export the design as a partition.
November 2013 Altera Corporation Quartus II Handbook Version 13.1
Volume 1: Design and Synthesis

http://www.altera.com/literature/hb/qts/qts_qii53008.pdf
http://www.altera.com/literature/hb/qts/qts_qii52017.pdf
http://www.altera.com/literature/hb/qts/qts_qii52017.pdf
http://www.altera.com/literature/hb/qts/qts_qii53009.pdf

3–54 Chapter 3: Quartus II Incremental Compilation for Hierarchical and Team-Based Design
Incremental Compilation Restrictions
f For more information about the Logic Analyzer Interface, refer to the In-System
Debugging Using External Logic Analyzers chapter in volume 3 of the Quartus II
Handbook.

Assignments Made in HDL Source Code in Exported Partitions
Assignments made with I/O primitives or the altera_attribute HDL synthesis
attribute in lower-level partitions are passed to the top-level design, but do not appear
in the top-level .qsf file or Assignment Editor. These assignments are considered part
of the source netlist files. You can override assignments made in these source files by
changing the value with an assignment in the top-level design.

Design Partition Script Limitations
The Quartus II software has some additional limitations related to the design partition
scripts described in “Generating Design Partition Scripts” on page 3–34.

Warnings About Extra Clocks Due to Design Partition Scripts
The generated scripts include applicable clock information for all clock signals in the
top-level design. Some of those clocks may not exist in the lower-level projects, so you
may see warning messages related to clocks that do not exist in the project. You can
ignore these warnings or edit your constraints so the messages are not generated.

Synopsys Design Constraint Files for the TimeQuest Timing Analyzer in
Design Partition Scripts
After you have compiled a design using TimeQuest constraints, and the timing
assignments option is turned on in the scripts, a separate Tcl script is generated to
create an .sdc file for each lower-level project. This script includes only clock
constraints and minimum and maximum delay settings for the TimeQuest Timing
Analyzer.

1 PLL settings and timing exceptions are not passed to lower-level designs in the
scripts. For suggestions on managing SDC constraints between top-level and
lower-level projects, refer to the Best Practices for Incremental Compilation Partitions and
Floorplan Assignments chapter in volume 1 of the Quartus II Handbook.

Wildcard Support in Design Partition Scripts
When applying constraints with wildcards, note that wildcards are not analyzed
across hierarchical boundaries. For example, an assignment could be made to these
nodes: Top|A:inst|B:inst|*, where A and B are lower-level partitions, and hierarchy
B is a child of A, that is B is instantiated in hierarchy A. This assignment is applied to
modules A, B, and all children instances of B. However, the assignment
Top|A:inst|B:inst* is applied to hierarchy A, but is not applied to the B instances
because the single level of hierarchy represented by B:inst* is not expanded into
multiple levels of hierarchy. To avoid this issue, ensure that you apply the wildcard to
the hierarchical boundary if it should represent multiple levels of hierarchy.

When using the wildcard to represent a level of hierarchy, only single wildcards are
supported. This means assignments such as Top|A:inst|*|B:inst|* are not
supported. The Quartus II software issues a warning in these cases.
Quartus II Handbook Version 13.1 November 2013 Altera Corporation
Volume 1: Design and Synthesis

http://www.altera.com/literature/hb/qts/qts_qii51017.pdf
http://www.altera.com/literature/hb/qts/qts_qii51017.pdf
http://www.altera.com/literature/hb/qts/qts_qii53016.pdf
http://www.altera.com/literature/hb/qts/qts_qii53016.pdf

Chapter 3: Quartus II Incremental Compilation for Hierarchical and Team-Based Design 3–55
Incremental Compilation Restrictions
Derived Clocks and PLLs in Design Partition Scripts
If a clock in the top level is not directly connected to a pin of a lower-level partition,
the lower-level partition does not receive assignments and constraints from the
top-level pin in the design partition scripts.

This issue is of particular importance for clock pins that require timing constraints
and clock group settings. Problems can occur if your design uses logic or inversion to
derive a new clock from a clock input pin. Make appropriate timing assignments in
your lower-level Quartus II project to ensure that clocks are not unconstrained.

If the lower-level design uses the top-level project framework from the project lead,
the design will have all the required information about the clock and PLL settings.
Otherwise, if you use a PLL in your top-level design and connect it to lower-level
partitions, the lower-level partitions do not have information about the multiplication
or phase shift factors in the PLL. Make appropriate timing assignments in your
lower-level Quartus II project to ensure that clocks are not unconstrained or
constrained with the incorrect frequency. Alternatively, you can manually duplicate
the top-level derived clock logic or PLL in the lower-level design file to ensure that
you have the correct multiplication or phase-shift factors, compensation delays and
other PLL parameters for complete and accurate timing analysis. Create a design
partition for the rest of the lower-level design logic for export to the top level. When
the lower-level design is complete, export only the partition that contains the relevant
logic.

Pin Assignments for GXB and LVDS Blocks in Design Partition Scripts
Pin assignments for high-speed GXB transceivers and hard LVDS blocks are not
written in the scripts. You must add the pin assignments for these hard IP blocks in
the lower-level projects manually.

Virtual Pin Timing Assignments in Design Partition Scripts
Design partition scripts use INPUT_MAX_DELAY and OUTPUT_MAX_DELAY assignments to
specify inter-partition delays associated with input and output pins, which would not
otherwise be visible to the project. These assignments require that the software specify
the clock domain for the assignment and set this clock domain to ” * ”.

This clock domain assignment means that there may be some paths constrained and
reported by the timing analysis engine that are not required.

To restrict which clock domains are included in these assignments, edit the generated
scripts or change the assignments in your lower-level Quartus II project. In addition,
because there is no known clock associated with the delay assignments, the software
assumes the worst-case skew, which makes the paths seem more timing critical than
they are in the top-level design. To make the paths appear less timing-critical, lower
the delay values from the scripts. If required, enter negative numbers for input and
output delay values.
November 2013 Altera Corporation Quartus II Handbook Version 13.1
Volume 1: Design and Synthesis

3–56 Chapter 3: Quartus II Incremental Compilation for Hierarchical and Team-Based Design
Incremental Compilation Restrictions
Top-Level Ports that Feed Multiple Lower-Level Pins in Design Partition
Scripts
When a single top-level I/O port drives multiple pins on a lower-level module, it
unnecessarily restricts the quality of the synthesis and placement at the lower-level.
This occurs because in the lower-level design, the software must maintain the
hierarchical boundary and cannot use any information about pins being logically
equivalent at the top level. In addition, because I/O constraints are passed from the
top-level pin to each of the children, it is possible to have more pins in the lower level
than at the top level. These pins use top-level I/O constraints and placement options
that might make them impossible to place at the lower level. The software avoids this
situation whenever possible, but it is best to avoid this design practice to avoid these
potential problems. Restructure your design so that the single I/O port feeds the
design partition boundary and the single connection is split into multiple signals
within the lower-level partition.

Restrictions on Megafunction Partitions
The Quartus II software does not support partitions for megafunction instantiations.
If you use the MegaWizard™ Plug-In Manager to customize a megafunction variation,
the MegaWizard-generated wrapper file instantiates the megafunction. You can create
a partition for the MegaWizard-generated megafunction custom variation wrapper
file.

The Quartus II software does not support creating a partition for inferred
megafunctions (that is, where the software infers a megafunction to implement logic
in your design). If you have a module or entity for the logic that is inferred, you can
create a partition for that hierarchy level in the design.

The Quartus II software does not support creating a partition for any Quartus II
internal hierarchy that is dynamically generated during compilation to implement the
contents of a megafunction.

Register Packing and Partition Boundaries
The Quartus II software performs register packing during compilation automatically.
However, when incremental compilation is enabled, logic in different partitions
cannot be packed together because partition boundaries might prevent cross-
boundary optimization. This restriction applies to all types of register packing,
including I/O cells, DSP blocks, sequential logic, and unrelated logic. Similarly, logic
from two partitions cannot be packed into the same ALM.

I/O Register Packing
Cross-partition register packing of I/O registers is allowed in certain cases where
your input and output pins exist in the top-level hierarchy (and the Top partition), but
the corresponding I/O registers exist in other partitions.

The following specific circumstances are required for input pin cross-partition register
packing:

■ The input pin feeds exactly one register.

■ The path between the input pin and register includes only input ports of partitions
that have one fan-out each.
Quartus II Handbook Version 13.1 November 2013 Altera Corporation
Volume 1: Design and Synthesis

Chapter 3: Quartus II Incremental Compilation for Hierarchical and Team-Based Design 3–57
Scripting Support
The following specific circumstances are required for output register cross-partition
register packing:

■ The register feeds exactly one output pin.

■ The output pin is fed by only one signal.

■ The path between the register and output pin includes only output ports of
partitions that have one fan-out each.

Output pins with an output enable signal cannot be packed into the device I/O cell if
the output enable logic is part of a different partition from the output register. To
allow register packing for output pins with an output enable signal, structure your
HDL code or design partition assignments so that the register and tri-state logic are
defined in the same partition.

Bidirectional pins are handled in the same way as output pins with an output enable
signal. If the registers that need to be packed are in the same partition as the tri-state
logic, you can perform register packing.

The restrictions on tri-state logic exist because the I/O atom (device primitive) is
created as part of the partition that contains tri-state logic. If an I/O register and its
tri-state logic are contained in the same partition, the register can always be packed
with tri-state logic into the I/O atom. The same cross-partition register packing
restrictions also apply to I/O atoms for input and output pins. The I/O atom must
feed the I/O pin directly with exactly one signal. The path between the I/O atom and
the I/O pin must include only ports of partitions that have one fan-out each.

f For more information and examples of cross-partition boundary I/O packing, refer to
the Best Practices for Incremental Compilation Partitions and Floorplan Assignments
chapter in volume 1 of the Quartus II Handbook.

Scripting Support
You can run procedures and make settings described in this chapter in a Tcl script or
at a command-line prompt. This section provides scripting examples that cover some
of the topics discussed in this chapter.

Tcl Scripting and Command-Line Examples

h For information about the ::quartus::incremental_compilation Tcl package that
contains a set of functions for manipulating design partitions and settings related to
the incremental compilation feature, refer to ::quartus::incremental_compilation in
Quartus II Help.

f For scripting support information, including design examples and training, refer to
the Quartus II Software Scripting Support page of the Altera website. For detailed Tcl
scripting and command-line information, including design examples, refer to the Tcl
Scripting and Command-Line Scripting chapters in volume 2 of the Quartus II Handbook.

Creating Design Partitions
To create a design partition to a specified hierarchy name, use the following
command:
November 2013 Altera Corporation Quartus II Handbook Version 13.1
Volume 1: Design and Synthesis

http://www.altera.com/literature/hb/qts/qts_qii51017.pdf
http://quartushelp.altera.com/current/master.htm#mergedProjects/tafs/tafs/tcl_pkg_incremental_compilation_ver_1.1.htm
http://www.altera.com/support/software/scripting/sof-qts-scripting.html
http://www.altera.com/literature/hb/qts/qts_qii52003.pdf
http://www.altera.com/literature/hb/qts/qts_qii52003.pdf
http://www.altera.com/literature/hb/qts/qts_qii52002.pdf

3–58 Chapter 3: Quartus II Incremental Compilation for Hierarchical and Team-Based Design
Scripting Support
create_partition [-h | -help] [-long_help] -contents <hierarchy name>
-partition <partition name> r

Enabling or Disabling Design Partition Assignments During Compilation
To direct the Quartus II Compiler to enable or disable design partition assignments
during compilation, use the following command:

set_global_assignment -name IGNORE_PARTITIONS <value> r

Setting the Netlist Type
To set the partition netlist type, use the following command:

set_global_assignment -name PARTITION_NETLIST_TYPE <value> \
-section_id <partition name> r

1 The PARTITION_NETLIST_TYPE command accepts the following values: SOURCE,
POST_SYNTH, POST_FIT, and EMPTY. For descriptions for these values, refer to “Partition
Netlist Type Settings” on page 3–25.

Setting the Fitter Preservation Level for a Post-fit or Imported Netlist
To set the Fitter Preservation Level for a post-fit or imported netlist, use the following
command:

set_global_assignment -name PARTITION_FITTER_PRESERVATION_LEVEL \
<value> -section_id <partition name> r

1 The PARTITION_FITTER_PRESERVATION command accepts the following values:
NETLIST_ONLY, PLACEMENT, and PLACEMENT_AND_ROUTING. For descriptions for these
values, refer to “Fitter Preservation Level Settings” on page 3–27.

Table 3–4. Tcl Script Command: create_partition

Argument Description

-h | -help Short help

-long_help Long help with examples and possible return values

-contents <hierarchy name> Partition contents (hierarchy assigned to Partition)

-partition <partition name> Partition name

Table 3–5. Tcl Script Command: set_global_assignment

Value Description

OFF

The Quartus II software recognizes the design partitions
assignments set in the current Quartus II project and
recompiles the partition in subsequent compilations
depending on their netlist status.

ON

The Quartus II software does not recognize design
partitions assignments set in the current Quartus II project
and performs a compilation without regard to partition
boundaries or netlists.
Quartus II Handbook Version 13.1 November 2013 Altera Corporation
Volume 1: Design and Synthesis

Chapter 3: Quartus II Incremental Compilation for Hierarchical and Team-Based Design 3–59
Scripting Support
Preserving High-Speed Optimization
To preserve high-speed optimization for tiles contained within the selected partition,
use the following command:

set_global_assignment -name PARTITION_PRESERVE_HIGH_SPEED_TILES_ON

Specifying the Software Should Use the Specified Netlist and Ignore Source
File Changes
To specify that the software should use the specified netlist and ignore source file
changes, even if the source file has changed since the netlist was created, use the
following command:

set_global_assignment -name PARTITION_IGNORE_SOURCE_FILE_CHANGES ON
-section_id "<partition name>".

Reducing Opening a Project, Creating Design Partitions, and
Performing an Initial Compilation
Scenario background: You open a project called AB_project, set up two design
partitions, entities A and B, and then perform an initial full compilation.

Example 3–1. AB_project

set project AB_project

load_package incremental_compilation
load_package flow
project_open $project

Ensure that design partition assignments are not ignored
set_global_assignment -name IGNORE_PARTITIONS \ OFF

Set up the partitions
create_partition -contents A -name "Partition_A"
create_partition -contents B -name "Partition_B"

Set the netlist types to post-fit for subsequent
compilations (all partitions are compiled during the
initial compilation since there are no post-fit
netlists)
set_partition -partition "Partition_A" -netlist_type POST_FIT
set_partition -partition "Partition_B" -netlist_type POST_FIT

Run initial compilation:
export_assignments
execute_flow -full_compile

project_close
November 2013 Altera Corporation Quartus II Handbook Version 13.1
Volume 1: Design and Synthesis

3–60 Chapter 3: Quartus II Incremental Compilation for Hierarchical and Team-Based Design
Scripting Support
Optimizing the Placement for a Timing-Critical Partition
Scenario background: You have run the initial compilation shown in the example
script under Example 3–1. You would like to apply Fitter optimizations, such as
physical synthesis, only to partition A. No changes have been made to the HDL files.
To ensure the previous compilation result for partition B is preserved, and to ensure
that Fitter optimizations are applied to the post-synthesis netlist of partition A, set the
netlist type of B to Post-Fit (which was already done in the initial compilation, but is
repeated here for safety), and the netlist type of A to Post-Synthesis, as shown in the
following example:

Generating Design Partition Scripts
To generate design partition scripts, use the following script:

load required package
load_package database_manager

name and open the project
set project <project_path/project_name>
project_open $project

generate the design partiion scripts
generate_bottom_up_scripts <options>

#close project
project_close

h The options map to the same as those in the Quartus II software in the Generate
Design Partition Scripts dialog box. For detailed information about each option, refer
to Generate Design Partition Scripts Dialog Box in Quartus II Help.

Example 3–2. AB_project (2)

set project AB_project

load_package flow
load_package incremental_compilation
load_package project
project_open $project

Turn on Physical Synthesis Optimization
set_high_effort_fmax_optimization_assignments

For A, set the netlist type to post-synthesis
set_partition -partition "Partition_A" -netlist_type POST_SYNTH

For B, set the netlist type to post-fit
set_partition -partition "Partition_B" -netlist_type POST_FIT

Also set Top to post-fit
set_partition -partition "Top" -netlist_type POST_FIT

Run incremental compilation:
export_assignments
execute_flow -full_compile

project_close
Quartus II Handbook Version 13.1 November 2013 Altera Corporation
Volume 1: Design and Synthesis

http://quartushelp.altera.com/current/master.htm#mergedProjects/comp/increment/comp_db_generate_bottom-up_scripts.htm

Chapter 3: Quartus II Incremental Compilation for Hierarchical and Team-Based Design 3–61
Conclusion
Exporting a Partition
To open a project and load the::quartus::incremental_compilation package before
you use the Tcl commands to export a partition to a .qxp that contains both a post-
synthesis and post-fit netlist, with routing, use the following script:

load required package
load_package incremental_compilation

open project
project_open <project name>

export partition to the .qxp and set preservation level
export_partition -partition <partition name>
-qxp <.qxp file name> -<options>

#close project
project_close

Importing a Partition into the Top-Level Design
To import a .qxp into a top-level design, use the following script:

load required packages
load_package incremental_compilation
load_package project
load_package flow

open project
project_open <project name>

#import partition
import_partition -partition <partition name> -qxp <.qxp file> <-options>

#close project
project_close

Makefiles
For an example of how to use incremental compilation with a makefile as part of the
team-based incremental compilation design flow, refer to the read_me.txt file
that accompanies the incr_comp example located in the
/qdesigns/incr_comp_makefile subdirectory.

h When using a team-based incremental compilation design flow, the Generate Design
Partition Scripts dialog box can write makefiles that automatically export lower-level
design partitions and import them into the top-level design whenever design files
change. For more information about the Generate Design Partition Scripts dialog
box, refer to Generate Design Partition Scripts Dialog Box in Quartus II Help.

Conclusion
With the Quartus II incremental compilation feature described in this chapter, you can
preserve the results and performance of unchanged logic in your design as you make
changes elsewhere. The various applications of incremental compilation enable you to
improve your productivity while designing for high-density FPGAs.
November 2013 Altera Corporation Quartus II Handbook Version 13.1
Volume 1: Design and Synthesis

http://quartushelp.altera.com/current/master.htm#mergedProjects/comp/increment/comp_db_generate_bottom-up_scripts.htm

3–62 Chapter 3: Quartus II Incremental Compilation for Hierarchical and Team-Based Design
Document Revision History
Document Revision History
Table 3–6 shows the revision history for this document.

Table 3–6. Document Revision History (Part 1 of 2)

Date Version Changes

November 2013 13.1.0
Removed HardCopy device information. Revised information about Rapid Recompile. Added
information about functional safety. Added information about flattening sub-partition
hierarchies.

November 2012 12.1.0 Added “Turning On Supported Cross-boundary Optimizations” on page 3–21.

June 2012 12.0.0 Removed survey link.

November 2011 11.0.1 Template update.

May 2011 11.0.0 ■ Updated “Tcl Scripting and Command-Line Examples”.

December 2010 10.1.0

■ Changed to new document template.

■ Reorganized Tcl scripting section. Added description for new feature: Ignore partitions
assignments during compilation option.

■ Reorganized “Incremental Compilation Summary” section.

July 2010 10.0.0

■ Removed the explanation of the “bottom-up design flow” where designers work
completely independently, and replaced with Altera’s recommendations for team-based
environments where partitions are developed in the same top-level project framework,
plus an explanation of the bottom-up process for including independent partitions from
third-party IP designers.

■ Expanded the Merge command explanation to explain how it now accommodates cross-
partition boundary optimizations.

■ Restructured Altera recommendations for when to use a floorplan.

■ Added “Viewing the Contents of a Quartus II Exported Partition File (.qxp)” section.

■ Reorganized chapter to make design flow scenarios more visible; integrated into various
sections rather than at the end of the chapter.

October 2009 9.1.0

■ Redefined the bottom-up design flow as team-based and reorganized previous design
flow examples to include steps on how to pass top-level design information to lower-level
designers.

■ Moved SDC Constraints from Lower-Level Partitions section to the Best Practices for
Incremental Compilation Partitions and Floorplan Assignments chapter in volume 1 of the
Quartus II Handbook.

■ Reorganized the “Conclusion” section.

■ Removed HardCopy APEX and HardCopy Stratix Devices section.
Quartus II Handbook Version 13.1 November 2013 Altera Corporation
Volume 1: Design and Synthesis

4Design Planning for Partial Reconfiguration

2013.11.04

QII51026 Subscribe Send Feedback

The Partial Reconfiguration (PR) feature in the Quartus II software allows you to reconfigure a portion of
the FPGA dynamically, while the remainder of the device continues to operate. The Quartus II software
supports the PR feature for the Altera® Stratix® V device family.

This chapter assumes a basic knowledge of Altera’s FPGA design flow, incremental compilation, and
LogicLock™ region features available in the Quartus II software. It also assumes knowledge of the internal
FPGA resources such as logic array blocks (LABs), memory logic array blocks (MLABs), memory types
(RAM and ROM), DSP blocks, clock networks.

For assistance with support for partial reconfiguration with the Arria® V or Cyclone® V device
families, file a service request at mySupport using the link below.

Note:

Related Information

• mySupport

• Terminology on page 4-1

• An Example of a Partial Reconfiguration Design on page 4-4

• Partial Reconfiguration Design Flow on page 4-6

• Implementation Details for Partial Reconfiguration on page 4-19

• Partial Reconfiguration with an External Host on page 4-25

• Partial Reconfiguration with an Internal Host on page 4-27

• Partial Reconfiguration Project Management on page 4-28

• Programming Files for a Partial Reconfiguration Project on page 4-30

• Partial Reconfiguration Known Limitations on page 4-35

Terminology
The following terms are commonly used in this chapter.

project: A Quartus II project contains the design files, settings, and constraints files required for the
compilation of your design.

ISO
9001:2008
Registered

© 2013 Altera Corporation. All rights reserved. ALTERA, ARRIA, CYCLONE, HARDCOPY, MAX, MEGACORE, NIOS, QUARTUS and STRATIX words
and logos are trademarks of Altera Corporation and registered in the U.S. Patent and Trademark Office and in other countries. All other
words and logos identified as trademarks or service marks are the property of their respective holders as described at
www.altera.com/common/legal.html. Altera warrants performance of its semiconductor products to current specifications in accordance with
Altera's standard warranty, but reserves the right to make changes to any products and services at any time without notice. Altera assumes
no responsibility or liability arising out of the application or use of any information, product, or service described herein except as expressly
agreed to in writing by Altera. Altera customers are advised to obtain the latest version of device specifications before relying on any published
information and before placing orders for products or services.

www.altera.com

101 Innovation Drive, San Jose, CA 95134

https://www.altera.com/servlets/subscriptions/alert?id=QII51026
mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20(QII51026%202013.11.04)%20Design%20Planning%20for%20Partial%20Reconfiguration&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.
http://www.altera.com/mysupport
http://www.altera.com/support/devices/reliability/certifications/rel-certifications.html
http://www.altera.com/support/devices/reliability/certifications/rel-certifications.html
http://www.altera.com/support/devices/reliability/certifications/rel-certifications.html

revision: In the Quartus II software, a revision is a set of assignments and settings for one version of your
design. A Quartus II project can have several revisions, and each revision has its own set of assignments and
settings. A revision helps you to organize several versions of your design into a single project.

incremental compilation: This is a feature of the Quartus II software that allows you to preserve results of
previous compilations of unchanged parts of the design, while changing the implementation of the parts of
your design that you have modified since your previous compilation of the project. The key benefits include
timing preservation and compile time reduction by only compiling the logic that has changed.

partition: You can partition your design along logical hierarchical boundaries. Each design partition is
independently synthesized and then merged into a complete netlist for further stages of compilation. With
the Quartus II incremental compilation flow, you can preserve results of unchanged partitions at specific
preservation levels. For example, you can set the preservation levels at post-synthesis or post-fit, for iterative
compilations in which some part of the design is changed. A partition is only a logical partition of the design,
and does not necessarily refer to a physical location on the device. However, you may associate a partition
with a specific area of the FPGA by using a floorplan assignment.

For more information on design partitions, refer to the Best Practices for Incremental Compilation Partitions
andFloorplan Assignments chapter in the Quartus II Handbook.

LogicLock region: A LogicLock region constrains the placement of logic in your design. You can associate
a design partition with a LogicLock region to constrain the placement of the logic in the partition to a specific
physical area of the FPGA.

For more information about LogicLock regions, refer to the Analyzing and Optimizing the Design Floorplan
with the Chip Planner chapter in the Quartus II Handbook.

PR project: Any Quartus II design project that uses the PR feature.

PR region: A design partition with an associated contiguous LogicLock region in a PR project. A PR project
can have one or more PR regions that can be partially reconfigured independently. A PR region may also
be referred to as a PR partition.

static region: The region outside of all the PR regions in a PR project that cannot be reprogrammed with
partial reconfiguration (unless you reprogram the entire FPGA). This region is called the static region, or
fixed region.

persona: A PR region has multiple implementations. Each implementation is called a persona. PR regions
can have multiple personas. In contrast, static regions have a single implementation or persona.

PR control block: Dedicated block in the FPGA that processes the PR requests, handshake protocols, and
verifies the CRC.

Related Information

• Best Practices for Incremental Compilation Partitions and Floorplan Assignments

• Analyzing and Optimizing the Design Floorplan with the Chip Planner

Determining Resources for Partial Reconfiguration
You can use partial reconfiguration to configure only the resources such as LABs, embedded memory blocks,
and DSP blocks in the FPGA core fabric that are controlled by configuration RAM (CRAM).

Design Planning for Partial ReconfigurationAltera Corporation

Send Feedback

QII51026
Determining Resources for Partial Reconfiguration4-2 2013.11.04

http://www.altera.com/literature/hb/qts/qts_qii51017.pdf
http://www.altera.com/literature/hb/qts/qts_qii52006.pdf
mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Design%20Planning%20for%20Partial%20Reconfiguration%20(QII51026%202013.11.04)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

The functions in the periphery, such as GPIOs or I/O Registers, are controlled by I/O configuration bits and
therefore cannot be partially reconfigured. Clock multiplexers for GCLK and QCLK are also not partially
reconfigurable because they are controlled by I/O periphery bits.

Figure 4-1: Partially Reconfigurable Resources

These are the types of resource blocks in a Stratix V device.

I/O, I/O Registers & Part-Hard Memory PHY

Transceivers,
PCIe HIP

I/O, I/O Registers & Part-Hard Memory PHY

Transceivers,
PCIe HIP

Core
Fabric

PLL
CLK

PLL
CLK

Periphery Core Fabric

Table 4-1: Reconfiguration Modes of the FPGA Resource Block

The following table describes the reconfiguration type supported by each FPGA resource block, which are shown in
the figure.

Reconfiguration ModeHardware Resource Block

Partial ReconfigurationLogic Block

Partial ReconfigurationDigital Signal Processing

Partial ReconfigurationMemory Block

Dynamic Reconfiguration ALTGX_ReconfigTransceivers

Dynamic Reconfiguration ALTGX_ReconfigPLL

Partial ReconfigurationCore Routing

Clock network sources cannot be changed, but a PLL
driving a clock network can be dynamically reconfig-
ured

Clock Networks

Not supportedI/O Blocks and Other Periphery

Altera CorporationDesign Planning for Partial Reconfiguration

Send Feedback

4-3Determining Resources for Partial Reconfiguration
QII51026
2013.11.04

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Design%20Planning%20for%20Partial%20Reconfiguration%20(QII51026%202013.11.04)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

The transceivers and PLLs in Altera FPGAs can be reconfigured using dynamic reconfiguration. For more
information on dynamic reconfiguration, refer to the Dynamic Reconfiguration in Stratix V Devices chapter
in the Stratix V Handbook.

Related Information
Dynamic Reconfiguration in Stratix V Devices

An Example of a Partial Reconfiguration Design
A PR design is divided into two parts. The static region where the design logic does not change, and one or
more PR regions.

Each PR region can have different design personas, that change with partial reconfiguration.

PR Region A has three personas associated with it; A1, A2, and A3. PR Region B has two personas; B1 and
B2. Each persona for the two PR regions can implement different application specific logic, and using partial
reconfiguration, the persona for each PR region can be modified without interrupting the operation of the
device in the static or other PR region.

When a region can access more than one persona, you must create control logic to swap between personas
for a PR region.

Figure 4-2: Partial Reconfiguration Project Structure

The following figure shows the top-level of a PR design, which includes a static region and two PR regions.

Chip_top

PR Region A

PR Region B

PR Module A1

PR Module A2

PR Module A3

PR Module B1

PR Module B2

Static
Region

Partial Reconfiguration Modes
When you implement a design on an Altera FPGA device, your design implementation is controlled by bits
stored in CRAM inside the FPGA.

You can use partial reconfiguration in the SCRUB mode or the AND/OR mode. The mode you select affects
your PR flow in ways detailed later in this chapter.

TheCRAMbits control individual LABs,MLABs,M20Kmemory blocks,DSPblocks, and routingmultiplexers
in a design. The CRAM bits are organized into a frame structure representing vertical areas that correspond
to specific locations on the FPGA. If you change a design and reconfigure the FPGA in a non-PR flow, the
process reloads all the CRAM bits to a new functionality.

Configuration bitstreams used in a non-PR flow are different than those used in a PR flow. In addition to
standard data and CRC check bits, configuration bitstreams for partial reconfiguration also include
instructions that direct the PR control block to process the data for partial reconfiguration.

Design Planning for Partial ReconfigurationAltera Corporation

Send Feedback

QII51026
An Example of a Partial Reconfiguration Design4-4 2013.11.04

http://www.altera.com/literature/hb/stratix-v/stx5_52008.pdf
mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Design%20Planning%20for%20Partial%20Reconfiguration%20(QII51026%202013.11.04)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

The configuration bitstream written into the CRAM is organized into configuration frames. If a LAB column
passes through multiple PR regions, those regions share some programming frames.

SCRUB Mode
In the SCRUB mode, the unchanging CRAM bits from the static region are "scrubbed" back to their original
values. They are neither erased nor reset.

The static regions controlled by the CRAMbits from the same programming frame as the PR region continue
to operate. All the CRAM bits corresponding to a PR region are overwritten with new data, regardless of
what was previously contained in the region.

The SCRUB mode of partial reconfiguration involves re-writing all the bits in an entire LAB column of the
CRAM, including bits controlling any PR regions above or below the region being reconfigured. As a result,
it is not currently possible to correctly determine the bits associated with a PR region above or below the
region being reconfigured, because those bits could have already been reconfigured and changed to an
unknown value. This restriction does not apply to static bits above or below the PR region, since those bits
never change and you can rewrite them with the same value as the current state of the configuration bit. You
cannot use the SCRUB mode when two PR regions have a vertically overlapping column in the device.

The advantage of using the SCRUBmode is that the programming file size ismuch smaller than theAND/OR
mode.

Figure 4-3: SCRUB Mode

This is the floorplan of a FPGA using SCRUB mode, with two PR regions, whose columns do not overlap.

PR1
Region

Programming Frame(s)
(No Vertical Overlap)

PR2
Region

AND/OR Mode
TheAND/ORmode refers to how the bits are rewritten. Partial reconfigurationwithAND/ORuses a two-pass
method.

Simplistically, this can be compared to bits beingANDedwith aMASK, andORedwith new values, allowing
multiple PR regions to vertically overlap a single column. In the first pass, all the bits in the CRAM frame
for a column passing through a PR region are ANDed with 0's while those outside the PR region are ANDed
with 1's. After the first pass, all the CRAM bits corresponding to the PR region are reset without modifying
the static region. In the second pass for each CRAM frame, new data is ORed with the current value of 0
inside the PR region, and in the static region, the bits are ORed with 0's so they remain unchanged. The
programming file size of a PR region using the AND/OR mode could be twice the programming file size of
the same PR region using SCRUB mode.

Altera CorporationDesign Planning for Partial Reconfiguration

Send Feedback

4-5SCRUB Mode
QII51026
2013.11.04

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Design%20Planning%20for%20Partial%20Reconfiguration%20(QII51026%202013.11.04)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Figure 4-4: AND/OR Mode

This is the floorplan of a FPGA using AND/OR mode, with two PR regions, with columns that overlap.

PR1
Region

Programming Frame(s)
(Vertical Overlap)

PR2
Region

If you have overlapping PR regions in your design, you must use AND/OR mode to program all PR
regions, including PR regions with no overlap. The Quartus II software will not permit the use of

Note:

SCRUB mode when there are overlapping regions. If none of your regions overlap, you can use
AND/OR, SCRUB, or a mixture of both.

Programming File Sizes for a Partial Reconfiguration Project
The programming file size for a partial reconfiguration is proportional to the area of the PR region.

The programming file size for a partial reconfiguration is proportional to the area of the PR region. A partial
reconfiguration programming bitstream for AND/OR mode makes two passes on the PR region; the first
pass clears all relevant bits, and the second pass sets the necessary bits. Due to this two-pass sequence, the
size of a partial bitstream can be larger than a full FPGA programming bitstream depending on the size of
the PR region.

When using the AND/OR mode for partial reconfiguration, the formula which describes the approximate
file size within ten percent is:

PR bitstream size = ((Size of region in the horizontal direction) /(full
horizontal dimension of the part)) * 2 * (size of full bitstream)

The way the Fitter reserves routing for partial reconfiguration increases the effective size for small PR regions
from a bitstream perspective. PR bitstream sizes in designs with a single small PR region will not match the
file size computed by this equation.

The PR bitstream size is approximately half of the size computed above when using SCRUB mode.Note:

Partial Reconfiguration Design Flow
The primary building block of partial reconfiguration is the revision. Your initial design is the base revision,
where you define the boundaries of the static region and reconfigurable regions on the FPGA. From the base
revision, you create multiple revisions, which contain the static region and describe the differences in the
reconfigurable regions.

Design Planning for Partial ReconfigurationAltera Corporation

Send Feedback

QII51026
Programming File Sizes for a Partial Reconfiguration Project4-6 2013.11.04

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Design%20Planning%20for%20Partial%20Reconfiguration%20(QII51026%202013.11.04)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Two types of revisions are specific to partial reconfiguration: reconfigurable and aggregate. Both import the
persona for the static region from the base revision. A reconfigurable revision generates personas for PR
regions. An aggregate revision is used to combine personas from multiple reconfigurable revisions to create
a complete design suitable for timing analysis.

The design flow for partial reconfiguration also utilizes the Quartus II incremental compilation flow. To
take advantage of incremental compilation for partial reconfiguration, you must organize your design into
logical and physical partitions for synthesis and fitting. For the PR flow, these partitions are treated as PR
regions that must also have associated LogicLock assignments.

Revisions make use of personas, which are subsidiary archives describing the characteristics of both static
and reconfigurable regions, that contain unique logic which implements a specific set of functions to
reconfigure a PR region of the FPGA. Partial reconfiguration uses personas to pass this logic from one
revision to another.

Figure 4-5: Partial Reconfiguration Design Flow

Plan Your System for Partial
Reconfiguration

Identify the Design Blocks Designated
to be Partially Reconfigured

Code the Design Using HDL

Develop the Personas for the
Partial Blocks

Simulate the Design Functionality

Functionality is
Verified?

yesno

Designate All Partial Block(s) as Design
Partition(s) for the Use with Incremental Compilation

Assign All PR Partition(s) to
LogicLock Regions

Create Revisions and
Compile the Design
for Each Revision

yes

no

Generate
Configuration Files

Debug the Timing Failure
& Revise the Appropriate Step

Program the Device

Is Timing Met
for Each Revision?

The PR design flow requires more initial planning than a standard design flow. Planning requires setting
up the design logic for partitioning, and determining placement assignments to create a floorplan. Well-
planned partitions can help improve design area utilization and performance, and make timing closure
easier. You should also decide whether your system requires partial reconfiguration to originate from the
FPGA pins or internally, and which mode you are using; the AND/OR mode or the SCRUB mode, because
this influences some of the planning steps described in this section.

You must structure your source code or design hierarchy to ensure that logic is grouped correctly for
optimization. Implementing the correct logic grouping early in the design cycle is more efficient than
restructuring the code later. The PR flow requires you to be more rigorous about following good design

Altera CorporationDesign Planning for Partial Reconfiguration

Send Feedback

4-7Partial Reconfiguration Design Flow
QII51026
2013.11.04

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Design%20Planning%20for%20Partial%20Reconfiguration%20(QII51026%202013.11.04)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

practices. The guidelines for creating partitions for incremental compilation also include creating partitions
for partial reconfiguration.

Use the following best practice guidelines for designing in the PR flow, which are described in detail in this
section:

• Determining resources for partial reconfiguration
• Partitioning the design for partial reconfiguration
• Creating incremental compilation partitions for partial reconfiguration
• Instantiating the PR controller in the design
• Creating wrapper logic for PR regions
• Creating freeze logic for PR regions
• Planning clocks and other global signals for the PR design
• Creating floorplan assignments for the PR design

Design Partitions for Partial Reconfiguration
You must create design partitions for each PR region that you want to partially reconfigure. Optionally, you
can also create partitions for the static parts of the design for timing preservation and/or for reducing
compilation time.

There is no limit on the number of independent partitions or PR regions you can create in your design. You
can designate any partition as a PR partition by enabling that feature in the LogicLock Regions window in
the Quartus II software.

Incremental Compilation Partitions for Partial Reconfiguration
Use the following best practices guidelines when creating partitions for PR regions in your design:

• Register all partition boundaries; register all inputs and outputs of each partition when possible. This
practice prevents any delay penalties on signals that cross partition boundaries and keeps each register-
to-register timing path within one partition for optimization.

• Minimize the number of paths that cross partition boundaries.
• Minimize the timing-critical paths passing in or out of PR regions. If there are timing-critical paths that

cross PR region boundaries, rework the PR regions to avoid these paths.
• The Quartus II software can optimize some types of paths between design partitions for non-PR designs.

However, for PR designs, such inter-partition paths are strictly not optimized.

For more information about incremental compilation, refer to the following chapter in the Quartus II
Handbook.

Related Information
Quartus II Incremental Compilation for Hierarchical and Team-Based Design

Partial Reconfiguration Controller Instantiation in the Design
You must instantiate the Stratix V PR control block and the Stratix V CRC block in your design in order to
use the PR feature in Stratix V devices. You may find that adding the PR control block and CRC block at
the top level of the design offers the most convenience.

For example, in a design named Core_Top, all the logic is contained under the Core_Top module hierarchy.
Create a wrapper (Chip_Top) at the top-level of the hierarchy that instantiates this Core_Top module, the
Stratix V PR control block, and the Stratix V CRC check modules.

Design Planning for Partial ReconfigurationAltera Corporation

Send Feedback

QII51026
Design Partitions for Partial Reconfiguration4-8 2013.11.04

http://www.altera.com/literature/hb/qts/qts_qii51015.pdf
mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Design%20Planning%20for%20Partial%20Reconfiguration%20(QII51026%202013.11.04)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

If you are performing partial reconfiguration from pins, then the required pins should be on the I/O list for
the top-level (Chip_Top) of the project, as shown in the code in the following examples. If you are performing
partial reconfiguration from within the core, you may choose another configuration scheme, such as Active
Serial, to transmit the reconfiguration data into the core, and then assemble it to 16-bit wide data inside the
FPGA within your logic. In such cases, the PR pins are not part of the FPGA I/O.

Verilog HDL does not require a component declaration. You can instantiate the PR control block
as shown in the following example.

Note:

Component Declaration of the PR Control Block and CRC Block in VHDL
This code sample has the component declaration in VHDL, showing the ports of the Stratix V PR control
block and the Stratix V CRC block. In the following example, the PR function is performed from within the
core (code located in Core_Top) and you must add additional ports to Core_Top to connect to both
components.

-- The Stratix V control block interface

component stratixv_prblock is
 port(
 corectl: in STD_LOGIC ;
 prrequest: in STD_LOGIC ;
 data: in STD_LOGIC_VECTOR(15 downto 0);
 error: out STD_LOGIC ;
 ready: out STD_LOGIC ;
 done: out STD_LOGIC
) ;
end component ;

-- The Stratix V CRC block for diagnosing CRC errors

component stratixv_crcblock is
port(
 shiftnld: in STD_LOGIC ;
 clk: in STD_LOGIC ;
 crcerror: out STD_LOGIC
) ;
end component ;

The following rules apply when connecting the PR control block to the rest of your design:

• The corectl signal must be set to ‘1’ (when using partial reconfiguration from core) or to ‘0’ (when
using partial reconfiguration from pins).

• The corectl signal has to match the Enable PR pins option setting in the Device and Pin Options
dialog box on the Setting page; if you have turned on Enable PR pins, then the corectl signal on the
PR control block instantiation must be toggled to ‘0’.

• When performing partial reconfiguration from pins the Quartus II software automatically assigns the
PR unassigned pins. If you so choose, you can make pin assignments to all the dedicated PR pins in Pin
Planner or Assignment Editor.

• When performing partial reconfiguration from core, you can connect the prblock signals to either
core logic or I/O pins, excluding the dedicated programming pin such as DCLK.

Altera CorporationDesign Planning for Partial Reconfiguration

Send Feedback

4-9Component Declaration of the PR Control Block and CRC Block in VHDL
QII51026
2013.11.04

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Design%20Planning%20for%20Partial%20Reconfiguration%20(QII51026%202013.11.04)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Instantiating the PR Control Block and CRC Block in VHDL
This code example instantiates a PR control block in VHDL, inside your top-level project, Chip_Top:

module Chip_Top (
//User I/O signals (excluding PR related signals)
..
..
//PR interface & configuration signals
 pr_request,
 pr_ready,
 pr_done,
 crc_error,
 dclk,
 pr_data,
 init_done
);
//user I/O signal declaration
..
..
//PR interface and configuration signals declaration
input pr_request;
output pr_ready;
output pr_done;
output crc_error;
input dclk;
input [15:0] pr_data;
output init_done

// Following shows the connectivity within the Chip_Top module
Core_Top : Core_Top
port_map (
 ..
 ..
);

m_pr : stratixv_prblock
port map(
clk => dclk,
corectl => '0', //1 - when using PR from inside
 //0 - for PR from pins; You must also enable
 // the appropriate option in Quartus II settings
prrequest => pr_request,
data => pr_data,
error => pr_error,
ready => pr_ready,
done => pr_done
);
m_crc : stratixv_crcblock
port map(
 shiftnld=> '1', //If you want to read the EMR register when
 clk=> dummy_clk, //error occurrs, refer to AN539 for the
 //connectivity forthis signal. If you only want
 //to detect CRC errors, but plan to take no
 //further action, you can tie the shiftnld

Design Planning for Partial ReconfigurationAltera Corporation

Send Feedback

QII51026
Instantiating the PR Control Block and CRC Block in VHDL4-10 2013.11.04

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Design%20Planning%20for%20Partial%20Reconfiguration%20(QII51026%202013.11.04)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

 //signal to logical high.
crcerror => crc_error
);

For more information on port connectivity for reading the Error Message Register (EMR), refer to the
following application note.

Related Information
AN539: Test Methodology of Error Detection and Recovery using CRC in Altera FPGA Devices

Instantiating the PR Control Block and CRC Block in Verilog HDL
The following example instantiates a PR control block in Verlilog HDL, inside your top-level project,
Chip_Top:

 module Chip_Top (
//User I/O signals (excluding PR related signals)
..
..
//PR interface & configuration signals
 pr_request,
 pr_ready,
 pr_done,
 crc_error,
 dclk,
 pr_data,
 init_done
);
//user I/O signal declaration
..
..
//PR interface and configuration signals declaration
 input pr_request;
 output pr_ready;
 output pr_done;
 output crc_error;
 input dclk;
 input [15:0] pr_data;
 output init_done

// Following shows the connectivity within the Chip_Top module
Core_Top : Core_Top
port_map (
 ..
 ..
);

m_pr : stratixv_prblock
 //set corectl to '1' when using PR from inside
 //set corectl to '0' for PR from pins. You must also enable
 // the appropriate option in Quartus II settings.
port map(
 clk => dclk,

Altera CorporationDesign Planning for Partial Reconfiguration

Send Feedback

4-11Instantiating the PR Control Block and CRC Block in Verilog HDL
QII51026
2013.11.04

http://www.altera.com/literature/an/an539.pdf
mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Design%20Planning%20for%20Partial%20Reconfiguration%20(QII51026%202013.11.04)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

 corectl=> '0',
 prrequest=> pr_request,
 data=> pr_data,
 error=> pr_error,
 ready=> pr_ready,
 done=> pr_done
);

m_crc : stratixv_crcblock
 //If you want to read the EMR register when an error occurrs, refer
 to AN539 for the
 //connectivity forthis signal. If you only want to detect CRC errors,
 but plan to take no
 //further action, you can tie the shiftnld signal to logical high.
port map(
 shiftnld=> '1',
 clk=> dummy_clk,
 crcerror=> crc_error
);

For more information on port connectivity for reading the Error Message Register (EMR), refer to the
following application note.

Related Information
AN539: Test Methodology of Error Detection and Recovery using CRC in Altera FPGA Devices

Wrapper Logic for PR Regions
Each persona of a PR region must implement the same input and output boundary ports. These ports act
as the boundary between static and reconfigurable logic.

Implementing the same boundary ports ensures that all ports of a PR region remain stationary regardless
of the underlying persona, so that the routing from the static logic does not changewith different PR persona
implementations.

Figure 4-6: Wire-LUTs at PR Region Boundary

The Quartus II software automatically instantiates a wire-LUT for each port of the PR region to lock down
the same location for all instances of the PR persona.

Partial 1 Static Region

If one persona of your PR region has a different number of ports than others, then youmust create a wrapper
so that the static region always communicates with this wrapper. In this wrapper, you can create dummy
ports to ensure that all of the PR personas of a PR region have the same connection to the static region.

Design Planning for Partial ReconfigurationAltera Corporation

Send Feedback

QII51026
Wrapper Logic for PR Regions4-12 2013.11.04

http://www.altera.com/literature/an/an539.pdf
mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Design%20Planning%20for%20Partial%20Reconfiguration%20(QII51026%202013.11.04)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

The sample code below each create two personas; persona_1 and persona_2 are different functions of
one PR region.Note that one persona has a fewdummyports. The first example creates partial reconfiguration
wrapper logic in Verilog HDL:

// Partial Reconfiguration Wrapper in Verilog HDL
module persona_1
(
 input reset,
 input [2:0] a,
 input [2:0] b,
 input [2:0] c,
 output [3:0] p,
 output [7:0] q
);
 reg [3:0] p, q;
 always@(a or b) begin
 p = a + b ;
end

always@(a or b or c or p)begin
 q = (p*a - b*c)
end
endmodule

module persona_2
(
 input reset,
 input [2:0] a,
 input [2:0] b,
 input [2:0] c, //never used in this persona
 output [3:0] p,
 output [7:0] q //never assigned in this persona
);
 reg [3:0] p, q;
 always@(a or b) begin
 p = a * b;
// note q is not assigned value in this persona
end
endmodule

The following example creates partial reconfiguration wrapper logic in VHDL.

-- Partial Reconfiguration Wrapper in VHDL
entity persona_1 is
 port(a:in STD_LOGIC_VECTOR (2 downto 0);
 b:in STD_LOGIC_VECTOR (2 downto 0);
 c:in STD_LOGIC_VECTOR (2 downto 0);
 p: out STD_LOGIC_VECTOR (3 downto 0);
 q: out STD_LOGIC_VECTOR (7 downto 0));
end persona_1;

architecture synth of persona_1 is
 begin
 process(a,b)

Altera CorporationDesign Planning for Partial Reconfiguration

Send Feedback

4-13Wrapper Logic for PR Regions
QII51026
2013.11.04

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Design%20Planning%20for%20Partial%20Reconfiguration%20(QII51026%202013.11.04)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

 begin
 p <= a + b;
 end process;

 process (a, b, c, p)
 begin
 q <= (p*a - b*c);
 end process;
end synth;

entity persona_2 is
 port(a:in STD_LOGIC_VECTOR (2 downto 0);
 b:in STD_LOGIC_VECTOR (2 downto 0);
 c:in STD_LOGIC_VECTOR (2 downto 0); --never used in this persona

 p:out STD_LOGIC_VECTOR (3 downto 0);
 q:out STD_LOGIC_VECTOR (7 downto 0)); --never used in this persona

end persona_2;

architecture synth of persona_2 is
 begin
 process(a, b)
 begin
 p <= a *b; --note q is not assigned a value in this persona
 end process;
end synth;

Freeze Logic for PR Regions
When you use partial reconfiguration, you must freeze all non-global inputs of a PR region except global
clocks. Locally routed signals are not considered global signals, and must also be frozen during partial
reconfiguration. Freezing refers to driving a '1' on those PR region inputs. When you start a partial
reconfiguration process, the chip is in user mode, with the device still running.

Freezing all non-global inputs for the PR region ensures there is no contention between current values that
may result in unexpected behavior of the design after partial reconfiguration is complete. Global signals
going into the PR region should not be frozen to high. The Quartus II software freezes the outputs from the
PR region; therefore the logic outside of the PR region is not affected.

Design Planning for Partial ReconfigurationAltera Corporation

Send Feedback

QII51026
Freeze Logic for PR Regions4-14 2013.11.04

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Design%20Planning%20for%20Partial%20Reconfiguration%20(QII51026%202013.11.04)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Figure 4-7: Freezing at PR Region Boundary

PR Region

Data1

Data2
User PR_in_freeze

“1”

Hardware-Generated
Freeze

Global
Clocks

During partial reconfiguration, the static region logic should not depend on the outputs from PR regions to
be at a specific logic level for the continued operation of the static region.

The easiest way to control the inputs to PR regions is by creating a wrapper around the PR region in RTL.
In addition to freezing all inputs high, you can also drive the outputs from the PR block to a specific value,
if required by your design. For example, if the output drives a signal that is active high, then your wrapper
could freeze the output to GND.

The following example implements a freeze wrapper in Verilog HDL, on a module named pr_module.

module freeze_wrapper
(
 input reset,
 input freeze, //PR process active, generated by user logic
 input clk1, //global clock signal
 input clk2, // non-global clock signal
 input [3:0] control_mode, // synchronous to clk1
 input [3:0] framer_ctl, // synchronous to clk2
 output [15:0] data_out
);

reg [3:0]control_mode_sync, framer_ctl_sync;
wire clk2_to_use;

//instantiate pr_module
pr_module pr_module
(
 .reset (reset), //input
 .clk1 (clk1), //input, global clock
 .clk2 (clk2_to_use), // input, non-global clock
 .control_mode (control_mode_sync), //input
 .framer_ctl (framer_ctl_sync), //input
 .pr_module_out (data_out)// collection of outputs from pr_module
);

always@(posedge clk1) begin
 control_mode_sync <= freeze ? 4'hF: control_mode;
end

Altera CorporationDesign Planning for Partial Reconfiguration

Send Feedback

4-15Freeze Logic for PR Regions
QII51026
2013.11.04

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Design%20Planning%20for%20Partial%20Reconfiguration%20(QII51026%202013.11.04)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

always@(posedge clk2) begin
 framer_ctl_sync <= freeze ? 4'hF: framer_ctl;
end

assign clk2_to_use = freeze ? 1'b1 : clk2;

endmodule

The following example implements a freeze wrapper in VHDL, on a module named pr_module.

entity freeze_wrapper is
 port(reset:in STD_LOGIC;
 freeze:in STD_LOGIC;
 clk1: in STD_LOGIC; --global signal
 clk2: in STD_LOGIC; --non-global signal
 control_mode: in STD_LOGIC_VECTOR (3 downto 0);
 framer_ctl: in STD_LOGIC_VECTOR (3 downto 0);
 data_out: out STD_LOGIC_VECTOR (15 downto 0));
end freeze_wrapper;

architecture behv of freeze_wrapper is
 component pr_module
 port(reset:in STD_LOGIC;
 clk1:in STD_LOGIC;
 clk2:in STD_LOGIC;
 control_mode:in STD_LOGIC_VECTOR (3 downto 0);
 framer_ctl:in STD_LOGIC_VECTOR (3 downto 0);
 pr_module_out:out STD_LOGIC_VECTOR (15 downto 0));
 end component

 signal control_mode_sync: in STD_LOGIC_VECTOR (3 downto 0);
 signal framer_ctl_sync : in STD_LOGIC_VECTOR (3 downto 0);
 signal clk2_to_use : STD_LOGIC;
 signal data_out_temp : STD_LOGIC_VECTOR (15 downto 0);
 --signal data_out : STD_LOGIC_VECTOR (15 downto 0);

begin

 data_out(15 downto 0) <= data_out_temp(15 downto 0);

 m_pr_module: pr_module

 port map (
 reset => reset,
 clk1 => clk1,
 clk2 => clk2,
 control_mode =>control_mode_sync,
 framer_ctl => framer_ctl_sync,
 pr_module_out => data_out_temp);

 -- freeze all inputs
 process(clk1) begin
 if clk1'event and clk1 = '1' then
 if freeze = '1' then

Design Planning for Partial ReconfigurationAltera Corporation

Send Feedback

QII51026
Freeze Logic for PR Regions4-16 2013.11.04

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Design%20Planning%20for%20Partial%20Reconfiguration%20(QII51026%202013.11.04)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

 control_mode_sync <= "1111";
 else control_mode_sync <= control_mode;
 end if;
 end if;
 end process;

 -- freeze the non-global clocks as well
 process(clk2, freeze) begin
 if clk2'event and clk2 = '1' then
 if freeze = '1' then
 framer_ctl_sync <= "1111";
 else framer_ctl_sync <= framer_ctl;
 end if;
 end if;
 end process;

Clocks and Other Global Signals for a PR Design
For non-PR designs, the Quartus II software automatically promotes high fan-out signals onto available
clocks or other forms of global signals during the pre-fitter stage of design compilation using a process called
global promotion. For PR designs, however, automatic global promotion is disabled by default for PR regions,
and you must assign the global clock resources necessary for PR partitions.

There are 16 global clock networks in a Stratix V device. However, only six unique clocks can drive a row
clock region limiting you to a maximum of six global signals in each PR region. The Quartus II software
must ensure that any global clock can feed every location in the PR region.

The limit of six global signals to a PR region includes the GCLK, QCLK and PCLKs used inside of the PR
region. Make QSF assignments for global signals in your project's Quartus II Settings File (.qsf), based on
the clocking requirements for your design. In designs with multiple clocks that are external to the PR region,
it may be beneficial to align the PR region boundaries to be within the global clock boundary (such as QCLK
or PCLK).

If your PR region requires more than six global signals, modify the region architecture to reduce the number
of global signals within this to six or fewer. For example, you can split a PR region into multiple regions,
each of which uses only a subset of the clock domains, so that each region does not use more than six.

Every instance of a PR region that uses the global signals (for example, PCLK, QCLK, GCLK, ACLR) must
use a global signal for that input.

Global signals can only be used to route certain secondary signals into a PR region and the restrictions for
each block are listed in the following table. Data signals and other secondary signals not listed in the table,
such as synchronous clears and clock enables are not supported.

Table 4-2: Supported Signal Types for Driving Clock Networks in a PR Region

Supported Signals for Global/Periphery/Quadrant Clock
Networks

Block Types

Clock, ACLRLAB

Clock, ACLR, Write Enable(WE), Read
Enable(RE)

RAM

Clock, ACLRDSP

Altera CorporationDesign Planning for Partial Reconfiguration

Send Feedback

4-17Clocks and Other Global Signals for a PR Design
QII51026
2013.11.04

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Design%20Planning%20for%20Partial%20Reconfiguration%20(QII51026%202013.11.04)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

PR regions are allowed to contain output ports that are used outside of the PR region as global signals.

• If a global signal feeds both static and reconfigurable logic, the restrictions in the table also apply
to destinations in the static region. For example, the same global signal cannot be used as anSCLR
in the static region and an ACLR in the PR region.

• A global signal used for a PR region should only feed core blocks inside and outside the PR region.
In particular you should not use a clock source for a PR region and additionally connect the signal
to an I/O register on the top or bottom of the device. Doing so may cause the Assembler to give
an error because it is unable to create valid programming mask files.

Note:

Floorplan Assignments for PR Designs
You must create a LogicLock region so the interface of the PR region with the static region is the same for
any persona you implement. If different personas of a PR region have different area requirements, you must
make a LogicLock region assignment that contains enough resources to fit the largest persona for the region.
The static regions in your project do not necessarily require a floorplan, but depending on any other design
requirement, you may choose to create a floorplan for a specific static region. If you create multiple PR
regions, and are using SCRUB mode, make sure you have one column or row of static region between each
PR region.

There is no minimum or maximum size for the LogicLock region assigned for a PR region. Because wire-
LUTs are added on the periphery of a PR region by the Quartus II software, the LogicLock region for a PR
region must be slightly larger than an equivalent non-PR region. Make sure the PR regions include only the
resources that can be partially reconfigured; LogicLock regions for PR can only contain only LABs, DSPs,
and RAM blocks. When creating multiple PR regions, make sure there is at least one static region column
between each PR region. When multiple PR regions are present in a design, the shape and alignment of the
region determines whether you use the SCRUB or AND/OR PR mode.

You can use the default Auto size and Floating location LogicLock region properties to estimate the
preliminary size and location for the PR region.

You can also define regions in the floorplan that match the general location and size of the logic in each
partition. You may choose to create a LogicLock region assignment that is non-rectangular, depending on
the design requirements, but disjoint LogicLock regions are not allowed for PR regions.

After compilation, use the Fitter-determined size and origin location as a starting point for your design
floorplan. Check the quality of results obtained for your floorplan location assignments and make changes
to the regions as needed.

Alternatively, you can perform Analysis and Synthesis, and then set the regions to the required size based
on resource estimates. In this case, use your knowledge of the connections between partitions to place the
regions in the floorplan.

For more information on making design partitions and using an incremental design flow, refer to the
Quartus II Incremental Compilation for Hierarchical and Team-Based Floorplan Design chapter in the
Quartus II Handbook. For more design guidelines to ensure good quality of results, and suggestions on
making design floorplan assignments with LogicLock regions, refer to the Best Practices for Incremental
Compilation Partitions and Floorplan Floorplan Assignments chapter in the Quartus II Handbook.

Related Information

• Quartus II Incremental Compilation for Hierarchical and Team-Based Floorplan

• Best Practices for Incremental Compilation Partitions and Floorplan

Design Planning for Partial ReconfigurationAltera Corporation

Send Feedback

QII51026
Floorplan Assignments for PR Designs4-18 2013.11.04

http://www.altera.com/literature/hb/qts/qts_qii51015.pdf
http://www.altera.com/literature/hb/qts/qts_qii51017.pdf
mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Design%20Planning%20for%20Partial%20Reconfiguration%20(QII51026%202013.11.04)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Implementation Details for Partial Reconfiguration
This section describes implementation details that help you create your PR design.

Partial Reconfiguration Pins
Partial reconfiguration can be performed through external pins or from inside the core of the FPGA.

When using PR from pins, some of the I/O pins are dedicated for implementing partial reconfiguration
functionality. If you perform partial reconfiguration from pins, then you must use the passive parallel with
16 data bits (FPPx16) configuration mode.

To enable partial reconfiguration from pins in the Quartus II software, perform the following steps:

1. From the Assignments menu, click Device, then click Device and Pin Options.
2. In the Device and Pin Options dialog box, select General in the Category list and turn on Enable PR

pins from the Options list.
3. ClickConfiguration in theCategory list and selectPassiveParallel x16 from theConfiguration scheme

list.
4. Click OK, or continue to modify other settings in the Device and Pin Options dialog box.
5. Click OK.

You can enable open drain on PR pins from the Device and Pin Options dialog box in the Settings
page of the Quartus II software.

Note:

Table 4-3: Partial Reconfiguration Dedicated Pins Description

Pin DescriptionPin TypePin Name

Dedicated input when Enable PR
pins is turned on; otherwise,
available as user I/O.

Logic high on pin indicates the PR
host is requesting partial
reconfiguration.

InputPR_REQUEST

Dedicated output when Enable
PR pins is turned on; otherwise,
available as user I/O.

Logic high on this pin indicates
the StratixV control block is ready
to begin partial reconfiguration.

OutputPR_READY

Dedicated output when Enable
PR pins is turned on; otherwise,
available as user I/O.

Logic high on this pin indicates
that partial reconfiguration is
complete.

OutputPR_DONE

Altera CorporationDesign Planning for Partial Reconfiguration

Send Feedback

4-19Implementation Details for Partial Reconfiguration
QII51026
2013.11.04

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Design%20Planning%20for%20Partial%20Reconfiguration%20(QII51026%202013.11.04)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Pin DescriptionPin TypePin Name

Dedicated output when Enable
PR pins is turned on; otherwise,
available as user I/O.

Logic high on this pin indicates
the device has encountered an
error during partial reconfigura-
tion.

OutputPR_ERROR

Dedicated input when Enable PR
pins is turned on; otherwise
available as user I/O.

These pins provide connectivity
for PR_DATA when Enable PR
pins is turned on.

InputDATA[15:0]

Dedicated input when Enable PR
pins is turned on; PR_DATA is
sent synchronous to this clock.

This is a dedicated programming
pin, and is not available as user I/
O even ifEnablePRpins is turned
off.

BidirectionalDCLK

For more information on different configuration modes for Stratix V devices, and specifically about FPPx16
mode, refer to the Configuration, Design Security, and Remote System Upgrades in Stratix V Devices chapter
of the Stratix V Handbook.

Related Information
Configuration, Design Security, and Remote System Upgrades in Stratix V Devices

Interface with the PR Control Block through a PR Host
You communicate between your PR control IP and the PR Control Block (CB) via control signals, while
executing partial reconfiguration.

You can communicate with the PR control block via an internal host which communicates with the CB
through internal control signals. You can also use an external host with handshake signals accessed via
external pins. The internal PR host can be user logic or a Nios® II processor.

Design Planning for Partial ReconfigurationAltera Corporation

Send Feedback

QII51026
Interface with the PR Control Block through a PR Host4-20 2013.11.04

http://www.altera.com/literature/hb/stratix-v/stx5_51010.pdf
mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Design%20Planning%20for%20Partial%20Reconfiguration%20(QII51026%202013.11.04)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Figure 4-8: Managing Partial Reconfiguration with an Internal or External Host

The figure shows how these blocks should be connected to the PR control block (CB). In your system, you
will have either the External Host or the Internal Host, but not both.

PR Control
Block (CB) Internal

Host

PR
Region

PR Program
file (.rbf) in

external memory

PR Control
Block (CB)

External
Host

PR
Region

PR Program
file (.rbf) in

external memory

The PR mode is independent of the full chip programming mode. For example, you can configure the full
chip using a JTAG download cable, or other supported configuration modes. When configuring PR regions,
you must use the FPPx16 interface to the PR control block whether you choose to partially reconfigure the
chip from an external or internal host.

When using an external host, you must implement the control logic for managing system aspects of partial
reconfiguration on an external device. By using an internal host, you can implement all of your logic necessary
for partial reconfiguration in the FPGA, therefore external devices are not required to support partial
reconfiguration. When using an internal host, you can use any interface to load the PR bitstream data to the
FPGA, for example, from a serial or a parallel flash device, and then format the PR bitstream data to fit the
FPPx16 interface on the PR Control Block.

To use the external host for your design, turn on the Enable PR Pins option in the Device and Pin Options
dialog box in the Quartus II software when you compile your design. If this setting is turned off, then you
must use an internal host. Also, you must tie the corectl port on the PR control block instance in the
top-level of the design to the appropriate level for the selected mode.

Related Information
Partial Reconfiguration Pins on page 4-19
Partial Reconfiguration Dedicated Pins Table

PR Control Signals Interface
The Quartus II Programmer allows you to generate the different bit-streams necessary for full chip
configuration and for partial reconfiguration. The programming bit-stream for partial reconfiguration
contains the instructions (opcodes) as well as the configuration bits, necessary for reconfiguring each of the
partial regions. When using an external host, the interface ports on the control block are mapped to FPGA
pins. When using an internal host, these signals are within the core of the FPGA.

Altera CorporationDesign Planning for Partial Reconfiguration

Send Feedback

4-21PR Control Signals Interface
QII51026
2013.11.04

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Design%20Planning%20for%20Partial%20Reconfiguration%20(QII51026%202013.11.04)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Figure 4-9: Partial Reconfiguration Interface Signals

These handshaking control signals are used for partial reconfiguration.

PR Control Block (CB)

PR_Data[15:0]
PR_done
PR_ready
CRC_error
PR_error

PR_request
Clk

From Pins or
FPGA Core

corectl

• PR_DATA: The configuration bitstream is sent on PR_ DATA[15:0], synchronous to the Clk.
• PR_DONE: Sent from CB to control logic indicating the PR process is complete.
• PR_READY: Sent from CB to control logic indicating the CB is ready to accept PR data from the control

logic.
• CRC_Error: The CRC_Error generated from the device’s CRC block, is used to determine whether to

partially reconfigure a region again, when encountering a CRC_Error.
• PR_ERROR: Sent from CB to control logic indicating an error during partial reconfiguration.
• PR_REQUEST: Sent from your control logic to CB indicating readiness to begin the PR process.
• corectl: Determines whether partial reconfiguration is performed internally or through pins.

Reconfiguring a PR Region
The figure below shows a system in which your PR Control logic is implemented inside the FPGA. However,
this section is also applicable for partial reconfiguration with an external host.

The PR control block (CB) represents the Stratix V PR controller inside the FPGA. PR1 and PR2 are two
PR regions in a user design. In addition to the four control signals (PR_REQUEST, PR_READY, PR_DONE,
PR _ERROR) and the data/clock signals interfacing with the PR control block, your PR Control IP should
also send a control signal (PR_CONTROL) to each PR region. This signal implements the freezing and
unfreezing of the PR Interface signals. This is necessary to avoid contention on the FPGA routing fabric.

Figure 4-10: Example of a PR System with Two PR Regions

Implementation of PR Control logic in the FPGA.

PR_Request

PR_Ready, PR_Error,
PR_Done, CRC_Error Partial Reconfiguration

Data/Clock via FPPx16

PR1_Control PR2_Control

PR Control
Block (CB)

PR1
Region

PR2
Region

PR Control Logic

Static Region

Design Planning for Partial ReconfigurationAltera Corporation

Send Feedback

QII51026
Reconfiguring a PR Region4-22 2013.11.04

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Design%20Planning%20for%20Partial%20Reconfiguration%20(QII51026%202013.11.04)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

After the FPGA device has been configured with a full chip configuration at least once, the INIT_DONE
signal is released, and the signal is asserted high due to the external resistor on this pin. The INIT_DONE
signal must be assigned to a pin to monitor it externally. When a full chip configuration is complete, and
the device is in user mode, the following steps describe the PR sequence:

1. Begin a partial reconfiguration process from your PR Control logic, which initiates the PR process for
one or more of the PR regions (asserting PR1_Control or PR2_Control in the figure). The wrapper HDL
described earlier freezes (pulls high) all non-global inputs of the PR region before the PR process.

2. Send PR_REQUEST signal from your control logic to the PR Control Block (CB). If your design uses an
external controller, monitor INIT_DONE to verify that the chip is in user mode before asserting the
PR_REQUEST signal. The CB initializes itself to accept the PR data and clock stream. After that, the CB
asserts a PR_READY signal to indicate it can accept PR data. Exactly four clock cycles must occur before
sending the PR data to make sure the PR process progresses correctly. Data and clock signals are sent to
the PR control block to partially reconfigure the PR region interface.

• If there are multiple PR personas for the PR region, your PR Control IP must determine the
programming file data for partial reconfiguration.

• When there are multiple PR regions in the design, then the same PR control IP determines which
regions require reconfiguration based on system requirements.

• At the end of the PR process, the PR control block asserts a PR_DONE signal and de-asserts the
PR_READY signal.

• If you want to suspend sending data, you can implement logic to pause the clock at any point.

3. Your PR control logicmust de-assert thePR_REQUEST signal within eight clock cycles after thePR_DONE
signal goes high. If your logic does not de-assert the PR_REQUEST signal within eight clock cycles, a
new PR cycle starts.

4. If your design includes additional PR regions, repeat steps 2 – 3 for each region. Otherwise, proceed to
step 5.

5. Your PRControl logic de-asserts thePR_CONTROL signal(s) to the PR region. The freezewrapper releases
all input signals of the PR region, thus the PR region is ready for normal user operation.

6. You must perform a reset cycle to the PR region to bring all logic in the region to a known state. After
partial reconfiguration is complete for a PR region, the states in which the logic in the region come up
is unknown.

The PR event is now complete, and you can resume operation of the FPGA with the newly configured PR
region.

At any time after the start of a partial reconfiguration cycle, the PR host can suspend sending the PR_DATA,
but the host must suspend sending the PR_CLK at the same time. If the PR_CLK is suspended after a PR
process, there must be at least 20 clock cycles after the PR_DONE or PR_ERROR signal is asserted to prevent
incorrect behavior.

For an overview of different reset schemes in Altera devices, refer to the Recommended Design Practices
chapter in the Quartus II Handbook.

Related Information

• Partial Reconfiguration Cycle Waveform on page 4-23
For more information on clock requirements for partial reconfiguration.

• Recommended Design Practices

Partial Reconfiguration Cycle Waveform
The PR host initiates the PR request, transfers the data to the FPGA device when it is ready, and monitors
the PR process for any errors or until it is done.

Altera CorporationDesign Planning for Partial Reconfiguration

Send Feedback

4-23Partial Reconfiguration Cycle Waveform
QII51026
2013.11.04

http://www.altera.com/literature/hb/qts/qts_qii51006.pdf
mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Design%20Planning%20for%20Partial%20Reconfiguration%20(QII51026%202013.11.04)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

A PR cycle is initiated by the host (internal or external) by asserting the PR_REQUEST signal high. When
the FPGA device is ready to begin partial reconfiguration, it responds by asserting the PR_READY signal
high. The PR host responds by sending configuration data onDATA [15:0]. The data is sent synchronous
to PR_CLK. When the FPGA device receives all PR data successfully, it asserts the PR_DONE high, and de-
asserts PR_READY to indicate the completion of the PR cycle.

Figure 4-11: Partial Reconfiguration Timing Diagram

The partial reconfiguration cycle waveform with a hand-shaking protocol.

D0LSW D0MSW D1LSW D1MSW Dn-1MSW DnLSW DnLSW

PR_REQUEST

PR_CLK

PR_DATA[15:0]

PR_READY

PR_DONE

READY_to_FIRST_DATA

DONE_to_REQ_low

DONE_to_LAST_CLK

PR_ERROR

CRC_ERROR

If there is an error encountered during partial reconfiguration, the FPGA device asserts the PR_ERROR
signal high and de-asserts the PR_READY signal low.

The PR host must continuously monitor the PR_DONE and PR_ERROR signals status. Whenever either of
these two signals are asserted, the host must de-assert PR_REQUEST within eight PR_CLK cycles. As a
response to PR_ERROR error, the host can optionally request another partial reconfiguration or perform a
full FPGA configuration.

To prevent incorrect behavior, the PR_CLK signal must be active a minimum of twenty clock cycles after
PR_DONE or PR_ERROR signal is asserted high. Once PR_DONE is asserted, PR_REQUESTmust be de-
asserted within eight clock cycles. PR_DONE is de-asserted by the device within twenty PR_CLK cycles. The
host can assert PR_REQUEST again after the 20 clocks after PR_DONE is de-asserted.

Table 4-4: Partial Reconfiguration Clock Requirements

Signal timing requirements for partial reconfiguration.
Value (clock cycles)Timing Parameters

4 (exact)PR_READY to first data

20 (minimum)PR_ERROR to last clock

20 (minimum)PR_DONE to last clock

8 (maximum)DONE_to_REQ_low

4 (exact)Compressed PR_READY to first data

8 (exact)Encrypted PR_READY to first data (when using
double PR)

Design Planning for Partial ReconfigurationAltera Corporation

Send Feedback

QII51026
Partial Reconfiguration Cycle Waveform4-24 2013.11.04

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Design%20Planning%20for%20Partial%20Reconfiguration%20(QII51026%202013.11.04)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Value (clock cycles)Timing Parameters

12 (exact)Encrypted and Compressed PR_READY to first data
(when using double PR)

At any time during partial reconfiguration, to pause sending PR_DATA, the PR host can stop toggling
PR_CLK. The clock can be stopped either high or low.

At any time during partial reconfiguration, the PR host can terminate the process by de-asserting the PR
request. A partially completed PR process results in a PR error. You can have the PR host restart the PR
process after a failed process by sending out a new PR request 20 cycles later.

In case you terminate a PR process before completion, and follow it upwith a FPGA reset using thenConfig
signal, you must keep the PR_CLK signal running through the FPGA reset cycle to avoid causing the partial
reconfiguration to lock up.

During these steps, the PR control block might assert a PR_ERROR or a CRC_ERROR signal to indicate
that there was an error during the partial reconfiguration process. Assertion of PR_ERROR indicates that
the PR bitstream data was corrupt, and the assertion of CRC error indicates a CRAM CRC error either
during or after completion of PR process. If the PR_ERROR or CRC_ERROR signals are asserted, you must
plan whether to reconfigure the PR region or reconfigure the whole FPGA, or leave it unconfigured.

The PR_CLK signal has different a nominal maximum frequency for each device. Most Stratix
V devices have a nominal maximum frequency of at least 62.5 MHz. Refer to the following
solution for your specific device for accurate information.

Important:

Related Information
Stratix V Maximum Frequencies

Partial Reconfiguration with an External Host
For partial reconfiguration using an external host, you must set the MSEL [4:0] pins for FPPx16
configuration scheme.

You can use a microcontroller, another FPGA, or a CPLD such as a MAX V device, to implement the
configuration and PR controller. In this setup, the Stratix V device configures in FPPx16mode during power-
up. Alternatively, you can use a JTAG interface to configure the Stratix V device.

At any time during user-mode, the external host can initiate partial reconfiguration and monitor the status
using the external PR dedicated pins:PR_REQUEST,PR_READY,PR_DONE, andPR_ERROR. In thismode,
the external host must respond appropriately to the hand-shaking signals for a successful partial reconfigu-
ration. This includes acquiring the data from the flash memory and loading it into the Stratix V device on
DATA[15:0].

Altera CorporationDesign Planning for Partial Reconfiguration

Send Feedback

4-25Partial Reconfiguration with an External Host
QII51026
2013.11.04

http://www.altera.com/literature/es/es_StratixV.pdf
mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Design%20Planning%20for%20Partial%20Reconfiguration%20(QII51026%202013.11.04)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Figure 4-12: Connecting to an External Host

The connection setup for partial reconfiguration with an external host in the FPPx16 configuration scheme.

External Host
(MAX V Device or
Microprocessor)

Stratix V Device
CONF_DONE
nSTATUS
nCONFIG
nCE

DATA[15:0]
DCLK
PR_REQUEST
PR_DONE
PR_READY
PR_ERROR
PR_CONTROL
PR_RESET
CRC_ERROR

10 K10 K10 K

MSEL[4:0]

Memory
ADDR DATA[15:0]

VCCPGM VCCPGM VCCPGM

Using an External Host with Multiple Devices
You must design the external host to accommodate the arbitration scheme that is required for your system,
as well as the partial reconfiguration interface requirement for each device.

Design Planning for Partial ReconfigurationAltera Corporation

Send Feedback

QII51026
Using an External Host with Multiple Devices4-26 2013.11.04

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Design%20Planning%20for%20Partial%20Reconfiguration%20(QII51026%202013.11.04)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Figure 4-13: Connecting Multiple FPGAs to an External Host

An example of an external host controlling multiple Stratix V devices on a board.

DATA[15:0]

PR_REQUEST1
PR_DONE1

PR_READY1
PR_ERROR1

PR_REQUEST2
PR_DONE2

PR_READY2
PR_ERROR2

PR_REQUEST5
PR_DONE5

PR_READY5
PR_ERROR5

DATA[15:0]
nCE

PR_REQUEST
PR_DONE
PR_READY
PR_ERROR FPGA1

Address

DATA[15:0]
nCE

PR_REQUEST
PR_DONE
PR_READY
PR_ERROR FPGA2

DATA[15:0]
nCE

PR_REQUEST
PR_DONE
PR_READY
PR_ERROR FPGA5

External
Host

Memory

DATA[7:0]

Partial Reconfiguration with an Internal Host
The PR internal host is a piece of soft logic implemented in the FPGA that you must design to accommodate
the hand-shaking protocol with the PR control block.

For example, PR programming bitstream(s) stored in an external flash device can be routed through the
regular I/Os of the FPGA device, or received through the high speed transceiver channel (PCI Express, SRIO
or Gigabit Ethernet), and can be stored in on-chip memory such as MLABs or M20K blocks, for processing
by the internal logic. This data must be formatted into the 16 bit wide data so that it can be transmitted to
the PR control block by the internal IP, because the PR control block can only accept PR data via its FPPx16
interface.

The PR dedicated pins (PR_REQUEST, PR_READY, PR_DONE, and PR_ERROR) can be used as regular
I/Os when performing partial reconfiguration with an internal host. For the full FPGA configuration upon
power-up, you can set theMSEL[4:0] pins tomatch the configuration scheme, for example, AS, PS, FPPx8,
FPPx16, or FPPx32. Alternatively, you can use the JTAG interface to configure the FPGA device. At any
time during user-mode, you can initiate partial reconfiguration through the FPGA core fabric using the PR
internal host.

In the following figure, the programming bitstream for partial reconfiguration is received through the PCI
Express link, and your logic converts the data to the FPPx16 mode.

Altera CorporationDesign Planning for Partial Reconfiguration

Send Feedback

4-27Partial Reconfiguration with an Internal Host
QII51026
2013.11.04

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Design%20Planning%20for%20Partial%20Reconfiguration%20(QII51026%202013.11.04)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Figure 4-14: Connecting to an Internal Host

An example of the configuration setup when performing partial reconfiguration using the internal host.

EPCS

Stratix V Device

AS_DATA1
DCLK
nCSO
ASDO

10 K10 K10 K

MSEL[4:0]

PR
Controller

User Logic

Partial Reconfiguration Data
Received through PCI Express Link

VCCPGM VCCPGM VCCPGM

DATA
DCLK
nCS
ASDI

nSTATUS
CONF_DONE
nCONFIG
nCE

Partial Reconfiguration Project Management
When compiling your PR project, youmust create a base revision, and one ormore reconfigurable revisions.
The project revision you start out is termed the base revision.

Create Reconfigurable Revisions
To create a reconfigurable revision, use the Revisions tab of the Project Navigator window in the Quartus
II software.When you create a reconfigurable revision, theQuartus II software adds the required assignments
to associate the reconfigurable revision with the base revision of the PR project. You can add the necessary
files to each revision with the Add/Remove Files option in the Project option under the Project menu in
the Quartus II software. With this step, you can associate the right implementation files for each revision of
the PR project.

Compiling Reconfigurable Revisions
Altera recommends that you use the largest persona of the PR region for the base compilation so that the
Quartus II software can automatically budget sufficient routing.

Here are the typical steps involved in a PR design flow.

1. Compile the base revision with the largest persona for each PR region.
2. Create reconfigurable revisions for other personas of the PR regions by right-clicking in the Revisions

tab in the Project Navigator.
3. Compile your reconfigurable revisions.
4. Analyze timing on each reconfigurable revision tomake sure the design performs correctly to specifications.
5. Create aggregate revisions as needed.
6. Create programming files.

Design Planning for Partial ReconfigurationAltera Corporation

Send Feedback

QII51026
Partial Reconfiguration Project Management4-28 2013.11.04

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Design%20Planning%20for%20Partial%20Reconfiguration%20(QII51026%202013.11.04)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

For more information on compiling a partial reconfiguration project, refer to Performing Partial
Reconfiguration in Quartus II Help.

Related Information
Performing Partial Reconfiguration

Timing Closure for a Partial Reconfiguration Project
As with any other FPGA design project, simulate the functionality of various PR personas to make sure they
perform to your system specifications. You must also make sure there are no timing violations in the
implementation of any of the personas for every PR region in your design project.

In the Quartus II software, this process is manual, and you must run multiple timing analyses, on the base,
reconfigurable, and aggregate revisions. The different timing requirements for each PR persona can be met
by using different SDC constraints for each of the personas.

The interface between the partial and static partitions remains identical for each reconfigurable and aggregate
revision in the PR flow. If all the interface signals between the static and the PR regions are registered, and
there are no timing violations within the static region as well as within the PR regions, the reconfigurable
and aggregate revisions should not have any timing violations.

However, you should perform timing analysis on the reconfigurable and aggregate revisions, in case you
have any unregistered signals on the interface between partial reconfiguration and static regions.

Bitstream Compression and Encryption for PR Designs
You can choose to independently compress and encrypt the base bitstream as well as the PR bitstream for
your PR project using options available in the Quartus II software.

When you choose to compress the bitstreams, you can compress the base and PR programming bitstreams
independently, based on your design requirements. However, if you want to encrypt only the base image,
you can choose wether or not to encrypt the PR images.

• When you want to encrypt the bitstreams, you can encrypt the PR images only when the base image is
encrypted.

• The Encryption Key Programming (.ekp) file generated when encrypting the base image must be used
for encrypting PR bitstream.

• When you compress the bitstream, youmust present eachPR_DATA[15:0]word for exactly four clock
cycles.

Table 4-5: Partial Reconfiguration Clock Requirements for Bitstream Compression

Value (clock cycles)Timing Parameters

4 (exact)PR_READY to first data

80 (minimum)PR_ERROR to last clock

80 (minimum)PR_DONE to last clock

8 (maximum)DONE_to_REQ_low

Related Information

• Enable Bitstream Decompression Option on page 4-34

Altera CorporationDesign Planning for Partial Reconfiguration

Send Feedback

4-29Timing Closure for a Partial Reconfiguration Project
QII51026
2013.11.04

http://quartushelp.altera.com/current/master.htm
mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Design%20Planning%20for%20Partial%20Reconfiguration%20(QII51026%202013.11.04)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

• Enable Bitstream Decryption Option on page 4-34

• Generate PR Programming Files with the Convert Programming Files Dialog Box on page 4-32

Programming Files for a Partial Reconfiguration Project
You must generate PR bitstream(s) based on the designs and send them to the control block for partial
reconfiguration.

Compile the PR project, including the base revision and at least one reconfigurable revision before generating
the PR bitstreams. The Quartus II Programmer generates PR bitstreams. This generated bitstream can be
sent to the PR ports on the control block for partial reconfiguration.

Figure 4-15: PR Project with Three Revisions

Consider a partial reconfiguration design that has three revisions and one PR region, a base revision with
persona a, one PR revision with persona b, and a second PR revision with persona c.

Base
Revision with
Persona a

Revision b

Revision c

pr_region.msf
static.msf
base.sof

b.sof
b.msf

c.sof
c.msf

Partial
Reconfiguration

Design

When these individual revisions are compiled in the Quartus II software, the assembler produces Masked
SRAM Object Files (.msf) and the SRAM Object Files (.sof) for each revision. The .sof files are created as
before (for non-PR designs). Additionally, .msf files are created specifically for partial reconfiguration, one
for each revision. The pr_region.mfsf file is the one of interest for generating the PR bitstream. It contains
the mask bits for the PR region. Similarly, the static.msf file has the mask bits for the static region. The .sof
files have the information on how to configure the static region as well as the corresponding PR region. The
pr_region.msf file is used to mask out the static region so that the bitstream can be computed for the PR
region. The default file name of the pr region .msf corresponds to the LogicLock region name, unless the
name is not alphanumeric. In the case of a non-alphanumeric region name, the .msf file is named after the
location of the lower left most coordinate of the region.

Altera recommends naming all LogicLock regions to enhance documenting your design.Note:

Design Planning for Partial ReconfigurationAltera Corporation

Send Feedback

QII51026
Programming Files for a Partial Reconfiguration Project4-30 2013.11.04

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Design%20Planning%20for%20Partial%20Reconfiguration%20(QII51026%202013.11.04)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Figure 4-16: Generation of Partial-Masked SRAM Object Files (.pmsf)

You can convert files in the Convert Programming Files window or run the quartus_cpf -p command
to process the pr_region.msf and .sof files to generate the Partial-Masked SRAM Object File (.pmsf).

base.sof

pr_region.msf

a.pmsf+

b.sof

b_pr_region
.msf

b.pmsf+

c.sof

c_pr_region
.msf

c.pmsf+

The .msf file helps determine the PR region from each of the .sof files during the PR bitstream computation.

Once all the .pmsf files are created, process the PRbitstreams by running thequartus_cpf -o command
to produce the raw binary .rbf files for reconfiguration.

If one wishes to partially reconfigure the PR region with persona a, use the a.rbf bitstream file, and so on for
the other personas.

Figure 4-17: Generating PR Bitstreams

This figure shows how three bitstreams can be created to partially reconfigure the region with persona a,
persona b, or persona c as desired.

a.rbfa.pmsf b.rbfb.pmsf c.rbfc.pmsf

In the Quartus II software, the Convert Programming Files window supports the generation of the required
programming bitstreams. When using the quartus_cpf from the command line, the following options
for generating the programming files are read from an option text file, for example, option.txt.

• If you want to use SCRUB mode, before generating the bitstreams create an option text file, with the
following line:

use_scrub=on

• If you have initialized M20K blocks in the PR region (ROM/Initialized RAM), then add the following
line in the option text file, before generating the bitstreams:

write_block_memory_contents=on

• If you want to compress the programming bitstream files, add the following line in the option text file.
This option is available when converting base .sof to any supported programming file types, such as .rbf,
.pof and JTAG Indirect Configuration File (. jic).

bitstream_compression=on

Related Information
Generate PR Programming Files with the Convert Programming Files Dialog Box on page 4-32

Altera CorporationDesign Planning for Partial Reconfiguration

Send Feedback

4-31Programming Files for a Partial Reconfiguration Project
QII51026
2013.11.04

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Design%20Planning%20for%20Partial%20Reconfiguration%20(QII51026%202013.11.04)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Generating Required Programming Files
1. Generate .sof and .msf files (part of a full compilation of the base and PR revisions).
2. Generate a Partial-Masked SRAM Object File (.pmsf) using the following commands:

quartus_cpf -p <pr_revision>.msf <pr_revision>.sof <new_filename>.pmsf

for example:

quartus_cpf -p x7y48.msf switchPRBS.sof x7y48_new.pmsf
3. Convert the .pmsf file for every PR region in your design to .rbf file format. The .rbf format is used to

store the bitstream in an external flash memory. This command should be run in the same directory
where the files are located:

quartus_cpf -o scrub.txt -c <pr_revision >.pmsf <pr_revision>.rbf

for example:

quartus_cpf -o scrub.txt -c x7y48_new.pmsf x7y48.rbf

When you do not have an option text file such as scrub.txt, the files generated would be for AND/OR mode
of PR, rather than SCRUB mode.

Generate PR Programming Files with the Convert Programming Files Dialog Box
In the Quartus II software, the flow to generate PR programming files is supported in the Convert
Programming Files dialog box. You can specify how the Quartus II software processes file types such as .msf,
.pmsf, and .sof to create .rbf and merged .msf and .pmsf files.

You can create

• A .pmsf output file, from .msf and .sof input files
• A .rbf output file from a .pmsf input file
• A merged .msf file from two or more .msf input files
• A merged .pmsf file from two or more .pmsf input files

Convert Programming Files dialog box also allows you to enable the option bit for bitstream decompression
during partial reconfiguration, when converting the base .sof (full design .sof) to any supported file type.

For additional details, refer to the Quartus II Programmer chapter in the Quartus II Handbook.

Related Information
Quartus II Programmer

Generating a .pmsf File from a .msf and .sof Input File

Perform the following steps in theQuartus II software to generate the .pmsf file in theConvert Programming
Files dialog box.

1. Open the Convert Programming Files dialog box.
2. Specify the programming file type as Partial-Masked SRAM Object File (.pmsf).
3. Specify the output file name.
4. Select input files to convert (only a single .msf and .sof file are allowed). Click Add.
5. Click Generate to generate the .pmsf file.

Design Planning for Partial ReconfigurationAltera Corporation

Send Feedback

QII51026
Generating Required Programming Files4-32 2013.11.04

http://www.altera.com/literature/hb/qts/qts_qii53022.pdf
mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Design%20Planning%20for%20Partial%20Reconfiguration%20(QII51026%202013.11.04)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Generating a .rbf File from a .pmsf Input File

Perform the following steps in the Quartus II software to generate the partial reconfiguration .rbf file in the
Convert Programming Files dialog box.

1. From the File menu, click Convert Programming Files.
2. Specify the programming file type as Raw Binary File for Partial Reconfiguration (.rbf).
3. Specify the output file name.
4. Select input file to convert. Only a single .pmsf input file is allowed. Click Add.
5. Select the new .pmsf and click Properties.
6. Turn the Compression, Enable SCRUB mode, Write memory contents, and Generate encrypted

bitstream options on or off depending on the requirements of your design. Click Generate to generate
the .rbf file for partial reconfiguration.

• Compression: Enables compression on the PR bitstream.
• Enable SCRUB mode: Default is based on AND/OR mode. This option is valid only when your design

does not contain vertically overlapped PR masks. The .rbf generation fails otherwise.
• Writememory contents: Turn this onwhen you have a .mif that was used during compilation. Otherwise,

turning this option on forces you to use double PR in AND/OR mode.
• Generate encryptedbitstream: If this option is enabled, youmust specify the EncryptedKeyProgramming

(.ekp) file, which generated when converting a base .sof to an encrypted bitstream. The same .ekp must
be used to encrypt the PR bitstream.

When you turn on Compression, you must present each PR_DATA[15:0] word for exactly four clock
cycles.

Turn on the Write memory contents option only if you are using AND/OR mode and have M20K blocks
in your PR design that need to be initialized. When you check this box, you must to perform double PR for
regions with initialized M20K blocks.

Related Information

• Initializing M20K Blocks with a Double PR Cycle on page 4-40

• Initializing M20K Blocks with a Double PR Cycle on page 4-40

Create a Merged .msf File from Multiple .msf Files

You can merge two or more .msf files in the Convert Programming Files window.

1. Open the Convert Programming Files window.
2. Specify the programming file type as Merged Mask Settings File (.msf).
3. Specify the output file name.
4. Select MSF Data in the Input files to convert window.
5. Click Add File to add input files. You must specify two or more files for merging.
6. Click Generateto generate the merged file.

To merge two or more .msf files from the command line, type:

quartus_cpf --merge_msf=<number of merged files> <msf_input_file_1>
<msf_input_file_2> <msf_input_file_etc> <msf_output_file>

Altera CorporationDesign Planning for Partial Reconfiguration

Send Feedback

4-33Generating a .rbf File from a .pmsf Input File
QII51026
2013.11.04

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Design%20Planning%20for%20Partial%20Reconfiguration%20(QII51026%202013.11.04)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

For example, to merge two .msf files, type:

quartus_cpf --merge_msf=<2> <msf_input_file_1> <msf_input_file_2>
<msf_output_file>

Generating a Merged .pmsf File from Multiple .pmsf Files

You can merge two or more .pmsf files in the Convert Programming Files window.

1. Open the Convert Programming Files window.
2. Specify the programming file type as Merged Partial-Mask SRAM Object File (.pmsf).
3. Specify the output file name.
4. Select PMSF Data in the Input files to convert window.
5. Click Add File to add input files. You must specify two or more files for merging.
6. Click Generate to generate the merged file.

To merge two or more .pmsf files from the command line, type:

quartus_cpf --merge_pmsf=<number of merged files>
<pmsf_input_file_1> <pmsf_input_file_2> <pmsf_input_file_etc>
<pmsf_output_file>

For example, to merge two .pmsf files, type:

quartus_cpf --merge_pmsf=<2> <pmsf_input_file_1> <pmsf_input_file_2>
<pmsf_output_file>

The merge operation checks for any bit conflict on the input files, and the operation fails with error message
if a bit conflict is detected. In most cases, a successful file merge operation indicates input files do not have
any bit conflict.

Enable Bitstream Decompression Option
In the Quartus II software, the Convert Programming Files window provides the option in the .sof file
properties to enable bitstream decompression during partial reconfiguration.

This option is available when converting base .sof to any supported programming file types, such as .rbf,
.pof, and .jic.

In order to view this option, the base .sof must be targeted on Stratix V devices in the .sof File Properties.
This option must be turned on if you turned on theCompression option during .pmsf to .rbf file generation.

Enable Bitstream Decryption Option
The Convert Programming Files window provides the option in the .sof file properties to enable bitstream
decryption during partial reconfiguration.

This option is available when converting base .sof to any supported programming file types, such as .rbf,
.pof, and .jic.

The base .sof must have partial reconfiguration enabled and the base .sof generated from a design that has
a PR Control Block instantiated, to view this option in the .sof File Properties. This option must be turned
on if you wants to turn on the Generate encrypted bitstream option during .pmsf to .rbf file generation.

Design Planning for Partial ReconfigurationAltera Corporation

Send Feedback

QII51026
Generating a Merged .pmsf File from Multiple .pmsf Files4-34 2013.11.04

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Design%20Planning%20for%20Partial%20Reconfiguration%20(QII51026%202013.11.04)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

On-Chip Debug for PR Designs
You cannot instantiate a SignalTap II block inside a PR region. If you must monitor signals within a PR
region for debug purposes, bring those signals to the ports of the PR region.

The Quartus II software does not support the Incremental SignalTap feature for PR designs. After you
instantiate the SignalTap II block inside the static region, you must recompile your design. When you
recompile your design, the static region may have a modified implementation and you must also recompile
your PR revisions. If you modify an existing SignalTap II instance you must also recompile your entire
design; base revision and reconfigurable revisions.

Figure 4-18: Using SignalTap II with a PR Design

You can instantiate the SignalTap II block in the static region of the design and probe the signals you want
to monitor.

SignalTap II
Module

PR Region
with Signals to
Be Probed
Brought Out
on the Ports

Static Region

You can use other on-chip debug features in the Quartus II software, such as the In-System Sources and
Probes or SignalProbe, to debug a PR design. As in the case of SignalTap, In-System Sources and Probes can
only be instantiated within the static region of a PR design. If you have to probe any signal inside the PR
region, you must bring those signals to the ports of the PR region in order to monitor them within the static
region of the design.

Partial Reconfiguration Known Limitations
There are restrictions that derive from hardware limitations in specific Stratix V devices.

The restrictions in the following sections apply only if your design uses M20K blocks as RAMs or ROMs in
your PR project.

Memory Blocks Initialization Requirement for PR Designs
For a non-PR design, the power up value for the contents of a M20K RAM or a MLAB RAM are all set at
zero.However, at the end of performing a partial reconfiguration, the contents of aM20KorMLABmemory
block are unknown. You must intentionally initialize the contents of all the memory to zero, if required by
the functionality of the design, and not rely upon the power on values.

M20K RAM Blocks in PR Designs
When your PR design uses M20K RAM blocks in Stratix V devices, there are some restrictions which limit
how you utilize the respective memory blocks as ROMs or as RAMs with initial content.

Altera CorporationDesign Planning for Partial Reconfiguration

Send Feedback

4-35On-Chip Debug for PR Designs
QII51026
2013.11.04

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Design%20Planning%20for%20Partial%20Reconfiguration%20(QII51026%202013.11.04)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Related Information
Implementing Memories with Initialized Content on page 4-39
If your design requires initialized memory content either as a ROM or a RAM inside a PR region, you must
follow these guidelines.

Limitations When Using Stratix V Production Devices
These workarounds allow your design to use M20K blocks with PR.

Figure 4-19: Limitations for Using M20Ks in PR Regions

If you implement a M20K block in your PR region as a ROM or a RAM with initialized content, when the
PR region is reconfigured, any data read from the memory blocks in static regions in columns that cross the
PR region is incorrect.

PR
Region

Static
Region

Stratix V Device

No Restrictions for RAM/ROM
Implementation in These M20K Columns

RAM/ROM Implementation in These M20K
Columns Has Restrictions

If the functionality of the static region depends on any data read out from M20K RAMs in the static region,
the design will malfunction.

Use one of the following workarounds, which are applicable to both AND/OR and SCRUB modes of partial
reconfiguration:

• Do not use ROMs or RAMs with initialized content inside PR regions.
• If this is not possible for your design, you can program the memory content for M20K blocks with a .mif

using the suggested workarounds.
• Make sure your PR region extends vertically all the way through the device, in such a way that the M20K

column lies entirely inside a PR region.

Design Planning for Partial ReconfigurationAltera Corporation

Send Feedback

QII51026
Limitations When Using Stratix V Production Devices4-36 2013.11.04

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Design%20Planning%20for%20Partial%20Reconfiguration%20(QII51026%202013.11.04)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Figure 4-20: Workaround for Using M20Ks in PR Regions

This figure shows the LogicLock region extended as a rectangle reducing the area available for the static
region. However, you can create non-rectangular LogicLock regions to allocate the resources required for
the partition more optimally. If saving area is a concern, extend the LogicLock region to include M20K
columns entirely.

PR
Region

Static
Region

Stratix V Device

Workaround:Extend the LogicLock Region
to Include the Entire M20K Column

M20K as Uninitialized RAM

M20K as Initialized RAM/ROM

•

Figure 4-21: Alternative Workaround for Using M20Ks in PR Region

Using Reserved LogicLock Regions, block all the M20K columns that are not inside a PR region, but that
are in columns above or below a PR region. In this case, you may choose to under-utilize M20K resources,
in order to gain ROM functionality within the PR region.

PR
Region

Static
Region

Stratix V Device

M20K as Uninitialized RAM

M20K as Initialized RAM/ROM

Workaround: Reserved LogicLock Region
No RAM/ROM In These Areas

For more information including a list of the Stratix V production devices, refer to the Stratix V Errata Sheet
and Guidelines.

Related Information
Stratix V Errata Sheet and Guidelines

Altera CorporationDesign Planning for Partial Reconfiguration

Send Feedback

4-37Limitations When Using Stratix V Production Devices
QII51026
2013.11.04

http://www.altera.com/literature/es/es_stratixv_es.pdf
mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Design%20Planning%20for%20Partial%20Reconfiguration%20(QII51026%202013.11.04)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

MLAB Blocks in PR designs
Stratix V devices include dual-purpose blocks called MLABs, which can be used to implement RAMs or
LABs for user logic.

This section describes the restrictions while using MLAB blocks (sometimes also referred to as LUT-RAM)
in Stratix V devices for your PR designs.

If your design uses MLABS as LUT RAM, you must use all available MLAB bits within the region.

Table 4-6: RAM Implementation Restrictions Summary

The following table shows a summary of the LUT-RAM Restrictions.
Stratix V ProductionType of memory in PR regionPR Mode

OKLUT RAM (no initial content)

SCRUB mode OKLUT ROM and LUT RAM with your
initial content

While design is running: Write 1s
to all locations before partial
reconfiguration

At compile time: Explicitly
initialize all memory locations in
each new persona to 1 via initial-
ization file (. mif).

LUT RAM (no initial content)

AND/OR mode

NoLUT ROM and LUT RAM with your
initial content

If your design does not use any MLAB blocks as RAMs, the following discussion does not apply. The
restrictions listed below are the result of hardware limitations in specific devices.

Limitations with Stratix V Production Devices

When using SCRUB mode:

• LUT-RAMs without initialized content, LUT-RAMs with initialized content, and LUT-ROMs can be
implemented in MLABs within PR regions without any restriction.

When using AND/OR mode:

• LUT-RAMs with initialized content or LUT-ROMs cannot be implemented in a PR region.
• LUT-RAMs without initialized content in MLABs inside PR regions are supported with the following

restrictions.
• MLAB blocks contain 640 bits of memory. The LUT RAMs in PR regions in your design must occupy

all MLAB bits, you should not use partial MLABs.
• Youmust include control logic in your designwithwhich you canwrite to allMLAB locations used inside

PR region.
• Using this control logic, write '1' at each MLAB RAM bit location in the PR region before starting the PR

process. This is to work around a false EDCRC error during partial reconfiguration.

Design Planning for Partial ReconfigurationAltera Corporation

Send Feedback

QII51026
MLAB Blocks in PR designs4-38 2013.11.04

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Design%20Planning%20for%20Partial%20Reconfiguration%20(QII51026%202013.11.04)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

• You must also specify a .mif that sets all MLAB RAM bits to '1' immediately after PR is complete.
• ROMs cannot be implemented in MLABs (LUT-ROMs).
• There are no restrictions to using MLABs in the static region of your PR design.

For more information, refer to the following documents in the Stratix V Handbook:

Related Information
Stratix V Errata Sheet and Guidelines

Implementing Memories with Initialized Content
If your Stratix V PR design implements ROMs, RAMs with initialization, or ROMs within the PR regions,
using eitherM20K blocks or LUT-RAMs, then youmust follow the following design guidelines to determine
what is applicable in your case.

Table 4-7: Implementing Memory with Initialized Content in PR Designs

Production Devices
Mode

SCRUBAND/OR

No special method
required

While design is running:
Write ‘1’ to all locations
before partial reconfigura-
tion.

At compile time: Explicitly
initialize all memory
locations in each new
persona to ‘1’ via initializa-
tion file (.mif)

Make sure no spurious
write on PR entry (1)

Suggested Method

LUT-RAM without
initialization

N/ACRC ErrorWithout Suggested
Method

Make sure no spurious
write on PR exit (1)

Not supported

Suggested Method
LUT-RAMwith initial-
ization Incorrect resultsWithout Suggested

Method

No special method requiredSuggested Method
M20K without initial-
ization N/AWithout Suggested

Method

N/AUse double PR cycle (2)

Make sure no spurious
write on PR exit (1)

Suggested Method

M20K with initializa-
tion

Incorrect resultsWithout Suggested
Method

Altera CorporationDesign Planning for Partial Reconfiguration

Send Feedback

4-39Implementing Memories with Initialized Content
QII51026
2013.11.04

http://www.altera.com/literature/es/es_StratixV.pdf
mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Design%20Planning%20for%20Partial%20Reconfiguration%20(QII51026%202013.11.04)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Production Devices
Mode

SCRUBAND/OR

Note to table:

1. Use the circuit shown in the M20K/LUTRAM figure to create clock enable logic to safely exit partial
reconfiguration without spurious writes.

2. Double partial reconfiguration is described in Using Double PR Cycle for Initializing M20K blocks.

Figure 4-22: M20K/LUTRAM

To avoid spurious writes during PR entry and exit, implement the following clock enable circuit in the same
PR region as the RAM.

CLR

SETD Q

Q

CLR

SETD Q

QCLR

SETD Q

Q

CE

M20K/LUTRAM

1

Clock Enable
Logic

Clear Signal to
Safely Exit PR

The circuit depends on an active- high clear signal from the static region. Before entering PR, freeze this
signal in the same manner as all PR inputs. Your host control logic should de-assert the clear signal as the
final step in the PR process.

Related Information
Initializing M20K Blocks with a Double PR Cycle on page 4-40

Initializing M20K Blocks with a Double PR Cycle
When a PR region in your PR design contains an initialized M20K block and is reconfigured via AND/OR
mode, your host logic must complete a double PR cycle, instead of a single PR cycle.

Design Planning for Partial ReconfigurationAltera Corporation

Send Feedback

QII51026
Initializing M20K Blocks with a Double PR Cycle4-40 2013.11.04

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Design%20Planning%20for%20Partial%20Reconfiguration%20(QII51026%202013.11.04)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Figure 4-23: Next PR Request Assertion During Double PR Cycle

This figure displays the second phase of a double PR cycle, where the host logic must issue another
PR_REQUEST signal after exactly seven clock cycles after the PR_DONE signal is asserted.

PR_REQUEST

PR_CLK

PR_DATA[15:0]

PR_READY

PR_DONE

PR_ERROR

CRC_ERROR

DONE_to_NEXT_REQ

READY_to_NEXT_DATA

If the PR encryption feature (without compression) is enabled , the host logic must issue another
PR_REQUEST signal exactly six clock cycles after PR_DONE is asserted.

If the PR compression feature is enabled (with or without encryption), the host logic must issue another
PR_REQUEST signal exactly two clock cycles after PR_DONE is asserted. The FPGA responds with
PR_READY signal to the second PR_REQUEST signal assertion.

The PR host must continue sending PR_DATA signal exactly four clock cycles after the PR_READY signal,
just as in the first PR cycle. The data on PR_DATA pins can be don't care between the first PR_DONE signal
and until four clock cycles after the PR_READY signal is asserted for the second PR cycle.

The host must continue sending a PR_DATA signal for the second PR cycle, until it receives the PR_DONE
signal for the second request, similar to the first PR cycle. After thePR_DONE signal is asserted for the second
time, the host should de-assert the PR_REQUEST signal and continue with other operations needed for
region bring up, such as issuing a reset to bring the region to a known state.

Double PR with Compressed Programming Bitstream
You can use bitstream compression along with PR designs that also require memory initialization for M20K
blocks.

For a compressed bitstream requiring a double PR cycle, the PR host must stop sending thePR_DATA signal
in the bitstream as soon as the first PR_DONE is asserted. The PR host must resume sending the PR_DATA
signal immediately after the second PR_READY signal is asserted.

Altera CorporationDesign Planning for Partial Reconfiguration

Send Feedback

4-41Double PR with Compressed Programming Bitstream
QII51026
2013.11.04

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Design%20Planning%20for%20Partial%20Reconfiguration%20(QII51026%202013.11.04)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Document Revision History

Table 4-8: Document Revision History

ChangesVersionDate

Added support for merging
multiple .msf and .pmsf files.

Added support for PR Megafunc-
tion.

Updated for revisions on timing
requirements.

13.1.0November 2013

Added support for encrypted
bitstreams.

Updated support for double PR.

13.0.0May 2013

Initial release.12.1.0November 2012

Design Planning for Partial ReconfigurationAltera Corporation

Send Feedback

QII51026
Document Revision History4-42 2013.11.04

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Design%20Planning%20for%20Partial%20Reconfiguration%20(QII51026%202013.11.04)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

QII51019-12.0.0

© 2012 Altera Corporation. All rights reserved. ALTERA, ARRI
are trademarks of Altera Corporation and registered in the U.S
trademarks or service marks are the property of their respectiv
semiconductor products to current specifications in accordance
services at any time without notice. Altera assumes no respons
described herein except as expressly agreed to in writing by Al
on any published information and before placing orders for pr

Quartus II Handbook Version 13.1
Volume 1: Design and Synthesis
June 2012

June 2012
QII51019-12.0.0
5. Quartus II Design Separation Flow
This chapter contains rules and guidelines for creating a floorplan with the design
separation flow, and assumes familiarity with the Quartus® II incremental
compilation flow and floorplanning with the LogicLockTM feature.

The basic principle of a secure and reliable system is that critical subsystems in the
design have physical and functional independence. Systems with redundancy require
physical independence to ensure fault isolation—that a failure or corruption of any
single subsystem does not affect any other part of the system adversely. Furthermore,
if errors occur, physical independence simplifies analysis by allowing developers to
evaluate each subsystem separately.

Traditionally, systems that require redundancy implement critical IP structures using
multiple devices. The Quartus II design separation flow, used in Cyclone® III LS
devices, allows you to design physically independent structures on a single device.
This functionality allows system designers to achieve a higher level of integration on a
single FPGA, and alleviates increasingly strict Size Weight and Power (SWaP)
requirements. Figure 5–1 shows this concept.

The Quartus II design separation flow introduces the constraints necessary to create
secured regions and floorplan a secured system. When implemented in Cyclone III LS
devices, a secured region provides physical independence through controlled routing
and a boundary of unused resources. Restricting routing resources and providing a
physical guard band of unused logic array blocks (LABs) prevent faults or unintended
signals originating in one secured region from adversely affecting other design blocks
on the device.

1 The Quartus II design separation flow features require specific licensing in addition to
licensing the Quartus II software. For more information, contact your local Altera
sales representative or Altera distributor.

Figure 5–1. Achieving Higher Level Integration on a Single Cyclone III LS Device

Critical
Subsystem

1

Other subsystems

Complex System Cyclone III LS FPGA

Other subsystems

Other user logic

Critical
Subsystem

2

Critical
Function

1

Critical
Function

2

A, CYCLONE, HARDCOPY, MAX, MEGACORE, NIOS, QUARTUS and STRATIX words and logos
. Patent and Trademark Office and in other countries. All other words and logos identified as
e holders as described at www.altera.com/common/legal.html. Altera warrants performance of its
 with Altera's standard warranty, but reserves the right to make changes to any products and
ibility or liability arising out of the application or use of any information, product, or service
tera. Altera customers are advised to obtain the latest version of device specifications before relying
oducts or services.

Feedback SubscribeTwitter

ISO
9001:2008
Registered

https://www.altera.com/servlets/subscriptions/alert?id=QII51019
http://www.altera.com/common/legal.html
mailto:TechDocFeedback@altera.com?subject=Feedback on QII51019-12.0 (QII HB, Vol 1, Ch 6: Quartus II Design Separation Flow)
http://www.altera.com/support/reliability/certifications/rel-certifications.html
http://www.altera.com/support/reliability/certifications/rel-certifications.html
http://twitter.com/home/?status=Quartus+II+Design+Separation+Flow+http://www.altera.com/literature/hb/qts/qts_qii51019.pdf?WT

5–2 Chapter 5: Quartus II Design Separation Flow
Design Flow Overview
The Quartus II design separation flow incorporates additional LogicLock and
floorplanning features into the incremental compilation flow. The following three
chapters in the Quartus II Handbook serve as companion references to this chapter:

■ Quartus II Incremental Compilation for Hierarchical and Team-Based Design—Describes
the Quartus II incremental compilation flow

■ Best Practices for Incremental Compilation Partitions and Floorplan Assignments—
Contains guidelines for using the incremental compilation flow and creating a
design floorplan

■ Analyzing and Optimizing the Design Floorplan with the Chip Planner—Describes
various attributes associated with LogicLock location constraints and introduces
the Chip Planner for creating and modifying a floorplan

Design Flow Overview
The design separation flow is based on the incremental compilation flow. You begin
with an incremental compilation design flow and then apply design separation
constraints to each design partition that you want to physically isolate from the rest of
your design. This section provides an overview of the design separation flow steps.

Figure 5–2 shows a flow chart of the design separation flow. Red boxes in the flow
chart highlight steps that are specific to the design separation flow, while the
remaining boxes in the flow chart are common to both the design separation and
incremental compilation flows. This section provides a brief description for each step
in Figure 5–2 and serves as a quick-start guide for the design separation flow.
Quartus II Handbook Version 13.1 June 2012 Altera Corporation
Volume 1: Design and Synthesis

http://www.altera.com/literature/lit-qts.jsp
http://www.altera.com/literature/hb/qts/qts_qii51015.pdf
http://www.altera.com/literature/hb/qts/qts_qii51017.pdf
http://www.altera.com/literature/hb/qts/qts_qii52006.pdf
http://www.altera.com/literature/hb/qts/qts_qii51017.pdf
http://www.altera.com/literature/hb/qts/qts_qii52006.pdf

Chapter 5: Quartus II Design Separation Flow 5–3
Design Flow Overview
1. Set up design hierarchy for secured partitioning—Prepare your design for
implementation of the design separation flow, by setting up your design hierarchy
for secured partitioning along logical hierarchical boundaries. If necessary, create
wrapper files to create logical boundaries in the design hierarchy to support the
design entities that you must separate from the remainder of the design.

2. Perform analysis and elaboration—Run analysis and elaboration to identify the
hierarchy in your design.

3. Create design partitions for secured regions—For each design entity that requires
physical independence, create a logical design partition for each design entity.
Partition logic using guidelines from the incremental compilation flow.

Figure 5–2. Design Separation Compilation Flow

Perform Analysis and Elaboration

Create Design Partitions for Secured Regions

Create Floorplan Assignments

Make Design Changes

Set Netlist Type for Each Design Partition

Compile the Design

Repeat as Required during
the Design, Verification, and

Debugging Stages

Set Up Design Hierarchy for Secure Partitioning

Create a Design Floorplan
with Security Attributes

Assign Design Partitions to Secured Regions

Add I/O Pins that Directly Interface to a Secured
Region as a Member of the Secured Region

Create Security Routing Interfaces to and
from Secured Regions

Assign I/O Pins
June 2012 Altera Corporation Quartus II Handbook Version 13.1
Volume 1: Design and Synthesis

5–4 Chapter 5: Quartus II Design Separation Flow
Design Flow Overview
For more information, refer to “Creating Design Partitions for the Design
Separation Flow” on page 5–5.

4. Create a design floorplan with security attributes—After creating design
partitions, create LogicLock location assignments and a floorplan to secure all the
entities in your design. Use the security attributes in the LogicLock Regions
window to specify the security level of each LogicLock region. These attributes
create fencing regions in your floorplan to isolate the secured LogicLock regions.
For more information, refer to “Creating a Design Floorplan with Secured
Regions” on page 5–6.

5. Assign design partitions to secured regions—Assign design partitions to secured
LogicLock regions to separate them from each other and from all other hierarchy
blocks. Refer to “Using Secured Regions” on page 5–9 for more information.

6. Add I/O pins that directly interface with a secured region as a member of the
secured region—If a secured region interfaces with one or more I/O pins, make
the I/O pins members of the secured region. If a secured region has I/O pins as
members, that region must overlap the I/O pads. Refer to “Adding I/O Pins as
Members of Secured Regions” on page 5–9 for more information.

7. Create security routing interfaces to and from secured regions—Create security
routing interfaces by applying the security routing interface attribute to LogicLock
regions.

You can use only routing resources in a security routing interface; you cannot
place any logic. Each security routing interface must abut one or two secured
regions. After you create an interface region for each signal or group of signals
entering or exiting a secured region, assign the signals to the appropriate routing
interfaces.

For signals routing between secured regions with different security attributes or
between a secured region and an unsecured region, you must lower the security
attribute for the signal exiting the stricter security region. For more information,
refer to “Making Signal Security Assignments” on page 5–19.

8. Assign I/O pins—After creating secured regions and security routing interfaces, if
the secured regions contain I/O pins as members, assign I/O pins to meet design
separation flow requirements. For example, secured regions cannot share I/O
banks. If a secured region contains I/O pins as members, the entire I/O bank is
usable only by the secured region that sinks or sources the I/O pin. For more
information, refer to “Assigning I/O Pins” on page 5–25.

9. Make design changes, set the netlist type for each design partition, and compile
the design—After making the necessary I/O pin assignments, you complete the
design separation flow-specific steps, and you can start the iterative process of
making design changes, setting the netlist type for each design partition, and then
compiling your design until you achieve a floorplan that meets your design
requirements.

1 Subsequent sections in this chapter describes the design separation flow-specific steps
(step 1 and steps 4 through 8).
Quartus II Handbook Version 13.1 June 2012 Altera Corporation
Volume 1: Design and Synthesis

Chapter 5: Quartus II Design Separation Flow 5–5
Creating Design Partitions for the Design Separation Flow
Creating Design Partitions for the Design Separation Flow
After setting up your design to support secured partitioning and running analysis
and elaboration, you can create design partitions.

Each secured region floorplan assignment uses a single design partition in the
incremental compilation flow to identify the functional elements that belong to a
secured region. You can make design partition assignments along entity boundaries in
the RTL design hierarchy.

Only a single partition may be used in a secure region. Plan your design entities such
that logic that requires physical isolation from the rest of your design are contained in
a single design entity. Additionally, you must create wrapper files where necessary to
reorganize your hierarchy, so that a single entity or module in your RTL contains all
your secured regions. The incremental compilation feature allows functional
independence of each design partition because it disables netlist optimizations across
partition boundaries.

Most of the rules, guidelines, and tools for creating design partitions used in the
incremental compilation flow are applicable in the design separation flow. You can
use the Incremental Compilation Advisor, the Design Partition Planner, and the Chip
Planner features in the Quartus II software to help you create design partition
assignments.

When creating design partitions, the following considerations are important:

■ Register the inputs and outputs of a design partition to avoid cross-boundary logic
optimizations and to maintain timing performance along the signal path.

■ Minimize the number of I/O paths that cross partition boundaries to keep logic
paths in a single partition for optimization. Minimizing the number of
cross-boundary I/O paths makes partitions more independent for both logic and
placement optimization.

■ Avoid logic that requires cross-boundary logic optimizations.

f For more information about guidelines for creating design partitions, refer to the Best
Practices for Incremental Compilation Partitions and Floorplan Assignments chapter in
volume 1 of the Quartus II Handbook.

When creating your design in the design separation flow, you must be aware of some
restrictions and special considerations that differ from the incremental compilation
flow. For more information about these considerations, refer to the “Merging PLL
Resources” and “Avoiding Multiple Design Partitions With a Secured Region”
sections.

Merging PLL Resources
In the Quartus II incremental compilation flow without design separation constraints,
the Fitter can use the same PLL resource on the device when multiple design
partitions instantiate a PLL with the same parameters. When you enable the design
separation flow and a design contains one or more secured regions, the Quartus II
software disables PLL merging across design partitions, which helps to maintain the
physical separation between design partitions. The Quartus II software also disables
PLL merging for the entire design, even if LogicLock regions in a Cyclone III LS
June 2012 Altera Corporation Quartus II Handbook Version 13.1
Volume 1: Design and Synthesis

http://www.altera.com/literature/hb/qts/qts_qii51017.pdf
http://www.altera.com/literature/hb/qts/qts_qii51017.pdf

5–6 Chapter 5: Quartus II Design Separation Flow
Creating a Design Floorplan with Secured Regions
design contain no security attributes. For partitions that require shared PLL resources,
you must instantiate the PLL outside of the design partitions.

Avoiding Multiple Design Partitions With a Secured Region
The Quartus II software does not allow multiple design partitions, including child
partitions and multi-hierarchy partitions. Each secured region, which you designate
after creating design partitions, must contain only a single design partition.

Child partitions are design partitions from a subentity of an existing design partition
and would potentially create multiple design partitions in a secured region, so they
are not allowed in the design separation flow.

You can create multi-hierarchy partitions by merging multiple design partitions from
different branches of the hierarchy. Merge these partitions into a single netlist during
elaboration to enable cross-boundary optimizations during synthesis and fitting, and
result in a single incremental result for each multi-hierarchy partition. Multi-hierarchy
partitions function similarly as single-hierarchy partitions, but must contain
hierarchies from a common parent partition. The Quartus II software does not allow
multi-hierarchy partitions in the design separation flow.

Creating a Design Floorplan with Secured Regions
After creating design partitions, you can create a design floorplan with secured
regions with the Chip Planner and security attributes in the LogicLock Regions
window.

The Quartus II software uses LogicLock location assignments to map logic in your
design hierarchy to physical resources on the device. The Chip Planner provides a
visual floorplan of the entire device and allows you to move and resize your
LogicLock location constraints on the floorplan of the device. The design separation
flow adds a security attribute constraint to each LogicLock region to further constrain
routing to achieve physical isolation between LogicLock regions. Assign signals that
require connectivity between two secured regions or between a secured region and
unsecured logic to a special LogicLock region known as a security routing interface. A
security routing interface is a controlled region that limits the routing of the contained
signals to only the one or two LogicLock regions that this region abuts.

To create fault isolation between secured regions, the design separation flow
selectively shuts off routing around the periphery of a secured region. Because signal
connectivity at the boundary of the secured region is unused, any faults that occur in
the secured region are prevented from adversely affecting neighboring regions. Fault
isolation, when using the design separation flow, is possible because no physical
connection exists to propagate the fault outside of the region.

Cyclone III LS devices use a MultiTrack interconnect architecture that consists of row
and column interconnects that span fixed distances to achieve signal connectivity
between LABs. In the horizontal direction, row interconnects use wire resources that
span 1 LAB, 4 LABs, and 24 LABs. These row-routing resources are direct link
interconnects, R4 interconnects, and R24 interconnects, respectively. In the vertical
direction, routing resources span distances of 1 LAB, 4 LABs, and 16 LABs. These
column routing resources are register chain interconnects, C4 interconnects, and
C16 interconnects, respectively. In the design separation flow, the Quartus II software
disables LogicLock region routing wires (C4, C16, R4, and R16) that cross outside the
Quartus II Handbook Version 13.1 June 2012 Altera Corporation
Volume 1: Design and Synthesis

Chapter 5: Quartus II Design Separation Flow 5–7
Creating a Design Floorplan with Secured Regions
border of a boundary. Each secured region uses an unused boundary (or a fence) of
LABs to guard against the faults from wire resources spanning a length of one LAB
(direct link and register chain routing resources) from affecting a neighboring region.

The rules and guidelines for floorplanning in the design separation flow are similar to
those in a typical compilation flow. However, there are some special considerations
for the relative placement of secured regions in your design floorplan. Because each
secured region is a keep-out region for routing resources from other LogicLock
regions, ensure that a routing path with valid communication interfaces exists
between secured regions. Furthermore, the routing path (encapsulated in a security
routing interface) should not follow a circuitous path and must be simple enough to
meet your timing requirements.

The Fitter cannot generate a placement for LogicLock regions with security attributes.
You must manually place LogicLock regions with security attributes; that is, the size
attribute cannot be Auto, and the state attribute cannot be Floating for any LogicLock
region in a secured design.

1 You can use a Fitter-generated floorplan, created without security attributes, as a
starting point to create a final floorplan for the design separation flow.

To use a Fitter-generated floorplan as an initial floorplan, apply Reserved attributes to
LogicLock regions that must be physically isolated from the rest of your design. A
Fitter-generated floorplan with Reserved attributes generates non-overlapping
LogicLock regions. You can modify the initial floorplan by adjusting the relative
placement for each secured region, taking into account the connectivity requirements
for each region.

f For more information about using the Chip Planner settings and options, refer to the
Analyzing and Optimizing the Design Floorplan with the Chip Planner chapter in volume 2
of the Quartus II Handbook.

Using Security Attributes
The Security Attributes column in the LogicLock Regions window and the Security
tab in the LogicLock Regions Properties dialog box are available when you license
your version of the Quartus II software specifically for the design separation feature.
Setting the Security attribute applies a constraint to a LogicLock region, making the
region either a secured region or a security routing interface, from where signals enter
or exit a secured region.

The software populates the Signals list with the inputs and outputs of secured regions
after analysis and synthesis. Columns in the Signals list describe the Security Level,
the security routing interface the signal is assigned to, and whether the signal is an
output or input to the region.
June 2012 Altera Corporation Quartus II Handbook Version 13.1
Volume 1: Design and Synthesis

http://www/literature/hb/qts/qts_qii52006.pdf

5–8 Chapter 5: Quartus II Design Separation Flow
Creating a Design Floorplan with Secured Regions
Figure 5–3 and Figure 5–4 show the design separation flow security features in the
LogicLock Regions window and the LogicLock Regions Properties dialog box.

Table 5–1 lists a summary of the Security Attributes available for the design
separation flow.

Figure 5–3. Security Attribute Column Available in the Design Separation Flow

Figure 5–4. Security Tab Available in the Design Separation Flow

Table 5–1. Security Attributes for LogicLock Regions (Part 1 of 2)

Security
Attribute Description

Unsecured Removes the constraint for physical isolation.

1

Creates a secured region. Physically isolates the LogicLock region by restricting routing resources from
leaving the region. Creates a one-LAB width border of unused logic (LABs, DSP blocks, or embedded
memory blocks) around the LogicLock region.

Applying this attribute to a LogicLock region sets the global assignment
LL_REGION_SECURITY_LEVEL 1 for the LogicLock region.
Quartus II Handbook Version 13.1 June 2012 Altera Corporation
Volume 1: Design and Synthesis

Chapter 5: Quartus II Design Separation Flow 5–9
Creating a Design Floorplan with Secured Regions
Using Secured Regions
When you apply a secured region attribute (1 or 2) to an existing LogicLock region,
the LogicLock region must have a fixed size with a locked origin. Each secured region
must have a minimum size of eight-LABs in both the horizontal and vertical
dimensions. A region smaller than 8 × 8 LABs may be non-routable when using the
design separation flow.

The Quartus II software does not allow child regions when creating a secured region
because a secured region contains only a single partition.

Adding I/O Pins as Members of Secured Regions
A secured region must contain all required physical device resources to complete
compilation. I/O pads that are members of a secured region must be contained in the
boundaries of the secured region that sources or sinks it. That is, a secured region
must overlap the I/O pads that are members of the region. If the logic in the secured
region instantiates a PLL or a clock block, those physical device resources must also be
overlapped by the region.

You can add I/O pins as members of a secured region using the LogicLock Region
Properties dialog box.

Using Security Routing Interfaces
A LogicLock region with the security routing interface security attribute creates a
routing channel for signals to and from a secured region. You may not place logic in a
security routing interface. Each security routing interface can connect two secured
regions, or a secured region with one or more unsecured regions. If you are
connecting two secured regions, the Quartus II software places a fencing region
around the interface region automatically. You can assign each signal entering or
exiting a secured region to a security routing interface on the Security tab in the
LogicLock Regions Properties dialog box.

For information about assigning signals to a security routing interface, refer to
“Making Signal Security Assignments” on page 5–19.

For information about the number of signals that you can contain in a security routing
interface, refer to “Routing Restrictions” on page 5–27.

2

Creates a secured region. Security attribute 2 represents a stricter level of fault isolation than security
attribute 1. For Cyclone III LS devices, implementation of security attribute 2 creates a fence that is two
units tall and one unit wide along the vertical and horizontal dimensions, respectively.

Applying this attribute to a LogicLock region sets the global assignment
LL_REGION_SECURITY_LEVEL 2 for the LogicLock region.

Security
Routing
Interface

Creates a routing interface for signals entering or exiting a secured region. You may use only routing
resources (no logic) in a security routing interface.

Applying this attribute to a LogicLock region sets the global assignment
LL_SECURITY_ROUTING_INTERFACE ON for the LogicLock region.

Table 5–1. Security Attributes for LogicLock Regions (Part 2 of 2)

Security
Attribute Description
June 2012 Altera Corporation Quartus II Handbook Version 13.1
Volume 1: Design and Synthesis

5–10 Chapter 5: Quartus II Design Separation Flow
Creating a Design Floorplan with Secured Regions
Making Design Separation Flow Location Assignments in the Chip Planner
The Chip Planner allows you to modify the size and location of LogicLock regions
visually. This section describes the attributes of LogicLock regions in the context of the
design separation flow.

When you enable the design separation flow, the Chip Planner shades the fencing
region around each secured region in gray and security routing interfaces in green.
The Chip Planner highlights illegal placements that violate secured region boundaries
in red at the location in which the violation occurs. Figure 5–5 shows the LogicLock
regions with security attributes in the Chip Planner.

Figure 5–5. LogicLock Regions With Security Attributes

Notes to Figure 5–5:

(1) Floorplan Editing Mode task.
(2) Unused fence around a secured region.
(3) Security violation, created by a LogicLock region placement in a fencing region of a secured region.
(4) Security routing interface region connecting two secured regions.
(5) Security routing interface region connecting secured region and unsecured logic.

1

2

3

4

5

Quartus II Handbook Version 13.1 June 2012 Altera Corporation
Volume 1: Design and Synthesis

Chapter 5: Quartus II Design Separation Flow 5–11
Creating a Design Floorplan with Secured Regions
Understanding Fencing Regions
The Quartus II software automatically adds a fencing region, which is a border of
unused logic (LABs, DSP blocks, or embedded memory blocks) when you apply
security attribute 1 or security attribute 2 to a LogicLock region. You may not place
any logic into a fencing region. The Fitter does not use any routing wires that exit the
fence boundary of a secured region. Because you can use direct drive and carry chains
at the edge of a secured region, the fencing region prevents signals driven on one
length one wires (in the horizontal and vertical directions) from exiting the secured
region.

The fencing region around a secured region uses one unit of unused logic horizontally
and one unit of unused logic vertically for security attribute 1. A fencing region for
LogicLock regions of security attribute 2 uses one unused logic block horizontally and
two unused logic blocks vertically. The following regions require special fencing
regions:

■ Vertical I/O regions

■ Areas around the configuration engine

I/O banks along the top and bottom of the chip use only vertical routing wires to and
from the I/O Elements (IOEs). The heavy use of C4 wires from IOEs creates a
four- LAB fence between the vertical I/O banks and a secured region. Secured regions
requiring a connection to I/O in the top or bottom banks of the device optimally use
resources if you add the I/O signals as members of the secured region and overlap the
corresponding I/O pads in the floorplan. In Figure 5–6, Secured_Region2 is five
LABs away from the bottom of the device and Secured-Region1 is four LABs away
from the bottom of the device.

Figure 5–6. Vertical Fencing Near I/O Banks
June 2012 Altera Corporation Quartus II Handbook Version 13.1
Volume 1: Design and Synthesis

5–12 Chapter 5: Quartus II Design Separation Flow
Creating a Design Floorplan with Secured Regions
A configuration engine is a hard IP block that manages the configuration of the
device. Additionally, the configuration engine routes the control signals for the CRC
detection circuit and the internal oscillator into the core logic on the device. In the
design separation flow, the Quartus II software automatically adds a one-LAB fence
around the configuration engine whenever a secured region occupies the same LAB
column as the configuration engine. The configuration engine is a region notched out
of the left side in the middle of the device.

All control signals to and from the configuration engine route from its right edge. If
you use an instantiated WYSIWYG that uses any control signals to and from the
configuration engine, the signals must either interface with unsecured logic or they
must interface with a secured region through a security routing interface.

1 If your design routes signals to and from the configuration engine, then do not place a
secured region that directly abuts the configuration engine signal interface (along the
right side of the configuration engine) to avoid a Fitter error.

Figure 5–7 shows a configuration engine with a fencing region in the floorplan.

You can overlap fencing regions between two secured regions. That is, you can
separate two adjacent secured regions by a one-row fence. The Chip Planner issues a
security warning violation if you place a LogicLock region in the boundary of a
secured region. The Chip Planner highlights security violations in red and the tooltip
of a secured region indicates the locations of all security violations. You may receive
an error if you try to compile a design with a security violation. Figure 5–8 shows two
regions with overlapping fences and a security violation from an unsecured region.

Figure 5–7. Configuration Engine

Configuration Engine

Configuration Engine
Signal Interface
Quartus II Handbook Version 13.1 June 2012 Altera Corporation
Volume 1: Design and Synthesis

Chapter 5: Quartus II Design Separation Flow 5–13
Creating a Design Floorplan with Secured Regions
Creating Non-Rectangular Regions
You can create non-rectangular regions by creating multiple rectangular regions and
then merging them.

h For more information about creating non-rectangular regions in the Chip Planner in
the Quartus II software, refer to Creating and Manipulating LogicLock Regions in
Quartus II Help.

Non-rectangular LogicLock regions in the design separation flow make circuitous
routes more likely. As such, non-rectangular regions can have an adverse affect on
performance when used with the design separation flow.

If a secured non-rectangular region contains a subregion that is less than 8 × 8 LABs,
the chances of a non-routable situation occurring increases. Subregions that
deterministically require the use of certain routing resources may not fit successfully
if a violation of the secured region occurs. As a general guideline, each subregion
should be 8 × 8 LABs or larger, to ensure that routing resources with a length of four
LABs are readily available. In Figure 5–9, each subregion of Region 2 (labeled A, B, C,
and D) are less than 8 × 8 LABs in dimension. These subregions can potentially cause
a no-fit error. Depending on the placement and connectivity of LABs, certain routes
may be difficult to achieve. For example, the Fitter would not be able to route a
connection from LAB 1 to LAB 2 in region A directly. While another path may be
possible, a series of hops that do not leave the LogicLock region may not be available
and may not satisfy the timing requirements of the route.

Figure 5–8. Overlapping Regions
June 2012 Altera Corporation Quartus II Handbook Version 13.1
Volume 1: Design and Synthesis

http://quartushelp.altera.com/current/master.htm#mergedProjects/optimize/lock/flp_pro_def_logiclock_reg.htm

5–14 Chapter 5: Quartus II Design Separation Flow
Creating a Design Floorplan with Secured Regions
Guidelines for the Relative Placement of Secured LogicLock Regions
Because each secured region is a keep-out region for placement and routing of any
logic that is not a member of the secured region, you must be aware of the guidelines
in this section as you lay out your floorplan. Placement that does not account for the
connectivity requirements between LogicLock regions may cause poor performance
or a non-routable design. The guidelines for floorplanning when using the design
separation flow include:

■ Create a complete floorplan, including location assignments for unsecured logic.

■ Create a non-circuitous route between secured regions requiring a routing region.
Routing regions between secured regions should be rectangular.

■ Create security routing interfaces between secured regions that do not intersect
with other routing regions; secured regions and their routing edges must fit on a
single plane. A secured region must overlap any physical resources (such as I/Os,
PLLs, and CLKCTRL) that the design partition in the secured region instantiates.

■ Abut the secured region to the edge of the device whenever possible.

Creating a Complete Floorplan
You must allocate a region for all logic in your design. If you have a large secured
region that divides the device into multiple disjointed regions, and you have
unsecured logic that is not floorplanned, the design may not be routable.

If an unsecured partition does not contain any location assignments, the placement
algorithms may make logic assignments on any unallocated space on the device. In
the floorplan shown in Figure 5–10, the source and sink registers do not have a valid
path through the device, because Secured Region 1 and Secured Region 2 occupy all
routing channels.

Figure 5–9. Non-Rectangular LogicLock Regions

A B

C

D

1

2

Quartus II Handbook Version 13.1 June 2012 Altera Corporation
Volume 1: Design and Synthesis

Chapter 5: Quartus II Design Separation Flow 5–15
Creating a Design Floorplan with Secured Regions
If a complete floorplan is impossible for all partitions in your design, you can use
empty LogicLock regions with the Reserved attribute to prevent the Fitter from
placing any logic in a region that can potentially cause a no-fit error. For the example
provided in Figure 5–10, you can place an empty region in the upper-left corner of
your device to prevent the Quartus II software from placing any logic that has not
been floorplanned there, as shown in Figure 5–11.

Figure 5–10. Non-Routable Placement Example
June 2012 Altera Corporation Quartus II Handbook Version 13.1
Volume 1: Design and Synthesis

5–16 Chapter 5: Quartus II Design Separation Flow
Creating a Design Floorplan with Secured Regions
Ensuring Routability Between Regions
The Quartus II software cannot create auto-generated location constraints for any
region with a security attribute. If you use a Fitter-generated placement as a starting
point for a floorplan with security attributes, an optimal floorplan in a design without
separation may not work in the same design. In a floorplan without secured regions,
the Quartus II software restricts only the placement of logic. The Fitter may use all
routing resources on your device, and may route through a LogicLock region to reach
a destination. Secured regions reserve all routing resources in the LogicLock
boundary to the design partition contained in the region.

Having a circuitous route between two regions degrades performance and may cause
a non-routable design. Modify any regions that have signal connectivity and must
route around a secured region to achieve a connection. Figure 5–12 shows a floorplan
that does not contain disjointed parts. However, the source region must route around
a secured region to connect to the sink region.

Figure 5–11. Empty Reserved Region Preventing Fitter From Placing Logic
Quartus II Handbook Version 13.1 June 2012 Altera Corporation
Volume 1: Design and Synthesis

Chapter 5: Quartus II Design Separation Flow 5–17
Creating a Design Floorplan with Secured Regions
Ensuring Planarity
The Quartus II software automatically creates a fence around a security routing
interface connecting two secured regions. Because no other routing resources may
pass through a security routing interface connecting two secured regions, you must
model all secured regions as nodes in a routing graph and all security routing
interfaces as the edges, and all nodes and their edges must fit on a planar graph (that
is, none of the edges can intersect). If you have five or more secured regions on the
device, and each secured region contains signals that fan out to multiple secured
regions, a planar floorplan may not be possible. Figure 5–13 shows a routing graph
with five nodes. A complete graph with each pair of distinct vertices connected by an
edge is impossible without having any of the edges cross. If the topology of your
floorplan contains such a non-routable arrangement, you must rearrange your design
hierarchy to collapse related design partitions into a single design partition.

If you can model your secured regions and security routing interfaces as a planar
graph, but have a high degree of connectivity between the components, then you may
have to rearrange the shape, size, or location of the secured regions to generate a
routable floorplan. For instance, the hypothetical floorplan shown in Figure 5–14 does
not have a valid routing path BD (between region B and region D). The modified
floorplan in Figure 5–15 shows how you can achieve all the required connections on a
planar surface.

Figure 5–12. Relative Placement of Regions Containing a Circuitous Path

Figure 5–13. Non-Planar Routing Graph: Connection BD Not Possible

Secure
Region

Source
Region

Sink
Region

A

B C D E
June 2012 Altera Corporation Quartus II Handbook Version 13.1
Volume 1: Design and Synthesis

5–18 Chapter 5: Quartus II Design Separation Flow
Creating a Design Floorplan with Secured Regions
You can use the Design Partition Planner for a visual representation of the
connectivity between design partitions. This tool helps you determine if you can
arrange the secured regions in your design on a planar floorplan. Figure 5–16 shows
the Design Partition Planner.

Figure 5–14. Floorplan with Non-Routable Connection BD

Figure 5–15. Floorplan Arranged to Accommodate Connection BD

Secure
Region

B

Device Boundary

Secure
Region

E
Secure
Region

A

Secure
Region

C

Secure
Region

D

AB BE

CEAC

AD DE

Non-Routable
Connection BD

Connection

Secure
Region

B

Secure
Region

A

Secure
Region

C

Secure
Region

DAB

AD

BD

AC CE

DE

BE

Secure
Region

E

Device Boundary
Quartus II Handbook Version 13.1 June 2012 Altera Corporation
Volume 1: Design and Synthesis

Chapter 5: Quartus II Design Separation Flow 5–19
Making Signal Security Assignments
Placing Physical Resources
You must contain all physical resources that the secured region requires inside the
boundary of the secured region, including I/O pins that connect to the secured region
and primitives that you instantiate in the secured region, such as PLLs and clock
control blocks.

Making Signal Security Assignments
Each signal that enters or exits a secured region must have a security level attribute.
You must also explicitly assign the signal to a security routing interface. The
Quartus II software automatically assigns the security level for each signal a default
value. The default value matches the secured region that is the source of the signal.
Possible security levels of a signal include: Auto, Unsecured, 1, and 2. Auto sets the
default security level for the signal.

A signal with a security attribute may connect to a region with an equivalent or higher
security level. For example, a signal with a security level of Unsecured can drive logic
in a region set to Unsecured, 1, or 2 and a signal with a security level of 1 can drive
logic in a region set to 1 or 2. A signal originating from a secured region may not drive
logic in a region with a lower security level. If you have a signal from a higher security
level that must drive logic in a lower security level, you can direct the Fitter to honor
the connection by explicitly lowering the security level of the signal.

At most, each security routing interface connects two regions. If a signal fans out to
multiple regions, assign the signal to multiple security routing interface regions; one
interface region per destination.

You can assign signals to security routing interfaces and the security level of signals
with the Security tab in the LogicLock Region Properties dialog box, as shown in
Figure 5–4.

Figure 5–16. Design Partition Planner
June 2012 Altera Corporation Quartus II Handbook Version 13.1
Volume 1: Design and Synthesis

5–20 Chapter 5: Quartus II Design Separation Flow
Making Signal Security Assignments
To assign a signal to a security routing interface, follow these steps:

1. On the Security tab of the LogicLock Regions Properties dialog box, select a
signal name in the Signals list, and then click Edit. The Edit Security
Assignments for Signal dialog box appears, as shown in Figure 5–17.

1 Alternatively, you can select multiple names in the Signal list by pressing
the Ctrl key, clicking multiple names, and then clicking Edit.

The Quartus II software populates the Signals list with the names of signals
entering and exiting the secured region after analysis and synthesis and after
completing a successful partition merge.

2. If necessary, lower the security level of the signal by specifying the Security level.

3. Select the security routing interface for signal or signals assignment. You can
assign signals that fan-out or fan-in to multiple regions to multiple security
routing interfaces.

Understanding Signal Names
The list of signals entering and exiting a secured region consists of signal names from
the post-map netlist. Signal outputs from a secured region derive from the output port
name, as specified in the top-level RTL entity in the secured region. Signal inputs to a
secured region derive from the name of the output port name that feeds the secured
region. In the design separation flow, the Quartus II software preserves output port
names through the compilation process. The output port name is also an alias for the
logic or register that feed them.

The post-map region output signals listed in the signal list coincide with the signal
name in the post-fit netlist. However, combinational signal names from unsecured or
unpartitioned logic that feed a secured region may change through the compilation
process. The Quartus II software optimizes many of the RTL signals during synthesis

Figure 5–17. Edit Security Assignments for Signal Dialog Box
Quartus II Handbook Version 13.1 June 2012 Altera Corporation
Volume 1: Design and Synthesis

Chapter 5: Quartus II Design Separation Flow 5–21
Making Signal Security Assignments
and placement and routing. Frequently, RTL signal names may not appear in the
post-fit netlist after optimization. For example, the compilation process can add tildes
(~) to nets that fan-out from a node, making it difficult to decipher which signal nets
they actually represent. Use the post-compilation filter in the node finder to add
additional signals to a security routing interface. When possible, use registered signals
as inputs into a secured region, and register the output signals from a secured design
partition.

Working with Global Signals
Global signals are low-skew routing lines that drive throughout the device. Global
signals do not require an interface region to drive into a secured region. Cyclone III LS
devices contain 20 global routing resources for use with high fan-out signals, such as
clocks or control signals. A clock control block accesses each global signal. You can
drive each clock control block directly by external clock pins, PLL outputs, or a signal
generated from internal logic. You can locate a clock control block on the periphery
boundary of your device.

f For more information about the clock networks in Cyclone III LS devices, refer to the
Clock Networks and PLLs in Cyclone III Device Family chapter in volume 1 of the
Cyclone III Device Handbook.

In a compilation flow without security assignments, the Quartus II software
automatically promotes signals with a high fan-out (such as clock pins and control
signals) to use global clock resources. In the design separation flow, the Quartus II
software disables automatic global promotion. You must manually promote signals
with high fan-out requiring global routing resources to drive a clock control block.

The Quartus II software cannot promote signals onto a global routing resource
through a global signal assignment from within a secured region. The Fitter only
allows a clock promotion assignment to a signal if the signal is in an unsecured region.
If you have a signal inside of a secured region that must use a global routing resource,
you must first route the signal outside of the secured region before applying a global
promotion assignment. You must assign the signal to a security routing interface and
lower the security level of the signal.
June 2012 Altera Corporation Quartus II Handbook Version 13.1
Volume 1: Design and Synthesis

http://www.altera.com/literature/hb/cyc3/cyc3_ciii51006.pdf

5–22 Chapter 5: Quartus II Design Separation Flow
Making Signal Security Assignments
To honor a global promotion assignment, a clock control block that is not overlapped
by a secured region and a routing path to the clock control block must be available.
There are five clock control blocks located on each side of the device, along the
horizontal and vertical axes that run through the center of the device. Figure 5–18
shows the location of the clock control blocks and the PLLs for a 3CLS70 device in the
Chip Planner floorplan.

Figure 5–18. PLL and Clock Control Block Location on a EPC3SL70 Device

PLL 3

PLL 1

PLL 2

PLL 4
Quartus II Handbook Version 13.1 June 2012 Altera Corporation
Volume 1: Design and Synthesis

Chapter 5: Quartus II Design Separation Flow 5–23
Making Signal Security Assignments
You can manually instantiate PLLs and clock control blocks in the design partition of
a secured region using the ALTPLL and ALTCLKCTRL megafunctions, respectively.
Instantiation of the ALTCLKCTRL megafunction in a secured partition forces the
global promotion of the signal driving the clock control block. To generate a valid
placement when you instantiate PLLs or a clock control block, the secured region
containing the physical resource must overlap a free PLL, a free clock control block, or
both.

You must be aware of certain restrictions when you instantiate a PLL in a secured
region. Secured regions with a PLL fed by an external clock pin must contain the PLL
and a valid clock pin that can drive the PLL. Each PLL has a set of dedicated clock
control blocks that it can access, located to the right (clockwise) of the PLL in the
device floorplan.

Because automatic promotion of signals onto a global resource is not allowed, you
must not place a PLL and the clock control block that the PLL drives in the same
secured region. If your design has a PLL inside of a secured region, you must assign
the PLL output to a security routing interface and then lower the security level of the
PLL output.

A secured region must not cover the clock control block associated with the PLL.
There are two sets of dedicated clock pins that can drive a PLL input. The pads for the
clock input pins are co-located with the clock control blocks. If you use the clock input
pin that is co-located with the clock control block associated with the PLL, you cannot
add the clock pin as a member of the secured region. Instead, you must either assign
the clock pin to a security routing interface that connects with the secured region, or
you can apply the LL_IGNORE_IO_PIN_SECURITY_CONSTRAINT assignment to relax the
fitter restriction on the clock input pin.

For more information about the LL_IGNORE_IO_PIN_SECURITY_CONSTRAINT
assignment, refer to “Assigning I/O Pins” on page 5–25.

Figure 5–19 shows examples of valid placement and invalid placement of secured
regions that instantiate PLLs, before applying the
LL_IGNORE_IO_PIN_SECURITY_CONSTRAINT assignment.
June 2012 Altera Corporation Quartus II Handbook Version 13.1
Volume 1: Design and Synthesis

5–24 Chapter 5: Quartus II Design Separation Flow
Making Signal Security Assignments
Figure 5–19. Location of Valid and Invalid PLL, Clock Pin, and Clock Control Block Placement in a Cyclone III LS Device

Notes to Figure 5–19:

(1) Five clock control blocks are available on each side.
(2) You cannot use remote clocks to feed the PLLs.
(3) Dedicated clock paths can feed into this PLL. However, these are not fully-compensated paths.
(4) This secured region contains a PLL that an external clock pin feeds, whose outputs drive the clock control block through an unsecured region.
(5) This secured region contains a PLL whose output drives a clock control block in the same secured region. This placement is invalid.

Remote Clock from
Two Clock Pins

at Adjacent Edge
of Device (2)

Clock Control
Blocks (1)

Clock Control
Blocks (1)

5

44

2 4 2

D
PC

LK
[1

1:
0]

CL
K[

11
:8

]

D
PC

LK
[9

:8
]

D
PC

LK
[3

:2
]

CL
K[

15
:1

2]

D
PC

LK
[5

:4
]

DPCLK1

CLK[3:0]

DPCLK0

DPCLK6

CLK[7:4]

DPCLK7

5

5

5

4

4 4

2 4 2

4

4

4

4

4

(3)

(3)

(3)

(3)

PLL
4

PLL
1

PLL
2

PLL
3

Secured Region

5

4

2 4 2

(3)

3)
PLL

4X Invalid Placement (5)

Remote Clock from
Two Clock Pins

at Adjacent Edge
of Device (2)

Clock Control
Blocks (1)

Clock Control
Blocks (1)

5

44

2 4 2

D
PC

LK
[1

1:
0]

CL
K[

11
:8

]

D
PC

LK
[9

:8
]

D
PC

LK
[3

:2
]

CL
K[

15
:1

2]

D
PC

LK
[5

:4
]

DPCLK1

CLK[3:0]

DPCLK0

DPCLK6

CLK[7:4]

DPCLK7

5

5

5

4

4 4

2 4 2

4

4

4

4

4

(3)

(3)

(3)

(3)

PLL
4

PLL
1

PLL
2

PLL
3

5

4

4

4

(3)

PLL
4

Secured Region

Valid Placement (4)
Quartus II Handbook Version 13.1 June 2012 Altera Corporation
Volume 1: Design and Synthesis

Chapter 5: Quartus II Design Separation Flow 5–25
Assigning I/O Pins
Assigning I/O Pins
After ensuring that signals that enter or exit a secured region contain a security level
attribute and after you have explicitly assign the signals to a security routing
interface, you must also ensure that I/O pin assignments adhere to design separation
flow guidelines. Consider the following three rules, in addition to the typical pin
assignment rules, when assigning I/O pins with the design separation flow enabled:

■ You must assign I/O pins that connect to a secured region as a member of that
secured region or to a security routing interface region that abuts the secured
region.

■ You must ensure that secured regions with I/O pins as members do not share I/O
banks with any other region.

■ You must ensure that I/O pins associated with different secured regions or
security levels do not use adjacent pins.

When I/O pins directly connect to the secured region, you may add I/O pins as
members of a secured region. To add I/O pins as members of a secured region, in the
LogicLock Regions Properties dialog box, on the General tab, click Add node. If an
I/O pin is a member of a secured region, the I/O pad must be physically in the region,
and the secured region must overlap the I/O resource.

If you do not add the I/O pin as a member of the secured region, you must assign the
I/O signal to a security routing interface that abuts the secured region. This security
routing interface must connect the secured region to the root region or another
unsecured region. Explicitly lower the security level of any output signals from the
secured region that connects to I/O pins.

c I/O signals that route out to unsecured logic are no longer guaranteed to be
physically isolated from other signals in your design.

Each I/O pin is adjacent to eight other pins: four along the horizontal and vertical
axes, and four in the two diagonal axes, as shown in Figure 5–20.

Figure 5–20. Pin Adjacency

Eight Pins Adjacent
to Pin E4

Pins D4 and D5
Set to GND

Pins E4
June 2012 Altera Corporation Quartus II Handbook Version 13.1
Volume 1: Design and Synthesis

5–26 Chapter 5: Quartus II Design Separation Flow
Making Post Compilation Edits
Pins from different I/O banks may not share an adjacent I/O pin if one of the I/O
banks contains pins that are members of a secured region. You must assign user I/O
pins that are adjacent to a signal in a secured region, which belong to a different I/O
bank than the secured signal, to GND in the Quartus II software. For example, in
Figure 5–20, pin E4 is assigned a signal from a secured region, and I/O banks 1 and 7
belong to different LogicLock regions. Pins D4 and D5 are assigned to GND to ensure
that no signal adjacencies exist between the I/O banks.

As a rule, you must assign all unused I/O pins to GND in the Quartus II software and
to a ground plane on the PCB. By default, the Quartus II software assigns unused pins
to GND. You can configure this option in the Unused Pins page of the Device and Pin
Options dialog box.

If you must relax a particular I/O restriction for specific signals to meet your design
requirements, you may use the LL_IGNORE_IO_PIN_SECURITY_CONSTRAINT assignment.
The Quartus II software uses the assignment to bypass normal I/O pin checks for a
specific signal. For example, you can apply this assignment to a clock pin assigned to
one of the dedicated clock inputs.

1 Apply the LL_IGNORE_IO_PIN_SECURITY_CONSTRAINT assignment in the Quartus
Settings File (.qsf) located in the project directory of the active design. Each project
revision contains a single .qsf.

To disable the I/O signal rule check for the specified pin name in the .qsf, add the
assignment line:

set_instance_assignment -name LL_IGNORE_IO_PIN_SECURITY_CONSTRAINT ON -to
<pin_name>

f For more information about the pinouts and pin adjacencies for Cyclone III LS
devices, refer to the Cyclone III Device Pin-Out tables. For more information and
guidance about I/O assignments, refer to the Cyclone III Device Family Pin Connection
Guidelines for Cyclone III LS devices and the I/O Management chapter in volume 2 of
the Quartus II Handbook.

Making Post Compilation Edits
Engineering Change Orders (ECOs) and the rapid recompile feature make
incremental changes to routing in a post-fit netlist. ECOs are small changes made to
the functionality of a design after the design has been fully compiled. A design is fully
compiled when synthesis and placement and routing are completed.

The design separation flow supports any ECOs that do not affect routing, such as
changing the LUT mask on an ALM. The design separation flow does not permit
ECOs that affect routing or make incremental changes to the routing in a post-fit
netlist.

h For more information about Rapid Recompile option in the Quartus II software, refer
to Incremental Compilation Page (Settings Dialog Box) in Quartus II Help.
Quartus II Handbook Version 13.1 June 2012 Altera Corporation
Volume 1: Design and Synthesis

http://www.altera.com/literature/lit-dp.jsp?category=Cyc%203&showspreadsheet=y
http://www.altera.com/literature/dp/cyclone3/PCG-01003.pdf
http://www.altera.com/literature/dp/cyclone3/PCG-01003.pdf
http://www.altera.com/literature/hb/qts/qts_qii52013.pdf
http://quartushelp.altera.com/current/master.htm#mergedProjects/comp/increment/comp_tab_qid_incremental_mode.htm

Chapter 5: Quartus II Design Separation Flow 5–27
Routing Restrictions
Routing Restrictions
During the overall planning of your design, you must be aware of specific design
separation flow routing restrictions, especially during the floorplanning stages. This
section discusses these routing restrictions.

Column and row interconnect routing resources on Cyclone III LS devices are
staggered, with a group of routing elements that starts at each LAB location. The LAB
location in which the wire starts drives each routing element. The routing element can
reach any LAB destination along the length of the routing element. Figure 5–21 shows
a set of staggered R4 interconnects.

Figure 5–21. Staggered R4 Interconnects

COL

7

COL

6

COL

5

COL

4

COL

3

COL

2

COL

1

COL

0

ENDPOINT

LABs

 R4
Interconnects

LABs
June 2012 Altera Corporation Quartus II Handbook Version 13.1
Volume 1: Design and Synthesis

5–28 Chapter 5: Quartus II Design Separation Flow
Routing Restrictions
The Fitter disables routing wires near the edge of a secured region, in which routing is
confined in the region. Figure 5–22 shows the Chip Planner displaying used routing
elements in a design with secured regions, using options in the Layer Settings dialog
box and using the background color map I/O banks, with only the Global Routing
and Used Resources options turned on.

Figure 5–22 shows that no routing resources reach outside of LogicLock region
boundaries, except for global routing signals and signals through interface regions.

Long wires are often unusable in secured regions because their length extends beyond
the border of the region. If a secured region abuts the device boundary, you can often
attain an increase in routability, because you can use all the routing interconnects that
start inside the region and drive toward the edge of your device.

I/O pads along the top and bottom of the device can only use column interconnects to
drive into the device fabric. The shortest routing element from the I/O to core logic is
a C4 routing wire. I/O pads on the left and right sides of the device can use both C4
and R4 routing elements to reach their LAB destinations. Because the Quartus II
software restricts column I/Os from using C4 interconnects going into your device,
the Quartus II software creates a four-LAB fence around secured regions when the
boundary of the secured region is in four-LABs of the top and bottom I/O pads.

Figure 5–22. Chip Planner View of Used Resources
Quartus II Handbook Version 13.1 June 2012 Altera Corporation
Volume 1: Design and Synthesis

Chapter 5: Quartus II Design Separation Flow 5–29
Routing Restrictions
Secured regions should be sized at a minimum of 8 × 8 LABs. If a region is smaller
than 8 × 8 LABs, a connection between two LABs that violates the secured region
boundary may occur. For example, in Figure 5–23, any elements along the middle axis
of the 7 × 7 LAB array cannot use any C4 or R4 routing elements, because a C4 routing
element would reach outside the secured region.

Number of Signals in Routing Interfaces
In Cyclone III LS devices, every LAB location has 68 routing elements (R4) driving
horizontally in each direction and 48 routing elements (C4) driving vertically in each
direction. An individual LAB can directly drive 17 connections in the horizontal
direction and 12 in the vertical direction. To guarantee routability, Altera recommends
that you have a routing interface height of at least one LAB for every 17 signals
routing either left or right, and a routing interface width of one LAB for every
12 signals routing either up or down.

Figure 5–24, Table 5–2, and Table 5–3 illustrate this concept. Figure 5–24 shows three
secured regions with two security routing regions; one routing signals horizontally
and the other routing signals vertically. Table 5–2 and Table 5–3 list the maximum and
the recommended number of signals crossing each security region.

Figure 5–23. 7x7 LAB Array

U/D U/D U/D L/R,
U/D

L/R

L/R

L/R

L/R

L/R

L/R

U/D U/D U/D
June 2012 Altera Corporation Quartus II Handbook Version 13.1
Volume 1: Design and Synthesis

5–30 Chapter 5: Quartus II Design Separation Flow
Routing Restrictions
In Figure 5–24, HAB is both the smaller of the height of the region and the height of the
routing interface. The minimum WAB is one LAB. WBC is both the smaller width of the
region and the width of the routing interface. The minimum HBC is one LAB.
Changing WAB or HBC does not affect the values in Table 5–3.

As a general guideline, keep the security routing interface channel width between the
two connecting secured regions as short as possible and the depth of the channel as
wide as possible. The channel width is the number of LABs that a security routing
interface abuts and the depth of the channel is the number of LABs a signal passes as
it goes through the routing channel.

Figure 5–24. Signals Crossing a Routing Interface

Table 5–2. Maximum Number of Signals Assigned in an Interface Region

To
From

A B C

A — 68 × HAB —

B 68 × HAB — 48 × WBC

C — 48 × WBC —

Table 5–3. Recommended Number of Signals to Ensure Routability

To
From

A B C

A — 17 × HAB —

B 17 × HAB — 12 × WBC

C — 12 × WBC —
Quartus II Handbook Version 13.1 June 2012 Altera Corporation
Volume 1: Design and Synthesis

Chapter 5: Quartus II Design Separation Flow 5–31
Routing Restrictions
In Figure 5–25, an optimal security interface for routing AB would have a channel
width equal to the height of secured region A (HAB) and a channel depth of one LAB
(WAB). Having a wide channel with a short depth increases the number of routing
resources available between two secured regions.

You can use the Routing Congestion task in the Chip Planner for a visual
representation of the routing utilization between secured regions. The Routing
Congestion task filters routing resources by type. Utilization of each routing resource
type is highlighted on a color gradient over the range that you specify. This tool can
help you adjust region sizes and security routing interface channel widths to help you
achieve an optimal floorplan. Figure 5–25 shows a design with the Routing
Congestion task in the Chip Planner and R24 routing utilization.

Figure 5–25. Routing Congestion
June 2012 Altera Corporation Quartus II Handbook Version 13.1
Volume 1: Design and Synthesis

5–32 Chapter 5: Quartus II Design Separation Flow
Application Example: Modifying a Fitter-Generated Floorplan for the Design Separation Flow
Application Example: Modifying a Fitter-Generated Floorplan for the
Design Separation Flow

In this application example, the design contains five partitions that you must pack
into secured regions. Figure 5–26 shows a block diagram of the design, the entities of
the design, and the connectivity between the five secured partitions.

The following steps outline a recommended design flow for creating a floorplan for
this design:

1. Create a LogicLock region for each partition that you must pack into a secured
region.

2. Set each LogicLock region with the following settings:

■ Size set to Auto,

■ State set to Floating,

■ Reserved set to On, and

■ Security Attributes set to Unsecured.

1 Running an initial placement with these settings generates non-overlapping
LogicLock regions that can be used as an initial floorplan.

3. On the Processing menu, point to Start and click Start Early Timing Estimate to
run an initial placement and routing. The initial placement and routing
approximates the size of each region and the general placement of the LogicLock
regions relative to other LogicLock regions to achieve timing closure. Figure 5–27
shows the floorplan that the early timing estimate generates.

Figure 5–26. Connectivity between Five Secured Partitions

Secure Region 1Connection to I/O

Connection to I/O

Connection to I/O

Secure Region 2

Secure Region 3

Secure Region 4

Secure Region 5
Quartus II Handbook Version 13.1 June 2012 Altera Corporation
Volume 1: Design and Synthesis

Chapter 5: Quartus II Design Separation Flow 5–33
Application Example: Modifying a Fitter-Generated Floorplan for the Design Separation Flow

4. In the LogicLock Regions window, select the LogicLock regions, right-click, and
then click Set Size and Origin to Previous Fitter Results.

5. Use the Design Partition Planner to view the connectivity between the different
regions. You can experiment with the relative placement of the blocks by dragging
and dropping each design partition. The wire bundles between design partitions
help you to determine a placement that has non-overlapping routing channels.

1 You must also consider the connectivity to the I/O banks when arranging
your floorplan. You can toggle the display of the connections between the
partitions and the I/O banks in the Design Partition Planner to help you
properly allocate I/O resources and to avoid conflicts between I/O
connections and inter-partition signals. To display routing between
partitions and the I/O banks, turn on Display connections to I/O banks in
the Bundle Configuration dialog box.

6. Set each LogicLock region to the necessary security attribute.

7. In the Chip Planner, adjust the size and placement of each LogicLock region using
the relative placement you created with the Design Partition Planner. Altera
recommends the following considerations when modifying your floorplan:

■ The floorplan must be complete. If unsecured logic that is non-contiguous due
to the placement of a secured region is present, use an empty reserved
LogicLock region to prevent a non-routable placement.

■ Each secured region must be a minimum of 8 × 8 LABs.

■ Each region that has I/O pins added as members of the LogicLock region
should overlap the I/O bank to which it is connected. You can use the I/O
bank background color map to visualize the boundaries between the I/O
banks (Figure 5–28).

■ A secured region must not cover all global resources that unsecured logic
require (such as clock pins and PLLs).

Figure 5–27. Initial Fitter-Generated Floorplan

3

1

2

54
June 2012 Altera Corporation Quartus II Handbook Version 13.1
Volume 1: Design and Synthesis

5–34 Chapter 5: Quartus II Design Separation Flow
Application Example: Modifying a Fitter-Generated Floorplan for the Design Separation Flow
8. Create security routing interfaces between each of the secured regions. Assign all
signals entering or exiting a region to a security routing interface.

Figure 5–29 shows the final floorplan result for this application example.

Figure 5–28. I/O Banks Layers Setting for Viewing Connectivity of LogicLock Regions to I/O Banks

Figure 5–29. Final Floorplan

2

1

4 5

3

Quartus II Handbook Version 13.1 June 2012 Altera Corporation
Volume 1: Design and Synthesis

Chapter 5: Quartus II Design Separation Flow 5–35
Report Panels
Report Panels
After the Fitter successfully places and routes your design with secured regions, the
Quartus II software generates security reports. Use the security reports to review the
secured regions, their associated routing interfaces, all inputs and outputs from each
secured region, and the I/O bank usage for each secured region. You can locate the
security reports in the Fitter section of the Compilation reports.

Secured LogicLock Region Summary
This report provides a summary of all secured regions in your design. Table 5–4
describes each column in the Secured LogicLock Region Summary report.

Security Routing Interfaces
This report summarizes the security routing interfaces. Table 5–5 describes each
column in the Security Routing Interfaces report.

Table 5–4. Secured LogicLock Region Report

Column Name Description

Secured LogicLock Region Lists all secured LogicLock regions in the design.

Security Attribute Lists the security attribute (unsecured,1, 2, or security routing interface) of the LogicLock
region.

Partition Assigned Lists the design partition assigned to the secured region.

Number of Input Signals
(Total Fanout)

Lists the number of inputs and fan-outs into a region. The input counts the number of unique
drivers that feed a secured region. The fan-out counts the total number of unique destinations
being fed by the input signals into the secured region. Figure 5–30 shows input signals and
fan-outs to a region.

Number of Output Signals
(Total Fanout)

Lists the number of outputs and fan-outs from a region. The output counts the number of
unique drivers sourcing a signal from the secured region. The fan-out counts the total number
of unique destinations fed by the output signal.

Figure 5–30. Input Signals and Fan-Outs to a Region

Set

CLRN

D Q

Set

CLRN

D Q

Secured Region A

Secured Region B

Secured Region A - Number of Output Signals (Total Fanout) : 1
Secured Region B - Number of Input Signals (Total Fanout) : 1
June 2012 Altera Corporation Quartus II Handbook Version 13.1
Volume 1: Design and Synthesis

5–36 Chapter 5: Quartus II Design Separation Flow
Report Panels
Table 5–5. Security Routing Interface Report

Column Name Description

Interface Name Lists all security routing interfaces in the design.

Abutting Region A First region that the security routing interface abuts (touches the border of the secured
region).

Abutting Region B Second region that the security routing interface abuts (touches the border of the secured
region).

Number of Signals A to B
(Total Fanout in B)

Lists the number of signal connections between region A and region B. The counts are shown
as signals and fan-outs. Signals list the number of unique drivers from region A. Fan-out lists
the number of unique destinations in region B that are fed by region A.

Number of Signals B to A
(Total Fanout in A)

Lists the number of signal connections between region B and region A. The counts are shown
as signals and fan-outs. Signals list the number of unique drivers from region B. Fan-out lists
the number of unique destinations in region A that are fed by region B.
Quartus II Handbook Version 13.1 June 2012 Altera Corporation
Volume 1: Design and Synthesis

Chapter 5: Quartus II Design Separation Flow 5–37
Quartus Settings File Syntax
Secured LogicLock Region Inputs and Outputs
This set of reports provides a detailed list of every signal that enters or exits a secured
region. There is one report per secured region.

Security I/O Bank Usage
This report displays the secured LogicLock region associated with each I/O bank, lists
the number of pins within each region, and lists the number of pins in use. Table 5–6
describes each column in the Secured LogicLock Region Inputs and Outputs report.

Quartus Settings File Syntax
This section contains the syntax description for each Quartus Settings File (.qsf)
assignment in the design separation flow.

LL_SECURITY_ROUTING_INTERFACE
This command changes a LogicLock region assignment to a security routing interface.

Type: Boolean; (ON/OFF—Defaults to OFF)

Syntax:

set_global_assignment -name LL_SECURITY_ROUTING_INTERFACE <value> \ -section_id
<section_identifier> LL_REGION_SECURITY_ LEVEL

LL_REGION_SECURITY_LEVEL
This command identifies the security level of a LogicLock region.

Type: Enumeration—Defaults to UNSECURED

■ 1

■ 2

■ UNSECURED

Syntax:

set_global_assignment -name LL_REGION_SECURITY_LEVEL <value> \
-section_id <section_identifier>

Table 5–6. Secured LogicLock Region Input and Output Report

Column Name Description

I/O Bank Lists all available I/O banks on the device.

Associated Region
An I/O bank becomes associated with a secured LogicLock region if any portion of the I/O bank
is covered by the region. If no secured region covers an I/O bank, “Unsecured Logic” is
displayed, and all pins of the I/O bank are available for unsecured use.

Pin Locations Used /
Pin Locations Covered
by Region

Displays the ratio of pins with a signal assignment in the I/O bank to the number of possible I/O
pin assignments.
June 2012 Altera Corporation Quartus II Handbook Version 13.1
Volume 1: Design and Synthesis

5–38 Chapter 5: Quartus II Design Separation Flow
Document Revision History
LL_MEMBER_OF_SECURITY_ROUTING_INTERFACE
This command assigns an I/O pin from a secured region to a security routing
interface. <value> and <section_id> denote the name of the routing interface region.
<to> specifies the name of the signal.

Type: String

Syntax:

set_instance_assignment -name \ LL_MEMBER_OF_SECURITY_ROUTING_INTERFACE
<value> -to <to> \
-section_id <section_id>

LL_SIGNAL_SECURITY_LEVEL
This command sets the security level of a signal. The default value is the security level
of the region that generates the signal. This assignment may be used only to lower a
security level.

Type: Enumeration

■ UNSECURED

■ 1

■ 2

Syntax:

set_instance_assignment -name LL_SIGNAL_SECURITY_LEVEL <value> \
-to <to> -section_id <section_id>

Document Revision History
Table 5–7 lists the revision history for this chapter.

Table 5–7. Document Revision History (Part 1 of 2)

Date Version Changes

June 2012 12.0.0 ■ Removed survey link.

November 2011 11.1.0

■ Updated Table 5–1 on page 5–8.

■ Updated “Using Secured Regions” on page 5–9 and “Understanding Fencing Regions” on
page 5–11.

■ General editorial update.

■ Template update.
Quartus II Handbook Version 13.1 June 2012 Altera Corporation
Volume 1: Design and Synthesis

Chapter 5: Quartus II Design Separation Flow 5–39
Document Revision History
f For previous versions of the Quartus II Handbook, refer to the Quartus II Handbook
Archive.

December 2010 10.1.0

■ Modified the former “Avoiding Child Partitions” section into the new “Avoiding Multiple
Design Partitions With a Secured Region” on page 4–6 section and added information
about multi-hierarchy partitions.

■ Updated the “Using Secured Regions” on page 4–9 section.

■ Updated the “Making Design Separation Flow Location Assignments in the Chip Planner”
on page 4–10 section.

■ Updated the “Creating a Complete Floorplan” on page 4–14.

■ Updated the “Working with Global Signals” on page 4–21 and “Assigning I/O Pins” on
page 5–25 sections with information about the
LL_IGNORE_IO_PIN_SECURITY_CONSTRAINT assignment.

■ Added the “Making Post Compilation Edits” on page 4–26.

■ Updated the “Number of Signals in Routing Interfaces” on page 4–29.

■ Added feature licensing information.

■ Updated figures and overall editorial update.

■ Template update.

July 2010 10.0.0 Initial release. Content originated from AN 567: Quartus II Design Separation Flow.

Table 5–7. Document Revision History (Part 2 of 2)

Date Version Changes
June 2012 Altera Corporation Quartus II Handbook Version 13.1
Volume 1: Design and Synthesis

http://www.altera.com/literature/lit-qts_archive.jsp
http://www.altera.com/literature/lit-qts_archive.jsp

© 2013 Altera Corporation. All rights reserved. ALTERA, ARRI
are trademarks of Altera Corporation and registered in the U.S
trademarks or service marks are the property of their respectiv
semiconductor products to current specifications in accordance
services at any time without notice. Altera assumes no respons
described herein except as expressly agreed to in writing by Al
on any published information and before placing orders for pr

Quartus II Handbook Version 13.1
Volume 1: Design and Synthesis
November 2013
Section 2. System Design with Qsys
This section provides information about Qsys. Qsys is a powerful system integration
tool which is included as part of the Quartus II software. Qsys automates the task of
capturing of integrating customized HDL components, which may include IP cores,
verification IP, and other design modules. You can use Qsys to integrate your own
components with the components that Altera® or third-party developers provide. In
some cases, you can implement an entire design using components from the Qsys
component library.

This section includes the following chapters:

■ Chapter 6, Creating a System With Qsys

This chapter provides an overview of the Qsys system integration tool, including
an introduction to hierarchical system design.

■ Chapter 7, Creating Qsys Components

This chapter introduces Qsys components and the Qsys component library. It also
provides an overview of the Qsys component editor which you can use to define
custom components.

■ Chapter 8, Qsys Interconnect

This chapter discusses the Qsys interconnect, a high-bandwidth structure for
connecting components that use Avalon® interfaces.

■ Chapter 9, Optimizing Qsys System Performance

This chapter provides information on optimizing system performance with the
Qsys system integration tool. Following the design practices recommended in this
chapter can improve the maximum clock frequency, concurrency and throughput,
logic utilization, or even power utilization of your system.

■ Chapter 10, Component Interface Tcl Reference

This chapter describes an alternative method for defining Qsys components by
declaring their properties and behaviors in a Hardware Component Description
File (_hw.tcl). It also provides a reference for the Tool Command Language (Tcl)
commands that describe Qsys components.

■ Chapter 11, Qsys System Design Components

This chapter describes the structure of Qsys components, with an emphasis on
using the Qsys Component Editor to create the Hardware Component Description
File (_hw.tcl), which describe and package components that you can use in a Qsys
system.
A, CYCLONE, HARDCOPY, MAX, MEGACORE, NIOS, QUARTUS and STRATIX words and logos
. Patent and Trademark Office and in other countries. All other words and logos identified as
e holders as described at www.altera.com/common/legal.html. Altera warrants performance of its
 with Altera's standard warranty, but reserves the right to make changes to any products and
ibility or liability arising out of the application or use of any information, product, or service
tera. Altera customers are advised to obtain the latest version of device specifications before relying
oducts or services.

ISO
9001:2008
Registered

http://www.altera.com/common/legal.html
http://www.altera.com/support/devices/reliability/certifications/rel-certifications.html
http://www.altera.com/support/devices/reliability/certifications/rel-certifications.html

6Creating a System With Qsys

2013.11.4

QII51020 Subscribe Send Feedback

Qsys is a system integration tool included as part of the Quartus® II software. Qsys captures system-level
hardware designs at a high level of abstraction and automates the task of defining and integrating customized
HDL components. These components include IP cores, verification IP, and other design modules. Qsys
facilitates design reuse by packaging and integrating your custom components with Altera® and third-party
IP components. Qsys automatically creates interconnect logic from the high-level connectivity you specify,
thereby eliminating the error-prone and time-consuming task of writing HDL to specify system-level
connections.

Qsys is more powerful if you design your custom components using standard interfaces. By using standard
interfaces, your components inter-operate with the components in the Qsys Library. In addition, you can
take advantage of bus functional models (BFMs), monitors, and other verification IP to verify your design.

Qsys supports Avalon®, AMBA® AXI3™ (version 1.0), AMBA AXI4™ (version 2.0), and AMBA APB™ 3
(version 1.0) interface specifications. Qsys does not support AXI4-Lite.

Qsys provides the following advantages when designing a system:

• Automates the process of customizing and integrating components
• Supports up to 64-bit addressing
• Supports modular system design
• Supports visualization of systems
• Supports optimization of interconnect and pipelining within the system
• Fully integrated with the Quartus II software

Related Information

• Avalon Interface Specifications

• AMBA Protocol Specifications

• Creating Qsys Components

• Qsys Interconnect

Component Interface Support
Components can have any number of interfaces in any combination. Each interface represents a set of signals
that you can connect within a Qsys system, or export outside of a Qsys system.

ISO
9001:2008
Registered

© 2013 Altera Corporation. All rights reserved. ALTERA, ARRIA, CYCLONE, HARDCOPY, MAX, MEGACORE, NIOS, QUARTUS and STRATIX words
and logos are trademarks of Altera Corporation and registered in the U.S. Patent and Trademark Office and in other countries. All other
words and logos identified as trademarks or service marks are the property of their respective holders as described at
www.altera.com/common/legal.html. Altera warrants performance of its semiconductor products to current specifications in accordance with
Altera's standard warranty, but reserves the right to make changes to any products and services at any time without notice. Altera assumes
no responsibility or liability arising out of the application or use of any information, product, or service described herein except as expressly
agreed to in writing by Altera. Altera customers are advised to obtain the latest version of device specifications before relying on any published
information and before placing orders for products or services.

www.altera.com

101 Innovation Drive, San Jose, CA 95134

https://www.altera.com/servlets/subscriptions/alert?id=QII51020
mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20(QII51020%202013.11.4)%20Creating%20a%20System%20With%20Qsys&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.
http://www.altera.com/literature/manual/mnl_avalon_spec.pdf
http://infocenter.arm.com/help/topic/com.arm.doc.set.amba/index.html
http://www.altera.com/literature/hb/qts/qsys_components.pdf
http://www.altera.com/literature/hb/qts/qsys_interconnect.pdf
http://www.altera.com/support/devices/reliability/certifications/rel-certifications.html
http://www.altera.com/support/devices/reliability/certifications/rel-certifications.html
http://www.altera.com/support/devices/reliability/certifications/rel-certifications.html

Qsys components can include the following types of interfaces:

• Memory-Mapped—Implements a partial crossbar interconnect structure (Avalon-MM, AXI, and APB)
that provides concurrent paths between master and slaves. Interconnect consists of synchronous logic
and routing resources inside the FPGA, and implementation is based on a network-on-chip architecture.

• Streaming—Connects Avalon Streaming (Avalon-ST) sources and sinks that streamunidirectional data,
as well as high-bandwidth, low-latency components. Streaming creates datapaths for unidirectional traffic,
including multichannel streams, packets, and DSP data. The Avalon-ST interconnect is flexible and can
implement on-chip interfaces for industry standard telecommunications and data communications cores,
such as Ethernet, Interlaken, and video. You can define bus widths, packets, and error conditions.

• Interrupts—Connects interrupt senders and the interrupt receivers of the component that serves them.
Qsys supports individual, single-bit interrupt requests (IRQs). In the event that multiple senders assert
their IRQs simultaneously, the receiver logic (typically under software control) determines which IRQ
has highest priority, then responds appropriately.

• Clocks—Connects clock output interfaces with clock input interfaces. Clock outputs can fan-out without
the use of a bridge. A bridge is required only when a clock from an external (exported) source connects
internally to more than one source.

• Resets—Connects reset sources with reset input interfaces. If your system requires a particular positive-
edge or negative-edge synchronized reset, Qsys inserts a reset controller to create the appropriate reset
signal. If you design a system with multiple reset inputs, the reset controller ORs all reset inputs and
generates a single reset output.

• Conduits—Connects point-to-point conduit interfaces, or represent signals that are exported from the
Qsys system. Qsys uses conduits for component I/O signals that are not part of any supported standard
interface. You can connect two conduits directly within a Qsys system as a point-to-point connection,
or conduit interfaces can be exported and brought to the top-level of the system as top-level system I/O.
You can use conduits to connect to external devices, for example external DDR SDRAM memory, and
to FPGA logic defined outside of the Qsys system.

Understanding the Qsys Design Flow
Figure 6-1 illustrates a Qsys design flow in which you create a custom IP component and package your
custom HDL as a component using the Component Editor or manually creating a _hw_tcl file. In this
bottom-up design flow, you simulate your custom IP before integrating it with other components as a Qsys
system and complete Quartus II project.

Creating a System With QsysAltera Corporation

Send Feedback

QII51020
Understanding the Qsys Design Flow6-2 2013.11.4

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Creating%20a%20System%20With%20Qsys%20(QII51020%202013.11.4)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Figure 6-1: Qsys Design Flow

No

No

Yes

Yes

Simulation at Unit-Level,
Possibly Using BFMs

Debug Design

Does
Simulation Give
Expected Results?

Debug Design

Does
Simulation Give
Expected Results?

Complete System, Add and
Connect All IP Components,
Define Memory Map If
Needed

Perform System-Level
Simulation

Generate Qsys
System

Yes

No

Modify Design or
Constraints

Does
HW Testing Give
Expected Results? Qsys System Complete

Constrain, Compile
in Quartus II Generating .sof

Download .sof to PCB
with Altera FPGA

Create Component
Using Component Editor, or
by Manually Creating the

_hw.tcl File

1

2

3

5
8

9

10

6

7

4

In an alternative design flow, you can begin by designing the Qsys system, and then define and instantiate
custom Qsys components, clarifying system requirements earlier in the design process.

Related Information
Creating Qsys Components

Creating a Qsys System
You can create a Qsys system in the Quartus II software by selecting Qsys System File in the New dialog
box, or clicking Tools > Qsys. To open a previously created Qsys design, click Open on the File menu in
the Quartus II software window, or the Qsys window.

Altera CorporationCreating a System With Qsys

Send Feedback

6-3Creating a Qsys System
QII51020
2013.11.4

http://www.altera.com/literature/hb/qts/qsys_components.pdf
mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Creating%20a%20System%20With%20Qsys%20(QII51020%202013.11.4)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Related Information
Creating Qsys Components

Component Interface Tcl Reference

Adding and Connecting System Contents
The System Contents tab displays the components that you add to your system, and allows you to connect
the interfaces of the modules.

Adding Components
To add a component to your system, select the component in the Library, and then click Add.

When you select a component type and clickAdd, the new instance is added to your system, and a parameter
editor opens that allows you to customize the new instance. The new instance appears in the SystemContents
tab, as well as the Hierarchy tab

You can type some or all of the component’s name in the Library search box to help locate a particular
component type. For example, you can type memory to locate memory-mapped components, or axi to
locate AXI interconnect components.

Connecting Components
When you add connections to a Qsys system, you can connect the interfaces of the modules in the System
Contents tab. The individual signals in each interface are connected by the Qsys interconnect when the
HDL for the system generates. You connect interfaces of compatible types and opposite directions. For
example, you can connect a memory-mapped master interface to a slave interface, and an interrupt sender
interface to an interrupt receiver interface.

Possible connections between interfaces in the system show as gray lines and open circles. When you make
a connection, Qsys draws the connection line in black, and fills the connection circle. To make a connection,
click the open circle at the intersection of the two interface names. Clicking a filled-in circle removes the
connection.

When you are done adding connections in your system, you can deselect Allow Connection Editing in the
right-click menu, which puts the Connections column into read-only mode and hides the possible
connections. Figure 6-2 illustrates the Connections column.

Creating a System With QsysAltera Corporation

Send Feedback

QII51020
Adding and Connecting System Contents6-4 2013.11.4

http://www.altera.com/literature/hb/qts/qsys_components.pdf
http://www.altera.com/literature/hb/qts/qsys_tcl.pdf
mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Creating%20a%20System%20With%20Qsys%20(QII51020%202013.11.4)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Figure 6-2: Connections Column in the Systems Contents Tab

Related Information
Connecting Components

Filtering Components
You can use the Filters dialog box to filter the display of your system in the System Contents tab. You can
filter the display of your system by interface type, instance name, or by using custom tags. For example, you
can view only instances that includememory-mapped interfaces, instances that are connected to a particular
Nios II processor, or temporarily hide clock and reset interfaces to simplify the display.

Related Information
Filters Dialog Box

Managing Views
The View menu allows you to select and open any view (tab). Qsys views allow you to review your design
from different perspectives. Some views allow you to focus on a particular part of the system, while other
views show the same data in another way. Making selections in the system-level views updates other views,
and shows the other views in the context of the system-level selection.

For example, selecting cpu_0 in the Hierarchy tab updates the Parameters tab to show the parameters for
cpu_0.

When you double-click a message in the Messages tab, Qsys selects the associated element in the
relevant view to facilitate debugging.

Note:

When you create a new Qsys system, the Library, Hierarchy, and System Contents tabs appear by default.
You can arrange your system workspace by dragging and dropping, and then grouping tabs in an order
appropriate to your design process. All tabs are dockable and you can close, hide, or minimize tabs that you
are not using. Minimized tabs appear minimized in the docking area below the menu bar. Tool tips on tab
corners display possible workspace arrangements, for example, disconnecting or restoring a tab to the Qsys
workspace.

Altera CorporationCreating a System With Qsys

Send Feedback

6-5Filtering Components
QII51020
2013.11.4

http://quartushelp.altera.com/current/mergedProjects/system/qsys/qsys_pro_connect_comps.htm
http://quartushelp.altera.com/current/mergedProjects/system/qsys/qsys_db_filter.htm
mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Creating%20a%20System%20With%20Qsys%20(QII51020%202013.11.4)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

When you save theQsys system, the current view arrangement is saved, andwhen you open theQsys system,
the last saved view arrangement is restored. You can use the Reset View Layout command on the View
menu to restore the Qsys workspace to its default configuration.

Qsys contains some views which are not documented and appear on the View menu as "Beta". The
purpose in presenting these views is to allow designers to explore their usefulness in Qsys system
development.

Note:

Using the Hierarchy Tab
TheHierarchy tab is a full systemhierarchical navigator, which expands the system contents to showmodules,
interfaces, signals, contents of subsystems, and connections.

The graphical interface of the Hierarchy tab displays a unique icon for each element represented in the
system, including interfaces, directional pins, IP blocks, and system icons that show exported interfaces and
the instances of components thatmake up a system, as shown in Figure 6-3. In this figure, context sensitivity
between the views is also shown with the ram_master selection highlighted in both the SystemContents
and Hierarchy tabs.

Figure 6-3: Hierarchy Tab Expanding Elements in the System Contents Tab

Creating a System With QsysAltera Corporation

Send Feedback

QII51020
Using the Hierarchy Tab6-6 2013.11.4

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Creating%20a%20System%20With%20Qsys%20(QII51020%202013.11.4)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

You can use the Hierarchy tab to browse, connect, and parameterize IP in your system. The Hierarchy tab
allows you to drive changes in other views and interact with your system in more detail. As shown in Figure
6-3, the Hierarchy tab expands each interface that appears on the System Contents tab and allows you to
view the subcomponents, associated elements, and signals for each interface. Use the Hierarchy tab to focus
on a particular area of your system; coordinating selections in the Hierarchy tab with open views in your
workspace. Reviewing your system using the Hierarchy tab in conjunction with relevant views is also useful
during the debugging phase because you can contain and focus your debugging efforts to a single element
in your system.

The Hierarchy tab provides the following information and functionality:

• The connections between signals.
• The names of signals included in exported interfaces.
• Right-click menu to connect, edit, add, remove, or duplicate elements in the hierarchy.
• The internal connections of Qsys subsystems that are included as components. In contrast, the System

Contents tab displays only the exported interfaces of Qsys subsystems included as components.

Using the Parameters Tab
The Parameters tab allows you to review and change component parameters.

In the Parameters tab, Qsys displays the parameter editor for the current selection in the Hierarchy tab.
When you double-click a component in the System Contents tab, Qsys opens a new window and displays
the Parameters, Block Symbol, and Presets tabs together in a single window.

With theParameters tab open, when you click an element in theHierarchy tab, Qsys displays the parameter
editor for the selected element.

In the parameter editor, you can change the name as it appears on the System Contents tab for top-level
instances. Changes you make on the Parameters tab are immediately reflected on open views in your
workspace.

If the current selection is for an interface in the system, theParameters tab also allows you to review interface
timing. Figure 6-4 shows the timing for the Avalon-MM DMA write master for the PCI Express Subsystem
Example. Qsys display the the read and write waveforms at the bottom of the Parameters tab.

Altera CorporationCreating a System With Qsys

Send Feedback

6-7Using the Parameters Tab
QII51020
2013.11.4

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Creating%20a%20System%20With%20Qsys%20(QII51020%202013.11.4)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Figure 6-4: Avalon-MM Write Master Timing Waveforms Available on the Parameters Tab

Related Information

• PCI Express Subsystem Example on page 6-32

Using the Presets Tab
In this view, Qsys displays the presets for the currently selected component.

The Presets tab allows you to create, modify, and save custom component or IP core parameter values as a
preset file. You can then apply the parameter values in the preset file to the current component that you are
parameterizing.

Related Information

• Presets Editor (Qsys)

Working With Presets for Supported IP Components
Some components provide preset configurations. If the component you are adding has presets available,
then the Presets Editor appears in the editor window and lists presets that you can apply to your component,
depending on the design protocol. When you apply a preset to a component, the parameters with specific
required values for the protocol are automatically set for you.

You can also access the Presets Editor by clicking View > Presets.Note:

You can search for text to filter the Presets list. For example, if you select the DDR3 SDRAM Controller
with UniPHY component, and then type 1g micron 256, the Presets list shows only those presets that
apply to the 1gmicron 256filter request. Presets whose parameter valuesmatch the current parameter settings
are shown in bold.

Creating a System With QsysAltera Corporation

Send Feedback

QII51020
Using the Presets Tab6-8 2013.11.4

http://quartushelp.altera.com/current/mergedProjects/system/qsys/qsys_db_presets.htm
mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Creating%20a%20System%20With%20Qsys%20(QII51020%202013.11.4)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Selecting a preset does not prevent you from changing any parameter to meet the requirements of your
design. Clicking Update allows you to update parameter values for a custom preset. The Update Preset
dialog box displays the default value, which you can edit, and the current value, which is static.

You can also create your own preset by clicking New. When you create a preset, you specify a name,
description and the list of parameters whose values are set by the preset. You can remove a preset from the
Quartus II project directory by clicking Delete.

Related Information
Presets Editor

Using the Block Symbol Tab
In this view, Qsys displays the block symbol for the currently selected element.

When the Block Symbol view is open, Qsys displays a graphical representation of the element selected in
the Hierarchy or System Contents tabs. In the Block Symbol tab, the Show signals options allows you to
turn on of off signal graphics, if applicable.

The Block Symbol tab reflects changes made in other views.

Using the Address Map Tab
The AddressMap tab provides a table including the memory-mapped slaves in your design and the address
range that each connected memory-mapped master uses to address each slave.

The table shows the slaves on the left and masters across the top, with the address span of the connection
shown in each cell. If there is no connection between a master and a slave, the table cell is empty.

You can design a system where two masters access a slave at different addresses. If you use this feature, the
Base and End address columns of the System Contents tab are labeled "mixed" rather than providing the
address range.

Follow these steps to change or create a connection between master and slave components:

1. In Qsys, click the Address Map tab.
2. Locate the table cell that represents the connection between the master and slave component pair.
3. Either type in a base address, or update the current base address in the cell.

The base address of a slave component must be a multiple of the address span of the component.
This restriction is part of the Qsys interconnect to allow the address decoding logic to be efficient,
and to achieve the best possible fMAX.

Note:

Using the Clock Tab
The Clocks tab defines the Name, Source, and frequency (MHz) of each clock in your system.

Click Add to add a new clock to the system.

Using the Project Settings Tab
The Project Settings tab allows you to view and change the properties of your Qsys system.

Table 6-1: System-Level Parameters Available on the Project Settings Tab

DescriptionParameter Name

Specifies the Altera device family.Device Family

Altera CorporationCreating a System With Qsys

Send Feedback

6-9Using the Block Symbol Tab
QII51020
2013.11.4

http://quartushelp.altera.com/current/mergedProjects/system/qsys/qsys_db_presets.htm
mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Creating%20a%20System%20With%20Qsys%20(QII51020%202013.11.4)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

DescriptionParameter Name

Specifies the target device for the selected device family.Device

Specifies the default implementation for automatically inserted clock crossing
adapters. The following choices are available:

• Handshake–This adapter uses a simple hand-shaking protocol to propagate
transfer control signals and responses across the clock boundary. This
methodology uses fewer hardware resources than the FIFO type because each
transfer is safely propagated to the target domain before the next transfer can
begin. The Handshake adapter is appropriate for systems with low throughput
requirements.

• FIFO–This adapter uses dual-clock FIFOs for synchronization. The latency of
the FIFO-based adapter is a couple of clock cycles more than the handshaking
clock crossing component. However, the FIFO-based adapter can sustain higher
throughput because it supports multiple transactions at any given time. The
FIFO-based clock crossers require more resources. The FIFO adapter is
appropriate for memory-mapped transfers requiring high throughput across
clock domains.

• Auto–If you select Auto, Qsys specifies the FIFO adapter for bursting links,
and the Handshake adapter for all other links.

Clock crossing adapter
type

Specifies the maximum number of pipeline stages that Qsys may insert in each
command and response path to increase the fMAX at the expense of additional
latency. You can specify between 0–4 pipeline stages, where 0 means that the
interconnect has a combinational data path. Choosing 3 or 4 pipeline stages may
significantly increase the logic utilization of the system. This setting is specific for
each Qsys system or subsystem, meaning that each subsystem can have a different
setting. Note that the additional latency is for both the command and response
directions.

You can manually adjust this setting in the Memory-Mapped
Interconnect tab accessed by clicking Show System With Qsys
Interconnect command on the System menu.

Note:

Limit interconnect
pipeline stages to

A unique integer value that is set to a timestamp just before Qsys system generation
that Qsys uses to check for software compatibility.

Generation Id

Qsys generates a warning message if the selected device family and target device do not match the
Quartus II software project settings. Also, when you open Qsys from within the Quartus II software,

Note:

the device type in your Qsys project is replaced with the selected device in your open Quartus II
software project.

Related Information
Manually Controlling Pipelining in the Qsys Interconnect on page 6-20

Creating a System With QsysAltera Corporation

Send Feedback

QII51020
Using the Project Settings Tab6-10 2013.11.4

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Creating%20a%20System%20With%20Qsys%20(QII51020%202013.11.4)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Using the Instance Parameters Tab
The Instance Parameters tab allows you to define parameters for a Qsys system. You can use instance
parameters to modify a Qsys system when you use the system as a subcomponent in another Qsys system.
The higher-level Qsys system can assign values to these instance parameters.

The Instance Script on the Instance Parameters tab defines how the specified values for the instance
parameters should affect your Qsys design subcomponents. The instance script allows you to make queries
about the instance parameters you define and set the values of the parameters for the subcomponents in
your design.

When you click Preview Instance, Qsys creates a preview of the current Qsys system with the specified
parameters and instance script, and shows the parameter editor for the instance. This command allows you
to see how an instance of this system appears when you use it in another system. The preview instance does
not affect your saved system.

To use instance parameters, the components or subsystems in your Qsys system must have parameters that
can be set when they are instantiated in a higher-level system. Many components in the Library have
parameters that you can set when adding the component to your system. If you create your own IP
components, you use the _hw.tcl file to specify which parameters can be set when the component is added
to a system. If you create hierarchical Qsys systems, each Qsys system in the hierarchy can include instance
parameters to pass parameter values through multiple levels of hierarchy.

Related Information
Working with Instance Parameters in Qsys

Creating an Instance Script
The first command in an instance scriptmust specify the Tcl command version for the script. This command
ensures the Tcl commands behave identically in future versions of the tool. Use the following Tcl command
to specify the version of the Tcl commands, where <version> is the Quartus II software version number,
such as 13.1:

package require -exact qsys <version>

To use Tcl commands that work with instance parameters in the instance script, you must specify the
commandswithin a Tcl procedure called a composition callback. In the instance script, you specify the name
for the composition callback with the following command:

set_module_property COMPOSITION_CALLBACK <name of callback procedure>

Specify the appropriate Tcl commands inside the Tcl procedure with the following syntax:

proc <name of procedure defined in previous command> {}
{#Tcl commands to query and set parameters go here}

Use Tcl commands in the procedure to query the parameters of a Qsys system, or to set the values of the
parameters of the subcomponents instantiated in the system.

Altera CorporationCreating a System With Qsys

Send Feedback

6-11Using the Instance Parameters Tab
QII51020
2013.11.4

http://quartushelp.altera.com/current/mergedProjects/system/qsys/qsys_pro_working_user_parameters.htm
mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Creating%20a%20System%20With%20Qsys%20(QII51020%202013.11.4)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Table 6-2: Supported Tcl Commands Used in Instance Scripts

DescriptionValueCommand Name

Get the names of all defined
parameters (as a space-separated
list).

Noneget_parameters

Get the value of a parameter.<parameter name >get_parameter_value

Get the names of parameters on a
child instance that can be
manipulated by the parent (as a
space-separated list).

<instance name>get_instance_parameters

Get the value of a parameter for a
child instance.

<instance name>get_instance_parameter_
value

Send a message to the user of the
component, using one of the
message levels Error, Warning,
Info, or Debug. Enclose text with
multiple words in quotation
marks.

<message level> <message text>send_message

Set a parameter value for a child
instance.

<instance name> <parameter name>
<parameter value>

set_instance_parameter_
value

You can use standard Tcl commands to manipulate parameters in the script, such as the set command to
create variables, or the expr command for mathematical manipulation of the parameter values.

Example 6-1 shows an instance script of a system that uses a parameter calledpio_width to set thewidth
parameter of a parallel I/O (PIO) component. Note that the script combines theget_parameter_value
and set_instance_parameter_value commands using brackets.

Example 6-1: Instance Script Example

Request a specific version of the scripting API
package require -exact qsys 13.1

Set the name of the procedure to manipulate parameters:
set_module_property COMPOSITION_CALLBACK compose

proc compose {} {

Get the pio_width parameter value from this Qsys system and
pass the value to the width parameter of the pio_0 instance

set_instance_parameter_value pio_0 width \

Creating a System With QsysAltera Corporation

Send Feedback

QII51020
Creating an Instance Script6-12 2013.11.4

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Creating%20a%20System%20With%20Qsys%20(QII51020%202013.11.4)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

[get_parameter_value pio_width]
}

Related Information
Component Interface Tcl Reference

Using the Interconnect Requirements Tab
The Interconnect Requirements tab allows you to assign interconnect requirements for the system or an
interface. The Interconnect Requirements assignments influence Qsys interconnect generation.

Interconnect Requirements settings also appear in other tabs. For instance, the Limit interconnect pipeline
stages option appears on the Project Settings tab.

Selections in the Setting and Value lists vary depending on your selection in the Identifier column.

Configuring Interconnect Requirements for the System
Selecting $system in the Identifier list on the Interconnect Requirements tab allows you to apply
system-wide interconnect assignments.

Table 6-3: Settings and Values for the $system Identifier

ValueSetting

You can specify between 0–4 pipeline stages, where 0
means that the interconnect has a combinational data
path. Choosing 3 or 4 pipeline stagesmay significantly
increase the logic utilization of the system. This setting
is specific for eachQsys systemor subsystem,meaning
that each subsystem can have a different setting. Note
that the additional latency is added once on the
command path, and once on the response path.

Limit interconnect pipeline stages to—Specifies the
maximum number of pipeline stages that Qsys may
insert in each command and response path to increase
the fMAX at the expense of additional latency.

Altera CorporationCreating a System With Qsys

Send Feedback

6-13Using the Interconnect Requirements Tab
QII51020
2013.11.4

http://www.altera.com/literature/hb/qts/qsys_tcl.pdf
mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Creating%20a%20System%20With%20Qsys%20(QII51020%202013.11.4)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

ValueSetting

• Handshake–This adapter uses a simple hand-
shaking protocol to propagate transfer control
signals and responses across the clock boundary.
This methodology uses fewer hardware resources
because each transfer is safely propagated to the
target domain before the next transfer can begin.
TheHandshake adapter is appropriate for systems
with low throughput requirements.

• FIFO–This adapter uses dual-clock FIFOs for
synchronization. The latency of the FIFO-based
adapter is a couple of clock cycles more than the
handshaking clock crossing component.However,
the FIFO-based adapter can sustain higher
throughput because it supports multiple transac-
tions at any given time. The FIFO-based clock
crossers requiremore resources. TheFIFO adapter
is appropriate for memory-mapped transfers
requiring high throughput across clock domains.

• Auto–If you select Auto, Qsys specifies the FIFO
adapter for bursting links, and the Handshake
adapter for all other links.

Clock crossing adapter type—Specifies the default
implementation for automatically inserted clock
crossing adapters.

True or FalseAutomate default slave insertion—Specifies whether
you want Qsys to automatically insert a default slave
for undefinedmemory region accesses during system
generation.

Configuring Interconnect Requirements for an Interface
Selecting an interface in the Identifier list on the Interconnect Requirements tab allows you to apply
interface interconnect assignments.

ValueSetting

• Non-secure
• Secure
• Secure ranges
• TrustZone-aware

You can also set these valuess in the Security
column in the System Contents tab.

Note:

Security

Allows you to type in an address valid range.Secure address ranges

True or FalseAdd performance monitor

Creating Hierarchical Systems
Qsys supports team-based and hierarchical system design.

Creating a System With QsysAltera Corporation

Send Feedback

QII51020
Configuring Interconnect Requirements for an Interface6-14 2013.11.4

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Creating%20a%20System%20With%20Qsys%20(QII51020%202013.11.4)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

You can include any Qsys system as a component in another Qsys system. In a team-based design flow, you
can have one or more systems in your design developed simultaneously by other team members, decreasing
time-to-market for the complete design.

Figure 6-5 shows the top-level of a Qsys hierarchical design that implements a PCI Express™ to Ethernet
bridge. This example combines separate PCI Express and Ethernet subsystems with Altera’s DDR3 SDRAM
Controller with UniPHY IP core.

Figure 6-5: Top-Level for a PCI Express to Ethernet Bridge

DDR3
SDRAM

Ethernet
Subsystem

Ethernet

Embedded Cntl

PCI Express
Subsystem

Qsys System
PCIe to Ethernet Bridge

PCIe

CSR
Mem
Mstr

Mem
Slave

PHY
Cntl

Mem
Mstr

CSR

DDR3
SDRAM
Controller

Hierarchical system design in Qsys offers the following advantages:

• Enables team-based, modular design by dividing large designs into subsystems.
• Enables design reuse by allowing you to use any Qsys system as a component.
• Enables scalability by allowing you to instantiate multiple instances of a Qsys system.

Adding Systems to the Library
Any Qsys system is available for use as a component in other Qsys systems.

Figure 6-6 shows the library, including thepcie_subsystem as a component in the library for theFigure
6-10 example system. To include systems as components in other designs, you can add the system to the
library, or include the directory for the system in the IP search path for Qsys.

Altera CorporationCreating a System With Qsys

Send Feedback

6-15Adding Systems to the Library
QII51020
2013.11.4

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Creating%20a%20System%20With%20Qsys%20(QII51020%202013.11.4)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Figure 6-6: Qsys Library

Creating a Component Based on a System
TheExport Systemas hw.tcl Component command on the Filemenu allows you to save the system currently
open inQsys as an _hw.tcl file in the currentworking directory. The saved system appears as a new component
in the System category under Project in the Qsys Library.

Qsys 64-Bit Addressing Support
Qsys interconnect supports up to 64-bit addressing for all Qsys interfaces and components, with a range of:
0x0000 0000 0000 0000 to 0xFFFF FFFF FFFF FFFF, inclusive.

In Qsys, address parameters appear in the Base and End columns on the System Contents tab, on the
AddressMap tab, in the parameter editor, and in validationmessages. TheQsys GUI displays asmany digits
as needed in order to display the top-most set bit, for example, 12 hex digits for a 48-bit address.

A Qsys system can have multiple 64-bit masters, with every master having its own address space. You can
share slaves among masters and masters can map slaves in different ways; for example, one master can
interact with slave 0 at base address 0000_0000_0000, and another master can see the same slave at base
address c000_000_000.

Qsys supports 64-bit addresses for narrow-to-wide and wide-to-narrow transactions across Avalon-MM
and AXI interfaces.

Quartus II debug tools that provide access to the state of an addressable system via the Avalon-MM
interconnect are also 64-bit compatible and process within a 64-bit address space, including a JTAG to
Avalon master bridge.

For more information about 64-bit support, refer toAddress Span Extender inCreating a Systemwith Qsys.

Creating a System With QsysAltera Corporation

Send Feedback

QII51020
Creating a Component Based on a System6-16 2013.11.4

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Creating%20a%20System%20With%20Qsys%20(QII51020%202013.11.4)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Related Information

• Creating a System with Qsys

Creating Secure Systems (TrustZones)
TrustZone is the security extension of theARMarchitecture. It includes the concept of secure and non-secure
transactions, and a protocol for processing between the designations. TrustZone security support is a part
of the Qsys interconnect.

In Qsys, you can set memory-mapped interfaces to secure, non-secure, or TrustZone-aware. AXI masters
are always treated as TrustZone-aware. Unless specified, all othermaster and slave interfaces (such as Avalon-
MM) are treated as non-secure, by default.

Qsys provides compilation-time TrustZone support for non-TrustZone-aware components, for example,
when anAvalonmaster needs to communicate with a secure AXI slave. For example, the designer can specify
whether the connection point is secure or non-secure at compilation time. You can specify secure address
ranges on memory slaves, if a per-interface security setting is not sufficient.

For TrustZone-aware masters, the interconnect uses the master's AxPROT signal to determine the security
status of each transaction.

Table 6-4 summarizes secure and non-secure access between master, slave, and memory components in
Qsys. Per-access refers to allowing a TrustZone-aware master to allow or disallow a particular access (or
transactions).

Table 6-4: Secure and Non-Secure Access Between Master, Slave, and Memory Components

Non-TrustZone-aware Master

Non-Secure

Non-TrustZone-aware Master

Secure

TrustZone-aware MasterTransaction Type

OKOKOKTrustZone-aware slave/
memory

Not allowedOKPer-accessNon-TrustZone-aware
slave (secure)

OKOKOKNon-TrustZone-aware
slave (non-secure)

Not allowedOKPer-accessNon-TrustZone-aware
memory (secure region)

OKOKOKNon-TrustZone-aware
memory (non-secure
region)

If amaster issues transactions that fall into the per-access or not allowed cells, as described in the table above,
your design must contain a default slave. A transaction that violates security is rerouted to the default slave
and subsequently terminated with an error. You can connect any slave as the default slave, which allows it
to respond to the master with errors. You can share the default slave between multiple masters. You have
one default slave for each interconnect domain, which is a group of connected memory-mapped masters

Altera CorporationCreating a System With Qsys

Send Feedback

6-17Creating Secure Systems (TrustZones)
QII51020
2013.11.4

http://www.altera.com/literature/hb/qts/qsys_intro.pdf
mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Creating%20a%20System%20With%20Qsys%20(QII51020%202013.11.4)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

and slaves that share the same interconnect. Use the altera_axi_default_slave component as the
default slave because this component has the required TrustZone features.

For more information about interconnect domains, refer to Qsys Interconnect.Note:

In Qsys, you can achieve an optimized secure system by partitioning your design. For example, for masters
and slaves under the same hierarchy, it is possible for a non-securemaster to initiate continuous transactions
resulting in unsuccessful transfer to a secure slave. In the case ofmemory aliasing, youmust carefully designate
secure or non-secure address maps to maintain reliable data.

Related Information

• Qsys Interconnect

Managing Secure Settings in Qsys
To create a secure design, you must first add masters and slaves and the connections between them. After
you establish connections between the masters and slaves, you can then set the security options, as required,
with options in the Security column.

On the SystemContents tab, in the Security column, the following selections are available for master, slave,
and memory components:

• Non-secure—Master issues only non-secure transactions. There is no security available for the slave.
• Secure—Master issues only secure transactions. For the slave, Qsys prevents non-secure transactions

from reaching the slave, and routes them to the default slave for the master that issued the transaction.
• Secure Ranges—Slave only, the specified address ranges within the slave's address span are secure; all

others are not. The format is a comma-separated list of inclusiveLow:inclusiveHigh addresses, for example,
0x0:0xfff,0x2000:0x20ff.

• TrustZone-aware—Master issues either secure or non-secure transactions at run-time. The slave accepts
either secure or non-secure transactions at run-time.

After setting security options for the masters and slaves, you must identify those masters that require a
default slave before generation. To designate a slave as the default slave, turn onDefault Slave in the Systems
Contents tab. A master can have only one default slave.

The Security and Default Slave columns in the SystemContents tab are hidden by default. You can
turn them on with the right-click menu in the System Contents header.

Note:

Understanding Compilation-Time Security Configuration Options
The following compile-time configurations are available when creating secure designs that havemixed secure
and non-secure components:

• Masters that support TrustZone and are connected to slaves that are compile-time secure. This configu-
ration requires a default slave.

• Slaves that support TrustZone and are connected to masters that have compile-time secure settings. This
configuration does not require a default slave.

• Master connected to slaves with secure address ranges. This configuration requires a default slave.

Accessing Undefined Memory Regions
When a transaction from a master targets a memory region that is not specified in the slave memory map,
it is known as an "access to an undefined memory region." To ensure predictable response behavior when

Creating a System With QsysAltera Corporation

Send Feedback

QII51020
Managing Secure Settings in Qsys6-18 2013.11.4

http://www.altera.com/literature/hb/qts/qsys_interconnect.pdf
mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Creating%20a%20System%20With%20Qsys%20(QII51020%202013.11.4)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

this occurs, you can add a default slave to the design. All undefined memory region accesses are then routed
to the default slave, which then terminates the transaction with an error response.

You can connect any memory-mapped slave as a default slave. Altera recommends that you have only one
default slave for each domain in your design. Accessing undefinedmemory regions can occur in the following
cases:

• When there are gaps within the accessible memory map region that are within the addressable range of
slaves, but are not mapped.

• Accesses by a master to a region that does not belong to any slaves that is mapped to the master.
• When a non-secured transaction is accessing a secured slave. This applies to only slaves that are secured

at compilation time.
• When a read-only slave is accessed with a write command, or a write-only slave is accessed with a read

command.

To designate a slave as the default slave, for the selected component, turn on Default Slave on the Systems
Content tab.

If you do not specify the default slave, Qsys automatically assigns the slave at the lowest address
within the memory map for the master that issues the request as the default slave.

Note:

Viewing the Qsys Interconnect
The System with Qsys Interconnect window allows you to see the contents of the Qsys interconnect before
you generate your system. In this view of your system, you can view a graphical representation of the generated
interconnect. Qsys converts connections between interfaces to interconnect logic during system generation.

You access the System with Qsys Interconnect window by clicking Show System With Qsys Interconnect
command on the System menu.

The system with Qsys Interconnect window consists of the following tabs:

• System Contents—Displays the original instances in your system, as well as the inserted interconnect
instances. Connections between interfaces are replaced by connections to interconnect where applicable.

• System Inspector—Displays a system hierarchical navigator, expanding the system contents to show
modules, interfaces, signals, contents of subsystems, and connections.

• Memory-Mapped Interconnect—allows you to select amemory-mapped interconnectmodule and view
its internal command and response networks. You can also insert pipeline stages to achieve timing closure.

The SystemContents and SystemInspector tabs are read-only. Edits that you apply on theMemory-Mapped
Interconnect tab are automatically updated on the Interconnect Requirements tab.

Using the Memory-Mapped Interconnect Tab
The Memory-Mapped Interconnect tab in the System with Qsys Interconnect window is a graphical
representation of command and response datapaths in your system. These datapaths allow you finer control
over pipelining in the interconnect. Qsys displays separate graphs for the command and response datapaths.
You can access the datapaths by clicking their respective tabs in the Memory-Mapped Interconnect tab.

Each node element in a graph can represent either amaster or slave that communicates over the interconnect,
or an interconnect sub-module. Each edge in a graph is an abstraction of connectivity between elements,
and its direction represents the flow of the commands or responses.

Altera CorporationCreating a System With Qsys

Send Feedback

6-19Viewing the Qsys Interconnect
QII51020
2013.11.4

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Creating%20a%20System%20With%20Qsys%20(QII51020%202013.11.4)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

ClickHighlightPath to better identify edges and paths betweenmodules. Turn on ShowPipeline Locations
to add greyed-out registers on edges where pipelining is allowed in the interconnect.

You must have more than one module selected in order to highlight a path.Note:

Manually Controlling Pipelining in the Qsys Interconnect
The Memory-Mapped Interconnect tab allows you to manipulate pipleline connections in the Qsys
interconnect. You access the Memory-Mapped Interconnect tab by clicking Show System With Qsys
Interconnect command on the System menu.

To increase interconnect frequency, you should first try increasing the value of theLimit interconnect
pipeline stages to option on the Project Settings tab. You should only consider manually pipelining

Note:

the interconnect if changes to this option do not improve frequency, and you have tried all other
options to achieve timing closure, including the use of a bridge. Manually pipelining the interconnect
should only be applied to complete systems.

1. In the Project Settings tab, first try increasing the value of the Limit interconnect pipeline stages to
option until it no longer gives significant improvements in frequency, or until it causes unacceptable
effects on other parts of the system.

2. In the Quartus II software, compile your design and run timing analysis.
3. Identify the critical path through the interconnect and determine the approximate mid-point. The

following is an example of a timing report where the critical path is located in the interconnect.

2.800 0.000 cpu_instruction_master|out_shifter[63]|q
3.004 0.204 mm_domain_0|addr_router_001|Equal5~0|datac
3.246 0.242 mm_domain_0|addr_router_001|Equal5~0|combout
3.346 0.100 mm_domain_0|addr_router_001|Equal5~1|dataa
3.685 0.339 mm_domain_0|addr_router_001|Equal5~1|combout
4.153 0.468 mm_domain_0|addr_router_001|src_channel[5]~0|datad
4.373 0.220 mm_domain_0|addr_router_001|src_channel[5]~0|combout

4. System > Show System With Qsys Interconnect.
5. In the Memory-Mapped Interconnect tab, select the interconnect module that has the critical path. You

can determine the name of the interconnect module from the hierarchical node names in the timing
report.

6. Click Show Pipelinable Locations. Qsys display all pipelinable locations in the interconnect. You can
right-click a pipelinable location to open a menu that allows you to insert or remove a pipeline stage.

7. Find the pipelinable location that is closest to the mid-point of the critical path. The names of blocks in
the memory-mapped interconnect view correspond to the module instance names in the timing report.

8. Right-click the location where you want to insert a pipeline stage, and then click Insert Pipeline.
9. Regenerate the Qsys system, recompile the design, and then rerun timing analysis. If necessary, repeat

the manual pipelining process again until timing requirements are met.

Creating a System With QsysAltera Corporation

Send Feedback

QII51020
Manually Controlling Pipelining in the Qsys Interconnect6-20 2013.11.4

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Creating%20a%20System%20With%20Qsys%20(QII51020%202013.11.4)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Manual pipelining has the following limitations:

• If you make changes to your original system's connectivity after manually pipelining an interconnect,
your inserted pipelines may become invalid. Warning messages are displayed at generation time if invalid
pipeline stages are detected. You can remove invalid pipeline stages with the Remove Stale Pipelines
option button in the Memory-Mapped Interconnect tab. Altera recommends not making changes to
the system's connectivity after manual pipeline insertion.

• Review manually-inserted pipelines when upgrading to newer versions of Qsys. Manually-inserted
pipelines in one version of Qsys might not be valid in a future version.

Related Information
Qsys System Design Components

Configuring Interconnect Requirements for the System on page 6-13

Integrating Your Qsys Design with the Quartus II Software
To integrate a Qsys system into a Quartus II project, you must add one of the following files to your Quartus
II project (but not both) on the Files tab in the Settings dialog box.

• Quartus II IP File (.qip)—Qsys generates a .qip file when you generate your Qsys design. Integrating
your Qsys design with your Quartus II project using the .qip file is preferable when you want full control
over generated files and Quartus II compilation phases. If you want to manage the HDL generation for
your Qsys system, you generate your Qsys system first, then add the .qip file to your Quartus II project.

• Qsys System File (.qsys)—Integrating your Qsys design with your Quartus II project by adding the .qsys
design file to your Quartus II project is more convenient for cases when there is no customization or
scripts in the design flow. If you do not want to generate your Qsys system manually, add the .qsys file
to your Quartus II project. You can add one or more top-level .qsys files to your Quartus II project.

When integrating your Qsys designs with your Quartus II software project, you should decide on
which integration flow you want to use (either adding the .qsys file, or the .qip file to your Quartus

Note:

II project, but not both), and then maintain a consistent integration flow throughout development.
Mixing integration flows might result in two sets of generated output files, at which point you would
then have to keep track of which one is currently in use. The Quartus II software generates an error
message during compilation if you add both the .qip and .qsys files to your Quartus II project.

Related Information

• Managing Files in a Project

• Searching for Component Files to Add to the Library on page 6-39

• Generating a Qsys System on page 6-23

Integrating with the .qsys File
To integrate your Qsys designs with the Quartus II software using the .qsys files, you create your designs in
Qsys, save the design files as <qsys design name>.qsys, and then add the .qsys file(s) to your Quartus II
project. When the Quartus II software starts the Analysis & Synthesis phase, it processes the .qsys files and
generates the necessary HDL and system description files needed to compile your design.

You can add multiple .qsys files to a Quartus II project. Qsys stores the files generated from each .qsys file
in the /db/<qsys file name> directory under the Quartus II project directory.

Altera CorporationCreating a System With Qsys

Send Feedback

6-21Integrating Your Qsys Design with the Quartus II Software
QII51020
2013.11.4

http://www.altera.com/literature/hb/qts/qsys_system_components.pdf
http://quartushelp.altera.com/current/mergedProjects/global/pjn/pjn_pro_add_delete_files.htm
mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Creating%20a%20System%20With%20Qsys%20(QII51020%202013.11.4)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

When a Qsys design file includes an IP component which is outside of the project directory, the directory
of the .qsys file, or the /ip subdirectoy, you must add these dependency paths to the Qsys IP Search Path
before compilation.

The following are design guidelines and warnings when integrating your Qsys designs with the
Quartus II software:

Note:

• When you integrate yourQsys designswith theQuartus II software using the .qsys file, youmustmanually
run any IP customization scripts at the appropriate stages of the Quartus II compilation process. There
is no automation support for running scripts between the Quartus II software compilation stages. The
Implementing and ParameterizingMemory IP reference describes running placement scripts for embedded
memory IP interfaces.

• Do not edit the files generated under the /ip/<qsys file name> directory, as they are overwritten during
subsequent runs of Analysis & Synthesis.

Related Information

• Implementing and Parameterizing Memory IP

Integrating with the .qip File
Qsys generates the Quartus II IP File (.qip) during system generation. If you choose to integrate your Qsys
design with your Quartus II project using the .qip file, after you generate your Qsys design, you must add
the .qip file to your Quartus II project.

The .qip file lists the files necessary for compilation and provides the Quartus II software with the required
information about your Qsys system. The .qip file is saved in the <qsys file name>/synthesis directory, and
includes references to the following information:

• HDL files in the Qsys system
• TimeQuest Timing Analyzer Synopsys Design Constraint Files (.sdc)
• Component definition files for archiving purposes

Setting Clock Constraints
Many IP cores include Synopsys Design Constraint (.sdc) files that provide timing constraints for the logic
in the IP design. Generated .sdc files are included in your Quartus II project with the .qip file. For your
top-level clocks and PLLs, you must provide clock and timing constraints in SDC format to direct synthesis
and fitting to optimize the design appropriately, and to evaluate performance against timing constraints.

You can specify a base clock assignment for each clock input in the TimeQuest GUI or with the
create_clock command, and then you can use the derive_pll_clocks command to define the
PLL clock output frequencies and phase shifts for all PLLs in the Quartus II project.

Figure 6-7 illustrates the .sdc commands required for the case of a single clock input signal called clk, and
one PLL with a single output.

Creating a System With QsysAltera Corporation

Send Feedback

QII51020
Integrating with the .qip File6-22 2013.11.4

http://www.altera.com/literature/hb/external-memory/emi_parameters.pdf
mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Creating%20a%20System%20With%20Qsys%20(QII51020%202013.11.4)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Figure 6-7: Single Clock Input Signal

For this system, use the following commands in your .sdc file for the TimeQuest Timing Analyzer:

create_clock -name master_clk -period 20 [get_ports {clk}]
derive_pll_clocks

Related Information

• The Quartus II TimeQuest Timing Analyzer

Generating a Qsys System
The Generation dialog box allows you to choose options for generation of synthesis and simulation files.

Generating Output Files
Qsys system generation creates the interconnect between components and generates synthesis and simulation
files. You specify the files that youwant to generate in theGeneration dialog box. You can generate simulation
models, simulation testbench files, as well as HDL files for Quartus II synthesis, or a Block Symbol File (.bsf)
for schematic design.

For your simulation model and testbench system, you can select Verilog HDL or VHDL for the top-level
module language, which applies to the system's top-level definition and child instances that support generation
for the selected target language.

Altera CorporationCreating a System With Qsys

Send Feedback

6-23Generating a Qsys System
QII51020
2013.11.4

http://www.altera.com/literature/hb/qts/qts_qii53018.pdf
mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Creating%20a%20System%20With%20Qsys%20(QII51020%202013.11.4)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

For synthesis, you can select the top-level module language as Verilog HDL or VHDL, which applies to the
system’s top-level definition.

Qsys places the generated output files in a subdirectory of your project directory, along with an HTML report
file. To change the default behavior, on theGeneration tab, specify a new directory underOutputDirectory.

Figure 6-8: Qsys Generated Files Directory Structure

<qsys_design>

submodules

synthesis

simulation

testbench

simulation

submodules

submodules

Each time you generate your system,Qsys overwrites these files, therefore, you should not editQsys-generated
output files. If you have constraints, such as board-level timing constraints, Altera recommends that you
create a separate Synopsys Design Constraints File (.sdc) and include that file in your Quartus II project. If
you need to change top-level I/O pin names or instance name, Altera recommends you create a top-level
HDL file that instantiates the Qsys system, so that the Qsys-generated output is instantiated in your design
without any changes to the Qsys output files.

Qsys generates the files in listed in Table 6-5 to the <qsys design>/simulation folder.Note:

Table 6-5: Qsys Generated Files

DescriptionFile Name or Directory Name

The top-level Qsys system directory, in the Quartus II project
directory

<Qsys system>

A Block Symbol File (.bsf) representation of the top-level Qsys
system for use in Quartus II Block Diagram Files (.bdf).

<Qsys system>.bsf

A report for the system, which provides a system overview
including the following information:

• External connections for the system
• Amemorymap showing the address of each slave with respect

to each master to which it is connected
• Parameter assignments for each component

<Qsys system>.html

Creating a System With QsysAltera Corporation

Send Feedback

QII51020
Generating Output Files6-24 2013.11.4

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Creating%20a%20System%20With%20Qsys%20(QII51020%202013.11.4)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

DescriptionFile Name or Directory Name

Describes the components and connections in your system. This
file is a complete system description and is used by downstream
tools such as the Nios II tool chain. It also describes the
parameterization of each component in the system; consequently,
you can parse its contents to get requirements when developing
software drivers for Qsys components.

This file and the system.h file generated for the Nios II tool chain
include address map information for each slave relative to each
master that accesses the slave. Different masters may have a
different address map to access a particular slave component.

<Qsys system>.sopcinfo

Required input file for ip-make-simscript to generate
simulation script for supported simulators. The .spd file contains
a list of files generated for simulation, along with information
about initializable memories.

<Qsys system>.spd

This directory includes the Qsys-generated output files that the
Quartus II software uses to synthesize your design.

<Qsys system>/synthesis

An HDL file for the top-level Qsys system that instantiates each
submodule in the system for synthesis.

<Qsys system>/synthesis/

<Qsys system>.v

or

<Qsys system>/synthesis

<Qsys system>.vhd

If IP in the system contains register information, Qsys generates
a .regmap file. The .regmap file describes the register map
information onmaster and slave interfaces. This file complements
the .sopcinfo file by providingmore detailed register information
about the system. This enables register display views and user
customizable statistics providers in the SystemConsole.

<Qsys_system>/synthesis/

<Qsys system>.regmap

This file this file includes all the info you need to synthesize the
IP components in your system.

<Qsys system>/synthesis/

<Qsys system>.qip

Contains Verilog HDL or VHDL submodule files for synthesis.<Qsys system>/synthesis/submodules

This directory includes theQsys-generated output files to simulate
your Qsys design or testbench system.

<Qsys system>/simulation

This file contains information reqiured forNativeLink simulation
of IP components in your system. You must add the .sip file to
your Quartus II project.

<Qsys system>/simulation/

<Qsys system>.sip

Altera CorporationCreating a System With Qsys

Send Feedback

6-25Generating Output Files
QII51020
2013.11.4

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Creating%20a%20System%20With%20Qsys%20(QII51020%202013.11.4)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

DescriptionFile Name or Directory Name

An HDL file for the top-level Qsys system that instantiates each
submodule in the system for simulation.

<Qsys system>/simulation/

<Qsys system>.v

or

<Qsys system>/simulation/

<Qsys system>.vhd

Contains Verilog HDL or VHDL submodule files for simulation.<Qsys system>/simulation/submodules

Contains a ModelSim® script msim_setup.tcl to set up and run
a simulation.

<Qsys system>/simulation/mentor

Contains Riviera-PRO script rivierapro_setup.tcl to setup and
run a simulation.

<Qsys system>/simulation/aldec

Contains a shell script vcs_setup.sh to set up and run a VCS®
simulation.

<Qsys system>/simulation/synopsys/vcs

Contains a shell script vcsmx_setup.sh and synopsys_sim.setup
to set up and run a VCS MX simulation.

<Qsys system>/simulation

/synopsys/vcsmx

Contains a shell script ncsim_setup.sh and other setup files to
set up and run an NCSIM simulation.

<Qsys system>/simulation/cadence

Contains a Qsys testbench system.<Qsys system>/testbench

A Qsys testbench system.<Qsys system> /testbench/

<Qsys system>_tb.qsys

The top-level testbench file, which connects BFMs to the top-level
interfaces of <qsys_design> .qsys.

<Qsys system>/testbench/

<Qsys sysyem>_tb.v

or

<Qsys system>/testbench/

<Qsys sysyem>_tb.vhd

Allows HPS System Debug tools to view the register maps of
peripherals connected to the HPS within a Qsys design.

Similarly, during synthesis the .svd files for slave interfaces visible
to System Console masters are stored in the .sof file in the debug
section. System Console reads this section, which Qsys can query
for register map information. When a slave is open, Qsys can
access the registers by name.

<Qsys system>/testbench/<module name>
_<master interface name>.svd

Creating a System With QsysAltera Corporation

Send Feedback

QII51020
Generating Output Files6-26 2013.11.4

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Creating%20a%20System%20With%20Qsys%20(QII51020%202013.11.4)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

CMSIS Support for Qsys Systems With An HPS Component
Qsys systems that contain a Hard Processor System (HPS) component generate a System View Description
(.svd) file that lists peripherals connected to the ARM processor.

The System View Description File (.svd) (or CMSIS-SVD) file format is an XML schema specified as part
of the Cortex Microcontroller Software Interface Standard (CMSIS) provided by ARM. The CMSIS-SVD
file allows HPS System Debug tools (such as the DS-5 Debugger) to gain visibility into the register maps of
peripherals connected to the HPS within a Qsys system.

Related Information

• Component Interface Tcl Reference

• CMSIS - Cortex Microcontroller Software

Viewing the HDL Example
The HDL Example dialog box, accessed from the Generate menu, provides the top-level HDL definition of
your system in either Verilog HDL or VHDL, and also displays VHDL component declarations.

You can copy and paste the example into a top-level HDL file that instantiates the Qsys system, if the system
is not the top-level module in your Quartus II project.

Simulating a Qsys System
The Qsys Generation dialog box provides options for generating Qsys simulation.

The following options are available in the Generate dialog box.

• Generate the Verilog HDL, VHDL, or mixed-language simulation model for your system to use in your
own simulation environment.

• Generate a standard or simple testbench system with BFM or Mentor Verification IP (for AXI3/AXI4)
components that drive the external interfaces of your system, and generate a Verilog HDL or VHDL
simulation model for the testbench system to use in your simulation tool.

• First generate a testbench system, and then modify the testbench system in Qsys before generating its
simulation model.

In most cases, you should select only one of the simulation model options, that is generate a simulation
model for the original system, or for the testbench system.Table 6-6 summarizes the options in theGenerate
dialog box that correspond to the simulation files described above.

Altera CorporationCreating a System With Qsys

Send Feedback

6-27CMSIS Support for Qsys Systems With An HPS Component
QII51020
2013.11.4

http://www.altera.com/literature/hb/qts/qsys_tcl.pdf
http://www.arm.com/products/processors/cortex-m/cortex-microcontroller-software-interface-standard.php
mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Creating%20a%20System%20With%20Qsys%20(QII51020%202013.11.4)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Table 6-6: Summary of Settings Simulation and Synthesis in the Generate Dialog Box

DescriptionValueSimulation Setting

Generates simulation model files
and simulation scripts. Use this
option to include the simulation
model in your own custom
testbench or simulation environ-
ment. You can also use this option
to generatemodels for a testbench
system that you have modified.

None

Verilog

VHDL

Create simulation model

Generates a mixed language
simulation model generation. If
you have a mixed-language
simulator license, generating for
mixed-language simulation can
shorten the generation time, and
produce files that may simulate
faster. When turned off, all
simulation files are generated in
the selected simulation model
language.

On

Off

Allow mixed-language
simulation

Creates a testbench Qsys system
with BFM components attached
to exported Avalon and AXI3
interfaces. Includes any simulation
partner modules specified by IP
cores in the system.

The testbench generator supports
AXI interfaces and can connect
AXI3/AXI4 interfaces to Mentor
GraphicsAXI3/AXI4master/slave
BFM. However, BFMs support
address widths only up to 32-bits.

Standard, BFMs for standard Qsys
Interconnect

Create testbench Qsys system

Creates a testbench Qsys system
with BFM components driving
only clock and reset interfaces.
Includes any simulation partner
modules specified by IP cores in
the system.

Simple, BFMs for clocks and resets

Creating a System With QsysAltera Corporation

Send Feedback

QII51020
Simulating a Qsys System6-28 2013.11.4

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Creating%20a%20System%20With%20Qsys%20(QII51020%202013.11.4)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

DescriptionValueSimulation Setting

Creates simulationmodel files and
simulation scripts for the
testbench Qsys system specified
in the setting above. Use this
option if you do not need to
modify the Qsys-generated
testbench before running the
simulation.

None

Verilog

VHDL

Create testbench simulation
model

Creates Verilog HDL or VHDL
design files.

On

Off

Create HDL design files for
synthesis

Creates the top-level module in
the system in the selected
language.

Verilog

VHDL

Top-level module language for
synthesis

You can optionally create a (.bsf)
file to use in schematic Block
Diagram File (.bdf) designs.

On

Off

Create block symbol files (.bsf)

Allows you to browse and locate
an alternate directory than the
project directory for each
generation target.

< directory name >Output Directory

Related Information

• Avalon Verification IP Suite User Guide

• Mentor Verification IP (VIP) Altera Edition (AE)

• Generating a System for Synthesis or Simulation

• Generation Dialog Box (Qsys)

Generate and Modify the Testbench System
You can use the following steps to create a testbench system of your design.

1. Create a Qsys system.
2. Generate a testbench system in the Qsys Generate dialog box.
3. Open the testbench system in Qsys. Make changes, as needed, to the BFMs, such as changing the BFM

instance names and BFM VHDL ID value. You can modify the VHDL ID value in the Altera Avalon
Interrupt Source component.

4. If you modified a BFM, generate the simulation model for the testbench system on the Qsys Generation
tab. You can generate your simulation model in either Verilog HDL or VHDL.

5. Create a custom test program for the BFMs.
6. Compile and load the Qsys design and testbench in your simulator, and then run the simulation.

Altera CorporationCreating a System With Qsys

Send Feedback

6-29Generate and Modify the Testbench System
QII51020
2013.11.4

http://www.altera.com/literature/ug/ug_avalon_verification_ip.pdf
http://www.altera.com/literature/ug/mentor_vip_ae_usr.pdf
http://quartushelp.altera.com/current/mergedProjects/system/qsys/qsys_pro_generate_system.htm
http://quartushelp.altera.com/current/mergedProjects/system/qsys/qsys_tab_gen.htm
mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Creating%20a%20System%20With%20Qsys%20(QII51020%202013.11.4)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Generate the Testbench System and a Simulation model at the Same Time (Verilog HDL
only)

You can use the following design flow to create a testbench system and a simulation model of your Verilog
HDL design.

1. Create a Qsys system.
2. Generate a testbench system and the simulation model for the testbench system in the Qsys Generate

dialog box.
3. Create a custom test program for the BFMs.
4. Compile and load the Qsys design and testbench in your simulator, and then run the simulation.

Adding Assertion Monitors
You can add monitors to Avalon-MM, AXI, and Avalon-ST interfaces in your system to verify protocol
correctness and test coverage with a simulator that supports SystemVerilog assertions.

Modelsim Altera Edition does not support SystemVerilog assertions. If you want to use assertion
monitors, you will need to use an advanced simulator such as Mentor Questasim, Synopsys VCS, or
Cadence Incisive.

Note:

Figure 6-9 demonstrates the use ofmonitors with anAvalon-MMmonitor between the previously connected
pcie_compiler bar1_0_Prefetchable Avalon-MM master interface and the
dma_0 control_port_slave Avalon-MM slave interface.

Figure 6-9: Inserting an Avalon-MM Monitor between Avalon-MM Master and Slave Interfaces

Similarly, you can insert an Avalon-ST monitor between Avalon-ST source and sink interfaces.

Simulation Scripts
Qsys generates simulation scripts to script the simulation environment set up forMentorGraphicsModelsim®
and Questasim®, Synopsys VCS® and VCS MX®, Cadence Incisive Enterprise Simulator® (NCSIM), and
the Aldec Riviera-PRO® Simulator.

You can use the scripts to compile the required device libraries and system design files in the correct order
and elaborate or load the top-level design for simulation.

Creating a System With QsysAltera Corporation

Send Feedback

QII51020
Generate the Testbench System and a Simulation model at the Same Time (Verilog HDL only)6-30 2013.11.4

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Creating%20a%20System%20With%20Qsys%20(QII51020%202013.11.4)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

The simulation scripts provide the following variables that allow flexibility in your simulation environment:

• TOP_LEVEL_NAME—If the Qsys testbench system is not the top-level instance in your simulation
environment because you instantiate the Qsys testbench within your own top-level simulation file, set
the TOP_LEVEL_NAME variable to the top-level hierarchy name.

• QSYS_SIMDIR—If the simulation files generated by Qsys are not in the simulation working directory,
use the QSYS_SIMDIR variable to specify the directory location of the Qsys simulation files.

• QUARTUS_INSTALL_DIR—Points to the device family library.

Example 6-2 shows a simple top-level simulation HDL file for a testbench system
pattern_generator_tb, which was generated for a Qsys system called pattern_generator. The
top.sv file defines the top-level module that instantiates thepattern_generator_tb simulation model
as well as a custom SystemVerilog test program with BFM transactions, called test_program.

Example 6-2: Top-Level Simulation HDL File Example

module top();
 pattern_generator_tb tb();
 test_program pgm();
endmodule

The VHDL version of the Altera Tristate Conduit BFM is not supported in Synopsys VCS, NCSim,
andRiviera-PRO in theQuartus II software version 13.1. These simulators do not support theVHDL

Note:

protected type, which is used to implement the BFM. For aworkaround, use a simulator that supports
the VHDL protected type.

Related Information

• ModelSim-Altera software, Mentor Graphics ModelSim support

• Synopsys VCS and VCS MX support

• Cadence Incisive Enterprise Simulator (IES) support

• Aldec Active-HDL and Rivera-PRO support

Simulating Software Running on a Nios II Processor
To simulate the software in a system driven by a Nios II embedded processor, generate the simulation model
for a simple Qsys testbench system by completing the following steps:

1. On the Generation tab, set Create testbench Qsys system to Simple, BFMs for clocks and resets.
2. Set Create testbench simulation model to Verilog or VHDL.
3. Click Generate.
4. Open the Nios II Software Build Tools for Eclipse.
5. Set up an application project and board support package (BSP) for the <qsys_system> .sopcinfo file.
6. Set up an application project and board support package (BSP) for the <qsys_system> .sopcinfo file.
7. To simulate, right-click the application project in Eclipse, point to Run as,and then click 4 Nios II

ModelSim. The Run As Nios II ModelSim command sets up the ModelSim simulation environment,
compiles and loads the Nios II software simulation.

Altera CorporationCreating a System With Qsys

Send Feedback

6-31Simulating Software Running on a Nios II Processor
QII51020
2013.11.4

http://www.altera.com/literature/hb/qts/qts_qii53001.pdf
http://www.altera.com/literature/hb/qts/qts_qii53002.pdf
http://www.altera.com/literature/hb/qts/qts_qii53003.pdf
http://www.altera.com/literature/hb/qts/qts_qii53023.pdf
mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Creating%20a%20System%20With%20Qsys%20(QII51020%202013.11.4)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

8. To run the simulation in ModelSim, type run -all in the ModelSim transcript window.
9. If prompted, set ModelSim configuration settings and select the correct Qsys Testbench Simulation

Package Descriptor (.spd) file, < qsys_system > _tb.spd. The .spd file is generated with the testbench
simulation model for Nios II designs and specifies all the files required for the Nios II software simulation.

Related Information

• Getting Started with the Graphical User Interface (Nios II)

• Getting Started from the Command-Line (Nios II)

System Examples
The following system examples demonstrate various design features and flows that you can replicate in your
design.

PCI Express Subsystem Example on page 6-32

Ethernet Subsystem Example on page 6-34

PCI Express to Ethernet Bridge Example on page 6-36

Hierarchical System Using Instance Parameters Example on page 6-38

PCI Express Subsystem Example
Figure 6-10 and Figure 6-11 show an example PCI Express subsystem. The application running on the root
complex processor programs theDMAcontroller. TheDMAcontroller’s Avalon-MMread andwritemaster
interfaces initiate transfers to and from the DDR3 memory and to the PCI Express Avalon-MM TX data
port. The system exports the DMA master interfaces through an Avalon-MM pipeline bridge. In the figure
below, all three masters connect to a single slave interface. During system generation, Qsys automatically
inserts arbitration logic to control access to this slave interface.

By default, the arbiter provides equal access to all requestingmasters; however, you canweight the arbitration
by changing the number of arbitration shares for the requesting masters. The second pipeline bridge allows
an external master, such as a host processor, to also issue transactions to the CSR interfaces.

Creating a System With QsysAltera Corporation

Send Feedback

QII51020
System Examples6-32 2013.11.4

http://www.altera.com/literature/hb/nios2/n2sw_nii52017.pdf
http://www.altera.com/literature/hb/nios2/n2sw_nii52014.pdf
mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Creating%20a%20System%20With%20Qsys%20(QII51020%202013.11.4)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Figure 6-10: PCI Express Subsystem

PCI Express Subsystem

PCIe Link

DMAAvalon-MM Master
(exported to DDR3 Controller)

Cntl and Status Avalon-MM Slave
(exported to Embedded Controller)

(exported
to PCIe root port)

DMA
Controller

CSR

Rd

Wr

Avalon-MM PIpeline
Bridge (Qsys)

Avalon-MM PIpeline
Bridge (Qsys)

PCI Express
IP Core

CSR

CSR

Tx Data

M

M

M

M

M

S

S

S

S

S

Cn

Altera CorporationCreating a System With Qsys

Send Feedback

6-33PCI Express Subsystem Example
QII51020
2013.11.4

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Creating%20a%20System%20With%20Qsys%20(QII51020%202013.11.4)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Figure 6-11: Qsys Representation of the PCI Express Subsystem

Related Information
Qsys Interconnect

Ethernet Subsystem Example
In this example subsystem, the transmit (TX) DMA receives data from the DDR3 memory and writes it to
theAltera Triple-Speed Ethernet IP core using anAvalon-ST source interface. The receive (RX)DMAaccepts
data from the Triple-Speed Ethernet IP core on its Avalon-ST sink interface and writes it to DDR3 memory.

The read and write masters of both Scatter-Gather DMA controllers and the Triple-Speed Ethernet IP core
connect to the DDR3 memory through an Avalon-MM pipeline bridge. This Ethernet example subsystem
exports all three control and status interfaces through an Avalon-MM pipeline bridge, which connects to a
controller outside of the Qsys system, as shown in Figure 6-12 and Figure 6-13.

Creating a System With QsysAltera Corporation

Send Feedback

QII51020
Ethernet Subsystem Example6-34 2013.11.4

http://www.altera.com/literature/hb/qts/qsys_interconnect.pdf
mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Creating%20a%20System%20With%20Qsys%20(QII51020%202013.11.4)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Figure 6-12: Scatter-Gather DMA-to-Ethernet Subsystem

TX Avalon-ST

RX Avalon-ST

Scatter Gather
DMA

M

Src

M M

Scatter Gather
DMA

MM M

S

S

S

Src

Snk

Triple Speed
Ethernet

Snk

M

S

Avalon-MM Pipeline
Bridge (Qsys)

CSR

M S
DDR3

CSR
CSR

CSR

Ethernet
Cn

Calibration
Cn

Ethernet Subsystem

Avalon-MM
Pipeline
Bridge
(Qsys)

Qsys inserts
arbitration
logic

Altera CorporationCreating a System With Qsys

Send Feedback

6-35Ethernet Subsystem Example
QII51020
2013.11.4

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Creating%20a%20System%20With%20Qsys%20(QII51020%202013.11.4)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Figure 6-13: Qsys Representation of the Ethernet Subsystem

PCI Express to Ethernet Bridge Example
The PCI Express and Ethernet example subsystems run at 125 MHz and includes two clock domains and
an ethernet subsystem. The DDR3 SDRAM controller runs at 200 MHz. Qsys automatically inserts clock
crossing logic to synchronize the DDR3 SDRAM Controller with the PCI Express and Ethernet subsystems,
as shown in Figure 6-14 and Figure 6-15.

Creating a System With QsysAltera Corporation

Send Feedback

QII51020
PCI Express to Ethernet Bridge Example6-36 2013.11.4

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Creating%20a%20System%20With%20Qsys%20(QII51020%202013.11.4)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Figure 6-14: PCI Express-to-Ethernet Bridge Example System

Qsys inserts
arbitration and
Clock crossing

logic
(125 MHz-200MHz)

Qsys System

400 MHz

Ethernet
Subsystem

SCSRM DDR3

CnEthernet

CnCalibration

CSRM

PCIe link Cn

PCI Express
Subsystem

S

SM

Avalon-MM
PIpeline

Bridge (Qsys)

MC

DDR3
SDRAM
Controller

125 MHz

125 MHz

125 MHz

200 MHz

DDR3
SDRAM

to CPU

Figure 6-15: Qsys Representation of the Complete PCI Express to Ethernet Bridge

Altera CorporationCreating a System With Qsys

Send Feedback

6-37PCI Express to Ethernet Bridge Example
QII51020
2013.11.4

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Creating%20a%20System%20With%20Qsys%20(QII51020%202013.11.4)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Pipeline Bridges
The PCI Express to Ethernet bridge example systemuses several pipeline bridges. Youmust configure bridges
to accommodate the address range of all of connected components, including the components in the
originating subsystem and the components in the next higher level of the system hierarchy.

The pipeline bridge inserts a pipeline stage between the connected components. You should register signals
at the subsystem interface level for the following reasons:

• Registering interface signals decreases the amount of combinational logic that must be completed in one
cycle, making it easier to meet timing constraints.

• Registering interface signals raises the potential frequency, or fMAX, of your design at the expense of an
additional cycle of latency, which might adversely affect system throughput.

• TheQuartus II incremental compilation feature can achieve better fMAX results if the subsystem boundary
is registered.

Connections between AXI and Avalon interfaces are made without requiring the use of explicitly
instantiated bridges; the interconnect provides the necessary bridging logic.

Note:

Related Information

• Optimizing System Performance for Qsys

• Qsys System Design Components

Hierarchical System Using Instance Parameters Example
You can use an instance parameter to control the implementation of system components from a higher-level
Qsys system. You define instance parameters on the Instance Parameters tab in Qsys.

In Example 6-3, the my_system.qsys system has two instances of the same IP component, My_IP. My_IP
is aQsyscomponent with a system identification parameter calledMY_SYSTEM_ID.Whenmy_system.qsys
is instantiated within another higher-level Qsys system, the two My_IP subcomponents require different
values for their MY_SYSTEM_ID parameters based on a value determined by the higher-level system. In
this example, the value specified by the top-level system is designated top_id and in my_system.qsys, the
component instance comp0 requires MY_SYSTEM_ID set to top_id + 1, and instance comp1 requires
MY_SYSTEM_ID set to top_id + 2. Example 6-3 defines the MY_SYSTEM_ID system ID parameter
in the IP component My_IP:

Example 6-3: System ID Parameter Example

add_parameter MY_SYSTEM_ID int 8

set_parameter_property MY_SYSTEM_ID DISPLAY_NAME \
MY_SYSTEM_ID_PARAM

set_parameter_property MY_SYSTEM_ID UNITS None

To satisfy the design requirements for this example, you define an instance parameter in my_system.qsys
that is set by the higher-level system, and then define an instance script to specify how the values of the
parameters of the My_IP components instantiated in my_system.qsys are affected by the value set on the
instance parameter.

Creating a System With QsysAltera Corporation

Send Feedback

QII51020
Pipeline Bridges6-38 2013.11.4

http://www.altera.com/literature/hb/qts/qts_optimize.pdf
http://www.altera.com/literature/hb/qts/qsys_system_components.pdf
mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Creating%20a%20System%20With%20Qsys%20(QII51020%202013.11.4)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

To do this, in Qsys, open the my_system.qsys Qsys system that instantiates the two instances of the My_IP
components. On the Instance Parameters tab, create a parameter called system_id. For this example,
you can set this parameter to be of type Integer and choose 0 as the default value.

Next, you provide a Tcl Instance Script that defines how the value of the system_id parameter should
affect the parameters of comp0 and comp1 subcomponents in my_system.qsys.

In Example 6-4 Qsys gets the value of the parameter system_id from the top-level system and saves it as
top_id, and then increments the value by 1 and 2. The script then uses the new calculated values to set the
MY_SYSTEM_ID parameter in the My_IP component for the instances comp0 and comp1. The script
uses informational messages to print the status of the parameter settings when the my_system.qsys system
is added to the higher-level system.

Example 6-4: Tcl Instance Script Example

package require qsys 13.1
set_module_property Composition_callback My_callback
proc My_callback { } {
 # Get The Value Of system_id parameter from the
 # higher-level system
 set top_id [get_parameter_value system_id]

 # Print Info Message
 send_message Info "system_id Value Specified: $top_id"

 # Use Above Value To Set Parameter Values For The Subcomponents

 set child_id_0 [expr {$top_id + 1}]
 set child_id_1 [expr {$top_id + 2}]

 # Set The Parameter Values On The Subcomponent Instances
 set_instance_parameter_value comp0 My_system_id $child_id_0
 set_instance_parameter_value comp1 My_system_id $child_id_1

 # Print Info Messages
 send_message Info "system_id Value Used In comp0: $child_id_0"
 send_message Info "system_id Value Used In comp1: $child_id_1"
}

You can click Preview Instance to modify the parameter value interactively and see the effect of the scripts
in themessage panel which can be useful for debugging the script. In this example, if you change the parameter
value in the Preview screen, the component generates messages to report the top-level ID parameter value
and the parameter values used for the two instances of the component.

Related Information
Working with Instance Parameters in Qsys

Searching for Component Files to Add to the Library
The Qsys Library lists design components available for use in Qsys systems. Components can include
Altera-provided IP cores, third-party IP cores, and custom IP cores that you provide. Previously created

Altera CorporationCreating a System With Qsys

Send Feedback

6-39Searching for Component Files to Add to the Library
QII51020
2013.11.4

http://quartushelp.altera.com/current/master.htm#mergedProjects/system/qsys/qsys_pro_working_user_parameters.htm
mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Creating%20a%20System%20With%20Qsys%20(QII51020%202013.11.4)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Qsys systems can also appear in the library, and you can use these systems in other designs if they have
exported interfaces.

Altera and third-party developers provide ready-to-use components, which are installed automatically with
the Quartus II software and are available in the Qsys Library. The Qsys Library includes the following
components:

• Microprocessors, such as the Nios® II processor
• DSP IP cores, such as the Reed Solomon II core
• Interface protocols, such as the IP Compiler for PCI Express
• Memory controllers, such as the RLDRAM II Controller with UniPHY
• Avalon® Streaming (Avalon-ST) components, such as the Avalon-ST Multiplexer IP core
• Qsys Interconnect components
• Verification IP (VIP) Bus Functional Models (BFMs)

You can set the IPSearchPath option to specify the installed locations for customand third-party components
that you want to appear in the component library. Qsys searches for component files each time you open
the tool, and locates and displays the list of available components in the component library.

Qsys searches the directories listed in the IP Search Path for the following component file types:

• Hardware Component Description File (_hw.tcl)—Each _hw.tcl file defines a single component.
• IP Index File (.ipx)—Each .ipx file indexes a collection of available components, or a reference to other

directories to search. In general, .ipx files facilitate faster startup for Qsys and other tools because fewer
directories are searched and analyzed.

Qsys searches some directories recursively and other directories only to a specific depth. When a directory
is recursively searched, the search stops at any directory containing an _hw.tcl or .ipx file; subdirectories
are not searched. In the following list of search locations, a recursive descent is annotated by **. A single *
signifies any file.

If you add a component to you search path, you must refresh your system by clicking File > Refresh
to update the Qsys library.

Note:

• PROJECT_DIR/*—Finds components and index files in the Quartus II project directory.
• PROJECT_DIR/ip/**/*—Finds components and index files in any subdirectory of the /ip subdirectory

of the Quartus project directory.
• QUARTUS_INSTALLDIR/../ip/**/*—In this IP directory, you can create your own subdirectories

that are available for any project using this Quartus II installation directory.

Adding Components to the Library
You can use one of the following methods to add components to the library.

• Save components in your project directory.
• Save components in the /ip subdirectory of your project directory.
• Copy components to the install directory.
• Reference components in an IP Index File (.ipx).
• Integrate third-party components.

Copy Components to a Directory Searched by Default on page 6-41

Reference Components in an IP Index File (.ipx) on page 6-42

Creating a System With QsysAltera Corporation

Send Feedback

QII51020
Adding Components to the Library6-40 2013.11.4

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Creating%20a%20System%20With%20Qsys%20(QII51020%202013.11.4)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Extending the Default Search Path on page 6-44

Copy Components to a Directory Searched by Default

The simplest method to add a new component to the Qsys Library is to copy your components into one of
the directories Qsys searches by default. You can save component files in your project directory, or in the
/ip subdirectory of your project directory. These approaches are useful if you want to associate your
components with a specific Quartus II project.

If you save the component in the project directory, the component appears in the Library in the group you
specified under Project. Alternatively, if you save the component in the Quartus II installation directory,
the component appears in the specified group under Library.

You can also save the component files into the default Quartus II<install_dir> /ip/ directory. This approach
is useful in the following situations and is shown in Figure 6-16.

• You want to associate your components with a specific release of the Quartus II software.
• You want to have the same components available across multiple projects.

Figure 6-16: User Library Included In Subdirectory <install_dir>/ip/

.altera_components.ipx
<components>

.

user_components

component1

component2

<install_dir>

quartus

ip

altera

component1_hw.tcl
component1.v

component2_hw.tcl
component2.v

2

1

3

In Figure 6-16, the circled numbers identify a typical directory structure for the Quartus II software. For
the directory structure above, Qsys performs the component discovery algorithm described below to locate
.ipx and_hw.tcl files.

1. Qsys recursively searches the <install_dir> /ip/ directory by default. The recursive search stops when
Qsys finds an .ipx file.

2. As part of the recursive search, Qsys also looks in the user_components directory. Qsys finds the
component1 directory, which contains component1_hw.tcl. When Qsys finds the component1_hw.tcl
component, the recursive search ends, and no components in subdirectories of component1 are found.

3. Qsys then searches the component2 directory, because this directory path also appears as an IP Search
Path, and discovers component2_hw.tcl. When Qsys finds component2_hw.tcl, the recursive search
ends.

Altera CorporationCreating a System With Qsys

Send Feedback

6-41Copy Components to a Directory Searched by Default
QII51020
2013.11.4

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Creating%20a%20System%20With%20Qsys%20(QII51020%202013.11.4)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

If you save your _hw.tcl file in the <install_dir> /ip/ directory, Qsys finds your _hw.tcl file and does
not search subdirectories adjacent to the _hw.tcl file.

Note:

Reference Components in an IP Index File (.ipx)

You can specify the search path in a user_components.ipx file under the <install_dir> /ip directory. This
method allows you to add a location that is independent of the default search path. You can also save the
.ipx file in any of the default search locations, for example, theQuartus II project directory, or the /ip directory
in the project directory. The user_components.ipx file includes a single line of code redirecting Qsys to the
location of each user library. The path below shows a redirection example:

<library> <path path="<user_lib_dir>/user_ip/**/*"/> </library>

You can verify that components are available with theip-catalog command. You can use theip-make-
ipx command to create an .ipx file for a directory tree, which can reduce the startup time for Qsys.

Understanding the IP Index File (.ipx) Syntax
An IP Index File (.ipx) is an XML file that describes the search path used to discover components that are
available for a Qsys system. A <path> entry specifies a directory in which components may be found. A
<component> entry specifies the path to a single component.

Example 6-5: .ipx File Structure

<library>
 <path path="…<user directory>" />
 <path path="…<user directory>" />
 …
 <component … file="…<user directory>" />
 …
</library>

A <path> element contains a path attribute, which specifies the path to a directory, or the path to another
.ipx file, and can use wildcards in its definition. An asterisk matches any file name. If you use an asterisk as
a directory name, it matches any number of subdirectories.

When searching the specified path, the following three types of files are identified:

• .ipx—Additional index files.
• _hw.tcl—Qsys component definitions.
• _sw.tcl—Nios II board support package (BSP) software component definitions.

A <component> element contains several attributes to define a component. If you provide the required
details for each component in an .ipx file, the startup time for Qsys is less than if Qsys must discover the
files in a directory. Example 6-6 shows two <component> elements. Note that the paths for file names are
specified relative to the .ipx file.

Example 6-6: Component Element in an .ipx File

<library>
 <component

Creating a System With QsysAltera Corporation

Send Feedback

QII51020
Reference Components in an IP Index File (.ipx)6-42 2013.11.4

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Creating%20a%20System%20With%20Qsys%20(QII51020%202013.11.4)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

 name="A Qsys Component"
 displayName="Qsys FIR Filter Component"
 version="2.1"
 file="./components/qsys_filters/fir_hw.tcl"
 />
 <component
 name="rgb2cmyk_component"
 displayName="RGB2CMYK Converter(Color Conversion Category!)"

 version="0.9"
 file="./components/qsys_converters/color/rgb2cmyk_hw.tcl"
 />
</library>

ip-catalog
The ip-catalog command displays the catalog of available components relative to the current project
directory in either plain text or XML format.

Usage

ip-catalog [--project-dir=<directory>][--name=<value>][--verbose]
[--xml][--help]

Options

• --project-dir= <directory>—Optional. Components are found in locations relative to the
project, if any. By default, the current directory, ‘.’ is used. To exclude a project directory, leave the value
empty.

• --name= <value>—Optional. This argument provides a pattern to filter the names of the components
found. To show all components, use a * or ‘ ‘. By default, all components are shown. The argument is not
case sensitive.

• --verbose—Optional. If set, reports the progress of the command.
• --xml—Optional. If set, generates the output in XML format, instead of a line and colon-delimited

format.
• --help—Shows help for the ip-catalog command.

ip-make-ipx
The ip-make-ipx command creates an .ipx file and is a convenient way to include a collection of
components from an arbitrary directory in the Qsys search path. You can also edit the .ipx file to disable
visibility of one or more components in the Qsys Library.

Usage

ip-make-ipx [--source-directory=<directory>] [--output=<file>]
[--relative-vars=<value>] [--thorough-descent] [--message-before=<value>]
[--message-after=<value>] [--help]

Options

Altera CorporationCreating a System With Qsys

Send Feedback

6-43ip-catalog
QII51020
2013.11.4

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Creating%20a%20System%20With%20Qsys%20(QII51020%202013.11.4)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

• --source-directory= <directory>—Optional. Specifies the root director(ies) that Qsys uses
to find the component files. The default directory is “.”. You can also provide a comma-separated list of
directories.

• --output= <file>—Optional. Specifies the name of the file to generate. The default name is
/components.ipx.

• --relative-vars= <value>—Optional. Causes the output file to include references relative to
the specified variable(s) where possible. You can specify multiple variables as a comma-separated list.

• --thorough-descent—Optional. If set, a component or .ipx file in a directory does not prevent
subdirectories from being searched.

• --message-before= <value>—Optional. A message to print to stdout when indexing begins.
• --message-after= <value>—Optional. Amessage to send tostdoutwhen indexing completes.
• --help—Shows help for this command.

Extending the Default Search Path

he following steps allow you to extend the default search path by specifying additional directories.

1. In Qsys, in the Tools menu, click Options.
2. In the Category list, click IP Search Path.
3. Click Add.
4. Browse to locate additional directories and click Open to add them to your search path.

You do not need to include the components specified in the IP Search Path as part of yourQuartus II project.

Integrating Third-Party Components
You can use Qsys components created by third-party IP developers. Altera awards the Qsys Compliant label
to IP cores that are fully supported in Qsys. These cores have interfaces that are supported by Qsys, such as
Avalon-MMorAXI, andmay include timing and placement constraints, software drivers, simulationmodels,
and reference designs.

To find supported third-party Qsys components on Altera's web page, navigate to the Intellectual Property
&ReferenceDesigns page, and then typeQsys Certified in the Search box, select IPCore&Reference
Designs, and then press Enter.

Refer to Altera's Intellectual Property & Reference Designs page for more information.

Related Information
Intellectual Property & Reference Designs

Using Qsys Command-Line with Utilities and Scripts
You can perform many of the functions available in the Qsys GUI from the command-line with the
qsys-generate and qsys-script utilities.

You run these command-line executables from the following Quartus II installation directory:

<Quartus II installation directory>\quartus\sopc_builder\bin

You can use qsys-generate to generate Qsys output files outside of the Qsys GUI. You can use qsys-
script to create, manipulate or manage a Qsys system with command-line scripting.

Creating a System With QsysAltera Corporation

Send Feedback

QII51020
Extending the Default Search Path6-44 2013.11.4

http://www.altera.com/products/ip/ipm-index.html
mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Creating%20a%20System%20With%20Qsys%20(QII51020%202013.11.4)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

For command-line help listing all options for these executables, type the following command:

<Quartus II installation directory>\quartus\sopc_builder\bin\<executable name> --help

Example 6-7: Qsys Command-Line Scripting Example

qsys-script --script=my_script.tcl \
--system-file=fancy.qsys my_script.tcl contains:
package require -exact qsys 13.1
get all instance names in the system and print one by one
set instances [get_instances]
foreach instance $instances {
 send_message Info "$instance"
}

Related Information

• Working with Instance Parameters in Qsys

• Altera Wiki Qsys Scripts

Running the Qsys Editor from the Command-Line
You can use the qsys-edit utility to run the Qsys Editor from the command-line.

The following is a list of options that you can use with the qsys-edit utility:

• <1st arg file>—Optional. The name of the .qsys system or .qvar variation file to edit.
• --search-path[=<value>]—Optional. If omitted, Qsys uses a standard default path. If provided,

Qsys searches a comma-separated list of paths. To include the standard path in your replacement, use
"$", for example: /extra/dir.$.

• --project-directory=<directory>—Optional. Allows you to find components in certain
locations relative to the project, if any. By default, the current directory is:'.' . To exclude any project
directory, use ''.

• --new-component-type=<value>—Optional. Allows you to specify the kind of instance that is
parameterized in a variation.

• --debug—Optional. Enables debugging features and output.
• --host-controller—Optional. Launches the application with an XML host controller interface

on standard input/output.
• --jvm-max-heap-size=<value>—Optional. Themaximummemory sizeQsys uses for allocations

when running qsys-edit. You specify this value as <size><unit>, where unit is m (or M) for
multiples of megabytes, or g (or G) for multiples of gigabytes. The default value is 512m.

• --help—Optional. Display help for qsys-edit.

Launching Qsys with Additional Computer Memory
If the Qsys sytem you are creating requires more than the 512 megabytes of default memory, you may need
to launch the Qsys GUI from the command-line with additional memory. For example, the following
qsys-edit command allows you to launch Qsys from the command-line with 2 gigabytes of memory.

qsys-edit --jvm-max-heap-size=2g

Altera CorporationCreating a System With Qsys

Send Feedback

6-45Running the Qsys Editor from the Command-Line
QII51020
2013.11.4

http://quartushelp.altera.com/current/mergedProjects/system/qsys/qsys_pro_working_user_parameters.htm
http://www.alterawiki.com/wiki/Qsys_Scripts
mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Creating%20a%20System%20With%20Qsys%20(QII51020%202013.11.4)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Generating Qsys Systems with the qsys-generate Utility
You can use the qsys-generate utility to generate RTL for your Qsys system, simulation models and
scripts, and to create testbench systems for testing your Qsys system in a simulator using BFMs. Output
from the qsys-generate command is the same as when generating using the Qsys GUI.

The following is a list of options that you can use with the qsys-generate utility:

• <1st arg file>—Required. The name of the .qsys system file to generate.
• --synthesis=<VERILOG|VHDL>—Optional. Creates synthesisHDL files thatQsys uses to compile

the system in a Quartus II project. You must specify the preferred generation language for the top-level
RTL file for the generated Qsys system.

• --block-symbol-file—Optional. Creates a block symbol file (.bsf) for the system.
• --simulation=<VERILOG|VHDL>—Optional. Creates a simulation model for the system. The

simulation model contains generated HDL files for the simulator, and may include simulation-only
features. You must specify the preferred simulation language.

• --testbench=<SIMPLE|STANDARD>—Optional. Creates a testbench system. The testbench system
instantiates the original system, adding bus functional models to drive the top-level interfaces. Once
generated, the bus functional models interact with the system in the simulator.

• --testbench-simulation=<VERILOG|VHDL>—Optional. After creating the testbench system,
also create a simulation model for the testbench system.

• --output-directory=<value>—Optional. Sets the output directory. Each generation target is
created in a subdirectory of the output directory. If you do not specify the output directory, a subdirectory
of the current working directory matching the name of the system is used.

• --search-path=<value>—Optional. If omitted, a standard default path is used. If provided, a
comma-separated list of paths is searched. To include the standard path in your replacement, use "$",
for example, "/extra/dir,$".

• --jvm-max-heap-size=<value>—Optional. The maximum memory size that Qsys uses for
allocations when running this tool. The value is specified as <size><unit> where unit can be m (or M)
for multiples of megabytes or g (or G) for multiples of gigabytes. The default value is 512m.

• --family=<value>—Optional. Sets the device family.
• --part=<value>—Optional. Sets the device part number. If set, this option overrides the--family

option.
• --allow-mixed-language-simulation—Optional. Enables amixed language simulationmodel

generation. If true, if a preferred simulation language is set, Qsys uses a fileset of the component for the
simulation model generation. When false, which is the default, Qsys uses the language specified with
--file-set=<value> for all components for simulation model generation.

• --file-set=<value>—Optional. Allows you to choose the type output to generate, for example,
QUARTUS_SYNTH, SIM_VERLOG, or VHDL.

Creating and Managing a System with qsys-script
You can use the qsys-script tool to create and manipulate a Qsys system with Tcl scripting commands.

You must provide a package version for the qsys-script. If you do not specify the --package-
version=<value> qsys-script command, you must then provide a Tcl script and request the

Note:

system scripting API directly with the package require -exact qsys < version >
command.

Creating a System With QsysAltera Corporation

Send Feedback

QII51020
Generating Qsys Systems with the qsys-generate Utility6-46 2013.11.4

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Creating%20a%20System%20With%20Qsys%20(QII51020%202013.11.4)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

The following is a list of options that you can use with the qsys-script utility:

• --system-file=<file>—Optional. Specifies the path to a .qsys system file. This system is loaded
before running scripting commands.

• --script=<file>—Optional. A file containing Tcl scripting commands for creating ormanipulating
Qsys systems. If you specify both --cmd and --script, the --cmd commands are run before the
script specified by --script.

• --cmd=<value>—Optional. A string that contains Tcl scripting commands to create or manipulate
a Qsys system. If you specify both --cmd and --script, the --cmd commands are run before the
script specified by --script.

• --package-version=<value>—Optional. Specifies which system scripting Tcl API version to
use and determines the functionality and behavior of the Tcl commands. TheQuartus II software supports
the Tcl API scripting commands. If you do not specify the version on the command-line, your Tcl script
must request the system scripting API directly with the package require -exact qsys <
version > command.

• --help—Optional. Displays help for the qsys-script tool.
• --search-path=<value>—Optional. If omitted, a standard default path is used. If provided, a

comma-separated list of paths is searched. To include the standard path in your replacement, use "$",
for example, /< directory path >/dir,$. Multiple directory references are separated with a
comma.

• --jvm-max-heap-size=<value>—Optional. The maximum memory size that is used by the
qsys-script tool. You specify this value as <size><unit> where unit can be m or M for multiples
of megabytes or g or G for multiples of gigabytes.

Qsys Scripting Command Reference
Interface properties work differently for qsys scripting than with _hw.tcl scripting. In _hw.tcl, interfaces do
not distinguish between properties and parameters; in qsys scripting, properties and parameters are unique.

add_connection <start> [<end>] on page 6-52
This command connects interfaces using an appropriate connection type. Interface names consist of a child
instance name, followed by the name of an interface provided by that module, for example, mux0.out is
the interface out on the instance named mux0.

add_instance <name> <type> [<version>] on page 6-52
This command adds an instance of a component, referred to as a child or child instance, to the system.

add_interface <name> <type> <direction> on page 6-53
This command adds an interface to your system, which you can use to export an interface from within the
system.You specify the exported interfacewith the commandset_interface_property EXPORT_OF
<instance.interface>.

auto_assign_base_addresses <instance> on page 6-53
This command assigns base addresses to memory-mapped interfaces on an instance in the system. Instance
interfaces that are locked with lock_avalon_base_address command keep their addresses during address
auto-assignment.

auto_assign_irqs <instance> on page 6-53
This command assigns interrupt numbers to all connected interrupt senders on an instance in the system.

Altera CorporationCreating a System With Qsys

Send Feedback

6-47Qsys Scripting Command Reference
QII51020
2013.11.4

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Creating%20a%20System%20With%20Qsys%20(QII51020%202013.11.4)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

auto_connect <element> on page 6-54
This command creates connections from an instance or instance interface to matching interfaces in other
instances in the system. For example, Avalon-MM slaves are connected to Avalon-MM masters.

create_system [<name>] on page 6-54
This command replaces the current system in the system script with a new system with the specified name.

get_instance_interface_parameter_value <instance> <interface> <parameter> on page 6-54
This command returns the value of a parameter of an interface in a child instance.

get_composed_connection_parameters <instance> <childConnection> on page 6-55
This command returns a list of parameters on a connection in the subsystem, for an instance that contains
a subsystem.

get_composed_connections <instance> on page 6-55
This command returns a list of all connections in a subsystem, for an instance that contains a subsystem.

get_composed_instance_assignment <instance> <childInstance> <key> on page 6-55
This command returns the value of an assignment on an instance of a subsystem, for an instance that models
a subsystem.

get_composed_instance_assignments <instance> <childInstance> on page 6-56
This command returns a list of assignments on an instance of a subsystem, for an instance that contains a
subsystem.

get_composed_instance_parameter_value <instance> <childInstance> <parameter> on page 6-56
This command returns the value of a parameters on an instance in a subsystem, for an instance that contains
a subsystem.

get_composed_instance_parameters <instance> <childInstance> on page 6-57
This command returns a list of parameters on an instance of a subsystem, for an instance that contains a
subsystem.

get_composed_instances <instance> on page 6-57
This command returns a list of child instances in the subsystem, for an instance that contains a subsystem.

get_connection_parameter_property <connection> <parameter> <property> on page 6-57
This command returns the value of a parameter property in a connection.

get_connection_parameter_value <connection> <parameter> on page 6-58
This command gets the value of a parameter on the connection. Parameters represent aspects of the connection
that can be modified once the connection is created, such as the base address for an Avalon-MM connection.

get_connection_parameters <connection> on page 6-58
This command returns a list of parameters found on a connection. The list of connection parameters is the
same for all connections of the same type.

get_connection_properties on page 6-58
This command returns a list of properties found on a connection. The list of connection properties is the
same for all connections, regardless of type.

get_connection_property <connection> <property> on page 6-59
This command returns the value of a connection property.

Creating a System With QsysAltera Corporation

Send Feedback

QII51020
Qsys Scripting Command Reference6-48 2013.11.4

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Creating%20a%20System%20With%20Qsys%20(QII51020%202013.11.4)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

get_connections [<element>] on page 6-59
This command returns a list of connections in the system if no element is specified. If a child instance is
specified, for example cpu, all connections to any interface on the instance are returned. If an interface on
a child instance is specified, for examplecpu.instruction_master, only connections to that interface
are returned.

get_instance_assignment <instance> <key> on page 6-59
This command returns the value of an assignment on a child instance.

get_instance_assignments <instance> on page 6-60
This command returns a list of assignment keys for any assignments defined for the instance.

get_instance_interface_assignment <instance> <interface> <key> on page 6-60
This command returns the value of an assignment on an interface of a child instance.

get_instance_interface_assignments <instance> <interface> on page 6-60
This command returns the value of an assignment on an interface of a child instance.

get_instance_interface_parameter_property <instance> <interface> <parameter> <property> on page
6-61
This command returns the property value on a parameter in an interface of a child instance.

get_instance_interface_parameter_value <instance> <interface> <parameter> on page 6-61
This command returns the value of a parameter of an interface in a child instance.

get_instance_interface_parameters <instance> <interface> on page 6-62
This command returns a list of parameters for an interface in a child instance.

get_instance_interface_port_property <instance> <interface> <port> <property> on page 6-62
This command returns the property value of a port in the interface of a child instance.

get_instance_interface_ports <instance> <interface> on page 6-62
This command returns a list of ports in an interface of a child instance.

get_instance_interface_properties on page 6-63
This command returns a list of properties that you can be query for an interface in a child instance.

get_instance_interface_property <instance> <interface> <property> on page 6-63
This command returns the property value for an interface in a child instance.

get_instance_interfaces <instance> on page 6-63
This command returns a list of interfaces in a child instance.

get_instance_parameter_property <instance> <parameter> <property> on page 6-64
This command returns the value of a parameter in a connection in the subsystem, for an instance that
contains a subsystem.

get_instance_parameter_value <instance> <parameter> on page 6-64
This command returns the value of a property in a child instance.

get_instance_parameters <instance> on page 6-64
This command returns a list of parameters in a child instance.

get_instance_port_property <instance> <port> <property> on page 6-65
This command returns the value of a property of a port contained by an interface in a child instance.

get_instance_properties on page 6-65
This command returns a list of properties for a child instance.

Altera CorporationCreating a System With Qsys

Send Feedback

6-49Qsys Scripting Command Reference
QII51020
2013.11.4

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Creating%20a%20System%20With%20Qsys%20(QII51020%202013.11.4)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

get_instance_property <instance> <property> on page 6-65
This command returns the value of a property for a child instance.

get_instances on page 6-66
This command returns a list of the instance names for all child instances in the system.

get_interface_port_property <interface ><port ><property> on page 6-66
This command returns the value of a property of a port contained by an interface in a child instance.

get_interface_ports <interface> on page 6-66
This command returns the names of all of the ports that have been added to an interface.

get_interface_properties on page 6-67
This command returns the names of all the available interface properties. The list of interface properties is
the same for all interface types.

get_interface_property <interface> <property> on page 6-67
This command returns the value of a property from the specified interface.

get_interfaces on page 6-67
This command returns a list of top-level interfaces in the system.

get_module_properties on page 6-68
This command returns the properties that you can manage for the top-level module.

get_module_property <property> on page 6-68
This command returns the value of a top-level system property.

get_parameter_properties on page 6-68
This command returns a list of properties that you can query on parameters. These properties can be queried
on any parameter, such as parameters on instances, interfaces, instance interfaces, and connections.

get_port_properties on page 6-68
This command returns a list of properties that you can query on ports.

get_project_properties on page 6-69
This command returns a list of properties that you can query for the Quartus II project.

get_project_property <property> on page 6-69
This command returns the value of a Quartus II project property.

load_system <file> on page 6-69
This command loads a Qsys system from a file, and uses the system as the current system for scripting
commands.

lock_avalon_base_address <instance.interface> on page 6-69
This command prevents the memory-mapped base address from being changed for connections to an
interface on an instance when the auto_assign_base_addresses or
auto_assign_system_base_addresses commands are run.

preview_insert_avalon_streaming_adapters on page 6-70
This command runs the adapter insertion for Avalon-ST connections, which adapt connections with
mismatched configuration, such as mismatched data widths.

remove_connection <connection> on page 6-70
This command removes a connection from the system.

Creating a System With QsysAltera Corporation

Send Feedback

QII51020
Qsys Scripting Command Reference6-50 2013.11.4

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Creating%20a%20System%20With%20Qsys%20(QII51020%202013.11.4)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

remove_instance <instance> on page 6-70
This command removes a child instance from the system.

remove_interface <interface> on page 6-70
This command removes an exported top-level interface from the system.

save_system [<file>] on page 6-71
This command saves the current in-memory system to the named file. If the file is not specified, the system
saves to the same file that was opened with the load_system command.

send_message <level> <message> on page 6-71
This command sends a message to the user of the script. The message text is normally interpreted as HTML.
You can use the element to provide emphasis.

set_connection_parameter_value <connection> <parameter> <value> on page 6-72
This command sets the parameter value for a connection.

set_instance_parameter_value <instance> <parameter> <value> on page 6-72
This command set the parameter value for a child instance. Derived parameters and SYSTEM_INFO
parameters for the child instance can not be set with this command.

set_instance_property <instance> <property> <value> on page 6-73
This command sets the property value of a child instance. Most instance properties are read-only and can
only be set by the instance itself. The primary use for this command is to update the ENABLED parameter,
which includes or excludes a child instance when generating the system.

set_interface_property <interface> <property> <value> on page 6-73
This command sets the property value on an exported top-level interface. This command is used to set the
EXPORT_OF property to specify which interface of a child instance is exported by the top-level interface.

set_module_property <property> <value> on page 6-73
This command sets the system property value, such as the name of the system using the NAME property.

set_project_property <property> <value> on page 6-74
This command sets the project property value, such as the device family.

set_validation_property <property> <value> on page 6-74
This command sets a property that affects how andwhen validation is run during system scripting. To disable
system validation after each scripting command, set AUTOMATIC_VALIDATION to false.

unlock_avalon_base_address <instance.interface> on page 6-74
This command allows the memory-mapped base address to be changed for connections to an interface on
an instance when the auto_assign_base_addresses or
auto_assign_system_base_addresses commands are run.

upgrade_sopc_system <filename> on page 6-75
This command loads the specified .sopc file, which then upgrades the file as a Qsys-compatible system. Some
child instances and interconnect are replaced so that the system functions in Qsys. You must save the new
Qsys-compatible system with the save_system command.

validate_connection <connection> on page 6-75
This command validates the specified connection, and returns the during validation messages.

validate_instance <instance> on page 6-75
This command validates the specified child instance, and returns the validation messages.

Altera CorporationCreating a System With Qsys

Send Feedback

6-51Qsys Scripting Command Reference
QII51020
2013.11.4

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Creating%20a%20System%20With%20Qsys%20(QII51020%202013.11.4)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

validate_instance_interface <instance> <interface> on page 6-76
This command validates an interface on a child instance, and returns the validation messages.

validate_system on page 6-76
This command validates the system, and returns the validation messages.

add_connection <start> [<end>]
This command connects interfaces using an appropriate connection type. Interface names consist of a child
instance name, followed by the name of an interface provided by that module, for example, mux0.out is
the interface out on the instance named mux0.

add_connection

add_connection <start> [<end>]Usage

NoneReturns

The start interface to be
connected, in <instance_
name>.<interface_name>
format.

start

Arguments

The end interface to be connected
<instance_name>
.<interface_name>. format.

end

add_connection dma.read_master sdram.s1Example

add_instance <name> <type> [<version>]
This command adds an instance of a component, referred to as a child or child instance, to the system.

add_instance

add_instance<name> <type> [<version>]Usage

NoneReturns

Specifies a unique local name that
you can use to manipulate the
instance. This name is used in the
generated HDL to identify the
instance.

name

Arguments The type refers to a kind of
instance available in a library, for
example altera_avalon_uart.

type

The required version of the
specified instance type. If no
version is specified, the latest
version is used.

version (optional)

add_instance uart_0 altera_avalon_uartExample

Creating a System With QsysAltera Corporation

Send Feedback

QII51020
add_connection <start> [<end>]6-52 2013.11.4

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Creating%20a%20System%20With%20Qsys%20(QII51020%202013.11.4)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

add_interface <name> <type> <direction>
This command adds an interface to your system, which you can use to export an interface from within the
system.You specify the exported interfacewith the commandset_interface_property EXPORT_OF
<instance.interface>.

add_interface

add_interface <name> <type> <direction>Usage

NoneReturns

The name of the interface that will
be exported from the system.

name

Arguments The type of interface.type

The interface direction.direction

add_interface my_export conduit end

add_interface my_export conduit end

set_interface_property my_export EXPORT_OF uart_
0.external_connection

Example

auto_assign_base_addresses <instance>
This command assigns base addresses to memory-mapped interfaces on an instance in the system. Instance
interfaces that are locked with lock_avalon_base_address command keep their addresses during address
auto-assignment.

auto_assign_base_addresses

auto_assign_base_addresses <instance>Usage

NoneReturns

The name of the instance with
memory mapped interfaces.

instanceArguments

auto_assign_base_addresses sdramExample

auto_assign_irqs <instance>
This command assigns interrupt numbers to all connected interrupt senders on an instance in the system.

auto_assign_irqs

auto_assign_irqs <instance>Usage

NoneReturns

The name of the instance with an
interrupt sender.

instanceArguments

auto_assign_irqs sdramExample

Altera CorporationCreating a System With Qsys

Send Feedback

6-53add_interface <name> <type> <direction>
QII51020
2013.11.4

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Creating%20a%20System%20With%20Qsys%20(QII51020%202013.11.4)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

auto_connect <element>
This command creates connections from an instance or instance interface to matching interfaces in other
instances in the system. For example, Avalon-MM slaves are connected to Avalon-MM masters.

auto_connect

auto_connect <element>Usage

NoneReturns

The name of the instance
interface, or the name of an
instance.

elementArguments

auto_connect sdram

auto_connect uart_0.s1

Example

create_system [<name>]
This command replaces the current system in the system script with a new system with the specified name.

create_system

create_system [<name>]Usage

NoneReturns

The name of the new system.name (optional)Arguments

create_system my_new_system_nameExample

get_instance_interface_parameter_value <instance> <interface> <parameter>
This command returns the value of a parameter of an interface in a child instance.

get_composed_connection_parameter_value

get_instance_interface_parameter_value <instance>
<interface> <parameter>

Usage

The value of the parameter.variousReturn

The name of the child instance.instance

Arguments
The name of an interface on the
child instance.

interface

The name of the parameter on the
interface.

parameter

get_instance_interface_parameter_value uart_0 s0
setupTime

Example

Creating a System With QsysAltera Corporation

Send Feedback

QII51020
auto_connect <element>6-54 2013.11.4

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Creating%20a%20System%20With%20Qsys%20(QII51020%202013.11.4)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

get_composed_connection_parameters <instance> <childConnection>
This command returns a list of parameters on a connection in the subsystem, for an instance that contains
a subsystem.

get_composed_connection_parameters

get_composed_connection_parameters <instance>
<childConnection>

Usage

A list of parameter names.string[]Returns

The child instance containing a
subsystem.

instance

Arguments
The name of the connection in the
subsystem.

childConnection

get_composed_connection_parameters subsystem_0
cpu.data_master/memory.s0

Example

get_composed_connections <instance>
This command returns a list of all connections in a subsystem, for an instance that contains a subsystem.

get_composed_connections

get_composed_connections <instance>Usage

A list of connection names in the
subsystem. These connection
names are not qualified with the
instance name.

string[]Returns

The child instance containing a
subsystem.

instanceArguments

get_composed_connections subsystem_0Example

get_composed_instance_assignment <instance> <childInstance> <key>
This command returns the value of an assignment on an instance of a subsystem, for an instance that models
a subsystem.

get_composed_instance_assignment

get_composed_instance_assignment <instance>
<childInstance> <key>

Usage

The value of the assignment.string[]Returns

Altera CorporationCreating a System With Qsys

Send Feedback

6-55get_composed_connection_parameters <instance> <childConnection>
QII51020
2013.11.4

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Creating%20a%20System%20With%20Qsys%20(QII51020%202013.11.4)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

get_composed_instance_assignment

The child instance containing a
subsystem.

instance

Arguments The name of a child instance
found in the subsystem.

childInstance

The assignment key.key

get_composed_instance_assignment subsystem_0
video_0 "embeddedsw.CMacro.colorSpace"

Example

get_composed_instance_assignments <instance> <childInstance>
This command returns a list of assignments on an instance of a subsystem, for an instance that contains a
subsystem.

get_composed_instance_assignments

get_composed_instance_assignments <instance>
<childInstance>

Usage

A list of assignment names.string[]Returns

The child instance containing a
subsystem.

instance

Arguments
The name of a child instance
found in the subsystem.

childInstance

get_composed_instance_assignments subsystem_0 cpuExample

get_composed_instance_parameter_value <instance> <childInstance> <parameter>
This command returns the value of a parameters on an instance in a subsystem, for an instance that contains
a subsystem.

get_composed_instance_parameter_value

get_composed_instance_parameter_value <instance>
<childInstance> <parameter>

Usage

The value of a parameter on an
instance of a subsystem.

string []Returns

The child instance containing a
subsystem.

instance

Arguments
The name of a child instance
found in the subsystem.

childInstance

The name of the parameter to
query on an instance of a
subsystem.

parameter

Creating a System With QsysAltera Corporation

Send Feedback

QII51020
get_composed_instance_assignments <instance> <childInstance>6-56 2013.11.4

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Creating%20a%20System%20With%20Qsys%20(QII51020%202013.11.4)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

get_composed_instance_parameter_value

get_composed_instance_parameter_value subsystem_
0 cpu DATA_WIDTH

Example

get_composed_instance_parameters <instance> <childInstance>
This command returns a list of parameters on an instance of a subsystem, for an instance that contains a
subsystem.

get_composed_instance_parameters

get_composed_instance_parameters <instance>
<childInstance>

Usage

A list of parameter names.string []Returns

The child instance containing a
subsystem.

instance

Arguments
The name of a child instance
found in the subsystem.

childlInstance

get_composed_instance_parameters subsystem_0 cpuExample

get_composed_instances <instance>
This command returns a list of child instances in the subsystem, for an instance that contains a subsystem.

get_composed_instances

get_composed_instances <instance>Usage

A list of instance names found in
the subsystem.

string []Returns

The child instance containing a
subsystem.

instanceArguments

get_composed_instances subsystem_0Example

get_connection_parameter_property <connection> <parameter> <property>
This command returns the value of a parameter property in a connection.

get_connection_parameter_property

get_connection_parameter_property <connection>
<parameter> <property>

Usage

The value of the parameter
property.

variousReturns

Altera CorporationCreating a System With Qsys

Send Feedback

6-57get_composed_instance_parameters <instance> <childInstance>
QII51020
2013.11.4

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Creating%20a%20System%20With%20Qsys%20(QII51020%202013.11.4)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

get_connection_parameter_property

The connection to query.connection

Arguments The name of the parameter.parameter

The property of the connection.property

get_connection_parameter_property cpu.data_master/
dma0.csr baseAddress UNITS

Example

get_connection_parameter_value <connection> <parameter>
This command gets the value of a parameter on the connection. Parameters represent aspects of the connection
that can be modified once the connection is created, such as the base address for an Avalon-MM connection.

get_connection_parameter_value

get_connection_parameter_value <connection>
<parameter>

Usage

The value of the parameter.variousReturns

The connection to query.connection
Arguments

The name of the parameter.parameter

get_connection_parameter_value cpu.data_master/
dma0.csr baseAddress

Example

get_connection_parameters <connection>
This command returns a list of parameters found on a connection. The list of connection parameters is the
same for all connections of the same type.

get_connection_parameters

get_connection_parameters <connection>Usage

A list of parameter names.string []Returns

The connection to query.connectionArguments

get_connection_parameters cpu.data_master/dma0.csrExample

get_connection_properties
This command returns a list of properties found on a connection. The list of connection properties is the
same for all connections, regardless of type.

get_connection_properties

get_connection_propertiesUsage

A list of connection properties.string []Returns

Creating a System With QsysAltera Corporation

Send Feedback

QII51020
get_connection_parameter_value <connection> <parameter>6-58 2013.11.4

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Creating%20a%20System%20With%20Qsys%20(QII51020%202013.11.4)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

get_connection_properties

NoneArguments

get_connection_propertiesExample

get_connection_property <connection> <property>
This command returns the value of a connection property.

get_connection_property

get_connection_property <connection> <property>Usage

The value of a connection
property.

string[]Returns

The connection to query.connection

Arguments The name of the connection
property.

property

get_connection_property cpu.data_master/dma0.csr
TYPE

Example

get_connections [<element>]
This command returns a list of connections in the system if no element is specified. If a child instance is
specified, for example cpu, all connections to any interface on the instance are returned. If an interface on
a child instance is specified, for examplecpu.instruction_master, only connections to that interface
are returned.

get_connections

get_connections [<element>]Usage

A list of connections.string[]Returns

The name of a child instance, or
the qualified name of an interface
on a child instance.

element (optional)Arguments

get_connections

get_connections cpu

get_connections cpu.instruction_master

Example

get_instance_assignment <instance> <key>
This command returns the value of an assignment on a child instance.

get_instance_assignment

get_instance_assignment <instance> <key>Usage

Altera CorporationCreating a System With Qsys

Send Feedback

6-59get_connection_property <connection> <property>
QII51020
2013.11.4

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Creating%20a%20System%20With%20Qsys%20(QII51020%202013.11.4)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

get_instance_assignment

The value of the specified
assignment.

string[]Returns

The name of the child instance.instance
Arguments

The assignment key to query.key

get_instance_assignment video_processor
embeddedsw.CMacro.colorSpace

Example

get_instance_assignments <instance>
This command returns a list of assignment keys for any assignments defined for the instance.

get_instance_assignments

get_instance_assignments <instance>Usage

A list of assignment keys.string[]Returns

The name of the child instance.instanceArguments

get_instance_assignments sdramExample

get_instance_interface_assignment <instance> <interface> <key>
This command returns the value of an assignment on an interface of a child instance.

get_instance_interface_assignment

get_instance_interface_assignment <instance>
<interface> <key>

Usage

The value of the specified
assignment.

string []Returns

The name of the child instance.instance

Arguments The name of an interface on the
child instance.

interface

The assignment key to query.key

get_instance_interface_assignment sdram s1
embeddedsw.configuration.isFlash

Example

get_instance_interface_assignments <instance> <interface>
This command returns the value of an assignment on an interface of a child instance.

get_instance_interface_assignments

get_instance_interface_assignments <instance>
<interface>

Usage

Creating a System With QsysAltera Corporation

Send Feedback

QII51020
get_instance_assignments <instance>6-60 2013.11.4

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Creating%20a%20System%20With%20Qsys%20(QII51020%202013.11.4)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

get_instance_interface_assignments

A list of assignment keys.string[]Returns

The name of the child instance.instance

Arguments The name of an interface on the
child instance.

interface

get_instance_interface_assignments sdram s1Example

get_instance_interface_parameter_property <instance> <interface> <parameter> <property>
This command returns the property value on a parameter in an interface of a child instance.

get_instance_interface_parameter_property

get_instance_interface_parameter_property
<instance> <interface> <parameter> <property>

Usage

The value of the parameter
property.

variousReturns

The name of the child instance.instance

Arguments

The name of an interface on the
child instance.

interface

The name of the parameter on the
interface.

parameter

The name of the property on the
parameter.

property

get_instance_interface_parameter_property uart_0
s0 setupTime ENABLED

Example

get_instance_interface_parameter_value <instance> <interface> <parameter>
This command returns the value of a parameter of an interface in a child instance.

get_composed_connection_parameter_value

get_instance_interface_parameter_value <instance>
<interface> <parameter>

Usage

The value of the parameter.variousReturn

The name of the child instance.instance

Arguments
The name of an interface on the
child instance.

interface

The name of the parameter on the
instance.

parameter

Altera CorporationCreating a System With Qsys

Send Feedback

6-61get_instance_interface_parameter_property <instance> <interface> <parameter> <property>
QII51020
2013.11.4

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Creating%20a%20System%20With%20Qsys%20(QII51020%202013.11.4)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

get_composed_connection_parameter_value

get_instance_interface_parameter_value uart_0 s0
setupTime

Example

get_instance_interface_parameters <instance> <interface>
This command returns a list of parameters for an interface in a child instance.

get_instance_interface_parameters

get_instance_interface_parameters <instance>
<interface>

Usage

A list of parameter names for
parameters in the interface.

string[]Returns

The name of the child instance.instance

Arguments The name of an interface on the
child instance.

interface

get_instance_interface_parameters uart_0 s0Example

get_instance_interface_port_property <instance> <interface> <port> <property>
This command returns the property value of a port in the interface of a child instance.

get_instance_interface_port_property

get_instance_interface_port_property <instance>
<interface> <port> <property>

Usage

The value of the port property.variousReturns

The name of the child instance.instance

Arguments

The name of an interface on the
child instance.

interface

The name of the port in the
interface.

port

The name of the property of the
port.

property

get_instance_interface_port_property uart_0
exports tx WIDTH

Example

get_instance_interface_ports <instance> <interface>
This command returns a list of ports in an interface of a child instance.

Creating a System With QsysAltera Corporation

Send Feedback

QII51020
get_instance_interface_parameters <instance> <interface>6-62 2013.11.4

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Creating%20a%20System%20With%20Qsys%20(QII51020%202013.11.4)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

get_instance_interface_ports

get_instance_interface_ports <instance>
<interface>

Usage

A list of port names found in the
interface.

string[]Returns

The name of the child instance.instance

Arguments The name of an interface on the
child instance.

interface

get_instance_interface_ports uart_0 s0Example

get_instance_interface_properties
This command returns a list of properties that you can be query for an interface in a child instance.

get_instance_interface_properties

get_instance_interface_propertiesUsage

A list of property names.string[]Returns

NoneArguments

get_instance_interface_propertiesExample

get_instance_interface_property <instance> <interface> <property>
This command returns the property value for an interface in a child instance.

get_instance_interface_property

get_instance_interface_property <instance>
<interface> <property>

Usage

The value of the property.string []Return

The name of the child instance.instance

Arguments
The name of an interface on the
child instance.

interface

he name of the property of the
interface.

property

get_instance_interface_property uart_0 s0
DESCRIPTION

Example

get_instance_interfaces <instance>
This command returns a list of interfaces in a child instance.

Altera CorporationCreating a System With Qsys

Send Feedback

6-63get_instance_interface_properties
QII51020
2013.11.4

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Creating%20a%20System%20With%20Qsys%20(QII51020%202013.11.4)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

get_instance_interfaces

get_instance_interfaces <instance>Usage

A list of interface names.string[]Returns

The name of the child instance.instanceArguments

get_instance_interfaces uart_0Example

get_instance_parameter_property <instance> <parameter> <property>
This command returns the value of a parameter in a connection in the subsystem, for an instance that
contains a subsystem.

get_instance_parameter_property

get_instance_parameter_property <instance>
<parameter> <property>

Usage

The name of the child instance.variousReturn

The child instance containing a
subsystem.

instance

Arguments The name of the parameter in the
instance.

parameter

The name of the property of the
parameter.

property

get_instance_parameter_property uart_0 baudRate
ENABLED

Example

get_instance_parameter_value <instance> <parameter>
This command returns the value of a property in a child instance.

get_instance_parameter_value

get_instance_parameter_value <instance>
<parameter>

Usage

The value of the parameter.variousReturns

The name of the child instance.instance

Arguments The name of the parameter in the
instance.

parameter

get_instance_parameter_value uart_0 baudRateExample

get_instance_parameters <instance>
This command returns a list of parameters in a child instance.

Creating a System With QsysAltera Corporation

Send Feedback

QII51020
get_instance_parameter_property <instance> <parameter> <property>6-64 2013.11.4

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Creating%20a%20System%20With%20Qsys%20(QII51020%202013.11.4)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

get_instance_parameters

get_instance_parameters <instance>Usage

A list of parameters in the
instance.

string[]Returns

The name of the child instance.instanceArguments

get_instance_parameters uart_0Example

get_instance_port_property <instance> <port> <property>
This command returns the value of a property of a port contained by an interface in a child instance.

get_instance_port_property

get_instance_port_property <instance> <port>
<property>

Usage

The value of the property for the
port.

variousReturn

The name of the child instance.instance

Arguments

The name of a port in one of the
interfaces on the child instance.

port

The name of a property found on
the port; DIRECTION, ROLE,
WIDTH.

property

get_instance_port_property uart_0 tx WIDTHExample

get_instance_properties
This command returns a list of properties for a child instance.

get_instance_properties

get_instance_propertiesUsage

A list of property names for the
child instance.

string[]Returns

NoneArguments

get_instance_propertiesExample

get_instance_property <instance> <property>
This command returns the value of a property for a child instance.

get_instance_property

get_instance_property <instance> <property>Usage

Altera CorporationCreating a System With Qsys

Send Feedback

6-65get_instance_port_property <instance> <port> <property>
QII51020
2013.11.4

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Creating%20a%20System%20With%20Qsys%20(QII51020%202013.11.4)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

get_instance_property

The value of the property.string[]Returns

The name of the child instance.instance

Arguments The name of a property found on
the instance.

property

get_instance_property cpu ENABLEDExample

get_instances
This command returns a list of the instance names for all child instances in the system.

get_instances

get_instancesUsage

A list of child instance names.string[]Returns

NoneArguments

get_instancesExample

get_interface_port_property <interface ><port ><property>
This command returns the value of a property of a port contained by an interface in a child instance.

get_interface_port_property

get_interface_port_property <interface><port>
<property>

Usage

The value of the property.variousReturn

The name of a top-level interface
on the system.

instance

Arguments The name of a port found in the
interface.

port

The name of a property found on
the port.

property

get_interface_port_property uart_exports tx
DIRECTION

Example

get_interface_ports <interface>
This command returns the names of all of the ports that have been added to an interface.

get_interface_ports

get_interface_ports <interface>Usage

Creating a System With QsysAltera Corporation

Send Feedback

QII51020
get_instances6-66 2013.11.4

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Creating%20a%20System%20With%20Qsys%20(QII51020%202013.11.4)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

get_interface_ports

A list of port names.string[]Returns

The name of a top-level interface
on the system.

interfaceArguments

get_interface_ports export_clk_outExample

get_interface_properties
This command returns the names of all the available interface properties. The list of interface properties is
the same for all interface types.

get_interface_properties

get_interface_propertiesUsage

A list of interface properties.string[]Returns

NoneArguments

get_interface_propertiesExample

get_interface_property <interface> <property>
This command returns the value of a property from the specified interface.

get_interface_property

get_interface_property <interface> <property>Usage

The property value.variousReturn

The name of a top-level interface
on the system.

interface

Arguments
The name of the property,
EXPORT_OF.

property

get_interface_property export_clk_out EXPORT_OFExample

get_interfaces
This command returns a list of top-level interfaces in the system.

get_interfaces

get_interfacesUsage

A list of the top-level interfaces
exported from the system.

string[]Returns

NoneArguments

get_interfacesExample

Altera CorporationCreating a System With Qsys

Send Feedback

6-67get_interface_properties
QII51020
2013.11.4

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Creating%20a%20System%20With%20Qsys%20(QII51020%202013.11.4)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

get_module_properties
This command returns the properties that you can manage for the top-level module.

get_module_properties

get_module_propertiesUsage

A list of property names.string[]Returns

NoneArguments

get_module_propertiesExample

get_module_property <property>
This command returns the value of a top-level system property.

get_module_property

get_module_property <property>Usage

The value of the property.string[]Returns

The name of the property to
query; NAME.

propertyArguments

get_module_property NAMEExample

get_parameter_properties
This command returns a list of properties that you can query on parameters. These properties can be queried
on any parameter, such as parameters on instances, interfaces, instance interfaces, and connections.

get_parameter_properties

get_parameter_propertiesUsage

A list of parameter properties.string[]Returns

NoneArguments

get_parameter_propertiesExample

get_port_properties
This command returns a list of properties that you can query on ports.

get_port_properties

get_port_propertiesUsage

A list of port properties.string[]Returns

NoneArguments

get_port_propertiesExample

Creating a System With QsysAltera Corporation

Send Feedback

QII51020
get_module_properties6-68 2013.11.4

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Creating%20a%20System%20With%20Qsys%20(QII51020%202013.11.4)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

get_project_properties
This command returns a list of properties that you can query for the Quartus II project.

get_project_properties

get_project_propertiesUsage

A list of project properties.string[]Returns

NoneArguments

get_project_propertiesExample

get_project_property <property>
This command returns the value of a Quartus II project property.

get_project_property

get_project_property <property>Usage

The value of the property.string[]Returns

The name of the project property;
DEVICE_FAMILY.

propertyArguments

get_project_property DEVICE_FAMILYExample

load_system <file>
This command loads a Qsys system from a file, and uses the system as the current system for scripting
commands.

load_system

load_system <file>Usage

NoneReturns

The path to a .qsys file.fileArguments

load_system example.qsysExample

lock_avalon_base_address <instance.interface>
This command prevents the memory-mapped base address from being changed for connections to an
interface on an instance when the auto_assign_base_addresses or
auto_assign_system_base_addresses commands are run.

lock_avalon_base_address

lock_avalon_base_address <instance.interface>Usage

NoneReturns

Altera CorporationCreating a System With Qsys

Send Feedback

6-69get_project_properties
QII51020
2013.11.4

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Creating%20a%20System%20With%20Qsys%20(QII51020%202013.11.4)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

lock_avalon_base_address

The qualified name of the
interface of an instance, in
<instance>.<interface> format.

instance.interfaceArguments

lock_avalon_base_address sdram.s1Example

preview_insert_avalon_streaming_adapters
This command runs the adapter insertion for Avalon-ST connections, which adapt connections with
mismatched configuration, such as mismatched data widths.

preview_insert_avalon_streaming_adapters

preview_insert_avalon_streaming_adaptersUsage

NoneReturns

NoneArguments

preview_insert_avalon_streaming_adaptersExample

remove_connection <connection>
This command removes a connection from the system.

remove_connection

remove_connection <connection>Usage

NoneReturns

The name of the connection to
remove.

connectionArguments

remove_connection cpu.data_master/sdram.s0Example

remove_instance <instance>
This command removes a child instance from the system.

remove_instance

remove_instance <instance>Usage

NoneReturns

The name of the child instance to
remove.

instanceArguments

remove_instance cpuExample

remove_interface <interface>
This command removes an exported top-level interface from the system.

Creating a System With QsysAltera Corporation

Send Feedback

QII51020
preview_insert_avalon_streaming_adapters6-70 2013.11.4

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Creating%20a%20System%20With%20Qsys%20(QII51020%202013.11.4)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

remove_interface

remove_interface <interface>Usage

NoneReturns

The name of the exported top-
level interface.

interfaceArguments

remove_interface clk_outExample

save_system [<file>]
This command saves the current in-memory system to the named file. If the file is not specified, the system
saves to the same file that was opened with the load_system command.

save_system

save_system [<file>]Usage

NoneReturns

If present, the path of the .qsys file
to save.

file optionalArguments

save_system

save_system example.qsys

Example

send_message <level> <message>
This command sends a message to the user of the script. The message text is normally interpreted as HTML.
You can use the element to provide emphasis.

send_message

send_message <level> <message>Usage

NoneReturn

Altera CorporationCreating a System With Qsys

Send Feedback

6-71save_system [<file>]
QII51020
2013.11.4

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Creating%20a%20System%20With%20Qsys%20(QII51020%202013.11.4)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

send_message

The following message levels are
supported:

• ERROR—Provides an error
message.

• WARNING—Provides a
warning message.

• INFO—Provides an informa-
tional message.

• PROGRESS—Provides a
progress message.

• DEBUG—Provides a debug
message when debug mode is
enabled.

level

Arguments

The text of the message.message

send_message ERROR "The system is down!"Example

set_connection_parameter_value <connection> <parameter> <value>
This command sets the parameter value for a connection.

set_connection_parameter_value

set_connection_parameter_value <connection>
<parameter> <value>

Usage

NoneReturn

The connection.connection

Arguments The name of the parameter.parameter

The new parameter value.value

set_connection_parameter_value cpu.data_master/
dma0.csr baseAddress "0x000a0000"

Example

set_instance_parameter_value <instance> <parameter> <value>
This command set the parameter value for a child instance. Derived parameters and SYSTEM_INFO
parameters for the child instance can not be set with this command.

set_instance_parameter_value

set_instance_parameter_value <instance>
<parameter> <value>

Usage

NoneReturn

Creating a System With QsysAltera Corporation

Send Feedback

QII51020
set_connection_parameter_value <connection> <parameter> <value>6-72 2013.11.4

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Creating%20a%20System%20With%20Qsys%20(QII51020%202013.11.4)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

set_instance_parameter_value

The name of the child instance.instance

Arguments The name of the parameter.parameter

The new parameter value.value

set_instance_parameter_value uart_0 baudRate 9600Example

set_instance_property <instance> <property> <value>
This command sets the property value of a child instance. Most instance properties are read-only and can
only be set by the instance itself. The primary use for this command is to update the ENABLED parameter,
which includes or excludes a child instance when generating the system.

set_instance_property

set_instance_property <instance> <property>
<value>

Usage

NoneReturn

The name of the child instance.instance

Arguments The name of the property.property

The new parameter value.value

set_instance_property cpu ENABLED falseExample

set_interface_property <interface> <property> <value>
This command sets the property value on an exported top-level interface. This command is used to set the
EXPORT_OF property to specify which interface of a child instance is exported by the top-level interface.

set_interface_property

set_interface_property <interface> <property>
<value>

Usage

NoneReturn

The name of an exported top-level
interface.

interface

Arguments The name of the property.property

The new parameter value.value

set_interface_property clk_out EXPORT_OF clk.clk_
out

Example

set_module_property <property> <value>
This command sets the system property value, such as the name of the system using the NAME property.

Altera CorporationCreating a System With Qsys

Send Feedback

6-73set_instance_property <instance> <property> <value>
QII51020
2013.11.4

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Creating%20a%20System%20With%20Qsys%20(QII51020%202013.11.4)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

set_module_property

set_module_property <property> <value>Usage

NoneReturn

The name of the property.property
Arguments

The new property value.value

set_module_property NAME "new_system_name"Example

set_project_property <property> <value>
This command sets the project property value, such as the device family.

set_project_property

set_project_property <property> <value>Usage

NoneReturn

The name of the property.property
Arguments

The new property value.value

set_project_property DEVICE_FAMILY "Cyclone IV
GX"

Example

set_validation_property <property> <value>
This command sets a property that affects how andwhen validation is run during system scripting. To disable
system validation after each scripting command, set AUTOMATIC_VALIDATION to false.

set_validation_property

set_validation_property <property> <value>Usage

NoneReturn

The name of the property.property
Arguments

The new property value.value

set_validation_property AUTOMATIC_VALIDATION falseExample

unlock_avalon_base_address <instance.interface>
This command allows the memory-mapped base address to be changed for connections to an interface on
an instance when the auto_assign_base_addresses or
auto_assign_system_base_addresses commands are run.

unlock_avalon_base_address

unlock_avalon_base_address <instance.interface>Usage

Creating a System With QsysAltera Corporation

Send Feedback

QII51020
set_project_property <property> <value>6-74 2013.11.4

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Creating%20a%20System%20With%20Qsys%20(QII51020%202013.11.4)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

unlock_avalon_base_address

NoneReturn

The qualified name of the
interface of an instance, in
<instance>.<interface> format

instance.interfaceArguments

unlock_avalon_base_address sdram.s1Example

upgrade_sopc_system <filename>
This command loads the specified .sopc file, which then upgrades the file as a Qsys-compatible system. Some
child instances and interconnect are replaced so that the system functions in Qsys. You must save the new
Qsys-compatible system with the save_system command.

upgrade_sopc_system

upgrade_sopc_system <filename>Usage

NoneReturn

The path to the .sopc file being
upgraded. The upgrademoves the
.sopc file and related generation
files to a backup directory.

filenameArguments

upgrade_sopc_system old_system.sopcExample

validate_connection <connection>
This command validates the specified connection, and returns the during validation messages.

validate_connection

validate_connection <connection>Usage

A list of messages produced
validation.

string []Return

The path to the .sopc file being
upgraded. The upgrademoves the
.sopc file and related generation
files to a backup directory.

connectionArguments

validate_connection cpu.data_master/sdram.s1Example

validate_instance <instance>
This command validates the specified child instance, and returns the validation messages.

validate_instance

validate_instance <instance>Usage

Altera CorporationCreating a System With Qsys

Send Feedback

6-75upgrade_sopc_system <filename>
QII51020
2013.11.4

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Creating%20a%20System%20With%20Qsys%20(QII51020%202013.11.4)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

validate_instance

A list of messages produced
validation.

string []Return

The name of the child instance to
validate.

instanceArguments

validate_instance cpuExample

validate_instance_interface <instance> <interface>
This command validates an interface on a child instance, and returns the validation messages.

validate_instance_interface

validate_instance_interface <instance> <interface>Usage

A list of messages produced
validation.

string []Return

The name of the child instance.instance

Arguments The name of the instance on the
child instance to validate.

interface

validate_instance_interface cpu data_masterExample

validate_system
This command validates the system, and returns the validation messages.

validate_system

validate_systemUsage

A list of messages produced
validation.

string []Return

NoneArguments

validate_systemExample

Document Revision History
Table 6-7 indicates edits made to the Creating a System With Qsys content since its creation.

Creating a System With QsysAltera Corporation

Send Feedback

QII51020
validate_instance_interface <instance> <interface>6-76 2013.11.4

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Creating%20a%20System%20With%20Qsys%20(QII51020%202013.11.4)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Table 6-7: Document Revision History

ChangesVersionDate

• Added: Integrating with the .qsys File.
• Added: Using the Hierarchy Tab.
• Added: Managing Interconnect Requirements.
• Added: Viewing Qsys Interconnect.

13.1.0November 2013

• Added AMBA APB support.
• Added qsys-generate utility.
• Added VHDL BF

May 2013

M ID support.
• Added Creating Secure Systems (TrustZones) .
• Added CMSIS Support for Qsys Systems With An HPS

Component.
• Added VHDL language support options.

13.0.0May 2013

• Added AMBA AXI4 support.12.1.0November 2012

• Added AMBA AX3I support.
• Added Preset Editor updates.
• Added command-line utilities, and scripts.

12.0.0June 2012

• Added Synopsys VCS and VCS MX Simulation Shell Script.
• AddedCadence Incisive Enterprise (NCSIM) Simulation Shell

Script.
• Added Using Instance Parameters and Example Hierarchical

System Using Parameters.

11.1.0November 2011

• Added simulation support in Verilog HDL and VHDL.
• Added testbench generation support.
• Updated simulation and file generation sections.

11.0.0May 2011

Initial release.10.1.0December 2010

Related Information
Quartus II Handbook Archive

Altera CorporationCreating a System With Qsys

Send Feedback

6-77Document Revision History
QII51020
2013.11.4

http://www.altera.com/literature/lit-qts_archive.jsp
mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Creating%20a%20System%20With%20Qsys%20(QII51020%202013.11.4)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

7Creating Qsys Components

2013.11.4

QII51022 Subscribe Send Feedback

In order to describe and package IP components for use in a Qsys system, you must create a Hardware
Component Definition File (_hw.tcl) which will describes your component, its interfaces and HDL files.
Qsys provides the Component Editor to help you create a simple _hw.tcl file.

The Demo AXI Memory example on the Qsys Design Examples page of the Altera® web site provides the
full code examples that appear in the following topics.

Qsys supports standard Avalon®, AMBA® AXI3™ (version 1.0), AMBA AXI4™ (version 2.0), and AMBA
APB™ 3 (version 1.0) interface specifications.

Related Information

• Avalon Interface Specifications

• AMBA Protocol Specifications

• Demo AXI Memory Example

Qsys Components
A Qsys component includes the following elements:

• Information about the component type, such as name, version, and author.
• HDL description of the component’s hardware, including SystemVerilog, Verilog HDL, or VHDL files
• Constraint files (Synopsys Design Constraints File (.sdc) and/or Quartus II IP File (.qip)) that define the

component for synthesis and simulation.
• A component’s interfaces, including I/O signals.
• The parameters that configure the operation of the component.

Component Interface Support
Components can have any number of interfaces in any combination. Each interface represents a set of signals
that you can connect within a Qsys system, or export outside of a Qsys system.

ISO
9001:2008
Registered

© 2013 Altera Corporation. All rights reserved. ALTERA, ARRIA, CYCLONE, HARDCOPY, MAX, MEGACORE, NIOS, QUARTUS and STRATIX words
and logos are trademarks of Altera Corporation and registered in the U.S. Patent and Trademark Office and in other countries. All other
words and logos identified as trademarks or service marks are the property of their respective holders as described at
www.altera.com/common/legal.html. Altera warrants performance of its semiconductor products to current specifications in accordance with
Altera's standard warranty, but reserves the right to make changes to any products and services at any time without notice. Altera assumes
no responsibility or liability arising out of the application or use of any information, product, or service described herein except as expressly
agreed to in writing by Altera. Altera customers are advised to obtain the latest version of device specifications before relying on any published
information and before placing orders for products or services.

www.altera.com

101 Innovation Drive, San Jose, CA 95134

https://www.altera.com/servlets/subscriptions/alert?id=QII51022
mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20(QII51022%202013.11.4)%20Creating%20Qsys%20Components&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.
http://www.altera.com/literature/manual/mnl_avalon_spec.pdf
http://infocenter.arm.com/help/topic/com.arm.doc.set.amba/index.html#specsl
www.altera.com/support/examples/design-entry-tools/qsys/exm-demo-axi3-memory.html
http://www.altera.com/support/devices/reliability/certifications/rel-certifications.html
http://www.altera.com/support/devices/reliability/certifications/rel-certifications.html
http://www.altera.com/support/devices/reliability/certifications/rel-certifications.html

Qsys components can include the following types of interfaces:

• Memory-Mapped—Implements a partial crossbar interconnect structure (Avalon-MM, AXI, and APB)
that provides concurrent paths between master and slaves. Interconnect consists of synchronous logic
and routing resources inside the FPGA, and implementation is based on a network-on-chip architecture.

• Streaming—Connects Avalon Streaming (Avalon-ST) sources and sinks that streamunidirectional data,
as well as high-bandwidth, low-latency components. Streaming creates datapaths for unidirectional traffic,
including multichannel streams, packets, and DSP data. The Avalon-ST interconnect is flexible and can
implement on-chip interfaces for industry standard telecommunications and data communications cores,
such as Ethernet, Interlaken, and video. You can define bus widths, packets, and error conditions.

• Interrupts—Connects interrupt senders and the interrupt receivers of the component that serves them.
Qsys supports individual, single-bit interrupt requests (IRQs). In the event that multiple senders assert
their IRQs simultaneously, the receiver logic (typically under software control) determines which IRQ
has highest priority, then responds appropriately.

• Clocks—Connects clock output interfaces with clock input interfaces. Clock outputs can fan-out without
the use of a bridge. A bridge is required only when a clock from an external (exported) source connects
internally to more than one source.

• Resets—Connects reset sources with reset input interfaces. If your system requires a particular positive-
edge or negative-edge synchronized reset, Qsys inserts a reset controller to create the appropriate reset
signal. If you design a system with multiple reset inputs, the reset controller ORs all reset inputs and
generates a single reset output.

• Conduits—Connects point-to-point conduit interfaces, or represent signals that are exported from the
Qsys system. Qsys uses conduits for component I/O signals that are not part of any supported standard
interface. You can connect two conduits directly within a Qsys system as a point-to-point connection,
or conduit interfaces can be exported and brought to the top-level of the system as top-level system I/O.
You can use conduits to connect to external devices, for example external DDR SDRAM memory, and
to FPGA logic defined outside of the Qsys system.

Component Structure
Altera provides components automatically installed with the Quartus® II software. You can obtain a list of
Qsys-compliant components provided by third-party IP developers on Altera's Intellectual Property &
ReferenceDesigns page by typing: qsys certified in the Search box, and then selecting IPCore&Reference
Designs. Components are also provided with Altera development kits, which are listed on the All
Development Kits page.

Every component is defined with a < component_name >_hw.tcl file, a text file written in the Tcl scripting
language that describes the component to Qsys. When you design your own custom component, you can
create the _hw.tcl file manually, or by using the Qsys Component Editor.

The Component Editor simplifies the process of creating _hw.tcl files by creating a file that you can edit
outside of the Component Editor to add advanced procedures. When you edit a previously saved _hw.tcl
file, Qsys automatically backs up the earlier version as _hw.tcl~.

You can move component files into a new directory, such as a network location, so that other users can use
the component in their systems. The _hw.tcl file contains relative paths to the other files, so if you move an
_hw.tcl file, you should also move all the HDL and other files associated with it.

Creating Qsys ComponentsAltera Corporation

Send Feedback

QII51022
Component Structure7-2 2013.11.4

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Creating%20Qsys%20Components%20(QII51022%202013.11.4)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

There are three component types:

• Static— Static components always generate the same output, regardless of their parameterization.
Components that instantiate static components must have only static children.

• Generated—A generated component's fileset callback allows an instance of the component to create
unique HDL design files based on the instance's parameter values.

• Composed—Composed components are subsystems constructed from instances of other components.
You can use a composition callback to manage the subsystem in a composed component.

Related Information

• Intellectual Property & Reference Designs

• Creating a Composed Component or Subsystem on page 7-28

• Adding Component Instances to a Static or Generated Component on page 7-32

Component File Organization
A typical component uses the following directory structure where the names of the directories are not
significant:

<component_directory>/

• <hdl>/—Contains the component HDL design files, for example .v, .sv, or .vhd files that contain the
top-level module, along with any required constraint files.

• <component_name> _hw.tcl—The component description file.
• <component_name> _sw.tcl—The software driver configuration file. This file specifies the paths for the

.c and .h files associated with the component, when required.
• <software>/—Contains software drivers or libraries related to the component.

Refer to the Nios II Software Developer’s Handbook for information about writing a device driver or
software package suitable for use with the Nios II processor.

Note:

Related Information

• Hardware Abstraction LayerTool Reference (Nios II Software Developer’s Handbook)

• Nios II Software Build Tool Reference (Nios II Software Developer’s Handbook)

Component Versions
Qsys systems support multiple versions of the same component within the same system; you can create and
maintain multiple versions of the same component.

If you have multiple _hw.tcl files for components with the same NAME module properties and different
VERSION module properties, both versions of the component are available.

If multiple versions of the component are available in the Qsys Library, you can add a specific version of a
component by right-clicking the component, and then selecting Add version <version_number>.

Upgrading IP Components to the Latest Version
When you open a Qsys design, if Qsys detects IP components that require regeneration, the Upgrade IP
Cores dialog box appears and allows you to upgrade outdated components.

Altera CorporationCreating Qsys Components

Send Feedback

7-3Component File Organization
QII51022
2013.11.4

http://www.altera.com/products/ip/ipm-index.html
http://www.altera.com/literature/hb/nios2/n2sw_nii5v2_02.pdf
http://www.altera.com/literature/hb/nios2/n2sw_nii52016.pdf
mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Creating%20Qsys%20Components%20(QII51022%202013.11.4)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Components that you must upgrade in order to successfully compile your design appear in red. Status icons
indicate whether a component is currently being regenerated, the component is encrypted, or that there is
not enough information to determine the status of component. To upgrade a component, in the Upgrade
IP Cores dialog box, select the component that you want to upgrade, and then click Upgrade. The Quartus
II software maintains a list of all IP components associated with your design on the Components tab in the
Project Navigator.

Related Information
Upgrade IP Components Dialog Box

Life Cycle of a Component
When you define a component with the Qsys Component Editor, or a custom _hw.tcl file, you specify the
information that Qsys requires to instantiate the component in aQsys system and to generate the appropriate
output files for synthesis and simulation.

The following phases describe the process when working with components in Qsys:

• Discovery—During the discovery phase, Qsys reads the _hw.tcl file to identify information that appears
in the Qsys Library, such as the component's name, version, and documentation URLs. Each time you
open Qsys, the tool searches for the following file types using the default search locations and entries in
the IP Search Path:

• _hw.tcl files—Each _hw.tcl file defines a single component.
• IP Index (.ipx) files—Each .ipx file indexes a collection of available components, or a reference to

other directories to search.

• Static Component Definition—During the static component definition phase, Qsys reads the _hw.tcl
file to identify static parameter declarations, interface properties, interface signals, and HDL files that
define the component. At this stage of the life cycle, the component interfaces might be only partially
defined.

• Parameterization—During the parameterization phase, after an instance of the component is added to
a Qsys system, the user of the component specifies parameters with the component’s parameter editor.

• Validation—During the validation phase, Qsys validates the values of each instance's parameters against
the allowed ranges specified for each parameter. You can use callback procedures that run during the
validation phase to provide validationmessages. For example, if there are dependencies between parameters
where only certain combinations of values are supported, you can report errors for the unsupported
values.

Creating Qsys ComponentsAltera Corporation

Send Feedback

QII51022
Life Cycle of a Component7-4 2013.11.4

http://quartushelp.altera.com/current/master.htm#mergedProjects/global/pjn/pjn_com_upgrade_ip.htm
mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Creating%20Qsys%20Components%20(QII51022%202013.11.4)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

• Elaboration—During the elaboration phase, Qsys queries the component for its interface information.
Elaboration is triggered when an instance of a component is added to a system, when its parameters are
changed, or when a system property changes. You can use callback procedures that run during the
elaboration phase to dynamically control interfaces, signals, and HDL files based on the values of
parameters. For example, interfaces defined with static declarations can be enabled or disabled during
elaboration.When elaboration is complete, the component's interfaces and design logicmust be completely
defined.

• Composition—During the composition phase, a component can manipulate the instances in the
component's subsystem. The _hw.tcl file uses a callback procedure to provide parameterization and
connectivity of subcomponents.

• Generation—During the generation phase,Qsys generates synthesis or simulation files for each component
in the system into the appropriate output directories, as well as any additional files that support associated
tools.

Creating Qsys Components in the Component Editor
TheQsys Component Editor, accessed by clickingNewComponent in theQsys Library, allows you to create
and package a component for use in Qsys. When you use the Component Editor to define a component, the
Component Editor writes the information to the _hw.tcl file.

The Component Editor allows you to perform the following tasks:

• Specify component’s identifying information, such as name, version, author, etc.
• Specify the SystemVerilog, Verilog HDL, or VHDL files, and constraint files that define the component

for synthesis and simulation.
• Create an HDL template for a component by first defining its parameters, signals, and interfaces.
• Associate and define signals for a component’s interfaces.
• Set parameters on interfaces, which specify characteristics.
• Specify relationships between interfaces.
• Declare parameters that alter the component structure or functionality.

If the component is HDL-based, you must define the parameters and signals in the HDL file, and cannot
add or remove them in the Component Editor. If you have not yet created the top-level HDL file, you declare
the parameters and signals in the Component Editor, and they are then included in the HDL template file
that Qsys creates.

In a Qsys system, the interfaces of a component are connected within the system, or exported as top-level
signals from the system.

If you are creating the component using an existing HDL file, the order in which the tabs appear in the
Component Editor reflects the recommended design flow for component development. You can use the
Prev and Next buttons at the bottom of the Component Editor window to guide you through the tabs.

If the component is not based on an existing HDL file, enter the parameters, signals, and interfaces first, and
then return to the Files tab to create the top-level HDL file template. When you click Finish, Qsys creates
the component _hw.tcl file with the details provided on the Component Editor tabs.

After the component is saved, it is available in the Qsys Library.

If you require features in the component that are not supported by the Component Editor, such as callback
procedures, you can use the Component Editor to create the _hw.tcl file, and then manually edit the file to

Altera CorporationCreating Qsys Components

Send Feedback

7-5Creating Qsys Components in the Component Editor
QII51022
2013.11.4

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Creating%20Qsys%20Components%20(QII51022%202013.11.4)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

complete the component definition. Subsequent topics document the _hw.tcl commands that are generated
by the Component Editor, as well as some of the advanced features that you can add with your own _hw.tcl
commands.

Related Information
Component Interface Tcl Reference

Saving a Component and Creating an _hw.tcl File
You save a component by clicking Finish in the Component Editor. The Component Editor saves the
component to a file with the file name <component_name> _hw.tcl.

Altera recommends that you save _hw.tcl files and their associated files in an ip/ <class-name> directory
within your Quartus II project directory. You can also publish component information for use by software,
such as a C compiler and a board support package (BSP) generator.

Refer to Creating a System with Qsys for information on how to search for and add components to the Qsys
library for use in your designs.

Related Information
Publishing Component Information to Embedded Software (Nios II Software Developer’s Handbook)

Creating a System with Qsys

Editing a Component with the Component Editor
InQsys, youmake changes to a component by right-clicking the component in the Library, and then clicking
Edit. After making changes, click Finish to save the changes to the _hw.tcl file. You can open the _hw.tcl
file in a text editor to view the hardware Tcl for the component. If you edit the _hw.tcl file to customize the
component with advanced features, you cannot use the Component Editor to make further changes without
over-writing your customized file.

You cannot use the Component Editor to edit components installed with the Quartus II software, such as
Altera-provided components. If you edit the HDL for a component and change the interface to the top-level
module, you must edit the component to reflect the changes you made to the HDL.

Related Information
Creating Qsys Components (Quartus II Help)

Specifying Basic Component Information
The Component Type tab in the Component Editor allows you to specify the following information about
the component:

Creating Qsys ComponentsAltera Corporation

Send Feedback

QII51022
Saving a Component and Creating an _hw.tcl File7-6 2013.11.4

http://www.altera.com/literature/hb/qts/qsys_tcl.pdf
http://www.altera.com/literature/hb/nios2/n2sw_nii52018.pdf
http://www.altera.com/literature/hb/qts/qsys_intro.pdf
http://quartushelp.altera.com/current/master.htm#mergedProjects/system/qsys/qsys_pro_creating_components.htm
mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Creating%20Qsys%20Components%20(QII51022%202013.11.4)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

• Name—Specifies the name used in the _hw.tcl filename, as well as in the top-level module name when
you create a synthesis wrapper file for a non HDL-based component.

• Displayname—Identifies the component in the parameter editor, which you use to configure and instance
of the component, and also appears in the Library under Project and on the System Contents tab.

• Version—Specifies the version number of the component.
• Group—Represents the category of the component in the list of available components in the Library.

You can select an existing group from the list, or define a new group by typing a name in the Group box.
Separating entries in theGroup boxwith a slash defines a subcategory. For example, if you typeMemories
and Memory Controllers/On-Chip, the component appears in the Library under the On-Chip group,
which is a subcategory of the Memories and Memory Controllers group. If you save the component in
the project directory, the component appears in the Library in the group you specified under Project.
Alternatively, if you save the component in the Quartus II installation directory, the component appears
in the specified group under Library.

• Description—Allows you to describe the component. This description appears when the user views the
component details.

• Created By—Allows you to specify the author of the component.
• Icon—Allows you to enter the relative path to an icon file (.gif, .jpg, or .png format) that represents the

component and appears as the header in the parameter editor for the component. The default image is
the Altera MegaCore function icon.

• Documentation—Allows you to add links to documentation for the component, and appears when you
right-click the component in the Library, and then select Details.

• To specify an Internet file, begin your path with http://, for example:
http://mydomain.com/datasheets/my_memory_controller.html.

• To specify a file in the file system, begin your path with file:/// for Linux, and file://// for Windows;
for example (Windows): file:////company_server/datasheets my_memory_controller.pdf.

TheDisplay name,Group,Description,CreatedBy, Icon, andDocumentation entries are optional. Figure
7-1 shows the Component Type tab with the component information.

Altera CorporationCreating Qsys Components

Send Feedback

7-7Specifying Basic Component Information
QII51022
2013.11.4

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Creating%20Qsys%20Components%20(QII51022%202013.11.4)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Figure 7-1: Component Type Tab in the Component Editor

When you use the Component Editor to create a component, it writes this basic component information in
the _hw.tcl file. The example below shows the component hardware Tcl code related to the entries for the
ComponentType tab in figure above. Thepackage require command specifies theQuartus II software
version that Qsys uses to create the _hw.tcl file, and ensures compatibility with this version of the Qsys API
in future ACDS releases.

The component defines its basic information with various module properties using the
set_module_property command. For example,set_module_property NAME specifies the name
of the component, while set_module_property VERSION allows you to specify the version of the
component. When you apply a version to the _hw.tcl file, it allows the file to behave exactly the same way
in future releases of the Quartus II software.

Example 7-1: _hw.tcl Created from Entries in the Component Type tab

request TCL package from ACDS 13.1

package require -exact qsys 13.1

demo_axi_memory

set_module_property DESCRIPTION \
"Demo AXI-3 memory with optional Avalon-ST port"

set_module_property NAME demo_axi_memory
set_module_property VERSION 1.0
set_module_property GROUP "My Components"
set_module_property AUTHOR Altera
set_module_property DISPLAY_NAME "Demo AXI Memory"

Creating Qsys ComponentsAltera Corporation

Send Feedback

QII51022
Specifying Basic Component Information7-8 2013.11.4

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Creating%20Qsys%20Components%20(QII51022%202013.11.4)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Related Information
Component Interface Tcl Reference

Specifying Files for Synthesis and Simulation
The Files tab in the Component Editor allows you to specify files for synthesis and simulation. If you already
have HDL code that describes the Qsys component that you want to create, you can specify the files on the
Files tab. If you have not yet created the HDL code that describes the component, but you have identified
the signals and parameters that you want in the component, you can use the Files tab to create a top-level
HDL template file. The Component Editor generates the appropriate _hw.tcl commands to specify the files.
You can also write your own hw.tcl file with the same commands, if you are not using the Component Editor.

A component uses filesets to specify the different sets of files that can be generated for an instance of the
component. The supported fileset types are:QUARTUS_SYNTH, for synthesis and compilation in theQuartus
II software, SIM_VERILOG, for Verilog HDL simulation, and SIM_VHDL, for VHDL simulation.

In a _hw.tcl file, you add a fileset to a component with the add_fileset command. You then list specific
files with the add_fileset_file command, which adds the specified files to the most recently declared
fileset. The add_fileset_property command allows you to add properties such as TOP_LEVEL,
which specifies the top-level HDL module for the component.

You can populate a fileset with a a fixed list of files, add different files based on a parameter value, or even
generate an HDL file with a custom HDL generator function outside of the _hw.tcl file.

Specifying HDL Files for Synthesis
In the Component Editor, you can add HDL files and other support files that should be included when this
component is created to the list of Synthesis Files by clicking +, and then selecting the files in the Open
dialog box.

A component must specify an HDL file as the top-level file, which contains the top-level module. The
Synthesis Files listmight also include supportingHDL files, such as timing constraints, or other files required
to successfully synthesize and compile in the Quartus II software. The synthesis files for a component are
copied to the generation output directory during Qsys system generation.

Figure 7-2 indicates the demo_axi_memory.sv file as the top-level file for the component in the Synthesis
Files section on the Files tab.

Altera CorporationCreating Qsys Components

Send Feedback

7-9Specifying Files for Synthesis and Simulation
QII51022
2013.11.4

http://www.altera.com/literature/hb/qts/qsys_tcl.pdf
mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Creating%20Qsys%20Components%20(QII51022%202013.11.4)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Figure 7-2: Using HDL Files to Define a Component

Creating a New HDL File for Synthesis
If you do not already have an HDL implementation of the component, you can use the Component Editor
to define the component, and then create a simple top-level synthesis file containing the signals and parameters
for the component. You can then edit this HDL file to add the logic that directs the component's behavior.

To begin, you first specify the information about the component on theParameters, Signals, and Interfaces
tabs. Then, you return to the Files tab to create an HDL file by clicking Create Synthesis File from Signals.
The Component Editor creates an HDL file from the specified parameters and signals.

Analyzing Synthesis Files
After the top-level HDL file is specified in the Component Editor, click Analyze Synthesis Files to analyze
the parameters and signals in the top-level, and then select the top-level module from theTop LevelModule
list. If there is a single module or entity in the HDL file, Qsys automatically populates the Top-levelModule
list.

Once analysis is complete and the top-level module is selected, the parameters and signals found in the top-
level module are used as the parameters and signals for the component, and you can view them on the
Parameters and Signals tabs. The Component Editor might report errors or warnings at this stage, because
the signals and interfaces are not yet fully defined.

At this stage in the Component Editor flow, you cannot add or remove parameters or signals created
from a specified HDL file without editing the HDL file itself.

Note:

The synthesis files are added to a fileset with the name QUARTUS_SYNTH and type QUARTUS_SYNTH in
the _hw.tcl file created by the Component Editor. The top-level module is used to specify the TOP_LEVEL
fileset property. Each synthesis file is individually added to the fileset. If the source files are saved in a different
directory from the working directory where the Component Editor is launched and the _hw.tcl is located,
you can use standard fixed or relative path notation to identify the file location for the PATH variable.

Creating Qsys ComponentsAltera Corporation

Send Feedback

QII51022
Creating a New HDL File for Synthesis7-10 2013.11.4

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Creating%20Qsys%20Components%20(QII51022%202013.11.4)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Example 7-2 shows the component hardware Tcl code related to the entries for the Files Type tab in the
Synthesis Files section shown in Figure 7-2.

Example 7-2: _hw.tcl Created from Entries in the Files tab in the Synthesis Files Section

file sets

add_fileset QUARTUS_SYNTH QUARTUS_SYNTH "" ""
set_fileset_property QUARTUS_SYNTH TOP_LEVEL demo_axi_memory

add_fileset_file demo_axi_memory.sv
SYSTEM_VERILOG PATH demo_axi_memory.sv

add_fileset_file single_clk_ram.v VERILOG PATH single_clk_ram.v

Related Information

• Component Interface Tcl Reference

• Specifying HDL Files for Synthesis on page 7-9

Naming HDL Signals for Automatic Interface and Type Recognition
If you create the component's top-level HDL file before using the Component Editor, the Component Editor
recognizes the interface and signal types based on the signal names in the source HDL file. This
auto-recognition feature eliminates the task of manually assigning each interface and signal type in the
Component Editor.

To enable this auto-recognition feature, youmust create signal names using the following naming convention:

<interface type prefix>_<interface name>_<signal type>

Specifying an interface name with <interface name> is optional if you have only one interface of each type
in the component definition. For interfaces with only one signal, such as clock and reset inputs, the <interface
type prefix> is also optional. When the Component Editor recognizes a valid prefix and signal type for a
signal, it automatically assigns an interface and signal type to the signal based on the naming convention. If
no interface name is specified for a signal, you can choose an interface name on the Interfaces tab in the
Component Editor.

Table 7-1: Interface Type Prefixes for Automatic Signal Recognition

Interface TypeInterface Prefix

Avalon-ST sink (input)asi

Avalon-ST source (output)aso

Avalon-MM masteravm

Avalon-MM slaveavs

AXI masteraxm

Altera CorporationCreating Qsys Components

Send Feedback

7-11Naming HDL Signals for Automatic Interface and Type Recognition
QII51022
2013.11.4

http://www.altera.com/literature/hb/qts/qsys_tcl.pdf
mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Creating%20Qsys%20Components%20(QII51022%202013.11.4)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Interface TypeInterface Prefix

AXI slaveaxs

APB masterapm

APB slaveaps

Conduitcoe

Clock Sink (input)csi

Clock Source (output)cso

Interrupt receiverinr

Interrupt senderins

Nios II custom instruction masterncm

Nios II custom instruction slavencs

Reset sink (input)rsi

Reset source (output)rso

Avalon-TC mastertcm

Avalon-TC slavetcs

Refer to the Avalon Interface Specifications or the AMBA Protocol Specification for the signal types available
for each interface type.

Related Information

• Avalon Interface SpecificationsProtocol Specification

• AMBA Protocol Specification

Specifying Files for Simulation
To supportQsys systemgeneration for simulation, a componentmust specify theVHDLorVerilog simulation
files. Simulation files are generatedwhen a user adds the component to aQsys system and chooses to generate
Verilog or VHDL simulation files. In most cases, these files are the same as the synthesis files. If there are
simulation-specific HDL files or simulation models, you can use them in addition to, or in place of the
synthesis files. To use your synthesis files as your simulation files in the Component Editor, on the Files tab,
click Copy From Synthesis Files to copy the list of synthesis files to the Verilog Simulation Files or VHDL
Simulation Files lists.

You specify the simulation files in a similar way as the synthesis files with the fileset commands in a _hw.tcl
file. The code example below shows SIM_VERILOG and SIM_VHDL filesets for Verilog and VHDL
simulation output files. In this example, the same Verilog files are used for both Verilog and VHDL outputs,
and there is one additional System Verilog file added. This method works for designers of Verilog IP to

Creating Qsys ComponentsAltera Corporation

Send Feedback

QII51022
Specifying Files for Simulation7-12 2013.11.4

http://www.altera.com/literature/manual/mnl_avalon_spec.pdf
http://infocenter.arm.com/help/topic/com.arm.doc.set.amba/index.html#specsl
mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Creating%20Qsys%20Components%20(QII51022%202013.11.4)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

support users who want to generate a VHDL top-level simulation file when they have a mixed-language
simulation tool and license that can read the Verilog output for the component. Figure 7-3 shows the files
specified for simulation on the Files tab.

Figure 7-3: Specifying the Simulation Output Files

Example 7-3: _hw.tcl Created from Entries in the Files tab in the Simulation Files Section

add_fileset SIM_VERILOG SIM_VERILOG "" ""
set_fileset_property SIM_VERILOG TOP_LEVEL demo_axi_memory
add_fileset_file single_clk_ram.v VERILOG PATH single_clk_ram.v

add_fileset_file verbosity_pkg.sv SYSTEM_VERILOG PATH \
verification_lib/verbosity_pkg.sv

add_fileset_file demo_axi_memory.sv SYSTEM_VERILOG PATH \
demo_axi_memory.sv

add_fileset SIM_VHDL SIM_VHDL "" ""
set_fileset_property SIM_VHDL TOP_LEVEL demo_axi_memory
set_fileset_property SIM_VHDL ENABLE_RELATIVE_INCLUDE_PATHS false

add_fileset_file demo_axi_memory.sv SYSTEM_VERILOG PATH \
demo_axi_memory.sv

add_fileset_file single_clk_ram.v VERILOG PATH single_clk_ram.v

add_fileset_file verbosity_pkg.sv SYSTEM_VERILOG PATH \
verification_lib/verbosity_pkg.sv

Altera CorporationCreating Qsys Components

Send Feedback

7-13Specifying Files for Simulation
QII51022
2013.11.4

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Creating%20Qsys%20Components%20(QII51022%202013.11.4)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Related Information
Component Interface Tcl Reference

Including Internal Register Map Description in the .svd for Slave Interfaces Connected
to an HPS Component

Qsys supports the ability for IP component designers to specify register map information on their slave
interfaces. This allows components with slave interfaces that are connected to an HPS component to include
their internal register description in the generated .svd file.

To specify their internal register map, the IP component designer must write and generate their own .svd
file and attach it to the slave interface using the following command:

set_interface_property <slave interface> CMSIS_SVD_FILE <file path>

The CMSIS_SVD_VARIABLES interface property allows for variable substitution inside the .svd file. You
can dynamically modify the character data of the .svd file by using the CMSIS_SVD_VARIABLES property.

For example, if you set the CMSIS_SVD_VARIABLES as shown in Example 7-4 in the _hw tcl file, then
in the .svd file if there is a variable {width} that describes the element <size>${width}</size>, it
is replaced by <size>23</size> during generation of the .svd file. Note that substitution works only
within character data (the data enclosed by <element>...</element>) and not on element attributes.

Example 7-4: Setting the CMSIS_SVD_VARIBLES Interface Property

set_interface_property <interface name> \
CMSIS_SVD_VARIABLES "{width} {23}"

Related Information

• Component Interface Tcl Reference

• CMSIS - Cortex Microcontroller Software

Specifying Component Parameters
Components can include parameterized HDL, which allows users of the component flexibility in meeting
their system requirements. For example, a componentmight have a configurablememory size or data width,
where oneHDL implementation can be used inmany different systems, eachwith unique parameters values.

The Parameters tab in the Component Editor allows you specify the parameters that are used to configure
instances of the component in a Qsys system. You can specify various properties for each parameter that
describe how the parameter is displayed and used. You can also specify a range of allowed values that are
checked during the Validation phase. The Parameters table displays the HDL parameters that are declared
in the top-level HDL module. If you have not yet created the top-level HDL file, the parameters that you
create on the Parameters tab are included in the top-level synthesis file template created from the Files tab.

When the component includes HDL files, the parameters match those defined in the top-level module, and
you cannot be add or remove them on theParameters tab. To add or remove the parameters, edit your HDL
source, and then re-analyze the file.

Creating Qsys ComponentsAltera Corporation

Send Feedback

QII51022
Including Internal Register Map Description in the .svd for Slave Interfaces Connected to an HPS Component7-14 2013.11.4

http://www.altera.com/literature/hb/qts/qsys_tcl.pdf
http://www.altera.com/literature/hb/qts/qsys_tcl.pdf
http://www.arm.com/products/processors/cortex-m/cortex-microcontroller-software-interface-standard.php
mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Creating%20Qsys%20Components%20(QII51022%202013.11.4)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

If you used the Component Editor to create a top-level template HDL file for synthesis, you can remove the
newly-created file from the Synthesis Files list on the Files tab, make your parameter changes, and then re-
analyze the top-level synthesis file.

You can use the Parameters table to specify the following information about each parameter:

• Name—Specifies the name of the parameter.
• Default Value—Sets the default value used in new instances of the component.
• Editable—Specifies whether or not the user can edit the parameter value.
• Type—Defines the parameter type as string, integer, boolean, std_logic, logic vector, natural, or positive.
• Group—Allows you to group parameters in parameter editor.
• Tooltip—Allows you to add a description of the parameter that appears when the user of the component

points to the parameter in the parameter editor.

On the Parameters tab, you can click Preview the GUI at any time to see how the declared parameters
appear in the parameter editor. Figure 7-4 shows parameters with their default values defined, with checks
in the Editable column indicating that users of this component are allowed to modify the parameter value.
Editable parameters cannot contain computed expressions. You can group parameters under a common
heading or section in the parameter editor with theGroup column, and a tooltip helps users of the component
understand the function of the parameter. Various parameter properties allow you to customize the
component’s parameter editor, such as using radio buttons for parameter selections, or displaying an image.

Figure 7-4: Parameters Tab in the Components Editor

If a parameter <n> defines the width of a signal, the signal width must follow the format: <n-1>:0.

In Example 7-5, the first add_parameter command includes commonly-specified properties. The
set_parameter_property command specifies each property individually. The Tooltip column on

Altera CorporationCreating Qsys Components

Send Feedback

7-15Specifying Component Parameters
QII51022
2013.11.4

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Creating%20Qsys%20Components%20(QII51022%202013.11.4)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

theParameters tabmaps to theDESCRIPTION property, and there is an additional unusedUNITS property
created in the code. The HDL_PARAMETER property specifies that the value of the parameter is specified
in the HDL instance wrapper when creating instances of the component. The Group column in the
Parameters tab maps to the display items section with the add_display_item commands.

Example 7-5: _hw.tcl Created from Entries in the Parameters Tab

parameters

add_parameter AXI_ID_W INTEGER 4 "Width of ID fields"
set_parameter_property AXI_ID_W DEFAULT_VALUE 4
set_parameter_property AXI_ID_W DISPLAY_NAME AXI_ID_W
set_parameter_property AXI_ID_W TYPE INTEGER
set_parameter_property AXI_ID_W UNITS None
set_parameter_property AXI_ID_W DESCRIPTION "Width of ID fields"
set_parameter_property AXI_ID_W HDL_PARAMETER true
add_parameter AXI_ADDRESS_W INTEGER 12
set_parameter_property AXI_ADDRESS_W DEFAULT_VALUE 12

add_parameter AXI_DATA_W INTEGER 32
...

display items

add_display_item "AXI Port Widths" AXI_ID_W PARAMETER ""

If an AXI slave's ID bit width is smaller than required for your system, the AXI slave response might
not reach all AXI masters. The formula of an AXI slave ID bit width is calculated as follows:

maximum_master_id_width_in_the_interconnect + log2
(number_of_masters_in_the_same_interconnect)

Note:

For example, if an AXI slave connects to three AXI masters and the maximum AXI master ID length
of the three masters is 5 bits, then the AXI slave ID is 7 bits, and is calculated as follows:

5 bits + 2 bits (log2(3 masters)) = 7

Related Information
Component Interface Tcl Reference

Allowed Ranges Parameter Property
In a component's hw.tcl file, you can specify valid ranges for parameters. In Qsys, validation checks each
parameter value against the ALLOWED_RANGES property. If the values specified are outside of the allowed
ranges, Qsys displays an error message. Specifying choices for the allowed values enables users of the
component to choose the parameter value from a drop-down list or radio button in the parameter editor
GUI instead of entering a value.

The ALLOWED_RANGES property is a list of valid ranges, where each range is a single value, or a range of
values defined by a start and end value. Table 7-2 shows examples of the ALLOWED_RANGES property.

Creating Qsys ComponentsAltera Corporation

Send Feedback

QII51022
Allowed Ranges Parameter Property7-16 2013.11.4

http://www.altera.com/literature/hb/qts/qsys_tcl.pdf
mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Creating%20Qsys%20Components%20(QII51022%202013.11.4)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Table 7-2: ALLOWED_RANGES Property

MeaningALLOWED_RANGES

a, b, or c

Unique string values. Quotation marks are required
if the strings include spaces

1, 2, 4, 8, or 16

1 through 3, inclusive

1, 2, 3, or 7 through 10 inclusive

{a b c}

{"No Control" "Single Control" "Dual
Controls"}

{1 2 4 8 16}

{1:3}

{1 2 3 7:10}

ForGUI and code example for theALLOWED_RANGES property, refer to Declaring Parameters with Custom
hw.tcl Commands.

Related Information
Declaring Parameters with Custom hw.tcl Commands on page 7-18

Types of Parameters
Qsys uses the following parameter types: user parameters, system information parameters, and derived
parameters.

Related Information
Declaring Parameters with Custom hw.tcl Commands on page 7-18

User Parameters
User parameters are parameters that users of a component can control, and appear in the parameter editor
for instances of the component. User parameters map directly to parameters in the component HDL.

For user parameter code examples, such as AXI_DATA_W and ENABLE_STREAM_OUTPUT, refer to
Declaring Parameters with Custom hw.tcl Commands.

System Information Parameters
A SYSTEM_INFO parameter is a parameter whose value is set automatically by the Qsys system. When you
define a SYSTEM_INFO parameter, you provide an information type, and additional arguments.

For example, you can configure a parameter to store the clock frequency driving a clock input for your
component. To do this, define the parameter as SYSTEM_INFO of type CLOCK_RATE:

set_parameter_property <param> SYSTEM_INFO CLOCK_RATE

You then set the name of the clock interface as the SYSTEM_INFO argument:

set_parameter_property <param> SYSTEM_INFO_ARG <clkname>

Derived Parameters
Derived parameter values are calculated from other parameters during the Elaboration phase, and are
specified in the hw.tcl file with the DERIVED property. Derived parameter values are calculated from other
parameters during the Elaboration phase, and are specified in the hw.tcl file with the DERIVED property.
For example, you can derive a clock period parameter from a data rate parameter. Derived parameters are

Altera CorporationCreating Qsys Components

Send Feedback

7-17Types of Parameters
QII51022
2013.11.4

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Creating%20Qsys%20Components%20(QII51022%202013.11.4)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

sometimes used to perform operations that are difficult to perform in HDL, such as using logarithmic
functions to determine the number of address bits that a component requires.

For GUI and code example of derived parameters, refer to Declaring Parameters with Custom hw.tcl
Commands.

Parameterized Parameter Widths
Qsys allows astd_logic_vector parameter to have awidth that is defined by another parameter, similar
to derived parameters. The width can be a constant or the name of another parameter.

Declaring Parameters with Custom hw.tcl Commands
The example below illustrates a custom _hw.tcl file, with more advanced parameter commands than those
generatedwhenyou specify parameters in theComponentEditor.Commands include theALLOWED_RANGES
property to provide a range of values for the AXI_ADDRESS_W (Address Width) parameter, and a list of
parameter values for the AXI_DATA_W (Data Width) parameter. This example also shows the parameter
AXI_NUMBYTES (Data width in bytes) parameter; that uses the DERIVED property. In addition, these
commands illustrate the use of the GROUP property, which groups some parameters under a heading in the
parameter editor GUI. You use the ENABLE_STREAM_OUTPUT_GROUP (Include Avalon streaming
source port) parameter to enable or disable the optional Avalon-ST interface in this design, and is displayed
as a check box in the parameter editor GUI because the parameter is of type BOOLEAN. Refer to figure
below to see the parameter editor GUI resulting from these hw.tcl commands.

Example 7-6 illustrates parameter declaration statements and includes a parameter whose value is derived
during the Elaboration phase based on another parameter, instead of being assigned to a specific value.
AXI_NUMBYTES describes the number of bytes in a word of data. Qsys calculates the AXI_NUMBYTES
parameter from theDATA_WIDTHparameter by dividing by 8. The_hw.tcl code defines theAXI_NUMBYTES
parameter as a derived parameter, since its value is calculated in an elaboration callback procedure.

TheAXI_NUMBYTES parameter value is not editable, because its value is based on another parameter value.

Example 7-6: Parameter Declaration Statements

add_parameter AXI_ADDRESS_W INTEGER 12

set_parameter_property AXI_ADDRESS_W DISPLAY_NAME \
"AXI Slave Address Width"

set_parameter_property AXI_ADDRESS_W DESCRIPTION \
"Address width."

set_parameter_property AXI_ADDRESS_W UNITS bits
set_parameter_property AXI_ADDRESS_W ALLOWED_RANGES 4:16
set_parameter_property AXI_ADDRESS_W HDL_PARAMETER true

set_parameter_property AXI_ADDRESS_W GROUP \
"AXI Port Widths"

add_parameter AXI_DATA_W INTEGER 32
set_parameter_property AXI_DATA_W DISPLAY_NAME "Data Width"

Creating Qsys ComponentsAltera Corporation

Send Feedback

QII51022
Parameterized Parameter Widths7-18 2013.11.4

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Creating%20Qsys%20Components%20(QII51022%202013.11.4)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

set_parameter_property AXI_DATA_W DESCRIPTION \
"Width of data buses."

set_parameter_property AXI_DATA_W UNITS bits

set_parameter_property AXI_DATA_W ALLOWED_RANGES \
{8 16 32 64 128 256 512 1024}

set_parameter_property AXI_DATA_W HDL_PARAMETER true
set_parameter_property AXI_DATA_W GROUP "AXI Port Widths"

add_parameter AXI_NUMBYTES INTEGER 4
set_parameter_property AXI_NUMBYTES DERIVED true

set_parameter_property AXI_NUMBYTES DISPLAY_NAME \
"Data Width in bytes; Data Width/8"

set_parameter_property AXI_NUMBYTES DESCRIPTION \
"Number of bytes in one word"

set_parameter_property AXI_NUMBYTES UNITS bytes
set_parameter_property AXI_NUMBYTES HDL_PARAMETER true
set_parameter_property AXI_NUMBYTES GROUP "AXI Port Widths"

add_parameter ENABLE_STREAM_OUTPUT BOOLEAN true

set_parameter_property ENABLE_STREAM_OUTPUT DISPLAY_NAME \
"Include Avalon Streaming Source Port"

set_parameter_property ENABLE_STREAM_OUTPUT DESCRIPTION \
"Include optional Avalon-ST source (default),\
or hide the interface"

set_parameter_property ENABLE_STREAM_OUTPUT GROUP \
"Streaming Port Control"

...

Figure 7-5 shows the parameter editor GUI generated from Example 7-6.

Altera CorporationCreating Qsys Components

Send Feedback

7-19Declaring Parameters with Custom hw.tcl Commands
QII51022
2013.11.4

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Creating%20Qsys%20Components%20(QII51022%202013.11.4)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Figure 7-5: Parameter Editor Illustrating Parameter Declarations

Related Information

• Component Interface Tcl Reference

• Controlling Interfaces Dynamically with an Elaboration Callback on page 7-26

Validating Parameter Values with a Validation Callback
You can use a validation callback procedure to validate parameter values with more complex validation
operations than the ALLOWED_RANGES property allows. You define a validation callback by setting the
VALIDATION_CALLBACKmodule property to the name of the Tcl callback procedure that runs during
the validation phase. In the validation callback procedure, the current parameter values is queried, and
warnings or errors are reported about the component's configuration.

In Example 7-7, if the optional Avalon streaming interface is enabled, then the control registers must be
wide enough to hold an AXI RAM address, so the designer can add an error message to ensure that the user
enters allowable parameter values.

Example 7-7: Demo AXI Memory Example

set_module_property VALIDATION_CALLBACK validate
proc validate {} {
if {
 [get_parameter_value ENABLE_STREAM_OUTPUT] &&
 ([get_parameter_value AXI_ADDRESS_W] >
 [get_parameter_value AV_DATA_W])
}
send_message error "If the optional Avalon streaming port\
is enabled, the AXI Data Width must be equal to or greater\
than the Avalon control port Address Width"
}
}

Related Information

• Component Interface Tcl Reference

Creating Qsys ComponentsAltera Corporation

Send Feedback

QII51022
Validating Parameter Values with a Validation Callback7-20 2013.11.4

http://www.altera.com/literature/hb/qts/qsys_tcl.pdf
http://www.altera.com/literature/hb/qts/qsys_tcl.pdf
mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Creating%20Qsys%20Components%20(QII51022%202013.11.4)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

• Demo AXI Memory Example

Specifying Interface and Signal Types
The Signals tab in the Components Editor allows you to specify the interface and signal type of each signal
in the component. When you add HDL files to the Synthesis Files table on the Files tab, and then click
Analyze Synthesis Files, the signals on the top-level module appear on the Signals tab.

If you have not yet created your top-level HDL file, you can click Add Signal to specify each top-level signal
in the component. For each signal that you add, you must provide the appropriate values in the Name,
Interface, Signal Type, Width, and Direction columns. You can use the error and warning messages at the
bottom of the window to guide your selections. You can edit the signal name by double-clicking the Name
column, and then typing the new name.

After you have analyzed the component's top-level HDL file on the Files tab, you cannot add or remove
signals or change the signal names on the Signals tab. To change the signals, edit your HDL source, and
then click Generate Synthesis File from Signals.

If you used the Component Editor to create a top-level template HDL file for synthesis, you can remove the
newly-created file from the Synthesis Files list on the Files tab, make your signal changes, and then re-
analyze the top-level synthesis file.

The Interface column allows you assign a signal to an interface. Each signal must belong to an interface and
be assigned a legal signal type for that interface. To create a new interface of a specific type, select new
<interface type> from the list; this new interface then become available in the list for subsequent signal
assignments. You can highlight all of the signals in an interface and then select an Interface from the list to
apply the Interface name to each signal in the interface.

You edit the interface name on the Interface tab; you cannot edit the interface name on the Signals tab.

Figure 7-6 shows the altera_axi_slave selection available for the axs_awaddr signal. Example 7-8 in the
Adding Interfaces and Managing Interface Settings section shows the _hw.tcl that Qsys generates from these
entries along with other interface information.

Altera CorporationCreating Qsys Components

Send Feedback

7-21Specifying Interface and Signal Types
QII51022
2013.11.4

www.altera.com/support/examples/design-entry-tools/qsys/exm-demo-axi3-memory.html
mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Creating%20Qsys%20Components%20(QII51022%202013.11.4)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Figure 7-6: Signals Tab in the Components Editor

Related Information
Component Interface Tcl Reference

Adding Interfaces and Managing Interface Settings
The Interfaces tab in the Component Editor allows you to manage settings for each interface of the
component. The interface name appears on the Signals tab, and in the Qsys System Contents tab when the
component is added to a system.

You can configure the type and properties of each interface. Some interfaces display waveforms that illustrate
the timing for the interface. If you update timing parameters, the waveforms automatically update.

You add additional interfaces by clickingAdd Interface, and then you must specify the signals for the added
interface on the Signals tab. You can remove interfaces that have no assigned signals by clicking Remove
Interfaces With No Signals. Figure 7-7 shows the Avalon Streaming Source interface, named streaming.

Creating Qsys ComponentsAltera Corporation

Send Feedback

QII51022
Adding Interfaces and Managing Interface Settings7-22 2013.11.4

http://www.altera.com/literature/hb/qts/qsys_tcl.pdf
mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Creating%20Qsys%20Components%20(QII51022%202013.11.4)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Figure 7-7: Interfaces Tab in the Components Editor

In Example 7-8, each interface is created with the add_interface command. You specify the properties
of each interface with the set_interface_property command. The interface's signals are specified
with the add_interface_port command.

Example 7-8: _hw.tcl Created from Entries in the Interface Tab

connection point clock

add_interface clock clock end
set_interface_property clock clockRate 0
set_interface_property clock ENABLED true

add_interface_port clock clk clk Input 1

Altera CorporationCreating Qsys Components

Send Feedback

7-23Adding Interfaces and Managing Interface Settings
QII51022
2013.11.4

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Creating%20Qsys%20Components%20(QII51022%202013.11.4)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

connection point reset

add_interface reset reset end
set_interface_property reset associatedClock clock
set_interface_property reset synchronousEdges DEASSERT
set_interface_property reset ENABLED true

add_interface_port reset reset_n reset_n Input 1

connection point streaming

add_interface streaming avalon_streaming start
set_interface_property streaming associatedClock clock
set_interface_property streaming associatedReset reset
set_interface_property streaming dataBitsPerSymbol 8
set_interface_property streaming errorDescriptor ""
set_interface_property streaming firstSymbolInHighOrderBits true
set_interface_property streaming maxChannel 0
set_interface_property streaming readyLatency 0
set_interface_property streaming ENABLED true

add_interface_port streaming aso_data data Output 8
add_interface_port streaming aso_valid valid Output 1
add_interface_port streaming aso_ready ready Input 1

connection point slave

add_interface slave axi end
set_interface_property slave associatedClock clock
set_interface_property slave associatedReset reset
set_interface_property slave readAcceptanceCapability 1
set_interface_property slave writeAcceptanceCapability 1
set_interface_property slave combinedAcceptanceCapability 1
set_interface_property slave readDataReorderingDepth 1
set_interface_property slave ENABLED true

add_interface_port slave axs_awid awid Input AXI_ID_W
...
add_interface_port slave axs_rresp rresp Output 2

Qsys refers to AXI interface parameters to build AXI interconnect. If these parameter settings are
incompatible with the component's HDL behavior, Qsys interconnect and transactions might not work
correctly. To prevent unexpected interconnect behavior, you must set the AXI component parameters
described in Table 7-3.

Table 7-3: AXI Master and Slave Parameters

AXI Slave ParametersAXI Master Parameters

readAcceptanceCapabilityreadIssuingCapability

Creating Qsys ComponentsAltera Corporation

Send Feedback

QII51022
Adding Interfaces and Managing Interface Settings7-24 2013.11.4

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Creating%20Qsys%20Components%20(QII51022%202013.11.4)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

AXI Slave ParametersAXI Master Parameters

writeAcceptanceCapabilitywriteIssuingCapability

combinedAcceptanceCapabilitycombinedIssuingCapability

readDataReorderingDepth

Related Information
Component Interface Tcl Reference

Creating Custom _hw.tcl Interface Settings and Properties
Example 7-9 shows clock, reset, AXI slave, and Avalon streaming interfaces using variables for the interface
names that make the file easier to read and update. The interface declaration statement includes the name,
type, and direction of the interface, as well as the associated clock and reset interfaces. Also in the example
below, some of the AXI memory signals use parameters to specify their width.

Example 7-9: Clock, Reset, AXI Slave, and Avalon Streaming Interfaces Using Variables

set CLOCK_INTERFACE "clk"
add_interface $CLOCK_INTERFACE clock end
add_interface_port $CLOCK_INTERFACE clk clk Input 1

set RESET_INTERFACE "reset"
add_interface $RESET_INTERFACE reset end
set_interface_property $RESET_INTERFACE associatedClock clk
set_interface_property $RESET_INTERFACE synchronousEdges DEASSERT
add_interface_port reset reset_n reset_n Input 1

set SLAVE_INTERFACE "slave"
add_interface $SLAVE_INTERFACE axi end
set_interface_property $SLAVE_INTERFACE associatedClock "clk"
set_interface_property $SLAVE_INTERFACE associatedReset "reset"

set_interface_property $SLAVE_INTERFACE \
readAcceptanceCapability 1
...
add_interface_port $SLAVE_INTERFACE axs_wdata wdata \
Input AXI_DATA_W

add_interface_port $SLAVE_INTERFACE axs_wstrb wstrb \
Input AXI_NUMBYTES

add_interface_port $SLAVE_INTERFACE axs_wlast wlast Input 1
...
set STREAMING_INTERFACE "streaming"
add_interface $STREAMING_INTERFACE avalon_streaming start
set_interface_property $STREAMING_INTERFACE associatedClock "clk"
...
add_interface_port $STREAMING_INTERFACE aso_data data Output 8

Altera CorporationCreating Qsys Components

Send Feedback

7-25Creating Custom _hw.tcl Interface Settings and Properties
QII51022
2013.11.4

http://www.altera.com/literature/hb/qts/qsys_tcl.pdf
mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Creating%20Qsys%20Components%20(QII51022%202013.11.4)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

add_interface_port $STREAMING_INTERFACE aso_valid valid Output 1
add_interface_port $STREAMING_INTERFACE aso_ready ready Input 1

Related Information
Component Interface Tcl Reference

Controlling Interfaces Dynamically with an Elaboration Callback
You can allow user parameters to dynamically control your component's behavior with a an elaboration
callback procedure during the elaboration phase. Using an elaboration callback allows you to change interface
properties, remove interfaces, or add new interfaces as a function of parameter values. You define an
elaboration callback by setting the module property ELABORATION_CALLBACK to the name of the Tcl
callback procedure that runs during the elaboration phase. In the callback procedure, you can query the
parameter values of the component instance, and then change the interfaces accordingly.

Example 7-10 shows an Avalon-ST source interface that is optionally included in an instance of the
component, based on the ENABLE_STREAM_OUTPUT parameter. The ENABLE_STREAM_OUTPUT
parameter was defined previously in the module_property VALIDATION_CALLBACK, and the
streaming interface was defined previously in the static portion of the HDL file.

Example 7-10: Optional Avalon-ST Source Interface Specified with an Elaboration Callback

set_module_property ELABORATION_CALLBACK elaborate

proc elaborate {} {

 # Optionally disable the Avalon- ST data output

 if{[get_parameter_value ENABLE_STREAM_OUTPUT] == "false" }{

 set_port_property aso_data termination true
 set_port_property aso_valid termination true
 set_port_property aso_ready termination true
 set_port_property aso_ready termination_value 0
 }
 # Calculate the Data Bus Width in bytes

 set bytewidth_var [expr [get_parameter_value AXI_DATA_W]/8]
 set_parameter_value AXI_NUMBYTES $bytewidth_var
}

Related Information

• Component Interface Tcl Reference

• Creating Custom _hw.tcl Interface Settings and Properties on page 7-25

• Validating Parameter Values with a Validation Callback on page 7-20

Creating Qsys ComponentsAltera Corporation

Send Feedback

QII51022
Controlling Interfaces Dynamically with an Elaboration Callback7-26 2013.11.4

http://www.altera.com/literature/hb/qts/qsys_tcl.pdf
http://www.altera.com/literature/hb/qts/qsys_tcl.pdf
mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Creating%20Qsys%20Components%20(QII51022%202013.11.4)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Controlling File Generation Dynamically with Parameters and a Fileset
Callback

You can use a fileset callback to control which files are created in the output directories during the generation
phase based on parameter values, instead of providing a fixed list of files. In a callback procedure, you can
query the values of the parameters and use them to generate the appropriate files. To define a fileset callback,
you specify a callback procedure name as an argument in the add_fileset command. You can use the
same fileset callback procedure for all of the filesets, or create separate procedures for synthesis and simulation,
or Verilog and VHDL.

Example 7-11 shows a fileset callback using parameters to control filesets in two different ways. The
RAM_VERSION parameter chooses between two different source files to control the implementation of a
RAMblock. For the top-level source file, a customTcl routine generatesHDL that optionally includes control
and status registers, depending on the value of the CSR_ENABLED parameter.

During the generation phase, Qsys creates a a top-level Qsys system HDL wrapper module to instantiate the
component top-level module, and applies the component's parameters, for any parameter whose parameter
property HDL_PARAMETER is set to true.

Example 7-11: Fileset Callback Using Parameters to Control Filesets

#Create synthesis fileset with fileset_callback and set top level

add_fileset my_synthesis_fileset QUARTUS_SYNTH fileset_callback

set_fileset_property my_synthesis_fileset TOP_LEVEL \
demo_axi_memory

Create Verilog simulation fileset with same fileset_callback
and set top level

add_fileset my_verilog_sim_fileset SIM_VERILOG fileset_callback

set_fileset_property my_verilog_sim_fileset TOP_LEVEL \
demo_axi_memory

Add extra file needed for simulation only

add_fileset_file verbosity_pkg.sv SYSTEM_VERILOG PATH \
verification_lib/verbosity_pkg.sv

Create VHDL simulation fileset (with Verilog files
for mixed-language VHDL simulation)

add_fileset my_vhdl_sim_fileset SIM_VHDL fileset_callback
set_fileset_property my_vhdl_sim_fileset TOP_LEVEL demo_axi_memory

add_fileset_file verbosity_pkg.sv SYSTEM_VERILOG PATH
verification_lib/verbosity_pkg.sv

Altera CorporationCreating Qsys Components

Send Feedback

7-27Controlling File Generation Dynamically with Parameters and a Fileset Callback
QII51022
2013.11.4

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Creating%20Qsys%20Components%20(QII51022%202013.11.4)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Define parameters required for fileset_callback

add_parameter RAM_VERSION INTEGER 1
set_parameter_property RAM_VERSION ALLOWED_RANGES {1 2}
set_parameter_property RAM_VERSION HDL_PARAMETER false
add_parameter CSR_ENABLED BOOLEAN enable
set_parameter_property CSR_ENABLED HDL_PARAMETER false

Create Tcl callback procedure to add appropriate files to
filesets based on parameters

proc fileset_callback { entityName } {
 send_message INFO "Generating top-level entity $entityName"
 set ram [get_parameter_value RAM_VERSION]
 set csr_enabled [get_parameter_value CSR_ENABLED]

 send_message INFO "Generating memory
 implementation based on RAM_VERSION $ram "

 if {$ram == 1} {
 add_fileset_file single_clk_ram1.v VERILOG PATH \
 single_clk_ram1.v
 } else {
 add_fileset_file single_clk_ram2.v VERILOG PATH \
 single_clk_ram2.v
 }

send_message INFO "Generating top-level file for \
CSR_ENABLED $csr_enabled"

generate_my_custom_hdl $csr_enabled demo_axi_memory_gen.sv

add_fileset_file demo_axi_memory_gen.sv VERILOG PATH \
demo_axi_memory_gen.sv
}

Related Information

• Component Interface Tcl Reference

• Specifying Files for Synthesis and Simulation on page 7-9

Creating a Composed Component or Subsystem
A composed component is a subsystem containing instances of other components. Unlike an HDL-based
component, a composed component'sHDL is created by generatingHDL for the components in the subsystem,
in addition to the Qsys interconnect to connect the subsystem instances.

You can add child instances in a composition callback of the _hw.tcl file.

Creating Qsys ComponentsAltera Corporation

Send Feedback

QII51022
Creating a Composed Component or Subsystem7-28 2013.11.4

http://www.altera.com/literature/hb/qts/qsys_tcl.pdf
mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Creating%20Qsys%20Components%20(QII51022%202013.11.4)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

With a composition callback, you can also instantiate and parameterize subcomponents as a function of the
composed component’s parameter values. You define a composition callback by setting the COMPOSI-
TION_CALLBACKmodule property to the name of the composition callback procedures.

A composition callback replaces the validation and elaboration phases. HDL for the subsystem is generated
by generating all of the subcomponents and the top-level that combines them.

To connect instances of your component, youmust define the component's interfaces. Unlike anHDL-based
component, a composed component does not directly specify the signals that are exported. Instead, interfaces
of submodules are chosen as the external interface, and each internal interface's ports are connected through
the exported interface.

Exporting an interface means that you are making the interface visible from the outside of your component,
instead of connecting it internally. You can set the EXPORT_OF property of the externally visible interface
from themain programor the composition callback, to indicate that it is an exported view of the submodule's
interface.

Exporting an interface is different than defining an interface. An exported interface is an exact copy of the
subcomponent’s interface, and you are not allowed to change properties on the exported interface. For
example, if the internal interface is a 32-bit or 64-bit master without bursting, then the exported interface
is the same. An interface on a subcomponent cannot be exported and also connected within the subsystem.

When you create an exported interface, the properties of the exported interface are copied from the
subcomponent’s interface without modification. Ports are copied from the subcomponent’s interface with
only one modification; the names of the exported ports on the composed component are chosen to ensure
that they are unique.

Figure 7-8 shows a block diagram for the composed component in Example 7-12.

Figure 7-8: Top-Level of a Composed Component

slave

my_component

pins
my_regs_microcore

clk

reset
altera
reset
bridge

altera
clock
bridge

my_phy_microcore

In Example 7-12, Qsys connects the components, and also connects the clocks and resets. Note that clock
and reset bridge components are required to allow both subcomponents to see common clock and reset
inputs.

Altera CorporationCreating Qsys Components

Send Feedback

7-29Creating a Composed Component or Subsystem
QII51022
2013.11.4

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Creating%20Qsys%20Components%20(QII51022%202013.11.4)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Example 7-12: Composed _hw.tcl File that Instantiates two Subcomponents

package require -exact qsys 13.1
set_module_property name my_component
set_module_property COMPOSITION_CALLBACK composed_component

proc composed_component {} {
 add_instance clk altera_clock_bridge
 add_instance reset altera_reset_bridge
 add_instance regs my_regs_microcore
 add_instance phy my_phy_microcore

 add_interface clk clock end
 add_interface reset reset end
 add_interface slave avalon slave
 add_interface pins conduit end

 set_interface_property clk EXPORT_OF clk.in_clk
 set_instance_property_value reset synchronous_edges deassert
 set_interface_property reset EXPORT_OF reset.in_reset
 set_interface_property slave EXPORT_OF regs.slave
 set_interface_property pins EXPORT_OF phy.pins

 add_connection clk.out_clk reset.clk
 add_connection clk.out_clk regs.clk
 add_connection clk.out_clk phy.clk
 add_connection reset.out_reset regs.reset
 add_connection reset.out_reset phy.clk_reset
 add_connection regs.output phy.input
 add_connection phy.output regs.input
}

Related Information
Component Interface Tcl Reference

Creating a Component With Differing Structural Qsys View and Generated
Output Files

There are cases where it might be beneficial to have the structural Qsys system view of a component differ
from the generated synthesis output files. The structural composition callback allows you to define a structural
hierarchy for a component separately from the generated output files.

One application of this feature is for IP designers who want to send out a placed-and-routed component
that represents a Qsys system in order to ensure timing closure for the end-user. In this case, the designer
creates a design partition for the Qsys system, and then exports a post-fit Quartus II Exported Partition File
(.qxp) when satisfied with the placement and routing results.

The designer specifies a .qxp file as the generated synthesis output file for the new component. The designer
can specifywhether to use a simulation output fileset for the custom simulationmodel file, or to use simulation
output files generated from the original Qsys system.

Creating Qsys ComponentsAltera Corporation

Send Feedback

QII51022
Creating a Component With Differing Structural Qsys View and Generated Output Files7-30 2013.11.4

http://www.altera.com/literature/hb/qts/qsys_tcl.pdf
mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Creating%20Qsys%20Components%20(QII51022%202013.11.4)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

When the end-user adds this component to their Qsys system, the designer wants the end-user to see a
structural representation of the component, including lower-level components and the address map of the
original Qsys system. This structural view is a logical representation of the component that is used during
the elaboration and validation phases in Qsys.

To specify a structural representation of the component for Qsys, the designer connects components, or
generates a hardware Tcl description of the Qsys system, and then insert the Tcl commands into a structural
composition callback. Example 7-13 shows an _hw.tcl file with a structural composition callback and a .qxp
file as the generated output file. To invoke the structural composition callback use the command:

set_module_property STRUCTURAL_COMPOSITION_CALLBACK structural_hierarchy

Example 7-13: Structural Composition Callback

package require -exact qsys 13.1
set_module_property name example_structural_composition

set_module_property STRUCTURAL_COMPOSITION_CALLBACK \
structural_hierarchy

add_fileset synthesis_fileset QUARTUS_SYNTH \
synth_callback_procedure

add_fileset simulation_fileset SIM_VERILOG \
sim_callback_procedure

set_fileset_property synthesis_fileset TOP_LEVEL \
my_custom_component

set_fileset_property simulation_fileset TOP_LEVEL \
my_custom_component

proc structural_hierarchy {} {

called during elaboration and validation phase
exported ports should be same in structural_hierarchy
and generated QXP

These commands could come from the exported hardware Tcl

 add_interface clk clock sink
 add_interface reset reset sink

 add_instance clk_0 clock_source
 set_interface_property clk EXPORT_OF clk_0.clk_in
 set_interface_property reset EXPORT_OF clk_0.clk_in_reset

 add_instance pll_0 altera_pll
 # connections and connection parameters
 add_connection clk_0.clk pll_0.refclk clock
 add_connection clk_0.clk_reset pll_0.reset reset
}

Altera CorporationCreating Qsys Components

Send Feedback

7-31Creating a Component With Differing Structural Qsys View and Generated Output Files
QII51022
2013.11.4

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Creating%20Qsys%20Components%20(QII51022%202013.11.4)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

proc synth_callback_procedure { entity_name } {

the QXP should have the same name for ports
as exportedin structural_hierarchy

 add_fileset_file my_custom_component.qxp QXP PATH \
 "my_custom_component.qxp"
}

proc sim_callback_procedure { entity_name } {

the simulation files should have the same name for ports as
exported in structural_hierarchy

add_fileset_file my_custom_component.v VERILOG PATH \
"my_custom_component.v"
 ….
 ….
}

Related Information
Creating a Composed Component or Subsystem on page 7-28

Adding Component Instances to a Static or Generated Component
You can create nested components by adding component instances to an existing component. Both static
and generated components can create instances of other components. You can add child instances of a
component in a _hw.tcl using elaboration callback.

You cannot add child instances in a static part of a _hw.tcl because for Qsys 13.1, the
add_hdl_instance andset_instance_parameter_value commands are not supported
in global context.

Note:

With an elaboration callback, you can also instantiate and parameterize subcomponents with the
add_hdl_instance command as a function of the parent component's parameter values.

When you instantiate multiple nested components, you must create a unique variation name for each
componentwith theadd_hdl_instance command. Prefixing a variationnamewith theparent component
name prevents conflicts in a system. The variation name can be the same across multiple parent components
if the generated parameterization of the nested component is exactly the same.

If you do not adhere to the above naming variation guidelines, Qsys validation-time errors occur,
which are often difficult to debug.

Note:

Related Information

• Static Components on page 7-33

• Generated Components on page 7-34

Creating Qsys ComponentsAltera Corporation

Send Feedback

QII51022
Adding Component Instances to a Static or Generated Component7-32 2013.11.4

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Creating%20Qsys%20Components%20(QII51022%202013.11.4)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Static Components
Static components always generate the same output, regardless of their parameterization. Components that
instantiate static components must have only static children.

A design file that is static between all parameterizations of a component can only instantiate other static
design files. Since static IPs always render same HDL regardless of parameterization, Qsys generates static
IPs only once across multiple instantiations, meaning they have the same top-level name set. Example 7-14
shows typical usage of the add_hdl_instance command for static components.

Example 7-14: add_hdl_instance for Static Components

package require -exact qsys 13.1

set_module_property name add_hdl_instance_example
add_fileset synth_fileset QUARTUS_SYNTH synth_callback
set_fileset_property synth_fileset TOP_LEVEL basic_static
set_module_property elaboration_callback elab

proc elab {} {
 # Actual API to instantiate an IP Core
 add_hdl_instance emif_instance_name altera_mem_if_ddr3_emif

 # Make sure the parameters are set appropriately
 set_instance_parameter_value emif_instance_name SPEED_GRADE {7}

 ...
 }
proc synth_callback { output_name } {
 add_fileset_file "basic_static.v" VERILOG PATH basic_static.v
}

Example 7-14 generates a wrapper file for the instance name specified in the _hw.tcl file. Example 7-15
shows the top-level HDL instance and the wrapper file created by Qsys.

Example 7-15: Top-Level HDL Instance and Wrapper File

//Top Level Component HDL
module basic_static (input_wire, output_wire, inout_wire);
input [31:0] input_wire;
output [31:0] output_wire;
inout [31:0] inout_wire;

// Instantiation of the instance added via add_hdl_instance
// command. This is an example of how the instance added via
// the add_hdl_instance command can be used
// in the top-level file of the component.

emif_instance_name fixed_name_instantiation_in_top_level(
.pll_ref_clk (input_wire), // pll_ref_clk.clk
.global_reset_n (input_wire), // global_reset.reset_n

Altera CorporationCreating Qsys Components

Send Feedback

7-33Static Components
QII51022
2013.11.4

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Creating%20Qsys%20Components%20(QII51022%202013.11.4)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

.soft_reset_n (input_wire), // soft_reset.reset_n

...

...);
endmodule

//Wrapper for added HDL instance
// emif_instance_name.v
// Generated using ACDS version 13.1

`timescale 1 ps / 1 ps
module emif_instance_name (
input wire pll_ref_clk, // pll_ref_clk.clk
input wire global_reset_n, // global_reset.reset_n
input wire soft_reset_n, // soft_reset.reset_n
output wire afi_clk, // afi_clk.clk
...
...);
example_addhdlinstance_system
_add_hdl_instance_example_0_emif_instance
_name_emif_instance_name emif_instance_name (

.pll_ref_clk (pll_ref_clk), // pll_ref_clk.clk

.global_reset_n (global_reset_n), // global_reset.reset_n

.soft_reset_n (soft_reset_n), // soft_reset.reset_n

...

...);
endmodule

Generated Components
A generated component's fileset callback allows an instance of the component to create unique HDL design
files based on the instance's parameter values. For example, you can write a fileset callback to include a
control and status interface based on the value of a parameter. The callback overcomes a limitation of HDL
languages, which do not allow runtime parameters.

Generated components change their generation output (HDL) based on their parameterization. If a component
is generated, then any component that might instantiate it with multiple parameter sets must also be
considered generated, since its HDL changes with its parameterization. This case has an effect that propagates
up to the top-level of a design.

Since generated components are generated for each unique parameterized instantiation, when implementing
the add_hdl_instance command, you cannot use the same fixed name (specified using
instance_name) for the different variants of the child HDL instances. To facilitate unique naming for
the wrapper of each unique parameterized instantiation of child HDL instances, you must use the following
command so that Qsys generates a unique name for each wrapper. You can then access this unique wrapper
name with a fileset callback so that the instances are instantiated inside the component's top-level HDL.

Creating Qsys ComponentsAltera Corporation

Send Feedback

QII51022
Generated Components7-34 2013.11.4

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Creating%20Qsys%20Components%20(QII51022%202013.11.4)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

• To declare auto-generated fixed names for wrappers, use the command:

set_instance_property instance_name HDLINSTANCE_USE_GENERATED_NAME \
true

You can only use this command with a generated component, and is used in the global context, or in an
elaboration callback

• To obtain auto-generated fixed name with a fileset callback, use the command:

get_instance_property instance_name HDLINSTANCE_GET_GENERATED_NAME

You can only use this command with a fileset callback. This command returns the value of the auto-
generated fixed name, which you can then use to instantiate inside the top-level HDL.

Example 7-16 shows typical usage of the add_hdl_instance command for generated components.

Example 7-16: add_hdl_instance for Generated Components

package require -exact qsys 13.1
set_module_property name generated_toplevel_component
set_module_property ELABORATION_CALLBACK elaborate
add_fileset QUARTUS_SYNTH QUARTUS_SYNTH generate
add_fileset SIM_VERILOG SIM_VERILOG generate
add_fileset SIM_VHDL SIM_VHDL generate

proc elaborate {} {

 # Actual API to instantiate an IP Core
 add_hdl_instance emif_instance_name altera_mem_if_ddr3_emif

 # Make sure the parameters are set appropriately
 set_instance_parameter_value emif_instance_name SPEED_GRADE {7}

 ...
 # instruct Qsys to use auto generated fixed name
 set_instance_property emif_instance_name \
 HDLINSTANCE_USE_GENERATED_NAME 1
}

proc generate { entity_name } {

 # get the autogenerated name for emif_instance_name added
 # via add_hdl_instance

 set autogeneratedfixedname [get_instance_property \
 emif_instance_name HDLINSTANCE_GET_GENERATED_NAME]

 set fileID [open "generated_toplevel_component.v" r]
 set temp ""

 # read the contents of the file

Altera CorporationCreating Qsys Components

Send Feedback

7-35Generated Components
QII51022
2013.11.4

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Creating%20Qsys%20Components%20(QII51022%202013.11.4)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

 while {[eof $fileID] != 1} {
 gets $fileID lineInfo

 # replace the top level entity name with the name provided
 # during generation

 regsub -all "substitute_entity_name_here" $lineInfo \
 "${entity_name}" lineInfo

 # replace the autogenerated name for emif_instance_name added
 # via add_hdl_instance

 regsub -all "substitute_autogenerated_emifinstancename_here" \
 $lineInfo"${autogeneratedfixedname}" lineInfo \
 append temp "${lineInfo}\n"
}

adding a top level component file

add_fileset_file ${entity_name}.v VERILOG TEXT $temp
}

Example 7-16 generates a wrapper file for the instance name specified in the _hw.tcl file. Example 7-17
shows the top-level HDL instance and the wrapper file created by Qsys

Example 7-17: Top-Level HDL Instance and Wrapper File

// Top Level Component HDL

module substitute_entity_name_here (input_wire, output_wire,
inout_wire);

input [31:0] input_wire;
output [31:0] output_wire;
inout [31:0] inout_wire;

// Instantiation of the instance added via add_hdl_instance
// command. This is an example of how the instance added
// via add_hdl_instance command can be used
// in the top-level file of the component.

substitute_autogenerated_emifinstancename_here
fixed_name_instantiation_in_top_level (
.pll_ref_clk (input_wire), // pll_ref_clk.clk
.global_reset_n (input_wire), // global_reset.reset_n
.soft_reset_n (input_wire), // soft_reset.reset_n
...
...);
endmodule

Creating Qsys ComponentsAltera Corporation

Send Feedback

QII51022
Generated Components7-36 2013.11.4

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Creating%20Qsys%20Components%20(QII51022%202013.11.4)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

// Wrapper for added HDL instance
// generated_toplevel_component_0_emif_instance_name.v is the
// auto generated //emif_instance_name
// Generated using ACDS version 13.

`timescale 1 ps / 1 ps
module generated_toplevel_component_0_emif_instance_name (
input wire pll_ref_clk, // pll_ref_clk.clk
input wire global_reset_n, // global_reset.reset_n
input wire soft_reset_n, // soft_reset.reset_n
output wire afi_clk, // afi_clk.clk
...
...);
example_addhdlinstance_system_add_hdl_instance_example_0_emif
_instance_name_emif_instance_name emif_instance_name (

.pll_ref_clk (pll_ref_clk), // pll_ref_clk.clk

.global_reset_n (global_reset_n), // global_reset.reset_n

.soft_reset_n (soft_reset_n), // soft_reset.reset_n

...

...);
endmodule

Related Information
Controlling File Generation Dynamically with Parameters and a Fileset Callback on page 7-27

Design Guidelines for Adding Component Instances
In order to promote standard and predictable results when generating static and generated components,
Altera recommends the following best-practices:

• For two different parameterizations of a component, a component must never generate a file of the same
name with different instantiations. The contents of a file of the same name must be identical for every
parameterization of the component.

• If a component generates a nested component, it must never instantiate two different parameterizations
of the nested component using the same instance name. If the parent component's parameterization
affects the parameters of the nested component, the parent component must use a unique instance name
for each unique parameterization of the nested component.

• Static components that generate differently based on parameterization have the potential to cause problems
in the following cases:

• Different file names with the same entity names, results in same entity conflicts at compilation-time
• Different contents with the same file name results in overwriting other instances of the component,

and in either file, compile-time conflicts or unexpected behavior.

• Generated components that generate files not based on the output name and that have different content
results in either compile-time conflicts, or unexpected behavior.

Altera CorporationCreating Qsys Components

Send Feedback

7-37Design Guidelines for Adding Component Instances
QII51022
2013.11.4

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Creating%20Qsys%20Components%20(QII51022%202013.11.4)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Document Revision History
Table 7-4 indicates edits made to the Creating Qsys Components content since its creation.

Table 7-4: Document Revision History

ChangesVersionDate

• Added add_hdl_instance.
• Added Creating a Component

With Differing Structural Qsys
View and Generated Output
Files .

13.1.0November 2013

• Consolidated content from
other Qsys chapters.

• Added Upgrading IP
Components to the Latest
Version.

• Updated for AMBA APB
support.

13.0.0May 2013

• Added AMBA AXI4 support.
• Added thedemo_axi_memory

example with screen shots and
example _hw.tcl code.

12.1.0November 2012

• Added new tab structure for
the Component Editor.

• Added AMBA AXI3 support.

12.0.0June 2012

Template update.11.1.0November 2011

• Removed beta status.
• Added Avalon Tri-state

Conduit (Avalon-TC) interface
type.

• Added many interface
templates for Nios custom
instructions and Avalon-TC
interfaces.

11.0.0May 2011

Initial release.10.1.0December 2010

For previous versions of the Quartus II Handbook, refer to the Quartus II Handbook Archive.

Related Information
Quartus II Handbook Archive

Creating Qsys ComponentsAltera Corporation

Send Feedback

QII51022
Document Revision History7-38 2013.11.4

http://www.altera.com/literature/lit-qts_archive.jsp
mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Creating%20Qsys%20Components%20(QII51022%202013.11.4)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

8Qsys Interconnect

2013.11.4

QII51021 Subscribe Send Feedback

Qsys interconnect is a high-bandwidth structure for connecting components, and that allows you to connect
IP cores to other IP cores with various interfaces. Qsys supports standard Avalon®, AMBA®AXI3™ (version
1.0), AMBA AXI4™ (version 2.0), and AMBA APB™ 3 (version 1.0) interfaces.

Related Information

• Avalon Interface Specifications

• AMBA Protocol Specifications

• Creating a System with Qsys

• Creating Qsys Components

• Qsys System Design Components

Memory-Mapped Interfaces
This topic describes the implementation and structure of the Qsys interconnect for memory-mapped
interfaces. The content pertains to bothAvalon andAXImemory-mapped interfaces, unless noted otherwise.

Memory-mapped transactions between masters and slaves are encapsulated in packets and transmitted on
a network that carries the packets between masters and slaves. The command network transports read and
write command packets frommaster interfaces to slave interfaces. The response network transports response
packets from slave interfaces to master interfaces.

For each component interface, Qsys interconnect manages memory-mapped transfers, interacting with
signals on the connected component. Master and slave interfaces can contain different signals and the
interconnect processes any adaptation necessary between them. In the path between master and slaves, the
Qsys interconnect might introduce registers for timing synchronization, finite state machines for event
sequencing, or nothing at all, depending on the services required by the specific interfaces.

ISO
9001:2008
Registered

© 2013 Altera Corporation. All rights reserved. ALTERA, ARRIA, CYCLONE, HARDCOPY, MAX, MEGACORE, NIOS, QUARTUS and STRATIX words
and logos are trademarks of Altera Corporation and registered in the U.S. Patent and Trademark Office and in other countries. All other
words and logos identified as trademarks or service marks are the property of their respective holders as described at
www.altera.com/common/legal.html. Altera warrants performance of its semiconductor products to current specifications in accordance with
Altera's standard warranty, but reserves the right to make changes to any products and services at any time without notice. Altera assumes
no responsibility or liability arising out of the application or use of any information, product, or service described herein except as expressly
agreed to in writing by Altera. Altera customers are advised to obtain the latest version of device specifications before relying on any published
information and before placing orders for products or services.

www.altera.com

101 Innovation Drive, San Jose, CA 95134

https://www.altera.com/servlets/subscriptions/alert?id=QII51021
mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20(QII51021%202013.11.4)%20Qsys%20Interconnect&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.
http://www.altera.com/literature/manual/mnl_avalon_spec.pdf
http://infocenter.arm.com/help/topic/com.arm.doc.set.amba/index.html
http://www.altera.com/literature/hb/qts/qsys_intro.pdf
http://www.altera.com/literature/hb/qts/qsys_components.pdf
http://www.altera.com/literature/hb/qts/qsys_system_components.pdf
http://www.altera.com/support/devices/reliability/certifications/rel-certifications.html
http://www.altera.com/support/devices/reliability/certifications/rel-certifications.html
http://www.altera.com/support/devices/reliability/certifications/rel-certifications.html

Qsys interconnect supports the following implementation scenarios:

• Any number of components with master and slave interfaces. The master-to-slave relationship can be
one-to-one, one-to-many, many-to-one, or many-to-many.

• Master and slaves of different data widths.
• Master and slaves operating in different clock domains.
• IP Components with different interface properties and signals. Qsys adapts the component interfaces so

that interfaces with the following differences can be connected:

• Avalon and AXI interfaces that use active-high and active-low signalling. AXI signals are active high,
except for the reset signal.

• Interfaces with different burst characteristics.
• Interfaces with different latencies.
• Interfaces with different data widths.
• Interfaces with different port signatures.

AXI3/4 to AXI3/4 interface connections declare a fixed set of signals with variable latency, so
there is no need for adapting between active-high/low signalling, burst characteristics, different
latencies, or port signatures. Some adaptation is necessary when going to or from Avalon
interfaces.

Note:

Figure 8-1 illustrates theQsys interconnect for anAvalon-MMsystemwithmultiplemasters. In this example,
there are two components mastering the system, a processor and a DMA controller, each with two master
interfaces. The masters connect through the Qsys interconnect to several slaves in the Qsys system. The blue
blocks represent interconnect components. The dark grey boxes indicate items outside of the Qsys system
and the Quartus II software design, and show how component interfaces can be exported and connected to
external devices.

Qsys InterconnectAltera Corporation

Send Feedback

QII51021
Memory-Mapped Interfaces8-2 2013.11.4

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Qsys%20Interconnect%20(QII51021%202013.11.4)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Figure 8-1: Qsys interconnect—System Example

Processor

M

DMA Controller

DDR3
Controller

DDR3 Chip

Data
Memory

S

Instruction
M
Data

MM

Control

Read Write

Instruction
Memory

SSS

Interconnect

Qsys Design
in Altera FPGA

PCB

Command Switch
(Avalon-ST)

Response Switch
(Avalon-ST)

Master
Network
Interface

Master
Network
Interface

Master
Network
Interface

Master
Network
Interface

Slave
Network
Interface

Slave
Network
Interface

Slave
Network
Interface

Flash
Memory
Chip

S

Ethernet
MAC/PHY

Chip

S

Tri-State Conduit
Pin Sharer & Bridge

TCS TCS

Tri-State
Controller

S

TCM

Tri-State
Conduit

S

TCM

Slave
Network
Interface

Master Command Connectivity

Slave Response Connectivity

Interface to Off-Chip Device

M Avalon-MM Master Interface

S Avalon-MM Slave Interface

TCM Avalon Tri-State Conduit Master

TCS Avalon Tri-State Conduit Slave

Packet Format for Memory-Mapped Interfaces
TheQsys packet format supports Avalon, AXI, andAPB transactions.Memory-mapped transactions between
masters and slaves are encapsulated in Qsys packets. For Avalon systems without AXI or APB interfaces,
some fields are ignored or removed.

Qsys Packet Format
The fields of the Qsys packet format are variable length to minimize the resources used. However, if the
majority of components in a design have a single data width, for example 32-bits, and a single component
has a data width of 64-bits, Qsys inserts a width adapter to accommodate 64-bit transfers.

Table 8-1 describes the fields of the Qsys packet that encapsulate the memory-mapped master commands
and memory-mapped slave responses.

Altera CorporationQsys Interconnect

Send Feedback

8-3Packet Format for Memory-Mapped Interfaces
QII51021
2013.11.4

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Qsys%20Interconnect%20(QII51021%202013.11.4)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Table 8-1: Qsys Packet Format

DescriptionField

Specifies the byte address for the lowest byte in the current cycle. There are no
restrictions on address alignment.

Address

Encodes the run-time size of the transaction.

In conjunction with address, this field describes the segment of the payload that
contains valid data for a beat within the packet.

Size

Carries “address” sideband signals. The interconnect passes this field from master
to slave. This field is valid for each beat in a packet, even though it is only produced
and consumed by an address cycle.

Up to 8-bit sideband signals are supported for both read andwrite address channels.

Address Sideband

Carries the AXI cache signals.Cache

Indicates whether the transaction has exclusive access.Transaction
(Exclusive)

Used to indicate non-posted writes (writes that require responses).Transaction
(Posted)

For command packets, carries the data to be written. For read response packets,
carries the data that has been read.

Data

Specifies which symbols are valid. AXI can issue or accept any byteenable pattern.
For compatibility with Avalon, Altera recommends that you use the following legal
values for 32-bit data transactions between Avalon masters and slaves:

• 1111—Writes full 32 bits
• 0011—Writes lower 2 bytes
• 1100—Writes upper 2 bytes
• 0001—Writes byte 0 only
• 0010—Writes byte 1 only
• 0100—Writes byte 2 only
• 1000—Writes byte 3 only

Byteenable

The ID of the master or slave that initiated the command or response.Source_ID

The ID of the master or slave to which the command or response is directed.Destination_ID

Carries the AXI response signals.Response

Carries the AXI transaction ID values.Thread ID

The number of bytes remaining in the transaction, including this beat. Number of
bytes requested by the packet.

Byte count

Qsys InterconnectAltera Corporation

Send Feedback

QII51021
Qsys Packet Format8-4 2013.11.4

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Qsys%20Interconnect%20(QII51021%202013.11.4)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

DescriptionField

The burstwrap value specifies the wrapping behavior of the current burst. The
burstwrap value is of the form 2<n> -1. The following types are defined:

• Variable wrap–Variable wrap bursts can wrap at any integer power of 2 value.
When the burst reaches the wrap boundary, it wraps back to the previous burst
boundary so that only the low order bits are used for addressing. For example,
a burst starting at address 0x1C, with a burst wrap boundary of 32 bytes and a
burst size of 20 bytes, would write to addresses 0x1C, 0x0, 0x4, 0x8, and 0xC.

• For a burst wrap boundary of size <m>, Burstwrap = <m> - 1, or for this
case Burstwrap = (32 - 1) = 31 which is 25 -1.

• For AXI masters, the burstwrap boundary value (m) based on the different
AXBURST:

• Burstwrap set to all 1’s. For example, for a 6-bit burstwrap, burstwrap is
6'b111111.

• For WRAP bursts, burstwrap = AXLEN * size – 1
• For FIXED bursts, burstwrap = size – 1
• Sequential–Sequential bursts increment the address for each transfer in the

burst. For sequential bursts, the Burstwrap field is set to all 1s. For example,
with a 6-bit Burstwrap field, the value for a sequential burst is 6'b111111 or
63, which is 26 - 1.

ForAvalonmasters, Qsys adaptation logic sets a hardwired value for the burstwrap
field, according the declared master burst properties. For example, for a master
that declares sequential bursting, the burstwrap field is set to ones. Similarly,masters
that declare burst have their burstwrap field set to the appropriate constant value.

AXI masters choose their burst type at run-time, depending on the value of the AW
or ARBURST signal. The interconnect calculates the burstwrap value at run-time
for AXI masters.

Burstwrap

Access level protection. When the lowest bit is 0, the packet has normal access.
When the lowest bit is 1, the packet has privileged access. For Avalon-MM
interfaces, this field maps directly to the privileged access signal, which allows an
memory-mapped master to write to an on-chip memory ROM instance. The other
bits in this field support AXI secure accesses.

Protection

QoS (Quality of Service Signaling) is a 4-bit field that is part of the AXI4 interface
that carries QoS information for the packet from the AXI master to the AXI slave.

Transactions from AXI3 and Avalon masters have the default value 4'b0000,
that indicates that they are not participating in the QoS scheme. QoS values are
dropped for slaves that do not support QoS.

QoS

Carries data sideband signals for the packet. On awrite command, the data sideband
directly maps to WUSER. On a read response, the data sideband directly maps to
RUSER. On a write response, the data sideband directly maps to BUSER.

Data sideband

Altera CorporationQsys Interconnect

Send Feedback

8-5Qsys Packet Format
QII51021
2013.11.4

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Qsys%20Interconnect%20(QII51021%202013.11.4)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Transaction Types for Memory-Mapped Interfaces

Table 8-2 describes the information carried by each bit in the packet format's transaction field.

Table 8-2: Transaction Types for Memory-Mapped Interfaces

DefinitionNameBit

When asserted, indicates a read transaction.PKT_TRANS_READ0

For read transactions, specifies whether or not the
read command can be expressed in a single cycle, that
is whether or not it has all byteenables asserted
on every cycle.

PKT_TRANS_COMPRESSED_READ1

When asserted, indicates a write transaction.PKT_TRANS_WRITE2

When asserted, no response is required.PKT_TRANS_POSTED3

When asserted, indicates arbitration is locked. Applies
to write packets.

PKT_TRANS_LOCK4

Interconnect Domains
An interconnect domain is a group of connected memory-mapped masters and slaves that share the same
interconnect. The components in a single interconnect domain share the same packet format.

Using One Domain with Width Adaptation
When one of the masters in a system connects to all of the slaves, Qsys creates a single domain with two
packet formats: one with 64-bit data, and one with 16-bit data. A width adapter manages accesses between
the 16-bit master and 64-bit slaves.

Figure 8-2 illustrates a Qsys system that includes two 64-bit masters that access two 64-bit slaves. It also
includes one 16-bit master, that accesses two 16-bit slaves and two 64-bit slaves. The 16-bit Avalon master
connects through a 1:4 adapter, then a 4:1 adapter to reach its 16-bit slaves.

Qsys InterconnectAltera Corporation

Send Feedback

QII51021
Transaction Types for Memory-Mapped Interfaces8-6 2013.11.4

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Qsys%20Interconnect%20(QII51021%202013.11.4)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Figure 8-2: One Domain with 1:4 and 4:1 Width Adapters

16-Bit
Avalon-MM

Slave

S

16-Bit
Avalon-MM

Slave

S

16-Bit
Avalon-MM
Master
M

Single Domain with 1:4 & 4:1 Width Adapters

64-Bit
Avalon-MM

Slave

S

64-Bit
Avalon-MM
Master
M

64-Bit
Avalon-MM
Master
M

4:11:4

64-Bit
Avalon-MM

Slave

S

Using Two Separate Domains
In this example, a second domain includes one 16-bit master connected to two 16-bit slaves. Because the
interfaces in Domain 1 and Domain 2 do not share any connections, Qsys can optimize the packet format
for the two separate domains. In this example, the first domain uses a 64-bit data width and the second
domain uses 16-bit data.

Figure 8-3 illustrates the use of two separate domains. The first domain includes two 64-bitmasters connected
to two 64-bit slaves.

Altera CorporationQsys Interconnect

Send Feedback

8-7Using Two Separate Domains
QII51021
2013.11.4

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Qsys%20Interconnect%20(QII51021%202013.11.4)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Figure 8-3: Two Separate Domains

16-bit
Avalon-MM

Slave

S

16-bit
Avalon-MM

Slave

S

Domain 1

Command Network Response Network

Domain 2

64-bit
Avalon-MM
Master

M

64-bit
Avalon-MM
Master

M

64-bit
Avalon-MM

Slave

S

64-bit
Avalon-MM

Slave

S

16-bit
Avalon-MM
Master

M

Component 1 Component 2

Qsys Transformations
The memory-mapped master and slave components connect to network interface modules that encapsulate
the transaction in Avalon-ST packets. The memory-mapped interfaces have no information about the
encapsulation or the function of the layer transporting the packets and simply operate in accordance with
memory-mapped protocol, using the read and write signals and transfers as defined in the Avalon or AXI
interface specification.

Figure 8-4 provides a detailed view of the transformation that occurs when you generate a Qsys system with
memory-mapped master and slave components. It shows a Qsys system with memory-mapped master and
slave components. The Qsys components that implement the blocks appear shaded in Master Network
Interfaces and Slave Network Interfaces.

Qsys InterconnectAltera Corporation

Send Feedback

QII51021
Qsys Transformations8-8 2013.11.4

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Qsys%20Interconnect%20(QII51021%202013.11.4)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Figure 8-4: Qsys Transform from Memory-Mapped Interfaces to Avalon-ST

Slave Response Connectivity

Master Command Connectivity

Avalon-STAvalon-MM or AXI Avalon-MM or AXI

Avalon-ST
Network

(Command)

Master
Network
Interface

Master
Interface

Slave
Network
Interface

Slave
Interface

Master
Network
Interface

Master
Interface

Slave
Network
Interface

Slave
Interface

Avalon-ST
Network

(Response)

Related Information

• Master Network Interfaces on page 8-9

• Slave Network Interfaces on page 8-11

Master Network Interfaces
Avalon network interfaces drive default values for the QoS and BUSER, WUSER, and RUSER packet fields
in the master agent, and drop the packet fields in the slave agent.

Figure 8-5 shows the Avalon-MM Master network interface.

Figure 8-5: Avalon-MM Master Network Interface

Master
Interface

Master Network Interface

Translator Agent Limiter

Router

Avalon-ST
Network

(Command)

Avalon-ST
Network

(Response)

An AXI4 master supports INCR bursts up to 256 beats, QoS signals, and Data Sideband signals. Figure 8-6
shows the AXI Master Network Interface.

Altera CorporationQsys Interconnect

Send Feedback

8-9Master Network Interfaces
QII51021
2013.11.4

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Qsys%20Interconnect%20(QII51021%202013.11.4)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Figure 8-6: AXI Master Network Interface

Master Network Interface

AXI
Translator

Router

Limiter

Avalon-ST
Network

(Command)

Avalon-ST
Network

(Response)

AXI
Master
Agent

Router

Read Command

Write Command

Limiter

Write Response

Read Response

Master
Interface

Avalon-MM Master Agent
The Avalon-MM Master Agent translates Avalon-MM master transactions into Qsys command packets and
translates the Qsys Avalon-MM slave response packets into Avalon-MM responses.

Avalon-MM Master Translator
The Avalon-MM Master Translator interfaces with an Avalon-MM master component and converts the
Avalon-MM master interface to a simpler representation for use in Qsys.

The Avalon-MM Master translator performs the following functions:

• Translates active low signalling to active high signalling
• Inserts wait states to prevent an Avalon-MM master from reading invalid data
• Translates word and symbol addresses
• Translates word and symbol burst counts
• Manages re-timing and re-sequencing bursts
• Removes unnecessary address bits

AXI Master Agent
An AXI Master Agent accepts AXI commands and produces Qsys command packets. It also accepts Qsys
response packets and converts those into AXI responses. This component has separate packet channels for
read commands, write commands, read responses, and write responses. Avalon master agent drives theQoS
and BUSER, WUSER, and RUSER packet fields with default values AXQO and b0000, respectively.

For signal descriptions, refer to Qsys Packet Format.Note:

Related Information
Qsys Packet Format on page 8-3

AXI Translator
AXI4 allows some signals to be omitted from interfaces. The translator bridges between these “incomplete”
AXI4 interfaces and the “complete” AXI4 interface on the network interfaces.

Qsys InterconnectAltera Corporation

Send Feedback

QII51021
Avalon-MM Master Agent8-10 2013.11.4

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Qsys%20Interconnect%20(QII51021%202013.11.4)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

The AXI translator is inserted for both AXI4 master and slave, and performs the following functions:

• Matches ID widths between the master and slave in 1x1 systems.
• Drives default values as defined in the AMBA Protocol Specifications for missing signals.
• Performs lock transaction bit conversionwhen anAXI3master connects to anAXI4 slave in 1x1 systems.

Related Information
AMBA Protocol Specifications

APB Master Agent
An APB master agent accepts APB commands and produces or generates Qsys command packets. It also
converts Qsys response packets to APB responses.

APB Slave Agent
An APB slave agent issues resulting transaction to the APB interface. It also accepts creates Qsys response
packets.

APB Translator
An APB peripheral does not require pslverr signals to support additional signals for the APB debug
interface.

The APB translator is inserted for both the master and slave and performs the following functions:

• Sets the response value default to OKAY if the APB slave does not have a pslverr signal.
• Turns on or off additional signals between theAPBdebug interface, which is usedwithHPS (Altera SoC’s

Hard Processor System).

Memory-Mapped Router
The Memory-Mapped Router routes command packets from the master to the slave, and response packets
from the slave to the master. For master command packets, the router uses the address to set the
Destination_ID and Avalon-ST channel. For the slave response packet, the router uses the
Destination_ID to set the Avalon-ST channel. The demultiplexers use the Avalon-ST channel to route
the packet to the correct destination.

Memory-Mapped Traffic Limiter
The Memory-Mapped Traffic Limiter ensures the responses arrive in order. It prevents any command from
being sent if the response could conflict with the response for a command that has already been issued. By
guaranteeing in-order responses, the Traffic Limiter simplifies the response network.

Slave Network Interfaces
Figure 8-7 shows an Avalon slave network interface.

Altera CorporationQsys Interconnect

Send Feedback

8-11APB Master Agent
QII51021
2013.11.4

http://infocenter.arm.com/help/topic/com.arm.doc.set.amba/index.html
mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Qsys%20Interconnect%20(QII51021%202013.11.4)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Figure 8-7: Avalon-MM Slave Network Interface

Slave
Interface

Slave Network Interface

Agent Translator

Waitrequest

Overflow Error

Command

Response

Avalon-ST
Network

(Command)

Avalon-ST
Network

(Response)

An AXI4 slave supports up to 256 beat INCR bursts, QoS signals, and data sideband signals. Figure 8-8
shows the AXI slave network interface.

Figure 8-8: AXI Slave Network Interface

AXI
Translator

AXI
Agent

Write Response

Read Command

Read Response

Avalon-ST
Network

(Command)

Avalon-ST
Network

(Response)

Write Command

Network Interface

Slave
Interface

Avalon-MM Slave Translator
The Avalon-MM Slave Translator interfaces to an Avalon-MM slave component as the Avalon-MM Slave
Network Interface figure illustrates. It converts the Avalon-MM slave interface to a simplified representation
that the Qsys network can use.

An Avalon-MM Merlin Slave Translator performs the following functions:

• Drives the begintransfer, beginbursttransfer, and byteenable signals.
• Supports Avalon-MMslaves that operate using fixed timing and or slaves that use thereaddatavalid

signal to identify valid data.
• Translates the read, write, and chipselect signals into the representation that the Avalon-ST

slave response network uses.
• Converts active low signals to active high signals.
• Translates word and symbol addresses and burstcounts.
• Handles burstcount timing and sequencing.
• Removes unnecessary address bits.

Qsys InterconnectAltera Corporation

Send Feedback

QII51021
Avalon-MM Slave Translator8-12 2013.11.4

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Qsys%20Interconnect%20(QII51021%202013.11.4)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Related Information
Slave Network Interfaces on page 8-11

AXI Translator
AXI4 allows some signals to be omitted from interfaces. The translator bridges between these “incomplete”
AXI4 interfaces and the “complete” AXI4 interface on the network interfaces.

The AXI translator is inserted for both AXI4 master and slave, and performs the following functions:

• Matches ID widths between master and slave in 1x1 systems.
• Drives default values as defined in the AMBA Protocol Specifications for missing signals.
• Performs lock transaction bit conversionwhen anAXI3master connects to anAXI4 slave in 1x1 systems.

Wait State Insertion
Wait states extend the duration of a transfer by one or more cycles. Wait state insertion logic accommodates
the timing needs of each slave, and causes the master to wait until the slave can proceed. Qsys interconnect
inserts wait states into a transfer when the target slave cannot respond in a single clock cycle, as well as in
cases when slave read and write signals have setup or hold time requirements.

Wait state insertion logic is a small finite-state machine that translates control signal sequencing between
the slave side and the master side. Qsys interconnect can force a master to wait for the wait state needs of a
slave. For example, arbitration logic in a multimaster system. Qsys generates wait state insertion logic based
on the properties of all slaves in the system.

Figure 8-9: Block Diagram of Wait State Insertion Logic for One Master and One Slave

Master
Port

Slave
Port

Wait-State
Insertion
Logic read/writeread/write

wait request

address

data

Avalon-MM Slave Agent
The Avalon-MM Slave Agent accepts command packets and issues the resulting transactions to the Avalon
interface. For pipelined slaves, an Avalon-ST FIFO stores information about pending transactions. The size
of this FIFO is the maximum number of pending responses that you specify when creating the slave
component. The Avalon-MM Slave Agent also backpressures the Avalon-MM master command
interface when the FIFO is full if the slave component includes the waitrequest signal.

AXI Slave Agent
An AXI Slave Agent works similar to a master agent in reverse. The AXI slave Agent accepts Qsys command
packets to createAXI commands, and acceptsAXI responses to createQsys response packets. This component
has separate packet channels for read commands, write commands, read responses, and write responses.

Arbitration
When multiple masters contend for access to a slave, Qsys automatically inserts arbitration logic which
grants access in fairness-based, round-robin order.

Altera CorporationQsys Interconnect

Send Feedback

8-13AXI Translator
QII51021
2013.11.4

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Qsys%20Interconnect%20(QII51021%202013.11.4)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

In a fairness-based arbitration scheme, each master has an integer value of transfer shares with respect to a
slave. One share represents permission to perform one transfer. The default arbitration scheme is equal share
round-robin that grants equal, sequential access to all requesting masters. You can change the arbitration
scheme to weighted round-robin by specifying a relative number of arbitration shares to the masters that
access a particular slave. AXI slaves have separate arbitration for their independent read and write channels,
and theArbitration Shares setting affects both the read and write arbitration. To display arbitration settings,
right-click an instance on the System Contents tab, and then click Show Arbitration Shares.

Figure 8-10 illustrates arbitration shares indicated in the Connections column.

Figure 8-10: Arbitration Settings on the System Contents Tab

Arbitration Rules
The rules by which the arbiter grants access to masters are described as: fairness-based shares, round-robin
scheduling, and burst transfers.

Fairness-Based Shares
In a fairness-based arbitration scheme, each master-to-slave connection provides a transfer share count.
This count is a request for the arbiter to grant a specific number of transfers to this master before giving
control to a different master. One share represents permission to perform one transfer.

For example, for two masters that continuously attempt to perform back-to-back transfers to a slave, the
arbiter grantsMaster 1 access for three transfers, andMaster 2 for four transfers. This cycle repeats indefinitely.
Figure 8-11 shows each master’s transfer request output, wait request input (which is driven by the arbiter
logic), and the current master with control of the slave.

Figure 8-11: Arbitration of Continuous Transfer Requests from Two Masters

clk

M1_transfer_request

M1_waitrequest

M2_transfer_request

M2_waitrequest

Current_Master Master 1 Master 2 Master 1 Master 2 Master 1

If a master stops requesting transfers before it exhausts its shares, it forfeits all of its remaining shares, and
the arbiter grants access to another requestingmaster, as shown inFigure 8-12. After completing one transfer,
Master 2 stops requesting for one clock cycle. As a result, the arbiter grants access back to Master 1, which
gets a replenished supply of shares.

Qsys InterconnectAltera Corporation

Send Feedback

QII51021
Arbitration Rules8-14 2013.11.4

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Qsys%20Interconnect%20(QII51021%202013.11.4)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Figure 8-12: Arbitration of Two Masters with a Gap in Transfer Requests

Master 1 Master 1 Master 2 Master 1 Master 2Master 2

clk

M1_transfer_request

M1_waitrequest

M2_transfer_request

M2_waitrequest

Current_Master

Round-Robin Scheduling
When multiple masters contend for access to a slave, the arbiter grants shares in Round-Robin order. At
every slave transaction, only requesting masters are included in the arbitration.

Burst Transfers
For burst transfer arbitration, there is a one-to-one relationship between a single share and a transaction,
so that arbitration shares are respected during burst transactions. For example, for an arbitration share of
3, a master is granted 3 burst transactions. Once a burst begins between a master-slave pair, arbiter logic
does not allow any other master to access the slave until the burst completes.

Arbitration Examples
Arbitration can occur with continuous transfer requests from two masters, or with two masters with a gap
in a transfer request.

Figure 8-13 illustrates the timing for two Avalon-MM masters continuously accessing a single Avalon-MM
slave to perform back-to-back transfers. Master 1 has three shares and Master 2 has four shares.The arbiter
grants Master 1 access for three transfers, then Master 2 for four transfers. This cycle repeats indefinitely.

Figure 8-13: Arbitration of Continuous Transfer Requests from Two Masters

clk

M1_transfer_request

M1_waitrequest

M2_transfer_request

M2_waitrequest

Current_Master Master 1 Master 2 Master 1 Master 2 Master 1

If a master stops requesting transfers before it exhausts its shares, it forfeits all of its remaining shares, and
the arbiter grants access to another requestingmaster, as shown inFigure 8-14. After completing one transfer,
Master 2 stops requesting for one clock cycle. As a result, the arbiter grants access back to Master 1, which
gets three shares.

Figure 8-14: Arbitration of Two Masters with a Gap in Transfer Requests

Master 1 Master 1 Master 2 Master 1 Master 2Master 2

clk

M1_transfer_request

M1_waitrequest

M2_transfer_request

M2_waitrequest

Current_Master

Altera CorporationQsys Interconnect

Send Feedback

8-15Round-Robin Scheduling
QII51021
2013.11.4

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Qsys%20Interconnect%20(QII51021%202013.11.4)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Memory-Mapped Arbiter
The input to the Memory-Mapped Arbiter is the command packet for all masters requesting access to a
particular slave. The arbiter outputs the channel number for the selected master. This channel number
controls the output of a multiplexer that selects the slave device. The figure below illustrates this logic.

In Figure 8-15, four Avalon-MM masters connect to four Avalon-MM slaves. In each cycle, an arbiter
positioned in front of each Avalon-MM slave selects among the requesting Avalon-MM masters.

Figure 8-15: Arbitration Logic

Logic included in the Avalon-ST Command Network

Arbiter
for

slave 0

Master 0

= Pipeline stage, masters 0-3

= Pipeline stage, selected request

Arbiter
for

slave 1

Arbiter
for

slave 2

Arbiter
for

slave 3

Master 1

Master 2

Master 3

Arbiter
for

slave 1

Command
packet for
master 0

Command
packet for
master 1

Command
packet for
master 2

Command
packet for
master 3

Selected request

Selected request

Selected request

Selected request

If you specified a Limit interconnect pipeline stages to parameter greater than zero on the Qsys Project
Settings tab, the output of the Arbiter is registered. Registering this output reduces the amount of
combinational logic between the master and interconnect, increasing the fMAX of the system.

Datapath Multiplexing
Datapath multiplexing logic drives the writedata signal from the granted master to the selected slave,
and the readdata signal from the selected slave back to the requesting master. Qsys generates separate
datapath multiplexing logic for every master in the system (readdata), and for every slave in the system
(writedata). Qsys does not generate multiplexing logic if it is not needed.

Qsys InterconnectAltera Corporation

Send Feedback

QII51021
Memory-Mapped Arbiter8-16 2013.11.4

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Qsys%20Interconnect%20(QII51021%202013.11.4)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Figure 8-16: Block Diagram of Datapath Multiplexing Logic for One Master and Two Slaves

Master
Port

readdata

address

writedata

control

readdata2

readdata1

Data
Path

Multiplexer

Slave
Port 2

Slave
Port 1

Width Adaptation
Qsys width adaptation converts between Avalon memory-mapped master and slaves with different data and
byte enable widths, andmanages the run-time size requirements of AXI.Width adaptation for AXI toAvalon
interfaces is also supported.

Memory-Mapped Width Adapter
The Memory-Mapped Width Adapter is used in the Avalon-ST domain and operates with information
contained in the packet format.

The memory-mapped width adapter accepts packets on its sink interface with one data width and produces
output packets on its source interface with a different data width. The ration of the narrow data width must
be a power of two, such as 4:1, 8:1, and 16:1. The ratio of the wider data width to the narrower width must
be a power of two, such as 4:1, 8:1, and 16:1 These output packets may have a different size if the input size
exceeds the output data bus width, or if data packing is enabled.

This adapter assumes that the field ordering of the input and output packets is the same, with the only
difference being the width of the data and accompanying byte enable fields.When thewidth adapter converts
from wide data to narrow data, the narrower data is transmitted over several beats. The first output beat
contains the lowest addressed segment of the input data and byte enables. Figure 8-17 illustrates the timing
for a 4:1 width adapter. When the width adapter converts from narrow data to wide data, each input beat's
data and byte enables are copied to the appropriate segment of the wider output data and byte enables signals.

Altera CorporationQsys Interconnect

Send Feedback

8-17Width Adaptation
QII51021
2013.11.4

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Qsys%20Interconnect%20(QII51021%202013.11.4)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Figure 8-17: Width Adapter Timing for a 4:1 Adapter

Adapter
Input

Adapter
Output

addr_out[7:0]

clock

addr_in[7:0]

wide_data[31:0]

byteenable_in[3:0]

byteenable_out[3:0]

write

narrow_data[7:0]

08

AABBCCDD

C

08 09 0A 0B

0 0 1 1

DD CC BB AA

AXI Wide to Narrow Adaptation
For all cases of AXI wide to narrow adaptation, read data is repacked to match the original size. Responses
are merged, with the following error precedence: DECERR, SLVERR, OKAY, and EXOKAY.

Table 8-3 describes burst behavior for AXI wide-to-narrow adaptation.

Table 8-3: Wide to Narrow Adaptation (Downsizing)

BehaviorBurst Type

If the transaction size is less than or equal to the output width, the burst
is unmodified. Otherwise, it is converted to an incrementing burst with
a larger length and size equal to the output width.

If the resulting burst is unsuitable for the slave, the burst is converted to
multiple sequential bursts of the largest allowable lengths. For example,
for a 2:1 downsizing ratio, an INCR9 burst is converted into INCR16
+ INCR2 bursts. This is true if the maximum burstcount a slave can
accept is 16, which is the case for AXI3 slaves. Avalon slaves have a
maximum burstcount of 64.

Incrementing

If the transaction size is less than or equal to the output width, the burst
is unmodified. Otherwise, it is converted to awrapping burst with a larger
length, with a size equal to the output width.

If the resulting burst is unsuitable for the slave, the burst is converted to
multiple sequential bursts of the largest allowable lengths; respecting
wrap boundaries. For example, for a 2:1 downsizing ratio, a WRAP16
burst is converted into two or three INCR bursts, depending on the
address.

Wrapping

If the transaction size is less than or equal to the output width, the burst
is unmodified. Otherwise, it is converted into repeated sequential bursts
over the same addresses. For example, for a 2:1 downsizing ratio, a FIXED
single burst is converted into an INCR2 burst.

Fixed

Qsys InterconnectAltera Corporation

Send Feedback

QII51021
AXI Wide to Narrow Adaptation8-18 2013.11.4

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Qsys%20Interconnect%20(QII51021%202013.11.4)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

AXI Narrow to Wide Adaptation

Table 8-4 describes burst behavior for AXI narrow-to-wide adaptation.

Table 8-4: Narrow to Wide Adaptation (Upsizing)

BehaviorBurst Type

The burst (and its response) passes through unmodified. Data and write
strobes are placed in the correct output segment.

Incrementing

The burst (and its response) passes through unmodified.Wrapping

The burst (and its response) passes through unmodified.Fixed

Burst Transfers
Avalon-MMandAXI burst transactions grant amaster uninterrupted access to a slave for a specified number
of transfers. The master specifies the number of transfers when it initiates the burst. Once a burst begins
between a master and slave pair, arbiter logic is locked until the burst completes. For burst masters, the
length of the burst is the number of cycles that the master has access to the slave, and the selected arbitration
shares have no effect.

Memory-Mapped Burst Adapter
The Qsys interconnect uses the memory-mapped burst adapter to accommodate the burst capabilities of
each interface in the system, including interfaces that do not support burst transfers.

The maximum burst length for each interface is a property of the component interface and is independent
of other interfaces in the system. Therefore, a particular master might be capable of initiating a burst longer
than a slave’s maximum supported burst length. In this case, the burst adapter translates the large master
burst into smaller bursts, or into individual slave transfers if the slave does not support bursting. Until the
master completes the burst, the arbiter logic prevents other masters from accessing the target slave. For
example, if a master initiates a burst of 16 transfers to a slave with maximum burst length of 8, the burst
adapter initiates 2 bursts of length 8 to the slave.

AXI masters can issue burst types that Avalon cannot accept, for example, fixed bursts. In this case,
the burst adapter converts the fixed burst into a sequence of transactions to the same address.

Note:

For AXI4 slaves, Qsys allows 256-beat INCR bursts, though you must ensure that 256-beat narrow-
sized INCR bursts are shortened to 16-beat narrow-sized INCR bursts for AXI3 slaves.

Note:

Avalon-MM masters always issue addresses that are aligned to the size of the transfer. However, in some
cases, when a narrow-to-wide width adaptation is used, the resulting address may be unaligned. In the case
of unaligned addresses, the burst adapter issues the maximum possible sized bursts, with appropriate byte
enables, to bring the burst-in-progress up to an aligned slave address. Then, it completes the burst on aligned
addresses.

The burst adapter supports variable wrap or sequential burst types to accommodate the different properties
of memory-mapped masters. Some bursting masters can issue more than one burst type.

Burst adaptation is available for Avalon to Avalon, Avalon to AXI, and AXI to Avalon connections, and AXI
toAXI connections. For information about AXI-to-AXI adaptation, refer toAXIWide to NarrowAdaptation

Altera CorporationQsys Interconnect

Send Feedback

8-19AXI Narrow to Wide Adaptation
QII51021
2013.11.4

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Qsys%20Interconnect%20(QII51021%202013.11.4)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

For AXI4 to AXI3 connections, Qsys follows an AXI4 256 burst length to AXI3 16 burst length.Note:

Burst Adaptation: AXI to Avalon on page 8-20

Burst Adaptation: Avalon to AXI on page 8-20

Burst Adaptation: AXI to Avalon

Table 8-5 specifies the behavior when converting between AXI and Avalon burst types.

Table 8-5: Burst Adaptation: AXI to Avalon

BehaviorBurst Type

Sequential Slave

Bursts that exceed slave_max_burst_length are converted to
multiple sequential bursts of a length less than or equal to the slave_
max_burst_length. Otherwise, the burst is unconverted. For
example, for an Avalon slave with a maximum burst length of 4, an
INCR7 burst is converted to INCR4 + INCR3.

Wrapping Slave

Bursts that exceed the slave_max_burst_length are converted to
multiple sequential bursts of length less than or equal to the slave_
max_burst_length. Bursts that exceed the wrapping boundary are
converted to multiple sequential bursts that respect the slave's wrapping
boundary.

Incrementing

Sequential Slave

A WRAP burst is converted to multiple sequential bursts. The sequential
bursts are less than or equal to the max_burst_length and respect
the transaction's wrapping boundary

Wrapping Slave

If the WRAP transaction's boundary matches the slave's boundary, then
the burst passes through. Otherwise, the burst is converted to sequential
bursts that respect both the transaction and slave wrap boundaries.

Wrapping

Fixed bursts are converted to sequential bursts of length 1 that repeatedly
access the same address.

Fixed

All narrow-sized bursts are broken into multiple bursts of length 1.Narrow

Burst Adaptation: Avalon to AXI

Table 8-6 specifies the behavior when converting between Avalon and AXI burst types.

Qsys InterconnectAltera Corporation

Send Feedback

QII51021
Burst Adaptation: AXI to Avalon8-20 2013.11.4

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Qsys%20Interconnect%20(QII51021%202013.11.4)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Table 8-6: Burst Adaptation: Avalon to AXI

DefinitionBurst Type

Bursts of length greater than16 are converted to multiple INCR bursts
of a length less than or equal to16. Bursts of length less than or equal to16
are not converted.

Sequential

Only Avalon masters with alwaysBurstMaxBurst = true are
supported. The WRAP burst is passed through if the length is less than
or equal to16. Otherwise, it is converted to two or moreINCR bursts that
respect the transaction's wrap boundary.

Wrapping

Address Decoding
Address decoding logic forwards appropriate addresses to each slave.

Address decoding logic simplifies component design in the following ways:

• The interconnect selects a slave whenever it is being addressed by a master. Slave components do not
need to decode the address to determine when they are selected.

• Slave addresses are properly aligned to the slave interface.
• Changing the system memory map does not involve manually editing HDL.

Separate address-decoding logic is generated for every master in a system. The address decoding logic
processes the difference between the master address width (<M>) and the individual slave address widths
(<S >) and (<T >). The address decoding logic also maps only the necessary master address bits to access
words in each slave’s address space.

Figure 8-18: Block Diagram of Address Decoding for One Master and Two Slaves

Slave
Port 1
(8-bit)

Slave
Port 2
(32-bit)

address [S..0]

read/write

read/write

address [T..2]

address [M..0] Address
Decoding
Logic

Master
Port

In Qsys, the base addresses are controlled by the Base setting of active components on the SystemContents
tab, as shown in Figure 8-19. The base address of a slave component must be a multiple of the address span
of the component. This restriction is part of the Qsys interconnect to allow the address decoding logic to be
efficient, and to achieve the best possible fMAX.

Altera CorporationQsys Interconnect

Send Feedback

8-21Address Decoding
QII51021
2013.11.4

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Qsys%20Interconnect%20(QII51021%202013.11.4)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Figure 8-19: Base Settings in Qsys Address Decoding

Streaming Interfaces
High bandwidth components with streaming data typically use Avalon-ST interfaces for the high throughput
datapath. Streaming interfaces can also use memory-mapped connection interfaces to provide an access
point for control. In contrast to thememory-mapped interconnect, which you can use to create a wide variety
of topologies, the Avalon-ST interconnect always creates a point-to-point connection between a single data
source and data sink, as the figure below illustrates.

Figure 8-20 has the following connection pairs:

• Data source in the Rx Interface transfers data to the data sink in the FIFO
• Data source in the FIFO transfers data to the Tx Interface data sink

In Figure 8-20, the memory-mapped interface allows a processor to access the data source, FIFO, or data
sink to provide system control.

Qsys InterconnectAltera Corporation

Send Feedback

QII51021
Streaming Interfaces8-22 2013.11.4

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Qsys%20Interconnect%20(QII51021%202013.11.4)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Figure 8-20: Use of the Memory-Mapped and Avalon-ST Interfaces

FIFO

Data
Sink

Data
Source

Data
Source channel

Data Source
(Rx Interface)

Data Sink
(Tx Interface)

Data
Sink

Data
Source

ready
valid

data

ready
valid

data
channel

Control
Slave

Control
Slave

Control
Slave

Processor UART Timer

Control Plane Memory Mapped Intefaces

Data Plane Avalon-Streaming Interface

RAM

If your source and sink interfaces have different formats, for example, a 32-bit source and an 8-bit sink, Qsys
automatically inserts the necessary adapters, which are then visible in the System Contents tab.

Figure 8-21 illustrates the simplest system example with an Avalon-ST connection between the source and
sink. This source-sink pair includes only the data signal. The sink must be able to receive data as soon as
the source interface comes out of reset.

Figure 8-21: Interconnect for a Simple Avalon Streaming Source-Sink Pair

Data Source Data Sinkdata

Figure 8-22 illustrates a more extensive interface that includes signals indicating the start and end of packets,
channel numbers, error conditions, and back pressure.

Altera CorporationQsys Interconnect

Send Feedback

8-23Streaming Interfaces
QII51021
2013.11.4

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Qsys%20Interconnect%20(QII51021%202013.11.4)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Figure 8-22: Signals Indicating the Start and End of Packets, Channel Numbers, Error Conditions, and
Backpressure

ready

Data Source Data Sink

valid
channel

startof packet
endofpacket

empty
error
data

All data transfers using Avalon-ST interconnect occur synchronously to the rising edge of the associated
clock interface. Throughput and frequency of a system depends on the components and how they are
connected.

TheQsys Library includes a number ofAvalon-ST components that you can use to create datapaths, including
datapathswhose input and output streams have different properties. Generated systems that includememory-
mapped master and slave components may also use these Avalon-ST components because the generation
process creates an interconnect whose structure resembles a network topology, as described in Qsys
Transformations. The following sections introduce the Avalon-ST components.

AXI streaming components are not available in Qsys, version 13.1 For details about the Avalon-ST interface
protocol, refer to the Avalon Interface Specification.

Related Information

• Avalon Interface Specification

• Avalon-ST Adapters on page 8-25

• Qsys Transformations on page 8-8

Avalon-ST Multiplexer
The Avalon-ST Multiplexer accepts data on its Avalon-ST sink interface and multiplexes the data for
transmission on its Avalon-ST source interface.

You can parameterize the multiplexer to append channel information on the source to indicate which sink
is driving the source data. The multiplexer includes internal arbitration logic which selects between inputs
using a round-robin arbitration algorithm. Figure 8-23 illustrates the Avalon-ST multiplexer. Among the
parameters that you can specify are the option to use packet scheduling, which guarantees that themultiplexer
only changes inputs at the end of a packet.

Figure 8-23: Avalon-ST Multiplexer

Snk

Snk

Src

Snk
Avalon-ST Source0

Avalon-ST Source

Avalon-ST Source2

Avalon-ST Source1

Qsys InterconnectAltera Corporation

Send Feedback

QII51021
Avalon-ST Multiplexer8-24 2013.11.4

http://www.altera.com/literature/manual/mnl_avalon_spec.pdf
mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Qsys%20Interconnect%20(QII51021%202013.11.4)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Avalon-ST Demultiplexer
The Avalon-ST Demultiplexer accepts channelized data on its sink interface, and transmits the data on one
of its source interfaces.

The channel bits of the source stream indicate which port the drives the output data. Figure 8-24 illustrates
the Multiplexer. Among the parameters that you can specify are the number of output ports and the width
of the channel signal.

Figure 8-24: Avalon-ST Demultiplexer

SnkAvalon-ST Source

Avalon-ST Source0

Avalon-ST Source2

Avalon-ST Source1

Src

Src

Src

Avalon-ST Adapters
Qsys automatically adds Avalon-ST adapters between two components during system generation when it
detects mismatched interfaces. If you connect mismatched Avalon-ST sources and sinks, for example, a
32-bit source and an 8-bit sink, Qsys inserts the appropriate adapter type, as described below, to connect
the mismatched interfaces. After generation, you can view the inserted adapters with the ShowSystemWith
Qsys Fabric Components command on the System menu. Qsys reports the mismatched interfaces and
inserted adapter with informational messages.

You can turn off the auto-inserted adapters feature by adding the
qsys_enable_avalon_streaming_transform=off command to thequartus.ini file.When you
turn off the auto-inserted adapters feature, if mismatched interfaces are detected during system generation,
Qsys does not insert adapters and reports the mismatched interface with an error message.

The auto-inserted adapters feature does not work for video IP core connections.Note:

Data Format Adapter
The data format adapter allows you to connect interfaces that have different values for the parameters defining
the data signal. One of the most common uses of this adapter is to convert data streams of different widths.

Table 8-7: Data Format Adapter Adaptations

Description of Adapter LogicCondition

The connection cannot be made.The source and sink’s bits per symbol are different.

Altera CorporationQsys Interconnect

Send Feedback

8-25Avalon-ST Demultiplexer
QII51021
2013.11.4

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Qsys%20Interconnect%20(QII51021%202013.11.4)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Description of Adapter LogicCondition

The adapter converts the source's width to the sink’s
width.

If the adaptation is from a wider to a narrower
interface, a beat of data at the input corresponds to
multiple beats of data at the output. If the input
error signal is asserted for a single beat, it is asserted
on output for multiple beats.

If the adaptation is from a narrow to awider interface,
multiple input beats are required to fill a single output
beat, and the output error is the logical OR of the
input error signal.

The source and sink have a different number of
symbols per beat.

Figure 8-25 shows a data format adapter that allows a connection between a 128-bit input data stream and
three 32-bit output data streams.

Figure 8-25: Avalon Streaming Interconnect with Data Format Adapter

128-Bit RX
Interface

32-Bit TX
Interface

32-Bit TX
Interface

32-Bit TX
Interface

128 Bits

128 Bits

128 Bits

Data
Format
Adapter

Data
Format
Adapter

Data
Format
Adapter

32 Bits

32 Bits

32 Bits

128 Bits

Timing Adapter
The timing adapter allows you to connect component interfaces that require a different number of cycles
before driving or receiving data. This adapter inserts a FIFO buffer between the source and sink to buffer
data or pipeline stages to delay the back pressure signals. You can also use the timing adapter to connect
interfaces that support the ready signal, and those that do not. The timing adapter treats all signals other
than the ready and valid signals as payload, and simply drives them from the source to the sink.

Qsys InterconnectAltera Corporation

Send Feedback

QII51021
Timing Adapter8-26 2013.11.4

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Qsys%20Interconnect%20(QII51021%202013.11.4)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Table 8-8: Timing Adapter Adaptations

AdaptationCondition

In this case, the source can respond to backpres-
sure, but the sink never needs to apply it. The
ready input to the source interface is connected
directly to logical 1.

The source has ready, but the sink does not.

The sinkmay applybackpressure, but the source
is unable to respond to it. There is no logic that the
adapter can insert that prevents data loss when the
source asserts valid but the sink is not ready. The
adapter provides simulation time error messages and
an error indication if data is ever lost. The user is
presented with a warning, and the connection is
allowed.

The source does not have ready, but the sink does.

The source responds to ready assertion or deasser-
tion faster than the sink requires it. A number of
pipeline stages equal to the difference in ready latency
are inserted in the ready path from the sink back to
the source, causing the source and the sink to see the
same cycles as ready cycles.

The source and sink both support backpressure, but
the sink’s ready latency is greater than the source's.

The source cannot respond to ready assertion or
deassertion in time to satisfy the sink. A buffer whose
depth is equal to the difference in ready latency is
inserted to compensate for the source’s inability to
respond in time.

The source and sink both support backpressure, but
the sink’s ready latency is less than the source's.

Channel Adapter
The channel adapter provides adaptations between interfaces that have different support for the channel
signal, the maximum number of channels supported, or channel-related parameters.

Table 8-9: Channel Adapter Adaptations

Description of Adapter LogicCondition

You are given a warning at generation time. The
adapter provides a simulation error and signals an
error for data for any channel from the source other
than 0.

The source uses channels, but the sink does not.

You are given a warning, and the channel inputs to
the sink are all tied to a logical 0.

The sink has channel, but the source does not.

The source's channel is connected to the sink's channel
unchanged. If the sink's channel signal has more bits,
the higher bits are tied to a logical 0.

The source and sink both support channels, and the
source's maximum number of channels is less than
the sink's.

Altera CorporationQsys Interconnect

Send Feedback

8-27Channel Adapter
QII51021
2013.11.4

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Qsys%20Interconnect%20(QII51021%202013.11.4)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Description of Adapter LogicCondition

The source’s channel is connected to the sink’s
channel unchanged. If the source’s channel signal has
more bits, the higher bits are left unconnected. You
are given a warning that channel information may be
lost.

An adapter provides a simulation error message and
an error indication if the value of channel from the
source is greater than the sink's maximum number of
channels. In addition, the valid signal to the sink
is deasserted so that the sink never sees data for
channels that are out of range.

The source and sink both support channels, but the
source'smaximumnumber of channels is greater than
the sink's.

Error Adapter
The error adapter ensures that per-bit-error information provided by the source interface is correctly
connected to the sink interface’s input error signal. Matching error conditions processed by the source and
sink are connected. If the source has an error condition that is not supported by the sink, the signal is left
unconnected; the adapter provides a simulation error message and an error indication if this error is ever
asserted. If the sink has an error condition that is not supported by the source, the sink’s input is tied to zero.

Input Interface Parameters

Table 8-10 describes the available options for the Avalon-ST error adapter on the Parameter Settings page
of the configuration page.

Table 8-10: Input Interface Parameters

Input Interface Parameters

Type the width of the error signal. Valid values are 0–31 bits. Type 0
if the error signal is not used.

Error Signal Width (bits)

Type the description for each of the error bits. Separate the description
fields by commas. For a connection to be made, the description of the
error bits in the source and sink must match.

Error Signal Description

Output Interface Parameters

Table 8-11 describes the available options for the error adapter on the Parameter Settings page of the
configuration page.

Table 8-11: Output Interface Parameters

Output Interface Parameters

Type the width of the error signal. Valid values are 0–31
bits. Type 0 if you do not need to send error values.

Error Signal Width (bits)

Error Signal Width (bits)

Qsys InterconnectAltera Corporation

Send Feedback

QII51021
Error Adapter8-28 2013.11.4

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Qsys%20Interconnect%20(QII51021%202013.11.4)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Output Interface Parameters

Type the description for each of the error bits. Separate the
description fields by commas. For a connection to be made,
the description of the error bits in the source and sink must
match. Refer to “C**Error Adapter” on page 9–27 for the
adaptations that can be made when the bits do not match.

Error Signal Width (bits)

Error Signal Description

Common to Input and Output Interfaces

Table 8-12 describes the available options for the Avalon-ST error adapter on the Parameter Settings page
of the configuration wizard.

Table 8-12: Common to Input and Output Interfaces

Common to Input and Output Interfaces

Turn on this option to add the backpressure functionality to
the interface.

Support Backpressurewith the ready signal

When the ready signal is used, the value for ready_
latency indicates the number of cycles between when the
ready signal is asserted and when valid data is driven.

Ready Latency

Type the width of the channel signal. A channel width of 4
allows up to 16 channels. The maximum width of the
channel signal is eight bits. Set to 0 if channels are not used.

Channel Signal Width (bits)

Type the maximum number of channels that the interface
supports. Valid values are 0–255.

Max Channel

Type the number of bits per symbol.Data Bits Per Symbol

Type the number of symbols per active transfer.Data Symbols Per Beat

Turn this option on if the interfaces supports a packet protocol,
including thestartofpacket,endofpacket andempty
signals.

Include Packet Support

Turn this option on if the cycle that includes the
endofpacket signal can include empty symbols. This signal
is not necessary if the number of symbols per beat is 1.

Include Empty Signal

Interrupt Interfaces
Using individual requests, the interrupt logic can process up to 32 IRQ inputs connected to each interrupt
receiver. With this logic, the interrupt sender connected to interrupt receiver_0 is the highest priority
with sequential receivers being successively lower priority. You can redefine the priority of interrupt senders
by instantiating the IRQ mapper component. For more information refer to IRQ Mapper.

Altera CorporationQsys Interconnect

Send Feedback

8-29Common to Input and Output Interfaces
QII51021
2013.11.4

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Qsys%20Interconnect%20(QII51021%202013.11.4)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

You can define the interrupt sender interface as asynchronous with no associated clock or reset interfaces.
You can also define the interrupt receiver interface as asynchronous with no associated clock or reset
interfaces. As a result, the receiver does its own synchronization internally. Qsys does not insert interrupt
synchronizers for such receivers.

For clock crossing adaption on interrupts, Qsys inserts a synchronizer, which is clocked with the interrupt
end point interface clockwhen the corresponding starting point interrupt interface has no clock or a different
clock (than the end point). Qsys inserts the adapter if there is any kind of mismatch between the start and
end points. Qsys does not insert the adapter if the interrupt receiver does not have an associated clock.

Related Information
IRQ Mapper on page 8-31

Individual Requests IRQ Scheme
In the individual requests IRQ scheme,Qsys interconnect passes IRQs directly from the sender to the receiver,
without making assumptions about IRQ priority. In the event that multiple senders assert their IRQs
simultaneously, the receiver logic determineswhich IRQhas highest priority, and then responds appropriately.

Using individual requests, the interrupt controller can process up to 32 IRQ inputs. The interrupt controller
generates a 32-bit signalirq[31:0] to the receiver, andmaps slave IRQ signals to the bits ofirq[31:0].
Any unassigned bits of irq[31:0] are disabled.

Figure 8-26 shows an example of the interrupt controllermapping the IRQs on four senders toirq[31:0]
on a receiver.

Figure 8-26: IRQ Mapping Using Software Priority

irq0
irq1
irq2

irq4
irq5
irq6

irq3

irq31

Sender
1

Sender
2

Sender
3

Sender
4

Interrupt
Controller

irq

irq

irq

irq

Receiver

Assigning IRQs in Qsys
You assign IRQ connections on the SystemContents tab of Qsys. After adding all components to the system,
you connect interrupt senders and receivers. You can use the IRQ column to specify an IRQ number with
respect to each receiver, or to specify a receiver's IRQ as unconnected. Qsys uses the following three
components to implement interrupt handling: IRQ Bridge, IRQ Mapper, and IRQ Clock Crosser.

IRQ Bridge
The IRQ Bridge allows you to route interrupt wires between Qsys subsystems. These interrupts are routed
to the IRQ receiver bridge in the CPU Subsystem.

Qsys InterconnectAltera Corporation

Send Feedback

QII51021
Individual Requests IRQ Scheme8-30 2013.11.4

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Qsys%20Interconnect%20(QII51021%202013.11.4)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Nios II BSP tools do not fully support the IRQ Bridge. Interrupts connected via an IRQ Bridge will
not appear in the generated system.h file.

Note:

In Figure 8-27, the Peripheral Subsystem has three interrupt senders that are exported to the top level of
the subsystem.

Figure 8-27: Qsys IRQ Bridge Application

3-bit bus

4-bit bus

IRQ Bridge

IR

IS

Interrupt
Sender 1

IS

Interrupt
Sender 2

IS

Interrupt
Sender 3

IS Interrupt
Sender 4

IS

export export export

export

IR

Nios II
Processor

CPU Subsystem

Peripheral Subsystem

Top-Level Qsys System

IS Interrupt Sender IR Interrupt Receiver

IRQ Mapper
Qsys inserts the IRQMapper automatically during generation. The IRQMapper converts individual interrupt
wires to a bus, and then maps the appropriate IRQ priority number onto the bus.

By default, the interrupt sender connected to the receiver0 interface of the IRQ mapper is the highest
priority, and sequential receivers are successively lower priority. You can modify the interrupt priority of
each IRQ wire by modifying the IRQ priority number in Qsys under the IRQ column. The modified priority
is reflected in the IRQ_MAP parameter for the auto-inserted IRQ Mapper.

Figure 8-28 shows the IRQ column inQsys and the default interrupt priority allocated for theCPU subsystem
shown in IRQ Bridge.

Altera CorporationQsys Interconnect

Send Feedback

8-31IRQ Mapper
QII51021
2013.11.4

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Qsys%20Interconnect%20(QII51021%202013.11.4)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Figure 8-28: IRQ Column in Qsys

IRQ Clock Crosser
The IRQ Clock Crosser synchronizes interrupt senders and receivers that are in different clock domains.
To use this component, connect the clocks for both the interrupt sender and receiver, and for both the
interrupt sender and receiver interfaces. Qsys automatically inserts this component when it is required.

Clock Interfaces
Clock interfaces define the clocks used by a component. Components can have clock inputs, clock outputs,
or both. You can use the Clock Settings tab to define external clock sources, for example an oscillator on
your board.

Qsys InterconnectAltera Corporation

Send Feedback

QII51021
IRQ Clock Crosser8-32 2013.11.4

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Qsys%20Interconnect%20(QII51021%202013.11.4)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

The Clock Source parameters allows you to set the following options:

• Clock frequency—The frequency of the output clock from this clock source.
• Clock frequency is known— When turned on, the clock frequency is known. When turned off, the

frequency is set from outside the system.

If turned off, system generation may fail because the components do not receive the necessary
clock information. For best results, turn this option on before system generation.

Note:

• Reset synchronous edges

• None—The reset is asserted and deasserted asynchronously. You can use this setting if you have
internal synchronization circuitry that matches the reset required for the IP in the system.

• Both—The reset is asserted and deasserted synchronously.
• Deassert—The reset is deasserted synchronously and asserted asynchronously.

For more information about synchronous design practices, refer to Recommended Design Practices

Related Information
Recommended Design Practices

(High Speed Serial Interface) HSSI Clock Interfaces
You can use HSSI Serial Clock and HSSI Bonded Clock interfaces in Qsys to enable high speed serial
connectivity between clocks that are used by certain IP protocols.

HSSI Serial Clock Interface
You can connect the HSSI Serial Clock interface with only similar type of interfaces, for example, you can
connect a HSSI Serial Clock Source interface to a HSSI Serial Clock Sink interface.

HSSI Serial Clock Source
The HSSI Serial Clock interface includes a source in the Start direction.

You can instantiate the HSSI Serial Clock Source interface in the _hw.tcl file as:

add_interface <name> hssi_serial_clock start

You can connect the HSSI Serial Clock Source to multiple HSSI Serial Clock Sinks because the HSSI Serial
Clock Source supports multiple fan-outs. This Interface has a single clk port role limited to a 1 bit width,
and a clockRate parameter, which is the frequency of the clock driven by the HSSI Serial Clock Source
interface.

An unconnected and unexported HSSI Serial Source is valid and does not generate error messages.

Table 8-13: HSSI Serial Clock Source Port Roles

DescriptionWidthDirectionName

A single bit wide port role,
which provides synchroniza-
tion for internal logic.

1 bitOutputclk

Altera CorporationQsys Interconnect

Send Feedback

8-33(High Speed Serial Interface) HSSI Clock Interfaces
QII51021
2013.11.4

http://www.altera.com/literature/hb/qts/qts_qii51006.pdf
mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Qsys%20Interconnect%20(QII51021%202013.11.4)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Table 8-14: HSSI Serial Clock Source Parameters

DescriptionDerivedDefaultTypeName

The frequency of the clock
driven bythe HSSI Serial
Clock Source interface.

No0longclockRate

HSSI Serial Clock Sink
The HSSI Serial Clock interface includes a sink in the End direction.

You can instantiate the HSSI Serial Clock Sink interface in the _hw.tcl file as:

add_interface <name> hssi_serial_clock end

You can connect the HSSI Serial Clock Sink interface to a single HSSI Serial Clock Source interface; you
cannot connect it to multiple sources. This Interface has a single clk port role limited to a 1 bit width, and
a clockRate parameter, which is the frequency of the clock driven by the HSSI Serial Clock Source interface.

An unconnected and unexported HSSI Serial Sink is invalid and generates error messages.

Table 8-15: HSSI Serial Clock Sink Port Roles

DescriptionWidthDirectionName

A single bit wide port role,
which provides synchroniza-
tion for internal logic

1Outputclk

Table 8-16: HSSI Serial Clock Sink Parameters

DescriptionDerivedDefaultTypeName

The frequency of the clock
driven bythe HSSI Serial
Clock Source interface.

When you specify a
clockRate greater than 0, then
this interface can be driven
only at that rate.

No0longclockRate

HSSI Serial Clock Connection
The HSSI Serial Clock Connection defines a connection between a HSSI Serial Clock Source connection
point, and a HSSI Serial Clock Sink connection point.

A valid HSSI Serial Clock Connection exists when all of the following criteria are satisfied. If the following
criteria are not satisfied, Qsys generates error messages and the connection is prohibited.

Qsys InterconnectAltera Corporation

Send Feedback

QII51021
HSSI Serial Clock Sink8-34 2013.11.4

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Qsys%20Interconnect%20(QII51021%202013.11.4)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

• The starting connection point is an HSSI Serial Clock Source with a single port role clk and maximum
1 bit in width. The direction of the starting port is Output.

• The ending connection point is an HSSI Serial Clock Sink with a single port role clk, and maximum 1
bit in width. The direction of the ending port is Input.

• If the parameter, clockRate of the HSSI Serial Clock Sink is greater than 0, the connection is only valid
if the clockRate of the HSSI Serial Clock Source is the same as the clockRate of the HSSI Serial Clock
Sink.

HSSI Serial Clock Example

Example 8-1 shows connections that you canmake to declare theHSSI Serial Clock interfaces in the _hw.tcl.

Example 8-1: HSSI Serial Clock Interface Example

package require -exact qsys 13.1

set_module_property name hssi_serial_component
set_module_property ELABORATION_CALLBACK elaborate

add_fileset QUARTUS_SYNTH QUARTUS_SYNTH generate
add_fileset SIM_VERILOG SIM_VERILOG generate
add_fileset SIM_VHDL SIM_VHDL generate

set_fileset_property QUARTUS_SYNTH TOP_LEVEL \
"hssi_serial_component"

set_fileset_property SIM_VERILOG TOP_LEVEL "hssi_serial_component"
set_fileset_property SIM_VHDL TOP_LEVEL "hssi_serial_component"

proc elaborate {} {
 # declaring HSSI Serial Clock Source
 add_interface my_clock_start hssi_serial_clock start
 set_interface_property my_clock_start ENABLED true

 add_interface_port my_clock_start hssi_serial_clock_port_out \

 clk Output 1

 # declaring HSSI Serial Clock Sink
 add_interface my_clock_end hssi_serial_clock end
 set_interface_property my_clock_end ENABLED true

 add_interface_port my_clock_end hssi_serial_clock_port_in clk
\
 Input 1
}

proc generate { output_name } {

 add_fileset_file hssi_serial_component.v VERILOG PATH \
 "hssi_serial_component.v"
}

Altera CorporationQsys Interconnect

Send Feedback

8-35HSSI Serial Clock Example
QII51021
2013.11.4

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Qsys%20Interconnect%20(QII51021%202013.11.4)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

If you use the components inExample 8-1 in a hierarchy, for example, instantiated in a composed component,
you can declare the connections as shown in Example 8-2.

Example 8-2: HSSI Serial Clock Instantiated in a Composed Component

add_instance myinst1 hssi_serial_component
add_instance myinst2 hssi_serial_component
add connection from source of myinst1 to sink of myinst2

add_connection myinst1.my_clock_start myinst2.my_clock_end \
hssi_serial_clock

adding connection from source of myinst2 to sink of myinst1

add_connection myinst2.my_clock_start myinst2.my_clock_end \
hssi_serial_clock

HSSI Bonded Clock Interface
You can connect the HSSI Bonded Clock interface with only similar type of Interfaces, for example, you can
connect a HSSI Bonded Clock Source interface to a HSSI Bonded Clock Sink interface.

HSSI Bonded Clock Source
The HSSI Bonded Clock interface includes a source in the Start direction.

You can instantiate the HSSI Bonded Clock Source interface in the _hw.tcl file as:

add_interface <name> hssi_bonded_clock start

You can connect the HSSI Bonded Clock Source to multiple HSSI Bonded Clock Sinks because the HSSI
Serial Clock Source supports multiple fanouts. This Interface has a single clk port role limited to a width
range of 1 to 1024 bits. The HSSI Bonded Clock Source interface has two parameters: clockRate and
serialzationFactor. clockRate is the frequency of the clock driven by theHSSI BondedClock Source interface,
and the serializationFactor is the parallel data width that operates the HSSI TX serializer. The serialization
factor determines the required frequency and phases of the individual clocks within the HSSI Bonded Clock
interface

An unconnected and unexported HSSI Bonded Source is valid and does not generate error messages.

Table 8-17: HSSI Bonded Clock Source Port Roles

DescriptionWidthDirectionName

A multiple bit wide port role
which provides synchroniza-
tion for internal logic.

1 to 24 bitsOutputclk

Qsys InterconnectAltera Corporation

Send Feedback

QII51021
HSSI Bonded Clock Interface8-36 2013.11.4

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Qsys%20Interconnect%20(QII51021%202013.11.4)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Table 8-18: HSSI Bonded Clock Source Parameters

DescriptionDerivedDefaultTypeName

The frequency of the clock
driven bythe HSSI Serial
Clock Source interface.

No0longclockRate

The serialization factor is the
parallel data width that
operates the HSSI TX
serializer. The serialization
factor determines the
necessary frequency and
phases of the individual
clocks within the HSSI
Bonded Clock interface.

No0longserializationFactor

HSSI Bonded Clock Sink
The HSSI Bonded Clock interface includes a sink in the End direction.

You can instantiate the HSSI Bonded Clock Sink interface in the _hw.tcl file as:

add_interface <name> hssi_bonded_clock end

You can connect the HSSI Bonded Clock Sink interface to a single HSSI Bonded Clock Source interface; you
cannot connect it to multiple sources. This Interface has a single clk port role limited to a width range of 1
to 1024 bits. TheHSSI BondedClock Source interface has two parameters: clockRate and serialzationFactor.
clockRate is the frequency of the clock driven by the HSSI Bonded Clock Source interface, and the
serialization factor is the parallel data width that operates the HSSI TX serializer. The serialization factor
determines the required frequency and phases of the individual clockswithin theHSSI BondedClock interface

An unconnected and unexported HSSI Bonded Sink is invalid and generates error messages.

Table 8-19: HSSI Bonded Clock Source Port Roles

DescriptionWidthDirectionName

A multiple bit wide port role
which provides synchroniza-
tion for internal logic.

1 to 24 bitsOutputclk

Table 8-20: HSSI Bonded Clock Source Parameters

DescriptionDerivedDefaultTypeName

The frequency of the clock
driven bythe HSSI Serial
Clock Source interface.

No0longclockRate

Altera CorporationQsys Interconnect

Send Feedback

8-37HSSI Bonded Clock Sink
QII51021
2013.11.4

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Qsys%20Interconnect%20(QII51021%202013.11.4)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

DescriptionDerivedDefaultTypeName

The serialization factor is the
parallel data width that
operates the HSSI TX
serializer. The serialization
factor determines the
necessary frequency and
phases of the individual
clocks within the HSSI
Bonded Clock interface.

No0longserializationFactor

HSSI Bonded Clock Connection
TheHSSI BondedClockConnection defines a connection between aHSSI BondedClock Source connection
point, and a HSSI Bonded Clock Sink connection point.

A valid HSSI Bonded Clock Connection exists when all of the following criteria are satisfied. If the following
criteria are not satisfied, Qsys generates error messages and the connection is prohibited.

• The starting connection point is an HSSI Bonded Clock Source with a single port role clk with a width
range of 1 to 24 bits. The direction of the starting port is Output.

• The ending connection point is an HSSI Bonded Clock Sink with a single port role clkwith a width range
of 1 to 24 bits. The direction of the ending port is Input.

• The width of the starting connection point clk must be the same as the width of the ending connection
point.

• If the parameter, clockRate of the HSSI Bonded Clock Sink greater than 0, then the connection is only
valid if the clockRate of the HSSI Bonded Clock Source is same as the clockRate of the HSSI Bonded
Clock Sink.

• If the parameter, serializationFactor of the HSSI Bonded Clock Sink is greater than 0, Qsys generates a
warning if the serializationFactor of HSSI Bonded Clock Source is not same as the serializationFactor
of the HSSI Bonded Clock Sink.

HSSI Bonded Clock Example

Example 8-3 shows connections that you can make to declare the HSSI Bonded Clock interfaces in the
_hw.tcl file.

Example 8-3: HSSI Bonded Clock Interface Example

package require -exact qsys 13.1

set_module_property name hssi_bonded_component
set_module_property ELABORATION_CALLBACK elaborate

add_fileset synthesis QUARTUS_SYNTH generate
add_fileset verilog_simulation SIM_VERILOG generate

set_fileset_property synthesis TOP_LEVEL "hssi_bonded_component"

Qsys InterconnectAltera Corporation

Send Feedback

QII51021
HSSI Bonded Clock Connection8-38 2013.11.4

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Qsys%20Interconnect%20(QII51021%202013.11.4)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

set_fileset_property verilog_simulation TOP_LEVEL \
"hssi_bonded_component"

proc elaborate {} {
 add_interface my_clock_start hssi_bonded_clock start
 set_interface_property my_clock_start ENABLED true

 add_interface_port my_clock_start hssi_bonded_clock_port_out \

 clk Output 1024

 add_interface my_clock_end hssi_bonded_clock end
 set_interface_property my_clock_end ENABLED true

 add_interface_port my_clock_end hssi_bonded_clock_port_in \
 clk Input 1024
}

proc generate { output_name } {
 add_fileset_file hssi_bonded_component.v VERILOG PATH \
 "hssi_bonded_component.v"}

If you use the components inExample 8-3 in a hierarchy, for example, instantiated in a composed component,
you can declare the connections as shown in Example 8-4.

Example 8-4: HSII Bonded Clock Instantiated in a Composed Component

add_instance myinst1 hssi_bonded_component
add_instance myinst2 hssi_bonded_component
add connection from source of myinst1 to sink of myinst2

add_connection myinst1.my_clock_start myinst2.my_clock_end \
hssi_bonded_clock

adding connection from source of myinst2 to sink of myinst1

add_connection myinst2.my_clock_start myinst2.my_clock_end \
hssi_bonded_clock

Reset Interfaces
Reset interfaces provide both soft and hard reset functionality. Soft reset logic typically re-initializes registers
and memories without powering down the device. Hard reset logic initializes the device after power-on. You
can define separate reset sources for each clock domain, a single reset source for all clocks, or any combination
in between.

You can choose to create a single global reset domain by selecting Create Global Reset Network on the
System menu. If your design requires more than one reset domain, you can implement your own reset logic

Altera CorporationQsys Interconnect

Send Feedback

8-39Reset Interfaces
QII51021
2013.11.4

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Qsys%20Interconnect%20(QII51021%202013.11.4)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

and connectivity. The library includes a reset controller, reset sequencer, and a reset bridge to implement
the reset functionality. You can also design your own reset logic.

If you design your own reset circuitry you must carefully consider situations which might result in
system lockup. For example, if anAvalon-MMslave is reset in themiddle of a transaction, theAvalon-
MM master might wait forever.

Note:

Single Global Reset Signal Implemented by Qsys
If you select Create Global Reset Network on the System menu, the Qsys interconnect creates a global reset
bus. All of the reset requests are ORed together, synchronized to each clock domain, and fed to the reset
inputs. The duration of the reset signal is at least one clock period.

The Qsys interconnect inserts the system-wide reset under the following conditions:

• The global reset input to the Qsys system is asserted.
• Any component asserts its resetrequest signal.

Reset Controller
Qsys automatically inserts a reset controller block if the input reset source does not have a reset request, but
the connected reset sink requires a reset request.

The Reset Controller has the following parameters that you can specify to customize its behavior:

• Number of inputs— Indicates the number of individual reset interfaces the controller ORs to create a
signal reset output.

• Output reset synchronous edges—Specifies the level of synchronization. You can select one the following
options:

• None—The reset is asserted and deasserted asynchronously. You can use this setting if you have
designed internal synchronization circuitry that matches the reset style required for the IP in the
system.

• Both—The reset is asserted and deasserted synchronously.
• Deassert—The reset is deasserted synchronously and asserted asynchronously.

• Synchronization depth—Specifies the number of register stages the synchronizer uses to eliminate the
propagation of metastable events.

• Reset request—Enables reset request generation, which is an early signal that is asserted before reset
assertion. The reset request is used by blocks that require protection from asynchronous inputs, for
example, M20K blocks.

Qsys automatically inserts reset synchronizers under the following conditions:

• More than one reset source is connected to a reset sink
• There is amismatch between the reset source’s synchronous edges and the reset sinks’ synchronous edges

Reset Bridge
The Reset Bridge allows you to use a reset signal in two or more subsystems of your Qsys system. You can
connect one reset source to local components, and export one or more to other subsystems, as required.

Qsys InterconnectAltera Corporation

Send Feedback

QII51021
Single Global Reset Signal Implemented by Qsys8-40 2013.11.4

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Qsys%20Interconnect%20(QII51021%202013.11.4)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

The Reset Bridge parameters are used to describe the incoming reset and include the following options:

• Active low reset—When turned on, reset is asserted low.
• Synchronous edges—Specifies the level of synchronization and includes the following options:

• None—The reset is asserted and deasserted asynchronously. Use this setting if you have internal
synchronization circuitry.

• Both—The reset is asserted and deasserted synchronously.
• Deassert—The reset is deasserted synchronously, and asserted asynchronously.

• Number of reset outputs—The number of reset interfaces that are exported.

Qsys supports multiple reset sink connections to a single reset source interface. However, there are
situations in composed systems where an internally generated reset must be exported from the

Note:

composed system in addition to being used to connect internal components. In this situation, you
must declare one reset output interface as an export, and use another reset output to connect internal
components.

Reset Sequencer
The reset sequencer allows you to control the assertion and deassertion sequence for Qsys system resets.

You can connect multiple reset sources to the reset sequencer, and then connect the output of the reset
sequencer to components in the system. Figure 8-29 shows the elements and flow of the reset sequencer.

Figure 8-29: Reset Sequencer Top-Level Block Diagram

CSR

Sync
Sync
Sync
Sync

Reset
Controller

Main
FSM

ASRT SEQ

DSRT SEQ
RESET_OUT

Deglitch
Deglitch
Deglitch
Deglitch

Avalon
Interface

reset_in0
reset_in1
reset_in2
reset_inM

reset_dsrt_qual0
reset_dsrt_qual1
reset_dsrt_qual2
reset_dsrt_qualN

reset_in_sync

assrt_en

reset_logging
CSR_CONTROL(csr_*)
CSR_MASK/PVR

enable
done
enable
done

set_reset[N:0]

dr_reset[N:0]

reset_out0
reset_out1
reset_out2
reset_outN

Reset Sequencer

Parameter:
DSRT_QUALCNT_(0:N)

Parameter:
MIN_ASRT_TIME

Parameter:
ASRT_DELAY(0:N)

Parameter:
DSRT_DELAY(0:N)
ENABLE_DEASSERTION_INPUT_QUAL(0:N)

Reset Controller—Reused reset controller block. It synchronizes the reset inputs into one and feed into the main FSM of the sequencer
block.
Sync—Synchronization block (double flip-flop).
Deglitch—Deglitch block. This block waits for a signal to be at a level for X clocks before propagating the input to the output.
CSR—This block contains the CSR Avalon interface and related CSR register and control block in the sequencer.
Main FSM —Main sequencer. This block determines when assertion/deassertion and assertion hold timing occurs.
[A/D]SRT SEQ—Generic sequencer block that sequences out assertion/deassertion of reset from 0:N. The block has multiple
counters that saturate upon reaching count.
RESET_OUT—Controls the end output via:
– Set/clear from the ASRT_SEQ/DSRT_SEQ.
– Masking/forcing from CSR controls.
– Remap of numbering (parameterization).

Altera CorporationQsys Interconnect

Send Feedback

8-41Reset Sequencer
QII51021
2013.11.4

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Qsys%20Interconnect%20(QII51021%202013.11.4)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Reset Sequencer Parameters

The following parameters are available for customizing the Reset Sequencer:

DescriptionParameter

Sets the number of output resets to be sequenced, which is the
number of output reset signals defined in the component with a
range of 2 to 10.

Number of reset outputs

Sets the number of input reset signals to be sequenced, which is the
number of input reset signals defined in the component with a range
of 1 to 10.

Number of reset inputs

Specifies the minimum assertion cycles between the assertion of the
last sequenced reset, and the de-assertion of the first sequenced reset.
The range is 0 to 1023.

Minimum reset assertion time

Enables CSR functionality of the Reset Sequencer through anAvalon
interface.

Enable Reset Sequencer CSR

Lists the reset output signals. Set the parameters in the other
parameter table columns for each reset signal listed.

reset_out#

Determines the order of reset assertion. Enter the values 1, 2, 3, etc.
to specify the required non-overlapping assertion order. This value
determines the ASRT_REMAP value in the component HDL.

ASRT Seq#

Number of cycles to wait before assertion of the reset. The value set
here corresponds to theASRT_DELAY value in the componentHDL
(as indicated Figure 8-29). The range is 0 to1023.

ASRT Cycle#

Determines the reset order of reset de-assertion. Enter the values 1,
2, 3, etc .to specify the required non-overlapping de-assertion order.
This value determines the DSRT_REMAP value in the component
HDL.

DSRT Seq#

Number of cycles to wait before de-asserting or de-glitching the
reset. If the USE_DRST_QUAL parameter is set to 0, specifies the
number of cycles towait before de-asserting the reset. IfUSE_DSRT_
QUAL is set to1, specifies the number of cycles to deglitch the input
reset_dsrt_qual signal. This value determines either the
DSRT_DELAY, or the DSRT_QUALCNT value in the component
HDL (as indicated Figure 8-29) depending on the USE_DSRT_
QUAL parameter setting. The range is 0 to 1023.

DSRT Cycle#/Deglitch#

If you set USE_DSRT_QUAL to 1 , the de-assertion sequence waits
for an external input signal (shown as reset_dsrt_qualN in
Figure 8-29) for sequence qualification instead of waiting for a fixed
delay count. To use a fixed delay count for de-assertion, set this
parameter to 0.

USE_DSRT_QUAL

Below the parameter settings table, the Parameter Editor displays the expected Assertion Sequence
and De-assertion Sequence based on the current settings in the table.

Note:

Qsys InterconnectAltera Corporation

Send Feedback

QII51021
Reset Sequencer Parameters8-42 2013.11.4

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Qsys%20Interconnect%20(QII51021%202013.11.4)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Reset Sequencing Timing Diagrams

Figure 8-30 and Figure 8-31 are examples of generated sequenced timing diagrams.

Figure 8-30: Basic Sequencing

Figure 8-31: Sequencing with USE_DSRT_QUAL Set

Altera CorporationQsys Interconnect

Send Feedback

8-43Reset Sequencing Timing Diagrams
QII51021
2013.11.4

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Qsys%20Interconnect%20(QII51021%202013.11.4)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Reset Sequencer CSR Registers

The CSR registers on the reset sequencer provide the following functionality:

• Supports reset logging

• Ability to identify which reset is asserted.
• Ability to determine whether any reset is currently active.

• Supports software triggered resets

• Ability to generate reset by writing to the register.
• Ability to disable assertion or de-assertion sequence.

• Supports software sequenced reset

• Ability for the software to fully control the assertion/de-assertion sequence by writing to registers and
stepping through the sequence.

• Support reset override

• Ability to assert a particular component reset through software.

Reset Sequencer Status Register Offset 0x00
The Status register contains status bits that indicate the sources of resets that have caused a reset.

You can clear bits by writing 1 to the bit location. The Reset Sequencer ignores writes to bits with a value of
0. If the sequencer is reset (power-on-reset), all bits are cleared, except the power on reset bit.

Refer to RW1C in Table 8-21.Note:

Table 8-21: Values for the Status Register at Offset 0x00

DescriptionDefaultAttributeBit

Reset Active—Indicates that the sequencer is currently active in reset sequence
(assertion or de-assertion).

0RO31

ResetAsserted andwaiting for SWtoproceed:—Setwhen there is an active reset
assertion, and the next sequence is waiting for the software to proceed.

Only valid when the Enable SW sequenced reset entry option is turned on.

0RW1C30

Reset De-asserted and waiting for SW to proceed:—Set when there is an active
reset de-assertion, and the next sequence is waiting for the software to proceed.

Only valid when the Enable SW sequenced reset bring up option is turned on.

0RW1C29

Reserved.0RO28:26

Reset de-assertion input qualification signal reset_dsrt_qual [9:0]
status—Indicates that the reset de-assertion's input signal qualification signal is
set. This bit is set on the detection of assertion of the signal.

0RW1C25:16

Reserved.0RO15:12

Qsys InterconnectAltera Corporation

Send Feedback

QII51021
Reset Sequencer CSR Registers8-44 2013.11.4

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Qsys%20Interconnect%20(QII51021%202013.11.4)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

DescriptionDefaultAttributeBit

reset_in9 was triggered—Indicates that resetin9 triggered the reset. Cleared
by software by writing 1 to this bit location.

0RW1C11

reset_in8was triggered—Indicates thatreset_in8 triggered the reset. Cleared
by software by writing a1 to this bit location.

0RW1C10

reset_in7was triggered—Indicates thatreset_in7 triggered the reset. Cleared
by software by writing 1 to this bit location.

0RW1C9

reset_in6was triggered—Indicates thatreset_in6 triggered the reset. Cleared
by software by writing 1 to this bit location.

0RW1C8

reset_in5was triggered—Indicates thatreset_in5 triggered the reset. Cleared
by software by writing 1 to this bit location.

0RW1C7

reset_in4was triggered—Indicates thatreset_in4 triggered the reset. Cleared
by software by writing 1 to this bit location.

0RW1C6

reset_in3was triggered—IIndicates thatreset_in3 triggered the reset. Cleared
by software by writing 1 to this bit location.

0RW1C5

reset_in2was triggered—Indicates thatreset_in2 triggered the reset. Cleared
by software by writing 1 to this bit location.

0RW1C4

reset_in1was triggered—Indicates thatreset_in1 triggered the reset. Cleared
by software by writing 1 to this bit location.

0RW1C3

reset_in0 was triggered—Indicates that reset_in0 triggered. Cleared by software
by writing 1 to this bit location.

0RW1C2

Software triggered reset—Indicates that the software triggered reset is set by the
software, and triggering a reset.

0RW1C1

Power-On-Reset was triggered—Asserted whenever the reset to the sequencer
is triggered. This bit is NOT reset when sequencer is reset. Cleared by software
by writing 1 to this bit location.

0RW1C0

Reset Sequencer Interrupt Enable Register Offset 0x04
The Interrupt Enable register contains the interrupt enable bit that you can use to enable any event triggering
the IRQ of the reset sequencer.

Table 8-22: Values for the Interrupt Enable Register at Offset 0x04

DescriptionDefaultAttributeBit

Reserved.0RO31

Interrupt on Reset Asserted and waiting for SW to proceed enable. When set,
the IRQ is set when the sequencer is waiting for the software to proceed in an
assertion sequence.

0RW30

Altera CorporationQsys Interconnect

Send Feedback

8-45Reset Sequencer Interrupt Enable Register Offset 0x04
QII51021
2013.11.4

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Qsys%20Interconnect%20(QII51021%202013.11.4)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

DescriptionDefaultAttributeBit

Interrupt on Reset De-asserted and waiting for SW to proceed enable. When
set, the IRQ is set when the sequencer is waiting for the software to proceed in a
de-assertion sequence.

0RW29

Reserved.0RO28:26

Interrupt on Reset de-assertion input qualification signal reset_dsrt_qual_
[9:0] status— When set, the IRQ is set when the reset_dsrt_qual[9:0]
status bit (per bit enable) is set.

0RW25:16

Reserved.0RO15:12

Interrupt on reset_in9 Enable—When set, the IRQ is set when thereset_in9
trigger status bit is set.

0RW11

Interrupt on reset_in8 Enable—When set, the IRQ is set when thereset_in8
trigger status bit is set.

0RW10

Interrupt on reset_in7 Enable—When set, the IRQ is set when thereset_in7
trigger status bit is set.

0RW9

Interrupt on reset_in6 Enable—When set, the IRQ is set when thereset_in6
trigger status bit is set.

0RW8

Interrupt on reset_in5 Enable—When set, the IRQ is set when thereset_in5
trigger status bit is set.

0RW7

Interrupt on reset_in4 Enable—When set, the IRQ is set when thereset_in4
trigger status bit is set.

0RW6

Interrupt on reset_in3 Enable—When set, the IRQ is set when thereset_in3
trigger status bit is set.

0RW5

Interrupt on reset_in2 Enable—When set, the IRQ is set when thereset_in2
trigger status bit is set.

0RW4

Interrupt on reset_in1 Enable—When set, the IRQ is set when thereset_in1
trigger status bit is set.

0RW3

Interrupt on reset_in0 Enable—When set, the IRQ is set when thereset_in0
trigger status bit is set.

0RW2

Interrupt on Software triggered reset Enable—When set, the IRQ is set when
the software triggered reset status bit is set.

0RW1

Interrupt onPower-On-Reset Enable—When set, the IRQ is set when the power-
on-reset status bit is set.

0RW0

Reset Sequencer Control Register Offset 0x08
The Control register contains registers that you can use to control the reset sequencer.

Qsys InterconnectAltera Corporation

Send Feedback

QII51021
Reset Sequencer Control Register Offset 0x088-46 2013.11.4

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Qsys%20Interconnect%20(QII51021%202013.11.4)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Table 8-23: Values for the Control Register at Offset 0x08

DescriptionDefaultAttributeBit

Reserved.0RO31:3

Enable SW sequenced reset entry—Enable a software sequenced reset entry
sequence. Timer delays and input qualification are ignored, and only the software
can sequence the entry.

0RW2

Enable SW sequenced reset bring up—Enable a software sequenced reset bring
up sequence. Timer delays and input qualification are ignored, and only the
software can sequence the bring up.

0RW1

Initiate Reset Sequence—Reset Sequencer writes this bit to 1 a single time in
order to trigger the hardware sequenced warm reset. Reset Sequencer verifies that
Reset Active is 0 before setting this bit, and always reads the value 0. To monitor
this sequence, verify that Reset Active is asserted, and then subsequently de-
asserted.

0WO0

Reset Sequencer Software Sequenced Reset Entry Control Register Offset 0x0C
You can program the Reset Sequencer Software Sequenced Reset Entry Control register to control the reset
entry sequence of the sequencer.

When the corresponding enable bit is set, the sequencer stops when the desired reset asserts, and then sets
the Reset Asserted and waiting for SW to proceed bit. The Reset Sequencer proceeds only after the Reset
Asserted and waiting for SW to proceed bit is cleared.

Table 8-24: Values for the Reset Sequencer Software Sequenced Reset Entry Controls Register at Offset 0x0C

DescriptionDefaultAttributeBit

Reserved.0RO31:10

Per-reset SW sequenced reset entry enable—This is a per-bit enable for SW
sequenced reset entry. IfbitN of this register is set, the sequencer sets thebit30
of the status register when a resetN is asserted. It then waits for the bit30 of
the status register to clear before proceeding with the sequence. By default, all bits
are enabled (fully SW sequenced).

3FFRW9:0

Reset Sequencer Software Sequenced Reset Bring Up Control Register Offset 0x10
You can program the Software Sequenced Reset Bring Up Control register to control the reset bring up
sequence of the sequencer.

When the corresponding enable bit is set, the sequencer stops when the desired reset asserts, and then sets
the Reset De-asserted and waiting for SW to proceed bit. The Reset Sequencer proceeds only after the
Reset De-asserted and waiting for SW to proceed bit is cleared..

Altera CorporationQsys Interconnect

Send Feedback

8-47Reset Sequencer Software Sequenced Reset Entry Control Register Offset 0x0C
QII51021
2013.11.4

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Qsys%20Interconnect%20(QII51021%202013.11.4)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Table 8-25: Values for the Reset Sequencer Software Sequenced Bring Up Control Register at Offset 0x10

DescriptionDefaultAttributeBit

Reserved.0RO31:10

Per-reset SW sequenced reset entry enable—This is a per-bit enable for SW
sequenced reset bring up. IfbitN of this register is set, the sequencer setsbit29
of the status register when a resetN is asserted. It then waits for the bit29 of
the status register to clear before proceeding with the sequence. By default, all bits
are enabled (fully SW sequenced).

3FFRW9:0

Reset Sequencer Software Direct Controlled Resets Offset 0x14
You can write a bit to 1 to assert the reset_outN signal, and to 0 to de-assert the reset_outN signal.

Table 8-26: Values for the Software Direct Controlled Resets at Offset 0x14

DescriptionDefaultAttributeBit

Reserved.0RO31:26

Reset Overwrite Trigger Enable

—This is a per-bit control trigger bit for the overwrite value to take effect.

0WO25:16

Reserved.0RO15:10

reset_outNResetOverwriteValue—This is a per-bit control of thereset_out
bit. The Reset Sequencer can use this to forcefully drive the reset to a specific
value. A value of 1 sets the reset_out. A value of 0 clears the reset_out. A
write to this register only takes effect if the corresponding trigger bit in this register
is set.

0WO9:0

Reset Sequencer Software Reset Masking Offset 0x18
You can write a bit to 1 to assert the reset_outN signal, and to 0 to de-assert the reset_outN signal.

Table 8-27: Values for the Reset Sequencer Software Reset Masking at Offset 0x18

DescriptionDefaultAttributeBit

Reserved.0RO31:10

reset_outN "ResetMask Enable"—This is a per-bit control to mask the reset_
outN bit. The Software Reset Masking masks the reset bit from being asserted
during a reset assertion sequence. If the reset_out is already asserted, it does
not de-assert the reset.

0RW9:0

Qsys InterconnectAltera Corporation

Send Feedback

QII51021
Reset Sequencer Software Direct Controlled Resets Offset 0x148-48 2013.11.4

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Qsys%20Interconnect%20(QII51021%202013.11.4)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Reset Sequencer Software Flows

Reset Sequencer (Software-Triggered) Flow

The flow in Figure 8-32 occurs for a Software Triggered Reset Flow:

Figure 8-32: Reset Sequencer (Software-Triggered) Flow

Software verifies there is no active reset
by ensuring bit31 (reset active bit) in the
Status Resgister is not set.

Software clears all pending statuses by
writing all 1s to the Status Register.

Software initiates reset by writing a 1 to
bit 0 of the Control Register at offset 0x08.

Software waits for the IRQ.
IRQ

Asserted?
yes

no

Software checks bit 1 of the Status
egister. When set, it indicates that Reset
Sequencer has completed initiating a
rest throught he sequencer.

Software clears bit1 of the Status Register
by writing a 1 to the Status Register.

Reset Entry Flow

The following flow sequence occurs for a Reset Entry Flow:

• A reset is triggered either by the software, or when input resets to the Reset Sequencer are asserted.
• The IRQ is asserted, if the IRQ is enabled.
• Software reads the Status register to determine what reset was triggered.

Reset Bring-Up Flow

The following flow sequence occurs for a Reset Bring-Up Flow:

• When a reset source is de-asserted, or when the reset entry sequence has completed without any more
pending resets asserted, the bring-up flow is initiated.

• The IRQ is asserted, if the IRQ is enabled.
• Software reads the Status register to determine what reset was triggered.

Altera CorporationQsys Interconnect

Send Feedback

8-49Reset Sequencer Software Flows
QII51021
2013.11.4

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Qsys%20Interconnect%20(QII51021%202013.11.4)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Reset Entry (Software-Sequenced) Flow

The flow in Figure 8-33 occurs for a Reset Entry (SW Sequenced) Flow:

Figure 8-33: Reset Entry (Software-Sequenced) Flow

Software sets up which reset sequence it
wants to control (or all reset outputs) with
the Per-reset-software-sequenced
reset entry enable bit.

Software enables Interrupt on reset
asserted so that the Reset Sequencer
waits for software upon setting the IRQ
in the sequence.

Hardware sequences a reset where the
software has previously set up the Reset
Sequencer to wait for a software signal.

Reset Sequencer asserts an IRQ.

Software acknowledges that the reset is
asserted and bit 30 of the Status Register
is set.

Setup is complete.

Software clears Reset asserted and
waiting for software to proceed bit
30 of the Status Register and the Reset
Sequencer proceeds with the sequence.

The IRQ is set on the next Reset
Sequencer trigger point (if any).

Software sets the Enable software-
sequenced reset entry bit (bit 2
of the Control Register)

Software asserts reset.

Reset Bring-Up (Software-Sequenced) Flow

The sequence and flow is similar to the Reset Entry (SW Sequenced) flow, though, this flow uses the reset
bring-up registers/bits in place of the reset entry registers/bits.

Related Information
Reset Entry (Software-Sequenced) Flow on page 8-50

Qsys InterconnectAltera Corporation

Send Feedback

QII51021
Reset Entry (Software-Sequenced) Flow8-50 2013.11.4

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Qsys%20Interconnect%20(QII51021%202013.11.4)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Conduits
You can use the conduit interface type for interfaces that do not fit any of the other interface types, and to
group any arbitrary collection of signals. Like other interface types, you can export or connect conduit
interfaces. The PCI Express-to-Ethernet example in Creating a System with Qsys is an example of using a
conduit interface for export. You can declare an associated clock interface for conduit interfaces in the same
way as memory-mapped interfaces with the associatedClock.

To connect two conduit interfaces inside Qsys, the following conditions must be met:

• The interfaces must match exactly with the same signal roles and widths.
• The interfaces must be the opposite directions.
• Clocked conduit connections must have matching associatedClocks on each of their endpoint

interfaces.

To connect a conduit output to more than one input conduit interface, you can create a custom
component. The custom component could have one input that connects to two outputs, and you

Note:

can use this component between other conduits that you want to connect. For information about
the Avalon Conduit interface, refer to the Avalon Interface Specifications

Related Information
Avalon Interface Specifications

Creating a System with Qsys

Interconnect Pipelining
If you set the Limit interconnect pipeline stages to parameter to a value greater than 0 on the Project
Settings tab, Qsys automatically inserts Avalon-ST pipeline stages when you generate your design. The
pipeline stages increase the fMAX of your design by reducing the combinational logic depth. The cost is
additional latency and logic.

The insertion of pipeline stages depends upon the existence of certain interconnect components. For example,
in a single-slave system, no multiplexer exists; therefore multiplexer pipelining does not occur. In an extreme
case, of a single-master to single-slave system, no pipelining occurs, regardless of the value of Limit
interconnect pipeline stages to. Figure 8-34 shows the placement of up to four potential pipeline stages
inserted by Qsys before the input to the demultiplexer, at the output of the multiplexer, between the arbiter
and the multiplexer, and at the outputs of the demultiplexer.

Altera CorporationQsys Interconnect

Send Feedback

8-51Conduits
QII51021
2013.11.4

http://www.altera.com/literature/manual/mnl_avalon_spec.pdf
http://www.altera.com/literature/hb/qts/qsys_intro.pdf
mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Qsys%20Interconnect%20(QII51021%202013.11.4)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Figure 8-34: Pipeline Placement in Arbitration Logic

Logic included in the Avalon-ST Command Network

Arbiter
for

slave 0

Master 0

= Pipeline stage, masters 0-3

= Pipeline stage, selected request

Arbiter
for

slave 1

Arbiter
for

slave 2

Arbiter
for

slave 3

Master 1

Master 2

Master 3

Arbiter
for

slave 1

Command
packet for
master 0

Command
packet for
master 1

Command
packet for
master 2

Command
packet for
master 3

Selected request

Selected request

Selected request

Selected request

For more information about manually inserting and removing pipelines from your system, refer to
Creating a System With Qsys. Refer to Optimizing Qsys System Performance for more information
about pipelined Avalon-MM Interfaces.

Note:

Related Information
Creating a System With Qsys

Manually Controlling Pipelining in the Qsys Interconnect
The Memory-Mapped Interconnect tab allows you to manipulate pipleline connections in the Qsys
interconnect. You access the Memory-Mapped Interconnect tab by clicking Show System With Qsys
Interconnect command on the System menu.

To increase interconnect frequency, you should first try increasing the value of theLimit interconnect
pipeline stages to option on the Project Settings tab. You should only consider manually pipelining

Note:

the interconnect if changes to this option do not improve frequency, and you have tried all other

Qsys InterconnectAltera Corporation

Send Feedback

QII51021
Manually Controlling Pipelining in the Qsys Interconnect8-52 2013.11.4

http://www.altera.com/literature/hb/qts/qsys_intro.pdf
mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Qsys%20Interconnect%20(QII51021%202013.11.4)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

options to achieve timing closure, including the use of a bridge. Manually pipelining the interconnect
should only be applied to complete systems.

1. In the Project Settings tab, first try increasing the value of the Limit interconnect pipeline stages to
option until it no longer gives significant improvements in frequency, or until it causes unacceptable
effects on other parts of the system.

2. In the Quartus II software, compile your design and run timing analysis.
3. Identify the critical path through the interconnect and determine the approximate mid-point. The

following is an example of a timing report where the critical path is located in the interconnect.

2.800 0.000 cpu_instruction_master|out_shifter[63]|q
3.004 0.204 mm_domain_0|addr_router_001|Equal5~0|datac
3.246 0.242 mm_domain_0|addr_router_001|Equal5~0|combout
3.346 0.100 mm_domain_0|addr_router_001|Equal5~1|dataa
3.685 0.339 mm_domain_0|addr_router_001|Equal5~1|combout
4.153 0.468 mm_domain_0|addr_router_001|src_channel[5]~0|datad
4.373 0.220 mm_domain_0|addr_router_001|src_channel[5]~0|combout

4. System > Show System With Qsys Interconnect.
5. In the Memory-Mapped Interconnect tab, select the interconnect module that has the critical path. You

can determine the name of the interconnect module from the hierarchical node names in the timing
report.

6. Click Show Pipelinable Locations. Qsys display all pipelinable locations in the interconnect. You can
right-click a pipelinable location to open a menu that allows you to insert or remove a pipeline stage.

7. Find the pipelinable location that is closest to the mid-point of the critical path. The names of blocks in
the memory-mapped interconnect view correspond to the module instance names in the timing report.

8. Right-click the location where you want to insert a pipeline stage, and then click Insert Pipeline.
9. Regenerate the Qsys system, recompile the design, and then rerun timing analysis. If necessary, repeat

the manual pipelining process again until timing requirements are met.

Manual pipelining has the following limitations:

• If you make changes to your original system's connectivity after manually pipelining an interconnect,
your inserted pipelines may become invalid. Warning messages are displayed at generation time if invalid
pipeline stages are detected. You can remove invalid pipeline stages with the Remove Stale Pipelines
option button in the Memory-Mapped Interconnect tab. Altera recommends not making changes to
the system's connectivity after manual pipeline insertion.

• Review manually-inserted pipelines when upgrading to newer versions of Qsys. Manually-inserted
pipelines in one version of Qsys might not be valid in a future version.

Related Information

• Qsys System Design Components

AMBA AXI3 (version 1.0) Specification Support
Qsys allows connections between AXI3 components, AXI4 components, and Avalon memory-mapped
interface types with some unique or exceptional support.

Refer to the AMBA Protocol Specifications for AXI3 on the ARM website for more information.

Altera CorporationQsys Interconnect

Send Feedback

8-53AMBA AXI3 (version 1.0) Specification Support
QII51021
2013.11.4

http://www.altera.com/literature/hb/qts/qsys_system_components.pdf
mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Qsys%20Interconnect%20(QII51021%202013.11.4)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Related Information
AMBA Protocol Specifications

AXI3 Channels
Qsys 13.1 has the following support and restrictions for AXI3 channels.

Read and Write Address Channels
All signals are allowed with some limitations.

The following limitations are present in Qsys 13.1:

• Supports 64-bit addressing.
• ID width limited to 18-bits.
• HPS-FPGA master interface has a 12-bit ID.

Write Data, Write Response, and Read Data Channels
All signals are allowed with some limitations.

The following limitations are present in Qsys 13.1:

• Data widths limited to a maximum of 1024-bits
• Limited to a fixed byte width of 8-bits

Low Power Channel
Low power extensions are not supported in Qsys, version 13.1.

Cache Support
AWCACHE and ARCACHE are passed to an AXI slave unmodified.

Bufferable
Qsys interconnect treats AXI transactions as non-bufferable. All responses must come from the terminal
slave.

When connecting to Avalon-MM slaves, since they do not have write responses, the following exceptions
apply:

• For Avalon-MM slaves, the write response are generated by the slave agent once the write transaction is
accepted by the slave. The following limitation exists for an Avalon bridge:

• For an Avalon bridge, the response is generated before the write reaches the endpoint; users must be
aware of this limitation and avoid multiple paths past the bridge to any endpoint slave, or only perform
bufferable transactions to an Avalon bridge.

Cacheable (Modifiable)
Qsys interconnect acknowledges the cacheable (modifiable) attribute of AXI transactions.

Qsys InterconnectAltera Corporation

Send Feedback

QII51021
AXI3 Channels8-54 2013.11.4

http://infocenter.arm.com/help/topic/com.arm.doc.set.amba/index.html
mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Qsys%20Interconnect%20(QII51021%202013.11.4)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

It does not change the address, burst length, or burst size of non-modifiable transactions, with the following
exceptions:

• A wide transaction to a narrow slave is treated as modifiable because the size needs to be reduced.
• AXI read and write transactions might be treated as modifiable when the destination is an Avalon slave.

The AXI transaction might be split into multiple Avalon transactions if the slave is unable to accept the
transaction, which might occur because of burst lengths, narrow sizes, or burst types.

All other bits, for example, read allocate or write allocate, are ignored because the interconnect does not
perform caching. By default, transactions issued by Avalon masters are treated as non-bufferable and non-
cacheable, with the allocate bits tied low. Qsys provides compile-time options to control the cache behavior
of Avalon transactions on a per-master basis.

Security Support
TrustZone refers to the security extension of the ARM architecture, which includes the concept of "secure"
and "non-secure" transactions, and a protocol for processing between the designations. TrustZone security
support is a part of the Qsys 13.1 interconnect.

The interconnect passes the AWPROT and ARPROT signals to the endpoint slave without modification. It
does not use or modify the PROT bits.

Refer to Creating a System with Qsys for more information about secure systems and the TrustZone feature.

Related Information
Creating a System with Qsys

Atomic Accesses
Exclusive accesses are supported for AXI slaves by passing the lock, transaction ID, and response signals
from master to slave, with the limitation that slaves that do not reorder responses. Avalon slaves do not
support exclusive accesses, and always return OKAY as a response. Locked accesses are also not supported.

Response Signaling
Full response signaling is supported. Avalon slaves always return OKAY as a response.

Ordering Model
Qsys interconnect provides responses in the same order as the commands are issued.

To prevent reordering, for slaves that accept reordering depths greater than 0, Qsys does not transfer the
transaction ID from the master, but provides a constant transaction ID of 0. For slaves that do not reorder,
Qsys allows the transaction ID to be transferred to the slave. To avoid cyclic dependencies, Qsys supports a
single outstanding slave scheme for both reads and writes. Changing the targeted slave before all responses
have returned stalls the master, regardless of transaction ID.

AXI and Avalon Ordering
According to the AMBA Protocol Specifications, there is no ordering requirement between reads and writes.
However, Avalon has an implicit ordering model that requires transactions from a master to the same slave
to be in order. As a result, there is a potential read-after-write risk when Avalon masters transact to AXI
slaves. In response to this potential risk, Avalon interfaces provide a compile-time option to enforce strict
order. When turned on, the Avalon interface waits for outstanding write responses before issuing reads.

Altera CorporationQsys Interconnect

Send Feedback

8-55Security Support
QII51021
2013.11.4

http://www.altera.com/literature/hb/qts/qsys_intro.pdf
mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Qsys%20Interconnect%20(QII51021%202013.11.4)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Data Buses
Narrow bus transfers are supported. AXI write strobes can have any pattern that is compatible with the
address and size information. Altera recommends that transactions to Avalon slaves follow Avalon
byteenable limitations for maximum compatibility.

Byte0 is always bits[7:0] in the interconnect, followingAXI's andAvalon's byte (address) invariance
scheme.

Note:

Unaligned Address Commands
Unaligned address commands are commands with addresses that do not conform to the data width of a
slave. Since Avalon-MM slaves accept only aligned addresses, Qsys modifies unaligned commands from
AXI masters to the correct data width. Qsys must preserve commands issued by AXI masters when passing
the commands to AXI slaves.

Unaligned transfers are aligned if downsizing occurs. For example, when downsizing to a bus width
narrower than that required by the transaction size, AWSIZE or ARSIZE, the transaction must be
modified.

Note:

Avalon and AXI Transactions
Qsys 13.1 supports transaction between AXI and Avalon interfaces with some limitations.

Transaction Cannot Cross 4KB Boundaries
When an Avalon master issues a transaction to an AXI slave, the transaction cannot cross 4KB boundaries.
Non-bursting Avalon masters already follow this boundary restriction.

Handling Read Side Effects
Read side effects can occur when more bytes than necessary are read by the slave, and the unwanted data
that are read are later inaccessible on subsequent reads. For write commands, the correct byteenable paths
are asserted based on the size of the transactions. For read commands, narrow-sized bursts are broken up
into multiple non-bursting commands, and each command with the correct byteenable paths asserted.

Qsys always assumes that the byteenable is asserted based on the size of the command, not the address
of the command. For example, for a 32-bit AXI master that issues a read command with unaligned

Note:

address starting at address 0x01, and a burstcount of 2 to a 32-bit avalon slave, are treated as having
a starting address of 0x00.

AMBA AXI4 (version 2.0) Specification Support
Qsys allows connections betweenAXI4 components, andAXI3 andAvalonmemory-mapped interface types.
The sections that follow describe unique or exceptional AXI4 support in the Qsys software.

Refer to the AMBA Protocol Specifications for AXI4 on the ARM website for more information.

Related Information
AMBA Protocol Specifications

Qsys InterconnectAltera Corporation

Send Feedback

QII51021
Data Buses8-56 2013.11.4

http://infocenter.arm.com/help/topic/com.arm.doc.set.amba/index.html
mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Qsys%20Interconnect%20(QII51021%202013.11.4)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Burst Support
Qsys supports INCR bursts up to 256 beats. Qsys converts long bursts to multiple bursts in a packet with
each burst having a length less than or equal to MAX_BURST when going to AXI3 or Avalon slaves.

For narrow-sized transfers, bursts with Avalon slaves as destinations are shortened to multiple non-bursting
transactions in order to transmit the correct address to the slaves, since Avalon slaves always perform full-
sized datawidth transactions.

Bursts with AXI3 slaves as destinations are shortened to multiple bursts, with each burst length less than or
equal to 16. Bursts with AXI4 slaves as destinations are not shortened.

QoS
Qsys routes 4-bit QoS signals (Quality of Service Signaling) on the read and write address channels directly
from the master to the slave.

Transactions from AXI3 and Avalon masters have a default value of 4'b0000, which indicates that the
transactions are not part of the QoS flow. QoS values are not used for slaves that do not support QoS.

For Qsys 13.1, there are no programmable QoS registers or compile-time QoS options for a master that
overrides its real or default value.

Regions
For Qsys 13.1, there is no support for the optional regions feature. AXI4 slaves with AXREGION signals are
allowed. AXREGION signals are driven with the default value of 0x0, and are limited to one entry in a
master's address map.

Write Response Dependency
Write response dependency as specified in the AMBA Protocol Specifications for AXI4 is not supported.

Related Information
AMBA Protocol Specifications

AWCACHE and ARCACHE
For AXI4, Qsys meets the requirement for modifiable and non-modifiable transactions. The modifiable bit
refers to ARCACHE[1]and AWCACHE[1].

Width Adaptation and Data Packing in Qsys
Data packing applies only to systems where the data width of masters is less than the data width of slaves.

The following rules apply:

• Data packing is supported when masters and slaves are Avalon-MM.
• Data packing is not supported when any master or slave is an AXI3, AXI4, or APB component.

For example, for a read/write command with a 32-bit master connected to a 64-bit slave, and a transaction
of 2 burstcounts, Qsys sends 2 separate read/write commands to access the 64-bit data width of the slave.
Data packing is only supported if the system does not contain AXI3, AXI4, or APB masters or slaves.

Altera CorporationQsys Interconnect

Send Feedback

8-57Burst Support
QII51021
2013.11.4

http://infocenter.arm.com/help/topic/com.arm.doc.set.amba/index.html
mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Qsys%20Interconnect%20(QII51021%202013.11.4)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Ordering Model
Out of order support is not implemented in Qsys, version 13.1. Qsys processes AXI slaves as device
non-bufferable memory types.

The following describes the required behavior for the device non-bufferable memory type:

• Write response must be obtained from the final destination.
• Read data must be obtained from the final destination.
• Transaction characteristics must not be modified.
• Reads must not be pre-fetched. Writes must not be merged.
• Non-modifiable read and write transactions.

(AWCACHE[1] = 0 or ARCACHE[1] = 0) from the same ID to the same slave must remain ordered.
The interconnect always provides responses in the same order as the commands issued. Slaves that support
reordering provide a constant transaction ID to prevent reordering. AXI slaves that do not reorder are
provided with transaction IDs, which allows exclusive accesses to be used for such slaves.

Read and Write Allocate
Read and write allocate does not apply to Qsys interconnect, which does not have caching features, and
always receives responses from an endpoint.

Locked Transactions
Locked transactions are not supported for Qsys, version 13.1.

Memory Types
For AXI4, Qsys processes transactions as though the endpoint is a device memory type. For device memory
types, using non-bufferable transactions to force previous bufferable transactions to finish is irrelevant,
because Qsys interconnect always identifies transactions as being non-bufferable.

Mismatched Attributes
There are rules for how multiple masters issue cache values to a shared memory region. The interconnect
meets requirements as long as cache signals are not modified.

Signals
Qsys supports up to 64-bits for the BUSER, WUSER and RUSER sideband signals. AXI4 allows some signals
to be omitted from interfaces by aligning them with the default values as defined in the AMBA Protocol
Specifications on the ARM® website.

Related Information
AMBA Protocol Specifications

AMBA APB (version 1.0) Specification Support
AMBA APB provides a low-cost interface that is optimized for minimal power consumption and reduced
interface complexity. You can use AMBA APB to interface to peripherals which are low-bandwidth and do
not require the high performance of a pipelined bus interface. Signal transitions are sampled at the rising
edge of the clock to enable the integration of APB peripherals easily into any design flow.

Qsys InterconnectAltera Corporation

Send Feedback

QII51021
Ordering Model8-58 2013.11.4

http://infocenter.arm.com/help/topic/com.arm.doc.set.amba/index.html
mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Qsys%20Interconnect%20(QII51021%202013.11.4)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Qsys allows connections between APB components, and Avalon, AXI3, and AXI4 Avalon memory-mapped
interface types. The following sections describe unique or exceptional APB support in the Qsys software.

Refer to the AMBA Protocol Specifications for AXI4 on the ARM website for more information.

Related Information
AMBA Protocol Specifications

Bridges
With APB, you cannot use bridge components that use multiple PSELx in Qsys. As a workaround, you can
group PSELx, and then send the packet to the slave directly.

Altera recommends as an alternative that you instantiate the APB bridge and all the APB slaves in Qsys. You
should then connect the slave side of the bridge to any high speed interface and connect the master side of
the bridge to the APB slaves. Qsys creates the interconnect on either side of the APB bridge and creates only
one PSEL signal.

Alternatively, you can connect a bridge to the APB bus outside of Qsys. Use an Avalon/AXI bridge to export
the Avalon/AXI master to the top-level, and then connect this Avalon/AXI interface to the slave side of the
APB bridge. Alternatively, instantiate the APB bridge in Qsys and export APB master to the top- level, and
from there connect to APB bus outside of Qsys.

Burst Adaptation
APB is a non-bursting interface. Therefore, for any AXI or Avalon master with bursting support, a burst
adapter is inserted before the slave interface and the burst transaction is translated into a series of non-bursting
transactions before reaching the APB slave.

Width Adaptation
Qsys allows different data width connections with APB. When connecting a wider master to a narrower
APB slave, the width adapter converts the wider transactions to a narrower transaction to fit the APB slave
data width. APB does not support Write Strobe. Therefore, when connecting a narrower transaction to a
wider APB slave, the slave cannot determine which byte lane to write, so the data at the slave might be
overwritten or corrupted.

Error Response
Error responses are returned to the master. Qsys performs error mapping if the master is an AXI3 or AXI4
master, for example, RRESP/BRESP= SLVERR. For the case when the slave does not use SLVERR signal,
an OKAY response is sent back to master by default.

Document Revision History
Table 8-28 indicates edits made to the Qsys Interconnect content since its creation.

Altera CorporationQsys Interconnect

Send Feedback

8-59Bridges
QII51021
2013.11.4

http://infocenter.arm.com/help/topic/com.arm.doc.set.amba/index.html
mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Qsys%20Interconnect%20(QII51021%202013.11.4)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Table 8-28: Document Revision History

ChangesVersionDate

• HSSI clock support
• Reset Sequencer
• Interconnect pipelining

13.1.0November 2013

• Added AMBA APB support.
• Added auto-inserted Avalon-

ST adapters feature.
• MovedAddress SpanExtender

to the Qsys System Design
Components.

13.0.0May 2013

• Added AMBA AXI4 support.12.1.0November 2012

• Added AMBA AXI3 support.
• Added Avalon-ST.
• AddedAddress SpanExtender.

12.0.0June 2012

Template update.11.0.1November 2011

Removed beta status.11.0.0May 2011

Initial release.10.1.0December 2010

Related Information
Quartus II Handbook Archive

Qsys InterconnectAltera Corporation

Send Feedback

QII51021
Document Revision History8-60 2013.11.4

http://www.altera.com/literature/lit-qts_archive.jsp
mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Qsys%20Interconnect%20(QII51021%202013.11.4)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

QII51024-13.1.0

© 2013 Altera Corporation. All rights reserved. ALTERA, ARRI
are trademarks of Altera Corporation and registered in the U.S
trademarks or service marks are the property of their respectiv
semiconductor products to current specifications in accordance
services at any time without notice. Altera assumes no respons
described herein except as expressly agreed to in writing by Al
on any published information and before placing orders for pr

Quartus II Handbook Version 13.1
Volume 1: Design and Synthesis
November 2013

November 2013
QII51024-13.1.0
9. Optimizing Qsys System Performance
This chapter provides information on optimizing system interconnect performance
for designs generated by the Altera® Qsys system integration tool.

The foundation of any large system is the interconnect logic used to connect hardware
blocks or components. Creating interconnect logic is prone to errors, is time
consuming to write, and is difficult to modify when design requirements change. The
Qsys system integration tool addresses these issues by providing an automatically
generated and optimized interconnect designed to satisfy your system requirements.

Qsys supports standard Avalon®, AMBA® AXI3™ (version 1.0), AMBA AXI4™
(version 2.0), and AMBA APB™ 3 (version 1.0) interfaces. For more information about
Avalon and AMBA interfaces, refer to the Avalon Interface Specifications and the
AMBA Protocol Specifications on the ARM® website. AXI4-Lite is not supported.

f For more discussion about determining which interface standard you want to use to
create your Qsys design, refer to the Creating a System With Qsys chapter in volume 1
of the Quartus II Handbook.

Following the design practices recommended in this chapter may improve the clock
frequency, throughput, logic utilization, or power consumption of your Qsys design.
When you design a Qsys system, use your knowledge of your design intent and goals
to further optimize system performance beyond the automated optimization available
in Qsys.

The following sections describe Qsys support for optimization of interconnect logic:

■ “Designing with Avalon and AXI Interfaces” on page 9–1

■ “Using Hierarchy in Systems” on page 9–3

■ “Using Concurrency in Memory-Mapped Systems” on page 9–5

■ “Insert Pipeline Stages to Increase System Frequency” on page 9–10

■ “Using Avalon Bridges” on page 9–10

■ “Increasing Transfer Throughput” on page 9–21

■ “Reducing Logic Utilization” on page 9–28

■ “Reducing Power Consumption” on page 9–34

■ “Design Examples” on page 9–39

Designing with Avalon and AXI Interfaces
Qsys Avalon and AXI interconnect for memory-mapped interfaces is flexible, partial
crossbar logic that connects master and slave interfaces.
A, CYCLONE, HARDCOPY, MAX, MEGACORE, NIOS, QUARTUS and STRATIX words and logos
. Patent and Trademark Office and in other countries. All other words and logos identified as
e holders as described at www.altera.com/common/legal.html. Altera warrants performance of its
 with Altera's standard warranty, but reserves the right to make changes to any products and
ibility or liability arising out of the application or use of any information, product, or service
tera. Altera customers are advised to obtain the latest version of device specifications before relying
oducts or services.

Feedback SubscribeTwitter

ISO
9001:2008
Registered

http://www.altera.com/literature/hb/qts/qsys_intro.pdf
https://www.altera.com/servlets/subscriptions/alert?id=QII51024
mailto:TechDocFeedback@altera.com?subject=Feedback on QII51024-13.0.0 (QII HB, Vol 1, Ch10: Optimizing Qsys System Performance)
http://twitter.com/home/?status=Optimizing+Qsys+System+Performance+http://www.altera.com/literature/hb/qts/qsys_optimize.pdf?WT.mc_id=gc_so_tw_st_tx_a_011+(via @alteracorp)+%23Altera
http://www.altera.com/common/legal.html
http://www.altera.com/support/reliability/certifications/rel-certifications.html
http://www.altera.com/support/reliability/certifications/rel-certifications.html
http://www.altera.com/literature/manual/mnl_avalon_spec.pdf
http://infocenter.arm.com/help/topic/com.arm.doc.set.amba/index.html#specsl

9–2 Chapter 9: Optimizing Qsys System Performance
Designing with Avalon and AXI Interfaces
Avalon Streaming (Avalon-ST) links connect point-to-point, unidirectional interfaces,
and are typically used in data stream applications. Each a pair of components is
connected without any requirement to arbitrate between the data source and sink.

Because Qsys supports multiplexed memory-mapped and streaming connections,
you can implement systems that use multiplexed logic for control and streaming logic
for data in a single design.

f For more information about designing streaming and memory-mapped components,
refer to the Creating Qsys Components chapter in volume 1 of the Quartus II Handbook.

Designing Streaming Components
When you design streaming component interfaces, you must consider integration and
communication for each component in the system. One common consideration is
buffering data internally to accommodate latency between components. For example,
if the component’s Avalon-ST output or source of streaming data is back-pressured
because the ready signal is deasserted, then the component must back-pressure its
input or sink interface to avoid overflow.

You can use a FIFO to back-pressure internally on the output side of the component,
so that the input can accept more data even if the output is back-pressured. Then, you
use the FIFO almost full flag to back-pressure the sink interface or input data when
the FIFO has only enough space left to satisfy the internal latency. You drive the data
valid signal of the output or source interface with the not empty flag of the FIFO when
that data is available.

1 AXI streaming and bridge components are not available in the Quartus II software,
version 12.1.

Designing Memory-Mapped Components
When designing with memory-mapped components, “Example of Control and Status
Registers (CSR) in a Slave Component” on page 9–3 is an example that you can use to
implement any component that contains multiple registers mapped to memory
locations. Components that implement read and write memory-mapped transactions
require three main building blocks: an address decoder, a register file, and a read
multiplexer.
Quartus II Handbook Version 13.1 November 2013 Altera Corporation
Volume 1: Design and Synthesis

http://www.altera.com/literature/hb/qts/qsys_components.pdf

Chapter 9: Optimizing Qsys System Performance 9–3
Using Hierarchy in Systems
Figure 9–1 shows how to implement a set of four output registers to support software
read back from logic.

The decoder enables the appropriate 32-bit or 64-bit register for writes. For reads, the
address bits drive the multiplexer selection bits. The read signal registers the data
from the multiplexer, adding a pipeline stage so that the component can achieve a
higher clock frequency. This component has write wait states and one read wait state.
Alternatively, if you want high throughput, you might set both the read and write
wait states to zero, and then specify a read latency of one, because the component also
supports pipelined reads.

Using Hierarchy in Systems
You can use hierarchy to sub-divide a system into smaller subsystems that can be
connected together in a top-level Qsys system. You can use hierarchy to simplify
verification control of slaves connected to each master in a memory-mapped system.
Before you begin implementing subsystems in your design, you should plan the
system hierarchical blocks at the top level, using the following guidelines:

Figure 9–1. Example of Control and Status Registers (CSR) in a Slave Component

write

writedata[31:0]

address[1:0]

read

readdata[31:0]

Avalon-MM
Slave Port

EN

D Q

EN

D Q

EN

D Q

EN

D Q

EN

Q D

0

2

3

1

Read Multiplexer

s

Decode
2:4

Register File

User
Logic

EN

address[1:0]
November 2013 Altera Corporation Quartus II Handbook Version 13.1
Volume 1: Design and Synthesis

9–4 Chapter 9: Optimizing Qsys System Performance
Using Hierarchy in Systems
■ Plan shared resources—For example, determine the best location for shared
resources in the system hierarchy. For example, if two subsystems share resources,
you should add the components that use those resources to a higher-level system
for easy access.

■ Plan shared address space between subsystems—Planning the address space
ensures you can set appropriate sizes for bridges between subsystems.

■ Plan how much latency you might add to your system—When you add a
pipeline bridge between subsystems, you might add more latency to the overall
system. You can reduce the added latency by parameterizing the pipeline bridge
with zero cycles of latency.

Figure 9–2 shows an example of two Nios II processor subsystems with shared
resources for message passing. Bridges in each subsystem export the Nios II data
master to the top-level system that includes the mutex (mutual exclusion component)
and shared memory component (which could be another on-chip RAM, or a
controller for an off-chip RAM device).

If a design contains one or more identical functional units, the functional unit can be
defined as a subsystem and instantiated multiple times within a top-level system. You
can also design systems that process multiple data channels by instantiating the same
subsystem for each channel. This approach is easier to maintain than a larger, non
hierarchical system. In addition, such systems are easier to scale because you can
calculate the required resources as a simple multiple of the subsystem requirements.

Figure 9–2. Message Passing Between Subsystems

Nios II
Processor

M M

Nios II
Processor

M M

PIO

S

On-Chip
Memory

S

Mutex

S

UART

S

On-Chip
Memory

S

Shared
Memory

S

UART

S

PIO

S

Arbiter Arbiter ArbiterArbiter

Top-Level System

Subsystem Subsystem

Pipeline Bridges

Shared Resources for Message Passing
Quartus II Handbook Version 13.1 November 2013 Altera Corporation
Volume 1: Design and Synthesis

Chapter 9: Optimizing Qsys System Performance 9–5
Using Concurrency in Memory-Mapped Systems
Figure 9–3 shows a design with three subsystems, each processing a unique channel.

Using Concurrency in Memory-Mapped Systems
Qsys interconnect takes advantage of parallel hardware in FPGAs, which allows you
to design concurrency into your system and process multiple transactions
simultaneously. The following sections describe design choices that can increase
concurrency in your system.

Create Multiple Masters
Implementing concurrency requires multiple masters in the system. Systems that
include a processor contain at least two master interfaces because the processors
include separate instruction and data masters. Master components can be categorized
as follows:

■ General purpose processors, such as Nios II processors

■ DMA (direct memory access) engines

■ Communication interfaces, such as PCI Express

Figure 9–3. Multi Channel System

Channel 1 SystemInput Data Stream Output Data Stream

Channel 2 SystemInput Data Stream Output Data Stream

Channel N SystemInput Data Stream Output Data Stream

Nios II
Processor

M M

Input Data
Stream

S

On-Chip
Memory

S

Input Data
Stream

S

Arbiter
November 2013 Altera Corporation Quartus II Handbook Version 13.1
Volume 1: Design and Synthesis

9–6 Chapter 9: Optimizing Qsys System Performance
Using Concurrency in Memory-Mapped Systems
Because Qsys generates an interconnect with slave-side arbitration, every master
interface in your system can issue transfers concurrently. Masters in the system can
issue transfers concurrently as long as they are not posting transfers to the same slave.
Concurrency is limited by the number of master interfaces sharing any particular
slave interface. If your design requires higher data throughput, you can increase the
number of master and slave interfaces to increase the number of transfers that occur
simultaneously. Refer to “Create Multiple Slave Interfaces” on page 9–8 for more
information.

Figure 9–4 shows a system with three master interfaces. The lines are examples of
connections that can be active simultaneously.

In this Avalon example, the DMA engine operates with Avalon-MM read and write
masters. However, an AXI DMA interface typically has only one master, because in
the AXI standard the write and read channels on the master are independent and can
process transactions simultaneously.

Figure 9–4. Avalon Multiple Master Parallel Access

Avalon Master Port

Avalon Slave Port

M

Dual-Port On-Chip
Memory

S

External Memory
Controller

External Memory
Controller

Concurrent Access Possible

Nios II
Processor

DMA
Engine

M MMM

PCI Express
Interface

MS

Arbiter Arbiter

S S S S
Quartus II Handbook Version 13.1 November 2013 Altera Corporation
Volume 1: Design and Synthesis

Chapter 9: Optimizing Qsys System Performance 9–7
Using Concurrency in Memory-Mapped Systems
Figure 9–5 shows an AXI example where the DMA engine operates with a single
master, because in AXI the write and read channels on the master are independent
and can process transactions simultaneously. This example shows concurrency
between the read and write channels, with the yellow lines representing concurrent
data paths.

Figure 9–5. AXI Multi Master Parallel Access

Avalon Master PortM

Dual-Port On-Chip
Memory

Avalon Slave PortS

External Memory
Controller

External Memory
Controller

Nios II
Processor

DMA
Engine

M MM

PCI Express
Interface

MS

Arbiter Arbiter

S S S S

Concurrent Access Possible

Read Write
November 2013 Altera Corporation Quartus II Handbook Version 13.1
Volume 1: Design and Synthesis

9–8 Chapter 9: Optimizing Qsys System Performance
Using Concurrency in Memory-Mapped Systems
Create Multiple Slave Interfaces
You can create multiple slave interfaces for a particular function to increase
concurrency in your design. Figure 9–6 shows two channel processing systems. In the
first, four hosts must arbitrate for the single slave interface of the channel processor. In
the second, each host drives a dedicated slave interface, allowing all master interfaces
to simultaneously access the slave interfaces of the component. Arbitration is not
necessary when there is a single host and slave interface.

Figure 9–6. Single Interface Vs Multiple Interfaces

Host 2

Host 1

M

Host 3

Host 4

M

S

M

M

Arbiter

Compute
Engine 1

Channel Processor

Data Channel 4

Data Channel 3

Data Channel 2

Data Channel 1

Single Channel Access

Multiple Channel Access

Compute
Engine 2

Compute
Engine 3

Compute
Engine 4

S
Compute
Engine 1

Channel Processor

Data Channel 4

Data Channel 3

Data Channel 2

Data Channel 1

Compute
Engine 2

Compute
Engine 3

Compute
Engine 4

S

S

S

Host 2

Host 1

M

Host 3

Host 4

M

M

M

Quartus II Handbook Version 13.1 November 2013 Altera Corporation
Volume 1: Design and Synthesis

Chapter 9: Optimizing Qsys System Performance 9–9
Using Concurrency in Memory-Mapped Systems
Use DMA Engines
In some systems, you can use DMA engines to increase throughput. You can use a
DMA engine to transfer blocks of data between interfaces, which then frees the CPU
from carrying out this routine task. A DMA engine transfers data between a
programmed start and end address without intervention, and the data throughput is
dictated by the components connected to the DMA. Factors that affect data
throughput include data width and clock frequency. Figure 9–7 shows a system that
can sustain more concurrent read and write operations by including more DMA
engines, for the case that accesses to the read and write buffers in the top system can
be split between two DMA engines, as shown in the Dual DMA Channels system at
the bottom of the figure.

1 In this example, the DMA engine operates with Avalon-MM write and read masters.
An AXI DMA typically has only one master, because in AXI the write and read
channels on the master are independent and can process transactions simultaneously.

Figure 9–7. Single or Dual DMA Channels

Single DMA Channel

DMA
Engine

MM

Read
 Buffer 2

S

Read
 Buffer 1

S

Write
 Buffer 1

S

Write
 Buffer 2

S

Maximum of One Read & One Write Per Clock Cycle

DMA
Engine 1

MM

Write
 Buffer 1

S

Read
 Buffer 1

S

DMA
Engine 2

MM

Write
 Buffer 2

S

Read
 Buffer 2

S

Dual DMA Channels
Maximum of two Reads & Two Writes Per Clock Cycle
November 2013 Altera Corporation Quartus II Handbook Version 13.1
Volume 1: Design and Synthesis

9–10 Chapter 9: Optimizing Qsys System Performance
Insert Pipeline Stages to Increase System Frequency
Insert Pipeline Stages to Increase System Frequency
Qsys provides the Limit interconnect pipeline stages to option on the Project
Settings tab to automatically add pipeline stages to the Qsys interconnect when you
generate your system. You can specify between 0 to 4 pipeline stages, where 0 means
that the interconnect has a combinational data path. You can specify a unique
interconnect pipeline stage value for each subsystem.

Adding pipeline stages might increase the fMAX of your design by reducing the
combinational logic depth, at the cost of additional latency and logic utilization.

The insertion of pipeline stages requires certain interconnect components. For
example, in a system with a single slave interface, there is no multiplexer; therefore
multiplexer pipelining does not occur. When there is an Avalon or AXI single-master
to single-slave system, no pipelining occurs, regardless of the Limit interconnect
pipeline stages to parameter.

1 For more information about the Limit interconnect pipeline stages to parameter,
refer to the Qsys Interconnect chapter in volume 1 of the Quartus II Handbook.

Using Avalon Bridges
You can use bridges to increase system frequency, minimize generated Qsys logic,
minimize adapter logic, and to structure system topology when you want to control
where Qsys adds pipelining. You can also use bridges with arbiters when there is
concurrency in the system.

1 AXI bridges are not supported in the Quartus II software, version 12.1; however, you
can use Avalon bridges between AXI interfaces, and between Avalon domains. Qsys
automatically creates interconnect logic between the AXI and Avalon interfaces, so
you do not have to explicitly instantiate bridges between these domains. For more
discussion about the benefits and disadvantages of shared and separate domains,
refer to the Qsys Interconnect chapter in volume 1 of the Quartus II Handbook.

An Avalon bridge has an Avalon-MM slave interface and an Avalon-MM master
interface. You can have many components connected to the bridge slave interface, or
many components connected to the bridge master interface, or a single component
connected to a single bridge slave or master interface. You can configure the data
width of the bridge, which can affect how Qsys generates bus sizing logic in the
interconnect. Both interfaces support Avalon-MM pipelined transfers with variable
latency, and can also support configurable burst lengths.

Transfers to the bridge slave interface are propagated to the master interface, which
connects to components downstream from the bridge. When you need greater control
over the interconnect pipelining, you can use bridges instead of using the Limit
Interconnect Pipeline Stages to parameter.

Increasing System Frequency
In Qsys, you can introduce interconnect pipeline stages or pipeline bridges to increase
clock frequency in your system. Bridges control the system interconnect topology and
allow you to subdivide the interconnect, giving you more control over pipelining and
clock crossing functionality.
Quartus II Handbook Version 13.1 November 2013 Altera Corporation
Volume 1: Design and Synthesis

http://www.altera.com/literature/hb/qts/qsys_interconnect.pdf
http://www.altera.com/literature/hb/qts/qsys_interconnect.pdf

Chapter 9: Optimizing Qsys System Performance 9–11
Using Avalon Bridges
Insert Pipeline Bridges
You can insert an Avalon-MM pipeline bridge to insert registers in the path between
the bridges and its master and slaves. If a critical register-to-register delay occurs in
the Qsys interconnect, a pipeline bridge can help reduce this delay and improve
system fMAX.

The Avalon-MM pipeline bridge component integrates into any Qsys system. The
pipeline bridge options can increase logic utilization and read latency. The change in
topology may also reduce concurrency if multiple masters arbitrate for the bridge.

You can use the Avalon-MM pipeline bridge to control topology without adding a
pipeline stage. A pipeline bridge that does not add a pipeline stage is optimal in some
latency-sensitive applications. For example, a CPU may benefit from minimal latency
when accessing memory.

Figure 9–8 shows the architecture of an Avalon-MM pipeline bridge.

Figure 9–8. Avalon-MM Pipeline Bridge

D Q

Master
I/F

Wait Request
 Logic

Avalon-MM Pipeline Bridge

Master-to-Slave
Signals

waitrequest

Slave-to-Master
Signals

Master-to-Slave
Signals

waitrequest

Slave-to-Master
Signals

Slave-to-Master
Pipeline

ENA

Master-to-Slave
Pipeline

waitrequest
Pipeline

Connects to an
Avalon-MM
Master Interface

Connects to an
Avalon-MM

Slave Interface

Slave
I/F

D Q

D Q
November 2013 Altera Corporation Quartus II Handbook Version 13.1
Volume 1: Design and Synthesis

9–12 Chapter 9: Optimizing Qsys System Performance
Using Avalon Bridges
Implement Command Pipelining (Master-to-Slave)

When many masters share a slave device, use command pipelining to improve
performance. The arbitration logic for the slave interface must multiplex the address,
writedata, and burstcount signals. The multiplexer width increases proportionally
with the number of masters connecting to a single slave interface. The increased
multiplexer width might become a timing critical path in the system. If a single
pipeline bridge does not provide enough pipelining, you can instantiate multiple
instances of the bridge in a tree structure to increase the pipelining and further reduce
the width of the multiplexer at the slave interface, as Figure 9–9 shows.

Response Pipelining (Slave-to-Master)

A system can benefit from slave-to-master pipelining for masters that connect to
many slaves that support read transfers. The interconnect inserts a multiplexer for
every read data path back to the master. As the number of slaves supporting read
transfers connecting to the master increases, so does the width of the read data
multiplexer. As with master-to-slave pipelining, if the performance increase is
insufficient with one bridge, you can use multiple bridges in a tree structure to
improve fMAX.

Use Clock Crossing Bridges
Transfers to the slave interface are propagated to the master interface. The clock
crossing bridge contains a pair of clock crossing FIFOs, which isolate the master and
slave interfaces in separate, asynchronous clock domains.

Figure 9–9. Tree of Bridges

Master 1

M

Master 2

M

M

S

Pipeline Bridge

Master 3

M

Master 4

M

M

S

Pipeline Bridge

arb

arb arb

Write Data &
Control Signals

Read Data

Shared
Slave

S

Quartus II Handbook Version 13.1 November 2013 Altera Corporation
Volume 1: Design and Synthesis

Chapter 9: Optimizing Qsys System Performance 9–13
Using Avalon Bridges
When you use a FIFO clock crossing bridge for the clock domain crossing, you add
data buffering. Buffering allows pipelined read masters to post multiple reads to the
bridge, even if the slaves downstream from the bridge do not support pipelined
transfers.

Separate Component Frequencies

You can use of a clock crossing bridge to place high and low frequency components in
separate clock domains. If you limit the fast clock domain to the portion of your
design that requires high performance, you might achieve a higher fMAX for this
portion of the design.

For example, the majority of processor peripherals included in embedded designs do
not need to operate at high frequencies, therefore you do not need to use a high-
frequency clock for these components. When you compile a design with the
Quartus II software, compilation may take more time when the clock frequency
requirements are difficult to meet because the Fitter needs more time to place registers
to achieve the required fMAX. To reduce the amount of effort that the Fitter uses on low
priority and low performance components, you can place these behind a clock
crossing bridge operating at a lower frequency, allowing the Fitter to increase the
effort placed on the higher priority and higher frequency data paths.

Minimize Design Logic
Bridges can reduce the interconnect logic by reducing the amount of arbitration and
multiplexer logic that Qsys generates. This reduction occurs because bridges limit the
number of concurrent transfers that can occur. The following sections discuss how
you can use bridges to minimize the logic generated by Qsys.

Avoid Speed Optimizations That Increase Logic
Adding an additional pipeline stage with a pipeline bridge between masters and
slaves reduces the amount of combinational logic between registers, which can
increase system performance, as described in the section “Increasing System
Frequency” on page 9–10.

If you can increase the fMAX of your design logic, you may be able to turn off the
Quartus II optimization settings, such as the Perform register duplication setting.
Register duplication creates duplicate registers to be placed in two or more physical
locations in the FPGA to reduce register-to-register delays. You might also want to
choose Speed for the optimization method, which typically results in higher logic
utilization due to logic duplication. By making use of the registers or FIFOs available
in the Avalon-MM bridges, you can increase the design speed and avoid needless
logic duplication or speed optimizations, thereby reducing the logic utilization of the
design.

Reduced Concurrency
The amount of logic generated for the interconnect often increases as the system
becomes larger because Qsys creates arbitration logic for every slave interface that is
shared by multiple master interfaces. Qsys inserts multiplexer logic between master
interfaces that connect to multiple slave interfaces if both support read data paths.
Most embedded processor designs contain components that are either incapable of
November 2013 Altera Corporation Quartus II Handbook Version 13.1
Volume 1: Design and Synthesis

9–14 Chapter 9: Optimizing Qsys System Performance
Using Avalon Bridges
supporting high data throughput, or do not need to be accessed frequently. These
components can contain Avalon-MM master or slave interfaces. Because the
interconnect supports concurrent accesses, you might want to limit concurrency by
inserting bridges into the datapath to limit the amount of arbitration and multiplexer
logic generated.

For example, if your system contains three masters and three slave interfaces that are
interconnected, Qsys generates three arbiters and three multiplexers for the read data
path. If these masters do not require a significant amount of simultaneous
throughput, you can reduce the resources that your design consumes by connecting
the three masters to a pipeline bridge. The bridge masters the three slave interfaces,
and reduces the interconnect into a bus structure. Qsys creates one arbitration block
between the bridge and the three masters, and a single read data path multiplexer
between the bridge and three slaves, and prevents concurrency; similar to that of a
standard bus architecture. You should not use this method for high throughput data
paths to ensure that you do not limit overall system performance.

Figure 9–10 shows the difference in architecture between systems with or without a
pipeline bridge.

Figure 9–10. Switch Interconnect to Bus

S S S

Arbiter Arbiter Arbiter

SSS

M

Bridge

S

Arbiter

M M M M MM M

Write Data & Control Signals

Read Data

Concurrency No Concurrency
Quartus II Handbook Version 13.1 November 2013 Altera Corporation
Volume 1: Design and Synthesis

Chapter 9: Optimizing Qsys System Performance 9–15
Using Avalon Bridges
Minimizing Adapter Logic
Qsys generates adapter logic for clock crossing, width adaptation, and burst support
when there is a mismatch between the clock domains, widths, or bursting capabilities
of the master and slave interface pairs. Qsys creates burst adapters when the
maximum burst length of the master is greater than the master burst length of the
slave. The adapter logic creates extra logic resources, which can be substantial when
your system contains master interfaces connected to many components that do not
share the same characteristics. By placing bridges in your design, you can reduce the
amount of adapter logic that Qsys generates.

Effective Placement of Bridges
To determine the effective placement of a bridge, you should initially analyze each
master in your system to determine if the connected slave devices support different
bursting capabilities or operate in a different clock domain. The maximum
burstcount of a component is visible as the burstcount signal in the HDL file of the
component. The maximum burst length is 2 (width(burstcount -1)), so that if the burstcount
width is four bits, the maximum burstcount is eight. If no burstcount signal is
present, the component does not support bursting or has a burst length of 1.

To determine if the system requires a clock crossing adapter between the master and
slave interfaces, check the clock column beside the master and slave interfaces in
Qsys. If the clock is different for the master and slave interfaces, Qsys inserts a clock
crossing adapter between them. To avoid creating multiple adapters, you can place
the components containing slave interfaces behind a bridge so that only one adapter
is created. By placing multiple components with the same burst or clock
characteristics behind a bridge, you limit concurrency and the number of adapters.

You can use a bridge to separate AXI and Avalon domains to minimize burst
adaptation logic. For example, if there are multiple Avalon slaves that are connected
to an AXI master, you can consider inserting a bridge to access the adaptation logic
once before the bridge, instead once per slave. This costs latency, though, and you
would also lose concurrency between reads and writes.

Changing the Response Buffer Depth
When you use automatic clock-crossing adapters, Qsys determines the required depth
of FIFO buffering based on the slave properties. If a slave has a high Maximum
Pending Reads parameter, the resulting deep response buffer FIFO that Qsys inserts
between the master and slave can consume a lot of device resources. To control the
response FIFO depth, you can use a clock crossing bridge and manually adjust its
FIFO depth to trade off throughput with smaller memory utilization. For example, if
you have masters that cannot saturate the slave, you do not need response buffering,
so that using a bridge reduces the FIFO memory depth and reduces the Maximum
Pending Reads available from the slave.
November 2013 Altera Corporation Quartus II Handbook Version 13.1
Volume 1: Design and Synthesis

9–16 Chapter 9: Optimizing Qsys System Performance
Using Avalon Bridges
Consequences of Using Bridges
Before you use pipeline or clock crossing bridges in your design, you should carefully
consider their effects. Bridges can have any combination of the following
consequences on your design, which could be positive or negative. You can
benchmark your system before and after inserting bridges to determine their impact.
The following sections discuss the possible consequences of adding bridges to your
system.

Increased Latency
Adding a bridge to your design has an effect on the read latency between the master
and the slave. Depending on the system requirements and the type of master and
slave, this latency increase may or may not be acceptable in your design.

Acceptable Latency Increase

For a pipeline bridge, a cycle of latency is added for each pipeline option that is
enabled. The buffering in the clock crossing bridge also adds latency. If you use a
pipelined or burst master that posts many read transfers, the increase in latency does
not impact performance significantly because the latency increase is very small
compared to the length of the data transfer.

For example, if you use a pipelined read master such as a DMA controller to read data
from a component with a fixed read latency of four clock cycles, but only perform a
single word transfer, the overhead is three clock cycles out of the total four, assuming
there is no additional pipeline latency in the Qsys interconnect. The read throughput
is only 25%. Figure 9–11 shows this type of low-efficiency read transfer.

However, if 100 words of data are transferred without interruptions, the overhead is
three cycles out of the total of 103 clock cycles, corresponding to a read efficiency of
approximately 97% when there is no additional pipeline latency in the interconnect.
Adding a pipeline bridge to this read path adds two extra clock cycles of latency. The
transfer requires 105 cycles to complete, corresponding to an efficiency of

Figure 9–11. Low-Efficiency Read Transfer

clk

address

read

waitrequest

readdata

A0 A1

D0 D1

Overhead

Read Latency

Overhead

Read Latency
Quartus II Handbook Version 13.1 November 2013 Altera Corporation
Volume 1: Design and Synthesis

Chapter 9: Optimizing Qsys System Performance 9–17
Using Avalon Bridges
approximately 94%. Although the efficiency decreased by 3%, adding the bridge
might increase the fMAX by 5%, for example, and in that case, if the clock frequency can
be increased, the overall throughput would improve. As the number of words
transferred increases, the efficiency increases to nearly 100%, whether or not a
pipeline bridge is present. Figure 9–12 shows this type of high-efficiency read transfer.

Unacceptable Latency Increase

Processors are sensitive to high latency read times and typically fetch data for use in
calculations that cannot proceed until the data arrives. Before adding a bridge to the
data path of a processor instruction or data master, determine whether the clock
frequency increase justifies the added latency. Figure 9–13 shows the performance of a
Nios II processor and memory operating at 100 MHz. The Nios II processor
instruction master has a cache memory with a read latency of four cycles, that is eight
sequential words of data return for each read. At 100 MHz, the first read takes 40 ns to
complete. Each successive word takes 10 ns so that eight reads complete in 110 ns.

Figure 9–12. High Efficiency Read Transfer

clk

address

read

waitrequest

readdatavalid

readdata

A0 A1 A2 A3 A4 A5 A6 A7 A8 A9 A10 A11 A12

D0 D1 D2 D3 D4 D5 D6 D7 D8

Overhead

Read Latency

Figure 9–13. Processor System: Eight Reads with Four Cycles Latency

clk

address

read

waitrequest

readdatavalid

readdata

A0 A1 A2 A3 A4 A5 A6 A7

D0 D1 D2 D3 D4 D5 D6 D7

40 ns

110 ns
November 2013 Altera Corporation Quartus II Handbook Version 13.1
Volume 1: Design and Synthesis

9–18 Chapter 9: Optimizing Qsys System Performance
Using Avalon Bridges
Adding a clock crossing bridge allows the memory to operate at 125 MHz in this
example. However, this increase in frequency is negated by the increase in latency for
the following reasons, as shown in Figure 9–14. If the clock crossing bridge adds six
clock cycles of latency at 100 MHz, then the memory continues to operate with a read
latency of four clock cycles; consequently, the first read from memory takes 100 ns,
and each successive word takes 10 ns because reads arrive at the frequency of the
processor, which is 100 MHz. In total, eight reads complete after 170 ns. Although the
memory operates at a higher clock frequency, the frequency at which the master
operates limits the throughput.

Limited Concurrency
Placing an bridge between multiple master and slave interfaces limits the number of
concurrent transfers your system can initiate. This limitation is the same as connecting
multiple master interfaces to a single slave interface. The slave interface of the bridge
is shared by all the masters and, as a result, Qsys creates arbitration logic. If the
components placed behind a bridge are infrequently accessed, this concurrency
limitation might be acceptable.

Bridges can have a negative impact on system performance if you use them
inappropriately. For example, if multiple memories are used by several masters, you
should not place the memory components behind a bridge. The bridge limits memory
performance by preventing concurrent memory accesses. Placing multiple memory
components behind a bridge can cause the separate slave interfaces to appear as one
large memory to the masters accessing the bridge; all masters must access the same
slave interface.

Figure 9–14. Processor System: Eight Reads with Ten Cycles Latency

clk

address

read

waitrequest

readdatavalid

readdata

A0 A1 A2 A3 A4 A5 A6 A7

D0 D1 D2 D3 D4 D5 D6 D7

100 ns

170 ns
Quartus II Handbook Version 13.1 November 2013 Altera Corporation
Volume 1: Design and Synthesis

Chapter 9: Optimizing Qsys System Performance 9–19
Using Avalon Bridges
Figure 9–15 shows a memory subsystem with one bridge that acts as a single slave
interface for the Avalon-MM Nios II and DMA masters, which results in a bottleneck
architecture. The bridge acts as a bottleneck between the two masters and the
memories. An AXI DMA typically has only one master, because in the AXI standard
the write and read channels on the master are independent and can process
transactions simultaneously.

Figure 9–15. Inappropriate Use of a Bridge in a Hierarchical System

Nios II
Processor

M M

M

DMA

M M

DDR
SDRAM

S

DDR
SDRAM

S

DDR
SDRAM

S

Bridge

S

BottleneckArbiter

DDR
SDRAM

S

Qsys Subsystem
November 2013 Altera Corporation Quartus II Handbook Version 13.1
Volume 1: Design and Synthesis

9–20 Chapter 9: Optimizing Qsys System Performance
Using Avalon Bridges
If the fMAX of your memory interfaces is low and you want to use a pipeline bridge
between subsystems, you can place each memory behind its own bridge, which
increases the fMAX of the system without sacrificing concurrency, as Figure 9–16
shows.

Address Space Translation
The slave interface of a pipeline or clock crossing bridge has a base address and
address span. You can set the base address or allow Qsys to set it automatically. The
address of the slave interface is the base offset address of all the components
connected to the bridge. The address of components connected to the bridge is the
sum of the base offset and the address of that component.

Address Shifting

The master interface of the bridge drives only the address bits that represent the offset
from the base address of the bridge slave interface. Any time a master accesses a slave
through a bridge, both addresses must be added together, otherwise the transfer fails.
The Address Map tab in Qsys displays the addresses of the slaves connected to each
master and includes address translations caused by system bridges.

Figure 9–16. Efficient Memory Pipelining Without a Bottleneck in a Hierarchical System

Nios II
Processor

M M

DMA

M M

DDR
SDRAM

S

M

Bridge

S

Arbiter

DDR
SDRAM

S

M

Bridge

S

Arbiter

DDR
SDRAM

S

M

Bridge

S

Arbiter

DDR
SDRAM

S

M

Bridge

S

Arbiter

Subsystem

Subsystem
Quartus II Handbook Version 13.1 November 2013 Altera Corporation
Volume 1: Design and Synthesis

Chapter 9: Optimizing Qsys System Performance 9–21
Using Avalon Bridges
Figure 9–17 shows how address translation functions. In this example, the Nios II
processor connects to a bridge located at base address 0x1000, a slave connects to the
bridge master interface at an offset of 0x20, and the processor performs a write
transfer to the fourth 32-bit or 64-bit word within the slave. Nios II drives the address
0x102C to interconnect, which is within the address range of the bridge. The bridge
master interface drives 0x2C, which is within the address range of the slave, and the
transfer completes.

Address Coherency
To simplify the system design, all masters should access slaves at the same location. In
many systems, a processor passes buffer locations to other mastering components,
such as a DMA controller. If the processor and DMA controller do not access the slave
at the same location, Qsys must compensate for the differences.

In Figure 9–18, a Nios II processor and DMA controller access a slave interface located
at address 0x20. The processor connects directly to the slave interface. The DMA
controller connects to a pipeline bridge located at address 0x1000, which then
connects to the slave interface. Because the DMA controller accesses the pipeline
bridge first, it must drive 0x1020 to access the first location of the slave interface.
Because the processor accesses the slave from a different location, you must maintain
two base addresses for the slave device.

Figure 9–17. Avalon Bridge Address Translation

M

Nios II Processor

M

Bridge

S

Base = 0x1000

0x2C 0x2C0x102C

Address Translation

Address
DecoderS

Peripheral

Base = 0x20

0xC

Address Translation

Figure 9–18. Slave at Different Addresses, Complicating the Software

M

DMA

M

Nios II Processor

0x1020
MS

Bridge

Base = 0x1000

0x20 0x20

0x20

Address Translation

Address
DecoderS

Peripheral

Base = 0x20

0x0Arbiter

Masters Drive
Different Addresses
November 2013 Altera Corporation Quartus II Handbook Version 13.1
Volume 1: Design and Synthesis

9–22 Chapter 9: Optimizing Qsys System Performance
Increasing Transfer Throughput
To avoid the requirement for two addresses, you can add an additional bridge to the
system, set its base address to 0x1000, and then disable all the pipelining options in
the second bridge so that the bridge has minimal impact on system timing and
resource utilization. Because this second bridge has the same base address as the
original bridge, the DMA controller connects to both the processor and DMA
controller and accesses the slave interface with the same address range, as shown in
Figure 9–19.

Increasing Transfer Throughput
Increasing the transfer efficiency of the master and slave interfaces in your system
increases the throughput of your design. Designs with strict cost or power
requirements benefit from increasing the transfer efficiency because you can then use
less expensive, lower frequency devices. Designs requiring high performance also
benefit from increased transfer efficiency because increased efficiency improves the
performance of frequency–limited hardware.

Throughput is the number of symbols (such as bytes) of data that can be transferred in
a given clock cycle of time period. Read latency is the number of clock cycles between
the address and data phase of a transaction. For example, a read latency of two means
that the data is valid two cycles after the address is posted. If the master has to wait
for one request to finish before the next begins, such as with a processor, then the read
latency is very important to the overall throughput.

f You can measure throughput and latency in simulation by observing the waveforms,
or using the verification IP monitors. For more information, refer to the Avalon
Verification IP Suite User Guide or the Mentor Graphics AXI Verification IP Suite - Altera
Edition on the Altera website.

Figure 9–19. Address Translation Corrected With Bridge

M

DMA

M

Nios II Processor

0x1020
MS

Bridge

Base = 0x1000

0x20

M

Bridge

S

Base = 0x1000

0x20

0x20

0x200x1020

Address Translation

Address Translation

Address
DecoderS

Peripheral

Base = 0x20

0x0Arbiter
Quartus II Handbook Version 13.1 November 2013 Altera Corporation
Volume 1: Design and Synthesis

http://www.altera.com/literature/ug/ug_avalon_verification_ip.pdf?GSA_pos=1&WT.oss_r=1&WT.oss=Avalon Verification Suite User Guide
http://www.altera.com/literature/ug/ug_avalon_verification_ip.pdf?GSA_pos=1&WT.oss_r=1&WT.oss=Avalon Verification Suite User Guide

Chapter 9: Optimizing Qsys System Performance 9–23
Increasing Transfer Throughput
Using Pipelined Transfers
Pipelined transfers increase the read efficiency by allowing a master to post multiple
reads before data from an earlier read returns.

Masters that support pipelined transfers post transfers continuously, relying on the
readdatavalid signal to indicate valid data. Avalon-MM slaves support pipelined
transfers by including the readdatavalid signal or operating with a fixed read
latency.

AXI masters declare how many outstanding writes and reads it can issue with the
writeIssuingCapability and readIssuingCapability parameters. In the same way, a
slave can declare how many reads it can accept with the readAcceptanceCapability
parameter.

AXI masters with a read issuing capability greater than one are pipelined in the same
way as Avalon masters and the readdatavalid signal.

Using the Maximum Pending Reads Parameter
If you create a custom component with a slave interface supporting variable-latency
reads, you must specify the Maximum Pending Reads parameter in the Component
Editor. Qsys uses the Maximum Pending Reads parameter to generate the
appropriate interconnect, and represents the maximum number of read transfers that
your pipelined slave component can process. If the number of reads presented to the
slave interface exceeds the Maximum Pending Reads parameter, then the slave
interface must assert waitrequest.

Optimizing the value of the Maximum Pending Reads parameter requires a good
understanding of the latencies of your custom components. This parameter should be
based on the component’s highest read latency for the various logic paths inside the
component. For example, if your pipelined component has two modes, one requiring
two clock cycles and the other five, set the Maximum Pending Reads parameter to 5,
which allows your component to pipeline five transfers, eliminating dead cycles after
the initial five-cycle latency.

You can also determine the correct value for the Maximum Pending Reads parameter
by monitoring the number of reads that are pending during system simulation or
while running the hardware. To use this method, set the Maximum Pending Reads to
a very high value and use a master that issues read requests on every clock. You can
use a DMA for this task as long as the data is written to a location that does not
frequently assert waitrequest. If you implement this method with the hardware, you
can observe your component with a logic analyzer or built-in monitoring hardware.

Choosing the correct value for the Maximum Pending Reads parameter of your
custom pipelined read component is important. If you underestimate the Maximum
Pending Reads value, you might cause a master interface to stall with a waitrequest
until the slave responds to an earlier read request and frees a FIFO position.

The Maximum Pending Reads parameter controls the depth of the response FIFO
inserted into the interconnect for each master connected to the slave. This FIFO does
not use significant hardware resources. Overestimating the Maximum Pending
Reads parameter for your custom component results in a slight increase in hardware
utilization. For these reasons, if you are not sure of the optimal value, you should
overestimate this value.
November 2013 Altera Corporation Quartus II Handbook Version 13.1
Volume 1: Design and Synthesis

9–24 Chapter 9: Optimizing Qsys System Performance
Increasing Transfer Throughput
If your system includes a bridge, you must set the Maximum Pending Reads
parameter on the bridge as well. To allow maximum throughput, this value should be
equal to or greater than the Maximum Pending Reads value for the connected slave
that has the highest value. As described in “Changing the Response Buffer Depth” on
page 9–15, you can limit the maximum pending reads of a slave and reduce the buffer
depth by reducing the parameter value on the bridge if the high throughput is not
required. If you do not know the Maximum Pending Reads value for all your slave
components, you can monitor the number of reads that are pending during system
simulation while running the hardware. To use this method, set the Maximum
Pending Reads parameter to a high value and use a master that issues read requests
on every clock, such as a DMA. Then, reduce the number of maximum pending reads
of the bridge until the bridge reduces the performance of any masters accessing the
bridge.

Arbitration Shares and Bursts
Arbitration shares provide control over the arbitration process. By default, the
arbitration algorithm allocates evenly, with all masters receiving one share.

You can adjust the arbitration process to your system requirements by assigning a
larger number of shares to the masters that need greater throughput. The larger the
arbitration share, the more transfers are allocated to the master to access a slave. The
masters gets uninterrupted access to the slave for its number of shares, as long as the
master is transacting (reading or writing).

If a master cannot post a transfer and other masters are waiting to gain access to a
particular slave, the arbiter grants another master access. This mechanism prevents a
master from wasting arbitration cycles if it cannot post back-to-back transfers. A
bursting transaction contains multiple beats (or words) of data, starting from a single
address. Bursts allow a master to maintain access to a slave for more than a single
word transfer. If a bursting master posts a write transfer with a burst length of eight, it
is guaranteed arbitration for eight write cycles.

You can assign arbitration shares to Avalon-MM bursting master and AXI masters
(which are always considered a bursting master). Each share consists of one burst
transaction (such as multi-cycle write), and allows a master to complete a number of
bursts before arbitration switches to the next master.

f For more information about arbitration shares and bursts, refer to the Avalon Interface
Specifications, or the AMBA Protocol Specification on the ARM website.

Differences Between Arbitration Shares and Bursts
The following three key characteristics distinguish arbitration shares and bursts:

■ Arbitration lock

■ Sequential addressing

■ Burst adapters
Quartus II Handbook Version 13.1 November 2013 Altera Corporation
Volume 1: Design and Synthesis

http://www.altera.com/literature/manual/mnl_avalon_spec.pdf
http://www.altera.com/literature/manual/mnl_avalon_spec.pdf
http://infocenter.arm.com/help/topic/com.arm.doc.set.amba/index.html#specsl

Chapter 9: Optimizing Qsys System Performance 9–25
Increasing Transfer Throughput
Arbitration Lock

When a master posts a burst transfer, the arbitration is locked for that master;
consequently, the bursting master should be capable of sustaining transfers for the
duration of the locked period. If, after the fourth write, the master deasserts the write
(Avalon-MM write or AXI wvalid) signal for fifty cycles, all other masters continue to
wait for access during this stalled period.

To avoid wasted bandwidth, your master designs should wait until a full burst
transfer is ready before requesting access to a slave device. Alternatively, you can
avoid wasted bandwidth by posting burstcounts equal to the amount of data that is
ready. For example, if you create a custom bursting write master with a maximum
burstcount of eight, but only three words of data are ready, you can simply present a
burstcount of three. This strategy does not result in optimal use of the system
bandwidth if the slave is capable of handling a larger burst; however, this strategy
prevents stalling and allows access for other masters in the system.

Avalon-MM Sequential Addressing

An Avalon-MM burst transfer includes a base address and a burstcount. The
burstcount represents the number of words of data to be transferred, starting from
the base address and incrementing sequentially. Burst transfers are common for
processors, DMAs, and buffer processing accelerators; however, sometimes when a
master must access non-sequential addresses. Consequently, a bursting master must
set the burstcount to the number of sequential addresses, and then reset the
burstcount for the next location.

The arbitration share algorithm has no restrictions on addresses; therefore, your
custom master can update the address it presents to the interconnect for every read or
write transaction.

f AXI has different burst types than the Avalon interface. For more information about
AXI burst types, refer to the Qsys Interconnect chapter in volume 1 of the Quartus II
Handbook, and the AMBA AXI Protocol Specification on the ARM website.

Burst Adapters

Qsys allows you to create systems that mix bursting and non-bursting master and
slave interfaces. This design strategy allows you to connect bursting master and slave
interfaces that support different maximum burst lengths, and Qsys generates burst
adapters when appropriate.

Qsys inserts a burst adapter whenever a master interface burst length exceeds the
burst length of the slave interface, or if the master issues a burst type that the slave
cannot support. For example, if you connect an AXI master to an Avalon slave, a burst
adapter is inserted.

Qsys assigns non-bursting masters and slave interfaces a burst length of one. The
burst adapter divides long bursts into shorter bursts. As a result, the burst adapter
adds logic to the address and burstcount paths between the master and slave
interfaces.
November 2013 Altera Corporation Quartus II Handbook Version 13.1
Volume 1: Design and Synthesis

http://www.altera.com/literature/hb/qts/qsys_interconnect.pdf
http://infocenter.arm.com/help/topic/com.arm.doc.set.amba/index.html#specs

9–26 Chapter 9: Optimizing Qsys System Performance
Increasing Transfer Throughput
Choosing Avalon-MM Interface Types
To avoid inefficient Avalon-MM transfers, custom master or slave interfaces must use
the appropriate simple, pipelined, or burst interfaces. The three possible transfer
types are described below.

Simple Avalon-MM Interfaces

Simple interface transfers do not support pipelining or bursting for reads or writes;
consequently, their performance is limited. Simple interfaces are appropriate for
transfers between masters and infrequently used slave interfaces. In Qsys, the PIO,
UART, and Timer include slave interfaces that use simple transfers.

Pipelined Avalon-MM Interfaces

Pipelined read transfers allow a pipelined master interface to start multiple read
transfers in succession without waiting for the prior transfers to complete. Pipelined
transfers allow master-slave pairs to achieve higher throughput, even though the
slave port might require one or more cycles of latency to return data for each transfer.

In many systems, read throughput becomes inadequate if simple reads are used and
pipelined transfers can increase throughput. If you define a component with a fixed
read latency, Qsys automatically provides the pipelining logic necessary to support
pipelined reads. Altera recommends using fixed latency pipelining as the default
design starting point for slave interfaces. If your slave interface has a variable latency
response time, use the readdatavalid signal to indicate when valid data is available.
The interconnect implements read response FIFO buffering to handle the maximum
number of pending read requests.

To use components that support pipelined read transfers, and to use a pipelined
system interconnect efficiently, your system must contain pipelined masters. Refer to
the “Avalon Pipelined Read Master Example” on page 9–39 for an example of a
pipelined read master. Altera recommends using pipelined masters as the default
starting point for new master components. Use the readdatavalid signal for these
master interfaces.

Because master and slaves often have mismatched pipeline latency, interconnect often
contains logic to reconcile the differences. Many cases of pipeline latency are possible,
as shown in Table 9–1.

Table 9–1. Various Cases of Pipeline Latency in a Master-Slave Pair (Part 1 of 2)

Master Slave Pipeline Management Logic Structure

No pipeline No pipeline The Qsys interconnect does not instantiate logic to handle pipeline latency.

No pipeline Pipelined with fixed
or variable latency

The Qsys interconnect forces the master to wait through any slave-side latency
cycles. This master-slave pair gains no benefits from pipelining, because the
master waits for each transfer to complete before beginning a new transfer.
However, while the master is waiting, the slave can accept transfers from a
different master.

Pipelined No pipeline
The Qsys interconnect carries out the transfer as if neither master nor slave were
pipelined, causing the master to wait until the slave returns data. An example of
a non-pipeline slave is an asynchronous off-chip interface.
Quartus II Handbook Version 13.1 November 2013 Altera Corporation
Volume 1: Design and Synthesis

Chapter 9: Optimizing Qsys System Performance 9–27
Increasing Transfer Throughput
Burst Avalon-MM Interfaces

Burst transfers are commonly used for latent memories such as SDRAM and off-chip
communication interfaces such as PCI Express. To use a burst-capable slave interface
efficiently, you must connect to a bursting master. Components that require bursting
to operate efficiently typically have an overhead penalty associated with short bursts
or non-bursting transfers.

Altera recommends that you design a burst-capable slave interface if you know that
your component requires sequential transfers to operate efficiently. Because SDRAM
memories incur a penalty when switching banks or rows, performance improves
when SDRAM memories are accessed sequentially with bursts.

Architectures that use the same signals to transfer address and data also benefit from
bursting. Whenever an address is transferred over shared address and data signals,
the throughput of the data transfer is reduced. Because the address phase adds
overhead, using large bursts increases the throughput of the connection.

Avalon-MM Burst Master Example
Figure 9–20 shows the architecture of a bursting write master that receives data from a
FIFO and writes the contents to memory. You can use this master as a starting point
for your own bursting components, such as custom DMAs, hardware accelerators, or
off-chip communication interfaces. In Figure 9–20, the master performs word accesses
and writes to sequential memory locations.

Pipelined Pipelined with fixed
latency

The Qsys interconnect allows the master to capture data at the exact clock cycle
when data from the slave is valid, to enable maximum throughput. An example
of a fixed latency slave is an on-chip memory.

Pipelined Pipelined with
variable latency

The slave asserts a signal when its readdata is valid, and the master captures
the data. The master-slave pair can achieve maximum throughput if the slave
has variable latency. Examples of variable latency slaves include SDRAM and
FIFO memories.

Table 9–1. Various Cases of Pipeline Latency in a Master-Slave Pair (Part 2 of 2)

Master Slave Pipeline Management Logic Structure
November 2013 Altera Corporation Quartus II Handbook Version 13.1
Volume 1: Design and Synthesis

9–28 Chapter 9: Optimizing Qsys System Performance
Increasing Transfer Throughput
f For more information about the example in Figure 9–20, refer to the write master
design in the Avalon Memory-Mapped Master Templates on the Altera website.

When go is asserted, the start_address and transfer_length are registered. On the
next clock cycle, the control logic asserts burst_begin. The burst_begin signal
synchronizes the internal control signals in addition to the master_address and
master_burstcount presented to the interconnect. The timing of these two signals is
important because during bursting write transfers address, byteenable, and
burstcount must be held constant for the entire burst.

To avoid inefficient writes, the master only posts a burst when enough data has been
buffered in the FIFO. To maximize the burst efficiency, the master should stall only
when a slave asserts waitrequest. In this example, the FIFO’s used signal tracks the
number of words of data that are stored in the FIFO and determines when enough
data has been buffered.

The address register increments after every word transfer, and the length register
decrements after every word transfer. The address remains constant throughout the
burst. Because a transfer is not guaranteed to complete on burst boundaries,
additional logic is necessary to recognize the completion of short bursts and complete
the transfer.

Figure 9–20. Avalon Bursting Write Master

d

count enable

load

d

count enable

load

d

read acknowledge

q

write

full

q

q

waitrequest

done

go

start_address[31:0]

increment_address

go

increment_address

transfer_length[31:0]

user_data[31:0]

user_data_full

user_data_write

length[31:0]

fifo_used[]

used[]

writedata[31:0]

increment_address

Look-Ahead FIFO

master_burstcount[2:0]

burst_begin

burst_count[2:0]

write

increment_address

master_address[31:0]

VCC

byteenable[3:0]

Down
Counter

Up
Counter

burst_begin
EN

D Q

s

1

0

Tracking Logic/
State Machine
Quartus II Handbook Version 13.1 November 2013 Altera Corporation
Volume 1: Design and Synthesis

http://www.altera.com/support/examples/nios2/exm-avalon-mm.html

Chapter 9: Optimizing Qsys System Performance 9–29
Reducing Logic Utilization
Reducing Logic Utilization
This section describes how to minimize logic size of Qsys systems. Typically, there is a
trade-off between logic utilization and performance. Information in this section
applies to both Avalon and AXI interfaces.

Minimize Interconnect Logic
In Qsys, changes to the connections between master and slave reduce the amount of
interconnect logic required in the system.

Create Dedicated Master and Slave Connections
You might be able to create a system so that a master interface connects to a single
slave interface. This configuration eliminates address decoding, arbitration, and
return data multiplexing, which simplifies the interconnect. Dedicated master-to-
slave connections attain the same clock frequencies as Avalon-ST connections.

Typically, these one-to-one connections include an Avalon memory-mapped bridge or
hardware accelerator. For example, if you insert a pipeline bridge between a slave and
all other master interfaces, the logic between the bridge master and slave interface is
reduced to wires. Figure 9–16 on page 9–19 shows this technique. If a hardware
accelerator connects only to a dedicated memory, no system interconnect logic is
generated between the master and slave pair.

Removing Unnecessary Connections
The number of connections between master and slave interfaces affects the fMAX of
your system. Every master interface that you connect to a slave interface increases the
width of the multiplexer width. As a multiplexer width increases, so does the logic
depth and width that implements the multiplexer in the FPGA. To improve your
system performance, connect masters and slaves only when necessary.

When you connect a master interface to many slave interfaces, the multiplexer for the
read data signal grows. Avalon typically uses a readdata signal, and AXI read data
signals add a response status and last indicator to the read response channel using the
commands rdata, rresp, and rlast. Use bridges to help control the depth of
multiplexers, as shown in Figure 9–9.

Simplifying Address Decode Logic
If address code logic is in the critical path, you may be able to change the address map
to simplify the decode logic. Experiment with different address maps, including a
one-hot encoding, to see if results improve.

Minimize Arbitration Logic by Consolidating Multiple Interfaces Into One
As the number of components in your design increases, the amount of logic required
to implement the interconnect also increases. The number of arbitration blocks
increases for every slave interface that is shared by multiple master interfaces. The
width of the read data multiplexer increases as the number of slave interfaces
supporting read transfers increases on a per master interface basis. For these reasons,
consider implementing multiple blocks of logic as a single interface to reduce
interconnect logic utilization.
November 2013 Altera Corporation Quartus II Handbook Version 13.1
Volume 1: Design and Synthesis

9–30 Chapter 9: Optimizing Qsys System Performance
Reducing Logic Utilization
Logic Consolidation Trade-Offs
You should consider the following trade-offs before making modifications to your
system or interfaces.

1 Refer to “Using Concurrency in Memory-Mapped Systems” on page 9–5 for
additional discussion on concurrency trade-offs.

First, consider the impact on concurrency that results when you consolidate
components. When your system has four master components and four slave
interfaces, it can initiate four concurrent accesses. If you consolidate the four slave
interfaces into a single interface, then the four masters must compete for access.
Consequently, you should only combine low priority interfaces such as low speed
parallel I/O devices if the combination does not impact the performance.

Second, determine whether consolidation introduces new decode and multiplexing
logic for the slave interface that the interconnect previously included. If an interface
contains multiple read and write address locations, the interface already contains the
necessary decode and multiplexing logic. When you consolidate interfaces, you
typically reuse the decoder and multiplexer blocks already present in one of the
original interfaces; however, combining interfaces might simply move the decode and
multiplexer logic, rather than eliminate duplication.

Finally, consider whether consolidating interfaces makes the design complicated. If
so, Altera recommends that you do not consolidate interfaces.

System Example of Consolidating Interfaces
In this example, the Nios II/e core maintains communication between the Nios II /f
core and external processors. The Nios II/f core supports a maximum burst size of
eight. The external processor interface supports a maximum burst length of 64. The
Nios II/e core does not support bursting. The only memory in the system is SDRAM
with an Avalon maximum burst length of two.
Quartus II Handbook Version 13.1 November 2013 Altera Corporation
Volume 1: Design and Synthesis

Chapter 9: Optimizing Qsys System Performance 9–31
Reducing Logic Utilization
Figure 9–21 shows a system with a mix of components with different burst
capabilities. It includes a Nios II/e core, a Nios II/f core, and an external processor,
which off-loads some processing tasks to the Nios II/f core.

Qsys automatically inserts burst adapters to compensate for burst length mismatches.
The adapters reduce bursts to a single transfer, or the length of two transfers. For the
external processor interface connecting to DDR SDRAM, a burst of 64 words is
divided into 32 burst transfers, each with a burst length of two.

When you generate a system, Qsys inserts burst adapters based on maximum
burstcount values; consequently, the interconnect logic includes burst adapters
between masters and slave pairs that do not require bursting, if the master is capable
of bursts. In Figure 9–21, Qsys inserts a burst adapter between the Nios II processors
and the timer, system ID, and PIO peripherals. These components do not support
bursting and the Nios II processor performs only single word read and write accesses
to these components.

Figure 9–21. Mixed Bursting System

Nios II/e Core

M M

Nios II/f Core

M

Host Processor
Interface

MM

PIO

S

System ID

S

Mutex

S

Timer

S

DDR
SDRAM

S

Arbiter Arbiter Arbiter ArbiterArbiter

B

1

8

B

B

1

8

8

B

1

8

B

1

8

B

1

64

B

2

8

B

2

8

B

2

2

64

8 8 64

Burst Adapter

Maximum Burst Count
November 2013 Altera Corporation Quartus II Handbook Version 13.1
Volume 1: Design and Synthesis

9–32 Chapter 9: Optimizing Qsys System Performance
Reducing Logic Utilization
To reduce the number of adapters, you can add pipeline bridges, as Figure 9–22
shows. The pipeline bridge between the Nios II/f core and the peripherals that do not
support bursts eliminates three burst adapters from Figure 9–21. A second pipeline
bridge between the Nios II/f core and the DDR SDRAM, with its maximum burst size
set to eight, eliminates another burst adapter.

Implementing Multiple Clock Domains
You specify clock domains in Qsys on the System Contents tab. Clock sources can be
driven by external input signals to Qsys, or by PLLs inside Qsys. Clock domains are
differentiated based on the name of the clock. You may create multiple asynchronous
clocks with the same frequency.

Figure 9–22. Mixed Bursting System with Bridges

Nios II/e Core

M M M

Nios II/f Core

M

Host Processor
Interface

M

PIO

S

System ID

S

Mutex

S

Timer

S

DDR
SDRAM

S

Arbiter Arbiter Arbiter ArbiterArbiter

B

8

B

1

64

8 8
B

2

2

64

8 8 64

Burst Adapter

Maximum Burst Count

B

1

8

B

2

8

M

Bridge

S

M

Bridge

S

Quartus II Handbook Version 13.1 November 2013 Altera Corporation
Volume 1: Design and Synthesis

Chapter 9: Optimizing Qsys System Performance 9–33
Reducing Logic Utilization
Clock Domain Crossing Logic
Qsys generates Clock Domain Crossing Logic (CDC) that hides the details of
interfacing components operating in different clock domains. The system interconnect
supports the memory-mapped protocol with each port independently, and therefore
masters do not need to incorporate clock adapters in order to interface to slaves on a
different domain. Qsys interconnect logic propagates transfers across clock domain
boundaries automatically.

Clock-domain adapters provide the following benefits:

■ Allow component interfaces to operate at different clock frequencies.

■ Eliminates the need to design CDC hardware.

■ Allows each memory-mapped port to operate in only one clock domain, which
reduces design complexity of components.

■ Enable masters to access any slave without communication with the slave clock
domain.

■ Allows you to focus performance optimization efforts on components that require
fast clock speed.

A clock domain adapter consists of two finite state machines (FSM), one in each clock
domain, that use a simple hand-shaking protocol to propagate transfer control signals
(read_request, write_request, and the master waitrequest signals) across the clock
boundary.

Figure 9–23 shows illustrates a clock domain adapter between one master and one
slave.

The synchronizer blocks in Figure 9–23 use multiple stages of flipflops to eliminate
the propagation of metastable events on the control signals that enter the handshake
FSMs. The CDC logic works with any clock ratio.

Figure 9–23. Block Diagram of Clock Crossing Adapter

waitrequest

control

Receiver
Handshake

FSM

transfer
request

acknowledge

readdata

control

Sender
Handshake

FSM

waitrequest

Synchro-
nizer

Receiver
Port

Sender
Port

Receiver Clock Domain Sender Clock Domain

Synchro-
nizer

readdata

CDC Logic

writedata & byte enable

address
November 2013 Altera Corporation Quartus II Handbook Version 13.1
Volume 1: Design and Synthesis

9–34 Chapter 9: Optimizing Qsys System Performance
Reducing Logic Utilization
The typical sequence of events for a transfer across the CDC logic is described as
follows:

1. Master asserts address, data, and control signals.

2. The master handshake FSM captures the control signals, and immediately forces
the master to wait.

1 The FSM uses only the control signals, not address and data. For example,
the master simply holds the address signal constant until the slave side has
safely captured it.

3. Master handshake FSM initiates a transfer request to the slave handshake FSM.

4. The transfer request is synchronized to the slave clock domain.

5. The slave handshake FSM processes the request, performing the requested
transfer with the slave.

6. When the slave transfer completes, the slave handshake FSM sends an
acknowledge back to the master handshake FSM.

7. The acknowledge is synchronized back to the master clock domain.

8. The master handshake FSM completes the transaction by releasing the master
from the wait condition.

Transfers proceed as normal on the slave and the master side, without a special
protocol to handle crossing clock domains. From the perspective of a slave, there is
nothing different about a transfer initiated by a master in a different clock domain.
From the perspective of a master, a transfer across clock domains simply requires
extra clock cycles. Similar to other transfer delay cases (for example, arbitration delay
or wait states on the slave side), the Qsys forces the master to wait until the transfer
terminates. As a result, pipeline master ports do not benefit from pipelining when
performing transfers to a different clock domain.

Qsys automatically determines where to insert CDC logic based on the system
contents and the connections between components, and places CDC logic to maintain
the highest transfer rate for all components. Qsys evaluates the need for CDC logic for
each master and slave pair independently, and generates CDC logic wherever
necessary.

Duration of Transfers Crossing Clock Domains
CDC logic extends the duration of master transfers across clock domain boundaries.
In the worst case which is for reads, each transfer is extended by five master clock
cycles and five slave clock cycles. Assuming the default value of 2 for the Master
domain synchronizer length and the Slave domain synchronizer length, the
components of this delay are the following:

■ Four additional master clock cycles, due to the master-side clock synchronizer

■ Four additional slave clock cycles, due to the slave-side clock synchronizer

■ One additional clock in each direction, due to potential metastable events as the
control signals cross clock domains
Quartus II Handbook Version 13.1 November 2013 Altera Corporation
Volume 1: Design and Synthesis

Chapter 9: Optimizing Qsys System Performance 9–35
Reducing Power Consumption
1 Systems that require a higher performance clock should use the Avalon-MM clock
crossing bridge instead of the automatically inserted CDC logic. The clock crossing
bridge includes a buffering mechanism, so that multiple reads and writes can be
pipelined. After paying the initial penalty for the first read or write, there is no
additional latency penalty for pending reads and writes, increasing throughput by up
to four times, at the expense of added logic resources.

f For more information, refer to Avalon Memory-Mapped Design Optimizations in the
Embedded Design Handbook.

Reducing Power Consumption
This section describes various low power design changes that you can make to reduce
the power consumption of the interconnect and your custom components.

1 Qsys does not support AXI standard low power extensions in the current version of
the QII software.

Use Multiple Clock Domains
When you use multiple clock domains, you should put non-critical logic in the slower
clock domain. Qsys automatically reconciles data crossing over asynchronous clock
domains by inserting clock crossing logic (handshake or FIFO).

You can use clock crossing in Qsys to reduce the clock frequency of the logic that does
not require a high frequency clock, allowing you to reduce power consumption. You
can use either handshaking clock crossing bridges or handshaking clock crossing
adapters to separate clock domains.

Clock Crossing Bridge
You can use the clock crossing bridge to connect master interfaces operating at a
higher frequency to slave interfaces running a a lower frequency. Only connect low
throughput or low priority components to a clock crossing bridge that operates at a
reduced clock frequency. The following are examples of low throughput or low
priority components:

■ PIOs

■ UARTs (JTAG or RS-232)

■ System identification (SysID)

■ Timers

■ PLL (instantiated within Qsys)

■ Serial peripheral interface (SPI)

■ EPCS controller

■ Tristate bridge and the components connected to the bridge

By reducing the clock frequency of the components connected to the bridge, you
reduce the dynamic power consumption of your design. Dynamic power is a function
of toggle rates and decreasing the clock frequency decreases the toggle rate.
November 2013 Altera Corporation Quartus II Handbook Version 13.1
Volume 1: Design and Synthesis

http://www.altera.com/literature/hb/nios2/edh_ed51007.pdf

9–36 Chapter 9: Optimizing Qsys System Performance
Reducing Power Consumption
Figure 9–24 shows a system where a bridge reduces power consumption.
.

Qsys automatically inserts clock crossing adapters between master and slave
interfaces that operate at different clock frequencies. You can choose the type of clock
crossing adapter in the Qsys Project Settings tab. There are three types of clock
crossing adapter types available in Qsys, as described below. Adapters do not appear
in the Qsys Connection column because you do not insert them.

Clock Crossing Adapter Types
Specifies the default implementation for automatically inserted clock crossing
adapters. The following adapter types are available:

■ Handshake—Uses a simple handshaking protocol to propagate transfer control
signals and responses across the clock boundary. This adapter uses fewer
hardware resources because each transfer is safely propagated to the target
domain before the next transfer can begin. The Handshake adapter is appropriate
for systems with low throughput requirements.

Figure 9–24. Reducing Power Utilization Using a Bridge to Separate Clock Domains

Nios II
Processor

M M

Arbiter

DDR
SDRAM

S

On-Chip
Memory

S

Arbiter

PIO

S

UART

S

Timer

S

System ID

S

PLL

S

SPI

S

EPCS
Controller

S

M

Tristate
Conduit

S

M

Clock
Crossing
Bridge

S

Arbiter

200 MHz

5 MHz

Flash

S
Low-Frequency Components
Quartus II Handbook Version 13.1 November 2013 Altera Corporation
Volume 1: Design and Synthesis

Chapter 9: Optimizing Qsys System Performance 9–37
Reducing Power Consumption
■ FIFO—Uses dual-clock FIFOs for synchronization. The latency of the FIFO
adapter is approximately two clock cycles more than the handshake clock crossing
component, but the FIFO-based adapter can sustain higher throughput because it
can support multiple transactions simultaneously. The FIFO adapter requires more
resources. The FIFO adapter is appropriate for memory-mapped transfers
requiring high throughput across clock domains.

■ Auto—Qsys specifies the appropriate FIFO adapter for bursting links and the
Handshake adapter for all other links.

Throughput
Because the clock crossing bridge uses FIFOs to implement the clock crossing logic, it
buffers transfers and data. Clock crossing adapters are not pipelined, so that each
transaction is blocking until the transaction completes. Blocking transactions may
lower the throughput substantially; consequently, if you want to reduce power
consumption without limiting the throughput significantly, you should use the clock
crossing bridge or the FIFO clock crossing adapter. However, if the design simply
requires single read transfers, a clock crossing adapter is preferable because the
latency is lower.

Resource Utilization
The clock crossing bridge requires few logic resources besides on-chip memory. The
number of on-chip memory blocks used is proportional to the address span, data
width, buffering depth, and bursting capabilities of the bridge. The clock crossing
adapter does not use on-chip memory and requires a moderate number of logic
resources. The address span, data width, and the bursting capabilities of the clock
crossing adapter determine the resource utilization of the device.

Throughput versus Memory Trade-Offs
When you decide to use a clock crossing bridge or clock crossing adapter, you must
consider the effects of throughput and memory utilization in your design. If on-chip
memory resources are limited, you may be forced to choose the clock crossing
adapter. Using the clock crossing bridge to reduce the power of a single component
may not justify using more resources. However, if you can place all your low priority
components behind a single clock crossing bridge, you reduce power consumption in
your design.

Minimizing Toggle Rates
Your design consumes power whenever logic transitions between on and off states.
When the state is held constant between clock edges, no charging or discharging
occurs. This section discusses the following three design techniques that you can use
to reduce the toggle rates of your system:

■ Registering component boundaries

■ Using clock enable signals

■ Inserting bridges
November 2013 Altera Corporation Quartus II Handbook Version 13.1
Volume 1: Design and Synthesis

9–38 Chapter 9: Optimizing Qsys System Performance
Reducing Power Consumption
Registering Component Boundaries
Qsys interconnect is uniquely combinational when no adapters or bridges are present
and there is no interconnect pipelining. When a slave interface is not selected by a
master, various signals may toggle and propagate into the component. By registering
the boundary of your component at the master or slave interface, you can minimize
the toggling of the interconnect and your component. In addition, registering
boundaries can improve operating frequency. When you register the signals at the
interface level, you must ensure that the component continues to operate within the
interface standard specification.

Avalon-MM waitrequest is a difficult signal to synchronize when you add registers
to your component. waitrequest must be asserted during the same clock cycle that a
master asserts read or write to, in order to prolong the transfer. A master interface
may read the waitrequest signal too early and post more reads and writes
prematurely.

1 There is no direct AXI equivalent for waitrequest and burstcount, though the
AMBA Protocol Specification implies that ready (the equivalent of Avalon-MM
waitrequest) cannot depend combinatorially on AXI valid. Therefore, Qsys typically
buffers AXI component boundaries (at least for the ready signal).

For slave interfaces, the interconnect manages the begintransfer signal, which is
asserted during the first clock cycle of any read or write transfer. If your waitrequest
is one clock cycle late, you can logically OR your waitrequest and the begintransfer
signals to form a new waitrequest signal that is properly synchronized, as shown in
Figure 9–25.

Alternatively, your component can assert waitrequest before it is selected,
guaranteeing that the waitrequest is already asserted during the first clock cycle of a
transfer.

Figure 9–25. Variable Latency

waitrequest

begintransfer

readdata

read

write

writedata

Avalon-MM
Slave Port

Remaining
Component

Logic

ready
(synchronous)
Quartus II Handbook Version 13.1 November 2013 Altera Corporation
Volume 1: Design and Synthesis

http://infocenter.arm.com/help/topic/com.arm.doc.set.amba/index.html#specsl

Chapter 9: Optimizing Qsys System Performance 9–39
Reducing Power Consumption
Using Clock Enables
You can use clock enables to hold your logic in a steady state. You can use the write
and read signals as clock enables for slave components. Even if you add registers to
your component boundaries, your interface can potentially toggle without the use of
clock enables.

You can also use the clock enable to disable combinational portions of your
component. For example, you can use an active high clock enable to mask the inputs
into your combinational logic to prevent it from toggling when the component is
inactive. Before preventing inactive logic from toggling, you must determine if the
masking causes your circuit to function differently. If masking causes a functional
failure, it might be possible to use a register stage to hold the combinational logic
constant between clock cycles.

Inserting Bridges
You can use bridges to reduce toggle rates, if you do not want to modify the
component by using boundary registers or clock enables. A bridge acts as a repeater
where transfers to the slave interface are repeated on the master interface. If the
bridge is not accessed, the components connected to its master interface are also not
accessed. The master interface of the bridge remains idle until a master accesses the
bridge slave interface.

Bridges can also reduce the toggle rates of signals that are inputs to other master
interfaces. These signals are typically readdata, readdatavalid, and waitrequest.
Slave interfaces that support read accesses drive the readdata, readdatavalid, and
waitrequest signals. A bridge inserts either a register or clock crossing FIFO between
the slave interface and the master to reduce the toggle rate of the master input signals.

Disabling Logic
There are typically two types of low power modes: volatile and non-volatile. A
volatile low power mode holds the component in a reset state. When the logic is
reactivated, the previous operational state is lost. A non-volatile low power mode
restores the previous operational state. This section discusses using either software-
controlled or hardware-controlled sleep modes to disable a component in order to
reduce power consumption.

Software-Controlled Sleep Mode
To design a component that supports software controlled sleep mode, create a single
memory mapped location that enables and disables logic, by writing a zero or one.
Use the register’s output as a clock enable or reset, depending on whether the
component has non-volatile requirements. The slave interface must remain active
during sleep mode so that the enable bit can be set when the component needs to be
activated.

If multiple masters can access a component that supports sleep mode, you can use the
mutex core available in Qsys to provide mutually exclusive accesses to your
component. You can also build in the logic to re-enable the component on the very
first access by any master in your system. If the component requires multiple clock
cycles to re-activate, then it must assert wait request to prolong the transfer as it exits
sleep mode.
November 2013 Altera Corporation Quartus II Handbook Version 13.1
Volume 1: Design and Synthesis

9–40 Chapter 9: Optimizing Qsys System Performance
Design Examples
f For more information about the mutex core, refer to the Mutex Core chapter of the
Embedded Peripherals IP User Guide.

Hardware-Controlled Sleep Mode
You can implement a timer in your component that automatically causes the
component to enter a sleep mode based on a timeout value specified in clock cycles
between read or write accesses. Each access resets the timer to the timeout value. Each
cycle with no accesses decrements the timeout value by one. If the counter reaches
zero, the hardware enters sleep mode until the next access. Figure 9–26 provides a
schematic for this logic. If restoring the component to an active state takes a long time,
use a long timeout value so that the component is not continuously entering and
exiting sleep mode.

The slave interface must remain functional while the rest of the component is in sleep
mode. When the component exits sleep mode, the component must assert the
waitrequest signal until it is ready for read or write accesses.

f For more information on reducing power utilization, refer to Power Optimization in the
Quartus II Handbook.

Design Examples
The following examples illustrate the resolution of Qsys system design challenges.

Avalon Pipelined Read Master Example
For a high throughput system using the Avalon-MM standard, you can design a
pipelined read master that allows your system to issue multiple read requests before
data returns. Pipelined read masters hide the latency of read operations by posting
reads as frequently as every clock cycle. You can use this type of master when the
address logic is not dependent on the data returning.

Design Requirements
You must carefully design the logic for the control and data paths of pipelined read
masters. The control logic must extend a read cycle whenever the waitrequest signal
is asserted. This logic must also control the master address, byteenable, and read
signals. To achieve maximum throughput, pipelined read masters should post reads
continuously as long as waitrequest is deasserted. While read is asserted, the address
presented to the interconnect is stored.

Figure 9–26. Hardware-Controlled Sleep Components

q

wake
read
write

d count

count enableload

Down
Counter

waitrequest sleep_n

= 0?Timeout Value reset

busy
Quartus II Handbook Version 13.1 November 2013 Altera Corporation
Volume 1: Design and Synthesis

http://www.altera.com/literature/ug/ug_embedded_ip.pdf
http://www.altera.com/literature/hb/qts/qts_qii52016.pdf

Chapter 9: Optimizing Qsys System Performance 9–41
Design Examples
The data path logic includes the readdata and readdatavalid signals. If your master
can accept data on every clock cycle, you can register the data with the readdatavalid
as an enable bit. If your master cannot process a continuous stream of read data, it
must buffer the data in a FIFO. The control logic must stop issuing reads when the
FIFO reaches a predetermined fill level to prevent FIFO overflow.

f Refer to the Avalon Interface Specifications to learn more about the signals that
implement an Avalon pipelined read master.

Expected Throughput Improvement
The throughput improvement that you can achieve with a pipelined read master is
typically directly proportional to the pipeline depth of the interconnect and the slave
interface. For example, if the total latency is two cycles, you can double the
throughput by inserting a pipelined read master, assuming the slave interface also
supports pipeline transfers. If either the master or slave does not support pipelined
read transfers, then the interconnect asserts waitrequest until the transfer completes.
You can also gain throughput when there are some cycles of overhead before a read
response.

The “Increased Latency” on page 9–15 describes an example in which both the master
and slave interfaces support pipelined read transfers. In this example, data can flow
on a continuous stream after the initial latency. Where reads are not pipelined, the
throughput is reduced. When both the master and slave interfaces support pipelined
read transfers, data flows in a continuous stream after the initial latency. Figure 9–27
illustrates reads that are not pipelined. The system uses three cycles of latency for
each read, achieving an overall throughput of 25%. Figure 9–20 shows reads that are
pipelined. After the three cycles of latency, the data flows continuously.

You can use a pipelined read master that stores data in a FIFO to implement a custom
DMA, hardware accelerator, or off-chip communication interface. Figure 9–27 shows a
pipeline read master that stores data in a FIFO. The master performs word accesses
that are word-aligned and reads from sequential memory addresses. The transfer
length is a multiple of the word size. In Figure 9–27, the master performs word
accesses that are word-aligned and reads from sequential memory addresses. The
transfer length is a multiple of the word size.
November 2013 Altera Corporation Quartus II Handbook Version 13.1
Volume 1: Design and Synthesis

http://www.altera.com/literature/manual/mnl_avalon_spec.pdf

9–42 Chapter 9: Optimizing Qsys System Performance
Design Examples
Figure 9–27 shows a pipeline read master that stores data in a FIFO.

When the go bit is asserted, the master registers the start_address and
transfer_length signals. The master begins issuing reads continuously on the next
clock until the length register reaches zero. In this example, the word size is four
bytes so that the address always increments by four and the length decrements by
four. The read signal remains asserted unless the FIFO fills to a predetermined level.
The address register increments and the length register decrements if the length has
not reached 0 and a read is posted.

The master posts a read transfer every time the read signal is asserted and the
waitrequest is deasserted. The master issues reads until the entire buffer has been
read or waitrequest is asserted. An optional tracking block monitors the done bit.
When the length register reaches zero, some reads are outstanding. The tracking logic
prevents assertion of done until last read completes. The tracking logic monitors the
number of reads posted to the interconnect so that it does not exceed the space
remaining in the readdata FIFO. This logic includes a counter that verifies the
following conditions are met:

■ If a read is posted and readdatavalid is deasserted, the counter increments.

■ If a read is not posted and readdatavalid is asserted, the counter decrements.

When the length register and the tracking logic counter reach zero, all the reads have
completed and the done bit is asserted. The done bit is important if a second master
overwrites the memory locations that the pipelined read master accesses. This bit
guarantees that the reads have completed before the original data is overwritten.

Figure 9–27. Pipelined Read Master

d

count enable

load

d

count enable

load

d

write

q

read acknowledge

empty

q

q

waitrequest

done

go

start_address[31:0]

increment_address

go

increment_address

transfer_length[31:0]

user_data[31:0]

user_data_empty

user_data_read

length[31:0]

fifo_used[]

used[]

writedata[31:0]

readdatavalid

Look-Ahead FIFO

read

increment_address

master_address[31:0]

VCC

byteenable[3:0]

Down
Counter

Up
Counter

Tracking Logic/
State Machine

readdatavalid
Quartus II Handbook Version 13.1 November 2013 Altera Corporation
Volume 1: Design and Synthesis

Chapter 9: Optimizing Qsys System Performance 9–43
Design Examples
Multiplexer Examples
You can combine adapters with streaming components to create datapaths whose
input and output streams have different properties. The following sections provide
examples of datapaths in which the output stream is higher performance than the
input stream. Figure 9–28 shows an output with double the throughput of each
interface with a corresponding doubling of the clock frequency. Figure 9–29 doubles
the data width. Figure 9–30 boosts the frequency of a stream by 10% by multiplexing
input data from two sources.

Example to Double Clock Frequency
Figure 9–28 illustrates a datapath that uses the dual clock version of the on-chip FIFO
memory and Avalon-ST channel multiplexer to merge the 100 MHz input from two
streaming data sources into a single 200 MHz streaming output. This example
increases throughput by increasing the frequency and combining inputs.

Example to Double Data Width and Maintain Frequency
Figure 9–29 illustrates a datapath that uses the data format adapter and Avalon-ST
channel multiplexer to convert two, 8-bit inputs running at 100 MHz to a single 16-bit
output at 100 MHz.

Figure 9–28. Datapath that Doubles the Clock Frequency

sinksrc

Data Source

sink src
100 MHz 200 MHz

sink
src

Data Source

100 MHz 200 MHz

On -Chip FIFO
Memory – Dual Clk

src

On -Chip FIFO
Memory – Dual Clk

sink sink

input

input

output
200 MHz

src

Figure 9–29. Datapath to Double Data Width and Maintain Original Frequency

sinksrc

Data Source

sink src
8 bits

@100 MHz

sink
src

Data Source

Data Format
Adapter

src
Data Format

Adaptersink sink

input

input

16 bits
@100 MHz

src

8 bits
@100 MHz

16 bits
@100 MHz

16 bits
@ 100 MHz
November 2013 Altera Corporation Quartus II Handbook Version 13.1
Volume 1: Design and Synthesis

9–44 Chapter 9: Optimizing Qsys System Performance
Conclusion
Example to Boost the Frequency
Figure 9–30 illustrates a datapath that uses the dual clock version of the on-chip FIFO
memory to boost the frequency of input data from 100 MHz to 110 MHz by sampling
two input streams at differential rates. In this example, the on-chip FIFO memory has
an input clock frequency of 100 MHz and an output clock frequency of 110 MHz. The
channel multiplexer runs at 110 MHz and samples one input stream 27.3 percent of
the time and the second 72.7 percent of the time.

You do not need to know what the typical and maximum input channel utilizations
are before this type of design. For example, if the first channel hits 50% utilization, the
output stream exceeds 100% utilization.

Conclusion
Recommendations presented in this chapter may improve your system’s maximum
clock frequency, concurrency and throughput, logic utilization, or even power
utilization. When you design a Qsys system, use your knowledge of the design intent
and goals to further optimize system performance beyond the automated
optimization available within Qsys.

Document Revision History
Table 9–2 shows the revision history for this document.

f For previous versions of the Quartus II Handbook, refer to the Quartus II Handbook
Archive

Figure 9–30. Datapath to Boost the Clock Frequency

src

Data Source

sink src8 bits
@ 100 MHz

110 MHz

sink
src

Data Source

8 bits
@100 MHz

110 MHz

On-Chip FIFO
Memory – Dual Clk

src

On-Chip FIFO
Memory – Dual Clk

sink

input

input

27.3%
sample rate

72.7%
sample rate

output
110 MHz

src

sink

sink

30%
channel utilization

80%
channel utilization

100 %
channel

utilization

Table 9–2. Document Revision History

Date Version Changes

May 2013 13.0.0 ■ Added AMBA APB support.

November 2012 12.1.0 ■ Added AMBA AXI4 support.

June 2012 12.0.0 ■ Added AMBA AXI3 support.

November 2011 11.1.0 ■ New document release.
Quartus II Handbook Version 13.1 November 2013 Altera Corporation
Volume 1: Design and Synthesis

http://www.altera.com/literature/lit-qts_archive.jsp
http://www.altera.com/literature/lit-qts_archive.jsp

10–58 Chapter 10: Component Interface Tcl Reference
Document Revision History
f For more information about Tcl syntax, refer to the Tcl Developer Xchange website.

f For previous versions of the Quartus II Handbook, refer to the Quartus II Handbook
Archive.

May 2011 11.0.0

■ Removed Beta status.

■ Revised section describing HDL and composed component implementations.

■ Separated reset and clock interfaces in examples.

■ Added the TRISTATECONDUIT_INFO, GENERATION_ID, and UNIQUE_ID SYSTEM_INFO
properties.

■ Added the WIDTH and SYSTEM_INFO_ARG parameter properties.

■ Removed the doc_type argument from the add_documentation_link command.

■ Removed get_instance_parameter_properties command.
(get_instance_parameter_property is available.)

■ Added the add_fileset, add_fileset_file and create_temp_file commands.

■ Updated Tcl examples to show separate clock and reset interfaces.

December 2010 10.1.0 Initial release.

Table 10–22. Document Revision History (Part 2 of 2)

Date Version Changes
Quartus II Handbook Version 13.1 November 2013 Altera Corporation
Volume 1: Design and Synthesis

http://www.tcl.tk/
http://www.altera.com/literature/lit-qts_archive.jsp
http://www.altera.com/literature/lit-qts_archive.jsp

QII51023-13.1.0

© 2013 Altera Corporation. All rights reserved. ALTERA, ARRI
are trademarks of Altera Corporation and registered in the U.S
trademarks or service marks are the property of their respectiv
semiconductor products to current specifications in accordance
services at any time without notice. Altera assumes no respons
described herein except as expressly agreed to in writing by Al
on any published information and before placing orders for pr

Quartus II Handbook Version 13.1
Volume 1: Design and Synthesis
November 2013

November 2013
QII51023-13.1.0
10. Component Interface Tcl Reference
This chapter contains descriptions of Tcl commands and indicates the Qsys phases
during which each command is available: in the main static body of the program
(global), or during the elaboration, composition, and fileset callback phases, or any
combination. Table 10–1 summarizes the commands and provides a reference to the
full description.

Qsys supports standard Avalon®, AMBA® AXI3™ (version 1.0), AMBA AXI4™
(version 2.0), and AMBA APB™ 3 (version 1.0) interfaces. For more information about
Avalon and AMBA interfaces, refer to the Avalon Interface Specifications and the
AMBA Protocol Specifications on the ARM® website. AXI4-Lite is not supported.

f For more information about procedures for creating component _hw.tcl files in the
Qsys Component Editor, and supported interface standards, refer to the Creating Qsys
Components and the Qsys Interconnect chapters in volume 1 of the Quartus II Handbook.

If you are developing a component to work with the Nios II processor, refer to the
Publishing Component Information to Embedded Software chapter, which describes how to
publish hardware component information for embedded software tools, such as a C
compiler and a Board Support Package (BSP) generator.

This section provides a reference for hardware Tcl commands, as follows:

■ “Command Summary”

■ “Module Definition” on page 10–4

■ “Parameters” on page 10–9

■ “Display Items” on page 10–20

■ “Interfaces and Ports” on page 10–24

■ “Composition” on page 10–32

■ “Fileset Generation” on page 10–40

■ “Miscellaneous” on page 10–45

■ “Simulator Properties” on page 10–46

■ “Instance Properties” on page 10–47

■ “Port Roles (Interface Signal Types)” on page 10–47
A, CYCLONE, HARDCOPY, MAX, MEGACORE, NIOS, QUARTUS and STRATIX words and logos
. Patent and Trademark Office and in other countries. All other words and logos identified as
e holders as described at www.altera.com/common/legal.html. Altera warrants performance of its
 with Altera's standard warranty, but reserves the right to make changes to any products and
ibility or liability arising out of the application or use of any information, product, or service
tera. Altera customers are advised to obtain the latest version of device specifications before relying
oducts or services.

Feedback SubscribeTwitter

ISO
9001:2008
Registered

http://www.altera.com/literature/hb/qts/qsys_components.pdf
http://www.altera.com/literature/hb/qts/qsys_components.pdf
http://www.altera.com/literature/hb/qts/qsys_interconnect.pdf
http://www.altera.com/literature/manual/mnl_avalon_spec.pdf
http://infocenter.arm.com/help/topic/com.arm.doc.set.amba/index.html#specsl
http://infocenter.arm.com/help/topic/com.arm.doc.set.amba/index.html#specsl
www.altera.com/literature/hb/nios2/n2sw_nii52018.pdf
https://www.altera.com/servlets/subscriptions/alert?id=QII51023
mailto:TechDocFeedback@altera.com?subject=Feedback on QII51023-13.1.0
http://twitter.com/home/?status=Component+Interface+Tcl+Reference+http://www.altera.com/literature/hb/qts/qsys_tcl.pdf?WT.mc_id=gc_so_tw_st_tx_a_011+(via @alteracorp)+%23Altera
http://www.altera.com/common/legal.html
http://www.altera.com/support/reliability/certifications/rel-certifications.html
http://www.altera.com/support/reliability/certifications/rel-certifications.html

10–2 Chapter 10: Component Interface Tcl Reference
Command Summary
1 Qsys does not support the following Tcl commands in the global context of IP
authoring for Qsys version 13.1:

■ “add_instance”

■ “add_connection”'

■ “set_instance_parameter_value”

You can instead use a composition callback to add module instances and connections
to your composed designs. For versions older than 13.1, a debug-level message is
issued to inform developers about this limitation. Using these commands in a
composition callback instead of in the global context significantly improves the
performance of the validation and composition phases in composed systems with
deep hierarchies.

Command Summary
Table 10–1. Command Summary (1) (Part 1 of 3)

Command Full Description

Module Definition

add_documentation_link <title> <fileOrUrl> page 10–4

get_module_assignment <moduleName> page 10–7

get_module_assignments page 10–5

get_module_ports page 10–5

get_module_properties page 10–6

get_module_property <propertyName> page 10–6

package <require> -exact qsys <version> page 10–6

send_message <messageLevel> <messageText> page 10–7

set_module_assignment <moduleName> [value] page 10–7

set_module_property <propertyName> <propertyValue> page 10–8

Parameters

add_parameter <parameterName> <parameterType> [<defaultValue> <description>] page 10–9

decode_address_map <address_map_XML_string> page 10–10

get_parameters page 10–11

get_parameter_properties page 10–12

get_parameter_property <parameterName> <propertyName> page 10–12

get_parameter_value <parameterName> page 10–12

get_string <identifier> page 10–13

load_strings <fileName> page 10–13

set_parameter_property <parameterName> <propertyName> <value> page 10–12

set_parameter_value <parameterName> <value> page 10–12

Display Items

add_display_item <groupName> <id> <type> [<additionalInfo>] page 10–20

get_display_items page 10–22
Quartus II Handbook Version 13.1 November 2013 Altera Corporation
Volume 1: Design and Synthesis

Chapter 10: Component Interface Tcl Reference 10–3
Command Summary
get_display_item_properties page 10–22

get_display_item_property <itemName> <propertyName> page 10–22

set_display_item_property <itemName> <propertyName> <value> page 10–23

Interfaces and Ports

add_interface <interfaceName> <interfaceType> <direction>
[<associatedClock>] page 10–24

add_interface_port <interfaceName> <portName> <portRole> [<direction>
<width_expr>]

page 10–25

get_interfaces <interfaceName> page 10–25

get_interface_assignment <interfaceName> <name> page 10–26

get_interface_assignments page 10–26

get_interface_ports [<interfaceName>] page 10–26

get_interface_property <interfaceName> <propertyName> page 10–27

get_port_properties page 10–28

get_port_property <portName> <propertyName> page 10–28

set_interface_assignmet <interfaceName> <name> [<value>] page 10–26

set_interface_property <interfaceName> <propertyName> <value> page 10–29

set_port_property <portName> <propertyName> [<value>] page 10–30

Composition

add_connection <startInterface> <endInterface>[<type>] page 10–32

get_connections page 10–33

get_connection_parameters <instanceName> page 10–33

get_connection_parameter <connectionName> <parameterName> page 10–33

add_instance <instanceName> <instanceType> <version> page 10–32

get_instance_interfaces <instanceName> page 10–34

get_instance_interface_ports <instanceName> <portName> page 10–34

get_instance_interface_properties <instanceName> <interfaceName> page 10–34

get_instance_property <instance> <property> page 10–35

set_instance_property <instance> <property> <value> page 10–35

get_instance_properties page 10–36

get_instance_interface_property <instanceName> <interfaceName>
<propertyName>

page 10–35

get_instances page 10–34

get_instance_parameters <instanceName> page 10–36

get_instance_parameter_value <instanceName> <parameterName> page 10–38

get_instance_parameter_properties <instanceName> <parameterName> page 10–34

get_instance_parameter_property <instanceName> <parameterName>
<propertyName>

page 10–37

get_instance_port_property <instanceName> <interfaceName>
<propertyName>

page 10–39

Table 10–1. Command Summary (1) (Part 2 of 3)

Command Full Description
November 2013 Altera Corporation Quartus II Handbook Version 13.1
Volume 1: Design and Synthesis

10–4 Chapter 10: Component Interface Tcl Reference
Module Definition
Module Definition
This section provides information about the commands that you use to define and
query a module.

add_documentation_link
This command allows you to link to documentation for your component.

set_connection_parameter_value <connectionName> <parameterName>
<parameterValue>

page 10–39

set_instance_parameter_value <instanceName> <parameterName>
<parameterValue>

page 10–40

Fileset Generation

add_fileset <filesetName> <filesetKind> <callbackProcName> [<displayName>] page 10–40

add_fileset_file <fileDestination> <fileKind> <fileSource> <contentsOrPath>
[<attributes>]

page 10–42

set_fileset_property <fileset> <property> <value> page 10–42

get_fileset_file_attribute <output_file> <attribute> page 10–43

set_fileset_file_attribute <output_file> <attribute> <value> page 10–44

get_fileset_sim_properties <fileset> <platform> <property> page 10–44

set_fileset_sim_properties <fileset> <platform> <property> <value> page 10–44

create_temp_file <fileName> page 10–45

Miscellaneous page 10–45

check_device_family_equivalence <device_family> <device_family_list> page 10–45

get_device_family_displayname <device_family> page 10–45

set_qip_strings <qip_strings> page 10–46

Note to Table 10–1:

(1) Arguments enclosed in []’s are optional

Table 10–1. Command Summary (1) (Part 3 of 3)

Command Full Description

add_documentation_link

Callback
availability global

Usage add_documentation_link filename <title> <fileOrUrl>

Returns none

Arguments
title The title of the document for use on menus and buttons.

fileOrUrl
A path to the component documentation, using a syntax that provides the entire
URL, not a relative path. For example: http://www.mydomain.com/my_
memory_controller.html or file:///datasheet.txt.

Example
add_documentation_link "Avalon Verification IP Suite User Guide" \

http://www.altera.com/literature/ug/ug_avalon_verification_ip.pdf
Quartus II Handbook Version 13.1 November 2013 Altera Corporation
Volume 1: Design and Synthesis

Chapter 10: Component Interface Tcl Reference 10–5
Module Definition
get_module_assignment
This command returns the value of an assignment. You can use the
get_module_assignment and set_module_assignment and the
get_interface_assignment and set_interface_assignment commands to provide
information about hardware components to embedded software tools and
applications.

get_module_assignments
This command returns names of the module assignments.

get_module_ports
This command returns a list of the names of all the ports that are currently defined.

get_module_assignment

Callback
availability global, elaboration, composition

Usage get_module_assignment <name>

Returns string

Arguments name The name of the assignment whose value is being retrieved

Example get_module_assignment embeddedsw.CMacro.colorSpace

get_module_assignments

Callback
availability global, elaboration, composition

Usage get_module_assignments

Returns string

Arguments None

Example get_module_assignments

get_module_ports

Callback
availability global, elaboration, generation

Usage get_module_ports

Returns string

Example get_module_ports
November 2013 Altera Corporation Quartus II Handbook Version 13.1
Volume 1: Design and Synthesis

10–6 Chapter 10: Component Interface Tcl Reference
Module Definition
get_module_properties
This command returns the names of all the available module properties as a list of
strings. You can use the get_module_property and set_module_property commands
to get and set values of individual properties. The value returned by this command is
always the same for a particular version of Qsys.

get_module_property
This command returns the value of a single module property.

package
The package command allows you to specify a particular version of the Qsys software
to avoid software compatibility issues. You must use the package command at the
beginning of your _hw.tcl file. The package determines which version of the _hw.tcl
API to use for this component.

1 This document describes the behavior of components which start with
package require -exact qsys 13.1 For earlier versions of the _hw.tcl commands,
refer to the documentation for that release. If you do not request a package, you get
_hw.tcl commands compatible with Quartus II version 9.0.

get_module_properties

Callback
availability global, elaboration, generation, composition

Usage get_module_properties

Returns list of strings

Arguments None

Example get_module_properties

get_module_property

Callback
availability global, elaboration, fileset, composition

Usage get_module_property <propertyName>

Returns string, boolean, file

Arguments propertyName “Module Properties”

Example set my_name [get_module_property NAME]

package

Callback
availability global (before any other commands in the file)

Usage package require -exact qsys <version>

Returns None

Arguments version The version of Qsys that you require, such as 13.1.

Example package require -exact qsys 13.1
Quartus II Handbook Version 13.1 November 2013 Altera Corporation
Volume 1: Design and Synthesis

Chapter 10: Component Interface Tcl Reference 10–7
Module Definition
send_message
This command sends a message to the user of the component. The message text is
normally interpreted as HTML. The element can be used to provide emphasis. If
you do not want the message text to be interpreted as HTML, then pass a list such as
{info text} as the message level.

set_module_assignment
This command sets the value of the specified assignment.

send_message

Callback
availability global, elaboration, fileset, composition

Usage send_message <messageLevel> <messageText>

Returns None

Arguments
messageLevel

The following message levels are supported:

■ Error—Provides an error message. The Qsys system cannot be generated
with existing error messages.

■ Warning—Provides a warning message.

■ Info—Provides an informational message.

■ Progress—Reports progress during generation.

■ Debug—Provides messages when debug mode is enabled.

messageText The text of the message.

set_module_assignment

Callback
availability global, elaboration, composition

Usage set_module_assignment <name> [<value>]

Returns None

Arguments
name The assignment whose value is being set.

value The value of the assignment.

Example set_module_assignment embeddedsw.CMacro.colorSpace CMYK
November 2013 Altera Corporation Quartus II Handbook Version 13.1
Volume 1: Design and Synthesis

10–8 Chapter 10: Component Interface Tcl Reference
Module Definition
set_module_property
This command allows you to set the values for module properties.

add_hdl_instance
This command adds an instance of a predefined module, referred to as a child or child
instance, and returns the fixed entity name of the added instance. The HDL entity
generated from this instance can be instantiated and connected within this
component's HDL.

Module Properties Table
Table 10–2 lists the available module properties, their use, and the phases in which
they can be set.

set_module_property

Callback
availability global

Usage set_module_property <propertyName> <propertyValue>

Returns None

Arguments
propertyName “Module Properties”

propertyValue The new value of the property.

Example set_module_property VERSION 13.1

add_hdl_instance

Callback
availability global, elaboration

Usage add_hdl_instance <entity_name> <ip_core_type> [<version>]

Returns string - The entity name of the added instance.

Arguments

entity_name
Specifies a unique local name that you can use to manipulate the instance. This
name is used in the generated HDL to identify the instance.

ip_core_type
The type refers to a kind of instance available in a library, for example
altera_avalon_uart.

version
Optional. The required version of the specified instance type. If no version is
specified, the latest version is used.

Examples add_hdl_instance my_uart altera_avalon_uart

Table 10–2. Module Properties (Part 1 of 2)

Property Name Property
Type Can Be Set Description

AUTHOR string global The module’s author.

COMPOSITION_CALLBACK string string
The name of the composition callback. If you
define a composition callback, you cannot
define the generation or elaboration callbacks.

DESCRIPTION string global The description of the module, such as
“Example Qsys Module.”
Quartus II Handbook Version 13.1 November 2013 Altera Corporation
Volume 1: Design and Synthesis

Chapter 10: Component Interface Tcl Reference 10–9
Parameters
Parameters
Parameters allow users of your component to affect its operation in the same manner
as Verilog HDL parameters or VHDL generics.

add_parameter
This command adds a parameter to your component. Most of the parameter types are
found in the C programming language or HDL. However, the string_list and
integer_list parameters that are used to create tables in GUIs require some
explanation.

■ When you add a parameter of type string_list or integer_list, the parameter is
displayed in a single-column table that can add or remove items in the list.

DISPLAY_NAME string global The name to display when referencing the
module, such as “My Component.”

EDITABLE boolean global Indicates whether you can edit the component
in the Component Editor.

ELABORATION_CALLBACK string global

The name of the elaboration callback.When set,
the component's elaboration callback is called
to validate and elaborate interfaces for
instances of the component.

GROUP string global The group in the Component Library that
includes this component.

ICON_PATH string global A path to an icon to display in the module’s
parameter editor.

INTERNAL boolean global

A component which is marked as internal does
not appear in the Qsys component library. This
feature allows you to hide the submodules of a
larger composed component.

NAME string global The name of the module, such as
my_component.

OPAQUE_ADDRESS_MAP string global

For composed components created using a
_hw.tcl file that include children that are
memory-mapped slaves; specifies whether the
children’s addresses are visible to downstream
software tools. When true, the children’s
address are not visible. When false, the
children’s addresses are visible.

VERSION string global The module’s version, such as 13.1.

Table 10–2. Module Properties (Part 2 of 2)

Property Name Property
Type Can Be Set Description
November 2013 Altera Corporation Quartus II Handbook Version 13.1
Volume 1: Design and Synthesis

10–10 Chapter 10: Component Interface Tcl Reference
Parameters
■ If you add multiple parameters of type string_list or integer_list to the same
group, and add the group with a TABLE hint, the entire group is displayed as a
multi-column table. Example 10–1 illustrates the use of the integer_list
parameter types to create a multi-column table.

decode_address_map
This utility function converts an XML–formatted address map into a list of Tcl lists.
Each inner list is in the correct format for conversion to an array. The XML code
describing each slave includes: its name, start address, and end address + l.
Figure 10–1 shows a portion of a Qsys system with three slave devices.

Example 10–2 shows the XML code that describes the address map for the master that
accesses these slaves. The format of the XML string provided may differ from that
described here; it may have different white space between the elements and could
include additional attributes or elements. Using the decode_address_map command to
decode the XML representing an master’s address map is easier and ensures that your
code will work with future versions of the XML address map.

Example 10–1. Creating Tables Using the string_list and integer_list Parameter Types

add_parameter names STRING_LIST
add_parameter counts INTEGER_LIST

add_display_item "" myTable GROUP TABLE
add_display_item myTable names PARAMETER
add_display_item myTable counts PARAMETER

add_parameter

Callback
availability global

Usage add_parameter <parameterName> <parameterType> [<defaultValue> <description>]

Returns string

Arguments

parameterName A name that you, the component author, choose for your parameter.

parameterType
The following types are supported: integer, natural, positive,
boolean, float, long, std_logic, std_logic_vector, string,
string_list, and integer_list.

defaultValue The value for this parameter if the parameter's value is never explicitly set.

description Explains the use of the parameter.

Example add_parameter seed integer 17 "The seed to use for data generation."

Figure 10–1. Qsys System with Three Avalon-MM Slaves
Quartus II Handbook Version 13.1 November 2013 Altera Corporation
Volume 1: Design and Synthesis

Chapter 10: Component Interface Tcl Reference 10–11
Parameters
1 Altera recommends that you use the code provided in the description of
Example 10–2 to enumerate over the components within an address map, rather than
writing your own parser.

get_parameters
This command returns the names of all parameters that have been previously defined
by add_parameter as a space-separated list.

Example 10–2. Address Map for Master

<address-map>

 <slave name='ext_ssram' start='0x01000000' end='0x01200000' />

<slave name='sys_clk_timer' start='0x02120800' end='0x02120820' />

<slave name='sysid' start='0x021208B8' end='0x021208C0' />

</address-map>

decode_address_map

Callback
availability elaboration, generation, composition

Usage decode_address_map <address_map_XML_string>

Returns List of Tcl lists, each one suitable for passing to array set

Arguments address_map_
XML_string

An XML string describing the address map of a master.

Example

set address_map_xml [get_parameter_value my_map_param]
set address_map_dec [decode_address_map $address_map_xml]
foreach i $address_map_dec {

array set info $i
send_message info "Connected to slave $info(name)"

}

get_parameters

Callback
availability global, elaboration, fileset, composition

Usage get_parameters

Returns list of strings

Arguments None

Example set parameter_summary [get_parameters]
November 2013 Altera Corporation Quartus II Handbook Version 13.1
Volume 1: Design and Synthesis

10–12 Chapter 10: Component Interface Tcl Reference
Parameters
get_parameter_properties
This command returns a list of all the available parameter properties as a list of
strings. The get_parameter_property and set_parameter_property commands are
used to get and set the values of these properties, respectively.

get_parameter_property
This command returns a single parameter property.

get_parameter_value
This command returns the current value of a parameter defined previously with the
add_parameter command.

get_parameter_properties

Callback
availability global, elaboration, fileset, composition

Usage get_parameter_properties

Returns list of strings

Arguments None

Example set property_summary [get_parameter_properties]

get_parameter_property

Callback
availability global, elaboration, fileset, composition

Usage get_parameter_property <parameterName> <propertyName>

Returns string, boolean, or units, depending on property value.

Arguments
parameterName The name of the parameter whose property value is being retrieved.

propertyName “Parameter Properties”

Example get_parameter_property parameter1 GROUP

get_parameter_value

Callback
availability elaboration (1), fileset, composition

Usage get_parameter_value <parameterName>

Returns string

Arguments parameterName Specifies the parameter that is being retrieved.

Example set fifo_width [get_parameter_value fifo_width]

Note:

(1) If AFFECTS_ELABORATION=false for a given parameter, get_parameter_value is not available for that parameter from the elaboration
callback. If AFFECTS_GENERATION=false then it is not available from the generation callback.
Quartus II Handbook Version 13.1 November 2013 Altera Corporation
Volume 1: Design and Synthesis

Chapter 10: Component Interface Tcl Reference 10–13
Parameters
get_string
This command returns the value of an externalized string previously loaded by the
load_strings command.

load_strings
This command loads strings from an external .properties file. The format of the
properties file is in the Java Properties File format.

Example 10–3. get_string

package require -exact qsys <version>

load_strings test.properties

set_module_property NAME test
set_module_property VERSION [get_string VERSION]
set_module_property DISPLAY_NAME [get_string DISPLAY_NAME]

add_parameter firepower INTEGER 0 ""
set_parameter_property firepower DISPLAY_NAME [get_string PARAM_DISPLAY_NAME]
set_parameter_property firepower TYPE INTEGER
set_parameter_property firepower DESCRIPTION [get_string PARAM_DESCRIPTION]

DISPLAY_NAME = Trogdor!
VERSION = 1.0
PARAM_DISPLAY_NAME = Firepower
PARAM_DESCRIPTION = The amount of force to use when breathing fire.

get_string

 Availability any

Usage get_string <identifier>

Returns string

Arguments identifier

Example get_string MY_STRING

Example 10–4. load_strings

package require -exact qsys 12.1

load_strings test.properties

set_module_property NAME test
set_module_property VERSION [get_string VERSION]
set_module_property DISPLAY_NAME [get_string DISPLAY_NAME]

add_parameter firepower INTEGER 0 ""
set_parameter_property firepower DISPLAY_NAME [get_string PARAM_DISPLAY_NAME]
set_parameter_property firepower TYPE INTEGER
set_parameter_property firepower DESCRIPTION [get_string PARAM_DESCRIPTION]

DISPLAY_NAME = Trogdor!
VERSION = 1.0
PARAM_DISPLAY_NAME = Firepower
PARAM_DESCRIPTION = The amount of force to use when breathing fire.
November 2013 Altera Corporation Quartus II Handbook Version 13.1
Volume 1: Design and Synthesis

http://docs.oracle.com/javase/7/docs/api/java/util/Properties.html#load(java.io.Reader)

10–14 Chapter 10: Component Interface Tcl Reference
Parameters
set_parameter_property
This command sets a single parameter property.

set_parameter_value
This command sets a parameter value. The values of derived parameters can be set
from the elaboration callback.

load_strings

availability any

Usage load_strings <path>

Returns none

Arguments path

Example load_strings_my_externalized_strings.properties

set_parameter_property

Callback
availability global, elaboration, composition

Usage set_parameter_property <parameterName> <propertyName> <value>

Returns string, boolean, or units depending on property

Arguments

parameterName Specifies the parameter that is being set.

propertyName “Parameter Properties”

value The new value for the property.

Example set_parameter_property BAUD_RATE ALLOWED_RANGES {9600 19200 38400}

set_parameter_value

Callback
availability elaboration, composition

Usage set_parameter_value <parameterName> <value>

Returns None

Arguments
parameterName Specifies the parameter that is being set.

value Specifies the value of parameterName.

Example set_parameter_value BAUD_RATE 19200
Quartus II Handbook Version 13.1 November 2013 Altera Corporation
Volume 1: Design and Synthesis

Chapter 10: Component Interface Tcl Reference 10–15
Parameters
Parameter Properties Table
Table 10–3 describes the properties available to describe the behaviors of each of the
parameters you can specify, their use, and when they can be set.

Table 10–3. Parameter Properties (Part 1 of 3)

Property Name Type/
Default Can Be Set Description

AFFECTS_ELABORATION boolean, true global

Set AFFECTS_ELABORATION to false for parameters
that do not affect the external interface of the module.
An example of a parameter that does not affect the
external interface is isNonVolatileStorage. An
example of a parameter that does affect the external
interface is width. When the value of a parameter
changes, if that parameter has set
AFFECTS_ELABORATION=false, the elaboration phase
(calling the callback or hardware analysis) is not
repeated, improving performance. Because the default
value of AFFECTS_ELABORATION is true, the provided
HDL file is normally re-analyzed to determine the new
port widths and configuration every time a parameter
changes.

AFFECTS_GENERATION
boolean, refer to
description global

The default value of AFFECTS_GENERATION is false if
you provide a top-level HDL module; it is true if you
provide a fileset callback. Set AFFECTS_GENERATION to
false if the value of a parameter does not change the
results of fileset generation.

AFFECTS_VALIDATION
boolean, refer to
description global

The AFFECTS_VALIDATION property marks whether a
parameter's value is used to set derived parameters,
and whether the value affects validation messages.
When set to false, this may improve response time in
the parameter editor UI when the value is changed. The
default value is true.

ALLOWED_RANGES string,"" global

Indicates the range or ranges that the parameter value
can have. For integers, The ALLOWED_RANGES property
is a list of ranges that the parameter can take on, where
each range is a single value, or a range of values
defined by a start and end value separated by a colon,
such as 11:15. This property can also specify legal
values and display strings, such as {0:None
1:Monophonic 2:Stereo 4:Quadrophonic} meaning
0,1,2,4 are the legal value, and None, Monophonic,
Stereo, and Quadrophonic are the values shown in the
GUI.

DEFAULT_VALUE string, boolean global The default value.

DERIVED boolean, false elaboration
callback

When true, indicates that this parameter's value is
computed by the component during elaboration or
composition callback. The default value is false.
November 2013 Altera Corporation Quartus II Handbook Version 13.1
Volume 1: Design and Synthesis

10–16 Chapter 10: Component Interface Tcl Reference
Parameters
DESCRIPTION

LONG_DESCRIPTION
string, "" global

DESCRIPTION—A tooltip description of the parameter
that appears in the parameter editor.

LONG_DESCRIPTION—A description of the parameter
that appears in a popup dialog box when you click
Documentation in the parameter editor.

If LONG_DESCRIPTION is not set, then DESCRIPTION
appears in the documentation window.

DISPLAY_NAME string,"" global The GUI label that identifies the parameter.

DISPLAY_UNITS string, "" global The GUI label that describes the units that the
parameter's value represents, such as “Megabytes”.

ENABLED boolean, true

global

elaboration
callback

When false, the parameter is disabled, meaning that it
is displayed, but greyed out, indicating that it is not
editable on the parameter editor.

HDL_PARAMETER boolean,false global When true, the parameter must be passed to the HDL
component description. The default value is false.

NEW_INSTANCE_VALUE string, "" global

This property allows you to change the default value of
a parameter without affecting older components that
have assigned a default value to this parameter using
the defaultValue argument. The practical result is
that older instances of the component will continue to
use defaultValue for the parameter and newer
instances can use the value assigned by
NEW_INSTANCE_VALUE.

SYSTEM_INFO string, "" global

Allows you to assign information about the instantiating
system to a parameter. A SYSTEM_INFO property
requires an argument specifying the type of information
requested, <info-type>. <info-type> may also
take an argument. The syntax of the Tcl command is:

set_parameter_property my_parameter
SYSTEM_INFO <info-type> [<arg>]

Refer to “SYSTEM_INFO Types” on page 10–18 for
descriptions of the <info_type> argument. You can
use the SYSTEM_INFO property to set the
SYSTEM_INFO_TYPE and SYSTEM_INFO_ARG
properties at the same time.

SYSTEM_INFO_ARG string, "" global Defines an argument to be passed to a particular
SYSTEM_INFO function.

SYSTEM_INFO_TYPE various global Specifies one of the types of information listed in
“SYSTEM_INFO Types” on page 10–18.

TYPE string, "" global

Specifies one of the following types: INTEGER,
NATURAL, POSITIVE, BOOLEAN, STD_LOGIC,
STD_LOGIC_VECTOR, STRING, STRING_LIST,
INTEGER_LIST, LONG, or FLOAT.

Table 10–3. Parameter Properties (Part 2 of 3)

Property Name Type/
Default Can Be Set Description
Quartus II Handbook Version 13.1 November 2013 Altera Corporation
Volume 1: Design and Synthesis

Chapter 10: Component Interface Tcl Reference 10–17
Parameters
UNITS string, "" global

Sets the units of the parameter. The following values
are possible:

■ NONE

■ ADDRESS

■ BITS

■ BITSPERSECOND

■ BYTES

■ CYCLES

■ GIGABYTES

■ GIGABITSPERSECOND

■ GIGAHERTZ

■ HERTZ

■ KILOBYTES

■ KILOHERTZ

■ KILOBITSPERSECOND

■ MEGABYTES

■ MEGABITSPERSECOND

■ MEGAHERTZ

■ MICROSECONDS

■ MILLISECONDS

■ NANOSECONDS

■ PERCENT

■ PICOSECONFDS

■ SECONDS

For example, set_parameter_property frequency
UNITS GIGAHERTZ.

1 You can use DISPLAY_UNITS to define
an alternate UNIT description.

VISIBLE boolean, true

global

elaboration
callback

Indicates whether or not to display the parameter in the
parameterization GUI.

WIDTH string, "" global For a STD_LOGIC_VECTOR parameter, this indicates the
width of the logic vector.

Table 10–3. Parameter Properties (Part 3 of 3)

Property Name Type/
Default Can Be Set Description
November 2013 Altera Corporation Quartus II Handbook Version 13.1
Volume 1: Design and Synthesis

10–18 Chapter 10: Component Interface Tcl Reference
Parameters
SYSTEM_INFO Properties Table
Table 10–4 describes the properties that you can use with the SYSTEM_INFO parameter
property.

Table 10–4. SYSTEM_INFO Types (Part 1 of 2)

SYSTEM_INFO Type Type of
Parameter Description

ADDRESS_MAP string

Assigns an XML-formatted string describing the address map to the
parameter you specify.

set_parameter_property <my_parameter> SYSTEM_INFO
{ADDRESS_MAP <my_avalon-mm_master>}

ADDRESS_WIDTH integer

Assigns an integer to the parameter you specify that is the number of bits
an master must drive to address all of its slaves, using byte addresses.

set_parameter_property <my_parameter> SYSTEM_INFO
{ADDRESS_WIDTH <my_avalon-mm_master>}

AVALON_SPEC string
The version of the interconnect. Qsys interconnect uses Avalon
Specification 2.0.

CLOCK_DOMAIN integer

Assigns an integer representing the clock domain to the parameter you
specify. You can use this command to determine whether multiple
interfaces in your module are on the same clock domain. The absolute
value of the integer value is arbitrary, but if two interfaces are on the same
clock domain, the CLOCK_DOMAIN value is guaranteed to be the same and
greater than zero.

set_parameter_property <my_parameter> SYSTEM_INFO
{CLOCK_DOMAIN <my_clk>}

CLOCK_RATE
integer,
string

Assigns a positive number, which is the clock frequency in Hz to the clock
input interface you specify. Assigns 0 if the clock rate is not known.

set_parameter_property <my_parameter> SYSTEM_INFO
{CLOCK_RATE <my_clk>}

CLOCK_RESET_INFO string
Specifies the name of the module’s clock or reset sink interface. (Specifies
the clock sink interface for designs that use a global reset.)

CUSTOM_INSTRUCTION_
SLAVES

string
Provides custom instruction slave information, including the name, base
address, address span, and clock cycle type.

DESIGN_ENVIROMNMENT string A string that identifies the current design environment, NATIVE or QSYS.

DEVICE string The device part number of the currently selected device.

DEVICE_FAMILY string

Assigns the family name (not the specific device part number) of the
currently selected device to the parameter you specify.

set_parameter_property <my_parameter> SYSTEM_INFO
{DEVICE_FAMILY}

DEVICE_FEATURES string

Creates a list of key/value pairs delineated by spaces indicating whether a
particular device feature is available in the currently selected device family.
The format of the list is suitable for passing to the Tcl array set
command. This list is assigned to the parameter you specify. The following
features are supported: M512_MEMORY, M4K_MEMORY, M9K_MEMORY,
M144K_MEMORY, MRAM_MEMORY, MLAB_MEMORY, ESB, DSP, and EMUL.

set_parameter_property <my_parameter> SYSTEM_INFO
{DEVICE_FEATURES}

DEVICE_SPEEDGRADE string The speed grade of the currently selected device.
Quartus II Handbook Version 13.1 November 2013 Altera Corporation
Volume 1: Design and Synthesis

Chapter 10: Component Interface Tcl Reference 10–19
Parameters
GENERATION_ID integer An integer that stores a hash of the generation time that Qsys uses as a
unique ID for a generation run.

INTERRUPTS_USED
integer,
string

Creates a mask indicating which bits of the interrupt receiver vector are
connected to an interrupt sender. This mask is assigned to the parameter
you specify. You can use this interrupt mask to optimize logic that handles
interrupts.

set_parameter_property <my_parameter> SYSTEM_INFO
(INTERRUPTS_USED <my_interrupt_receiver>}

MAX_SLAVE_DATA_WIDTH integer

Assigns an integer to the parameter you specify that is the data width of the
widest slave connected to the specified master.

set_parameter_property <my_parameter> SYSTEM_INFO
{MAX_SLAVE_DATA_WIDTH <my_avalon_mm_master>}

QUARTUS_INI

string

boolean

integer

The value of the quartus.ini setting specified in the system info argument.

RESET_DOMAIN integer

Assigns an integer representing the reset domain to the parameter you
specify. You can use this command to determine whether multiple
interfaces in your module are on the same reset domain. The absolute
value of the integer value is arbitrary, but if two interfaces are on the same
reset domain, the RESET_DOMAIN value is guaranteed to be the same and
greater than zero.

set_parameter_property <my_parameter> SYSTEM_INFO
{RESET_DOMAIN <my_reset>}

TRISTATECONDUIT_MASTERS string
Specifies the name or names of the module’s interfaces that are tri-state
conduit slaves.

TRISTATECONDUIT_INFO string

Returns an XML string containing information about the Avalon-TC
masters connected to the specified Avalon-TC slave interface on a given
component. The returned string may include all of the following
information:

■ The Avalon-TC slave interface name

■ The Avalon-TC master module and interface names

■ The Avalon-TC signal names, directions, and widths

The argument to SYSTEM_INFO_ARG is a regular expression that specifies
the interface or interfaces of interest. The following example returns an
XML string named TC_slave_info for TC slave interface named
CFI_FLASH.uas:

add_parameter TC_slave_info string "”

set_parameter_property TC_slave_info SYSTEM_INFO_TYP
TRISTATECONDUIT_INFO

set_parameter_property TC_slave_info SYSTEM_INFO_ARG
“uas”

To retrieve information about all the slave interfaces on a module substitute
“*” for the interface name, as the following example illustrates:

set_parameter_property TC_slave_info SYSTEM_INFO_ARG “*”

UNIQUE_ID string A string guaranteed to be unique to this module.

Table 10–4. SYSTEM_INFO Types (Part 2 of 2)

SYSTEM_INFO Type Type of
Parameter Description
November 2013 Altera Corporation Quartus II Handbook Version 13.1
Volume 1: Design and Synthesis

10–20 Chapter 10: Component Interface Tcl Reference
Display Items
Display Items
You specify your component GUI using the display commands.

add_display_item
You can use this command to specify the following aspects of component display:

■ You can create logical groups for a component’s parameters. For example, you
might want to create separate groups for the component’s timing, size, and
simulation parameters. A component displays the groups and parameters in the
order that you specify the display items for them in the _hw.tcl file.

■ You can create multicolumn tables to present a component’s parameters. Refer to
“Creating Tables Using the string_list and integer_list Parameter Types” on
page 10–10 for an example that illustrates multicolumn tables.

■ You can specify an image to provide a pictorial representation of a parameter or
parameter group.

■ You can create a button by adding a display item of type action. The display item
includes the name of the callback to run when the action is performed.

■ You create a display group by adding display items to it.
Quartus II Handbook Version 13.1 November 2013 Altera Corporation
Volume 1: Design and Synthesis

Chapter 10: Component Interface Tcl Reference 10–21
Display Items
add_display_item

Callback
availability global

Usage add_display_item <groupName> <id> <type> [<additionalInfo>]

Returns string

Arguments

groupName Specifies the group to which a display item belongs.

id
Specifies the parameter or icon to be displayed in a group. Each display item
associated with a component must have a different ID.

type

Specifies the category of the display item. The following types are defined:

■ icon–a .gif, .jpg, or .png file

■ parameter–a parameter in the instance

■ text–a block of text

■ group–a group. If the groupName is also defined, the new group is a child of
the groupName group. If groupName is an empty string, the group is
top-level.

■ action–an action defined by a callback procedure when you click the button
labeled by actionName.

additionalInfo

Provides extra information required for display items. The following examples
illustrate how you use the additionalInfo argument for the various types:

■ add_display_item groupName id icon path-to-image-file

■ add_display_item groupName parameterName parameter
(additionalInfo not required)

■ add_display_item groupName id text "your-text"
The your-text argument is a block of text that is displayed in the GUI. Some
simple HTML formatting is allowed, such as and <i>, if the text starts
with "html>".

■ add_display_item parentGroupName childGroupName group
[tab]
The tab is an optional parameter. If present, the group appears in separate
tab in the GUI for the instance.

■ add_display_item parentGroupName actionName action
buttonClickCallbackProc

Examples
add_display_item timing read_latency parameter

add_display_item sound speaker icon speaker.jpg
November 2013 Altera Corporation Quartus II Handbook Version 13.1
Volume 1: Design and Synthesis

10–22 Chapter 10: Component Interface Tcl Reference
Display Items
get_display_items
This command returns a list of all items to be displayed as part of the
parameterization GUI.

get_display_item_properties
This command returns a list of properties that can be set on display items.

get_display_item_property
This command returns the value of a property that can be set on a display item.

get_display_items

Callback
availability global, elaboration, fileset, composition

Usage get_display_items

Returns list of strings

Arguments None

Example get_display_items

get_display_item_properties

Callback
availability global

Usage get_display_item_properties

Returns list of strings

Arguments None

Example get_display_item_properties

get_display_item_property

Callback
availability global

Usage get_display_item_property <itemName> <propertyName>

Returns string

Arguments
itemName The name of the display item whose property value is being retrieved.

propertyName The property whose value is being retrieved.

Example set my_label [get_display_item_property my_action DISPLAY_NAME]
Quartus II Handbook Version 13.1 November 2013 Altera Corporation
Volume 1: Design and Synthesis

Chapter 10: Component Interface Tcl Reference 10–23
Display Items
set_display_item_property
This command sets the value of a property of a display item that is part of the
parameterization GUI.

Display Item Properties Table

set_display_item_property

Callback
availability global

Usage set_display_item_property <itemName> <propertyName> <value>

Returns string

Arguments

itemName The name of the display item whose property value is being set.

propertyName The property whose value is being set.

value The value to set.

Example
set_display_item_property my_action DISPLAY_NAME “Click Me”

set_display_item_property my_action DESCRIPTION “clicking this button runs the
click_me_callback procedure in the hw.tcl file”

Table 10–5. Display Items Properties (Part 1 of 2)

Property Name Type Default Can Be Set Description

DESCRIPTION string global For an ACTION display item, updates the
description /tooltip for the action button.

DISPLAY_HINT string,"" global

Provides a hint about how to display a
parameter. The following values are possible:

■ boolean—for integer parameters whose
value can be 0 or 1. The parameter displays
as an option that you can turn on or off.

■ radio—displays a parameter with a list of
values as radio buttons instead of a drop-
down list.

■ hexadecimal—for integer parameters,
display and interpret the value as a
hexadecimal number, for example:
0x00000010 instead of 16.

■ fixed_size—if the parameter is displayed
in a table, the fixed_size DISPLAY_HINT
eliminates the add and remove buttons from
tables.

ENABLED boolean true
global

elaboration
callback

You can be use this property to enable or disable
PARAMETER, GROUP, and ACTION display
items. For a GROUP display item, this enables or
disables all items in the group.

GROUP string, "" global Controls the grouping of parameters in GUI.

PATH string global
For an ICON display item, updates path to the
file for the displayed graphics, and allows the
image to be switched dynamically.
November 2013 Altera Corporation Quartus II Handbook Version 13.1
Volume 1: Design and Synthesis

10–24 Chapter 10: Component Interface Tcl Reference
Interfaces and Ports
Interfaces and Ports
You can use the interface and port commands to define interfaces and ports and
retrieve their properties.

add_interface
This command adds an interface to your module. As the component author, you
choose the name of the interface. By default, interfaces are enabled. You can set the
interface property ENABLED to false to disable a component interface. If an interface is
disabled, it is hidden and its ports are automatically terminated to their default
values. Active high signals are terminated to 0, and active low signals are terminated
1.

TEXT string

global

elaboration
callback

For a TEXT display item, updates the displayed
text to some new text. You can use a TEXT
display item as a replacement for derived
parameters to display text to users; provides a
cleaner UI and reduces clutter when authoring
parameters.

VISIBLE boolean true
global

elaboration
callback

Makes PARAMETER, ICON, GROUP, TEXT, and
ACTION display items visible or hidden. For a
GROUP display item, shows or hides all items in
the group.

Table 10–5. Display Items Properties (Part 2 of 2)

Property Name Type Default Can Be Set Description

add_interface (Part 1 of 2)

Callback
availability global, elaboration callback, elaboration, composition

Usage add_interface <interfaceName> <interfaceType> <direction>

Returns string

Arguments

interfaceName A name that you choose to identify an interface.

interfaceType and
direction

There are seven interfaceTypes. The following directions are possible for
these interfaceTypes

Interface Type Direction

avalon master, slave (1)

axi master, slave

tristate_conduit master, slave

avalon_streaming source, sink

interrupt sender, receiver

conduit end

clock source, sink

reset source,sink

nios_custom_instruction slave
Quartus II Handbook Version 13.1 November 2013 Altera Corporation
Volume 1: Design and Synthesis

Chapter 10: Component Interface Tcl Reference 10–25
Interfaces and Ports
add_interface_port
This command adds a port to an interface on your module. The name must match the
name of a signal on the top-level module in the HDL of your component. The port
width and direction must be set by the end of the elaboration phase. The port width
can be set with one of the following mechanisms:

■ A variable-width expression can be set globally.

■ A constant width can be set globally, and updated in the elaboration callback.

get_interfaces
This command returns the names of all interfaces that have been previously defined
by add_interface as a space-separated list.

Example add_interface mm_slave avalon slave

Notes:

(1) The terms master, source, and start are interchangeable. The terms slave, sink, and end are interchangeable.

add_interface (Part 2 of 2)

add_interface_port

Callback
availability global, elaboration

Usage add_interface_port <interfaceName> <portName> <portRole> [<direction>
<width_expr>]

Returns string

Arguments

interfaceName The name of the interface to which the port belongs.

portName
The name of the port that matches a signal name on the top-level module in the
component's HDL files.

portRole
The role of this port within the interface. Port roles are referred to as signal
types in the Avalon Interface Specification. Refer to the Avalon Interface
Specifications for the signal types available for each interface type.

direction The direction can be input, output, or bidir.

width_expr
The port's width expression. In simple cases, this is just the width of the port in
bits.

Example add_interface_port mm_slave s0_rdata readdata output 32.

get_interfaces

Callback
availability global, elaboration, generation, composition

Usage get_interfaces

Returns list of strings

Arguments None

Example set all_interfaces [get_interfaces]
November 2013 Altera Corporation Quartus II Handbook Version 13.1
Volume 1: Design and Synthesis

http://www.altera.com/literature/manual/mnl_avalon_spec.pdf
http://www.altera.com/literature/manual/mnl_avalon_spec.pdf

10–26 Chapter 10: Component Interface Tcl Reference
Interfaces and Ports
get_interface_assignment
This command returns the value of the specified name for the specified interface.

get_interface_assignments
This command returns the value of all interface assignments for the specified
interface.

get_interface_ports
This command returns the names of all of the ports that have been added to a given
interface. If the interface name is omitted, all ports for all interfaces are returned.

get_interface_assignment

Callback
availability global, elaboration, composition

Usage get_interface_assignments <interfaceName> <name>

Returns string

Arguments
interfaceName The name of the interface whose assignment is being retrieved.

name The assignment whose value is being retrieved.

Example get_interface_assignment s1 embeddedsw.configuration.isFlash

get_interface_assignments

Callback
availability global, elaboration, composition

Usage get_interface_assignments <interfaceName>

Returns string

Arguments interfaceName The name of the interface whose assignment is being retrieved.

Example get_interface_assignments s1

get_interface_ports

Callback
availability global, elaboration, fileset

Usage get_interface_ports [<interfaceName>]

Returns string

Arguments interfaceName The name of the interface whose ports you want to list (optional).

Example get_interface_ports mm_slave
Quartus II Handbook Version 13.1 November 2013 Altera Corporation
Volume 1: Design and Synthesis

Chapter 10: Component Interface Tcl Reference 10–27
Interfaces and Ports
get_interface_properties
This command returns the names of all the available interface properties for the
specified interface as a space separated list.

f The properties available for each interface type are different. Refer to the Avalon
Interface Specifications for more information about interface properties. The interface
properties that are common to all interface types are listed below in “Interface
Properties” on page 10–30.

get_interface_property
This command returns the value of a single interface property from the specified
interface.

get_interface_properties

Callback
availability global, elaborations, composition

Usage get_interface_properties <interfaceName>

Returns list of strings

Arguments interfaceName The name of an interface that you defined.

Example get_interface_properties mm_slave

get_interface_property

Callback
availability global, composition, elaboration

Usage get_interface_property <interfaceName> <propertyName>

Returns string, boolean, or units, depending on property. Refer to “Interface Properties” on
page 10–30 and the Avalon Interface Specifications for more information.

Arguments
interfaceName The name of an interface from which you want to retrieve information.

propertyName The name of the property whose value you want to retrieve.

Example get_interface_property mm_slave readWaitTime
November 2013 Altera Corporation Quartus II Handbook Version 13.1
Volume 1: Design and Synthesis

http://www.altera.com/literature/manual/mnl_avalon_spec.pdf
http://www.altera.com/literature/manual/mnl_avalon_spec.pdf
http://www.altera.com/literature/manual/mnl_avalon_spec.pdf

10–28 Chapter 10: Component Interface Tcl Reference
Interfaces and Ports
get_port_properties
This command returns a list of all available port properties.

get_port_property
This command returns the value of single port property for the specified port.

get_port_properties

Callback
availability global, elaboration, fileset, composition

Usage get_port_properties <portName>

Returns string, boolean, or units, depending on property.

Arguments portName The name of the port whose properties are required. “Port Properties”

Example get_port_properties mm_slave

get_port_property

Callback
availability global, elaboration, fileset

Usage get_port_property <portName> <propertyName>

Returns Depends on the type of the property

Arguments
portName The name of the port.

propertyName “Port Properties”

Example get_port_property rdata WIDTH_VALUE
Quartus II Handbook Version 13.1 November 2013 Altera Corporation
Volume 1: Design and Synthesis

Chapter 10: Component Interface Tcl Reference 10–29
Interfaces and Ports
set_interface_assignment
This command sets the value of the specified assignment for the specified interface.

f For more information about the use of the set_interface_assignment command, refer
to the Publishing Component Information to Embedded Software chapter in the Nios II
Software Developer’s Handbook.

set_interface_property
This command sets a single interface property for an interface.

f The properties available for each interface type are different. The ENABLED property
applies to all interface types. Refer to the Avalon Interface Specifications for a
description of other properties.

set_interface_assignment

Callback
availability global, elaboration, composition

Usage set_interface_assignment <interfaceName> <name> [<value>]

Returns None

Arguments

interfaceName The name of the interface whose assignment is being set.

name The assignment whose value is being set.

value The value to assign.

Example set_interface_assignment s1 embeddedsw.configuration.isFlash 1

set_interface_property

Callback
availability global, compose, elaboration

Usage set_interface_property <interfaceName> <propertyName> <value>

Returns string

Arguments

interfaceName The name of an interface that includes this property.

propertyName The name of the property whose value you want to set (“Interface Properties”).

value The value to set for the specified property.

Example set_interface_property mm_slave linewrapBursts false
November 2013 Altera Corporation Quartus II Handbook Version 13.1
Volume 1: Design and Synthesis

http://www.altera.com/literature/manual/mnl_avalon_spec.pdf
http://www.altera.com/literature/hb/nios2/n2sw_nii5v2.pdf
http://www.altera.com/literature/hb/nios2/n2sw_nii5v2.pdf

10–30 Chapter 10: Component Interface Tcl Reference
Interfaces and Ports
set_port_property
This command sets a single port property.

Interface Properties Table

set_port_property

Callback
availability global, program, elaboration

Usage set_port_property <portName> <propertyName> [<value>]

Returns string, boolean, or units, depending on property.

Arguments

portName The name of the port.

propertyName “Port Properties”

value The value to set.

Example set_port_property rdata WIDTH_EXPR 32

Table 10–6. Interface Properties

Property Type Description

EXPORT_OF string

For composed _hwl.tcl files, the EXPORT_OF property
indicates which interface of a child instance is to be
exported through this interface. Before using this
command, you must have created the border interface
using add_interface. The interface to be exported is
of the form <instanceName.interfaceName>.

Example: set_interface_property CSC_input
EXPORT_OF my_colorSpaceConverter.input_port.

ENABLED boolean Specifies whether or not interface is enabled.

SVD_ADDRESS_GROUP <int> integer

<int> is the number of the address group. If two masters
with the same SVD_ADDRESS_GROUP group number and
one of the masters has a System View Description
(.svd) file associated with it, then all the slaves
connected to the second master are added to the
merged .svd file of the first master. Refer to
“set_interface_property” on page 10–29.

SVD_ADDRESS_OFFSET integer

Slaves connected to the master of name
<interface_name> are adjusted by the <offset>
number.Refer to “set_interface_property” on
page 10–29.

CMSIS_SVD_FILE <path_to_svd_file> string
The path to the .svd file.CMSIS_SVD_VARIABLES <list
of variables and values>. Type: list. Variable
substitutions used when writing out the .svd contents.

CMSIS_SVD_VARIABLES <list of variables
and values> list

Qsys uses Variable substitutions when writing the .svd
contents.
Quartus II Handbook Version 13.1 November 2013 Altera Corporation
Volume 1: Design and Synthesis

Chapter 10: Component Interface Tcl Reference 10–31
Interfaces and Ports
Port Properties Table

Table 10–7. Port Properties

Name Type Description

DIRECTION
input, output,
bidir

The direction of the port from the component’s perspective.

TERMINATION boolean

When true, instead of connecting the port to the Qsys system, it is
left unconnected for output and bidir or set to a fixed value for
input. Has no effect for components that implement a generation
callback instead of using the default wrapper generation.

TERMINATION_VALUE integer The constant value to drive an input port.

VHDL_TYPE
std_logic
std_logic_vector
auto

indicates the type of a VHDL port. The default value, auto, selects
std_logic if the width is fixed at 1, and std_logic_vector
otherwise.

WIDTH_VALUE integer
The width of the port in bits. Cannot be set directly. Any changes
must be set through the WIDTH_EXPR property.

WIDTH_EXPR string

The width expression of a port. The width_value_expr property
can be set directly to an integer if desired.

When get_port_property is used width always returns the current
integer width of the port while width_expr always returns the
unevaluated width expression.

DRIVEN_BY integer, input

Indicates that this output port is always driven to a constant value or
by an input port. If all outputs on a component have their
driven_by property set to a valid value then the component's HDL
is generated automatically.

ROLE string
Specifies an Avalon signal type such as waitrequest, readdata,
or read. For a complete list of signal types, refer to the Avalon
Interface Specifications.

FRAGMENT_LIST string

Specifies a split or join from the component definition in the Qsys
component library and the instantiation in a Qsys system.

For example, if the library component has two output ports,
data1[7:0] and data2[7:0], which the instantiation joins to
create a single output port, data1_2[7:0], the fragment_list
defines data1_2[7:0].fragment_list =
{data1[7:0],data2[7:0]} using the following command:
set_port_property data_1_2 FRAGMENT_LIST {
data1[7:0], data2[7:0]}.

If the library component has a vectored signal, bus[3:0], that is
split into 4 separate ports in the instantiation, bus_0 .. bus_3, then
the following commands specify the separate ports:
set_port_property bus_0 FRAGMENT_LIST { bus@0 }
set_port_property bus_1 FRAGMENT_LIST { bus@1 }
set_port_property bus_2 FRAGMENT_LIST { bus@2 }
set_port_property bus_3 FRAGMENT_LIST { bus@3 }
November 2013 Altera Corporation Quartus II Handbook Version 13.1
Volume 1: Design and Synthesis

http://www.altera.com/literature/manual/mnl_avalon_spec.pdf
http://www.altera.com/literature/manual/mnl_avalon_spec.pdf

10–32 Chapter 10: Component Interface Tcl Reference
Composition
Composition
This section describes the commands that allow you to build a component by
combining instances of other components. It also includes commands to query the
child instances in the component.

add_instance
The add_instance command adds an instance of a component, referred to as a child
or child module, to the component. You can use this command to create components
that are composed of other components.

add_connection
This command connects the named interfaces on child instances together using an
appropriate connection type. Both interface names consist of a child instance name,
followed by the name of an interface provided by that module. For example,
mux0.out is the interface named out on the instance named mux0. The command
returns the name of the newly added connection in start.point/end.point
format. Be careful to connect the start to the end, and not the other way around.

add_instance

Callback
availability

composition (refer to limitation on page 10–2)

Usage add_instance <instanceName> <type> [<version>]

Returns string

Arguments instanceName Specifies a unique local name that you can use to manipulate the module. This
name is used in the generated HDL to identify the module.

type The type refers to a module available in the component library, for example
altera_avalon_uart.

version The required version of the specified module. If no version is specified, the
latest version is used.

Example add_instance my_uart altera_avalon_uart

add_connection

Callback
availability

composition (refer to limitation on page 10–2)

Usage add_connection <start.Interface> [<end.Interface>] [kind] [name]

Returns string

Arguments start.interface The start interface to be connected, of the form,
<instance_name>.<interface_name>

end.interface The end interface to be connected,
<instance_name>.<interface_name>

kind Indicates the interface type. For a list of interface types refer to “add_interface”
on page 10–24.

name Specifies the name of the connection. If omitted, the name is of the form
start-module.start-interface/end-module.end-interface.

Example add_connection dma.read_master sdram.s1
Quartus II Handbook Version 13.1 November 2013 Altera Corporation
Volume 1: Design and Synthesis

Chapter 10: Component Interface Tcl Reference 10–33
Composition
get_connections
This command returns a list of connections. If no argument is specified, all
connections in the component are returned. If a child instance is specified, all
connections to interfaces on the instance are returned. If an interface on a child
instance is specified, only connections to that interface are returned.

get_connection_parameters
This command gets the names of all parameters for the connection specified.

get_connection_parameter_value
This command gets the value of a parameter on the connection.

get_connections

Callback
availability

global, composition

Usage get_connections [<interfaceName or instanceName>]

Returns list of strings

Arguments None

Example get_connections cpu.instruction_master

get_connection_parameters

Callback
availability

global, composition

Usage get_connection_parameters <connectionName>

Returns list of strings

Arguments connectionName Specifies the connection whose connection parameters are required.

Example get_connection_parameters cpu0.data_master/dma0.csr

get_connection_parameter_value

Callback
availability

global, composition

Usage get_connection_parameters <connectionName> <parameterName>

Returns string

Arguments connectionName Specifies the connection whose connection parameters are required.

parameterName The name of the parameter whose property value is being retrieved.

Example get_connection_parameters cpu0.data_master/dma0.csr
November 2013 Altera Corporation Quartus II Handbook Version 13.1
Volume 1: Design and Synthesis

10–34 Chapter 10: Component Interface Tcl Reference
Composition
get_instances
This command lists the instance names of all child modules in the component.

get_instance_interfaces
This command returns the names of all of the interfaces of a child module. The
interfaces can change when the parameterization of the module changes.

get_instance_interface_ports
This command returns a list of the names of the ports on the specified interface.

get_instance_interface_properties
This command returns the names of all of the properties of the specified interface.

get_instances

Callback
availability

global, elaboration, composition

Usage get_instances

Returns list of strings

Arguments None

Example get_instances

get_Instance_interfaces

Callback
availability

global, composition

Usage get_instance_interfaces <instanceName>

Returns string

Arguments instanceName Specifies the instance name of the module.

Example get_instance_interfaces my_ColorSpaceConverter

get_Instance_interface_ports

Callback
availability

global, composition

Usage get_instance_interface_ports <instanceName> <interfaceName>

Returns list of strings

Arguments instanceName Specifies the instance name of the module.

interfaceName Specifies an interface of instance.

Example get_instance_interface_ports my_ColorSpaceConverter outputInterface

get_Instance_interface_properties

Callback
availability

global, composition

Usage get_instance_interface_properties <instanceName> <interfaceName>
Quartus II Handbook Version 13.1 November 2013 Altera Corporation
Volume 1: Design and Synthesis

Chapter 10: Component Interface Tcl Reference 10–35
Composition
get_instance_property
This command returns the value of a single instance property.

set_instance_property
This command sets the value of a parameter for a child instance. Derived parameters
and SYSTEM_INFO parameters for the child instance can not be set with this command.

Returns string

Arguments instanceName Specifies the instance name of the module.

interfaceName Specifies an interface of instance.

Example get_instance_interface_properties my_ColorSpaceConverter
inputInterface

get_Instance_interface_properties

get_Instance_property

Callback
availability

global, elaboration, validation, composition, generation 2

Usage get_instance_property <instance> <property>

Returns various

Arguments instance The name of the instance.

property The name of the property (“Instance Properties”).

Example set my_name [get_instance_property myinstance NAME]

See Also “add_instance”, “get_instance_properties”, “set_instance_property”

set_Instance_property

Callback
availability

global, elaboration, validation, composition, generation 2

Usage set_instance_property <instance> <property> <value>

Returns boolean

Arguments instance The name of the instance.

property The name of the property to set (“Instance Properties”).

value The new property value.

Example set_instance_property myinstance SUPRESS_ALL_WARNINGS true

See Also “add_instance”, “get_instance_properties”, “get_instance_property”
November 2013 Altera Corporation Quartus II Handbook Version 13.1
Volume 1: Design and Synthesis

10–36 Chapter 10: Component Interface Tcl Reference
Composition
get_instance_properties
This command returns the names of all the instance properties as a list of strings. You
can use the get_instance_property and set_instance_property commands to get
and set values of individual properties. The value returned by this command is
always the same for a particular version of Qsys.

get_instance_interface_property
This command returns the value of a property associated with the specified module
interface.

get_instance_parameters
This command gets the parameters for an existing instance where the return value is
an array of key/value pairs. It omits parameters that are derived and those that have
the SYSTEM_INFO parameter property set.

get_Instance_properties

Callback
availability

discovery, global, edit, elaboration, validation, generation, composition, generation 2,upgrade

Usage get_instance_properties

Returns EInstancePrope
rty[]

List of strings (“Instance Properties”).

Arguments None

Example get_instance_properties

See Also “add_instance”,“get_instance_property”,“set_instance_property”

get_Instance_interface_property

Callback
availability

global, composition

Usage get_instance_interface_property <instanceName> <interfaceName>
<propertyName>

Returns string

Arguments instanceName Specifies the instance name of the module.

interfaceName Specifies an interface of instance.

propertyName Specifies the property whose value is being retrieved.

Example get_instance_interface_property my_component s1 setupTime

get_Instance_parameters

Callback
availability

global, elaboration, validation, composition

Usage get_instance_parameters <instanceName>

Returns list of strings

Arguments instanceName Specifies the name of the instance whose parameters are being retrieved.

Examples get_instance_parameters pixel_converter
Quartus II Handbook Version 13.1 November 2013 Altera Corporation
Volume 1: Design and Synthesis

Chapter 10: Component Interface Tcl Reference 10–37
Composition
get_instance_parameter_property
This command returns the names of the specified instance parameter property.

Notes You can use this command with instances created by add_instance or
add_hdl_instance commands.

See Also “get_instance_parameter_value”, “get_instances”,
“set_instance_parameter_value” “add_hdl_instance”

get_Instance_parameters

get_Instance_parameter_property

Callback
availability

global, composition

Usage get_instance_parameter_property <instanceName> <parameterName>
<propertyName>

Returns string, boolean, or units, depending on property.

Arguments instanceName Specifies the instance name of the module.

parameterName Specifies the parameter for which a property is being retrieved.

propertyName Specifies the property whose value is being retrieved (“Parameter Properties”).

Example get_instance_parameter_property my_stereo separate_control
DISPLAY_NAME
November 2013 Altera Corporation Quartus II Handbook Version 13.1
Volume 1: Design and Synthesis

10–38 Chapter 10: Component Interface Tcl Reference
Composition
get_instance_parameter_value
This command returns the value of a parameter in a child instance. You cannot use
this command to get the value of parameters whose values are derived or those that
are defined using the SYSTEM_INFO parameter property.

get_instance_parameter_value

Callback
availability

elaboration, validation, composition (refer to limitation on page 10–2)

Usage get_instance_parameter_value <instanceName> <parameterName>

Returns string, boolean, or units, depending on parameter.

Arguments instanceName Specifies the name of the instance whose parameter is being retrieved.

parameterName Specifies the parameter whose value is being retrieved “Parameter Properties”).

Examples get_instance_parameter_value pixel_converter input_DPI

Notes You can use this command with instances created by the add_instance or
add_hdl_instance commands.

See Also “get_instance_parameters”, “get_instances”,
“set_instance_parameter_value” “add_hdl_instance”
Quartus II Handbook Version 13.1 November 2013 Altera Corporation
Volume 1: Design and Synthesis

Chapter 10: Component Interface Tcl Reference 10–39
Composition
get_instance_port_property
This command returns a information about the port property specified.

set_connection_parameter_value
This command sets a property of the connection. The start and end are each interface
names of the format <instance>.<interface>. Connection parameters depend
on the type of connection, for memory-mapped they include base addresses and
arbitration priorities.

get_instance_port_property

Callback
availability

global, composition

Usage get_instance_port_property <instanceName> <portName> <propertyName>

Returns string

Arguments instanceName Specifies the instance name of the module.

portName Specifies a port.

property Specifies the property for which information is being retrieved. Not all port
properties are visible from the parent. Those which are visible are ROLE,
DIRECTION, WIDTH, WIDTH_EXPR and VHDL_TYPE.

Example get_instance_port_property my_uart width

set_connection_parameter_value

Callback
availability

global, composition

Usage set_connection_parameter_value <connName> <parameterName>
<parameterValue>

Returns None

Arguments connName Specifies the name of the connection as returned by the add_conection
command. It is of the form start.point/end.point.

parameterName Specifies the parameter that is being set.

parameterValue Specifies the value of the parameter.

Example set_connection_parameter_value cpu0.data_master/dma0.csr baseAddress
0x1000
November 2013 Altera Corporation Quartus II Handbook Version 13.1
Volume 1: Design and Synthesis

10–40 Chapter 10: Component Interface Tcl Reference
Fileset Generation
set_instance_parameter_value
This command sets the value of a parameter for a child instance. Derived parameters
and SYSTEM_INFO parameters for the child instance can not be set using this command.

Fileset Generation
This section covers the commands that create files to define the component and
provide information to downstream tools.

add_fileset
This command adds a generation fileset for a particular target as specified by
<filesetKind>. This target (SIM_VHDL, SIM_VERILOG, QUARTUS_SYNTH, or
EXAMPLE_DESIGN) is called by Qsys when the specified generation target is requested.
You may define multiple filesets for each kind of fileset. The specified callback
procedure must have a single argument. The value of this argument is a generated
name which must be used in the top-level module or entity declaration of your
component. To override this generated name, you may set the fileset property
TOP_LEVEL.

set_instance_parameter_value

Callback
availability

composition

Usage set_instance_parameter_value <instance> <parameter> <value>

Returns None

Arguments instanceName Specifies the name of the child module.

parameterName Specifies the parameter that is being set.

parameterValue Specifies the value of the parameter that is being set.

Examples set_instance_parameter_value pixel_converter input_DPI 1200

Notes You can use this command with instances created by the add_instance or
add_hdl_instance commands.

See Also “get_instance_parameter_value”, “get_instances”“add_hdl_instance”
Quartus II Handbook Version 13.1 November 2013 Altera Corporation
Volume 1: Design and Synthesis

Chapter 10: Component Interface Tcl Reference 10–41
Fileset Generation
1 Overriding the generated name is only possible if all parameterizations of a core yield
identical HDL

add_fileset

Callback
availability global

Usage add_fileset <filesetName> <filesetKind> <callbackProcName> [<displayName>]

Returns string

Arguments

filesetName The name of the fileset.

filesetKind

Files support the following kinds:

■ SIM_VHDL

■ SIM_VERILOG

■ QUARTUS_SYNTH

■ EXAMPLE_DESIGN

calbackProcName
A string identifying the name of the callback procedure. If you add files in the
global section, you can then specify a blank callback procedure.

displayName A display string to identify the fileset.

Example

add_fileset PCIE_SYNTHESIS QUARTUS_SYNTH mySynthProc

proc mySynthProc { generated_name } {

 ...

}

November 2013 Altera Corporation Quartus II Handbook Version 13.1
Volume 1: Design and Synthesis

10–42 Chapter 10: Component Interface Tcl Reference
Fileset Generation
add_fileset_file
This command adds an output file for the generation directory. You can specify source
file locations using either an absolute path or a path that is relative to the component’s
_hw.tcl file.

set_fileset_property
Allows a user to set the properties of a fileset.

add_fileset_file

Callback
availability fileset

Usage add_fileset_file <fileDestination> <fileKind> <fileSource> <contentsOrPath>

Returns string

Arguments

fileDestination Specifies the output file for the file after Qsys generation.

fileKind

Files support the following kinds:

■ VERILOG

■ SYSTEM_VERILOG

■ SYSTEM_VERILOG_INCLUDE

■ VHDL

■ SDC

■ MIF

■ HEX

■ DAT

■ OTHER

fileSource

The following sources are defined:

■ PATH–specifies the original source file to be copied to filePath.

■ TEXT–specifies an arbitrary text string for the contents of the file.

contentsOrPath
When the fileSource is PATH, specifies the file to be copied to filePath. When
the fileSource is TEXT, specifies the text string to be stored in the file.

Example
add_fileset_file “./implementation/rx_pma.sv” SYSTEM_VERILOG PATH synth_rx_pma.sv

add_fileset_file gui.sv SYSTEM_VERILOG TEXT “Customize your IP core”

set_fileset_property

Callback availability fileset, generation

Usage set_fileset_property <filesetName> <filesetProperty> <value>

Returns string

Arguments

filename The name of the fileset.

filesetProperty TOP_LEVEL
The of the top-level HDL
module produced by this
fileset

Example set_fileset_property mySynthFileset TOP_LEVEL simple_uart
Quartus II Handbook Version 13.1 November 2013 Altera Corporation
Volume 1: Design and Synthesis

Chapter 10: Component Interface Tcl Reference 10–43
Fileset Generation
get_fileset_file_attribute
This command gets the attribute of a fileset file.

set_fileset_file_attribute
This command sets the attribute of a fileset file.

get_fileset_file_attribute

Callback availability global, generation

Usage get_fileset_file_attribute <output_file> <attribute>

Returns string Value of the Fileset file attribute.

Arguments

output_file Location of the output file.

attribute

Specifies the name of the attribute:

■ ALDEC_SPECIFIC (simulation)

■ CADENCE_SPECIFIC (simulation)

■ COMMON_SYSTEMVERILOG_PACKAGE (simulation)

■ MENTOR_SPECIFIC (simulation)

■ SYNOPSYS_SPECIFIC (simulation)

■ TOP_LEVEL_FILE (synthesis)

Example get_fileset_file_attribute my_file.sv ALDEC_SPECIFIC

See Also “add_fileset”, “add_fileset_file”, “set_fileset_file_attribute”

set_fileset_file_attribute

Callback availability global, generation

Usage set_fileset_file_attribute <output_file> <attribute> <value>

Returns string Value of the attribute, if set.

Arguments

output_file Location of the output file.

attribute

Specifies the name of the attribute:

■ ALDEC_SPECIFIC (simulation)

■ CADENCE_SPECIFIC (simulation)

■ COMMON_SYSTEMVERILOG_PACKAGE (simulation)

■ MENTOR_SPECIFIC (simulation)

■ SYNOPSYS_SPECIFIC (simulation)

■ TOP_LEVEL_FILE (synthesis)

value Value to set the attribute to.

Example set_fileset_file_attribute my_file_pkg.sv COMMON_SYSTEMVERILOG_PACKAGE
my_file_package

See Also “add_fileset”, “add_fileset_file”, “get_fileset_file_attribute”
November 2013 Altera Corporation Quartus II Handbook Version 13.1
Volume 1: Design and Synthesis

10–44 Chapter 10: Component Interface Tcl Reference
Fileset Generation
get_fileset_sim_properties
This command gets simulator properties for a given fileset.

set_fileset_sim_properties
This command sets simulator properties for a given fileset.

get_fileset_sim_properties

Callback availability global, generation 2

Usage get_fileset_sim_properties <fileset> <platform> <property>

Returns string The fileset simulator properties.

Arguments

fileset The name of the fileset.

platform

The operating system for which this property applies:

■ ALL

■ LINUX32

■ LINUX64

■ WINDOWS32

■ WINDOWS64

property
Specifies the name of the property to set (“Simulator
Properties”).

Example get_fileset_sim_properties my_fileset LINUX64 OPT_CADENCE_64BIT

See Also “add_fileset”, “set_fileset_sim_properties”

set_fileset_sim_properties

Callback availability global, generation 2

Usage set_fileset_sim_properties <fileset> <platform> <property> <value>

Returns string The fileset simulator properties.

Arguments

fileset The name of the fileset.

platform

The operating system for which this property applies:

■ ALL

■ LINUX32

■ LINUX64

■ WINDOWS32

■ WINDOWS64

property
Specifies the name of the property to set (“Simulator
Properties”).

value Specifies the value of the property.

Example set_fileset_sim_properties my_fileset LINUX64 OPT_MENTOR_PLI "{libA}
{libB}"

See Also “add_fileset”, “get_fileset_sim_properties”
Quartus II Handbook Version 13.1 November 2013 Altera Corporation
Volume 1: Design and Synthesis

Chapter 10: Component Interface Tcl Reference 10–45
Miscellaneous
create_temp_file
This command creates a temporary file which can be manipulated inside the fileset
callbacks of a_hw.tcl file. This temporary file can serve as a scratch pad or can be
included in the generation output if it is included using the add_fileset_file
command.

Miscellaneous

check_device_family_equivalence
This command returns 1 if the device family is equivalent to one of the families in the
list, and returns 0 if the device family is not equivalent to any families.

get_device_family_displayname
This command returns the display name of a given device family.

create_temp_file

Callback
availability fileset

Usage create_temp_file <fileName>

Returns string

Arguments fileName The name of the created file.

Example set filelocation [create_temp_file “./hdl/compute_frequency.v”
add_fileset_file compute_frequency.v VERILOG PATH ${filelocation}

check_device_equivalence

Callback
availability global, elaboration, fileset

Usage check_device_family_equivalence <deviceName> <deviceList>

Returns 1 or 0 Based on equivalence.

Arguments
deviceName The device name of device being checked.

deviceList The device string list to check against.

Example check_device_equivalence "CYLCONE III LS" { "stratixv" "Cyclone IV"
"cycloneiiils" }

get_device_family_displayname

Callback
availability global, elaboration, fileset

Usage get_device_family_displayname <deviceName>

Returns A user-suitable display name for a device family.

Arguments A device family name (example stratixv, arriaii).

Example get_device_family_displayname cycloneiiils (Returns: Cyclone III LS)
November 2013 Altera Corporation Quartus II Handbook Version 13.1
Volume 1: Design and Synthesis

10–46 Chapter 10: Component Interface Tcl Reference
Simulator Properties
set_qip_strings
This command places strings in the Quartus II IP File (.qip) file. The .qip file contains
paths to the files for an IP core. You add the .qip file to your Quartus II project in the
under Files in the Settings dialog box. Successive calls to set_qip_strings are not
additive, they replace the previously declared value.

Simulator Properties

set_qip_strings

Callback
availability global, elaboration

Usage set_qip_strings <qip Entries>

Returns The Tcl list which was set

Arguments qip Entries A space-delimited Tcl list.

Macros
%entityName%

The generated name of the entity replaces this macro when the string is written
to the .qip file.

%libraryName%
The compilation library this component was compiled into is inserted in place of
this marco inside the .qip file.

Example set_qip_strings {"QIP Entry 1" "QIP Entry 2"}

Table 10–8.

Name Description

ENV_ALDEC_LD_LIBRARY_PATH LD_LIBRARY_PATH when running riviera-pro

ENV_CADENCE_LD_LIBRARY_PATH LD_LIBRARY_PATH when running ncsim

ENV_MENTOR_LD_LIBRARY_PATH LD_LIBRARY_PATH when running modelsim

ENV_SYNOPSYS_LD_LIBRARY_PATH LD_LIBRARY_PATH when running vcs

OPT_ALDEC_PLI -pli option for riviera-pro

OPT_CADENCE_64BIT -64bit option for ncsim

OPT_CADENCE_PLI -loadpli1 option for ncsim

OPT_CADENCE_SVLIB -sv_lib option for ncsim

OPT_CADENCE_SVROOT -sv_root option for ncsim

OPT_MENTOR_64 -64 option for modelsim

OPT_MENTOR_CPPPATH -cpppath option for modelsim

OPT_MENTOR_LDFLAGS -ldflags option for modelsim

OPT_MENTOR_PLI -pli option for modelsim

OPT_SYNOPSYS_ACC +acc option for vcs

OPT_SYNOPSYS_CPP -cpp option for vcs

OPT_SYNOPSYS_FULL64 -full64 option for vcs

OPT_SYNOPSYS_LDFLAGS -LDFLAGS option for vcs

OPT_SYNOPSYS_LLIB -l option for vcs

OPT_SYNOPSYS_VPI +vpi option for vcs
Quartus II Handbook Version 13.1 November 2013 Altera Corporation
Volume 1: Design and Synthesis

Chapter 10: Component Interface Tcl Reference 10–47
Instance Properties
Instance Properties

Port Roles (Interface Signal Types)
Each interfaces defines a number of signal roles and their behavior. Many signal roles
are optional, allowing component designers the flexibility to select only the signal
roles necessary to implement the required functionality.

AXI Interface Signal Types

1 For complete AXI interface specifications, refer to the AMBA Protocol Specifications on
the ARM® website

AXI Master Interface Signal Types

Table 10–9.

Name Description

HDLINSTANCE_GET_GENERATED_NAME

You use this property to get the auto-generated
fixed name when the instance property
HDLINSTANCE_USE_GENERATED_NAME is set
to TRUE. You can use this property only in
FileSet callbacks.

HDLINSTANCE_USE_GENERATED_NAME

If TRUE, instances added with the
add_hdl_instance command are instructed to
use unique auto-generated fixed name based on
the parameterization.

SUPPRESS_ALL_INFO_MESSAGES

If True, allows a component author to suppress
ALL Info messages that originate from a child
instance.

set_instance_property <instance_name>
SUPPRESS_ALL_INFO_MESSAGES <true,
false>

SUPPRESS_ALL_WARNINGS

If TRUE, allows a component author to suppress
ALL warnings that originate from a child
instance.

set_instance_property <instance_name>
SUPPRESS_ALL_WARNINGS <true, false>

Table 10–10. altera_axi_master (Part 1 of 2)

Name Direction Width

araddr Output 1 to 64

arburst Output 2

arcache Output 4

arid Output 1 to 18

arlen Output 4

arlock Output 2

arprot Output 3
November 2013 Altera Corporation Quartus II Handbook Version 13.1
Volume 1: Design and Synthesis

http://infocenter.arm.com/help/topic/com.arm.doc.set.amba/index.html#specsl

10–48 Chapter 10: Component Interface Tcl Reference
Port Roles (Interface Signal Types)
AXI Slave Interface Signals

arready Input 1

arsize Output 3

aruser Output 1 to 64

arvalid Output 1

awaddr Output 1 to 64

awburst Output 2

awcache Output 4

awid Output 1 to 18

awlen Output 4

awlock Output 2

awprot Output 3

awready Input 1

awsize Output 3

awuser Output 1 to 64

awvalid Output 1

bid Input 1 to 18

bready Output 1

bresp Input 2

bvalid Input 1

rdata Input 8, 16, 32, 64, 128, 256, 512, 1024

rid Input 1 to 18

rlast Input 1

rready Output 1

rresp Input 2

rvalid Input 1

wdata Output 8, 16, 32, 64, 128, 256, 512, 1024

wid Output 1 to 18

wlast Output 1

wready Input 1

wstrb Output 1, 2, 4, 8, 16, 32, 64, 128

wvalid Output 1

Table 10–10. altera_axi_master (Part 2 of 2)

Name Direction Width

Table 10–11. altera_axi_slave (Part 1 of 2)

Name Direction Width

araddr Input 1 to 64

arburst Input 2

arcache Input 4

arid Input 1 to 18
Quartus II Handbook Version 13.1 November 2013 Altera Corporation
Volume 1: Design and Synthesis

Chapter 10: Component Interface Tcl Reference 10–49
Port Roles (Interface Signal Types)
arlen Input 4

arlock Input 2

arprot Input 3

arready Output 1

arsize Input 3

aruser Input 1 to 64

arvalid Input 1

awaddr Input 1 to 64

awburst Input 2

awcache Input 4

awid Input 1 to 18

awlen Input 4

awlock Input 2

awprot Input 3

awready Output 1

awsize Input 3

awuser Input 1 to 64

awvalid Input 1

bid Output 1 to 18

bready Input 1

bresp Output 2

bvalid Output 1

rdata Output 8, 16, 32, 64, 128, 256, 512, 1024

rid Output 1 to 18

rlast Output 1

rready Input 1

rresp Output 2

rvalid Output 1

wdata Input 8, 16, 32, 64, 128, 256, 512, 1024

wid Input 1 to 18

wlast Input 1

wready Output 1

wstrb Input 1, 2, 4, 8, 16, 32, 64, 128

wvalid Input 1

Table 10–11. altera_axi_slave (Part 2 of 2)

Name Direction Width
November 2013 Altera Corporation Quartus II Handbook Version 13.1
Volume 1: Design and Synthesis

10–50 Chapter 10: Component Interface Tcl Reference
Port Roles (Interface Signal Types)
APB Interface Signal Types

Avalon Interface Signal Types

Avalon Memory-Mapped Signals

Table 10–12. APB Interface Signal Types

Name Width Direction
(APB master)

Direction
(APB Slave) Required

paddr [1:32] Output Input Yes

psel [1:16] Output Input Yes

penable 1 Output Input Yes

pwrite 1 Output Input Yes

pwdata [1:32] Output Input Yes

prdata [1:32] Input Output Yes

pslverr 1 Input Output No

pready 1 Input Output Yes

paddr31 1 Output Input No

Table 10–13. Avalon-MM Signals (1) (Part 1 of 4)

Signal Role Width Direction Description

Fundamental Signals

address 1-32 Master →
Slave

For masters, the address signal represents a byte address. The
value of the address must be aligned to the data width. To write to
specific bytes within a data word, the master must use the
byteenable signal.

For slaves, the interconnect translates the byte address into a
word address in the slave’s address space so that each slave
access is for a word of data from the perspective of the slave. For
example, address= 0 selects the first word of the slave and
address 1 selects the second word of the slave.

begintransfer 1 Master →
Slave

Asserted by the interconnect for the first cycle of each transfer
regardless of waitrequest and other signals. If you do not
include this signal in your Avalon-MM master interface, Qsys
automatically generates this signal for you.
Quartus II Handbook Version 13.1 November 2013 Altera Corporation
Volume 1: Design and Synthesis

Chapter 10: Component Interface Tcl Reference 10–51
Port Roles (Interface Signal Types)
byteenable

byteenable_n

1, 2, 4, 8,
16, 32, 64,
128

Master →
Slave

Enables specific byte lane(s) during transfers on ports of width
greater than 8 bits. Each bit in byteenable corresponds to a
byte in writedata and readdata. The master bit <n> of
byteenable indicates whether byte <n> is being written to.
During writes, byteenables specify which bytes are being
written to; other bytes should be ignored by the slave. During
reads, byteenables indicates which bytes the master is reading.
Slaves that simply return readdata with no side effects are free
to ignore byteenables during reads. If an interface does not
have a byteenable signal, the transfer proceeds as if all
byteenables are asserted.

When more than one bit of the byteenable signal is asserted, all
asserted lanes are adjacent. The number of adjacent lines must
be a power of 2, and the specified bytes must be aligned on an
address boundary for the size of the data. For example, the
following values are legal for a 32-bit slave:

1111 writes full 32 bits

0011 writes lower 2 bytes

1100 writes upper 2 bytes

0001 writes byte 0 only

0010 writes byte 1 only

0100 writes byte 2 only

1000 writes byte 3 only

Altera strongly recommends that you use the byteenable signal
in components that are used in systems with different word sizes.
Using the byteenable signal prevents unintended side effects in
systems that include width adapters.

chipselect
chipselect_n

1 Master →
Slave

When present, a slave port ignores all Avalon-MM signals unless
chipselect is asserted. chipselect must be used in
combination with read or write. The chipselect signal is not
necessary; Altera does not recommend using it.

debugaccess 1 Master →
Slave

When asserted, allows internal memories that are normally
write-protected to be written. For example, on-chip ROM
memories can only be written when debugaccess is asserted.

read

read_n
1 Master →

Slave
Asserted to indicate a read transfer. If present, readdata is
required.

readdata
8,16, 32, 64,
128, 256,
512, 1024

Slave →
Master

The readdata driven from the slave to the master in response to
a read transfer.

write

write_n
1 Master →

Slave
Asserted to indicate a write transfer. If present, writedata is
required.

writedata
8,16, 32, 64,
128, 256,
512, 1024

Master →
Slave

Data for write transfers. The width must be the same as the width
of readdata if both are present.

Table 10–13. Avalon-MM Signals (1) (Part 2 of 4)

Signal Role Width Direction Description
November 2013 Altera Corporation Quartus II Handbook Version 13.1
Volume 1: Design and Synthesis

10–52 Chapter 10: Component Interface Tcl Reference
Port Roles (Interface Signal Types)
Wait-State Signals

lock 1 Master →
Slave

lock ensures that once a master wins arbitration, it maintains
access to the slave for multiple transactions. It is asserted
coincident with the first read or write of a locked sequence of
transactions, and is deasserted on the final transaction of a
locked sequence of transactions. lock assertion does not
guarantee that arbitration is won, but after the lock-asserting
master has been granted, it retains grant until it is deasserted.

A master equipped with lock cannot be a burst master.
Arbitration priority values for lock-equipped masters are ignored.

lock is particularly useful for read-modify-write operations,
where master A reads 32-bit data that has multiple bit fields,
changes one field, and writes the 32-bit data back. If lock is not
used, a master B could perform a write between Master A’s read
and write and master A’s write would overwrite master B’s
changes.

waitrequest

waitrequest_n
1 Slave →

Master

Asserted by the slave when it is unable to respond to a read or
write request. Forces the master to wait until the interconnect is
ready to proceed with the transfer. At the start of all transfers, a
master initiates the transfer and waits until waitrequest is
deasserted. A master must make no assumption about the
assertion state of waitrequest when the master is idle:
waitrequest may be high or low, depending on system
properties. When waitrequest is asserted, master control
signals to the slave remain constant with the exception of
begintransfer and beginbursttransfer,. An Avalon-MM
slave may assert waitrequest during idle cycles. An Avalon-
MM master may initiate a transaction when waitrequest is
asserted and wait for that signal to be deasserted. To avoid
system lockup, a slave device should assert waitrequest when
in reset.

Pipeline Signals

readdatavalid

readdatavalid_n
1 Slave →

Master

Used for variable-latency, pipelined read transfers. Asserted by
the slave to indicate that the readdata signal contains valid data
in response to a previous read request. A slave with
readdatavalid must assert this signal for one cycle for each
read access it has received. There must be at least one cycle of
latency between acceptance of the read and assertion of
readdatavalid.

Required if the master supports pipelined reads. Bursting
masters with read functionality must include the readdatavalid
signal.

Table 10–13. Avalon-MM Signals (1) (Part 3 of 4)

Signal Role Width Direction Description
Quartus II Handbook Version 13.1 November 2013 Altera Corporation
Volume 1: Design and Synthesis

Chapter 10: Component Interface Tcl Reference 10–53
Port Roles (Interface Signal Types)
Avalon-ST Interface Signals

Burst Signals

burstcount 1–11 Master →
Slave

Used by bursting masters to indicate the number of transfers in
each burst. The value of the maximum burstcount parameter
must be a power of 2, so a burstcount port of width <n> can
encode a max burst of size 2(<n>-1). For example, a 4-bit
burstcount signal can support a maximum burst count of 8. The
minimum burstcount is 1. The timing of the burstcount
signal is controlled by the constantBurst property. Bursting
masters with read functionality must include the readdatavalid
signal.

For bursting masters and slaves, the following restriction applies
to the width of the address:

<address_w> >= <burstcount_w> + floor(log2
(<symbols_per_word_on_this_interface>))

beginbursttransfer 1 Master →
Slave

Asserted for the first cycle of a burst to indicate when a burst
transfer is starting. This signal is deasserted after one cycle
regardless of the value of waitrequest.

Notes to Table 10–13:

(1) All Avalon signals are active high. Avalon signals that can also be asserted low list both versions of the signal in the Signal role column.

Table 10–13. Avalon-MM Signals (1) (Part 4 of 4)

Signal Role Width Direction Description

Table 10–14. Avalon-ST Interface Signals (Part 1 of 2)

Signal Role Width Direction Description

Fundamental Signals

channel 1–128 Source →
Sink

The channel number for data being transferred on the current cycle.

If an interface supports the channel signal, it must also define the
maxChannel parameter.

data 1–4096 Source →
Sink

The data signal from the source to the sink, typically carries the bulk of
the information being transferred.

The contents and format of the data signal is further defined by
parameters.

error 1–256 Source →
Sink

A bit mask used to mark errors affecting the data being transferred in the
current cycle. A single bit in error is used for each of the errors
recognized by the component, as defined by the errorDescriptor
property.

ready 1 Sink →
Source

Asserted high to indicate that the sink can accept data. ready is asserted
by the sink on cycle <n> to mark cycle <n + readyLatency> as a ready
cycle, during which the source may assert valid and transfer data.

Sources without a ready input cannot be backpressured, and sinks
without a ready output never need to backpressure.
November 2013 Altera Corporation Quartus II Handbook Version 13.1
Volume 1: Design and Synthesis

10–54 Chapter 10: Component Interface Tcl Reference
Port Roles (Interface Signal Types)
Tri-state Slave Interface Signals

valid 1 Source →
Sink

Asserted by the source to qualify all other source to sink signals. On ready
cycles where valid is asserted, the data bus and other source to sink
signals are sampled by the sink, and on other cycles are ignored.

Sources without a valid output implicitly provide valid data on every
cycle that they are not being backpressured, and sinks without a valid
input expect valid data on every cycle that they are not backpressuring.

Packet Transfer Signals

empty 1–8 Source →
Sink

Indicates the number of symbols that are empty during cycles that contain
the end of a packet. The empty signal is not used on interfaces where there
is one symbol per beat. If endofpacket is not asserted, this signal is not
interpreted.

endofpacket
1 Source →

Sink Asserted by the source to mark the end of a packet.

startofpacket
1 Source →

Sink Asserted by the source to mark the beginning of a packet.

Table 10–14. Avalon-ST Interface Signals (Part 2 of 2)

Signal Role Width Direction Description

Table 10–15. Avalon-MM tri-state Slave Signals (1) (Part 1 of 2)

Signal Role Width Direction Req’
d Description

address 1-32 In No Address lines to the slave port. Specifies a byte offset into the
slave’s address space.

read

read_n
1 In No

Read-request signal. Not required if the slave port never
outputs data.

If present, data must also be used.

write

write_n
1 In No

Write-request signal. Not required if the slave port never
receives data from a master.

If present, data must also be present, and writebyteenable
cannot be present.

chipselect

chipselect_n
1 In No

When present, the slave port ignores all Avalon-MM signals
unless chipselect is asserted. chipselect is always
present in combination with read or write.

outputenable

outputenable_n
1 In Yes

Output-enable signal. When deasserted, a tri-state slave port
must not drive its data lines otherwise data contention may
occur.

data

8,16, 32,
64, 128,
256, 512,
1024

Bidir No

Bidirectional data. During write transfers, the FPGA drives the
data lines. During read transfers the slave device drives the
data lines, and the FPGA captures the data signals and
provides them to the master.
Quartus II Handbook Version 13.1 November 2013 Altera Corporation
Volume 1: Design and Synthesis

Chapter 10: Component Interface Tcl Reference 10–55
Port Roles (Interface Signal Types)
byteenable

byteenable_n

2, 4, 8,16,
32, 64,
128

In No

Enables specific byte lane(s) during transfers.

Each bit in byteenable corresponds to a byte lane in data.
During writes, byteenables specify which bytes the master is
writing to the slave. During reads, byteenables indicates which
bytes the master is reading. Slaves that simply return data
with no side effects are free to ignore byteenables during
reads.

When more than one byte lane is asserted, all asserted lanes
are guaranteed to be adjacent. The number of adjacent lines
must be a power of 2, and the specified bytes must be aligned
on an address boundary for the size of the data. The are legal
values for a 32-bit slave:

1111writes full 32 bits

0011writes lower 2 bytes

1100writes upper 2 bytes

0001writes byte 0 only

0010writes byte 1 only

0100writes byte 2 only

1000writes byte 3 only

writebyteenable

writebyteenable_n
2,4,8,16,
32, 64,128 In No Equivalent to the logical AND of the byteenable and write

signals. When used, the write signal is not used.

begintransfer 1 In No Asserted for the first cycle of each transfer.

Note to Table 10–13:

(1) All Avalon signals are active high. Avalon signals that can also be asserted low list both versions in the Signal Role column.

Table 10–15. Avalon-MM tri-state Slave Signals (1) (Part 2 of 2)

Signal Role Width Direction Req’
d Description
November 2013 Altera Corporation Quartus II Handbook Version 13.1
Volume 1: Design and Synthesis

10–56 Chapter 10: Component Interface Tcl Reference
Port Roles (Interface Signal Types)
Tri-state Conduit Interface Signals

Avalon Clock Sink Interface Signals

Avalon Clock Source Interface Signals

Table 10–16. Tristate Conduit Interface Signal Roles

Signal Role Width Direction Required Description

request 1 Master →
Slave Yes

The meaning of request depends on the state of the grant
signal, as the following rules dictate.

1. When request is asserted and grant is deasserted,
request is requesting access for the current cycle.

2. When request is asserted and grant is asserted, request
is requesting access for the next cycle; consequently,
request should be deasserted on the final cycle of an
access.

Because request is deasserted in the last cycle of a bus access,
it can be reasserted immediately following the final cycle of a
transfer, making both rearbitration and continuous bus access
possible if no other masters are requesting access.

Once asserted, request must remain asserted until granted;
consequently, the shortest bus access is 2 cycles.

grant 1 Slave →
Master Yes

When asserted, indicates that a tristate conduit master has been
granted access to perform transactions. grant is asserted in
response to the request signal and remains asserted until 1
cycle following the deassertion of request.

The design of the Avalon-TC Interface does not allow a default
Avalon-TC master to be granted when no masters are
requesting.

<name>_in 1–1024 Slave →
Master No The input signal of a logical tristate signal.

<name>_out 1–1024 Master →
Slave No The output signal of a logical tristate signal.

<name>_outen 1 Master →
Slave No The output enable for a logical tristate signal.

Table 10–17. Clock Input Signal Roles

Signal Role Width Direction Required Description

clk 1 Input Yes A clock signal. Provides synchronization for internal logic and for
other interfaces.

Table 10–18. Clock Source Signal Roles

Signal Role Width Direction Required Description

clk 1 Output Yes An output clock signal.
Quartus II Handbook Version 13.1 November 2013 Altera Corporation
Volume 1: Design and Synthesis

Chapter 10: Component Interface Tcl Reference 10–57
Document Revision History
Avalon Conduit Interface Signals

Interrupt Sender Interface Signals

Interrupt Receiver Interface Signals

Document Revision History
Table 10–22 shows the revision history for this document.

Table 10–19. Conduit Signal Roles

Signal Role Width Direction Description

<any> <n> In, out or
bidirectional

A conduit interface consists of one or more signals of arbitrary width of direction
input or output. Compatible conduit interfaces can be connected inside the Qsys
system, exported to the next level of the hierarchical design, or to the top-level of
the Qsys system.

Table 10–20. Interrupt Sender Signal Roles

Signal Role Width Direction Required Description

irq

irq_n
1 Output Yes Interrupt Request. A slave asserts irq when it needs to be serviced.

Table 10–21. Interrupt Receiver Signal Roles

Signal Role Width Direction Required Description

irq 1–32 Input Yes irq is an <n>-bit vector, where each bit corresponds directly to one
IRQ sender, with no inherent assumption of priority.

Table 10–22. Document Revision History (Part 1 of 2)

Date Version Changes

November 2013 13.1.0 ■ add_hdl_instance

May 2013 13.0.0
■ Consolidated content from other Qsys chapters.

■ Added AMBA APB support.

November 2012 12.1.0 ■ Added the demo_axi_memory example with screen shots and example _hw.tcl code.

June 2012 12.0.0
■ Added AMBA AXI3 support.

■ Added the set_display_item_property, set_parameter_property parameter
LONG_DESCRIPTION, and static filesets.

November 2011 11.1.0

■ Template update.

■ Added commands set_qip_strings, get_qip_strings, get_device_family_displayname,
check_device_family_equivalence

■ Updated text to reflect changes in 11.1.
November 2013 Altera Corporation Quartus II Handbook Version 13.1
Volume 1: Design and Synthesis

10–58 Chapter 10: Component Interface Tcl Reference
Document Revision History
f For more information about Tcl syntax, refer to the Tcl Developer Xchange website.

f For previous versions of the Quartus II Handbook, refer to the Quartus II Handbook
Archive.

May 2011 11.0.0

■ Removed Beta status.

■ Revised section describing HDL and composed component implementations.

■ Separated reset and clock interfaces in examples.

■ Added the TRISTATECONDUIT_INFO, GENERATION_ID, and UNIQUE_ID SYSTEM_INFO
properties.

■ Added the WIDTH and SYSTEM_INFO_ARG parameter properties.

■ Removed the doc_type argument from the add_documentation_link command.

■ Removed get_instance_parameter_properties command.
(get_instance_parameter_property is available.)

■ Added the add_fileset, add_fileset_file and create_temp_file commands.

■ Updated Tcl examples to show separate clock and reset interfaces.

December 2010 10.1.0 Initial release.

Table 10–22. Document Revision History (Part 2 of 2)

Date Version Changes
Quartus II Handbook Version 13.1 November 2013 Altera Corporation
Volume 1: Design and Synthesis

http://www.tcl.tk/
http://www.altera.com/literature/lit-qts_archive.jsp
http://www.altera.com/literature/lit-qts_archive.jsp

11Qsys System Design Components

2013.11.4

QII51025 Subscribe Send Feedback

You can use Qsys system design components and IP cores to design your Qsys systems. The Qsys interfaces
define components appropriate for streaming high-speed data, reading and writing registers and memory,
and controlling off-chip devices.

Related Information
Avalon Interface Specifications

AMBA Protocol Specifications

Creating a System with Qsys

Creating Qsys Components

Qsys Interconnect

Bridges
Qsys provides bridge components to provide flexibility and control in your system implementation. Bridges
are not end points for data, but rather affect the way data is transported between components. You can insert
bridges between masters and slave interfaces to control the topology of a Qsys system, which affects the
interconnect thatQsys generates. You can also use bridges to separate components in different clock domains
and to isolate clock domain crossing logic.

A bridge has one slave interface and one master interface. In Qsys, one or more master interfaces from other
components connect to the bridge slave; then, the bridge master connects to one or more slave interfaces
on other components.

In Figure 1, all three masters have logical connections to all three slaves, although physically each master
connects only to the bridge.

ISO
9001:2008
Registered

© 2013 Altera Corporation. All rights reserved. ALTERA, ARRIA, CYCLONE, HARDCOPY, MAX, MEGACORE, NIOS, QUARTUS and STRATIX words
and logos are trademarks of Altera Corporation and registered in the U.S. Patent and Trademark Office and in other countries. All other
words and logos identified as trademarks or service marks are the property of their respective holders as described at
www.altera.com/common/legal.html. Altera warrants performance of its semiconductor products to current specifications in accordance with
Altera's standard warranty, but reserves the right to make changes to any products and services at any time without notice. Altera assumes
no responsibility or liability arising out of the application or use of any information, product, or service described herein except as expressly
agreed to in writing by Altera. Altera customers are advised to obtain the latest version of device specifications before relying on any published
information and before placing orders for products or services.

www.altera.com

101 Innovation Drive, San Jose, CA 95134

https://www.altera.com/servlets/subscriptions/alert?id=QII51025
mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20(QII51025%202013.11.4)%20Qsys%20System%20Design%20Components&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.
http://www.altera.com/literature/manual/mnl_avalon_spec.pdf
http://infocenter.arm.com/help/topic/com.arm.doc.set.amba/index.html
http://www.altera.com/literature/hb/qts/qsys_intro.pdf
http://www.altera.com/literature/hb/qts/qsys_components.pdf
http://www.altera.com/literature/hb/qts/qsys_interconnect.pdf
http://www.altera.com/support/devices/reliability/certifications/rel-certifications.html
http://www.altera.com/support/devices/reliability/certifications/rel-certifications.html
http://www.altera.com/support/devices/reliability/certifications/rel-certifications.html

Figure 11-1: Example of Bridge in a Qsys System

Bridge

M

S

M1

M

M2

M M

M3

S2

S

S1

S

S

M Master

Slave

S3

S

Arbiter & Write Data Control
Signal Multiplexing

ChipSelect & Read Data
Multiplexing

Transfers initiated to the bridge slave propagate to the bridge master in the same order in which they are
initiated on the bridge slave.

Clock Bridge
The Clock Bridge allows you to connect a clock source to multiple clock input interfaces. You can use this
bridge to connect a clock source that's outside the Qsys system through an exported interface to multiple
clock input interfaces in the system.

Clock outputs have the ability to fan-out without the use of a bridge. You only need a bridge if you want a
clock from an external (exported) source to connect internally to more than one source.

Figure 11-2: Clock Bridge

PIO

S

DMA

M MS

Qsys System

Clock Bridge

External Clock from PCB

CIn

Export

COut

CIn CIn

Qsys System Design ComponentsAltera Corporation

Send Feedback

QII51025
Clock Bridge11-2 2013.11.4

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Qsys%20System%20Design%20Components%20(QII51025%202013.11.4)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Avalon-MM Clock Crossing Bridge
The Avalon-MM Clock Crossing Bridge transfers Avalon-MM commands and responses between different
clock domains. You can also use the Avalon-MM Clock Crossing Bridge to bridge between AXI masters and
slaves of different clock domains.

The Avalon-MM Clock Crossing Bridge uses asynchronous FIFOs to implement the clock crossing logic.
The Clock Crossing Bridge has a number of parameters, including parameters to control the depth of the
command and response FIFOs in both the master and slave clock domains. If the number of in-flight reads
exceeds the depth of the response FIFO, the Clock Crossing Bridge stops sending reads. To maintain
throughput for high-performance applications, increase the response FIFOdepth from the defaultminimum
depth, which is twice the maximum burst size.

Related Information
Creating a System With Qsys

Avalon-MM Pipeline Bridge
The Avalon-MM Pipeline Bridge inserts a register stage in the Avalon-MM command and response paths.
It accepts commands on its Avalon-MM slave port and propagates them to its Avalon-MM master port, and
provides separate parameters to turn on pipelining in the command and response networks.

You can also use the Avalon-MM bridge to export a single Avalon-MM slave interface that can be used to
control multiple Avalon-MM slave devices, and you can optionally turn off the pipelining feature of this
bridge. In this configuration, the bridge transfers commands received on its Avalon-MM slave interface to
its Avalon-MM master port.

Figure 11-3 illustrates the use of an Avalon-MM Pipeline Bridge in a XAUI PHY transceiver IP core.

Figure 11-3: Avalon Bridge

Interconnect

Exported to Embedded
Processor on PCB

Interleave

PCSS

Alt_PMA

SS

Low Latency
Controller

S

Transceiver
Reconfiguration

Controller

Xcvr
XAUI PHY

M

Avalon-MM
Pipeline

Bridge (Qsys)

S

PMA
Ch
Cntl

Because the Avalon-MM slave interface is exported to the pins of the device, having a single Avalon-MM
slave port (rather than separate ports for each Avalon-MM slave device) reduces the pin count of the FPGA.

Altera CorporationQsys System Design Components

Send Feedback

11-3Avalon-MM Clock Crossing Bridge
QII51025
2013.11.4

http://www.altera.com/literature/hb/qts/qsys_intro.pdf
mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Qsys%20System%20Design%20Components%20(QII51025%202013.11.4)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Bridges Between Avalon and AXI Interfaces
When designing a system, you can make connections between AXI and Avalon interfaces without the use
of explicitly-instantiated bridges; the interconnect provides all necessary bridging logic. However, this does
not prevent the use of explicit bridges to separate the AXI and Avalon domains. Using an explicit Avalon-
MM bridge to separate the AXI and Avalon domains, as shown in Figure 11-4, reduces the amount of
bridging logic in the interconnect, at the expense of concurrency.

Figure 11-4: Avalon-MM Pipeline Bridge Between Avalon-MM and AXI Networks

Network

Avalon-MM

Avalon-MM

AXI

AXI

AXI

Avalon-MM

Shared Avalon & AXI Domain

Network

Avalon-MM
Pipeline Bridge

Avalon-MM

AXI

AXI

AXI

Network

Avalon-MM

Avalon-MM

Avalon-MMAXI

Shared Avalon & AXI Domains

Address Span Extender
The Address Span Extender component creates a windowed bridge and allows memory-mapped master
interfaces to access a larger address map than the width of their address signals allow. When connected to
an address span extender, an address span restricted master can access a broader address range.

The extender splits up the larger addressable space into separate windows so that the master with a smaller
address span can access the appropriate part of the memory.

For example, if the fast variant of a processor can address only 2GB of address span, and you need that
processor to access a broader span, then you can use the address span extender to access the broader span
by providing a window with a smaller address span. The same issue occurs with SoC devices. For example,
an HPS subsystem in SoC devices can address only 1GB of address span within the FPGA. You can use the
address span extender in this case, as well.

When you implement the address span extender in Qsys for a master with limited addressing space, you
must first decide how large of an address space you want a particular slave to occupy in a master’s address
map.

This component allows you to define between 1 and 64 address windows, and accordingly, a given number
of registers to hold the upper address bits for each window. In the component GUI, you must select the
number of bits you want to access (Expanded Master Byte Address Width), the number of bits you want
the master to see (Slave Word Address Width), and the number of sub-windows.

The upper bits of the slave address are used to pick which window is used. For example, if you specify 4
windows, then the top 2 bits of the slave address are used to specify window [0,1,2,3]. Therefore having
more windows does require the windows to be smaller, for example having 4 windows requires the windows
themselves to be 1/4 the size of the slave address space. The total windowed address space is still equal to
the original slave address space, but the windows allow access to memory regions in a larger overall address
space.

Qsys System Design ComponentsAltera Corporation

Send Feedback

QII51025
Bridges Between Avalon and AXI Interfaces11-4 2013.11.4

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Qsys%20System%20Design%20Components%20(QII51025%202013.11.4)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

You can parametrize the address span extender with an initial fixed address value by entering an address
for the Reset Default for Master Window option, and selecting True for the Disable Slave Control Port
option, which allows the address span extender to function as a fixed, non-programmable component.

Each sub-window is equal in size and is stacked sequentially in the windowed slave interface's address space.
To control the fixed address bits of a particular sub-window, you can write to the sub-window’s register in
the register control slave interface. Qsys structures the logic so that the Quartus II software can optimize
away all unneeded bits.

The Address Span Extender component creates a windowed bridge and allows memory-mapped master
interfaces to access a larger address map than the width of their address signals allow. When connected to
an address span extender, an address span restrictedmaster can access a broader address range. IfBurstcount
Width is set greater than 1, the read burst command is expressed in a single cycle, and assumes all byteenables
are asserted on every cycle.

You can configure address ports within memory-mapped interfaces to be up to 64-bits wide. The address
span extender enables a master to access a windowed portion of a larger memory map. The slave interface
has an address port size corresponding to the address window. For example, when a component's master
port is not 64-bit capable, you can use the Address Span Extender to enable it to access a specific 32-bit
segment of a 64-bit address map.

The Address Span Extender does not limit master and slave widths to a 32-bit and 64-bit configuration. You
can use the Address Span Extender for other width configurations.

Tri-state Components
The tri-state interface type allows you to design Qsys subsystems that connect to tri-state devices on your
PCB. You can use tri-state components to implement pin sharing, convert between unidirectional and
bidirectional signals, and create tri-state controllers for devices whose interfaces can be described using the
tri-state signal types.

Figure 11-5 illustrates the typical use of tri-state components, and includes two Generic Tri-state Conduit
Controllers. The first is customized to control a flash memory. The second is customized to control an off-
chip SSRAM. The Tri-state Conduit Pin Sharer multiplexes between these two controllers, and the Tri-state
Conduit Bridge converts between an on-chip encoding of tri-state signals and true bidirectional signals.

Altera CorporationQsys System Design Components

Send Feedback

11-5Tri-state Components
QII51025
2013.11.4

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Qsys%20System%20Design%20Components%20(QII51025%202013.11.4)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Figure 11-5: Tri-state Conduit System to Control Off-Chip SRAM and Flash Devices

Altera FPGA

Printed Circuit Board

M

M

M

Nios II
Processor

Cn SSRAM

Cn Flash
TCM

S TCM

Generic Tri-state
Controller

Parameterized
for 2 MByte
x32 SSRAM

TCM

TCS
Tri-state
Conduit
Pin

Sharer

Avalon-MM Master

Avalon-MM Slave

CnTCS
Tri-state
Conduit
Bridge

Generic Tri-state
Controller

Parameterized
for 8 MByte
x16 FlashS

S

TCS

TCM Avalon-TC Master

Avalon-TC Slave

ConduitCn

TCS

By default, the Tri-state Conduit Pin Sharer and Tri-State Conduit Bridge present byte addresses. Each
address location in many memory devices contains more than one byte of data. In Figure 11-6, the flash
device operates on 16-bit words and must ignore the least-significant bit of the Avalon-MM address, and
shows addr[0]as unconnected. The SSRAM memory operates on 32-bit words and must ignore the two,
low-order memory bits. Because neither device requires a byte address, addr[0] is not routed on the PCB.

Figure 11-6: Address Connections from Qsys System to PCB

PCB_Addr[21:0]

2 MByte SSRAM
(32-bit word)

2 MByte SSRAM
(32-bit word)

0

8 MBytes

16 MBytes

10 MBytes

PCB_Addr[19:1]

A[21:0]

8 MByte Flash
(16-bit word)

8 MByte Flash
(16-bit word)

UnusedA[18:0]

Tristate Conduit
Bridge

PCB

Qsys Address Map

Addr[22:1]
PCB_Addr[21:0]

Addr[0]

Addr[23] x

x

In Figure 11-7, the flash device responds to address range 0 MBytes to 8 MBytes-1. The SSRAM responds
to address range 8 MBytes to 10 MBytes-1. The PCB schematic for the PCB connects addr [20:2] to
addr [18:0] of the SSRAM device because the SSRAM responds to 32-bit word address. The 8 MByte
flash device accesses 16-bit words; consequently, the schematic does not connect addr[0]. The
chipselect signals select between the two devices.

Qsys System Design ComponentsAltera Corporation

Send Feedback

QII51025
Tri-state Components11-6 2013.11.4

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Qsys%20System%20Design%20Components%20(QII51025%202013.11.4)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

If you create a custom tri-state conduit master with word-aligned addresses, the Tri-state Conduit
Pin Sharer does nothing to change or align the address signals. Figure 11-7 illustrates this example
system in Qsys.

Note:

Figure 11-7: Tri-state Conduit System in Qsys

Related Information

• Avalon Interface Specifications

• Avalon Tri-State Conduit Components Use Guide

Generic Tri-state Controller
The Generic Tri-state Controller provides a template for a controller that you can parameterize to reflect
the behavior of an off-chip device.

You can use various parameters to customize the generic tri-state controller, such as the following:

• The width of the address and data signals
• The read and write wait times
• The bus-turnaround time
• The data hold time

Altera CorporationQsys System Design Components

Send Feedback

11-7Generic Tri-state Controller
QII51025
2013.11.4

http://www.altera.com/literature/manual/mnl_avalon_spec.pdf
http://www.altera.com/literature/ug/ug_avalon_tc.pdf?GSA_pos=1&WT.oss_r=1&WT.oss=Tristate
mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Qsys%20System%20Design%20Components%20(QII51025%202013.11.4)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

In calculating delays, the Generic Tri-state Controller chooses the larger of the bus-turnaround time
and read latency. Turnaround time is measured from the time that a command is accepted, not from
the time that the previous read returned data.

Note:

The Generic Tri-state Controller includes the following interfaces:

• Memory-mapped slave interface—This interface connects to an memory-mapped master, such as a
processor.

• Tristate Conduit Master interface—Tri-state master interface usually connects to the tri-state conduit
slave interface of the tri-state conduit pin sharer.

• Clock sink—The component’s clock reference. This interface must be connected to a clock source.
• Reset sink—This interface connects to a reset source interface.

Tri-state Conduit Pin Sharer
The Tri-state Conduit Pin Sharer multiplexes between the signals of the connected tri-state controllers. You
connect all signals from the tri-state controllers to the Tri-state Conduit Pin Sharer and use the parameter
editor to specify the signals that are shared.

The parameter editor includes a Shared Signal Name column, as shown in Figure 11-8.

Figure 11-8: Specifying Shared Signals Using the Tri-state Conduit Pin Sharer

If the widths of shared signals differ, the signals are aligned on their 0th bit and the higher-order pins are
driven to 0 whenever the smaller signal has control of the bus. Unshared signals always propagate through

Qsys System Design ComponentsAltera Corporation

Send Feedback

QII51025
Tri-state Conduit Pin Sharer11-8 2013.11.4

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Qsys%20System%20Design%20Components%20(QII51025%202013.11.4)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

the pin sharer. The tri-state conduit pin sharer uses the round-robin arbiter to select between tri-state conduit
controllers.

All tri-state conduit components connected to a given pin sharer must be in the same clock domain.Note:

Tri-state Conduit Bridge
The Tri-state Conduit Bridge instantiates bidirectional signals for each tri-state signal while passing all other
signals straight through the component. The Tri-state Conduit Bridge registers all outgoing and incoming
signals, which adds two cycles of latency for a read request. You must account for this additional pipelining
when designing a custom controller. During reset, all outputs are placed in a high-impedance state; outputs
are enabled in the first clock cycle after reset is deasserted. TheQuartus II software labels these output signals
bidirectional.

Test Pattern Generator and Checker Cores
The data generation and monitoring solution for Avalon-ST consists of two components: a test pattern
generator core that generates data, and sends it out on an Avalon-ST data interface, and a test pattern checker
core that receives the same data and verifies it. Optionally, the data can be formatted as packets, with
accompanying start_of_packet and end_of_packet signals.

The test pattern generator inserts different error conditions, and the test pattern checker reports these error
conditions to the control interface, each via an Avalon Memory-Mapped (Avalon-MM) slave. The Throttle
Seed is the starting value for the throttle control random number generator. Altera recommends a unique
value for each instance of the test pattern generator and checker cores in a system.

Test Pattern Generator
The test pattern generator core accepts commands to generate data via an Avalon-MM command interface,
and drives the generated data to an Avalon-ST data interface. You can parameterize most aspects of the
Avalon-ST data interface, such as the number of error bits and data signal width, thus allowing you to test
components with different interfaces.

Figure 11-9: Test Pattern Generator Core Block Diagram

Avalon-MM
Slave Port

Av
al
on

-M
M

Sl
av
e
Po

rt

Avalon-ST
SourceTEST PATTERN

GENERATOR
command data_out

control & status

The data pattern is calculated as: Symbol Value = Symbol Position in Packet XOR Data Error Mask. Data
that is not organized in packets is a single stream with no beginning or end. The test pattern generator has
a throttle register that is set via the Avalon-MM control interface. The value of the throttle register is used
in conjunction with a pseudo-random number generator to throttle the data generation rate.

Altera CorporationQsys System Design Components

Send Feedback

11-9Tri-state Conduit Bridge
QII51025
2013.11.4

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Qsys%20System%20Design%20Components%20(QII51025%202013.11.4)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Test Pattern Generator Command Interface
The command interface for the Test Pattern Generator is a 32-bit Avalon-MM write slave that accepts data
generation commands. It is connected to a 16-element deep FIFO, thus allowing a master peripheral to drive
a number of commands into the test pattern generator.

The command interface maps to the following registers: cmd_lo and cmd_hi. The command is pushed
into the FIFO when the register cmd_lo (address 0) is addressed. When the FIFO is full, the command
interface asserts thewaitrequest signal. You can create errors bywriting to the registercmd_hi (address
1). The errors are cleared when 0 is written to this register, or its respective fields. Refer to Test Pattern
Generator Command Registers for more information about the register fields.

Test Pattern Generator Control and Status Interface

The control and status interface of the Test Pattern Generator is a 32-bit Avalon-MM slave that allows you
to enable or disable the data generation, as well as set the throttle. This interface also provides generation-
time information, such as the number of channels and whether or not data packets are supported.

Test Pattern Generator Output Interface
The output interface of the Test Pattern Generator is an Avalon-ST interface that optionally supports data
packets. You can configure the output interface to align with your system requirements. Depending on the
incoming stream of commands, the output data may contain interleaved packet fragments for different
channels. To keep track of the current symbol’s position within each packet, the test pattern generator
maintains an internal state for each channel.

You can configure the output interface of the test pattern generator with the following parameters:

• Number of Channels—The number of channels that the test pattern generator supports. Valid values
are 1 to 256.

• Data Bits Per Symbol—The bits per symbol is related to the width of readdata and writedata
signals, which must be a multiple of the bits per symbol.

• Data Symbols Per Beat—The number of symbols (words) that are transferred per beat. Valid values are
1 to 256.

• Include Packet Support—Indicates whether or not packet transfers are supported. Packet support
includes the startofpacket, endofpacket, and empty signals.

• Error Signal Width (bits)—The width of the error signal on the output interface. Valid values are 0 to
31. A value of 0 indicates that the error signal is not used.

If you change only bits per symbol, and do not change the data width, errors are generated.Note:

Test Pattern Generator Functional Parameter

The Test Pattern Generator functional parameter allows you to configure the test pattern generator as a
whole system.

Test Pattern Checker
The test pattern checker core accepts data via an Avalon-ST interface, verifies it against the same
predetermined pattern used by the test pattern generator to produce the data, and reports any exceptions
to the control interface. You can parameterize most aspects of the test pattern checker's Avalon-ST interface

Qsys System Design ComponentsAltera Corporation

Send Feedback

QII51025
Test Pattern Generator Command Interface11-10 2013.11.4

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Qsys%20System%20Design%20Components%20(QII51025%202013.11.4)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

such as the number of error bits and the data signal width, thus allowing you to test components with different
interfaces.

The test pattern checker has a throttle register that is set via the Avalon-MM control interface. The value of
the throttle register controls the rate at which data is accepted.

Figure 11-10: Test Pattern Checker

Avalon-MM
Slave Port

Av
al
on

-S
T

Si
nk

TEST PATTERN
CHECKER

data_in

control & status

The test pattern checker detects exceptions and reports them to the control interface via a 32-element deep
internal FIFO. Possible exceptions are data error, missing start-of-packet (SOP), missing end-of-packet
(EOP), and signaled error.

As each exception occurs, an exception descriptor is pushed into the FIFO. If the same exception occurs
more than once consecutively, only one exception descriptor is pushed into the FIFO. All exceptions are
ignored when the FIFO is full. Exception descriptors are deleted from the FIFO after they are read by the
control and status interface.

Test Pattern Checker Input Interface
The Test Pattern Checker input interface is an Avalon-ST interface that optionally supports data packets.
You can configure the input interface to align with your system requirements. Incoming data may contain
interleaved packet fragments. To keep track of the current symbol’s position, the test pattern checkermaintains
an internal state for each channel.

Test Pattern Checker Control and Status Interface
The Test Pattern Checker control and status interface is a 32-bit Avalon-MM slave that allows you to enable
or disable data acceptance, as well as set the throttle. This interface provides generation-time information,
such as the number of channels and whether the test pattern checker supports data packets. The control and
status interface also provides information on the exceptions detected by the test pattern checker. The interface
obtains this information by reading from the exception FIFO.

Test Pattern Checker Functional Parameter
The Test Pattern Checker functional parameter allows you to configure the test pattern checker as a whole
system.

Altera CorporationQsys System Design Components

Send Feedback

11-11Test Pattern Checker Input Interface
QII51025
2013.11.4

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Qsys%20System%20Design%20Components%20(QII51025%202013.11.4)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Test Pattern Checker Input Parameters

• You can configure the input interface of the test pattern checker using the following parameters:

Data Bits Per Symbol—The bits per symbol is related to the width of readdata and writedata
signals, which must be a multiple of the bits per symbol.

• Data Symbols Per Beat—The number of symbols (words) that are transferred per beat. Valid values
are 1 to 32.

• Include Packet Support—Indicates whether or not data packet transfers are supported. Packet support
includes the startofpacket, endofpacket, and empty signals.

• Number of Channels—The number of channels that the test pattern checker supports. Valid values are
1 to 256.

• Error Signal Width (bits)—The width of the error signal on the input interface. Valid values are 0 to
31. A value of 0 indicates that the error signal is not used.

If you change only bits per symbol, and do not change the data width, errors are generated.Note:

Software Programming Model for the Test Pattern Generator and Checker Cores
The HAL system library support, software files, and register maps describe the software programming model
for the test pattern generator and checker cores.

HAL System Library Support
ForNios II processor users, Altera providesHAL system library drivers that allow you to initialize and access
the test pattern generator and checker cores. Altera recommends you to use the provided drivers to access
the cores instead of accessing the registers directly.

For Nios II IDE users, copy the provided drivers from the following installation folders to your software
application directory:

• <IP installation directory>/ip/sopc_builder_ip/altera_avalon_data_source/HAL
• <IP installation directory>/ip/sopc_builder_ip/altera_avalon_data_sink/HAL

This instruction does not apply if you use the Nios II command-line tools.Note:

Software Files Provided with the Test Pattern Generator
The following software files define the low-level access to the hardware, and provide the routines for the
HAL device drivers.

Do not modify the software files.Note:

• Software files provided with the test pattern generator core:

• data_source_regs.h—The header file that defines the test pattern generator's register maps.
• data_source_util.h , data_source_util.c—The header and source code for the functions and variables

required to integrate the driver into the HAL system library.

• Software files provided with the test pattern checker core:

• data_sink_regs.h—The header file that defines the core’s register maps.
• data_sink_util.h , data_sink_util.c—The header and source code for the functions and variables

required to integrate the driver into the HAL system library.

Qsys System Design ComponentsAltera Corporation

Send Feedback

QII51025
Test Pattern Checker Input Parameters11-12 2013.11.4

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Qsys%20System%20Design%20Components%20(QII51025%202013.11.4)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Register Maps for the Test Pattern Generator and Checker Cores

Test Pattern Generator Control and Status Registers

Table 11-8 shows the offset for the test pattern generator control and status registers. Each register is 32-
bits wide.

Table 11-1: Test Pattern Generator Control and Status Register Map

Register NameOffset

statusbase + 0

controlbase + 1

fillbase + 2

Table 11-9 describes the status register bits.

Table 11-2: Status Register Bits

DescriptionAccessNameBit(s)

A constant value of 0x64.ROID[15:0]

The configured number of channels.RONUMCHANNELS[23:16]

The configured number of symbols per beat.RONUMSYMBOLS[30:24]

A value of 1 indicates data packet support.ROSUPPORTPACKETS[31]

Table 11-3: Control Register Bits

DescriptionAccessNameBit(s)

Setting this bit to 1 enables the test pattern generator core.RWENABLE[0]

Reserved[7:1]

Specifies the throttle value which can be between 0–256, inclusively.
This value is used in conjunction with a pseudorandom number
generator to throttle the data generation rate.

SettingTHROTTLE to 0 stops the test pattern generator core. Setting
it to 256 causes the test pattern generator core to run at full throttle.
Values between 0–256 result in a data rate proportional to the throttle
value.

RWTHROTTLE[16:8]

When this bit is set to 1, all internal counters and statistics are reset.
Write 0 to this bit to exit reset.

RWSOFT
RESET

[17]

Reserved[31:18]

Altera CorporationQsys System Design Components

Send Feedback

11-13Register Maps for the Test Pattern Generator and Checker Cores
QII51025
2013.11.4

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Qsys%20System%20Design%20Components%20(QII51025%202013.11.4)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Table 11-4: Fill Register Bits

DescriptionAccessNameBit(s)

A value of 1 indicates that data transmission is in progress, or that
there is at least one command in the command queue.

ROBUSY[0]

Reserved[6:1]

The number of commands currently in the command FIFO.ROFILL[15:7]

Reserved[31:16]

Test Pattern Generator Command Registers

Table 11-5 shows the offset for the command registers. Each register is 32-bits wide.

Table 11-5: Test Pattern Command Register Map

Register NameOffset

cmd_lobase + 0

cmd_hibase + 1

The cmd_lo is pushed into the FIFO only when the cmd_lo register is addressed.

Table 11-6: cmd_lo Register Bits

DescriptionAccessNameBit(s)

The segment size in symbols. Except for the last segment in a packet,
the size of all segments must be a multiple of the configured number
of symbols per beat. If this condition is not met, the test pattern
generator core inserts additional symbols to the segment to ensure
the condition is fulfilled.

RWSIZE[15:0]

The channel to send the segment on. If the channel signal is less
than 14 bits wide, the low order bits of this register are used to drive
the signal.

RWCHANNEL[29:16]

Set this bit to 1 when sending the first segment in a packet. This bit
is ignored when data packets are not supported.

RWSOP[30]

Set this bit to 1 when sending the last segment in a packet. This bit
is ignored when data packets are not supported.

RWEOP[31]

Table 11-7 describes the cmd_hi register bits.

Qsys System Design ComponentsAltera Corporation

Send Feedback

QII51025
Test Pattern Generator Command Registers11-14 2013.11.4

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Qsys%20System%20Design%20Components%20(QII51025%202013.11.4)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Table 11-7: cmd_hi Register Bits

DescriptionAccessNameBit(s)

Specifies the value to drive the error signal. A non-zero value
creates a signalled error.

RWSIGNALLED
ERROR

[15:0]

The output data is XORed with the contents of this register to create
data errors. To stop creating data errors, set this register to 0.

RWDATA
ERROR

[23:16]

Set this bit to 1 to suppress the assertion of the startofpacket
signal when the first segment in a packet is sent.

RWSUPRESS
SOP

[24]

Set this bit to 1 to suppress the assertion of the endofpacket
signal when the last segment in a packet is sent.

RWSUPRESS
EOP

[25]

Test Pattern Checker Control and Status Registers

Table 11-8 shows the offset for the control and status registers. Each register is 32 bits wide.

Table 11-8: Test Pattern Checker Control and Status Register Map

Register NameOffset

statusbase + 0

controlbase + 1

Reserved

base + 2

base + 3

base + 4

exception_descriptorbase + 5

indirect_selectbase + 6

indirect_countbase + 7

Table 11-9: Status Register Bits

DescriptionAccessNameBit(s)

Contains a constant value of 0x65.ROID[15:0]

The configured number of channels.RONUMCHANNELS[23:16]

The configured number of symbols per beat.RONUMSYMBOLS[30:24]

A value of 1 indicates packet support.ROSUPPORTPACKETS[31]

Altera CorporationQsys System Design Components

Send Feedback

11-15Test Pattern Checker Control and Status Registers
QII51025
2013.11.4

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Qsys%20System%20Design%20Components%20(QII51025%202013.11.4)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Table 11-10: Control Register Bits

DescriptionAccessNameBit(s)

Setting this bit to 1 enables the test pattern checker.RWENABLE[0]

Reserved[7:1]

Specifies the throttle value which can be between 0–256, inclusively.
This value is used in conjunction with a pseudorandom number
generator to throttle the data generation rate.

SettingTHROTTLE to 0 stops the test pattern generator core. Setting
it to 256 causes the test pattern generator core to run at full throttle.
Values between 0–256 result in a data rate proportional to the throttle
value.

RWTHROTTLE[16:8]

When this bit is set to 1, all internal counters and statistics are reset.
Write 0 to this bit to exit reset.

RWSOFT
RESET

[17]

Reserved[31:18]

If there is no exception, reading the exception_descriptor register bit register returns 0.

Table 11-11: exception_descriptor Register Bits

DescriptionAccessNameBit(s)

A value of 1 indicates that an error is detected in the incoming data.RODATA
ERROR

[0]

A value of 1 indicates missing start-of-packet.ROMISSINGSOP[1]

A value of 1 indicates missing end-of-packet.ROMISSINGEOP[2]

Reserved[7:3]

The value of the error signal.ROSIGNALLED
ERROR

[15:8]

Reserved[23:16]

The channel on which the exception was detected.ROCHANNEL[31:24]

Table 11-12: indirect_select Register Bits

DescriptionAccessBits NameBit

Specifies the channel number that applies to the INDIRECT
PACKET COUNT, INDIRECT SYMBOL COUNT, andINDIRECT
ERROR COUNT registers.

RWINDIRECT
CHANNEL

[7:0]

Reserved[15:8]

Qsys System Design ComponentsAltera Corporation

Send Feedback

QII51025
Test Pattern Checker Control and Status Registers11-16 2013.11.4

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Qsys%20System%20Design%20Components%20(QII51025%202013.11.4)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

DescriptionAccessBits NameBit

The number of data errors that occurred on the channel specified
by INDIRECT CHANNEL.

ROINDIRECT
ERROR

[31:16]

Table 11-13: indirect_count Register Bits

DescriptionAccessBits NameBit

The number of data packets received on the channel specified by
INDIRECT CHANNEL.

ROINDIRECT
PACKET
COUNT

[15:0]

The number of symbols received on the channel specified by
INDIRECT CHANNEL.

ROINDIRECT
SYMBOL
COUNT

[31:16]

.

Test Pattern Generator API
The following subsections describe application programming interface (API) for the test pattern generator.

API functions are currently not available from the interrupt service routine (ISR).Note:

data_source_reset() on page 11-17

data_source_init() on page 11-19

data_source_get_id() on page 11-19

data_source_get_supports_packets() on page 11-19

data_source_get_num_channels() on page 11-20

data_source_get_symbols_per_cycle() on page 11-20

data_source_set_enable() on page 11-20

data_source_get_enable() on page 11-21

data_source_set_throttle() on page 11-21

data_source_get_throttle() on page 11-21

data_source_is_busy() on page 11-22

data_source_fill_level() on page 11-22

data_source_send_data() on page 11-22

data_source_reset()
DescriptionInformation Type

void data_source_reset(alt_u32 base);Prototype

No.Thread-safe

Altera CorporationQsys System Design Components

Send Feedback

11-17Test Pattern Generator API
QII51025
2013.11.4

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Qsys%20System%20Design%20Components%20(QII51025%202013.11.4)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

DescriptionInformation Type

< data_source_util.h >Include

base—The base address of the control and status slave.Parameters

void.Returns

This function resets the test pattern generator core including all internal
counters and FIFOs. The control and status registers are not reset by this
function.

Description

Qsys System Design ComponentsAltera Corporation

Send Feedback

QII51025
data_source_reset()11-18 2013.11.4

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Qsys%20System%20Design%20Components%20(QII51025%202013.11.4)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

data_source_init()
DescriptionInformation Type

int data_source_init(alt_u32 base, alt_u32
command_base);

Prototype:

No.Thread-safe:

< data_source_util.h >Include:

base—The base address of the control and status slave.

command_base—The base address of the command slave.

Parameters:

1—Initialization is successful.

0—Initialization is unsuccessful.

Returns:

This function performs the following operations to initialize the test
pattern generator core:

• Resets and disables the test pattern generator core.
• Sets the maximum throttle.
• Clears all inserted errors.

Description:

data_source_get_id()
DescriptionInformation Type

int data_source_get_id(alt_u32 base);Prototype:

Yes.Thread-safe:

< data_source_util.h >Include:

base—The base address of the control and status slave.Parameters:

The test pattern generator core’s identifier.Returns:

This function retrieves the test pattern generator core’s identifier.Description:

data_source_get_supports_packets()
DescriptionInformation Type

int data_source_init(alt_u32 base);Prototype:

Yes.Thread-safe:

< data_source_util.h >Include:

base—The base address of the control and status slave.Parameters:

Returns:

Altera CorporationQsys System Design Components

Send Feedback

11-19data_source_init()
QII51025
2013.11.4

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Qsys%20System%20Design%20Components%20(QII51025%202013.11.4)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

DescriptionInformation Type

1—Data packets are supported.

0—Data packets are not supported.

This function checks if the test pattern generator core supports data
packets.

Description:

data_source_get_num_channels()
DescriptionDescription

int data_source_get_num_channels(alt_u32 base);Prototype:

Yes.Thread-safe:

< data_source_util.h >Include:

base—The base address of the control and status slave.Parameters:

The number of channels supported.Returns:

This function retrieves the number of channels supported by the test
pattern generator core.

Description:

data_source_get_symbols_per_cycle()
DescriptionDescription

int data_source_get_symbols(alt_u32 base);Prototype:

Yes.Thread-safe:

< data_source_util.h >Include:

base—The base address of the control and status slave.Parameters:

The number of symbols transferred in a beat.Returns:

This function retrieves the number of symbols transferred by the test
pattern generator core in each beat.

Description:

data_source_set_enable()
DescriptionInformation Type

void data_source_set_enable(alt_u32 base, alt_u32
value);

Prototype:

No.Thread-safe:

< data_source_util.h >Include:

Parameters:

Qsys System Design ComponentsAltera Corporation

Send Feedback

QII51025
data_source_get_num_channels()11-20 2013.11.4

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Qsys%20System%20Design%20Components%20(QII51025%202013.11.4)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

DescriptionInformation Type

base—The base address of the control and status slave.

value—The ENABLE bit is set to the value of this parameter.

void.Returns:

This function enables or disables the test pattern generator core. When
disabled, the test pattern generator core stops data transmission but
continues to accept commands and stores them in the FIFO

Description:

data_source_get_enable()
DescriptionInformation Type

int data_source_get_enable(alt_u32 base);Prototype:

Yes.Thread-safe:

< data_source_util.h >Include:

base—The base address of the control and status slave.Parameters:

The value of the ENABLE bit.Returns:

This function retrieves the value of the ENABLE bit.Description:

data_source_set_throttle()
DescriptionInformation Type

void data_source_set_throttle(alt_u32 base, alt_
u32 value);

Prototype:

No.Thread-safe:

< data_source_util.h >Include:

base—The base address of the control and status slave.

value—The throttle value.

Parameters:

void.Returns:

This function sets the throttle value, which can be between 0–256
inclusively. The throttle value, when divided by 256 yields the rate at
which the test pattern generator sends data.

Description:

data_source_get_throttle()
DescriptionInformation Type

int data_source_get_throttle(alt_u32 base);Prototype:

Altera CorporationQsys System Design Components

Send Feedback

11-21data_source_get_enable()
QII51025
2013.11.4

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Qsys%20System%20Design%20Components%20(QII51025%202013.11.4)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

DescriptionInformation Type

Thread-safe: Yes.

< data_source_util.h >Include:

base—The base address of the control and status slave.Parameters:

The throttle value.Returns:

This function retrieves the current throttle value.Description:

data_source_is_busy()
DescriptionInformation Type

int data_source_is_busy(alt_u32 base);Prototype:

Yes.Thread-safe:

< data_source_util.h >Include:

base—The base address of the control and status slave.Parameters:

1—The test pattern generator core is busy.

0—The core is not busy.

Returns:

This function checks if the test pattern generator is busy. The test pattern
generator core is busywhen it is sending data or has data in the command
FIFO to be sent.

Description:

data_source_fill_level()
DescriptionInformation Type

int data_source_fill_level(alt_u32 base);Prototype:

Yes.Thread-safe:

< data_source_util.h >Include:

base—The base address of the control and status slave.Parameters:

The number of commands in the command FIFO.Returns:

This function retrieves the number of commands currently in the
command FIFO.

Description:

data_source_send_data()
DescriptionInformation Type

Prototype:

Qsys System Design ComponentsAltera Corporation

Send Feedback

QII51025
data_source_is_busy()11-22 2013.11.4

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Qsys%20System%20Design%20Components%20(QII51025%202013.11.4)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

DescriptionInformation Type

int data_source_send_data(alt_u32 cmd_base, alt_
u16 channel, alt_u16 size, alt_u32 flags, alt_u16
error, alt_u8 data_error_mask);

No.Thread-safe:

< data_source_util.h >Include:

cmd_base—The base address of the command slave.

channel—The channel to send the data on.

size—The data size.

flags—Specifies whether to send or suppress SOP and EOP signals.
Valid values areDATA_SOURCE_SEND_SOP,DATA_SOURCE_SEND_
EOP, DATA_SOURCE_SEND_SUPRESS_SOP and DATA_SOURCE_
SEND_SUPRESS_EOP.

error—The value asserted on theerror signal on the output interface.

data_error_mask—This parameter and the data areXORed together
to produce erroneous data.

Parameters:

Always returns 1.Returns:

This function sends a data fragment to the specified channel.

If data packets are supported, user applicationsmust ensure the following
conditions are met:

SOP and EOP are used consistently in each channel.

Except for the last segment in a packet, the length of each segment is a
multiple of the data width.

If data packets are not supported, user applications must ensure the
following conditions are met:

No SOP and EOP indicators in the data.

The length of each segment in a packet is a multiple of the data width.

Description:

Test Pattern Checker API
The following subsections describe API for the test pattern checker core. The API functions are currently
not available from the ISR.

data_sink_reset() on page 11-25

data_sink_init() on page 11-25

data_sink_get_id() on page 11-25

data_sink_get_supports_packets() on page 11-26

Altera CorporationQsys System Design Components

Send Feedback

11-23Test Pattern Checker API
QII51025
2013.11.4

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Qsys%20System%20Design%20Components%20(QII51025%202013.11.4)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

data_sink_get_num_channels() on page 11-26

data_sink_get_symbols_per_cycle() on page 11-26

data_sink_set enable() on page 11-26

data_sink_get_enable() on page 11-27

data_sink_set_throttle() on page 11-27

data_sink_get_throttle() on page 11-27

data_sink_get_packet_count() on page 11-28

data_sink_get_error_count() on page 11-28

data_sink_get_symbol_count() on page 11-28

data_sink_get_exception() on page 11-29

data_sink_exception_is_exception() on page 11-29

data_sink_exception_has_data_error() on page 11-30

data_sink_exception_has_missing_sop() on page 11-30

data_sink_exception_has_missing_eop() on page 11-30

data_sink_exception_signalled_error() on page 11-31

data_sink_exception_channel() on page 11-31

Qsys System Design ComponentsAltera Corporation

Send Feedback

QII51025
Test Pattern Checker API11-24 2013.11.4

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Qsys%20System%20Design%20Components%20(QII51025%202013.11.4)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

data_sink_reset()
DescriptionInformation Type

void data_sink_reset(alt_u32 base);Prototype:

No.Thread-safe:

< data_sink_util.h >Include:

base—The base address of the control and status slave.Parameters:

void.Returns:

This function resets the test pattern checker core including all internal
counters.

Description:

data_sink_init()
DescriptionInformation Type

int data_source_init(alt_u32 base);Prototype:

No.Thread-safe:

< data_sink_util.h >Include:

base—The base address of the control and status slave.Parameters:

1—Initialization is successful.

0—Initialization is unsuccessful.

Returns:

This function performs the following operations to initialize the test
pattern checker core:

• Resets and disables the test pattern checker core.
• Sets the throttle to the maximum value.

Description:

data_sink_get_id()
DescriptionInformation Type

int data_sink_get_id(alt_u32 base);Prototype:

Yes.Thread-safe:

< data_sink_util.h >Include:

base—The base address of the control and status slave.Parameters:

The test pattern checker core’s identifier.Returns:

This function retrieves the test pattern checker core’s identifier.Description:

Altera CorporationQsys System Design Components

Send Feedback

11-25data_sink_reset()
QII51025
2013.11.4

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Qsys%20System%20Design%20Components%20(QII51025%202013.11.4)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

data_sink_get_supports_packets()
DescriptionInformation Type

int data_sink_init(alt_u32 base);Prototype:

Yes.Thread-safe:

< data_sink_util.h >Include:

base—The base address of the control and status slave.Parameters:

1—Data packets are supported.

0—Data packets are not supported.

Returns:

This function checks if the test pattern checker core supports data packets.Description:

data_sink_get_num_channels()
DescriptionInformation Type

int data_sink_get_num_channels(alt_u32 base);Prototype:

Yes.Thread-safe:

< data_sink_util.h >Include:

base—The base address of the control and status slave.Parameters:

The number of channels supported.Returns:

This function retrieves the number of channels supported by the test
pattern checker core.

Description:

data_sink_get_symbols_per_cycle()
DescriptionInformation Type

int data_sink_get_symbols(alt_u32 base);Prototype:

Yes.Thread-safe:

< data_sink_util.h >Include:

base—The base address of the control and status slave.Parameters:

The number of symbols received in a beat.Returns:

This function retrieves the number of symbols received by the test pattern
checker core in each beat.

Description:

data_sink_set enable()
DescriptionInformation Type

Qsys System Design ComponentsAltera Corporation

Send Feedback

QII51025
data_sink_get_num_channels()11-26 2013.11.4

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Qsys%20System%20Design%20Components%20(QII51025%202013.11.4)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

DescriptionInformation Type

Prototype: void data_sink_set_enable(alt_u32 base, alt_u32
value);

No.Thread-safe:

< data_sink_util.h >Include:

base—The base address of the control and status slave.

value—The ENABLE bit is set to the value of this parameter.

Parameters:

void.Returns:

This function enables the test pattern checker core.Description:

data_sink_get_enable()
DescriptionInformation Type

int data_sink_get_enable(alt_u32 base);Prototype:

Yes.Thread-safe:

< data_sink_util.h >Include:

base—The base address of the control and status slave.Parameters:

The value of the ENABLE bit.Returns:

This function retrieves the value of the ENABLE bit.Description:

data_sink_set_throttle()
DescriptionInformation Type

void data_sink_set_throttle(alt_u32 base, alt_u32
value);

Prototype:

No.Thread-safe:

< data_sink_util.h >Include:

base—The base address of the control and status slave.

value—The throttle value.

Parameters:

void.Returns:

This function sets the throttle value, which can be between 0–256
inclusively. The throttle value, when divided by 256 yields the rate at
which the test pattern checker receives data.

Description:

data_sink_get_throttle()

Altera CorporationQsys System Design Components

Send Feedback

11-27data_sink_get_enable()
QII51025
2013.11.4

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Qsys%20System%20Design%20Components%20(QII51025%202013.11.4)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

DescriptionInformation Type

Prototype: int data_sink_get_throttle(alt_u32 base);

Yes.Thread-safe:

< data_sink_util.h >Include:

base—The base address of the control and status slave.Parameters:

The throttle value.Returns:

This function retrieves the throttle value.Description:

data_sink_get_packet_count()
DescriptionInformation Type

int data_sink_get_packet_count(alt_u32 base, alt_
u32 channel);

Prototype:

No.Thread-safe:

< data_sink_util.h >Include:

base—The base address of the control and status slave.

channel—Channel number.

Parameters:

The number of data packets received on the given channel.Returns:

This function retrieves the number of data packets received on a given
channel.

Description:

data_sink_get_error_count()
DescriptionInformation Type

int data_sink_get_error_count(alt_u32 base, alt_
u32 channel);

Prototype:

No.Thread-safe:

<data_sink_util.h>Include:

base—The base address of the control and status slave.

channel—Channel number.

Parameters:

The number of errors received on the given channel.Returns:

This function retrieves the number of errors received on a given channel.Description:

data_sink_get_symbol_count()

Qsys System Design ComponentsAltera Corporation

Send Feedback

QII51025
data_sink_get_packet_count()11-28 2013.11.4

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Qsys%20System%20Design%20Components%20(QII51025%202013.11.4)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

DescriptionInformation Type

Prototype: int data_sink_get_symbol_count(alt_u32 base, alt_
u32 channel);

No.Thread-safe:

< data_sink_util.h >Include:

base—The base address of the control and status slave.

channel—Channel number.

Parameters:

The number of symbols received on the given channel.Returns:

This function retrieves the number of symbols received on a given
channel.

Description:

data_sink_get_exception()
DescriptionInformation Type

int data_sink_get_exception(alt_u32 base);Prototype:

Yes.Thread-safe:

< data_sink_util.h >Include:

base—The base address of the control and status slave.Parameters:

The first exception descriptor in the exception FIFO.

0—No exception descriptor found in the exception FIFO.

Returns:

This function retrieves the first exception descriptor in the exception
FIFO and pops it off the FIFO.

Description:

data_sink_exception_is_exception()
DescriptionInformation Type

int data_sink_exception_is_exception(int
exception);

Prototype:

Yes.Thread-safe:

< data_sink_util.h >Include:

exception—Exception descriptorParameters:

1—Indicates an exception.

0—No exception.

Returns:

This function checks if a given exception descriptor describes a valid
exception.

Description:

Altera CorporationQsys System Design Components

Send Feedback

11-29data_sink_get_exception()
QII51025
2013.11.4

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Qsys%20System%20Design%20Components%20(QII51025%202013.11.4)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

data_sink_exception_has_data_error()
DescriptionInformation Type

int data_sink_exception_has_data_error(int
exception);

Prototype:

Yes.Thread-safe:

< data_sink_util.h >Include:

exception—Exception descriptor.Parameters:

1—Data has errors.

0—No errors.

Returns:

This function checks if a given exception indicates erroneous data.Description:

data_sink_exception_has_missing_sop()
DescriptionInformation Type

int data_sink_exception_has_missing_sop(int
exception);

Prototype:

Yes.Thread-safe:

< data_sink_util.h >Include:

exception—Exception descriptor.Parameters:

1—Missing SOP.

0—Other exception types.

Returns:

This function checks if a given exception descriptor indicates missing
SOP.

Description:

data_sink_exception_has_missing_eop()
DescriptionInformation Type

int data_sink_exception_has_missing_eop(int
exception);

Prototype:

Yes.Thread-safe:

< data_sink_util.h >Include:

exception—Exception descriptor.Parameters:

1—Missing EOP.

0—Other exception types.

Returns:

Description:

Qsys System Design ComponentsAltera Corporation

Send Feedback

QII51025
data_sink_exception_has_missing_sop()11-30 2013.11.4

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Qsys%20System%20Design%20Components%20(QII51025%202013.11.4)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

DescriptionInformation Type

This function checks if a given exception descriptor indicates missing
EOP.

data_sink_exception_signalled_error()
DescriptionInformation Type

int data_sink_exception_signalled_error(int
exception);

Prototype:

Yes.Thread-safe:

< data_sink_util.h >Include:

exception—Exception descriptor.Parameters:

The signalled error value.Returns:

This function retrieves the value of the signalled error from the exception.Description:

data_sink_exception_channel()
DescriptionInformation Type

int data_sink_exception_channel(int exception);Prototype:

Yes.Thread-safe:

< data_sink_util.h >Include:

exception—Exception descriptor.Parameters:

The channel number on which the given exception occurred.Returns:

This function retrieves the channel number on which a given exception
occurred.

Description:

Splitter Core
The Avalon-ST Splitter Core allows you to replicate transactions from an Avalon-ST source interface to
multiple Avalon-ST sink interfaces. This core supports from 1 to 16 outputs.

Altera CorporationQsys System Design Components

Send Feedback

11-31data_sink_exception_signalled_error()
QII51025
2013.11.4

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Qsys%20System%20Design%20Components%20(QII51025%202013.11.4)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Figure 11-11: Avalon-ST Splitter Core

Output 0

In_Data

Out_Data

Av
al
on

-S
T

Si
nk

Avalon-ST
Splitter Core

Output N

Avalon-ST
Source

0

Clock

Avalon-ST
Source

N

The Avalon-ST Splitter core copies input signals from the input interface to the corresponding output signals
of each output interface without altering the size or functionality. This includes all signals except for the
ready signal. The core includes a clock signal to determine the Avalon-ST interface and clock domain
where the core resides. Because the clock signal is unused internally, latency is not introduced when using
this core.

Splitter Core Backpressure
The Avalon-ST Splitter core integrates with backpressure by AND-ing the ready signals from the output
interfaces and sending the result to the input interface. As a result, if an output interface deasserts theready
signal, the input interface receives the deasserted ready signal, as well. This functionality ensures that
backpressure on the output interfaces is propagated to the input interface.

When the Qualify Valid Out parameter is set to 1, the Out_Valid signals on all other output interfaces
are gated when backpressure is applied from one output interface. In this case, when any output interface
deasserts its ready signal, the Out_Valid signals on the other output interfaces are deasserted, as well.

When the Qualify Valid Out parameter is set to 0, the output interfaces have a non-gated Out_Valid
signal when backpressure is applied. In this case, when an output interface deasserts its ready signal, the
Out_Valid signals on the other output interfaces are not affected.

Because the logic is combinational, the core introduces no latency.

Splitter Core Interfaces
The Avalon-ST Splitter core supports streaming data, with optional packet, channel, and error signals. The
core propagates backpressure from any output interface to the input interface.

Table 11-14: Properties of Avalon-ST Interfaces

PropertyFeature

Ready latency = 0.Backpressure

Configurable.Data Width

Supported (optional).Channel

Supported (optional).Error

Supported (optional).Packet

Qsys System Design ComponentsAltera Corporation

Send Feedback

QII51025
Splitter Core Backpressure11-32 2013.11.4

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Qsys%20System%20Design%20Components%20(QII51025%202013.11.4)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Splitter Core Parameters

Table 11-15: Configurable Splitter Core Parameters

DescriptionDefault ValueLegal ValuesParameter

The number of output interfaces. The value
of 1 is supported for some cases of
parameterized systems inwhichnoduplicated
output is required.

21 to 16Number Of Outputs

Determines whether the Out_Valid signal
is gated or non-gated when backpressure is
applied.

10 or 1Qualify Valid Out

The width of the data on the Avalon-ST data
interfaces.

81–512Data Width

The number of bits per symbol for the input
and output interfaces. For example, byte-
oriented interfaces have 8-bit symbols.

81–512Bits Per Symbol

Indicates whether or not data packet transfers
are supported. Packet support includes the
startofpacket, endofpacket, and
empty signals.

00 or 1Use Packets

The option to enable or disable the channel
signal.

00 or 1Use Channel

Thewidth of thechannel signal on the data
interfaces. This parameter is disabled when
Use Channel is set to 0.

10-8Channel Width

The maximum number of channels that a
data interface can support. This parameter is
disabled when Use Channel is set to 0.

10-255Max Channels

The option to enable or disable the error
signal.

00 or 1Use Error

The width of theerror signal on the output
interfaces. A value of 0 indicates that the error
signal is not used. This parameter is disabled
when Use Error is set to 0.

10–31Error Width

Delay Core
The Avalon-ST Delay Core provides a solution to delay Avalon-ST transactions by a constant number of
clock cycles. This core supports up to 16 clock cycle delays.

Altera CorporationQsys System Design Components

Send Feedback

11-33Splitter Core Parameters
QII51025
2013.11.4

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Qsys%20System%20Design%20Components%20(QII51025%202013.11.4)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Figure 11-12: Avalon-ST Delay Core

Out_Data
In_Data

Clock

Av
al
on

-S
T

Si
nk

Avalon-ST
SourceAvalon-ST

Delay Core

TheDelay core adds a delay between the input and output interfaces. The core accepts transactions presented
on the input interface and reproduces them on the output interface N cycles later without changing the
transaction.

The input interface delays the input signals by a constant N number of clock cycles to the corresponding
output signals of the output interface. The Number Of Delay Clocks parameter defines the constant N,
which must be between 0 and 16. The change of the In_Valid signal is reflected on the Out_Valid
signal exactly N cycles later.

Delay Core Reset Signal
The Avalon-ST Delay core has a reset signal that is synchronous to the clk signal. When the core asserts
the reset signal, the output signals are held at 0. After the reset signal is deasserted, the output signals
are held at 0 for N clock cycles. The delayed values of the input signals are then reflected at the output signals
after N clock cycles.

Delay Core Interfaces
The Delay core supports streaming data, with optional packet, channel, and error signals. This core does
not support backpressure.

Table 11-16: Properties of Avalon-ST Interfaces

PropertyFeature

Not supported.Backpressure

Configurable.Data Width

Supported (optional).Channel

Supported (optional).Error

Supported (optional).Packet

Qsys System Design ComponentsAltera Corporation

Send Feedback

QII51025
Delay Core Reset Signal11-34 2013.11.4

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Qsys%20System%20Design%20Components%20(QII51025%202013.11.4)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Delay Core Parameters

Table 11-17: Configurable Delay Core Parameters

DescriptionDefault ValueLegal ValuesParameter

Specifies the delay the core introduces, in
clock cycles. The value of 0 is supported for
some cases of parameterized systems inwhich
no delay is required.

10 to 16Number Of Delay Clocks

The width of the data on the Avalon-ST data
interfaces.

81–512Data Width

The number of bits per symbol for the input
and output interfaces. For example, byte-
oriented interfaces have 8-bit symbols.

81–512Bits Per Symbol

Indicates whether or not data packet transfers
are supported. Packet support includes the
startofpacket, endofpacket, and
empty signals.

00 or 1Use Packets

The option to enable or disable the channel
signal.

00 or 1Use Channel

Thewidth of thechannel signal on the data
interfaces. This parameter is disabled when
Use Channel is set to 0.

10-8Channel Width

The maximum number of channels that a
data interface can support. This parameter is
disabled when Use Channel is set to 0.

10-255Max Channels

The option to enable or disable the error
signal.

00 or 1Use Error

The width of theerror signal on the output
interfaces. A value of 0 indicates that the error
signal is not in use. This parameter is disabled
when Use Error is set to 0.

10–31Error Width

Round Robin Scheduler
The Avalon-ST Round Robin Scheduler core controls the read operations from a multi-channel Avalon-ST
component that buffers data by channels. It reads the almost-full threshold values from themultiple channels
in the multi-channel component and issues the read request to the Avalon-ST source according to a
round-robin scheduling algorithm.

Altera CorporationQsys System Design Components

Send Feedback

11-35Delay Core Parameters
QII51025
2013.11.4

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Qsys%20System%20Design%20Components%20(QII51025%202013.11.4)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

In a multi-channel component, the component can store data either in the sequence that it comes in (FIFO),
or in segments according to the channel. When data is stored in segments according to channels, a scheduler
is needed to schedule the read operations.

Figure 11-13: Avalon-ST Round Robin Scheduler Block Diagram

Request
(Channel_select) Almost Full Status

Avalon-ST
Round-Robin
SchedulerAv

al
on

-M
M

W
rit
e
M
as
te
r

Avalon-ST
Sink

Round Robin Scheduler Interfaces
The following interfaces are available in the Avalon-ST Round Robin Scheduler core:

• Almost-Full Status Interface
• Request Interface

Almost-Full Status Interface
The Almost-Full Status interface is an Avalon-ST sink interface that collects the almost-full status from the
sink components for the channels in the sequence provided.

Table 11-18: Avalon-ST Interface Feature Support

PropertyFeature

Not supportedBackpressure

Data width = 1; Bits per symbol = 1Data Width

Maximum channel = 32; Channel width = 5Channel

Not supportedError

Not supportedPacket

Request Interface (Round Robin Scheduler)
The Request Interface is an Avalon-MM write master interface that requests data from a specific channel.
The Avalon-ST Round Robin Scheduler cycles through the channels it supports and schedules data to be
read.

Round Robin Scheduler Operation
If a particular channel is almost full, the Round Robin Scheduler does not schedule data to be read from that
channel in the source component.

The scheduler only requests 1 beat of data from a channel at each transaction. To request 1 beat of data from
channel n, the scheduler writes the value 1 to address (4 ×n). For example, if the scheduler is requesting data

Qsys System Design ComponentsAltera Corporation

Send Feedback

QII51025
Round Robin Scheduler Interfaces11-36 2013.11.4

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Qsys%20System%20Design%20Components%20(QII51025%202013.11.4)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

from channel 3, the scheduler writes 1 to address 0xC. At every clock cycle, the scheduler requests data
from the next channel. Therefore, if the scheduler starts requesting from channel 1, at the next clock cycle,
it requests from channel 2. The scheduler does not request data from a particular channel if the almost-full
status for the channel is asserted. In this case, one clock cycle is used without a request transaction.

The Avalon-ST Round Robin Scheduler cannot determine if the requested component is able to service the
request transaction. The component asserts waitrequest when it cannot accept new requests.

Table 11-19: Ports for the Avalon-ST Round Robin Scheduler

DescriptionDirectionSignal

Clock and Reset

Clock reference.Inclk

Asynchronous active low reset.Inreset_n

Avalon-MM Request Interface

The write address used to indicate which channel has
the request.

Outrequest_address (log2 Max_
Channels–1:0)

Write enable signal.Outrequest_write

The amount of data requested from the particular
channel.

This value is always fixed at 1.

Outrequest_writedata

Wait request signal, used to pause the scheduler when
the slave cannot accept a new request.

Inrequest_waitrequest

Avalon-ST Almost-Full Status Interface

Indicates that almost_full_channel and
almost_full_data are valid.

Inalmost_full_valid

Indicates the channel for the current status indication.Inalmost_full_channel
(Channel_Width–1:0)

A 1-bit signal that is asserted high to indicate that the
channel indicated by almost_full_channel is
almost full.

Inalmost_full_data (log2
Max_Channels–1:0)

Round Robin Scheduler Parameters

Table 11-20: Configurable Parameters for Avalon-ST Round Robin Scheduler

DescriptionValuesParameters

Specifies the number of channels the Avalon-ST Round
Robin Scheduler supports.

2–32Number of channels

Altera CorporationQsys System Design Components

Send Feedback

11-37Round Robin Scheduler Parameters
QII51025
2013.11.4

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Qsys%20System%20Design%20Components%20(QII51025%202013.11.4)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

DescriptionValuesParameters

Specifies whether the almost-full interface is used. If the
interface is not used, the core always requests data from the
next channel at the next clock cycle.

0–1Use almost-full status

Packets to Transactions Converter
The Avalon Packets to Transactions Converter core receives streaming data from upstream components
and initiates Avalon-MM transactions. The core then returns Avalon-MM transaction responses to the
requesting components.

The SPI Slave to Avalon Master Bridge and JTAG to Avalon Master Bridge are examples of how
Packets to Transactions Converter core is used. For more information, refer to the Avalon Interface
Specifications.

Note:

Figure 11-14: Avalon Packets to Transactions Converter Core

Av
al
on

-S
T

Si
nk

Avalon
Packets to
Transactions
Converter

data_out

Av
al
on

-M
M

M
as
te
r

data_in

Av
al
on

-S
T

So
ur
ce

Avalon-MM
Slave

Component

Related Information
Avalon Interface Specifications

Packets to Transactions Converter Interfaces

Table 11-21: Properties of Avalon-ST Interfaces

PropertyFeature

Ready latency = 0.Backpressure

Data width = 8 bits; Bits per symbol = 8.Data Width

Not supported.Channel

Not used.Error

Supported.Packet

Qsys System Design ComponentsAltera Corporation

Send Feedback

QII51025
Packets to Transactions Converter11-38 2013.11.4

http://www.altera.com/literature/manual/mnl_avalon_spec.pdf
mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Qsys%20System%20Design%20Components%20(QII51025%202013.11.4)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

The Avalon-MM master interface supports read and write transactions. The data width is set to 32 bits, and
burst transactions are not supported.

Packets to Transactions Converter Operation
The Packets to Transactions Converter core receives streams of packets on its Avalon-ST sink interface and
initiates Avalon-MM transactions. Upon receiving transaction responses from Avalon-MM slaves, the core
transforms the responses to packets and returns them to the requesting components via its Avalon-ST source
interface. The core does not report Avalon-ST errors.

Packets to Transactions Converter Data Packet Formats
A response packet is returned for every write transaction. The core also returns a response packet if a no
transaction (0x7f) is received. An invalid transaction code is regarded as a no transaction. For read
transactions, the core returns the data read.

The Packets to Transactions Converter core expects incoming data streams to be in the formats shown in
Table 11-22.

Table 11-22: Data Packet Formats

DescriptionFieldByte

Transaction Packet Format

Type of transaction.Transaction code0

Reserved for future use.Reserved1

Transaction size in bytes. For write transactions, the size
indicates the size of the data field. For read transactions,
the size indicates the total number of bytes to read.

Size[3:2]

32-bit address for the transaction.Address[7:4]

Transaction data; data to be written for write transactions.Data[n:8]

Response Packet Format

The transaction code with the most significant bit inversed.Transaction code0

Reserved for future use.Reserved1

Total number of bytes read/written successfully.Size[4:2]

Related Information
Packets to Transactions Converter Interfaces on page 11-38

Packets to Transactions Converter Supported Transactions

Table 11-23 lists the Avalon-MM transactions supported by the Packets to Transactions Converter core.

Altera CorporationQsys System Design Components

Send Feedback

11-39Packets to Transactions Converter Operation
QII51025
2013.11.4

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Qsys%20System%20Design%20Components%20(QII51025%202013.11.4)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Table 11-23: Transaction Supported

DescriptionAvalon-MM TransactionTransaction
Code

Writes data to the given address until the total number of
bytes written to the same word address equals to the value
specified in the size field.

Write, non-incrementing address.0x00

Writes transaction data starting at the given address.Write, incrementing address.0x04

Reads 32 bits of data from the given address until the total
number of bytes read from the same address equals to the
value specified in the size field.

Read, non-incrementing address.0x10

Reads the number of bytes specified in the size field
starting from the given address.

Read, incrementing address.0x14

No transaction is initiated. You can use this transaction type
for testing purposes. Although no transaction is initiated on
the Avalon-MM interface, the core still returns a response
packet for this transaction code.

No transaction.0x7f

The Packets to Transactions Converter core can process only a single transaction at a time. The ready
signal on the core's Avalon-ST sink interface is asserted only when the current transaction is completely
processed.

No internal buffer is implemented on the data paths. Data received on the Avalon-ST interface is forwarded
directly to the Avalon-MM interface and vice-versa. Asserting the waitrequest signal on the Avalon-
MM interface backpressures the Avalon-ST sink interface. In the opposite direction, if the Avalon-ST source
interface is backpressured, theread signal on theAvalon-MM interface is not asserted until the backpressure
is alleviated. Backpressuring the Avalon-ST source in the middle of a read could result in data loss. In this
cases, the core returns the data that is successfully received.

A transaction is considered complete when the core receives an EOP. For write transactions, the actual data
size is expected to be the same as the value of the size property. Whether or not both values agree, the core
always uses the end of packet (EOP) to determine the end of data.

Packets to Transactions Converter Malformed Packets

The following are examples of malformed packets:

• Consecutive start of packet (SOP)—An SOP marks the beginning of a transaction. If an SOP is received
in the middle of a transaction, the core drops the current transaction without returning a response packet
for the transaction, and initiates a new transaction. This effectively precesses packets without an end of
packet (EOP).

• Unsupported transaction codes—The core processes unsupported transactions as a no transaction.

Qsys System Design ComponentsAltera Corporation

Send Feedback

QII51025
Packets to Transactions Converter Malformed Packets11-40 2013.11.4

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Qsys%20System%20Design%20Components%20(QII51025%202013.11.4)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Streaming Pipeline Stage
The Avalon-ST pipeline stage receives data from an Avalon-ST source interface, and outputs the data to an
Avalon-ST sink interface. In the absence of back pressure, the Avalon-ST pipeline stage source interface
outputs data one cycle after receiving the data on its sink interface.

If the pipeline stage receives back pressure on its source interface, it continues to assert its source interface's
current data output. While the pipeline stage is receiving back pressure on its source interface and it receives
new data on its sink interface, the pipeline stage will internally buffer the new data, and assert back pressure
on its sink interface.

Once the back pressure is deasserted, the pipeline stage's source interface is de-asserted and the pipeline
stage will assert internally buffered data (if present). Additionally, the pipeline stage de-asserts back pressure
on its sink interface.

If the ready signal is not pipelined, the pipeline stage becomes a simple register, as shown in Figure 11-15

Figure 11-15: Pipeline Stage Simple Register

Sink Sourcedata_in data_outRegister 0

If the ready signal is pipelined, the pipeline stage must also include a second "holding" register, as shown in
Figure 11-16.

Figure 11-16: Pipeline Stage Holding Register

Sink Sourcedata_in data_out
Register 1

Register 0

Full?

Full?

Streaming Channel Multiplexer and Demultiplexer Cores
The Avalon-ST channel multiplexer core receives data from various input interfaces and multiplexes the
data into a single output interface, using the optional channel signal to indicate the origin of the data. The
Avalon-ST channel demultiplexer core receives data from a channelized input interface and drives that data
to multiple output interfaces, where the output interface is selected by the input channel signal.

The multiplexer and demultiplexer cores can transfer data between interfaces on cores that support the
unidirectional flow of data. The multiplexer and demultiplexer allow you to create multiplexed or demulti-

Altera CorporationQsys System Design Components

Send Feedback

11-41Streaming Pipeline Stage
QII51025
2013.11.4

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Qsys%20System%20Design%20Components%20(QII51025%202013.11.4)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

plexed datapaths without having to write custom HDL code. The multiplexer includes a Round-Robin
Scheduler.

Software Programming Model For the Multiplexer and Demultiplexer Components
The multiplexer and demultiplexer components do not have any user-visible control or status registers.
Therefore, Qsys cannot control or configure any aspect of the multiplexer or demultiplexer at run-time. The
components cannot generate interrupts.

Multiplexer
The Avalon-ST multiplexer takes data from a variety of input data interfaces, and multiplexes the data onto
a single output interface. The multiplexer includes a round-robin scheduler that selects from the next input
interface that has data. Each input interface has the same width as the output interface, so that the other
input interfaces are backpressured when the multiplexer is carrying data from a different input interface.

The multiplexer includes an optional channel signal that enables each input interface to carry channelized
data. The output interface channel width is equal to:

(log2 (n-1)) + 1 + w

where n is the number of input interfaces, and w is the channel width of each input interface. All input
interfaces must have the same channel width. These bits are appended to either the most or least significant
bits of the output channel signal.

Figure 11-17: Multiplexer

src
sink

data _ in _n

sink

data _ in 0

data _out

..
.

Round Robin , Burst
Aware Scheduler

(optional)

sink

sink

..
.

channel

The scheduler processes one input interface at a time, selecting it for transfer. Once an input interface has
been selected, data from that input interface is sent until one of the following scenarios occurs:

• The specified number of cycles have elapsed.
• The input interface has no more data to send and valid is deasserted on a ready cycle.
• When packets are supported, endofpacket is asserted.

Multiplexer Input Interfaces
Each input interface is an Avalon-ST data interface that optionally supports packets. The input interfaces
are identical; they have the same symbol and data widths, error widths, and channel widths.

Qsys System Design ComponentsAltera Corporation

Send Feedback

QII51025
Software Programming Model For the Multiplexer and Demultiplexer Components11-42 2013.11.4

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Qsys%20System%20Design%20Components%20(QII51025%202013.11.4)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Multiplexer Output Interface
The output interface carries the multiplexed data stream with data from the inputs. The symbol, data, and
error widths are the same as the input interfaces.

The width of the channel signal is the same as the input interfaces, with the addition of the bits needed
to indicate the origin of the data.

You can configure the following parameters for the output interface:

• Data Bits Per Symbol—The bits per symbol is related to the width of readdata and writedata
signals, which must be a multiple of the bits per symbol.

• Data Symbols Per Beat—The number of symbols (words) that are transferred per beat (transfer). Valid
values are 1 to 32.

• Include Packet Support—Indicates whether or not packet transfers are supported. Packet support
includes the startofpacket, endofpacket, and empty signals.

• Channel SignalWidth (bits)—The number of bits Qsys uses for the channel signal for output interfaces.
For example, set this parameter to 1 if you have two input interfaces with no channel, or set this parameter
to 2 if you have two input interfaces with a channel width of 1 bit. The input channel can have a width
between 0-31 bits.

• Error Signal Width (bits)—The width of the error signal for input and output interfaces. A value of
0 means the error signal is not used.

If you change only bits per symbol, and do not change the data width, errors are generated.Note:

Multiplexer Parameters

You can configure the following parameters for the multiplexer:

• Number of Input Ports—The number of input interfaces that the multiplexer supports. Valid values are
2 to 16.

• Scheduling Size (Cycles)—The number of cycles that are sent from a single channel before changing to
the next channel.

• Use Packet Scheduling—When this parameter is turned on, the multiplexer only switches the selected
input interface on packet boundaries. Therefore, packets on the output interface are not interleaved.

• Use high bits to indicate source port—When this parameter is turned on, the high bits of the output
channel signal are used to indicate the origin of the input interface of the data. For example, if the input
interfaces have 4-bit channel signals, and the multiplexer has 4 input interfaces, the output interface has
a 6-bit channel signal. If this parameter is turned on, bits [5:4] of the output channel signal indicate origin
of the input interface of the data, and bits [3:0] are the channel bits that were presented at the input
interface.

Demultiplexer
That Avalon-ST demultiplexer takes data from a channelized input data interface and provides that data to
multiple output interfaces, where the output interface selected for a particular transfer is specified by the
input channel signal.

The data is delivered to the output interfaces in the same order it is received at the input interface, regardless
of the value of channel, packet, frame, or any other signal. Each of the output interfaces has the same
width as the input interface; each output interface is idle when the demultiplexer is driving data to a different
output interface. The demultiplexer useslog2 (num_output_interfaces) bits of thechannel signal

Altera CorporationQsys System Design Components

Send Feedback

11-43Multiplexer Output Interface
QII51025
2013.11.4

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Qsys%20System%20Design%20Components%20(QII51025%202013.11.4)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

to select the output for the data; the remainder of the channel bits are forwarded to the appropriate output
interface unchanged.

Figure 11-18: Demultiplexer

sink
data _out _n

data _out 0

sink
sinkdata _ in

src

src

..
.

..
.

channel

Demultiplexer Input Interface
Each input interface is an Avalon-ST data interface that optionally supports packets. You can configure the
following parameters for the input interface:

• Data Bits Per Symbol—The bits per symbol is related to the width of readdata and writedata
signals, which must be a multiple of the bits per symbol.

• Data Symbols Per Beat—The number of symbols (words) that are transferred per beat (transfer). Valid
values are 1 to 32.

• Include Packet Support—Indicates whether or not data packet transfers are supported. Packet support
includes the startofpacket, endofpacket, and empty signals.

• Channel Signal Width (bits)—The number of bits used for the channel signal for output interfaces.
A value of 0 means that output interfaces do not use the optional channel signal.

• Error Signal Width (bits)—The width of the error signal for input and output interfaces. A value of
0 means the error signal is not unused.

If you change only bits per symbol, and do not change the data width, errors are generated.Note:

Demultiplexer Output Interface
Each output interface carries data from a subset of channels from the input interface. Each output interface
is identical; all have the same symbol and data widths, error widths, and channel widths. The symbol, data,
and error widths are the same as the input interface. The width of the channel signal is the same as the
input interface, without the bits that were used to select the output interface.

Qsys System Design ComponentsAltera Corporation

Send Feedback

QII51025
Demultiplexer Input Interface11-44 2013.11.4

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Qsys%20System%20Design%20Components%20(QII51025%202013.11.4)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Demultiplexer Parameters

You can configure the following parameters for the demultiplexer:

• Number of Output Ports—The number of output interfaces that the multiplexer supports Valid values
are 2 to 16.

• High channel bits select output—When this option is turned on, the high bits of the input channel signal
are used by the demultiplexing function and the low order bits are passed to the output.When this option
is turned off, the low order bits are used and the high order bits are passed through.

• Figure 11-19 illustrates the significance of the location of signals; for example, there is one input interface
and two output interfaces. If the low-order bits of the channel signal select the output interfaces, the even
channels goes to channel 0, and the odd channels goes to channel 1. If the high-order bits of the channel
signal select the output interface, channels 0 to 7 goes to channel 0 and channels 8 to 15 goes to channel
1.

Figure 11-19: Select Bits for the Demultiplexer

sink

data _out _n

data _out 0

sink
sink

data _ in
src

src

channel <4 ..0>

channel <3 ..0>

channel <3..0>

Single-Clock and Dual-Clock FIFO Cores
The Avalon-ST Single-Clock and Avalon-ST Dual-Clock FIFO cores are FIFO buffers which operate with
a common clock and independent clocks for input and output ports respectively.

Figure 11-20: Avalon-ST Single Clock FIFO Core

Avalon-ST
Single-Clock

FIFO

Avalon-MM
Slave

almost_full almost_empty

csr

Avalon-ST
Status
Source

Avalon-ST
Status
Source

outin Avalon-ST
Data
Sink

Avalon-ST
Data
Source

Altera CorporationQsys System Design Components

Send Feedback

11-45Demultiplexer Parameters
QII51025
2013.11.4

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Qsys%20System%20Design%20Components%20(QII51025%202013.11.4)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Figure 11-21: Avalon-ST Dual Clock FIFO Core

Avalon-MM
Slave

in_csr out_csr

Avalon-MM
Slave

outin

Clock A Clock B

Avalon-ST
Dual-Clock

FIFO

Avalon-ST
Data
Sink

Avalon-ST
Data
Source

Interfaces Implemented in FIFO Cores
The following interfaces are implemented in FIFO cores:

Avalon-ST Data Interface

Each FIFO core has an Avalon-ST data sink and source interfaces. The data sink and source interfaces in
the dual-clock FIFO core are driven by different clocks. Table 11-24 shows the properties of the Avalon-ST
interfaces.

Table 11-24: Properties of Avalon-ST Interfaces

PropertyFeature

Ready latency = 0.Backpressure

Configurable.Data Width

Supported, up to 255 channels.Channel

Configurable.Error

Configurable.Packet

Avalon-MM Control and Status Register Interface

You can configure the single-clock FIFO core to include an optional Avalon-MM interface, and the dual-
clock FIFO core to include an Avalon-MM interface in each clock domain. The Avalon-MM interface
provides access to 32-bit registers, which allows you to retrieve the FIFO buffer fill level and configure the
almost-empty and almost-full thresholds. In the single-clock FIFO core, you can also configure the packet
and error handling modes.

Related Information

• Avalon-ST Single-Clock FIFO Registers on page 11-49

Qsys System Design ComponentsAltera Corporation

Send Feedback

QII51025
Interfaces Implemented in FIFO Cores11-46 2013.11.4

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Qsys%20System%20Design%20Components%20(QII51025%202013.11.4)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Avalon-ST Status Interface

The single-clock FIFO core has two optional Avalon-ST status source interfaces from which you can obtain
the FIFO buffer almost-full and almost empty statuses.

FIFO Operating Modes
• Defaultmode—The core accepts incoming data on the in interface (Avalon-ST data sink) and forwards

it to the out interface (Avalon-ST data source). The core asserts the valid signal on the Avalon-ST
source interface to indicate that data is available at the interface.

• Store and forward mode—This mode applies only to the single-clock FIFO core. The core asserts the
valid signal on the out interface only when a full packet of data is available at the interface. In this
mode, you can also enable the drop-on-error feature by setting the drop_on_error register to 1.
When this feature is enabled, the core drops all packets received with the in_error signal asserted.

• Cut-throughmode—This mode applies only to the single-clock FIFO core. The core asserts the valid
signal on the out interface to indicate that data is available for consumption when the number of entries
specified in the cut_through_threshold register are available in the FIFO buffer.

To use the store and forward or cut-through mode, turn on the Use store and forward parameter to include
the csr interface (Avalon-MM slave). Set the cut_through_threshold register to 0 to enable the
store and forwardmode, and then set the register to any value greater than 0 to enable the cut-throughmode.
The non-zero value specifies the minimum number of FIFO entries that must be available before the data
is ready for consumption. Setting the register to 1 provides you with the default mode.

Fill Level of the FIFO Buffer
You can obtain the fill level of the FIFO buffer via the optional Avalon-MM control and status interface.
Turn on the Use fill level parameter (Use sink fill level and Use source fill level in the dual-clock FIFO
core) and read the fill_level register.

The dual-clock FIFO core has two fill levels, one in each clock domain. Due to the latency of the clock
crossing logic, the fill levels reported in the input and output clock domains may be different at any given
instance. In both cases, the fill level may report badly for the clock domain; that is, the fill level is reported
high in the input clock domain, and low in the output clock domain.

The dual-clock FIFO has an output pipeline stage to improve fMAX. This output stage is accounted for when
calculating the output fill level, but not when calculating the input fill level. Therefore, the best measure of
the amount of data in the FIFO is given by the fill level in the output clock domain, while the fill level in the
input clock domain represents the amount of space available in the FIFO (available space = FIFO depth –
input fill level).

Almost-Full and Almost-Empty Thresholds to Prevent Overflow and Underflow
You can use almost-full and almost-empty thresholds as a mechanism to prevent FIFO overflow and
underflow. This feature is available only in the single-clock FIFO core. To use the thresholds, turn on the
Use fill level, Use almost-full status, and Use almost-empty status parameters. You can access the
almost_full_threshold and almost_full_threshold registers via the csr interface and set
the registers to an optimal value for your application.

You can obtain the almost-full and almost-empty statuses from almost_full and almost_empty
interfaces (Avalon-ST status source). The core asserts the almost_full signal when the fill level is equal

Altera CorporationQsys System Design Components

Send Feedback

11-47Avalon-ST Status Interface
QII51025
2013.11.4

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Qsys%20System%20Design%20Components%20(QII51025%202013.11.4)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

to or higher than the almost-full threshold. Likewise, the core asserts the almost_empty signal when the
fill level is equal to or lower than the almost-empty threshold.

Related Information

• Avalon-ST Single-Clock FIFO Registers on page 11-49

Configurable Parameters for the Single-Clock and Dual-Clock FIFO Cores
Table 11-25 describes the parameters that you can configure for the Single-Clock and Dual-Clock FIFO
cores.

Table 11-25: Configurable Parameters

DescriptionLegal
Values

Parameter

These parameters determine the width of the FIFO.

FIFO width = Bits per symbol * Symbols per beat, where:
Bits per symbol is the number of bits in a symbol, and
Symbols per beat is the number of symbols transferred in
a beat.

1–32Bits per symbol

1–32Symbols per beat

The width of the error signal.0–32Error width

The FIFO depth. An output pipeline stage is added to the
FIFO to increase performance, which increases the FIFO
depth by one. <n> = n=1,2,3,4...

2 nFIFO depth

Turn on this parameter to enable data packet support on
the Avalon-ST data interfaces.

—Use packets

The width of the channel signal.1–32Channel width

Avalon-ST Single Clock FIFO Only

Turn on this parameter to include the Avalon-MM control
and status register interface.

—Use fill level

Avalon-ST Dual Clock FIFO Only

Turn on this parameter to include the Avalon-MM control
and status register interface in the input clock domain.

—Use sink fill level

Turn on this parameter to include the Avalon-MM control
and status register interface in the output clock domain.

—Use source fill level

The length of the write pointer synchronizer chain. Setting
this parameter to a higher value leads to better metastability
while increasing the latency of the core.

2–8Write pointer synchronizer
length

Qsys System Design ComponentsAltera Corporation

Send Feedback

QII51025
Configurable Parameters for the Single-Clock and Dual-Clock FIFO Cores11-48 2013.11.4

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Qsys%20System%20Design%20Components%20(QII51025%202013.11.4)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

DescriptionLegal
Values

Parameter

The length of the read pointer synchronizer chain. Setting
this parameter to a higher value leads to better metastability.

2–8Readpointer synchronizer length

Turn on this parameter to specify the maximum channel
number.

—Use Max Channel

Maximum channel number.1–255Max Channel

For more information on metastability in Altera devices, refer to Understanding Metastability in
FPGAs. For more information on metastability analysis and synchronization register chains, refer
to the Managing Metastability.

Note:

Related Information

• Understanding Metastability in FPGAs

• Managing Metastability

Avalon-ST Single-Clock FIFO Registers
The csr interface in the Avalon-ST Single Clock FIFO core provides access to registers.

Table 11-26: Avalon-ST Single-Clock FIFO Registers

DescriptionResetAccessName32-Bit Word
Offset

24-bit FIFO fill level. Bits 24 to 31 are unused.0Rfill_
level

0

Reserved for future use.——Reserved1

Set this register to a value that indicates the FIFO buffer is
getting full.

FIFO
depth–1

RWalmost_
full_
threshold

2

Set this register to a value that indicates the FIFO buffer is
getting empty.

0RWalmost_
empty_
threshold

3

0—Enables store and forward mode.

Greater than 0—Enables cut-through mode and specifies
theminimumof entries in the FIFObuffer before thevalid
signal on the Avalon-ST source interface is asserted. Once
the FIFO core starts sending the data to the downstream
component, it continues to do so until the end of the packet.

This register applies only when the Use store and forward
parameter is turned on.

0RWcut_
through_
threshold

4

Altera CorporationQsys System Design Components

Send Feedback

11-49Avalon-ST Single-Clock FIFO Registers
QII51025
2013.11.4

http://www.altera.com/literature/wp/wp-01082-quartus-ii-metastability.pdf
http://www.altera.com/literature/hb/qts/qts_qii51018.pdf
mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Qsys%20System%20Design%20Components%20(QII51025%202013.11.4)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

DescriptionResetAccessName32-Bit Word
Offset

0—Disables drop-on error.

1—Enables drop-on error.

This register applies onlywhen theUsepacket andUse store
and forward parameters are turned on.

0RWdrop_
on_
error

5

The in_csr and out_csr interfaces in the Avalon-ST Dual Clock FIFO core reports the FIFO fill level.
Table 11-27 describes the fill level.

Table 11-27: Register Description for Avalon-ST Dual-Clock FIFO

DescriptionReset ValueAccessName32-Bit Word Offset

24-bit FIFO fill
level. Bits 24 to 31
are unused.

0Rfill_level0

Refer to the Avalon Interface Specifications or Avalon Memory-Mapped Design Optimizations for more
information.

Related Information

• Avalon Interface Specifications

• Avalon Memory-Mapped Design Optimizations

Document Revision History
Table 11-28 indicates edits made to the Qsys System Design Components content since its creation.

Table 11-28: Document Revision History

ChangesVersionDate

• AXI Bridge13.1.0November 2013

• Added Streaming Pipeline
Stage support.

• Added AMBA APB support.

13.0.0May 2013

• Moved relevant content from
Embedded IP User Guide.

12.1.0November 2012

Related Information
Quartus II Handbook Archive

Qsys System Design ComponentsAltera Corporation

Send Feedback

QII51025
Document Revision History11-50 2013.11.4

http://www.altera.com/literature/manual/mnl_avalon_spec.pdf
http://www.altera.com/literature/hb/nios2/edh_ed51007.pdf
http://www.altera.com/literature/lit-qts_archive.jsp
mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Qsys%20System%20Design%20Components%20(QII51025%202013.11.4)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

© 2013 Altera Corporation. All rights reserved. ALTERA, ARRI
are trademarks of Altera Corporation and registered in the U.S
trademarks or service marks are the property of their respectiv
semiconductor products to current specifications in accordance
services at any time without notice. Altera assumes no respons
described herein except as expressly agreed to in writing by Al
on any published information and before placing orders for pr

Quartus II Handbook Version 13.1
Volume 1: Design and Synthesis
November 2013
Section 3. Design Guidelines
When designing for large and complex FPGAs, your design and coding styles can
impact your quality of results significantly. Designs reflecting synchronous design
practices behave predictably reliably, even when re-targeted to different device
families or speed grades. Using recommended HDL coding styles ensures that
synthesis tools can infer the optimal device hardware to implement your design.
Following best practices when creating your design hierarchy and logic provides the
most flexibility when partitioning the design for incremental compilation, and leads
to the best results. If you create floorplan location assignments to control the
placement of different design blocks (useful in team-based designs so each designer
can target a different area of the device floorplan), following best practices is
important to maintaining good design performance.

This section presents design and coding style recommendations in the following
chapters:

■ Chapter 12, Recommended Design Practices

This chapter describes synchronous design practices, and provides guidelines for
combinational logic structures, clocking schemes, and best practices for physical
implementation and timing closure. It also explains how to check design rules
using the Quartus® II Design Assistant. Finally, it discusses use of clock and
register-control features in device architecture.

■ Chapter 13, Recommended HDL Coding Styles

This chapter discusses Altera megafunctions and provides specific Verilog HDL
and VHDL coding examples to insure the Quartus II software infers Altera
dedicated logic such as memory and DSP blocks. It also provides device-specific
coding recommendations for registers and certain logic functions such as tri-state
signals, multiplexers, and cyclic redundancy check (CRC) functions, and includes
references to other Altera documentation for low-level logic design information.

■ Chapter 14, Managing Metastability with the Quartus II Software

This chapter describes ways you can use the Quartus II software to analyze the
average mean time between failures (MTBF) due to metastability caused by
synchronization of asynchronous signals, and optimize the design to improve the
metastability MTBF.

■ Chapter 15, Best Practices for Incremental Compilation Partitions and
Floorplan Assignments

This chapter provides a set of guidelines to help you set up and partition your
design to take advantage of the compilation time savings, performance
preservation, and hierarchical design features offered by Quartus II incremental
compilation, and to help you create a design floorplan (using LogicLockTM

regions) to support the flow when required.
A, CYCLONE, HARDCOPY, MAX, MEGACORE, NIOS, QUARTUS and STRATIX words and logos
. Patent and Trademark Office and in other countries. All other words and logos identified as
e holders as described at www.altera.com/common/legal.html. Altera warrants performance of its
 with Altera's standard warranty, but reserves the right to make changes to any products and
ibility or liability arising out of the application or use of any information, product, or service
tera. Altera customers are advised to obtain the latest version of device specifications before relying
oducts or services.

ISO
9001:2008
Registered

http://www.altera.com/common/legal.html
http://www.altera.com/support/devices/reliability/certifications/rel-certifications.html
http://www.altera.com/support/devices/reliability/certifications/rel-certifications.html

Section 3: Design Guidelines
Use this chapter when setting up your design hierarchy and determining the
interfaces between logic blocks in your design, as well as if/when you create a
design floorplan. You can also use this chapter to make changes to a design that
was not originally set up to take advantage of incremental compilation, because it
provides tips on changing a design to work better with an incremental design
flow.
Quartus II Handbook Version 13.1 November 2013 Altera Corporation
Volume 1: Design and Synthesis

QII51006-13.1.0

© 2013 Altera Corporation. All rights reserved. ALTERA, ARRI
are trademarks of Altera Corporation and registered in the U.S
trademarks or service marks are the property of their respectiv
semiconductor products to current specifications in accordance
services at any time without notice. Altera assumes no respons
described herein except as expressly agreed to in writing by Al
on any published information and before placing orders for pr

Quartus II Handbook Version 13.1
Volume 1: Design and Synthesis
November 2013

November 2013
QII51006-13.1.0
12. Recommended Design Practices
This chapter provides design recommendations for Altera® devices and describes the
Quartus® II Design Assistant, which helps you check your design for violations of
Altera’s design recommendations.

Current FPGA applications have reached the complexity and performance
requirements of ASICs. In the development of complex system designs, good design
practices have an enormous impact on the timing performance, logic utilization, and
system reliability of a device. Well-coded designs behave in a predictable and reliable
manner even when retargeted to different families or speed grades. Good design
practices also aid in successful design migration between FPGA and ASIC
implementations for prototyping and production.

For optimal performance, reliability, and faster time-to-market when designing with
Altera devices, you should adhere to the following guidelines:

■ Understand the impact of synchronous design practices

■ Follow recommended design techniques, including hierarchical design
partitioning, and timing closure guidelines

■ Take advantage of the architectural features in the targeted device

This chapter contains the following sections:

■ “Synchronous FPGA Design Practices” on page 12–2

■ “Design Guidelines” on page 12–4

■ “Optimizing for Physical Implementation and Timing Closure” on page 12–12

■ “Checking Design Violations” on page 12–16

■ “Targeting Clock and Register-Control Architectural Features” on page 12–23

■ “Targeting Embedded RAM Architectural Features” on page 12–35

f For specific HDL coding examples and recommendations, including coding
guidelines for targeting dedicated device hardware, such as memory and digital
signal processing (DSP) blocks, refer to the Recommended HDL Coding Styles chapter in
volume 1 of the Quartus II Handbook. For information about partitioning a hierarchical
design for incremental compilation, refer to the Quartus II Incremental Compilation for
Hierarchical and Team-Based Design chapter in volume 1 of the Quartus II Handbook.
A, CYCLONE, HARDCOPY, MAX, MEGACORE, NIOS, QUARTUS and STRATIX words and logos
. Patent and Trademark Office and in other countries. All other words and logos identified as
e holders as described at www.altera.com/common/legal.html. Altera warrants performance of its
 with Altera's standard warranty, but reserves the right to make changes to any products and
ibility or liability arising out of the application or use of any information, product, or service
tera. Altera customers are advised to obtain the latest version of device specifications before relying
oducts or services.

Feedback SubscribeTwitter

ISO
9001:2008
Registered

http://www.altera.com/literature/hb/qts/qts_qii51007.pdf
http://www.altera.com/literature/hb/qts/qts_qii51015.pdf
http://www.altera.com/literature/hb/qts/qts_qii51015.pdf
https://www.altera.com/servlets/subscriptions/alert?id=QII51006
http://www.altera.com/common/legal.html
mailto:TechDocFeedback@altera.com?subject=Feedback on QII51006-13.1 (QII HB, Vol 1, Ch13: Recommended Design Practices)
http://www.altera.com/support/reliability/certifications/rel-certifications.html
http://www.altera.com/support/reliability/certifications/rel-certifications.html
http://twitter.com/home/?status=Reccomended+Design+Practices+http://www.altera.com/literature/hb/qts/qts_qii51006.pdf?WT.mc

12–2 Chapter 12: Recommended Design Practices
Synchronous FPGA Design Practices
Synchronous FPGA Design Practices
The first step in good design methodology is to understand the implications of your
design practices and techniques. This section outlines the benefits of optimal
synchronous design practices and the hazards involved in other techniques. Good
synchronous design practices can help you meet your design goals consistently.
Problems with other design techniques can include reliance on propagation delays in
a device, which can lead to race conditions, incomplete timing analysis, and possible
glitches.

In a synchronous design, some clock signals trigger every event. As long as you
ensure that all the timing requirements of the registers are met, a synchronous design
behaves in a predictable and reliable manner for all process, voltage, and temperature
(PVT) conditions. You can easily target synchronous designs to different device
families or speed grades.

Fundamentals of Synchronous Design
In a synchronous design, the clock signal controls the activities of all inputs and
outputs. On every active edge of the clock (usually the rising edge), the data inputs of
registers are sampled and transferred to outputs. Following an active clock edge, the
outputs of combinational logic feeding the data inputs of registers change values. This
change triggers a period of instability due to propagation delays through the logic as
the signals go through several transitions and finally settle to new values. Changes
that occur on data inputs of registers do not affect the values of their outputs until
after the next active clock edge.

Because the internal circuitry of registers isolates data outputs from inputs, instability
in the combinational logic does not affect the operation of the design as long as you
meet the following timing requirements:

■ Before an active clock edge, you must ensure that the data input has been stable
for at least the setup time of the register.

■ After an active clock edge, you must ensure that the data input remains stable for
at least the hold time of the register.

When you specify all of your clock frequencies and other timing requirements, the
Quartus II TimeQuest Timing Analyzer reports actual hardware requirements for the
setup times (tSU) and hold times (tH) for every pin in your design. By meeting these
external pin requirements and following synchronous design techniques, you ensure
that you satisfy the setup and hold times for all registers in your device.

1 To meet setup and hold time requirements on all input pins, any inputs to
combinational logic that feed a register should have a synchronous relationship with
the clock of the register. If signals are asynchronous, you can register the signals at the
inputs of the device to help prevent a violation of the required setup and hold times.
Quartus II Handbook Version 13.1 November 2013 Altera Corporation
Volume 1: Design and Synthesis

Chapter 12: Recommended Design Practices 12–3
Synchronous FPGA Design Practices
When you violate the setup or hold time of a register, you might oscillate the output,
or set the output to an intermediate voltage level between the high and low levels
called a metastable state. In this unstable state, small perturbations such as noise in
power rails can cause the register to assume either the high or low voltage level,
resulting in an unpredictable valid state. Various undesirable effects can occur,
including increased propagation delays and incorrect output states. In some cases, the
output can even oscillate between the two valid states for a relatively long period of
time.

h For information about timing requirements and analysis in the Quartus II software,
refer to About TimeQuest Timing Analysis in Quartus II Help.

Hazards of Asynchronous Design
In the past, designers have often used asynchronous techniques such as ripple
counters or pulse generators in programmable logic device (PLD) designs, enabling
them to take “short cuts” to save device resources. Asynchronous design techniques
have inherent problems such as relying on propagation delays in a device, which can
vary with temperature and voltage fluctuations, resulting in incomplete timing
constraints and possible glitches and spikes.

Some asynchronous design structures rely on the relative propagation delays of
signals to function correctly. In these cases, race conditions can arise where the order
of signal changes can affect the output of the logic. PLD designs can have varying
timing delays, depending on how the design is placed and routed in the device with
each compilation. Therefore, it is almost impossible to determine the timing delay
associated with a particular block of logic ahead of time. As devices become faster due
to device process improvements, the delays in an asynchronous design may decrease,
resulting in a design that does not function as expected. Specific examples are
provided in “Design Guidelines” on page 12–4. Relying on a particular delay also
makes asynchronous designs difficult to migrate to different architectures, devices, or
speed grades.

The timing of asynchronous design structures is often difficult or impossible to model
with timing assignments and constraints. If you do not have complete or accurate
timing constraints, the timing-driven algorithms used by your synthesis and
place-and-route tools may not be able to perform the best optimizations, and the
reported results may not be complete.

Some asynchronous design structures can generate harmful glitches, which are pulses
that are very short compared with clock periods. Most glitches are generated by
combinational logic. When the inputs of combinational logic change, the outputs
exhibit several glitches before they settle to their new values. These glitches can
propagate through the combinational logic, leading to incorrect values on the outputs
in asynchronous designs. In a synchronous design, glitches on the data inputs of
registers are normal events that have no negative consequences because the data is
not processed until the clock edge.
November 2013 Altera Corporation Quartus II Handbook Version 13.1
Volume 1: Design and Synthesis

http://quartushelp.altera.com/current/master.htm#mergedProjects/analyze/sta/sta_about_sta.htm

12–4 Chapter 12: Recommended Design Practices
Design Guidelines
Design Guidelines
When designing with HDL code, you should understand how a synthesis tool
interprets different HDL design techniques and what results to expect. Your design
techniques can affect logic utilization and timing performance, as well as the design’s
reliability. This section describes basic design techniques that ensure optimal
synthesis results for designs targeted to Altera devices while avoiding several
common causes of unreliability and instability. Altera recommends that you design
your combinational logic carefully to avoid potential problems and pay attention to
your clocking schemes so that you can maintain synchronous functionality and avoid
timing problems.

Combinational Logic Structures
Combinational logic structures consist of logic functions that depend only on the
current state of the inputs. In Altera FPGAs, these functions are implemented in the
look-up tables (LUTs) with either logic elements (LEs) or adaptive logic modules
(ALMs). For cases where combinational logic feeds registers, the register control
signals can implement part of the logic function to save LUT resources. By following
the recommendations in this section, you can improve the reliability of your
combinational design.

Combinational Loops
Combinational loops are among the most common causes of instability and
unreliability in digital designs. Combinational loops generally violate synchronous
design principles by establishing a direct feedback loop that contains no registers. You
should avoid combinational loops whenever possible. In a synchronous design,
feedback loops should include registers. For example, a combinational loop occurs
when the left-hand side of an arithmetic expression also appears on the right-hand
side in HDL code. A combinational loop also occurs when you feed back the output of
a register to an asynchronous pin of the same register through combinational logic, as
shown in Figure 12–1.

1 Use recovery and removal analysis to perform timing analysis on asynchronous ports,
such as clear or reset in the Quartus II software.

h If you are using the TimeQuest Timing Analyzer, refer to Specifying Timing Constraints
and Exceptions (TimeQuest Timing Analyzer) in Quartus II Help for details about how
TimeQuest analyzer performs recovery and removal analysis.

Figure 12–1. Combinational Loop Through Asynchronous Control Pin

D Q

CLRN

Logic
Quartus II Handbook Version 13.1 November 2013 Altera Corporation
Volume 1: Design and Synthesis

http://quartushelp.altera.com/current/master.htm#mergedProjects/analyze/sta/sta_pro_constraints.htm
http://quartushelp.altera.com/current/master.htm#mergedProjects/analyze/sta/sta_pro_constraints.htm

Chapter 12: Recommended Design Practices 12–5
Design Guidelines
Combinational loops are inherently high-risk design structures for the following
reasons:

■ Combinational loop behavior generally depends on relative propagation delays
through the logic involved in the loop. As discussed, propagation delays can
change, which means the behavior of the loop is unpredictable.

■ Combinational loops can cause endless computation loops in many design tools.
Most tools break open combinational loops to process the design. The various
tools used in the design flow may open a given loop in a different manner,
processing it in a way that is inconsistent with the original design intent.

Latches
A latch is a small circuit with combinational feedback that holds a value until a new
value is assigned. You can implement latches with the Quartus II Text Editor or Block
Editor. It is common for mistakes in HDL code to cause unintended latch inference;
Quartus II Synthesis issues a warning message if this occurs.

Unlike other technologies, a latch in FPGA architecture is not significantly smaller
than a register. The architecture is not optimized for latch implementation and latches
generally have slower timing performance compared to equivalent registered
circuitry.

Latches have a transparent mode in which data flows continuously from input to
output. A positive latch is in transparent mode when the enable signal is high (low for
negative latch). In transparent mode, glitches on the input can pass through to the
output because of the direct path created. This presents significant complexity for
timing analysis. Typical latch schemes use multiple enable phases to prevent long
transparent paths from occurring. However, timing analysis cannot identify these safe
applications.

The TimeQuest analyzer analyzes latches as synchronous elements clocked on the
falling edge of the positive latch signal by default, and allows you to treat latches as
having nontransparent start and end points. Be aware that even an instantaneous
transition through transparent mode can lead to glitch propagation. The TimeQuest
analyzer cannot perform cycle-borrowing analysis.

Due to various timing complexities, latches have limited support in formal
verification tools. Therefore, you should not rely on formal verification for a design
that includes latches.

1 Avoid using latches to ensure that you can completely analyze the timing
performance and reliability of your design.

Delay Chains
You require delay chains when you use two or more consecutive nodes with a single
fan-in and a single fan-out to cause delay. Inverters are often chained together to add
delay. Delay chains are sometimes used to resolve race conditions created by other
asynchronous design practices.
November 2013 Altera Corporation Quartus II Handbook Version 13.1
Volume 1: Design and Synthesis

12–6 Chapter 12: Recommended Design Practices
Design Guidelines
Delays in PLD designs can change with each placement and routing cycle. Effects
such as rise and fall time differences and on-chip variation mean that delay chains,
especially those placed on clock paths, can cause significant problems in your design.
Refer to “Hazards of Asynchronous Design” on page 12–3 for examples of the kinds
of problems that delay chains can cause. Avoid using delay chains to prevent these
kinds of problems.

In some ASIC designs, delays are used for buffering signals as they are routed around
the device. This functionality is not required in FPGA devices because the routing
structure provides buffers throughout the device.

Pulse Generators and Multivibrators
You can use delay chains to generate either one pulse (pulse generators) or a series of
pulses (multivibrators). There are two common methods for pulse generation, as
shown in Figure 12–2. These techniques are purely asynchronous and must be
avoided.

In Figure 12–2, a trigger signal feeds both inputs of a 2-input AND gate, but the
design adds inverts to create a delay chain to one of the inputs. The width of the pulse
depends on the time differences between path that feeds the gate directly, and the
path that goes through the delay chain. This is the same mechanism responsible for
the generation of glitches in combinational logic following a change of input values.
This technique artificially increases the width of the glitch.

As also shown in Figure 12–2, a register’s output drives the same register’s
asynchronous reset signal through a delay chain. The register resets itself
asynchronously after a certain delay.

The width of pulses generated in this way are difficult for synthesis and
place-and-route to determine, set, or verify. The actual pulse width can only be
determined after placement and routing, when routing and propagation delays are
known. You cannot reliably create a specific pulse width when creating HDL code,
and it cannot be set by EDA tools. The pulse may not be wide enough for the
application under all PVT conditions. Also, the pulse width changes if you change to
a different device. Additionally, verification is difficult because static timing analysis
cannot verify the pulse width.

Figure 12–2. Asynchronous Pulse Generators

D Q

Q

Pulse

PulseTrigger

Trigger

Clock

CLRN

Using an AND Gate

Using a Register
Quartus II Handbook Version 13.1 November 2013 Altera Corporation
Volume 1: Design and Synthesis

Chapter 12: Recommended Design Practices 12–7
Design Guidelines
Multivibrators use a glitch generator to create pulses, together with a combinational
loop that turns the circuit into an oscillator. This creates additional problems because
of the number of pulses involved. Additionally, when the structures generate multiple
pulses, they also create a new artificial clock in the design must be analyzed by design
tools.

When you must use a pulse generator, use synchronous techniques, as shown in
Figure 12–3.

In Figure 12–3, the pulse width is always equal to the clock period. This pulse
generator is predictable, can be verified with timing analysis, and is easily moved to
other architectures, devices, or speed grades.

Clocking Schemes
Like combinational logic, clocking schemes have a large effect on the performance
and reliability of a design. Avoid using internally generated clocks (other than PLLs)
wherever possible because they can cause functional and timing problems in the
design. Clocks generated with combinational logic can introduce glitches that create
functional problems, and the delay inherent in combinational logic can lead to timing
problems.

1 Specify all clock relationships in the Quartus II software to allow for the best
timing-driven optimizations during fitting and to allow correct timing analysis. Use
clock setting assignments on any derived or internal clocks to specify their
relationship to the base clock.

Use global device-wide, low-skew dedicated routing for all internally-generated
clocks, instead of routing clocks on regular routing lines. For more information, refer
to “Clock Network Resources” on page 12–23.

Avoid data transfers between different clocks wherever possible. If you require a data
transfer between different clocks, use FIFO circuitry. You can use the clock uncertainty
features in the Quartus II software to compensate for the variable delays between
clock domains. Consider setting a clock setup uncertainty and clock hold uncertainty
value of 10% to 15% of the clock delay.

The following sections provide specific examples and recommendations for avoiding
clocking scheme problems.

Figure 12–3. Recommended Pulse-Generation Technique

D QTrigger Signal

Clock

Pulse

D Q
November 2013 Altera Corporation Quartus II Handbook Version 13.1
Volume 1: Design and Synthesis

12–8 Chapter 12: Recommended Design Practices
Design Guidelines
Internally Generated Clocks
If you use the output from combinational logic as a clock signal or as an asynchronous
reset signal, you can expect to see glitches in your design. In a synchronous design,
glitches on data inputs of registers are normal events that have no consequences.
However, a glitch or a spike on the clock input (or an asynchronous input) to a
register can have significant consequences. Narrow glitches can violate the register’s
minimum pulse width requirements. Setup and hold requirements might also be
violated if the data input of the register changes when a glitch reaches the clock input.
Even if the design does not violate timing requirements, the register output can
change value unexpectedly and cause functional hazards elsewhere in the design.

To avoid these problems, you should always register the output of combinational
logic before you use it as a clock signal (Figure 12–4).

Registering the output of combinational logic ensures that glitches generated by the
combinational logic are blocked at the data input of the register.

Divided Clocks
Designs often require clocks that you create by dividing a master clock. Most Altera
FPGAs provide dedicated phase-locked loop (PLL) circuitry for clock division. Using
dedicated PLL circuitry can help you to avoid many of the problems that can be
introduced by asynchronous clock division logic.

When you must use logic to divide a master clock, always use synchronous counters
or state machines. Additionally, create your design so that registers always directly
generate divided clock signals, as described in “Internally Generated Clocks”, and
route the clock on global clock resources. To avoid glitches, do not decode the outputs
of a counter or a state machine to generate clock signals.

Ripple Counters
To simplify verification, avoid ripple counters in your design. In the past, FPGA
designers implemented ripple counters to divide clocks by a power of two because
the counters are easy to design and may use fewer gates than their synchronous
counterparts. Ripple counters use cascaded registers, in which the output pin of one
register feeds the clock pin of the register in the next stage. This cascading can cause
problems because the counter creates a ripple clock at each stage. These ripple clocks
must be handled properly during timing analysis, which can be difficult and may
require you to make complicated timing assignments in your synthesis and placement
and routing tools.

Figure 12–4. Recommended Clock-Generation Technique

D Q
Internally Generated Clock

Routed on Global Clock Resource

D Q D Q

D Q

Clock
Generation

Logic
Quartus II Handbook Version 13.1 November 2013 Altera Corporation
Volume 1: Design and Synthesis

Chapter 12: Recommended Design Practices 12–9
Design Guidelines
You can often use ripple clock structures to make ripple counters out of the smallest
amount of logic possible. However, in all Altera devices supported by the Quartus II
software, using a ripple clock structure to reduce the amount of logic used for a
counter is unnecessary because the device allows you to construct a counter using one
logic element per counter bit. You should avoid using ripple counters completely.

Multiplexed Clocks
Use clock multiplexing to operate the same logic function with different clock sources.
In these designs, multiplexing selects a clock source, as shown in Figure 12–5. For
example, telecommunications applications that deal with multiple frequency
standards often use multiplexed clocks.

Adding multiplexing logic to the clock signal can create the problems addressed in
the previous sections, but requirements for multiplexed clocks vary widely,
depending on the application. Clock multiplexing is acceptable when the clock signal
uses global clock routing resources and if the following criteria are met:

■ The clock multiplexing logic does not change after initial configuration

■ The design uses multiplexing logic to select a clock for testing purposes

■ Registers are always reset when the clock switches

■ A temporarily incorrect response following clock switching has no negative
consequences

If the design switches clocks in real time with no reset signal, and your design cannot
tolerate a temporarily incorrect response, you must use a synchronous design so that
there are no timing violations on the registers, no glitches on clock signals, and no race
conditions or other logical problems. By default, the Quartus II software optimizes
and analyzes all possible paths through the multiplexer and between both internal
clocks that may come from the multiplexer. This may lead to more restrictive analysis
than required if the multiplexer is always selecting one particular clock. If you do not
require the more complete analysis, you can assign the output of the multiplexer as a
base clock in the Quartus II software, so that all register-to-register paths are analyzed
using that clock.

Figure 12–5. Multiplexing Logic and Clock Sources

Clock 1

Multiplexed Clock Routed
on Global Clock Resource

Clock 2

Select Signal

D Q

D Q

D Q
November 2013 Altera Corporation Quartus II Handbook Version 13.1
Volume 1: Design and Synthesis

12–10 Chapter 12: Recommended Design Practices
Design Guidelines
1 Use dedicated hardware to perform clock multiplexing when it is available, instead of
using multiplexing logic. For example, you can use the clock-switchover feature or
clock control block available in certain Altera devices. These dedicated hardware
blocks ensure that you use global low-skew routing lines and avoid any possible hold
time problems on the device due to logic delay on the clock line.

f For device-specific information about clocking structures, refer to the appropriate
device data sheet or handbook on the Literature page of the Altera website.

Gated Clocks
Gated clocks turn a clock signal on and off using an enable signal that controls gating
circuitry, as shown in Figure 12–6. When a clock is turned off, the corresponding clock
domain is shut down and becomes functionally inactive.

You can use gated clocks to reduce power consumption in some device architectures
by effectively shutting down portions of a digital circuit when they are not in use.
When a clock is gated, both the clock network and the registers driven by it stop
toggling, thereby eliminating their contributions to power consumption. However,
gated clocks are not part of a synchronous scheme and therefore can significantly
increase the effort required for design implementation and verification. Gated clocks
contribute to clock skew and make device migration difficult. These clocks are also
sensitive to glitches, which can cause design failure.

Use dedicated hardware to perform clock gating rather than an AND or OR gate. For
example, you can use the clock control block in newer Altera devices to shut down an
entire clock network. Dedicated hardware blocks ensure that you use global routing
with low skew, and avoid any possible hold time problems on the device due to logic
delay on the clock line.

From a functional point of view, you can shut down a clock domain in a purely
synchronous manner using a synchronous clock enable signal. However, when using
a synchronous clock enable scheme, the clock network continues toggling. This
practice does not reduce power consumption as much as gating the clock at the source
does. In most cases, use a synchronous scheme such as those described in
“Synchronous Clock Enables”. For improved power reduction when gating clocks
with logic, refer to “Recommended Clock-Gating Methods” on page 12–11.

Figure 12–6. Gated Clock

Clock

Gated Clock

D Q D Q

Gating Signal
Quartus II Handbook Version 13.1 November 2013 Altera Corporation
Volume 1: Design and Synthesis

http://www.altera.com/literature/lit-index.html

Chapter 12: Recommended Design Practices 12–11
Design Guidelines
Synchronous Clock Enables
To turn off a clock domain in a synchronous manner, use a synchronous clock enable
signal. FPGAs efficiently support clock enable signals because there is a dedicated
clock enable signal available on all device registers. This scheme does not reduce
power consumption as much as gating the clock at the source because the clock
network keeps toggling, and performs the same function as a gated clock by disabling
a set of registers. Insert a multiplexer in front of the data input of every register to
either load new data, or copy the output of the register (Figure 12–7).

Recommended Clock-Gating Methods
Use gated clocks only when your target application requires power reduction and
when gated clocks are able to provide the required reduction in your device
architecture. If you must use clocks gated by logic, implement these clocks using the
robust clock-gating technique shown in Figure 12–8 and ensure that the gated clock
signal uses dedicated global clock routing.

You can gate a clock signal at the source of the clock network, at each register, or
somewhere in between. Because the clock network contributes to switching power
consumption, gate the clock at the source whenever possible, so that you can shut
down the entire clock network instead of gating it further along the clock network at
the registers.

In the technique shown in Figure 12–8, a register generates the enable signal to ensure
that the signal is free of glitches and spikes. The register that generates the enable
signal is triggered on the inactive edge of the clock to be gated. Use the falling edge
when gating a clock that is active on the rising edge, as shown in Figure 12–8. Using
this technique, only one input of the gate that turns the clock on and off changes at a
time. This prevents glitches or spikes on the output. Use an AND gate to gate a clock
that is active on the rising edge. For a clock that is active on the falling edge, use an
OR gate to gate the clock and register the enable command with a positive
edge-triggered register.

Figure 12–7. Synchronous Clock Enable

Figure 12–8. Recommended Clock-Gating Technique

D Q

Enable

Data

D Q

Clock

Enable
Gated Clock Routed on
Global Clock Resources

D Q D Q

Gating Signal
November 2013 Altera Corporation Quartus II Handbook Version 13.1
Volume 1: Design and Synthesis

12–12 Chapter 12: Recommended Design Practices
Design Guidelines
When using this technique, pay close attention to the duty cycle of the clock and the
delay through the logic that generates the enable signal because you must generate
the enable command in one-half the clock cycle. This situation might cause problems
if the logic that generates the enable command is particularly complex, or if the duty
cycle of the clock is severely unbalanced. However, careful management of the duty
cycle and logic delay may be an acceptable solution when compared with problems
created by other methods of gating clocks.

Ensure that you apply a clock setting to the gated clock in the TimeQuest analyzer. As
shown in Figure 12–8 on page 12–11, apply a clock setting to the output of the AND
gate. Otherwise, the timing analyzer might analyze the circuit using the clock path
through the register as the longest clock path and the path that skips the register as
the shortest clock path, resulting in artificial clock skew.

In certain cases, converting the gated clocks to clock enables may help reduce glitch
and clock skew, and eventually produce a more accurate timing analysis. You can set
the Quartus II software to automatically convert gated clocks to clock enables by
turning on the Auto Gated Clock Conversion option. The conversion applies to two
types of gated clocking schemes: single-gated clock and cascaded-gated clock. The
TimeQuest analyzer supports this option for Arria® II, Arria II GX, Cyclone® II,
Cyclone III, Cyclone IV, Stratix® II, Stratix II GX, Stratix III, Stratix IV, and Stratix V
devices.

f For information about the settings and limitations of this option, refer to the “Auto
Gated Clock Conversion” section of the Quartus II Integrated Synthesis chapter in
volume 1 of the Quartus II Handbook.

Optimizing for Physical Implementation and Timing Closure
This section provides design and timing closure techniques for high speed or complex
core logic designs with challenging timing requirements. These techniques may also
be helpful for low or medium speed designs. Best practices for high-speed designs
include the following:

■ Planning Physical Implementation

■ Planning FPGA Resources

■ Optimizing for Timing Closure

Planning Physical Implementation
When planning a design, consider the following elements of physical
implementation:

■ The number of unique clock domains and their relationships

■ The amount of logic in each functional block

■ The location and direction of data flow between blocks

■ How data routes to the functional blocks between I/O interfaces
Quartus II Handbook Version 13.1 November 2013 Altera Corporation
Volume 1: Design and Synthesis

http://www.altera.com/literature/hb/qts/qts_qii51008.pdf

Chapter 12: Recommended Design Practices 12–13
Design Guidelines
Interface-wide control or status signals may have competing or opposing constraints.
For example, when a functional block's control or status signals interface with
physical channels from both sides of the device. In such cases you must provide
enough pipeline register stages to allow these signals to traverse the width of the
device. In addition, you can structure the hierarchy of the design into separate logic
modules for each side of the device. The side modules can generate and use registered
control signals per side. This simplifies floorplanning, particularly in designs with
transceivers, by placing per-side logic near the transceivers.

When adding register stages to pipeline control signals, turn off the Auto Shift
Register Replacement option (Assignments > Settings > Analysis & Synthesis
Settings > More Settings) for these registers. By default, chains of registers can be
converted to a RAM-based implementation based on performance and resource
estimates. Since pipelining helps meet timing requirements over long distance, this
assignment ensures that control signals are not converted.

Planning FPGA Resources
The requirements of your design affect the use of FPGA resources. Plan functional
blocks with appropriate global, regional, and dual-regional network signals in mind.
In general, after allocating the clocks in a design, use global networks for the highest
fan-out control signals. When a global network signal distributes a high fan-out
control signal, the global signal can drive logic anywhere in the device. Similarly,
when using a regional network signal, the driven must be in one quadrant of the
device, or half the device for a dual-regional network signal. Depending on data flow
and physical locations of the data entry and exit between the I/Os and the device,
restricting a functional block to a quadrant or half the device may not be practical for
performance or resource requirements.

When floorplanning a design, consider the balance of different types of device
resources, such as memory, logic, and DSP blocks in the main functional blocks. For
example, if a design is memory intensive with a small amount of logic, it may be
difficult to develop an effective floorplan. Logic that interfaces with the memory
would have to spread across the chip to access the memory. In this case, it is important
to use enough register stages in the data and control paths to allow signals to traverse
the chip to access the physically disparate resources needed.

Optimizing for Timing Closure
You can make changes to your design and constraints that help you achieve timing
closure. Whenever you change the project settings, you must balance any
performance improvement of the setting against any potential increase in compilation
time associated with the setting. You can view the performance gain versus runtime
cost by reviewing the Fitter messages after design processing.

Physical Synthesis Optimization

You can use physical synthesis optimizations for combinational logic, register
retiming, and register duplication techniques to optimize your design for timing
closure. Click Assignments > Settings > Physical Synthesis Optimizations to turn
on physical synthesis options.
November 2013 Altera Corporation Quartus II Handbook Version 13.1
Volume 1: Design and Synthesis

12–14 Chapter 12: Recommended Design Practices
Design Guidelines
■ Physical synthesis for combinational logic—When the Perform physical synthesis
for combinational logic is turned on, the report panel identifies logic that physical
synthesis can modify. You can use this information to modify the design so that the
associated optimization can be turned off to save compile time.

■ Register duplication—This technique is most useful where registers have high fan-
out, or where the fan-out is in physically distant areas of the device. Review the
netlist optimizations report and consider manually duplicating registers
automatically added by physical synthesis. You can also locate the original and
duplicate registers in the Chip Planner. Compare their locations, and if the fan-out
is improved, modify the code and turn off register duplication to save compile
time.

■ Register retiming—This technique is particularly useful where some
combinatorial paths between registers exceed the timing goal while other paths
fall short. If a design is already heavily pipelined, register retiming is less likely to
provide significant performance gains since there should not be significantly
unbalanced levels of logic across pipeline stages.

Timing Constraint Optimization

The application of appropriate timing constraints is essential to timing closure. Use
the following general guidelines in applying timing constraints:

■ Apply multicycle constraints in your design wherever single-cycle timing analysis
is not required.

■ Apply False Path constraints to all asynchronous clock domain crossings or resets
in the design. This technique prevents overconstraining and the Fitter focuses only
on critical paths to reduce compile time. However, over constraining timing
critical clock domains can sometimes provide better timing results and lower
compile times than physical synthesis.

■ Overconstrain rather than using physical synthesis when the slack improvement
from physical synthesis is near zero. Overconstrain the frequency requirement on
timing critical clock domains by using setup uncertainty.

■ When evaluating the effect of constraint changes on performance and runtime,
compile the design with at least three different seeds to determine the average
performance and runtime effects. Different constraint combinations produce
various results. Three samples or more establishes a performance trend. Modify
your constraints based on performance improvement or decline.

■ Leave settings at the default value whenever possible. Increasing performance
constraints can increase the compile time significantly. While those increases may
be necessary to close timing on a design, using the default settings whenever
possible minimizes compile time.

Optimizing Critical Timing Paths
To close timing in high speed designs, review paths with the largest timing failures.
Correcting a single, large timing failure can result in a very significant timing
improvement. Review the register placement and routing paths by clicking Tools >
Chip Planner. Large timing failures on high fan-out control signals can be caused by
any of the following conditions:

■ Sub-optimal use of global networks
Quartus II Handbook Version 13.1 November 2013 Altera Corporation
Volume 1: Design and Synthesis

Chapter 12: Recommended Design Practices 12–15
Design Guidelines
■ Signals that traverse the chip on local routing without pipelining

■ Failure to correct high fan-out by register duplication

For high-speed and high-bandwidth designs, optimize speed by reducing bus width
and wire usage. To reduce wire use, move the data as little as possible. For example, if
a block of logic functions on a few bits of a word, store inactive bits in a fifo or
memory. Memory is cheaper and denser than registers and reduces wire usage.

Power Optimization
The total FPGA power consumption is comprised of I/O power, core static power,
and core dynamic power. Knowledge of the relationship between these components is
fundamental in calculating the overall total power consumption. You can use various
optimization techniques and tools to minimize power consumption when applied
during FPGA design implementation. The Quartus II software offers power-driven
compilation features to fully optimize device power consumption. Power-driven
compilation focuses on reducing your design’s total power consumption using
power-driven synthesis and power-driven placement and routing.

f For more information about power-driven compilation flow and low-power design
guidelines, refer to the Power Optimization chapter in volume 2 of the Quartus II
Handbook.

f For more information about power optimization techniques available for Stratix III
devices, refer to AN 437: Power Optimization in Stratix III FPGAs. For more information
about power optimization techniques available for Stratix IV devices, refer to AN 514:
Power Optimization in Stratix IV FPGAs. For more information about power
optimization techniques available for Stratix V devices, refer to Reducing Power
Consumption and Increasing Bandwidth on 28-nm FPGAs white paper.

h Additionally, you can use the Quartus II PowerPlay suite of power analysis and
optimization tools to help you during the design process by delivering fast and
accurate estimations of power consumption. For more information about the
Quartus II PowerPlay suite of power analysis and optimization tools, refer to About
Power Estimation and Analysis in Quartus II Help.

Metastability
Metastability in PLD designs can be caused by the synchronization of asynchronous
signals. You can use the Quartus II software to analyze the mean time between
failures (MTBF) due to metastability, thus optimizing the design to improve the
metastability MTBF. A high metastability MTBF indicates a more robust design.

f For more information about how to ensure complete and accurate metastability
analysis, refer to the Managing Metastability With the Quartus II Software chapter in
volume 1 of the Quartus II Handbook.

h For more information about viewing metastability reports, refer to Viewing
Metastability Reports in Quartus II Help.
November 2013 Altera Corporation Quartus II Handbook Version 13.1
Volume 1: Design and Synthesis

http://www.altera.com/literature/hb/qts/qts_qii51018.pdf
http://quartushelp.altera.com/current/master.htm#mergedProjects/optimize/pwr/pwr_about_pwr.htm
http://quartushelp.altera.com/current/master.htm#mergedProjects/optimize/pwr/pwr_about_pwr.htm
http://quartushelp.altera.com/current/master.htm#mergedProjects/analyze/sta/sta_pro_viewing_metastability_reports.htm
http://quartushelp.altera.com/current/master.htm#mergedProjects/analyze/sta/sta_pro_viewing_metastability_reports.htm
http://www.altera.com/literature/wp/wp-01148-stxv-power-consumption.pdf
http://www.altera.com/literature/wp/wp-01148-stxv-power-consumption.pdf
http://www.altera.com/literature/hb/qts/qts_qii52016.pdf
http://www.altera.com/literature/an/AN437.pdf
http://www.altera.com/literature/an/an514.pdf
http://www.altera.com/literature/an/an514.pdf

12–16 Chapter 12: Recommended Design Practices
Checking Design Violations
Incremental Compilation
The incremental compilation feature in the Quartus II software allows you to partition
your design hierarchy, separately compile partitions, and reuse the results for
unchanged partitions. Incremental compilation flows require more up-front planning
than flat compilations, and generally require you to be more rigorous about following
good design practices than flat compilations.

f For more information about incremental compilation and floorplan assignments, refer
to the Best Practices for Incremental Compilation Partitions and Floorplan Assignments
chapter in volume 1 of the Quartus II Handbook.

h For more information about incremental compilation, refer to About Incremental
Compilation in Quartus II Help.

Checking Design Violations
To improve the reliability, timing performance, and logic utilization of your design,
you should practice good design methodology and understand how to avoid design
rule violations. The Quartus II software provides the Design Assistant tool that
automatically checks for design rule violations and reports their location.

The Design Assistant is a design rule checking tool that allows you to check for design
issues early in the design flow. The Design Assistant checks your design for adherence
to Altera-recommended design guidelines. You can specify which rules you want the
Design Assistant to apply to your design. This is useful if you know that your design
violates particular rules that are not critical and you can allow these rule violations.
The Design Assistant generates design violation reports with details about each
violation based on the settings that you specified.

This section provides an introduction to the Quartus II design flow with the Design
Assistant, message severity levels, and an explanation about how to set up the Design
Assistant. The last parts of the section describe the design rules and the reports
generated by the Design Assistant. The Design Assistant supports all Altera devices
supported by the Quartus II software.

Quartus II Design Flow with the Design Assistant
You can run the Design Assistant after Analysis and Elaboration, Analysis and
Synthesis, fitting, or a full compilation. If you set the Design Assistant to run
automatically during compilation, the Design Assistant performs a post-fitting netlist
analysis of your design. The default is to apply all of the rules to your project. If there
are some rules that are unimportant to your design, you can turn off the rules that you
do not want the Design Assistant to use.

h For more information about running the Design Assistant, refer to About the Design
Assistant in Quartus II Help.
Quartus II Handbook Version 13.1 November 2013 Altera Corporation
Volume 1: Design and Synthesis

http://quartushelp.altera.com/current/master.htm#mergedProjects/comp/increment/comp_view_qid.htm
http://quartushelp.altera.com/current/master.htm#mergedProjects/comp/increment/comp_view_qid.htm
http://quartushelp.altera.com/current/master.htm#mergedProjects/verify/da/comp_view_doctor.htm
http://quartushelp.altera.com/current/master.htm#mergedProjects/verify/da/comp_view_doctor.htm
http://www.altera.com/literature/hb/qts/qts_qii51017.pdf

Chapter 12: Recommended Design Practices 12–17
Checking Design Violations
Figure 12–9 shows the Quartus II software design flow with the Design Assistant.

The Design Assistant analyzes your design netlist at different stages of the
compilation flow and may yield different warnings or errors, even though the netlists
are functionally the same. Your pre-synthesis, post-synthesis, and post-fitting netlists
might be different due to optimizations performed by the Quartus II software. For
example, a warning message in a pre-synthesis netlist may be removed after the
netlist has been synthesized into a post-synthesis or post-fitting netlist.

The exact operation of the Design Assistant depends on when you run it:

■ When you run the Design Assistant after running a full compilation or fitting, the
Design Assistant performs a post-fitting analysis on the design.

■ When you run the Design Assistant after performing Analysis and Synthesis, the
Design Assistant performs post-synthesis analysis on the design.

■ When you start the Design Assistant after performing Analysis and Elaboration,
the Design Assistant performs a pre-synthesis analysis on the design. You can also
perform pre-synthesis analysis with the Design Assistant using the command-line.
You can use the -rtl option with the quartus_drc executable, as shown in the
following example:

quartus_drc <project_name> --rtl=on r

h For more information about Design Assistant settings, refer to About the Design
Assistant and Design Assistant Page (Settings Dialog Box) in Quartus II Help.

Figure 12–9. Quartus II Design Flow with the Design Assistant

Notes to Figure 12–9:

(1) Database of the default rules for the Design Assistant.
(2) A file that contains the .xml codes of the custom rules for the Design Assistant. For more details about how to create

this file, refer to “Custom Rules” on page 12–18.

Design Files

Analysis & Elaboration

Synthesis
(Logic Synthesis &

Technology Mapping)

Fitter

Timing Analysis

Design Assistant

Pre-Synthesis
Netlist

Design Assistant
Golden Rules (1)

Rule Violation
Report

Custom
Rules (2)

Post-Fitting
Netlist

Post-Synthesis
Netlist
November 2013 Altera Corporation Quartus II Handbook Version 13.1
Volume 1: Design and Synthesis

http://quartushelp.altera.com/current/master.htm#mergedProjects/verify/da/comp_view_doctor.htm
http://quartushelp.altera.com/current/master.htm#mergedProjects/verify/da/comp_view_doctor.htm
http://quartushelp.altera.com/current/master.htm#mergedProjects/verify/da/comp_tab_doctor.htm

12–18 Chapter 12: Recommended Design Practices
Checking Design Violations
Enabling and Disabling Design Assistant Rules

h For more information about enabling or disabling Design Assistant rules on
individual nodes by making an assignment in the Assignment Editor, in the
Quartus II Settings File (.qsf), with the altera_attribute synthesis attribute in Verilog
HDL or VHDL, or with a Tcl command, refer to Enabling Design Assistant Rules on
Nodes, Entities, or Instances, or Disabling Design Assistant Rules on Nodes, Entities, or
Instances in Quartus II Help.

Viewing Design Assistant Results
If your design violates a design rule, the Design Assistant generates warning
messages and information messages about the violated rule. The Design Assistant
displays these messages in the Messages window, in the Design Assistant Messages
report, and in the Design Assistant report files. You can find the Design Assistant
report files called <project_name>.drc.rpt in the <project_name> subdirectory of the
project directory.

h For information about the contents of the reports generated by the Design Assistant,
refer to Design Assistant Reports in Quartus II Help.

Custom Rules
In addition to the existing design rules that the Design Assistant offers, you can also
create your own rules and specify your own reporting format in a text file (with any
file extension) with the XML format. You then specify the path to that file in the
Design Assistant settings page and run the Design Assistant for violation checking.

Refer to the following location to locate the file that contains the default rules for the
Design Assistant:

<Quartus II install path>\quartus\libraries\design-assistant\da_golden_rule.xml

h For more information about how to set the file path to your custom rules, refer to
Custom Rules Settings Dialog Box in Quartus II Help. For more information about the
basics of writing custom rules, the Design Assistant settings, and coding examples on
how to check for clock relationship and node relationship in a design, refer to Creating
Custom Design Assistant Rules in Quartus II Help. To specify the rules that you want
the Design Assistant to use when checking for violations, refer to Design Assistant Page
(Settings Dialog Box) in Quartus II Help.

Custom Rules Coding Examples
The following examples of custom rules show how to check node relationships and
clock relationships in a design.
Quartus II Handbook Version 13.1 November 2013 Altera Corporation
Volume 1: Design and Synthesis

http://quartushelp.altera.com/current/master.htm#mergedProjects/report/rpt/rpt_file_da_summary.htm
http://quartushelp.altera.com/current/master.htm#mergedProjects/verify/da/da_pro_create_custom_da_rules.htm
http://quartushelp.altera.com/current/master.htm#mergedProjects/verify/da/da_pro_create_custom_da_rules.htm
http://quartushelp.altera.com/current/master.htm#mergedProjects/verify/da/comp_tab_doctor.htm
http://quartushelp.altera.com/current/master.htm#mergedProjects/verify/da/comp_tab_doctor.htm
http://quartushelp.altera.com/current/master.htm#mergedProjects/verify/da/da_pro_enable_rules.htm
http://quartushelp.altera.com/current/master.htm#mergedProjects/verify/da/da_pro_enable_rules.htm
http://quartushelp.altera.com/current/master.htm#mergedProjects/verify/da/da_pro_rule_suppression.htm
http://quartushelp.altera.com/current/master.htm#mergedProjects/verify/da/da_pro_rule_suppression.htm
http://quartushelp.altera.com/current/master.htm#mergedProjects/verify/da/da_db_custom_rules.htm

Chapter 12: Recommended Design Practices 12–19
Checking Design Violations
Checking SR Latch Structures In a Design

Example 12–1 shows the XML codes for checking SR latch structures in a design.

In Example 12–1, the possible SR latch structures are specified in the rule definition
section. Codes defined in the <AND></AND> block are tied together, meaning that each
statement in the block must be true for the block to be fulfilled (AND gate similarity).
In the <OR></OR> block, as long as one statement in the block is true, the block is
fulfilled (OR gate similarity). If no <AND></AND> or <OR></OR> blocks are specified, the
default is <AND></AND>.

The <FORBID></FORBID> section contains the undesirable condition for the design,
which in this case is the SR latch structures. If the condition is fulfilled, the Design
Assistant highlights a rule violation.

The following examples are the undesired conditions from Example 12–1 with their
equivalent block diagrams (Figure 12–10 and Figure 12–11):

<AND>
<NODE_RELATIONSHIP FROM_NAME="NODE_1" FROM_TYPE="NAND" TO_NAME="NODE_2"

TO_TYPE="NAND" />
<NODE_RELATIONSHIP FROM_NAME="NODE_2" FROM_TYPE="NAND" TO_NAME="NODE_1"

TO_TYPE="NAND" />

Example 12–1. Detecting SR Latches in a Design

<DA_RULE ID="EX01" SEVERITY="CRITICAL" NAME="Checking Design for SR Latch"
DEFAULT_RUN="YES">
<RULE_DEFINITION>

<FORBID>
<OR>

<NODE NAME="NODE_1" TYPE="SRLATCH" />
<HAS_NODE NODE_LIST="NODE_1" />
<NODE NAME="NODE_1" TOTAL_FANIN="EQ2" />
<NODE NAME="NODE_2" TOTAL_FANIN="EQ2" />
<AND>

<NODE_RELATIONSHIP FROM_NAME="NODE_1" FROM_TYPE="NAND" TO_NAME="NODE_2"
TO_TYPE="NAND" />

<NODE_RELATIONSHIP FROM_NAME="NODE_2" FROM_TYPE="NAND" TO_NAME="NODE_1"
TO_TYPE="NAND" />

</AND>
<AND>

<NODE_RELATIONSHIP FROM_NAME="NODE_1" FROM_TYPE="NOR" TO_NAME="NODE_2"
TO_TYPE="NOR" />

<NODE_RELATIONSHIP FROM_NAME="NODE_2" FROM_TYPE="NOR" TO_NAME="NODE_1"
TO_TYPE="NOR" />

</AND>
</OR>

</FORBID>
</RULE_DEFINITION>

<REPORTING_ROOT>
<MESSAGE NAME="Rule %ARG1%: Found %ARG2% node(s) related to this rule.">

<MESSAGE_ARGUMENT NAME="ARG1" TYPE="ATTRIBUTE" VALUE="ID" />
<MESSAGE_ARGUMENT NAME="ARG2" TYPE="TOTAL_NODE" VALUE="NODE_1" />

</MESSAGE>
</REPORTING_ROOT>
</DA_RULE>
November 2013 Altera Corporation Quartus II Handbook Version 13.1
Volume 1: Design and Synthesis

12–20 Chapter 12: Recommended Design Practices
Checking Design Violations
</AND>

<AND>
<NODE_RELATIONSHIP FROM_NAME="NODE_1" FROM_TYPE="NOR" TO_NAME="NODE_2" TO_TYPE="NOR" />
<NODE_RELATIONSHIP FROM_NAME="NODE_2" FROM_TYPE="NOR" TO_NAME="NODE_1" TO_TYPE="NOR" />

</AND>

Figure 12–10. Undesired Condition 1

Figure 12–11. Undesired Condition 2
Quartus II Handbook Version 13.1 November 2013 Altera Corporation
Volume 1: Design and Synthesis

Chapter 12: Recommended Design Practices 12–21
Checking Design Violations
Relating Nodes to a Clock Domain

Example 12–2 shows how to use the CLOCK_RELATIONSHIP attribute to relate nodes to
clock domains. This example checks for correct synchronization in data transfer
between asynchronous clock domains. Synchronization is done with cascaded
registers, also called synchronizers, at the receiving clock domain. The code in
Example 12–2 checks for the synchronizer configuration based on the following
guidelines:

■ The cascading registers need to be triggered on the same clock edge

■ There is no logic between the register output of the transmitting clock domain and
the cascaded registers in the receiving asynchronous clock domain

The codes differentiate the clock domains. ASYN means asynchronous, and !ASYN means
non-asynchronous. This notation is useful for describing nodes that are in different
clock domains. The following lines from Example 12–2 state that NODE_2 and NODE_3 are
in the same clock domain, but NODE_1 is not.

<NODE_RELATIONSHIP FROM_NAME="NODE_1" TO_NAME="NODE_2" TO_PORT="D_PORT"
CLOCK_RELATIONSHIP="ASYN" />

<NODE_RELATIONSHIP FROM_NAME="NODE_2" TO_NAME="NODE_3" TO_PORT="D_PORT"
CLOCK_RELATIONSHIP="!ASYN" />

Example 12–2. Detecting Incorrect Synchronizer Configuration

<DA_RULE ID="EX02" SEVERITY="HIGH" NAME="Data Transfer Not Synch Correctly"
DEFAULT_RUN="YES">

<RULE_DEFINITION>
<DECLARE>

<NODE NAME="NODE_1" TYPE="REG" />
<NODE NAME="NODE_2" TYPE="REG" />
<NODE NAME="NODE_3" TYPE="REG" />

</DECLARE>
<FORBID>

<NODE_RELATIONSHIP FROM_NAME="NODE_1" TO_NAME="NODE_2" TO_PORT="D_PORT"
CLOCK_RELATIONSHIP="ASYN" />

<NODE_RELATIONSHIP FROM_NAME="NODE_2" TO_NAME="NODE_3" TO_PORT="D_PORT"
CLOCK_RELATIONSHIP="!ASYN" />

<OR>
<NODE_RELATIONSHIP FROM_NAME="NODE_1" TO_NAME="NODE_2" TO_PORT="D_PORT"

REQUIRED_THROUGH="YES" THROUGH_TYPE="COMB" CLOCK_RELATIONSHIP="ASYN" />
<CLOCK_RELATIONSHIP NAME="SEQ_EDGE|ASYN" NODE_LIST="NODE_2, NODE_3" />

</OR>
</FORBID>
</RULE_DEFINITION>

<REPORTING_ROOT>
<MESSAGE NAME="Rule %ARG1%: Found %ARG2% node(s) related to this rule.">

<MESSAGE_ARGUMENT NAME="ARG1" TYPE="ATTRIBUTE" VALUE="ID" />
<MESSAGE_ARGUMENT NAME="ARG2" TYPE="TOTAL_NODE" VALUE="NODE_1" />
<MESSAGE NAME="Source node(s): %ARG3%, Destination node(s): %ARG4%">

<MESSAGE_ARGUMENT NAME="ARG3" TYPE="NODE" VALUE="NODE_1" />
<MESSAGE_ARGUMENT NAME="ARG4" TYPE="NODE" VALUE="NODE_2" />

</MESSAGE>
</MESSAGE>
</REPORTING_ROOT>
</DA_RULE>
November 2013 Altera Corporation Quartus II Handbook Version 13.1
Volume 1: Design and Synthesis

12–22 Chapter 12: Recommended Design Practices
Checking Design Violations
The next line of code states that NODE_2 and NODE_3 have a clock relationship of either
sequential edge or asynchronous.

 <CLOCK_RELATIONSHIP NAME="SEQ_EDGE|ASYN" NODE_LIST="NODE_2, NODE_3" />

The <FORBID></FORBID> section contains the undesirable condition for the design,
which in this case is the undesired configuration of the synchronizer. If the condition
is fulfilled, the Design Assistant highlights a rule violation.

The following examples are the undesired conditions from Example 12–2 with their
equivalent block diagrams (Figure 12–12 and Figure 12–13):

Example 12–3.

<NODE_RELATIONSHIP FROM_NAME="NODE_1" TO_NAME="NODE_2" TO_PORT="D_PORT"
CLOCK_RELATIONSHIP="ASYN" />

<NODE_RELATIONSHIP FROM_NAME="NODE_2" TO_NAME="NODE_3" TO_PORT="D_PORT"
CLOCK_RELATIONSHIP="!ASYN" />

<NODE_RELATIONSHIP FROM_NAME="NODE_1" TO_NAME="NODE_2" TO_PORT="D_PORT"
REQUIRED_THROUGH="YES" THROUGH_TYPE="COMB" CLOCK_RELATIONSHIP="ASYN" />

Figure 12–12. Undesired Condition 3

Example 12–4.

<NODE_RELATIONSHIP FROM_NAME="NODE_1" TO_NAME="NODE_2" TO_PORT="D_PORT"
CLOCK_RELATIONSHIP="ASYN" />

<NODE_RELATIONSHIP FROM_NAME="NODE_2" TO_NAME="NODE_3" TO_PORT="D_PORT"
CLOCK_RELATIONSHIP="!ASYN" />

<CLOCK_RELATIONSHIP NAME="SEQ_EDGE|ASYN" NODE_LIST="NODE_2, NODE_3" />

Figure 12–13. Undesired Condition 4
Quartus II Handbook Version 13.1 November 2013 Altera Corporation
Volume 1: Design and Synthesis

Chapter 12: Recommended Design Practices 12–23
Targeting Clock and Register-Control Architectural Features
Targeting Clock and Register-Control Architectural Features
In addition to following general design guidelines, you must code your design with
the device architecture in mind. FPGAs provide device-wide clocks and register
control signals that can improve performance.

Clock Network Resources
Altera FPGAs provide device-wide global clock routing resources and dedicated
inputs. Use the FPGA’s low-skew, high fan-out dedicated routing where available. By
assigning a clock input to one of these dedicated clock pins or with a Quartus II logic
option to assign global routing, you can take advantage of the dedicated routing
available for clock signals.

In an ASIC design, you should balance the clock delay as it is distributed across the
device. Because Altera FPGAs provide device-wide global clock routing resources
and dedicated inputs, there is no need to manually balance delays on the clock
network.

You should limit the number of clocks in your design to the number of dedicated
global clock resources available in your FPGA. Clocks feeding multiple locations that
do not use global routing may exhibit clock skew across the device that could lead to
timing problems. In addition, when you use combinational logic to generate an
internal clock, it adds delays on the clock path. In some cases, delay on a clock line can
result in a clock skew greater than the data path length between two registers. If the
clock skew is greater than the data delay, you violate the timing parameters of the
register (such as hold time requirements) and the design does not function correctly.

FPGAs offer a number of low-skew global routing resources to distribute high fan-out
signals to help with the implementation of large designs with many clock domains.
Many large FPGA devices provide dedicated global clock networks, regional clock
networks, and dedicated fast regional clock networks. These clocks are organized into
a hierarchical clock structure that allows many clocks in each device region with low
skew and delay. There are typically several dedicated clock pins to drive either global
or regional clock networks, and both PLL outputs and internal clocks can drive
various clock networks.

To reduce clock skew in a given clock domain and ensure that hold times are met in
that clock domain, assign each clock signal to one of the global high fan-out, low-skew
clock networks in the FPGA device. The Quartus II software automatically uses global
routing for high fan-out control signals, PLL outputs, and signals feeding the global
clock pins on the device. You can make explicit Global Signal logic option settings by
turning on the Global Signal option setting. Use this option when it is necessary to
force the software to use the global routing for particular signals.

To take full advantage of these routing resources, the sources of clock signals in a
design (input clock pins or internally-generated clocks) need to drive only the clock
input ports of registers. In older Altera device families, if a clock signal feeds the data
ports of a register, the signal may not be able to use dedicated routing, which can lead
to decreased performance and clock skew problems. In general, allowing clock signals
to drive the data ports of registers is not considered synchronous design and can
complicate timing analysis.
November 2013 Altera Corporation Quartus II Handbook Version 13.1
Volume 1: Design and Synthesis

12–24 Chapter 12: Recommended Design Practices
Targeting Clock and Register-Control Architectural Features
Reset Resources
ASIC designs may use local resets to avoid long routing delays. Take advantage of the
device-wide asynchronous reset pin available on most FPGAs to eliminate these
problems. This reset signal provides low-skew routing across the device.

The following are three types of resets used in synchronous circuits:

■ Synchronous Reset

■ Asynchronous Reset

■ Synchronized Asynchronous Reset—preferred when designing an FPGA circuit

Synchronous Reset
The synchronous reset ensures that the circuit is fully synchronous. You can easily
time the circuit with the Quartus II TimeQuest analyzer. Because clocks that are
synchronous to each other launch and latch the reset signal, the data arrival and data
required times are easily determined for proper slack analysis. The synchronous reset
is easier to use with cycle-based simulators.

There are two methods by which a reset signal can reach a register; either by being
gated in with the data input, as shown in Figure 12–14, or by using an LAB-wide
control signal (synclr), as shown in Figure 12–15. If you use the first method, you risk
adding an additional gate delay to the circuit to accommodate the reset signal, which
causes increased data arrival times and negatively impacts setup slack. The second
method relies on dedicated routing in the LAB to each register, but this is slower than
an asynchronous reset to the same register.

Figure 12–14. Synchronous Reset

PRN

CLRN

D Q

DFF

inst

reset_n

data

clock
out

AND2

inst1
Quartus II Handbook Version 13.1 November 2013 Altera Corporation
Volume 1: Design and Synthesis

Chapter 12: Recommended Design Practices 12–25
Targeting Clock and Register-Control Architectural Features
Consider two types of synchronous resets when you examine the timing analysis of
synchronous resets—externally synchronized resets and internally synchronized
resets. Externally synchronized resets are synchronized to the clock domain outside
the FPGA, and are not very common. A power-on asynchronous reset is dual-rank
synchronized externally to the system clock and then brought into the FPGA. Inside
the FPGA, gate this reset with the data input to the registers to implement a
synchronous reset.

Figure 12–15. LAB-Wide Control Signals

Dedicated Row LAB Clocks

Local Interconnect

Local Interconnect

Local Interconnect

Local Interconnect

Local Interconnect

Local Interconnect

There are two unique
clock signals per LAB

6

6

6

labclk0

labclkena0

labclk1 labclk2 syncload labclr1

labclkena1 labclkena2 labclr0 synclr
November 2013 Altera Corporation Quartus II Handbook Version 13.1
Volume 1: Design and Synthesis

12–26 Chapter 12: Recommended Design Practices
Targeting Clock and Register-Control Architectural Features
Figure 12–16 shows the schematic for an externally synchronized reset.

Example 12–5 shows the Verilog equivalent of the schematic. When you use
synchronous resets, the reset signal is not put in the sensitivity list.

Figure 12–16. Externally Synchronized Reset

PRN

CLRN

D Q
PRN

CLRN

D Qpor_n

clock
reset_n

data_a

INPUT
VCC

VCC
INPUT

VCC
INPUTclock

VCC
INPUTdata_b

AND2

lc 1

AND2

lc 2

PRN

CLRN

D Q

PRN

CLRN

D Q

DFF

reg1

DFF

reg2

OUTPUT out_a

out_b
OUTPUT

FPGA

Example 12–5. Verilog Code for Externally Synchronized Reset

module sync_reset_ext (
input clock,
input reset_n,
input data_a,
input data_b,
output out_a,
output out_b
);

reg reg1, reg2

assign out_a = reg1;
assign out_b = reg2;

always @ (posedge clock)
begin

if (!reset_n)
begin

reg1 <= 1’bo;
reg2 <= 1;b0;

end
else
begin

reg1 <= data_a;
reg2 <= data_b;

end
end

endmodule // sync_reset_ext
Quartus II Handbook Version 13.1 November 2013 Altera Corporation
Volume 1: Design and Synthesis

Chapter 12: Recommended Design Practices 12–27
Targeting Clock and Register-Control Architectural Features
Example 12–6 shows the constraints for the externally synchronous reset. Because the
external reset is synchronous, you only need to constrain the reset_n signal as a
normal input signal with set_input_delay constraint for -max and -min.

More often, resets coming into the device are asynchronous, and must be
synchronized internally before being sent to the registers. Figure 12–17 shows an
internally synchronized reset.

Example 12–6. SDC Constraints for Externally Synchronous Reset

Input clock - 100 MHz
create_clock [get_ports {clock}] \

-name {clock} \
-period 10.0 \
-waveform {0.0 5.0}

Input constraints on low-active reset
and data
set_input_delay 7.0 \

-max \
-clock [get_clocks {clock}] \
[get_ports {reset_n data_a data_b}]

set_input_delay 1.0 \
-min \
-clock [get_clocks {clock}] \
[get_ports {reset_n data_a data_b}]

Figure 12–17. Internally Synchronized Reset

PRN

CLRN

D Q
PRN

CLRN

D Qreset_n

data_a

INPUT
VCC

VCC
INPUT

VCC
INPUT

clock VCC
INPUT

data_b

AND2

lc 1

AND2

lc 2

PRN

CLRN

D Q

PRN

CLRN

D Q

DFF

reg1

DFF

reg2

OUTPUT out_a

out_bOUTPUT

DFF DFF

reg3 reg4
November 2013 Altera Corporation Quartus II Handbook Version 13.1
Volume 1: Design and Synthesis

12–28 Chapter 12: Recommended Design Practices
Targeting Clock and Register-Control Architectural Features
Example 12–7 shows the Verilog equivalent of the schematic. Only the clock edge is in
the sensitivity list for a synchronous reset.

Example 12–7. Verilog Code for Internally Synchronous Reset

module sync_reset (
input clock,
input reset_n,
input data_a,
input data_b,
output out_a,
output out_b
);

reg reg1, reg2
reg reg3, reg4

assign out_a = reg1;
assign out_b = reg2;
assign rst_n = reg4;

always @ (posedge clock)
begin

if (!rst_n)
begin

reg1 <= 1’bo;
reg2 <= 1’b0;

end
else
begin

reg1 <= data_a;
reg2 <= data_b;

end
end

always @ (posedge clock)
begin

reg3 <= reset_n;
reg4 <= reg3;

end
endmodule // sync_reset
Quartus II Handbook Version 13.1 November 2013 Altera Corporation
Volume 1: Design and Synthesis

Chapter 12: Recommended Design Practices 12–29
Targeting Clock and Register-Control Architectural Features
The SDC constraints are similar to the external synchronous reset, except that the
input reset cannot be constrained because it is asynchronous and should be cut with a
set_false_path statement (as shown in Example 12–8) to avoid these being
considered as unconstrained paths.

An issue with synchronous resets is their behavior with respect to short pulses (less
than a period) on the asynchronous input to the synchronizer flipflops. This can be a
disadvantage because the asynchronous reset requires a pulse width of at least one
period wide to guarantee that it is captured by the first flipflop. However, this can
also be viewed as an advantage in that this circuit increases noise immunity. Spurious
pulses on the asynchronous input have a lower chance of being captured by the first
flipflop, so the pulses do not trigger a synchronous reset. In some cases, you might
want to increase the noise immunity further and reject any asynchronous input reset
that is less than n periods wide to debounce an asynchronous input reset.

Example 12–8. SDC Constraints for Internally Synchronized Reset

Input clock - 100 MHz
create_clock [get_ports {clock}] \

-name {clock} \
-period 10.0 \
-waveform {0.0 5.0}

Input constraints on data
set_input_delay 7.0 \

-max \
-clock [get_clocks {clock}] \
[get_ports {data_a data_b}]

set_input_delay 1.0 \
-min \
-clock [get_clocks {clock}] \
[get_ports {data_a data_b}]

Cut the asynchronous reset input
set_false_path \

-from [get_ports {reset_n}] \
-to [all_registers]
November 2013 Altera Corporation Quartus II Handbook Version 13.1
Volume 1: Design and Synthesis

12–30 Chapter 12: Recommended Design Practices
Targeting Clock and Register-Control Architectural Features
Figure 12–18 shows the necessary modifications that you should make to the
internally synchronized reset.

Many designs have more than one clock signal. In these cases, use a separate reset
synchronization circuit for each clock domain in the design. When you create
synchronizers for PLL output clocks, these clock domains are not reset until you lock
the PLL and the PLL output clocks are stable. If you use the reset to the PLL, this reset
does not have to be synchronous with the input clock of the PLL. You can use an
asynchronous reset for this. Using a reset to the PLL further delays the assertion of a
synchronous reset to the PLL output clock domains when using internally
synchronized resets.

Asynchronous Reset
Asynchronous resets are the most common form of reset in circuit designs, as well as
the easiest to implement. Typically, you can insert the asynchronous reset into the
device, turn on the global buffer, and connect to the asynchronous reset pin of every
register in the device. This method is only advantageous under certain
circumstances—you do not need to always reset the register. Unlike the synchronous
reset, the asynchronous reset is not inserted in the data path, and does not negatively
impact the data arrival times between registers. Reset takes effect immediately, and as
soon as the registers receive the reset pulse, the registers are reset. The asynchronous
reset is not dependent on the clock.

However, when the reset is deasserted and does not pass the recovery (µtSU) or
removal (µtH) time check (the TimeQuest analyzer recovery and removal analysis
checks both times), the edge is said to have fallen into the metastability zone.
Additional time is required to determine the correct state, and the delay can cause the
setup time to fail to register downstream, leading to system failure. To avoid this, add
a few follower registers after the register with the asynchronous reset and use the
output of these registers in the design. Use the follower registers to synchronize the

Figure 12–18. Internally Synchronized Reset with Pulse Extender

Note to Figure 12–18:

(1) Junction dots indicate the number of stages. You can have more flip flops to get a wider pulse that spans more clock cycles.

PRN

CLRN

D Q
PRN

CLRN

D Qreset_n

data_a

INPUT
VCC

VCC
INPUT

VCC
INPUT

clock VCC
INPUT

data_b

AND2

lc 1

AND2

lc 2

PRN

CLRN

D Q

PRN

CLRN

D Q

DFF

reg1

DFF

reg2

OUTPUT out_a

out_bOUTPUT

PRN

CLRN

D Q
PRN

CLRN

D Q

BNAND2

Synchronizer Flip-Flops n Pulse Extender Flip-Flops

lc 3

reg3 reg4 reg5 regn

DFF DFF DFF DFF
Quartus II Handbook Version 13.1 November 2013 Altera Corporation
Volume 1: Design and Synthesis

Chapter 12: Recommended Design Practices 12–31
Targeting Clock and Register-Control Architectural Features
data to the clock to remove the metastability issues. You should place these registers
close to each other in the device to keep the routing delays to a minimum, which
decreases data arrival times and increases MTBF. Ensure that these follower registers
themselves are not reset, but are initialized over a period of several clock cycles by
“flushing out” their current or initial state.

Figure 12–19 shows a schematic example of this circuit.

Example 12–9 shows the equivalent Verilog code. The active edge of the reset is now
in the sensitivity list for the procedural block, which infers a clock enable on the
follower registers with the inverse of the reset signal tied to the clock enable. The
follower registers should be in a separate procedural block as shown using non-
blocking assignments.

Figure 12–19. Asynchronous Reset with Follower Registers

PRN

CLRN

D Q

DFF

reg1

PRN

CLRN

D Q

DFF

reg2

PRN

CLRN

D Q

DFF

reg3

data_a INPUT
VCC

VCC
INPUTreset_n

VCC
INPUTclock

out_aOUTPUT

Example 12–9. Verilog Code of Asynchronous Reset with Follower Registers

module async_reset (
input clock,
input reset_n,
input data_a,
output out_a,
);

reg reg1, reg2, reg3;

assign out_a = reg3;

always @ (posedge clock, negedge reset_n)
begin

if (!reset_n)
reg1 <= 1’b0;

else
reg1 <= data_a;

end

always @ (posedge clock)
begin

reg2 <= reg1;
reg3 <= reg2;

end
endmodule // async_reset
November 2013 Altera Corporation Quartus II Handbook Version 13.1
Volume 1: Design and Synthesis

12–32 Chapter 12: Recommended Design Practices
Targeting Clock and Register-Control Architectural Features
You can easily constrain an asynchronous reset. By definition, asynchronous resets
have a non-deterministic relationship to the clock domains of the registers they are
resetting. Therefore, static timing analysis of these resets is not possible and you can
use the set_false_path command to exclude the path from timing analysis (as shown
in Example 12–10). Because the relationship of the reset to the clock at the register is
not known, you cannot run recovery and removal analysis in the TimeQuest analyzer
for this path. Attempting to do so even without the false path statement results in no
paths reported for recovery and removal.

The asynchronous reset is susceptible to noise, and a noisy asynchronous reset can
cause a spurious reset. You must ensure that the asynchronous reset is debounced and
filtered. You can easily enter into a reset asynchronously, but releasing a reset
asynchronously can lead to potential problems (also referred to as “reset removal”)
with metastability, including the hazards of unwanted situations with synchronous
circuits involving feedback.

Synchronized Asynchronous Reset
To avoid potential problems associated with purely synchronous resets and purely
asynchronous resets, you can use synchronized asynchronous resets. Synchronized
asynchronous resets combine the advantages of synchronous and asynchronous
resets. These resets are asynchronously asserted and synchronously deasserted. This
takes effect almost instantaneously, and ensures that no data path for speed is
involved, and that the circuit is synchronous for timing analysis and is resistant to
noise.

Example 12–10. SDC Constraints for Asynchronous Reset

Input clock - 100 MHz
create_clock [get_ports {clock}] \

-name {clock} \
-period 10.0 \
-waveform {0.0 5.0}

Input constraints on data
set_input_delay 7.0 \

-max \
-clock [get_clocks {clock}]\
[get_ports {data_a}]

set_input_delay 1.0 \
-min \
-clock [get_clocks {clock}] \
[get_ports {data_a}]

Cut the asynchronous reset input
set_false_path \

-from [get_ports {reset_n}] \
-to [all_registers]
Quartus II Handbook Version 13.1 November 2013 Altera Corporation
Volume 1: Design and Synthesis

Chapter 12: Recommended Design Practices 12–33
Targeting Clock and Register-Control Architectural Features
Figure 12–20 shows a method for implementing the synchronized asynchronous reset.
You should use synchronizer registers in a similar manner as synchronous resets.
However, the asynchronous reset input is gated directly to the CLRN pin of the
synchronizer registers and immediately asserts the resulting reset. When the reset is
deasserted, logic “1” is clocked through the synchronizers to synchronously deassert
the resulting reset.

Figure 12–20. Schematic of Synchronized Asynchronous Reset

PRN

CLRN

D Q

DFF

reg3

VCC

PRN

CLRN

D Q

DFF

reg4

PRN

CLRN

D Q

DFF

reg1

PRN

CLRN

D Q

DFF

reg2

data_a

clock

INPUT
VCC

VCC
INPUT

VCC
INPUTreset_n

VCC
INPUTdata_b

out_aOUTPUT

out_b
OUTPUT
November 2013 Altera Corporation Quartus II Handbook Version 13.1
Volume 1: Design and Synthesis

12–34 Chapter 12: Recommended Design Practices
Targeting Clock and Register-Control Architectural Features
Example 12–11 shows the equivalent Verilog code. Use the active edge of the reset in
the sensitivity list for the blocks in Figure 12–20.

To minimize the metastability effect between the two synchronization registers, and to
increase the MTBF, the registers should be located as close as possible in the device to
minimize routing delay. If possible, locate the registers in the same logic array block
(LAB). The input reset signal (reset_n) must be excluded with a set_false_path
command, so the reset that comes from the synchronization register (rst_n) can be
timed in the TimeQuest analyzer with recovery and removal Analysis.

Example 12–11. Verilog Code for Synchronized Asynchronous Reset

module sync_async_reset (
input clock,
input reset_n,
input data_a,
input data_b,
output out_a,
output out_b
);

reg reg1, reg2;
reg reg3, reg4;

assign out_a = reg1;
assign out_b = reg2;
assign rst_n = reg4;

always @ (posedge clock, negedge reset_n)
begin

if (!reset_n)
begin

reg3 <= 1’b0;
reg4 <= 1;b0;

end
else
begin

reg3 <= 1’b1;
reg4 <= reg3;

end
end

always @ (posedge clock, negedge rst_n)
begin

if (!rst_n)
begin

reg1 <= 1’b0;
reg2 <= 1;b0;

end
else
begin

reg1 <= data_a;
reg2 <= data_b;

end
end

endmodule // sync_async_reset
Quartus II Handbook Version 13.1 November 2013 Altera Corporation
Volume 1: Design and Synthesis

Chapter 12: Recommended Design Practices 12–35
Targeting Embedded RAM Architectural Features
The instantaneous assertion of synchronized asynchronous resets is susceptible to
noise and runt pulses. If possible, you should debounce the asynchronous reset and
filter the reset before it enters the device. The circuit in Figure 12–20 on page 12–33
ensures that the synchronized asynchronous reset is at least one full clock period in
length. To extend this time to n clock periods, you must increase the number of
synchronizer registers to n + 1. You must connect the asynchronous input reset
(reset_n) to the CLRN pin of all the synchronizer registers to maintain the asynchronous
assertion of the synchronized asynchronous reset.

f For more information about specifying the minimum routing delay, refer to the Best
Practices for the Quartus II TimeQuest Timing Analyzer chapter in volume 3 of the
Quartus II Handbook.

Register Control Signals
Avoid using an asynchronous load signal if the design target device architecture does
not include registers with dedicated circuitry for asynchronous loads. Also, avoid
using both asynchronous clear and preset if the architecture provides only one of
these control signals. Stratix III devices, for example, directly support an
asynchronous clear function, but not a preset or load function. When the target device
does not directly support the signals, the synthesis or placement and routing software
must use combinational logic to implement the same functionality. In addition, if you
use signals in a priority other than the inherent priority in the device architecture,
combinational logic may be required to implement the necessary control signals.
Combinational logic is less efficient and can cause glitches and other problems; it is
best to avoid these implementations.

f For Verilog HDL and VHDL examples of registers with various control signals, and
information about the inherent priority order of register control signals in Altera
device architecture, refer to the Recommended HDL Coding Styles chapter in volume 1
of the Quartus II Handbook.

Targeting Embedded RAM Architectural Features
Altera’s dedicated memory architecture offers many advanced features that you can
target easily with the MegaWizard™ Plug-In Manager or with the recommended HDL
coding styles that infer the appropriate RAM megafunction (ALTSYNCRAM or
ALTDPRAM). Use synchronous memory blocks for your design, so that the blocks
can be mapped directly into the device dedicated memory blocks. You can use
single-port, dual-port, or three-port RAM with a single- or dual-clocking method. You
should not infer the asynchronous memory logic as a memory block or place the
asynchronous memory logic in the dedicated memory block, but implement the
asynchronous memory logic in regular logic cells.

Altera memory blocks have different read-during-write behaviors, depending on the
targeted device family, memory mode, and block type. Read-during-write behavior
refers to read and write from the same memory address in the same clock cycle; for
example, you read from the same address to which you write in the same clock cycle.
November 2013 Altera Corporation Quartus II Handbook Version 13.1
Volume 1: Design and Synthesis

http://www.altera.com/literature/hb/qts/qts_qii53024.pdf
http://www.altera.com/literature/hb/qts/qts_qii53024.pdf
http://www.altera.com/literature/hb/qts/qts_qii51007.pdf

12–36 Chapter 12: Recommended Design Practices
Conclusion
You should check how you specify the memory in your HDL code when you use
read-during-write behavior. The HDL code that describes the read returns either the
old data stored at the memory location, or the new data being written to the memory
location.

In some cases, when the device architecture cannot implement the memory behavior
described in your HDL code, the memory block is not mapped to the dedicated RAM
blocks, or the memory block is implemented using extra logic in addition to the
dedicated RAM block. Implement the read-during-write behavior using single-port
RAM in Arria GX devices and the Cyclone and Stratix series of devices to avoid this
extra logic implementation.

f For Verilog HDL and VHDL examples and guidelines for inferring RAM functions
that match the dedicated memory architecture in Altera devices, refer to the
Recommended HDL Coding Styles chapter in volume 1 of the Quartus II Handbook.

In many synthesis tools, you can specify that the read-during-write behavior is not
important to your design; if, for example, you never read and write from the same
address in the same clock cycle. For Quartus II integrated synthesis, add the synthesis
attribute ramstyle=”no_rw_check” to allow the software to choose the
read-during-write behavior of a RAM, rather than using the read-during-write
behavior specified in your HDL code. Using this type of attribute prevents the
synthesis tool from using extra logic to implement the memory block and, in some
cases, can allow memory inference when it would otherwise be impossible.

f For details about using the ramstyle attribute, refer to the Quartus II Integrated
Synthesis chapter in volume 1 of the Quartus II Handbook. For information about the
synthesis attributes in other synthesis tools, refer to your synthesis tool
documentation, or to the appropriate chapter in the Synthesis section in volume 1 of
the Quartus II Handbook.

Conclusion
Following the design practices described in this chapter can help you to consistently
meet your design goals. Asynchronous design techniques may result in incomplete
timing analysis, may cause glitches on data signals, and may rely on propagation
delays in a device leading to race conditions and unpredictable results. Taking
advantage of the architectural features in your FPGA device can also improve the
quality of your results.

Document Revision History
Table 12–1 shows the revision history for this chapter.

Table 12–1. Document Revision History (Part 1 of 2)

Date Version Changes

November 2013 13.1.0 Removed HardCopy device information.

May 2013 13.0.0
■ Added “Optimizing for Physical Implementation and Timing Closure” section.

■ Removed PrimeTime support.

June 2012 12.0.0 Removed survey link.
Quartus II Handbook Version 13.1 November 2013 Altera Corporation
Volume 1: Design and Synthesis

http://www.altera.com/literature/hb/qts/qts_qii51008.pdf
http://www.altera.com/literature/hb/qts/qts_qii51008.pdf
http://www.altera.com/literature/hb/qts/qts_qii5v1_03.pdf
http://www.altera.com/literature/hb/qts/qts_qii51007.pdf

Chapter 12: Recommended Design Practices 12–37
Document Revision History
f For previous versions of the Quartus II Handbook, refer to the Quartus II Handbook
Archive.

November 2011 11.0.1 Template update.

May 2011 11.0.0 Added information to “Reset Resources” on page 12–24.

December 2010 10.1.0

■ Title changed from Design Recommendations for Altera Devices and the Quartus II
Design Assistant.

■ Updated to new template.

■ Added references to Quartus II Help for “Metastability” on page 9–13 and
“Incremental Compilation” on page 9–13.

■ Removed duplicated content and added references to Quartus II Help for “Custom
Rules” on page 9–15.

July 2010 10.0.0

■ Removed duplicated content and added references to Quartus II Help for Design
Assistant settings, Design Assistant rules, Enabling and Disabling Design Assistant
Rules, and Viewing Design Assistant reports.

■ Removed information from “Combinational Logic Structures” on page 5–4

■ Changed heading from “Design Techniques to Save Power” to “Power
Optimization” on page 5–12

■ Added new “Metastability” section

■ Added new “Incremental Compilation” section

■ Added information to “Reset Resources” on page 5–23

■ Removed “Referenced Documents” section

November 2009 9.1.0 ■ Removed documentation of obsolete rules.

March 2009 9.0.0 ■ No change to content.

November 2008 8.1.0

■ Changed to 8-1/2 x 11 page size

■ Added new section “Custom Rules Coding Examples” on page 5–18

■ Added paragraph to “Recommended Clock-Gating Methods” on page 5–11

■ Added new section: “Design Techniques to Save Power” on page 5–12

May 2008 8.0.0

■ Updated Figure 5–9 on page 5–13; added custom rules file to the flow

■ Added notes to Figure 5–9 on page 5–13

■ Added new section: “Custom Rules Report” on page 5–34

■ Added new section: “Custom Rules” on page 5–34

■ Added new section: “Targeting Embedded RAM Architectural Features” on
page 5–38

■ Minor editorial updates throughout the chapter

■ Added hyperlinks to referenced documents throughout the chapter

Table 12–1. Document Revision History (Part 2 of 2)

Date Version Changes
November 2013 Altera Corporation Quartus II Handbook Version 13.1
Volume 1: Design and Synthesis

http://www.altera.com/literature/lit-qts_archive.jsp
http://www.altera.com/literature/lit-qts_archive.jsp

12–38 Chapter 12: Recommended Design Practices
Document Revision History
Quartus II Handbook Version 13.1 November 2013 Altera Corporation
Volume 1: Design and Synthesis

QII51007-13.1.0

© 2013 Altera Corporation. All rights reserved. ALTERA, ARRI
are trademarks of Altera Corporation and registered in the U.S
trademarks or service marks are the property of their respectiv
semiconductor products to current specifications in accordance
services at any time without notice. Altera assumes no respons
described herein except as expressly agreed to in writing by Al
on any published information and before placing orders for pr

Quartus II Handbook Version 13.1
Volume 1: Design and Synthesis
November 2013

November 2013
QII51007-13.1.0
13. Recommended HDL Coding Styles
This chapter provides Hardware Description Language (HDL) coding style
recommendations to ensure optimal synthesis results when targeting Altera® devices.

HDL coding styles can have a significant effect on the quality of results that you
achieve for programmable logic designs. Synthesis tools optimize HDL code for both
logic utilization and performance; however, synthesis tools have no information
about the purpose or intent of the design. The best optimizations often require
conscious interaction by you, the designer.

This chapter includes the following sections:

■ “Using the Quartus II Templates” on page 13–2

■ “Using Altera Megafunctions” on page 13–3

■ “Instantiating Altera Megafunctions in HDL Code” on page 13–3

■ “Inferring Multiplier and DSP Functions from HDL Code” on page 13–5

■ “Inferring Memory Functions from HDL Code” on page 13–13

■ “Coding Guidelines for Registers and Latches” on page 13–44

■ “General Coding Guidelines” on page 13–54

■ “Designing with Low-Level Primitives” on page 13–74

f For additional guidelines about structuring your design, refer to the Design
Recommendations for Altera Devices and the Quartus II Design Assistant chapter in
volume 1 of the Quartus II Handbook. For additional handcrafted techniques you can
use to optimize design blocks for the adaptive logic modules (ALMs) in many Altera
devices, including a collection of circuit building blocks and related discussions, refer
to the Advanced Synthesis Cookbook.

f The Altera website also provides design examples for other types of functions and to
target specific applications. For more information about design examples, refer to the
Design Examples page and the Reference Designs page on the Altera website.

For style recommendations, options, or HDL attributes specific to your synthesis tool
(including Quartus® II integrated synthesis and other EDA tools), refer to the tool
vendor’s documentation or the appropriate chapter in the Synthesis section in
volume 1 of the Quartus II Handbook.
A, CYCLONE, HARDCOPY, MAX, MEGACORE, NIOS, QUARTUS and STRATIX words and logos
. Patent and Trademark Office and in other countries. All other words and logos identified as
e holders as described at www.altera.com/common/legal.html. Altera warrants performance of its
with Altera's standard warranty, but reserves the right to make changes to any products and

ibility or liability arising out of the application or use of any information, product, or service
tera. Altera customers are advised to obtain the latest version of device specifications before relying
oducts or services.

Feedback SubscribeTwitter

ISO
9001:2008
Registered

http://www.altera.com/support/refdesigns/ref-index.jsp
https://www.altera.com/servlets/subscriptions/alert?id=QII51007
mailto:TechDocFeedback@altera.com?subject=Feedback on QII51007-12.0 (QII HB, Vol 1, Ch 14: Recommended HDL Coding Styles)
http://www.altera.com/common/legal.html
http://www.altera.com/literature/hb/qts/qts_qii51006.pdf
http://www.altera.com/literature/hb/qts/qts_qii51006.pdf
http://twitter.com/home/?status=Recommended+HDL+Coding+Styles+http://www.altera.com/literature/hb/qts/qts_qii51007.pdf?WT.mc_id=gc_so_tw_st_tx_a_011+(via @alteracorp)+%23Altera
http://www.altera.com/literature/manual/stx_cookbook.pdf
http://www.altera.com/literature/hb/qts/qts_qii5v1_03.pdf
http://www.altera.com/support/examples/exm-index.html
http://www.altera.com/support/examples/exm-index.html
http://www.altera.com/support/reliability/certifications/rel-certifications.html
http://www.altera.com/support/reliability/certifications/rel-certifications.html

13–2 Chapter 13: Recommended HDL Coding Styles
Using the Quartus II Templates
Using the Quartus II Templates
Many of the Verilog HDL and VHDL examples in this chapter correspond with
examples in the Full Designs section of the Quartus II Templates. You can easily
insert examples into your HDL source code with the Quartus II Text Editor, in the
Quartus II software, or with your preferred text editor.

Inserting a Template with the Quartus II Text Editor
To use a template with the Quartus II software, follow these steps:

1. On the File menu, click New.

2. In the New dialog box, select the type of design file corresponding to the type of
HDL you want to use, SystemVerilog HDL File, VHDL File, or Verilog HDL File.

3. Click the Insert Template button on the text editor menu, or, right-click in the
blank Verilog or VHDL file, then click Insert Template.

4. In the Insert Template dialog box shown in Figure 13–1, expand the section
corresponding to the appropriate HDL, then expand the Full Designs section.

5. Expand the design category, for example RAMs and ROMs.

6. Select a design. The HDL appears in the Preview pane.

7. Click Insert to paste the HDL design to the blank Verilog or VHDL file you created
in step 2.

8. Click Close to close the Insert Template dialog box.

Figure 13–1. Insert Template Dialog Box
Quartus II Handbook Version 13.1 November 2013 Altera Corporation
Volume 1: Design and Synthesis

Chapter 13: Recommended HDL Coding Styles 13–3
Using Altera Megafunctions
h You can use any of the standard features of the Quartus II Text Editor to modify the
HDL design or save the template as an HDL file to edit in your preferred text editor.
For more information about inserting a template with the Quartus II Text Editor, refer
to About the Quartus II Text Editor in Quartus II Help.

Using Altera Megafunctions
Altera provides parameterizable megafunctions that are optimized for Altera device
architectures. Using megafunctions instead of coding your own logic saves valuable
design time. Additionally, the Altera-provided megafunctions may offer more
efficient logic synthesis and device implementation. You can scale the megafunction’s
size and specify various options by setting parameters. Megafunctions include the
library of parameterized modules (LPM) and Altera device-specific megafunctions.

To use megafunctions in your HDL code, you can instantiate them as described in
“Instantiating Altera Megafunctions in HDL Code” on page 13–3.

Sometimes it is preferable to make your code independent of device family or vendor.
In this case, you might not want to instantiate megafunctions directly. For some types
of logic functions, such as memories and DSP functions, you can infer device-specific
dedicated architecture blocks instead of instantiating a megafunction. Synthesis tools,
including Quartus II integrated synthesis, recognize certain types of HDL code and
automatically infer the appropriate megafunction or map directly to device atoms.
Synthesis tools infer megafunctions to take advantage of logic that is optimized for
Altera devices or to target dedicated architectural blocks.

In cases where you prefer to use generic HDL code instead of instantiating a specific
function, follow the guidelines and coding examples in “Inferring Multiplier and DSP
Functions from HDL Code” on page 13–5 and “Inferring Memory Functions from
HDL Code” on page 13–13 to ensure your HDL code infers the appropriate function.

1 You can infer or instantiate megafunctions to target some Altera device-specific
architecture features such as memory and DSP blocks. You must instantiate
megafunctions to target certain other device and high-speed features, such as LVDS
drivers, phase-locked loops (PLLs), transceivers, and double-data rate input/output
(DDIO) circuitry.

Instantiating Altera Megafunctions in HDL Code
The following sections describe how to use megafunctions by instantiating them in
your HDL code with the following methods:

■ “Instantiating Megafunctions Using the MegaWizard Plug-In Manager”—You can
use the MegaWizard™ Plug-In Manager to parameterize the function and create a
wrapper file.

■ “Creating a Netlist File for Other Synthesis Tools”—You can optionally create a
netlist file instead of a wrapper file.

■ “Instantiating Megafunctions Using the Port and Parameter Definition”—You can
instantiate the function directly in your HDL code.
November 2013 Altera Corporation Quartus II Handbook Version 13.1
Volume 1: Design and Synthesis

http://quartushelp.altera.com/current/master.htm#mergedProjects/design/ted/ted_view_edit.htm

13–4 Chapter 13: Recommended HDL Coding Styles
Instantiating Altera Megafunctions in HDL Code
Instantiating Megafunctions Using the MegaWizard Plug-In Manager
Use the MegaWizard Plug-In Manager as described in this section to create
megafunctions in the Quartus II software that you can instantiate in your HDL code.
The MegaWizard Plug-In Manager provides a GUI to customize and parameterize
megafunctions, and ensures that you set all megafunction parameters properly. When
you finish setting parameters, you can specify which files you want generated.
Depending on which language you choose, the MegaWizard Plug-In Manager
instantiates the megafunction with the correct parameters and generates a
megafunction variation file (wrapper file) in Verilog HDL (.v), VHDL (.vhd), or
AHDL (.tdf), along with other supporting files.

The MegaWizard Plug-In Manager provides options to create the files listed in
Table 13–1.

Creating a Netlist File for Other Synthesis Tools
When you use certain megafunctions with other EDA synthesis tools (that is, tools
other than Quartus II integrated synthesis), you can optionally create a netlist for
timing and resource estimation instead of a wrapper file.

The netlist file is a representation of the customized logic used in the Quartus II
software. The file provides the connectivity of architectural elements in the
megafunction but may not represent true functionality. This information enables
certain other EDA synthesis tools to better report timing and resource estimates. In
addition, synthesis tools can use the timing information to focus timing-driven
optimizations and improve the quality of results.

To generate the netlist, turn on Generate netlist under Timing and resource
estimation on the EDA page of the MegaWizard Plug-In Manager. The netlist file is
called <output file>_syn.v. If you use this netlist for synthesis, you must include the
megafunction wrapper file, either <output file>.v or <output file>.vhd, for placement
and routing in the project created with the Quartus II software.

Table 13–1. MegaWizard Plug-In Manager Generated Files

File Description

<output file>.v|.vhd|.tdf

Verilog HDL Variation Wrapper File—Megafunction wrapper file for instantiation in a
Verilog HDL, VHDL, or AHDL design respectively.

The MegaWizard Plug-In Manager generates a .v, .vhd, or .tdf file, depending on the
language you select for the output file on the megafunction selection page of the wizard.

<output file>.inc ADHL Include File—Used in AHDL Text Design Files (.tdf).

<output file>.cmp Component Declaration File—Used in VHDL design files.

<output file>.bsf Block Symbol File—Used in Quartus II schematic Block Design Files (.bdf).

<output file>_inst.v|.vhd|.tdf HDL Instantiation Template for the language of the variation file—Sample instantiation of
the Verilog HDL module, VHDL entity, or AHDL subdesign.

<output file>_bb.v
Black box Verilog HDL Module Declaration—Hollow-body module declaration that can
be used in Verilog HDL designs to specify port directions when instantiating the
megafunction as a black box in third-party synthesis tools.

<output file>_syn.v

Synthesis timing and resource estimation netlist—Additional synthesis netlist file
created if you enable the option to generate a synthesis timing and resource estimation
netlist. For more information, refer to “Creating a Netlist File for Other Synthesis Tools”
for details.
Quartus II Handbook Version 13.1 November 2013 Altera Corporation
Volume 1: Design and Synthesis

Chapter 13: Recommended HDL Coding Styles 13–5
Inferring Multiplier and DSP Functions from HDL Code
Because your synthesis tool may call the Quartus II software in the background to
generate this netlist, turning on the Generate Netlist option might be optional.

f For information about support for timing and resource estimation netlists in your
synthesis tool, refer to the tool vendor’s documentation or the appropriate chapter in
the Synthesis section in volume 1 of the Quartus II Handbook.

Instantiating Megafunctions Using the Port and Parameter Definition
You can instantiate the megafunction directly in your Verilog HDL, VHDL, or AHDL
code by calling the megafunction and setting its parameters as you would any other
module, component, or subdesign.

f For a list of the megafunction ports and parameters, refer to the specific megafunction
in the Quartus II Help. You can also refer to the IP and Megafunction page on the
Altera website.

1 Altera recommends that you use the MegaWizard Plug-In Manager for complex
megafunctions such as PLLs, transceivers, and LVDS drivers. For details about using
the MegaWizard Plug-In Manager, refer to “Instantiating Megafunctions Using the
MegaWizard Plug-In Manager” on page 13–4.

Inferring Multiplier and DSP Functions from HDL Code
The following sections describe how to infer multiplier and DSP functions from
generic HDL code, and, if applicable, how to target the dedicated DSP block
architecture in Altera devices:

■ “Inferring Multipliers from HDL Code”

■ “Inferring Multiply-Accumulators and Multiply-Adders from HDL Code” on
page 13–8

f For synthesis tool features and options, refer to your synthesis tool documentation or
the appropriate chapter in the Synthesis section in volume 1 of the Quartus II Handbook.

f For more design examples involving advanced multiply functions and complex DSP
functions, refer to the DSP Design Examples page on the Altera website.

Inferring Multipliers from HDL Code
To infer multiplier functions, synthesis tools look for multipliers and convert them to
LPM_MULT or ALTMULT_ADD megafunctions, or may map them directly to device
atoms. For devices with DSP blocks, the software can implement the function in a DSP
block instead of logic, depending on device utilization. The Quartus II Fitter can also
place input and output registers in DSP blocks (that is, perform register packing) to
improve performance and area utilization.

f For more information about the DSP block and supported functions, refer to the
appropriate Altera device family handbook and the Altera DSP Solutions Center
website.
November 2013 Altera Corporation Quartus II Handbook Version 13.1
Volume 1: Design and Synthesis

http://www.altera.com/literature/lit-ip.jsp
http://www.altera.com/technology/dsp/dsp-index.jsp
http://www.altera.com/literature/hb/qts/qts_qii5v1_03.pdf
http://www.altera.com/literature/hb/qts/qts_qii5v1_03.pdf
http://www.altera.com/support/examples/exm-index.html

13–6 Chapter 13: Recommended HDL Coding Styles
Inferring Multiplier and DSP Functions from HDL Code
Example 13–1 and Example 13–2 show Verilog HDL code examples, and
Example 13–3 and Example 13–4 show VHDL code examples, for unsigned and
signed multipliers that synthesis tools can infer as a megafunction or DSP block
atoms. Each example fits into one DSP block element. In addition, when register
packing occurs, no extra logic cells for registers are required.

1 The signed declaration in Verilog HDL is a feature of the Verilog 2001 Standard.

Example 13–1. Verilog HDL Unsigned Multiplier

module unsigned_mult (out, a, b);
output [15:0] out;
input [7:0] a;
input [7:0] b;
assign out = a * b;

endmodule

Example 13–2. Verilog HDL Signed Multiplier with Input and Output Registers (Pipelining = 2)

module signed_mult (out, clk, a, b);
output [15:0] out;
input clk;
input signed [7:0] a;
input signed [7:0] b;

reg signed [7:0] a_reg;
reg signed [7:0] b_reg;
reg signed [15:0] out;
wire signed [15:0] mult_out;

assign mult_out = a_reg * b_reg;

always @ (posedge clk)
begin

a_reg <= a;
b_reg <= b;
out <= mult_out;

end
endmodule
Quartus II Handbook Version 13.1 November 2013 Altera Corporation
Volume 1: Design and Synthesis

Chapter 13: Recommended HDL Coding Styles 13–7
Inferring Multiplier and DSP Functions from HDL Code
Example 13–3. VHDL Unsigned Multiplier with Input and Output Registers (Pipelining = 2)

LIBRARY ieee;
USE ieee.std_logic_1164.all;
USE ieee.numeric_std.all;

ENTITY unsigned_mult IS
PORT (

a: IN UNSIGNED (7 DOWNTO 0);
b: IN UNSIGNED (7 DOWNTO 0);
clk: IN STD_LOGIC;
aclr: IN STD_LOGIC;
result: OUT UNSIGNED (15 DOWNTO 0)

);
END unsigned_mult;

ARCHITECTURE rtl OF unsigned_mult IS
SIGNAL a_reg, b_reg: UNSIGNED (7 DOWNTO 0);

BEGIN
PROCESS (clk, aclr)
BEGIN

IF (aclr ='1') THEN
a_reg <= (OTHERS => '0');
b_reg <= (OTHERS => '0');
result <= (OTHERS => '0');

ELSIF (clk'event AND clk = '1') THEN
a_reg <= a;
b_reg <= b;
result <= a_reg * b_reg;

END IF;
END PROCESS;

END rtl;

Example 13–4. VHDL Signed Multiplier

LIBRARY ieee;

USE ieee.std_logic_1164.all;
USE ieee.numeric_std.all;

ENTITY signed_mult IS
PORT (

a: IN SIGNED (7 DOWNTO 0);
b: IN SIGNED (7 DOWNTO 0);
result: OUT SIGNED (15 DOWNTO 0)

);
END signed_mult;

ARCHITECTURE rtl OF signed_mult IS
BEGIN

result <= a * b;
END rtl;
November 2013 Altera Corporation Quartus II Handbook Version 13.1
Volume 1: Design and Synthesis

13–8 Chapter 13: Recommended HDL Coding Styles
Inferring Multiplier and DSP Functions from HDL Code
Inferring Multiply-Accumulators and Multiply-Adders from HDL Code
Synthesis tools detect multiply-accumulators or multiply-adders and convert them to
ALTMULT_ACCUM or ALTMULT_ADD megafunctions, respectively, or may map
them directly to device atoms. The Quartus II software then places these functions in
DSP blocks during placement and routing.

1 Synthesis tools infer multiply-accumulator and multiply-adder functions only if the
Altera device family has dedicated DSP blocks that support these functions.

A simple multiply-accumulator consists of a multiplier feeding an addition operator.
The addition operator feeds a set of registers that then feeds the second input to the
addition operator. A simple multiply-adder consists of two to four multipliers feeding
one or two levels of addition, subtraction, or addition/subtraction operators.
Addition is always the second-level operator, if it is used. In addition to the
multiply-accumulator and multiply-adder, the Quartus II Fitter also places input and
output registers into the DSP blocks to pack registers and improve performance and
area utilization.

Some device families offer additional advanced multiply-add and accumulate
functions, such as complex multiplication, input shift register, or larger
multiplications.

f For details about advanced DSP block features, refer to the appropriate device
handbook. For more design examples of DSP functions and inferring advanced
features in the multiply-add and multiply-accumulate circuitry, refer to the DSP
Design Examples page and AN639: Inferring Stratix V DSP Blocks for FIR Filtering
Applications on Altera’s website.

The Verilog HDL and VHDL code samples in Example 13–5 through Example 13–8 on
pages 13–9 through 13–12 infer multiply-accumulators and multiply-adders with
input, output, and pipeline registers, as well as an optional asynchronous clear signal.
Using the three sets of registers provides the best performance through the function,
with a latency of three. You can remove the registers in your design to reduce the
latency.
Quartus II Handbook Version 13.1 November 2013 Altera Corporation
Volume 1: Design and Synthesis

http://www.altera.com/support/examples/exm-index.html
http://www.altera.com/support/examples/exm-index.html
http://www.altera.com/literature/an/an639.pdf
http://www.altera.com/literature/an/an639.pdf

Chapter 13: Recommended HDL Coding Styles 13–9
Inferring Multiplier and DSP Functions from HDL Code
Example 13–5. Verilog HDL Unsigned Multiply-Accumulator

module unsig_altmult_accum (dataout, dataa, datab, clk, aclr, clken);
input [7:0] dataa, datab;
input clk, aclr, clken;
output reg[16:0] dataout;

reg [7:0] dataa_reg, datab_reg;
reg [15:0] multa_reg;
wire [15:0] multa;
wire [16:0] adder_out;
assign multa = dataa_reg * datab_reg;
assign adder_out = multa_reg + dataout;

always @ (posedge clk or posedge aclr)
begin

if (aclr)
begin

dataa_reg <= 8'b0;
datab_reg <= 8'b0;
multa_reg <= 16'b0;
dataout <= 17'b0;

end
else if (clken)
begin

dataa_reg <= dataa;
datab_reg <= datab;
multa_reg <= multa;
dataout <= adder_out;

end
end

endmodule
November 2013 Altera Corporation Quartus II Handbook Version 13.1
Volume 1: Design and Synthesis

13–10 Chapter 13: Recommended HDL Coding Styles
Inferring Multiplier and DSP Functions from HDL Code
Example 13–6. Verilog HDL Signed Multiply-Adder

module sig_altmult_add (dataa, datab, datac, datad, clock, aclr,
result);

input signed [15:0] dataa, datab, datac, datad;
input clock, aclr;
output reg signed [32:0] result;

reg signed [15:0] dataa_reg, datab_reg, datac_reg, datad_reg;
reg signed [31:0] mult0_result, mult1_result;

always @ (posedge clock or posedge aclr) begin
if (aclr) begin

dataa_reg <= 16'b0;
datab_reg <= 16'b0;
datac_reg <= 16'b0;
datad_reg <= 16'b0;
mult0_result <= 32'b0;
mult1_result <= 32'b0;
result <= 33'b0;

end
else begin

dataa_reg <= dataa;
datab_reg <= datab;
datac_reg <= datac;
datad_reg <= datad;
mult0_result <= dataa_reg * datab_reg;
mult1_result <= datac_reg * datad_reg;
result <= mult0_result + mult1_result;

end
end

endmodule
Quartus II Handbook Version 13.1 November 2013 Altera Corporation
Volume 1: Design and Synthesis

Chapter 13: Recommended HDL Coding Styles 13–11
Inferring Multiplier and DSP Functions from HDL Code
Example 13–7. VHDL Signed Multiply-Accumulator

LIBRARY ieee;
USE ieee.std_logic_1164.all;
USE ieee.numeric_std.all;

ENTITY sig_altmult_accum IS
PORT (

a: IN SIGNED(7 DOWNTO 0);
b: IN SIGNED (7 DOWNTO 0);
clk: IN STD_LOGIC;
aclr: IN STD_LOGIC;
accum_out: OUT SIGNED (15 DOWNTO 0)

) ;
END sig_altmult_accum;

ARCHITECTURE rtl OF sig_altmult_accum IS
SIGNAL a_reg, b_reg: SIGNED (7 DOWNTO 0);
SIGNAL pdt_reg: SIGNED (15 DOWNTO 0);
SIGNAL adder_out: SIGNED (15 DOWNTO 0);

BEGIN
PROCESS (clk, aclr)
BEGIN

IF (aclr = '1') then
a_reg <= (others => '0');
b_reg <= (others => '0');
pdt_reg <= (others => '0');
adder_out <= (others => '0');

ELSIF (clk'event and clk = '1') THEN
a_reg <= (a);
b_reg <= (b);
pdt_reg <= a_reg * b_reg;
adder_out <= adder_out + pdt_reg;

END IF;
END process;
accum_out <= adder_out;

END rtl;
November 2013 Altera Corporation Quartus II Handbook Version 13.1
Volume 1: Design and Synthesis

13–12 Chapter 13: Recommended HDL Coding Styles
Inferring Multiplier and DSP Functions from HDL Code
Example 13–8. VHDL Unsigned Multiply-Adder

LIBRARY ieee;
USE ieee.std_logic_1164.all;
USE ieee.numeric_std.all;

ENTITY unsignedmult_add IS
PORT (

a: IN UNSIGNED (7 DOWNTO 0);
b: IN UNSIGNED (7 DOWNTO 0);
c: IN UNSIGNED (7 DOWNTO 0);
d: IN UNSIGNED (7 DOWNTO 0);
clk: IN STD_LOGIC;
aclr: IN STD_LOGIC;
result: OUT UNSIGNED (15 DOWNTO 0)

);
END unsignedmult_add;

ARCHITECTURE rtl OF unsignedmult_add IS
SIGNAL a_reg, b_reg, c_reg, d_reg: UNSIGNED (7 DOWNTO 0);
SIGNAL pdt_reg, pdt2_reg: UNSIGNED (15 DOWNTO 0);
SIGNAL result_reg: UNSIGNED (15 DOWNTO 0);

BEGIN
PROCESS (clk, aclr)
BEGIN

IF (aclr = '1') THEN
a_reg <= (OTHERS => '0');
b_reg <= (OTHERS => '0');
c_reg <= (OTHERS => '0');
d_reg <= (OTHERS => '0');
pdt_reg <= (OTHERS => '0');
pdt2_reg <= (OTHERS => '0');

ELSIF (clk'event AND clk = '1') THEN
a_reg <= a;
b_reg <= b;
c_reg <= c;
d_reg <= d;
pdt_reg <= a_reg * b_reg;
pdt2_reg <= c_reg * d_reg;
result_reg <= pdt_reg + pdt2_reg;

END IF;
END PROCESS;

result <= result_reg;
END rtl;
Quartus II Handbook Version 13.1 November 2013 Altera Corporation
Volume 1: Design and Synthesis

Chapter 13: Recommended HDL Coding Styles 13–13
Inferring Memory Functions from HDL Code
Inferring Memory Functions from HDL Code
The following sections describe how to infer memory functions from generic HDL
code and, if applicable, to target the dedicated memory architecture in Altera devices:

■ “Inferring RAM functions from HDL Code” on page 13–14

■ “Inferring ROM Functions from HDL Code” on page 13–36

■ “Shift Registers—Inferring the ALTSHIFT_TAPS Megafunction from HDL Code”
on page 13–40

f For synthesis tool features and options, refer to your synthesis tool documentation or
the appropriate chapter in the Synthesis section in volume 1 of the Quartus II Handbook.

Altera’s dedicated memory architecture offers a number of advanced features that can
be easily targeted using the MegaWizard Plug-In Manager, as described in
“Instantiating Altera Megafunctions in HDL Code” on page 13–3. The coding
recommendations in the following sections provide portable examples of generic
HDL code that infer the appropriate megafunction. However, if you want to use some
of the advanced memory features in Altera devices, consider using the megafunction
directly so that you can control the ports and parameters easily.

You can also use the Quartus II templates provided in the Quartus II software as a
starting point. For more information, refer to “Inserting a Template with the
Quartus II Text Editor” on page 13–2. Table 13–2 lists the full designs for RAMs and
ROMs available in the Quartus II templates.

f Most of these designs can also be found on the Design Examples page on the Altera
website.

Table 13–2. RAM and ROM Full Designs from the Quartus II Templates (Part 1 of 2)

Language Full Design Name

VHDL

Single-Port RAM
Single-Port RAM with Initial Contents
Simple Dual-Port RAM (single clock)
Simple Dual-Port RAM (dual clock)
True Dual-Port RAM (single clock)
True Dual-Port RAM (dual clock)
Mixed-Width RAM
Mixed-Width True Dual-Port RAM
Byte-Enabled Simple Dual-Port RAM
Byte-Enabled True Dual-Port RAM
Single-Port ROM
Dual-Port ROM
November 2013 Altera Corporation Quartus II Handbook Version 13.1
Volume 1: Design and Synthesis

http://www.altera.com/support/examples/exm-index.html
http://www.altera.com/literature/hb/qts/qts_qii5v1_03.pdf

13–14 Chapter 13: Recommended HDL Coding Styles
Inferring Memory Functions from HDL Code
Inferring RAM functions from HDL Code
To infer RAM functions, synthesis tools detect sets of registers and logic that can be
replaced with the ALTSYNCRAM or ALTDPRAM megafunctions for device families
that have dedicated RAM blocks, or may map them directly to device memory atoms.
Tools typically consider all signals and variables that have a multi-dimensional array
type and then create a RAM block, if applicable, based on the way the signals,
variables, or both are assigned, referenced, or both in the HDL source description.

Standard synthesis tools recognize single-port and simple dual-port (one read port
and one write port) RAM blocks. Some tools (such as the Quartus II software) also
recognize true dual-port (two read ports and two write ports) RAM blocks that map
to the memory blocks in certain Altera devices.

Some tools (such as the Quartus II software) also infer memory blocks for array
variables and signals that are referenced (read/written) by two indices, to recognize
mixed-width and byte-enabled RAMs for certain coding styles.

1 If your design contains a RAM block that your synthesis tool does not recognize and
infer, the design might require a large amount of system memory that can potentially
cause compilation problems.

When you use a formal verification flow, Altera recommends that you create RAM
blocks in separate entities or modules that contain only the RAM logic. In certain
formal verification flows, for example, when using Quartus II integrated synthesis,
the entity or module containing the inferred RAM is put into a black box
automatically because formal verification tools do not support RAM blocks. The
Quartus II software issues a warning message when this situation occurs. If the entity
or module contains any additional logic outside the RAM block, this logic cannot be
verified because it also must be treated as a black box for formal verification.

The following sections present several guidelines for inferring RAM functions that
match the dedicated memory architecture in Altera devices, and then provide
recommended HDL code for different types of memory logic.

Verilog HDL

Single-Port RAM
Single-Port RAM with Initial Contents
Simple Dual-Port RAM (single clock)
Simple Dual-Port RAM (dual clock)
True Dual-Port RAM (single clock)
True Dual-Port RAM (dual clock)
Single-Port ROM
Dual-Port ROM

System Verilog

Mixed-Width Port RAM
Mixed-Width True Dual-Port RAM
Mixed-Width True Dual-Port RAM (new data on same port read during write)
Byte-Enabled Simple Dual Port RAM
Byte-Enabled True Dual-Port RAM

Table 13–2. RAM and ROM Full Designs from the Quartus II Templates (Part 2 of 2)

Language Full Design Name
Quartus II Handbook Version 13.1 November 2013 Altera Corporation
Volume 1: Design and Synthesis

Chapter 13: Recommended HDL Coding Styles 13–15
Inferring Memory Functions from HDL Code
Use Synchronous Memory Blocks
Altera recommends using synchronous memory blocks for Altera designs. Because
memory blocks in the newest devices from Altera are synchronous, RAM designs that
are targeted towards architectures that contain these dedicated memory blocks must
be synchronous to be mapped directly into the device architecture. For these devices,
asynchronous memory logic is implemented in regular logic cells.

Synchronous memory offers several advantages over asynchronous memory,
including higher frequencies and thus higher memory bandwidth, increased
reliability, and less standby power. In many designs with asynchronous memory, the
memory interfaces with synchronous logic so that the conversion to synchronous
memory design is straightforward. To convert asynchronous memory you can move
registers from the data path into the memory block.

Synchronous memories are supported in all Altera device families. A memory block is
considered synchronous if it uses one of the following read behaviors:

■ Memory read occurs in a Verilog always block with a clock signal or a VHDL
clocked process. The recommended coding style for synchronous memories is to
create your design with a registered read output.

■ Memory read occurs outside a clocked block, but there is a synchronous read
address (that is, the address used in the read statement is registered). This type of
logic is not always inferred as a memory block, or may require external bypass
logic, depending on the target device architecture.

1 The synchronous memory structures in Altera devices can differ from the structures
in other vendors’ devices. For best results, match your design to the target device
architecture.

Later sections provide coding recommendations for various memory types. All of
these examples are synchronous to ensure that they can be directly mapped into the
dedicated memory architecture available in Altera FPGAs.

f For additional information about the dedicated memory blocks in your specific
device, refer to the appropriate Altera device family data sheet on the Altera website
at www.altera.com.

Avoid Unsupported Reset and Control Conditions
To ensure that your HDL code can be implemented in the target device architecture,
avoid unsupported reset conditions or other control logic that does not exist in the
device architecture.

The RAM contents of Altera memory blocks cannot be cleared with a reset signal
during device operation. If your HDL code describes a RAM with a reset signal for the
RAM contents, the logic is implemented in regular logic cells instead of a memory
block. Altera recommends against putting RAM read or write operations in an always
block or process block with a reset signal. If you want to specify memory contents,
initialize the memory as described in “Specifying Initial Memory Contents at
Power-Up” on page 13–33 or write the data to the RAM during device operation.
November 2013 Altera Corporation Quartus II Handbook Version 13.1
Volume 1: Design and Synthesis

http://www.altera.com

13–16 Chapter 13: Recommended HDL Coding Styles
Inferring Memory Functions from HDL Code
Example 13–9 shows an example of undesirable code where there is a reset signal that
clears part of the RAM contents. Avoid this coding style because it is not supported in
Altera memories.

Example 13–9. Verilog RAM with Reset Signal that Clears RAM Contents: Not Supported in
Device Architecture

module clear_ram
(

input clock, reset, we,
input [7:0] data_in,
input [4:0] address,
output reg [7:0] data_out

);

reg [7:0] mem [0:31];
integer i;

always @ (posedge clock or posedge reset)
begin

if (reset == 1'b1)
mem[address] <= 0;

else if (we == 1'b1)
mem[address] <= data_in;

data_out <= mem[address];
end

endmodule
Quartus II Handbook Version 13.1 November 2013 Altera Corporation
Volume 1: Design and Synthesis

Chapter 13: Recommended HDL Coding Styles 13–17
Inferring Memory Functions from HDL Code
Example 13–10 shows an example of undesirable code where the reset signal affects
the RAM, although the effect may not be intended. Avoid this coding style because it
is not supported in Altera memories.

In addition to reset signals, other control logic can prevent memory logic from being
inferred as a memory block. For example, you cannot use a clock enable on the read
address registers in Stratix® devices because doing so affects the output latch of the
RAM, and therefore the synthesized result in the device RAM architecture would not
match the HDL description. You can use the address stall feature as a read address
clock enable in Stratix II, Cyclone® II, Arria® GX, and other newer devices to avoid
this limitation. Check the documentation for your device architecture to ensure that
your code matches the hardware available in the device.

Check Read-During-Write Behavior
It is important to check the read-during-write behavior of the memory block
described in your HDL design as compared to the behavior in your target device
architecture. Your HDL source code specifies the memory behavior when you read
and write from the same memory address in the same clock cycle. The code specifies
that the read returns either the old data at the address, or the new data being written
to the address. This behavior is referred to as the read-during-write behavior of the
memory block. Altera memory blocks have different read-during-write behavior
depending on the target device family, memory mode, and block type.

Example 13–10. Verilog RAM with Reset Signal that Affects RAM: Not Supported in Device
Architecture

module bad_reset
(

input clock,
input reset,
input we,
input [7:0] data_in,
input [4:0] address,
output reg [7:0] data_out,
input d,
output reg q

);

reg [7:0] mem [0:31];
integer i;

always @ (posedge clock or posedge reset)
begin

if (reset == 1'b1)
q <= 0;

else
begin

if (we == 1'b1)
mem[address] <= data_in;

data_out <= mem[address];
q <= d;

end
end

endmodule
November 2013 Altera Corporation Quartus II Handbook Version 13.1
Volume 1: Design and Synthesis

13–18 Chapter 13: Recommended HDL Coding Styles
Inferring Memory Functions from HDL Code
Synthesis tools map an HDL design into the target device architecture, with the goal
of maintaining the functionality described in your source code. Therefore, if your
source code specifies unsupported read-during-write behavior for the device RAM
blocks, the software must implement the logic outside the RAM hardware in regular
logic cells.

One common problem occurs when there is a continuous read in the HDL code, as in
the following examples. You should avoid using these coding styles:

//Verilog HDL concurrent signal assignment
assign q = ram[raddr_reg];

-- VHDL concurrent signal assignment
q <= ram(raddr_reg);

When a write operation occurs, this type of HDL implies that the read should
immediately reflect the new data at the address, independent of the read clock.
However, that is not the behavior of synchronous memory blocks. In the device
architecture, the new data is not available until the next edge of the read clock.
Therefore, if the synthesis tool mapped the logic directly to a synchronous memory
block, the device functionality and gate-level simulation results would not match the
HDL description or functional simulation results. If the write clock and read clock are
the same, the synthesis tool can infer memory blocks and add extra bypass logic so
that the device behavior matches the HDL behavior. If the write and read clocks are
different, the synthesis tool cannot reliably add bypass logic, so the logic is
implemented in regular logic cells instead of dedicated RAM blocks. The examples in
the following sections discuss some of these differences for read-during-write
conditions.

In addition, the MLAB feature in certain device logic array blocks (LABs) does not
easily support old data or new data behavior for a read-during-write in the dedicated
device architecture. Implementing the extra logic to support this behavior
significantly reduces timing performance through the memory.

1 For best performance in MLAB memories, your design should not depend on the read
data during a write operation.

In many synthesis tools, you can specify that the read-during-write behavior is not
important to your design; for example, if you never read from the same address to
which you write in the same clock cycle. For Quartus II integrated synthesis, add the
synthesis attribute ramstyle set to "no_rw_check" to allow the software to choose the
read-during-write behavior of a RAM, rather than use the behavior specified by your
HDL code. In some cases, this attribute prevents the synthesis tool from using extra
logic to implement the memory block, or can allow memory inference when it would
otherwise be impossible.

Synchronous RAM blocks require a synchronous read, so Quartus II integrated
synthesis packs either data output registers or read address registers into the RAM
block. When the read address registers are packed into the RAM block, the read
address signals connected to the RAM block contain the next value of the read
address signals indexing the HDL variable, which impacts which clock cycle the read
and the write occur, and changes the read-during-write conditions. Therefore, bypass
logic may still be added to the design to preserve the read-during-write behavior,
even if the "no_rw_check" attribute is set.
Quartus II Handbook Version 13.1 November 2013 Altera Corporation
Volume 1: Design and Synthesis

Chapter 13: Recommended HDL Coding Styles 13–19
Inferring Memory Functions from HDL Code
f For more information about attribute syntax, the no_rw_check attribute value, or
specific options for your synthesis tool, refer to your synthesis tool documentation or
the appropriate chapter in the Synthesis section in volume 1 of the Quartus II Handbook.

The next section describes how you control the logic implementation in the Altera
device, and the following sections provide coding recommendations for various
memory types. Each example describes the read-during-write behavior and addresses
the support for the memory type in Altera devices.

Controlling Inference and Implementation in Device RAM Blocks
Tools usually do not infer small RAM blocks because small RAM blocks typically can
be implemented more efficiently using the registers in regular logic. If you are using
Quartus II integrated synthesis, you can direct the software to infer RAM blocks for
all sizes with the Allow Any RAM Size for Recognition option in the More Analysis
& Synthesis Settings dialog box.

Some synthesis tools provide options to control the implementation of inferred RAM
blocks for Altera devices with synchronous memory blocks. For example, Quartus II
integrated synthesis provides the ramstyle synthesis attribute to specify the type of
memory block or to specify the use of regular logic instead of a dedicated memory
block. Quartus II integrated synthesis does not map inferred memory into MLABs
unless the HDL code specifies the appropriate ramstyle attribute, although the Fitter
may map some memories to MLABs.

f For details about using the ramstyle attribute, refer to the Quartus II Integrated
Synthesis chapter in volume 1 of the Quartus II Handbook. For information about
synthesis attributes in other synthesis tools, refer to the appropriate chapter in the
Synthesis section in volume 1 of the Quartus II Handbook.

If you want to control the implementation after the RAM function is inferred during
synthesis, you can set the ram_block_type parameter of the ALTSYNCRAM
megafunction. In the Assignment Editor, select Parameters in the Categories list. You
can use the Node Finder or drag the appropriate instance from the Project Navigator
window to enter the RAM hierarchical instance name. Type ram_block_type as the
Parameter Name and type one of the following memory types supported by your
target device family in the Value field: "M-RAM", "M512", "M4K", "M9K", "M10K", "M20K",
"M144K", or "MLAB".

You can also specify the maximum depth of memory blocks used to infer RAM or
ROM in your design. Apply the max_depth synthesis attribute to the declaration of a
variable that represents a RAM or ROM in your design file. For example:

// Limit the depth of the memory blocks implement "ram" to 512
// This forces the software to use two M512 blocks instead of one M4K block to
implement this RAM

(* max_depth = 512 *) reg [7:0] ram[0:1023];

Single-Clock Synchronous RAM with Old Data Read-During-Write Behavior
The code examples in this section show Verilog HDL and VHDL code that infers
simple dual-port, single-clock synchronous RAM. Single-port RAM blocks use a
similar coding style.
November 2013 Altera Corporation Quartus II Handbook Version 13.1
Volume 1: Design and Synthesis

http://www.altera.com/literature/hb/qts/qts_qii5v1_03.pdf
http://www.altera.com/literature/hb/qts/qts_qii51008.pdf
http://www.altera.com/literature/hb/qts/qts_qii51008.pdf
http://www.altera.com/literature/hb/qts/qts_qii5v1_03.pdf

13–20 Chapter 13: Recommended HDL Coding Styles
Inferring Memory Functions from HDL Code
The read-during-write behavior in these examples is to read the old data at the
memory address. Refer to “Check Read-During-Write Behavior” on page 13–17 for
details. Altera recommends that you use the Old Data Read-During-Write coding
style for most RAM blocks as long as your design does not require the RAM location’s
new value when you perform a simultaneous read and write to that RAM location.
For best performance in MLAB memories, use the appropriate attribute so that your
design does not depend on the read data during a write operation.

If you require that the read-during-write results in new data, refer to “Single-Clock
Synchronous RAM with New Data Read-During-Write Behavior” on page 13–21.

The simple dual-port RAM code samples in Example 13–11 and Example 13–12 map
directly into Altera synchronous memory.

Single-port versions of memory blocks (that is, using the same read address and write
address signals) can allow better RAM utilization than dual-port memory blocks,
depending on the device family.

Example 13–11. Verilog HDL Single-Clock Simple Dual-Port Synchronous RAM with Old Data
Read-During-Write Behavior

module single_clk_ram(
output reg [7:0] q,
input [7:0] d,
input [6:0] write_address, read_address,
input we, clk

);
reg [7:0] mem [127:0];

always @ (posedge clk) begin
if (we)

mem[write_address] <= d;
q <= mem[read_address]; // q doesn't get d in this clock cycle

end
endmodule
Quartus II Handbook Version 13.1 November 2013 Altera Corporation
Volume 1: Design and Synthesis

Chapter 13: Recommended HDL Coding Styles 13–21
Inferring Memory Functions from HDL Code
Single-Clock Synchronous RAM with New Data Read-During-Write Behavior
The examples in this section describe RAM blocks in which a simultaneous read and
write to the same location reads the new value that is currently being written to that
RAM location.

To implement this behavior in the target device, synthesis software adds bypass logic
around the RAM block. This bypass logic increases the area utilization of the design
and decreases the performance if the RAM block is part of the design’s critical path.
For more information, refer to “Check Read-During-Write Behavior” on page 13–17
for details. If this behavior is not required for your design, use the examples from
“Single-Clock Synchronous RAM with Old Data Read-During-Write Behavior” on
page 13–19.

The simple dual-port RAM in Example 13–13 and Example 13–14 require the software
to create bypass logic around the RAM block.

Single-port versions of the Verilog memory block (that is, using the same read address
and write address signals) do not require any logic cells to create bypass logic in the
Arria, Stratix, and Cyclone series of devices, because the device memory supports
new data read-during-write behavior when in single-port mode (same clock, same
read address, and same write address).

Example 13–12. VHDL Single-Clock Simple Dual-Port Synchronous RAM with Old Data
Read-During-Write Behavior

LIBRARY ieee;
USE ieee.std_logic_1164.all;

ENTITY single_clock_ram IS
PORT (

clock: IN STD_LOGIC;
data: IN STD_LOGIC_VECTOR (2 DOWNTO 0);
write_address: IN INTEGER RANGE 0 to 31;
read_address: IN INTEGER RANGE 0 to 31;
we: IN STD_LOGIC;
q: OUT STD_LOGIC_VECTOR (2 DOWNTO 0)

);
END single_clock_ram;

ARCHITECTURE rtl OF single_clock_ram IS
TYPE MEM IS ARRAY(0 TO 31) OF STD_LOGIC_VECTOR(2 DOWNTO 0);
SIGNAL ram_block: MEM;

BEGIN
PROCESS (clock)
BEGIN

IF (clock'event AND clock = '1') THEN
IF (we = '1') THEN

ram_block(write_address) <= data;
END IF;
q <= ram_block(read_address);
-- VHDL semantics imply that q doesn't get data
-- in this clock cycle

END IF;
END PROCESS;

END rtl;
November 2013 Altera Corporation Quartus II Handbook Version 13.1
Volume 1: Design and Synthesis

13–22 Chapter 13: Recommended HDL Coding Styles
Inferring Memory Functions from HDL Code
1 Example 13–13 is similar to Example 13–11, but Example 13–13 uses a blocking
assignment for the write so that the data is assigned immediately.

An alternative way to create a single-clock RAM is to use an assign statement to read
the address of mem to create the output q, as shown in the following coding style
example. By itself, the code describes new data read-during-write behavior. However,
if the RAM output feeds a register in another hierarchy, a read-during-write results in
the old data. Synthesis tools may not infer a RAM block if the tool cannot determine
which behavior is described, such as when the memory feeds a hard hierarchical
partition boundary. For this reason, avoid using this alternate type of coding style:

reg [7:0] mem [127:0];
reg [6:0] read_address_reg;

always @ (posedge clk) begin
if (we)

mem[write_address] <= d;

read_address_reg <= read_address;
end

assign q = mem[read_address_reg];

Example 13–13. Verilog HDL Single-Clock Simple Dual-Port Synchronous RAM with New Data
Read-During-Write Behavior

module single_clock_wr_ram(
output reg [7:0] q,
input [7:0] d,
input [6:0] write_address, read_address,
input we, clk

);
reg [7:0] mem [127:0];

always @ (posedge clk) begin
if (we)

mem[write_address] = d;
q = mem[read_address]; // q does get d in this clock cycle if

// we is high
end

endmodule
Quartus II Handbook Version 13.1 November 2013 Altera Corporation
Volume 1: Design and Synthesis

Chapter 13: Recommended HDL Coding Styles 13–23
Inferring Memory Functions from HDL Code
The VHDL sample in Example 13–14 uses a concurrent signal assignment to read
from the RAM. By itself, this example describes new data read-during-write behavior.
However, if the RAM output feeds a register in another hierarchy, a read-during-write
results in the old data. Synthesis tools may not infer a RAM block if the tool cannot
determine which behavior is described, such as when the memory feeds a hard
hierarchical partition boundary.

For Quartus II integrated synthesis, if you do not require the read-through-write
capability, add the synthesis attribute ramstyle="no_rw_check" to allow the software
to choose the read-during-write behavior of a RAM, rather than using the behavior
specified by your HDL code. As discussed in “Check Read-During-Write Behavior”
on page 13–17, this attribute may prevent generation of extra bypass logic but it is not
always possible to eliminate the requirement for bypass logic.

Simple Dual-Port, Dual-Clock Synchronous RAM
In dual clock designs, synthesis tools cannot accurately infer the read-during-write
behavior because it depends on the timing of the two clocks within the target device.
Therefore, the read-during-write behavior of the synthesized design is undefined and
may differ from your original HDL code. When Quartus II integrated synthesis infers
this type of RAM, it issues a warning because of the undefined read-during-write
behavior. Refer to “Check Read-During-Write Behavior” on page 13–17 for details.

Example 13–14. VHDL Single-Clock Simple Dual-Port Synchronous RAM with New Data
Read-During-Write Behavior

LIBRARY ieee;
USE ieee.std_logic_1164.all;

ENTITY single_clock_rw_ram IS
PORT (

clock: IN STD_LOGIC;
data: IN STD_LOGIC_VECTOR (2 DOWNTO 0);
write_address: IN INTEGER RANGE 0 to 31;
read_address: IN INTEGER RANGE 0 to 31;
we: IN STD_LOGIC;
q: OUT STD_LOGIC_VECTOR (2 DOWNTO 0)

);
END single_clock_rw_ram;

ARCHITECTURE rtl OF single_clock_rw_ram IS
TYPE MEM IS ARRAY(0 TO 31) OF STD_LOGIC_VECTOR(2 DOWNTO 0);
SIGNAL ram_block: MEM;
SIGNAL read_address_reg: INTEGER RANGE 0 to 31;

BEGIN
PROCESS (clock)
BEGIN

IF (clock'event AND clock = '1') THEN
IF (we = '1') THEN

ram_block(write_address) <= data;
END IF;
read_address_reg <= read_address;

END IF;
END PROCESS;
q <= ram_block(read_address_reg);

END rtl;
November 2013 Altera Corporation Quartus II Handbook Version 13.1
Volume 1: Design and Synthesis

13–24 Chapter 13: Recommended HDL Coding Styles
Inferring Memory Functions from HDL Code
The code samples in Example 13–15 and Example 13–16 show Verilog HDL and
VHDL code that infers dual-clock synchronous RAM. The exact behavior depends on
the relationship between the clocks.

Example 13–15. Verilog HDL Simple Dual-Port, Dual-Clock Synchronous RAM

module dual_clock_ram(
output reg [7:0] q,
input [7:0] d,
input [6:0] write_address, read_address,
input we, clk1, clk2

);
reg [6:0] read_address_reg;
reg [7:0] mem [127:0];

always @ (posedge clk1)
begin

if (we)
mem[write_address] <= d;

end

always @ (posedge clk2) begin
q <= mem[read_address_reg];
read_address_reg <= read_address;

end
endmodule

Example 13–16. VHDL Simple Dual-Port, Dual-Clock Synchronous RAM

LIBRARY ieee;
USE ieee.std_logic_1164.all;
ENTITY dual_clock_ram IS

PORT (
clock1, clock2: IN STD_LOGIC;
data: IN STD_LOGIC_VECTOR (3 DOWNTO 0);
write_address: IN INTEGER RANGE 0 to 31;
read_address: IN INTEGER RANGE 0 to 31;
we: IN STD_LOGIC;
q: OUT STD_LOGIC_VECTOR (3 DOWNTO 0)

);
END dual_clock_ram;
ARCHITECTURE rtl OF dual_clock_ram IS

TYPE MEM IS ARRAY(0 TO 31) OF STD_LOGIC_VECTOR(3 DOWNTO 0);
SIGNAL ram_block: MEM;
SIGNAL read_address_reg : INTEGER RANGE 0 to 31;

BEGIN
PROCESS (clock1)
BEGIN

IF (clock1'event AND clock1 = '1') THEN
IF (we = '1') THEN

ram_block(write_address) <= data;
END IF;

END IF;
END PROCESS;
PROCESS (clock2)
BEGIN

IF (clock2'event AND clock2 = '1') THEN
q <= ram_block(read_address_reg);
read_address_reg <= read_address;

END IF;
END PROCESS;

END rtl;
Quartus II Handbook Version 13.1 November 2013 Altera Corporation
Volume 1: Design and Synthesis

Chapter 13: Recommended HDL Coding Styles 13–25
Inferring Memory Functions from HDL Code
True Dual-Port Synchronous RAM
The code examples in this section show Verilog HDL and VHDL code that infers true
dual-port synchronous RAM. Different synthesis tools may differ in their support for
these types of memories. This section describes the inference rules for Quartus II
integrated synthesis. This type of RAM inference is supported for the Arria GX,
Stratix, and Cyclone series of devices.

Altera synchronous memory blocks have two independent address ports, allowing
for operations on two unique addresses simultaneously. A read operation and a write
operation can share the same port if they share the same address. The Quartus II
software infers true dual-port RAMs in Verilog HDL and VHDL with any
combination of independent read or write operations in the same clock cycle, with at
most two unique port addresses, performing two reads and one write, two writes and
one read, or two writes and two reads in one clock cycle with one or two unique
addresses.

In the synchronous RAM block architecture, there is no priority between the two
ports. Therefore, if you write to the same location on both ports at the same time, the
result is indeterminate in the device architecture. You must ensure your HDL code
does not imply priority for writes to the memory block, if you want the design to be
implemented in a dedicated hardware memory block. For example, if both ports are
defined in the same process block, the code is synthesized and simulated sequentially
so that there is a priority between the two ports. If your code does imply a priority, the
logic cannot be implemented in the device RAM blocks and is implemented in regular
logic cells.

You must also consider the read-during-write behavior of the RAM block to ensure
that it can be mapped directly to the device RAM architecture. Refer to “Check
Read-During-Write Behavior” on page 13–17 for details.

When a read and write operation occurs on the same port for the same address, the
read operation may behave as follows:

■ Read new data—This mode matches the behavior of synchronous memory blocks.

■ Read old data—This mode is supported only in device families that support
M144, M9k, and MLAB memory blocks.

When a read and write operation occurs on different ports for the same address (also
known as mixed port), the read operation may behave as follows:

■ Read new data—Quartus II integrated synthesis supports this mode by creating
bypass logic around the synchronous memory block.

■ Read old data—Synchronous memory blocks support this behavior.

■ Read don’t care—This behavior is supported on different ports in simple dual-
port mode by synchronous memory blocks for all device families except Arria,
Arria GX, Cyclone, Cyclone II, MAX, Stratix, and Stratix II device families.

The Verilog HDL single-clock code sample in Example 13–17 maps directly into
Altera synchronous memory. When a read and write operation occurs on the same
port for the same address, the new data being written to the memory is read. When a
read and write operation occurs on different ports for the same address, the old data
in the memory is read. Simultaneous writes to the same location on both ports results
in indeterminate behavior.
November 2013 Altera Corporation Quartus II Handbook Version 13.1
Volume 1: Design and Synthesis

13–26 Chapter 13: Recommended HDL Coding Styles
Inferring Memory Functions from HDL Code
A dual-clock version of this design describes the same behavior, but the memory in
the target device will have undefined mixed port read-during-write behavior because
it depends on the relationship between the clocks.

If you use the following Verilog HDL read statements instead of the if-else
statements in Example 13–17, the HDL code specifies that the read results in old data
when a read operation and write operation occurs at the same time for the same
address on the same port or mixed ports. This mode is supported only in device
families that support M144, M9k, and MLAB memory blocks.

always @ (posedge clk)
begin // Port A

if (we_a)
ram[addr_a] <= data_a;

q_a <= ram[addr_a];
end

always @ (posedge clk)
begin // Port B

Example 13–17. Verilog HDL True Dual-Port RAM with Single Clock

module true_dual_port_ram_single_clock
(

input [(DATA_WIDTH-1):0] data_a, data_b,
input [(ADDR_WIDTH-1):0] addr_a, addr_b,
input we_a, we_b, clk,
output reg [(DATA_WIDTH-1):0] q_a, q_b

);

parameter DATA_WIDTH = 8;
parameter ADDR_WIDTH = 6;

// Declare the RAM variable
reg [DATA_WIDTH-1:0] ram[2**ADDR_WIDTH-1:0];

always @ (posedge clk)
begin // Port A

if (we_a)
begin

ram[addr_a] <= data_a;
q_a <= data_a;

end
else

q_a <= ram[addr_a];
end
always @ (posedge clk)
begin // Port b

if (we_b)
begin

ram[addr_b] <= data_b;
q_b <= data_b;

end
else

q_b <= ram[addr_b];
end

endmodule
Quartus II Handbook Version 13.1 November 2013 Altera Corporation
Volume 1: Design and Synthesis

Chapter 13: Recommended HDL Coding Styles 13–27
Inferring Memory Functions from HDL Code
if (we_b)
ram[addr_b] <= data_b;

q_b <= ram[addr_b];
end

The VHDL single-clock code sample in Example 13–18 maps directly into Altera
synchronous memory. When a read and write operation occurs on the same port for
the same address, the new data being written to the memory is read. When a read and
write operation occurs on different ports for the same address, the old data in the
memory is read. Simultaneous write operations to the same location on both ports
results in indeterminate behavior.

A dual-clock version of this design describes the same behavior, but the memory in
the target device will have undefined mixed port read-during-write behavior because
it depends on the relationship between the clocks.

Example 13–18. VHDL True Dual-Port RAM with Single Clock (Part 1 of 2)

library ieee;
use ieee.std_logic_1164.all;

entity true_dual_port_ram_single_clock is
generic (

DATA_WIDTH : natural := 8;
ADDR_WIDTH : natural := 6

);
port (

clk : in std_logic;
addr_a: in natural range 0 to 2**ADDR_WIDTH - 1;
addr_b: in natural range 0 to 2**ADDR_WIDTH - 1;
data_a: in std_logic_vector((DATA_WIDTH-1) downto 0);
data_b: in std_logic_vector((DATA_WIDTH-1) downto 0);
we_a: in std_logic := '1';
we_b: in std_logic := '1';
q_a : out std_logic_vector((DATA_WIDTH -1) downto 0);
q_b : out std_logic_vector((DATA_WIDTH -1) downto 0)

);
end true_dual_port_ram_single_clock;

architecture rtl of true_dual_port_ram_single_clock is
-- Build a 2-D array type for the RAM
subtype word_t is std_logic_vector((DATA_WIDTH-1) downto 0);
type memory_t is array((2**ADDR_WIDTH - 1) downto 0) of word_t;
-- Declare the RAM signal.
shared variable ram : memory_t;
November 2013 Altera Corporation Quartus II Handbook Version 13.1
Volume 1: Design and Synthesis

13–28 Chapter 13: Recommended HDL Coding Styles
Inferring Memory Functions from HDL Code
Mixed-Width Dual-Port RAM
The RAM code examples in Example 13–20 through Example 13–23 show
SystemVerilog and VHDL code that infers RAM with data ports with different widths.
This type of logic is not supported in Verilog-1995 or Verilog-2001 because of the
requirement for a multi-dimensional array to model the different read width, write
width, or both. Different synthesis tools may differ in their support for these
memories. This section describes the inference rules for Quartus II integrated
synthesis.

The first dimension of the multi-dimensional packed array represents the ratio of the
wider port to the narrower port, and the second dimension represents the narrower
port width. The read and write port widths must specify a read or write ratio
supported by the memory blocks in the target device, or the synthesis tool does not
infer a RAM.

Example 13–19. VHDL True Dual-Port RAM with Single Clock (Part 2 of 2)

begin
process(clk)
begin
if(rising_edge(clk)) then -- Port A

if(we_a = '1') then
ram(addr_a) <= data_a;

-- Read-during-write on the same port returns NEW data
q_a <= data_a;

else
-- Read-during-write on the mixed port returns OLD data
q_a <= ram(addr_a);

end if;
end if;
end process;

process(clk)
begin
if(rising_edge(clk)) then -- Port B

if(we_b = '1') then
ram(addr_b) <= data_b;
-- Read-during-write on the same port returns NEW data
q_b <= data_b;

else
-- Read-during-write on the mixed port returns OLD data
q_b <= ram(addr_b);

end if;
end if;
end process;

end rtl;
Quartus II Handbook Version 13.1 November 2013 Altera Corporation
Volume 1: Design and Synthesis

Chapter 13: Recommended HDL Coding Styles 13–29
Inferring Memory Functions from HDL Code
Refer to the Quartus II Templates for parameterized examples that you can use for
supported combinations of read and write widths, and true dual port RAM examples
with two read ports and two write ports for mixed-width writes and reads.

Example 13–20. SystemVerilog Mixed-Width RAM with Read Width Smaller than Write Width

module mixed_width_ram // 256x32 write and 1024x8 read
(

input [7:0] waddr,
input [31:0] wdata,
input we, clk,
input [9:0] raddr,
output [7:0] q

);
logic [3:0][7:0] ram[0:255];
always_ff@(posedge clk)

begin
if(we) ram[waddr] <= wdata;
q <= ram[raddr / 4][raddr % 4];

end
endmodule : mixed_width_ram

Example 13–21. SystemVerilog Mixed-Width RAM with Read Width Larger than Write Width

module mixed_width_ram // 1024x8 write and 256x32 read
(

input [9:0] waddr,
input [31:0] wdata,
input we, clk,
input [7:0] raddr,
output [9:0] q

);
logic [3:0][7:0] ram[0:255];
always_ff@(posedge clk)

begin
if(we) ram[waddr / 4][waddr % 4] <= wdata;
q <= ram[raddr];

end
endmodule : mixed_width_ram
November 2013 Altera Corporation Quartus II Handbook Version 13.1
Volume 1: Design and Synthesis

13–30 Chapter 13: Recommended HDL Coding Styles
Inferring Memory Functions from HDL Code
Example 13–22. VHDL Mixed-Width RAM with Read Width Smaller than Write Width

library ieee;
use ieee.std_logic_1164.all;

package ram_types is
type word_t is array (0 to 3) of std_logic_vector(7 downto 0);
type ram_t is array (0 to 255) of word_t;

end ram_types;

library ieee;
use ieee.std_logic_1164.all;
library work;
use work.ram_types.all;

entity mixed_width_ram is
port (

we, clk : in std_logic;
waddr : in integer range 0 to 255;
wdata : in word_t;
raddr : in integer range 0 to 1023;
q : out std_logic_vector(7 downto 0));

end mixed_width_ram;

architecture rtl of mixed_width_ram is
signal ram : ram_t;

begin -- rtl
process(clk, we)
begin

if(rising_edge(clk)) then
if(we = '1') then

ram(waddr) <= wdata;
end if;
q <= ram(raddr / 4)(raddr mod 4);

end if;
end process;

end rtl;
Quartus II Handbook Version 13.1 November 2013 Altera Corporation
Volume 1: Design and Synthesis

Chapter 13: Recommended HDL Coding Styles 13–31
Inferring Memory Functions from HDL Code
RAM with Byte-Enable Signals
The RAM code examples in Example 13–24 and Example 13–25 show SystemVerilog
and VHDL code that infers RAM with controls for writing single bytes into the
memory word, or byte-enable signals. Byte enables are modeled by creating write
expressions with two indices and writing part of a RAM "word." With these
implementations, you can also write more than one byte at once by enabling the
appropriate byte enables.

This type of logic is not supported in Verilog-1995 or Verilog-2001 because of the
requirement for a multidimensional array. Different synthesis tools may differ in their
support for these memories. This section describes the inference rules for Quartus II
integrated synthesis.

Example 13–23. VHDL Mixed-Width RAM with Read Width Larger than Write Width

library ieee;
use ieee.std_logic_1164.all;

package ram_types is
type word_t is array (0 to 3) of std_logic_vector(7 downto 0);
type ram_t is array (0 to 255) of word_t;

end ram_types;

library ieee;
use ieee.std_logic_1164.all;
library work;
use work.ram_types.all;

entity mixed_width_ram is
port (

we, clk : in std_logic;
waddr : in integer range 0 to 1023;
wdata : in std_logic_vector(7 downto 0);
raddr : in integer range 0 to 255;
q : out word_t);

end mixed_width_ram;

architecture rtl of mixed_width_ram is
signal ram : ram_t;

begin -- rtl
process(clk, we)
begin

if(rising_edge(clk)) then
if(we = '1') then

ram(waddr / 4)(waddr mod 4) <= wdata;
end if;
q <= ram(raddr);

end if;
end process;

end rtl;
November 2013 Altera Corporation Quartus II Handbook Version 13.1
Volume 1: Design and Synthesis

13–32 Chapter 13: Recommended HDL Coding Styles
Inferring Memory Functions from HDL Code
Refer to the Quartus II Templates for parameterized examples that you can use for
different address widths, and true dual port RAM examples with two read ports and
two write ports.

Example 13–24. SystemVerilog Simple Dual-Port Synchronous RAM with Byte Enable

module byte_enabled_simple_dual_port_ram
(

input we, clk,
input [5:0] waddr, raddr, // address width = 6
input [3:0] be, // 4 bytes per word
input [31:0] wdata, // byte width = 8, 4 bytes per word
output reg [31:0] q // byte width = 8, 4 bytes per word

);
// use a multi-dimensional packed array
//to model individual bytes within the word
logic [3:0][7:0] ram[0:63];// # words = 1 << address width

always_ff@(posedge clk)
begin

if(we) begin
if(be[0]) ram[waddr][0] <= wdata[7:0];
if(be[1]) ram[waddr][1] <= wdata[15:8];
if(be[2]) ram[waddr][2] <= wdata[23:16];

if(be[3]) ram[waddr][3] <= wdata[31:24];
end

q <= ram[raddr];
end

endmodule
Quartus II Handbook Version 13.1 November 2013 Altera Corporation
Volume 1: Design and Synthesis

Chapter 13: Recommended HDL Coding Styles 13–33
Inferring Memory Functions from HDL Code
Specifying Initial Memory Contents at Power-Up
Your synthesis tool may offer various ways to specify the initial contents of an
inferred memory.

1 Certain device memory types do not support initialized memory, such as the M-RAM
blocks in Stratix and Stratix II devices.

Example 13–25. VHDL Simple Dual-Port Synchronous RAM with Byte Enable

library ieee;
use ieee.std_logic_1164.all;
library work;

entity byte_enabled_simple_dual_port_ram is
port (

we, clk : in std_logic;
waddr, raddr : in integer range 0 to 63 ; -- address width = 6
be : in std_logic_vector (3 downto 0); -- 4 bytes per word
wdata : in std_logic_vector(31 downto 0); -- byte width = 8
q : out std_logic_vector(31 downto 0)); -- byte width = 8

end byte_enabled_simple_dual_port_ram;

architecture rtl of byte_enabled_simple_dual_port_ram is
-- build up 2D array to hold the memory
type word_t is array (0 to 3) of std_logic_vector(7 downto 0);
type ram_t is array (0 to 63) of word_t;

signal ram : ram_t;
signal q_local : word_t;

begin -- Re-organize the read data from the RAM to match the output
unpack: for i in 0 to 3 generate

q(8*(i+1) - 1 downto 8*i) <= q_local(i);
end generate unpack;

process(clk)
begin

if(rising_edge(clk)) then
if(we = '1') then

if(be(0) = '1') then
ram(waddr)(0) <= wdata(7 downto 0);

end if;
if be(1) = '1' then

ram(waddr)(1) <= wdata(15 downto 8);
end if;
if be(2) = '1' then

ram(waddr)(2) <= wdata(23 downto 16);
end if;
if be(3) = '1' then

ram(waddr)(3) <= wdata(31 downto 24);
end if;

end if;
q_local <= ram(raddr);

end if;
end process;

end rtl;
November 2013 Altera Corporation Quartus II Handbook Version 13.1
Volume 1: Design and Synthesis

13–34 Chapter 13: Recommended HDL Coding Styles
Inferring Memory Functions from HDL Code
There are slight power-up and initialization differences between dedicated RAM
blocks and the MLAB memory due to the continuous read of the MLAB. Altera
dedicated RAM block outputs always power-up to zero and are set to the initial value
on the first read. For example, if address 0 is pre-initialized to FF, the RAM block
powers up with the output at 0. A subsequent read after power-up from address 0
outputs the pre-initialized value of FF. Therefore, if a RAM is powered up and an
enable (read enable or clock enable) is held low, the power-up output of 0 is
maintained until the first valid read cycle. The MLAB is implemented using registers
that power-up to 0, but are initialized to their initial value immediately at power-up
or reset. Therefore, the initial value is seen, regardless of the enable status. The
Quartus II software maps inferred memory to MLABs when the HDL code specifies
an appropriate ramstyle attribute.

Quartus II integrated synthesis supports the ram_init_file synthesis attribute that
allows you to specify a Memory Initialization File (.mif) for an inferred RAM block.

f For information about the ram_init_file attribute, refer to the Quartus II Integrated
Synthesis chapter in volume 1 of the Quartus II Handbook. For information about
synthesis attributes in other synthesis tools, refer to the tool vendor’s documentation.

In Verilog HDL, you can use an initial block to initialize the contents of an inferred
memory. Quartus II integrated synthesis automatically converts the initial block into a
.mif file for the inferred RAM. Example 13–26 shows Verilog HDL code that infers a
simple dual-port RAM block and corresponding .mif file.

Quartus II integrated synthesis and other synthesis tools also support the $readmemb
and $readmemh commands so that RAM initialization and ROM initialization work
identically in synthesis and simulation. Example 13–27 shows an initial block that
initializes an inferred RAM block using the $readmemb command.

Example 13–26. Verilog HDL RAM with Initialized Contents

module ram_with_init(
output reg [7:0] q,
input [7:0] d,
input [4:0] write_address, read_address,
input we, clk

);
reg [7:0] mem [0:31];
integer i;

initial begin
for (i = 0; i < 32; i = i + 1)

mem[i] = i[7:0];
end

always @ (posedge clk) begin
if (we)

mem[write_address] <= d;
q <= mem[read_address];

end
endmodule
Quartus II Handbook Version 13.1 November 2013 Altera Corporation
Volume 1: Design and Synthesis

http://www.altera.com/literature/hb/qts/qts_qii51008.pdf
http://www.altera.com/literature/hb/qts/qts_qii51008.pdf

Chapter 13: Recommended HDL Coding Styles 13–35
Inferring Memory Functions from HDL Code
f Refer to the Verilog Language Reference Manual (LRM) 1364-2001 Section 17.2.8 or the
example in the Templates for the Quartus II software for details about the format of
the ram.txt file.

In VHDL, you can initialize the contents of an inferred memory by specifying a
default value for the corresponding signal. Quartus II integrated synthesis
automatically converts the default value into a .mif file for the inferred RAM.
Example 13–28 shows VHDL code that infers a simple dual-port RAM block and
corresponding .mif file.

Example 13–27. Verilog HDL RAM Initialized with the readmemb Command

reg [7:0] ram[0:15];
initial
begin

$readmemb("ram.txt", ram);
end

Example 13–28. VHDL RAM with Initialized Contents

LIBRARY ieee;
USE ieee.std_logic_1164.all;
use ieee.numeric_std.all;

ENTITY ram_with_init IS
PORT(

clock: IN STD_LOGIC;
data: IN UNSIGNED (7 DOWNTO 0);
write_address: IN integer RANGE 0 to 31;
read_address: IN integer RANGE 0 to 31;
we: IN std_logic;
q: OUT UNSIGNED (7 DOWNTO 0));

END;

ARCHITECTURE rtl OF ram_with_init IS

TYPE MEM IS ARRAY(31 DOWNTO 0) OF unsigned(7 DOWNTO 0);
FUNCTION initialize_ram

return MEM is
variable result : MEM;

BEGIN
FOR i IN 31 DOWNTO 0 LOOP

result(i) := to_unsigned(natural(i), natural'(8));
END LOOP;
RETURN result;

END initialize_ram;

SIGNAL ram_block : MEM := initialize_ram;
BEGIN

PROCESS (clock)
BEGIN

IF (clock'event AND clock = '1') THEN
IF (we = '1') THEN
ram_block(write_address) <= data;
END IF;
q <= ram_block(read_address);

END IF;
END PROCESS;

END rtl;
November 2013 Altera Corporation Quartus II Handbook Version 13.1
Volume 1: Design and Synthesis

13–36 Chapter 13: Recommended HDL Coding Styles
Inferring Memory Functions from HDL Code
Inferring ROM Functions from HDL Code
To infer ROM functions, synthesis tools detect sets of registers and logic that can be
replaced with the ALTSYNCRAM or LPM_ROM megafunctions, depending on the
target device family, and only for device families that have dedicated memory blocks.

ROMs are inferred when a CASE statement exists in which a value is set to a constant
for every choice in the case statement. Because small ROMs typically achieve the best
performance when they are implemented using the registers in regular logic, each
ROM function must meet a minimum size requirement to be inferred and placed into
memory.

1 If you use Quartus II integrated synthesis, you can direct the software to infer ROM
blocks for all sizes with the Allow Any ROM Size for Recognition option in the
More Analysis & Synthesis Settings dialog box.

Some synthesis tools provide options to control the implementation of inferred ROM
blocks for Altera devices with synchronous memory blocks. For example, Quartus II
integrated synthesis provides the romstyle synthesis attribute to specify the type of
memory block or to specify the use of regular logic instead of a dedicated memory
block.

f For details about using the romstyle attribute, refer to the Quartus II Integrated
Synthesis chapter in volume 1 of the Quartus II Handbook. For information about
synthesis attributes in other synthesis tools, refer to the appropriate chapter in the
Synthesis section in volume 1 of the Quartus II Handbook.

1 Because formal verification tools do not support ROM megafunctions, Quartus II
integrated synthesis does not infer ROM megafunctions when a formal verification
tool is selected. When you are using a formal verification flow, Altera recommends
that you instantiate ROM megafunction blocks in separate entities or modules that
contain only the ROM logic, because you may need to treat the entity or module as a
black box during formal verification.

The Verilog HDL and VHDL code samples in Example 13–29 through Example 13–32
on pages 13–37 through 13–39 infer synchronous ROM blocks. Depending on the
device family’s dedicated RAM architecture, the ROM logic may have to be
synchronous; refer to the device family handbook for details.

For device architectures with synchronous RAM blocks, such as the Arria series,
Cyclone series, or Stratix series devices and newer device families, either the address
or the output must be registered for synthesis software to infer a ROM block. When
your design uses output registers, the synthesis software implements registers from
the input registers of the RAM block without affecting the functionality of the ROM. If
you register the address, the power-up state of the inferred ROM can be different from
the HDL design. In this scenario, the synthesis software issues a warning. The
Quartus II Help explains the condition under which the functionality changes when
you use Quartus II integrated synthesis.
Quartus II Handbook Version 13.1 November 2013 Altera Corporation
Volume 1: Design and Synthesis

http://www.altera.com/literature/hb/qts/qts_qii51008.pdf
http://www.altera.com/literature/hb/qts/qts_qii51008.pdf
http://www.altera.com/literature/hb/qts/qts_qii5v1_03.pdf

Chapter 13: Recommended HDL Coding Styles 13–37
Inferring Memory Functions from HDL Code
The ROM code examples in Example 13–29 through Example 13–32 on pages 13–37
through 13–39 map directly to the Altera memory architecture.

Example 13–29. Verilog HDL Synchronous ROM

module sync_rom (clock, address, data_out);
input clock;
input [7:0] address;
output [5:0] data_out;

reg [5:0] data_out;

always @ (posedge clock)
begin

case (address)
8'b00000000: data_out = 6'b101111;
8'b00000001: data_out = 6'b110110;
...
8'b11111110: data_out = 6'b000001;
8'b11111111: data_out = 6'b101010;

endcase
end

endmodule

Example 13–30. VHDL Synchronous ROM

LIBRARY ieee;
USE ieee.std_logic_1164.all;

ENTITY sync_rom IS
PORT (

clock: IN STD_LOGIC;
address: IN STD_LOGIC_VECTOR(7 downto 0);
data_out: OUT STD_LOGIC_VECTOR(5 downto 0)

);
END sync_rom;

ARCHITECTURE rtl OF sync_rom IS
BEGIN
PROCESS (clock)

BEGIN
IF rising_edge (clock) THEN

CASE address IS
WHEN "00000000" => data_out <= "101111";
WHEN "00000001" => data_out <= "110110";
...
WHEN "11111110" => data_out <= "000001";
WHEN "11111111" => data_out <= "101010";
WHEN OTHERS => data_out <= "101111";

END CASE;
END IF;
END PROCESS;

END rtl;
November 2013 Altera Corporation Quartus II Handbook Version 13.1
Volume 1: Design and Synthesis

13–38 Chapter 13: Recommended HDL Coding Styles
Inferring Memory Functions from HDL Code
Example 13–31. Verilog HDL Dual-Port Synchronous ROM Using readmemb

module dual_port_rom (
input [(addr_width-1):0] addr_a, addr_b,
input clk,
output reg [(data_width-1):0] q_a, q_b

);
parameter data_width = 8;
parameter addr_width = 8;

reg [data_width-1:0] rom[2**addr_width-1:0];

initial // Read the memory contents in the file
//dual_port_rom_init.txt.

begin
$readmemb("dual_port_rom_init.txt", rom);

end

always @ (posedge clk)
begin

q_a <= rom[addr_a];
q_b <= rom[addr_b];

end
endmodule
Quartus II Handbook Version 13.1 November 2013 Altera Corporation
Volume 1: Design and Synthesis

Chapter 13: Recommended HDL Coding Styles 13–39
Inferring Memory Functions from HDL Code
Example 13–32. VHDL Dual-Port Synchronous ROM Using Initialization Function

library ieee;
use ieee.std_logic_1164.all;
use ieee.numeric_std.all;

entity dual_port_rom is
generic (

DATA_WIDTH : natural := 8;
ADDR_WIDTH : natural := 8

);
port (

clk : in std_logic;
addr_a: in natural range 0 to 2**ADDR_WIDTH - 1;
addr_b: in natural range 0 to 2**ADDR_WIDTH - 1;
q_a : out std_logic_vector((DATA_WIDTH -1) downto 0);
q_b : out std_logic_vector((DATA_WIDTH -1) downto 0)

);
end entity;

architecture rtl of dual_port_rom is
-- Build a 2-D array type for the ROM
subtype word_t is std_logic_vector((DATA_WIDTH-1) downto 0);
type memory_t is array(addr_a'high downto 0) of word_t;

function init_rom
return memory_t is
variable tmp : memory_t := (others => (others => '0'));

begin
for addr_pos in 0 to 2**ADDR_WIDTH - 1 loop

-- Initialize each address with the address itself
tmp(addr_pos) := std_logic_vector(to_unsigned(addr_pos,

DATA_WIDTH));
end loop;
return tmp;

end init_rom;

-- Declare the ROM signal and specify a default initialization value.
signal rom : memory_t := init_rom;

begin
process(clk)
begin
if (rising_edge(clk)) then

q_a <= rom(addr_a);
q_b <= rom(addr_b);

end if;
end process;

end rtl;
November 2013 Altera Corporation Quartus II Handbook Version 13.1
Volume 1: Design and Synthesis

13–40 Chapter 13: Recommended HDL Coding Styles
Inferring Memory Functions from HDL Code
Shift Registers—Inferring the ALTSHIFT_TAPS Megafunction from HDL
Code

To infer shift registers, synthesis tools detect a group of shift registers of the same
length and convert them to an ALTSHIFT_TAPS megafunction. To be detected, all the
shift registers must have the following characteristics:

■ Use the same clock and clock enable

■ Do not have any other secondary signals

■ Have equally spaced taps that are at least three registers apart

When you use a formal verification flow, Altera recommends that you create shift
register blocks in separate entities or modules containing only the shift register logic,
because you might have to treat the entity or module as a black box during formal
verification.

1 Because formal verification tools do not support shift register megafunctions,
Quartus II integrated synthesis does not infer the ALTSHIFT_TAPS megafunction
when a formal verification tool is selected. You can select EDA tools for use with your
design on the EDA Tool Settings page of the Settings dialog box in the Quartus II
software.

f For more information about the ALTSHIFT_TAPS megafunction, refer to the
ALTSHIFT_TAPS Megafunction User Guide.

Synthesis software recognizes shift registers only for device families that have
dedicated RAM blocks, and the software uses certain guidelines to determine the best
implementation.

Quartus II integrated synthesis uses the following guidelines which are common in
other EDA tools. The Quartus II software determines whether to infer the
ALTSHIFT_TAPS megafunction based on the width of the registered bus (W), the
length between each tap (L), and the number of taps (N). If the Auto Shift Register
Recognition setting is set to Auto, Quartus II integrated synthesis uses the
Optimization Technique setting, logic and RAM utilization information about the
design, and timing information from Timing-Driven Synthesis to determine which
shift registers are implemented in RAM blocks for logic.

■ If the registered bus width is one (W = 1), the software infers ALTSHIFT_TAPS if
the number of taps times the length between each tap is greater than or equal to 64
(N × L ≥ 64).

■ If the registered bus width is greater than one (W > 1), the software infers
ALTSHIFT_TAPS if the registered bus width times the number of taps times the
length between each tap is greater than or equal to 32 (W × N × L ≥ 32).

If the length between each tap (L) is not a power of two, the software uses more logic
to decode the read and write counters. This situation occurs because for different sizes
of shift registers, external decode logic that uses logic elements (LEs) or ALMs is
required to implement the function. This decode logic eliminates the performance and
utilization advantages of implementing shift registers in memory.
Quartus II Handbook Version 13.1 November 2013 Altera Corporation
Volume 1: Design and Synthesis

http://www.altera.com/literature/ug/ug_alt_shift_taps.pdf

Chapter 13: Recommended HDL Coding Styles 13–41
Inferring Memory Functions from HDL Code
The registers that the software maps to the ALTSHIFT_TAPS megafunction and places
in RAM are not available in a Verilog HDL or VHDL output file for simulation tools
because their node names do not exist after synthesis.

1 If your design uses a shift enable signal to infer a shift register, the shift register will
not be implemented into MLAB memory, but can use only dedicated RAM blocks.

Simple Shift Register
The code samples in Example 13–33 and Example 13–34 show a simple, single-bit
wide, 64-bit long shift register. The synthesis software implements the register (W = 1
and M = 64) in an ALTSHIFT_TAPS megafunction for supported devices and maps it
to RAM in supported devices, which may be placed in dedicated RAM blocks or
MLAB memory. If the length of the register is less than 64 bits, the software
implements the shift register in logic.

Example 13–33. Verilog HDL Single-Bit Wide, 64-Bit Long Shift Register

module shift_1x64 (clk, shift, sr_in, sr_out);
input clk, shift;
input sr_in;
output sr_out;

reg [63:0] sr;

always @ (posedge clk)
begin

if (shift == 1'b1)
begin

sr[63:1] <= sr[62:0];
sr[0] <= sr_in;

end
end
assign sr_out = sr[63];

endmodule
November 2013 Altera Corporation Quartus II Handbook Version 13.1
Volume 1: Design and Synthesis

13–42 Chapter 13: Recommended HDL Coding Styles
Inferring Memory Functions from HDL Code
Example 13–34. VHDL Single-Bit Wide, 64-Bit Long Shift Register

LIBRARY IEEE;
USE IEEE.STD_LOGIC_1164.all;
ENTITY shift_1x64 IS

PORT (
clk: IN STD_LOGIC;
shift: IN STD_LOGIC;
sr_in: IN STD_LOGIC;
sr_out: OUT STD_LOGIC

);
END shift_1x64;

ARCHITECTURE arch OF shift_1x64 IS
TYPE sr_length IS ARRAY (63 DOWNTO 0) OF STD_LOGIC;
SIGNAL sr: sr_length;

BEGIN
PROCESS (clk)

BEGIN
IF (clk'EVENT and clk = '1') THEN

IF (shift = '1') THEN
sr(63 DOWNTO 1) <= sr(62 DOWNTO 0);
sr(0) <= sr_in;
END IF;

END IF;
END PROCESS;
sr_out <= sr(63);

END arch;
Quartus II Handbook Version 13.1 November 2013 Altera Corporation
Volume 1: Design and Synthesis

Chapter 13: Recommended HDL Coding Styles 13–43
Inferring Memory Functions from HDL Code
Shift Register with Evenly Spaced Taps
The code samples in Example 13–35 and Example 13–36 show a Verilog HDL and
VHDL 8-bit wide, 64-bit long shift register (W > 1 and M = 64) with evenly spaced taps
at 15, 31, and 47. The synthesis software implements this function in a single
ALTSHIFT_TAPS megafunction and maps it to RAM in supported devices, which is
allowed placement in dedicated RAM blocks or MLAB memory.

Example 13–35. Verilog HDL 8-Bit Wide, 64-Bit Long Shift Register with Evenly Spaced Taps

module shift_8x64_taps (clk, shift, sr_in, sr_out, sr_tap_one,
sr_tap_two, sr_tap_three);

input clk, shift;
input [7:0] sr_in;
output [7:0] sr_tap_one, sr_tap_two, sr_tap_three, sr_out;

reg [7:0] sr [63:0];
integer n;

always @ (posedge clk)
begin

if (shift == 1'b1)
begin

for (n = 63; n>0; n = n-1)
begin

sr[n] <= sr[n-1];
end
sr[0] <= sr_in;

end

end
assign sr_tap_one = sr[15];
assign sr_tap_two = sr[31];
assign sr_tap_three = sr[47];
assign sr_out = sr[63];

endmodule
November 2013 Altera Corporation Quartus II Handbook Version 13.1
Volume 1: Design and Synthesis

13–44 Chapter 13: Recommended HDL Coding Styles
Coding Guidelines for Registers and Latches
Coding Guidelines for Registers and Latches
This section provides device-specific coding recommendations for Altera registers
and latches. Understanding the architecture of the target Altera device helps ensure
that your code produces the expected results and achieves the optimal quality of
results.

This section provides guidelines in the following areas:

■ “Register Power-Up Values in Altera Devices”

■ “Secondary Register Control Signals Such as Clear and Clock Enable” on
page 13–46

■ “Latches” on page 13–50

Register Power-Up Values in Altera Devices
Registers in the device core always power up to a low (0) logic level on all Altera
devices. If your design specifies a power-up level other than 0, synthesis tools can
implement logic that causes registers to behave as if they were powering up to a high
(1) logic level.

Example 13–36. VHDL 8-Bit Wide, 64-Bit Long Shift Register with Evenly Spaced Taps

LIBRARY IEEE;
USE IEEE.STD_LOGIC_1164.all;
ENTITY shift_8x64_taps IS

PORT (
clk: IN STD_LOGIC;
shift: IN STD_LOGIC;
sr_in: IN STD_LOGIC_VECTOR(7 DOWNTO 0);
sr_tap_one: OUT STD_LOGIC_VECTOR(7 DOWNTO 0);
sr_tap_two : OUT STD_LOGIC_VECTOR(7 DOWNTO 0);
sr_tap_three: OUT STD_LOGIC_VECTOR(7 DOWNTO 0);
sr_out: OUT STD_LOGIC_VECTOR(7 DOWNTO 0)

);
END shift_8x64_taps;

ARCHITECTURE arch OF shift_8x64_taps IS
SUBTYPE sr_width IS STD_LOGIC_VECTOR(7 DOWNTO 0);
TYPE sr_length IS ARRAY (63 DOWNTO 0) OF sr_width;
SIGNAL sr: sr_length;

BEGIN
PROCESS (clk)
BEGIN

IF (clk'EVENT and clk = '1') THEN
IF (shift = '1') THEN

sr(63 DOWNTO 1) <= sr(62 DOWNTO 0);
sr(0) <= sr_in;

END IF;
END IF;

END PROCESS;
sr_tap_one <= sr(15);
sr_tap_two <= sr(31);
sr_tap_three <= sr(47);
sr_out <= sr(63);

END arch;
Quartus II Handbook Version 13.1 November 2013 Altera Corporation
Volume 1: Design and Synthesis

Chapter 13: Recommended HDL Coding Styles 13–45
Coding Guidelines for Registers and Latches
If your design uses a preset signal on a device that does not support presets in the
register architecture, your synthesis tool may convert the preset signal to a clear
signal, which requires synthesis to perform an optimization referred to as NOT gate
push-back. NOT gate push-back adds an inverter to the input and the output of the
register so that the reset and power-up conditions will appear to be high, and the
device operates as expected. In this case, your synthesis tool may issue a message
informing you about the power-up condition. The register itself powers up low, but
the register output is inverted, so the signal that arrives at all destinations is high.

Due to these effects, if you specify a non-zero reset value, you may cause your
synthesis tool to use the asynchronous clear (aclr) signals available on the registers to
implement the high bits with NOT gate push-back. In that case, the registers look as
though they power up to the specified reset value.

When an asynchronous load (aload) signal is available in the device registers, your
synthesis tools can implement a reset of 1 or 0 value by using an asynchronous load of
1 or 0. When the synthesis tool uses a load signal, it is not performing NOT gate
push-back, so the registers power up to a 0 logic level.

f For additional details, refer to the appropriate device family handbook or the
appropriate handbook on the Altera website.

Designers typically use an explicit reset signal for the design, which forces all registers
into their appropriate values after reset. Altera recommends this practice to reset the
device after power-up to restore the proper state.

You can make your design more stable and avoid potential glitches by synchronizing
external or combinational logic of the device architecture before you drive the
asynchronous control ports of registers.

f For additional information about good synchronous design practices, refer to the
Design Recommendations for Altera Devices and the Quartus II Design Assistant chapter in
volume 1 of the Quartus II Handbook.

Specifying a Power-Up Value
If you want to force a particular power-up condition for your design, you can use the
synthesis options available in your synthesis tool. With Quartus II integrated
synthesis, you can apply the Power-Up Level logic option. You can also apply the
option with an altera_attribute assignment in your source code. Using this option
forces synthesis to perform NOT gate push-back because synthesis tools cannot
actually change the power-up states of core registers.

You can apply the Quartus II integrated synthesis Power-Up Level logic option to a
specific register or to a design entity, module, or subdesign. If you do so, every
register in that block receives the value. Registers power up to 0 by default; therefore,
you can use this assignment to force all registers to power up to 1 using NOT gate
push-back.

1 Setting the Power-Up Level to a logic level of high for a large design entity could
degrade the quality of results due to the number of inverters that are required. In
some situations, issues are caused by enable signal inference or secondary control
logic inference. It may also be more difficult to migrate such a design to an ASIC.
November 2013 Altera Corporation Quartus II Handbook Version 13.1
Volume 1: Design and Synthesis

http://www.altera.com/literature/hb/qts/qts_qii51006.pdf

13–46 Chapter 13: Recommended HDL Coding Styles
Coding Guidelines for Registers and Latches
1 You can simulate the power-up behavior in a functional simulation if you use
initialization.

f The Power-Up Level option and the altera_attribute assignment are described in
the Quartus II Integrated Synthesis chapter in volume 1 of the Quartus II Handbook.

Some synthesis tools can also read the default or initial values for registered signals
and implement this behavior in the device. For example, Quartus II integrated
synthesis converts default values for registered signals into Power-Up Level settings.
When the Quartus II software reads the default values, the synthesized behavior
matches the power-up state of the HDL code during a functional simulation.

For example, the code samples in Example 13–37 and Example 13–38 both infer a
register for q and set its power-up level to high.

There may also be undeclared default power-up conditions based on signal type. If
you declare a VHDL register signal as an integer, Quartus II synthesis attempts to use
the left end of the integer range as the power-up value. For the default signed integer
type, the default power-up value is the highest magnitude negative integer
(100…001). For an unsigned integer type, the default power-up value is 0.

1 If the target device architecture does not support two asynchronous control signals,
such as aclr and aload, you cannot set a different power-up state and reset state. If
the NOT gate push-back algorithm creates logic to set a register to 1, that register will
power-up high. If you set a different power-up condition through a synthesis
assignment or initial value, the power-up level is ignored during synthesis.

Secondary Register Control Signals Such as Clear and Clock Enable
The registers in Altera FPGAs provide a number of secondary control signals (such as
clear and enable signals) that you can use to implement control logic for each register
without using extra logic cells. Device families vary in their support for secondary
signals, so consult the device family data sheet to verify which signals are available in
your target device.

Example 13–37. Verilog Register with High Power-Up Value

reg q = 1’b1; //q has a default value of ‘1’

always @ (posedge clk)
begin

q <= d;
end

Example 13–38. VHDL Register with High Power-Up Level

SIGNAL q : STD_LOGIC := '1'; -- q has a default value of '1'

PROCESS (clk, reset)
BEGIN

IF (rising_edge(clk)) THEN
q <= d;

END IF;
END PROCESS;
Quartus II Handbook Version 13.1 November 2013 Altera Corporation
Volume 1: Design and Synthesis

http://www.altera.com/literature/hb/qts/qts_qii51008.pdf

Chapter 13: Recommended HDL Coding Styles 13–47
Coding Guidelines for Registers and Latches
To make the most efficient use of the signals in the device, your HDL code should
match the device architecture as closely as possible. The control signals have a certain
priority due to the nature of the architecture, so your HDL code should follow that
priority where possible.

Your synthesis tool can emulate any control signals using regular logic, so achieving
functionally correct results is always possible. However, if your design requirements
are flexible in terms of which control signals are used and in what priority, match your
design to the target device architecture to achieve the most efficient results. If the
priority of the signals in your design is not the same as that of the target architecture,
extra logic may be required to implement the control signals. This extra logic uses
additional device resources and can cause additional delays for the control signals.

In addition, there are certain cases where using logic other than the dedicated control
logic in the device architecture can have a larger impact. For example, the clock enable
signal has priority over the synchronous reset or clear signal in the device
architecture. The clock enable turns off the clock line in the LAB, and the clear signal is
synchronous. Therefore, in the device architecture, the synchronous clear takes effect
only when a clock edge occurs.

If you code a register with a synchronous clear signal that has priority over the clock
enable signal, the software must emulate the clock enable functionality using data
inputs to the registers. Because the signal does not use the clock enable port of a
register, you cannot apply a Clock Enable Multicycle constraint. In this case, following
the priority of signals available in the device is clearly the best choice for the priority
of these control signals, and using a different priority causes unexpected results with
an assignment to the clock enable signal.

1 The priority order for secondary control signals in Altera devices differs from the
order for other vendors’ devices. If your design requirements are flexible regarding
priority, verify that the secondary control signals meet design performance
requirements when migrating designs between FPGA vendors and try to match your
target device architecture to achieve the best results.

The signal order is the same for all Altera device families, although, as noted
previously, not all device families provide every signal. The following priority order is
observed:

1. Asynchronous Clear, aclr—highest priority

2. Asynchronous Load, aload

3. Enable, ena

4. Synchronous Clear, sclr

5. Synchronous Load, sload

6. Data In, data—lowest priority

The following examples provide Verilog HDL and VHDL code that creates a register
with the aclr, aload, and ena control signals.

1 MAX® 3000 and MAX 7000 devices include a dedicated preset signal, which has
second priority after aclr, and is not included in the following examples.
November 2013 Altera Corporation Quartus II Handbook Version 13.1
Volume 1: Design and Synthesis

13–48 Chapter 13: Recommended HDL Coding Styles
Coding Guidelines for Registers and Latches
1 The Verilog HDL example (Example 13–39) does not have adata on the sensitivity list,
but the VHDL example (Example 13–40) does. This is a limitation of the Verilog HDL
language—there is no way to describe an asynchronous load signal (in which q
toggles if adata toggles while aload is high). All synthesis tools should infer an aload
signal from this construct despite this limitation. When they perform such inference,
you may see information or warning messages from the synthesis tool.

Example 13–39. Verilog HDL D-Type Flipflop (Register) with ena, aclr, and aload Control Signals

module dff_control(clk, aclr, aload, ena, data, adata, q);
input clk, aclr, aload, ena, data, adata;
output q;

reg q;

always @ (posedge clk or posedge aclr or posedge aload)
begin

if (aclr)
q <= 1'b0;

else if (aload)
q <= adata;

else if (ena)
q <= data;

end
endmodule

Example 13–40. VHDL D-Type Flipflop (Register) with ena, aclr, and aload Control Signals (Part
1 of 2)

LIBRARY ieee;
USE ieee.std_logic_1164.all;

ENTITY dff_control IS
PORT (

clk: IN STD_LOGIC;
aclr: IN STD_LOGIC;
aload: IN STD_LOGIC;
adata: IN STD_LOGIC;
ena: IN STD_LOGIC;

data: IN STD_LOGIC;
q: OUT STD_LOGIC

);
END dff_control;
Quartus II Handbook Version 13.1 November 2013 Altera Corporation
Volume 1: Design and Synthesis

Chapter 13: Recommended HDL Coding Styles 13–49
Coding Guidelines for Registers and Latches
Creating many registers with different sload and sclr signals can make packing the
registers into LABs difficult for the Quartus II Fitter because the sclr and sload
signals are LAB-wide signals. In addition, using the LAB-wide sload signal prevents
the Fitter from packing registers using the quick feedback path in the device
architecture, which means that some registers cannot be packed with other logic.

Synthesis tools typically restrict use of sload and sclr signals to cases in which there
are enough registers with common signals to allow good LAB packing. Using the
look-up table (LUT) to implement the signals is always more flexible if it is available.
Because different device families offer different numbers of control signals, inference
of these signals is also device-specific. For example, because Stratix II devices have
more flexibility than Stratix devices with respect to secondary control signals,
synthesis tools might infer more sload and sclr signals for Stratix II devices.

If you use these additional control signals, use them in the priority order that matches
the device architecture. To achieve the most efficient results, ensure the sclr signal
has a higher priority than the sload signal in the same way that aclr has higher
priority than aload in the previous examples. Remember that the register signals are
not inferred unless the design meets the conditions described previously. However, if
your HDL described the desired behavior, the software always implements logic with
the correct functionality.

In Verilog HDL, the following code for sload and sclr could replace the
if (ena) q <= data; statements in the Verilog HDL in Example 13–39 (after adding
the control signals to the module declaration).

ARCHITECTURE rtl OF dff_control IS
BEGIN

PROCESS (clk, aclr, aload, adata)
BEGIN

IF (aclr = '1') THEN
q <= '0';
ELSIF (aload = '1') THEN
q <= adata;
ELSE

IF (clk = '1' AND clk'event) THEN
IF (ena ='1') THEN

q <= data;
END IF;

END IF;
END IF;

END PROCESS;
END rtl;

Example 13–41. Verilog HDL sload and sclr Control Signals

if (ena) begin
if (sclr)

q <= 1'b0;
else if (sload)

q <= sdata;
else

q <= data;
end

Example 13–40. VHDL D-Type Flipflop (Register) with ena, aclr, and aload Control Signals (Part
2 of 2)
November 2013 Altera Corporation Quartus II Handbook Version 13.1
Volume 1: Design and Synthesis

13–50 Chapter 13: Recommended HDL Coding Styles
Coding Guidelines for Registers and Latches
In VHDL, the following code for sload and sclr could replace the IF (ena ='1')
THEN q <= data; END IF; statements in the VHDL in Example 13–40 on page 13–48
(after adding the control signals to the entity declaration).

Latches
A latch is a small combinational loop that holds the value of a signal until a new value
is assigned.

1 Altera recommends that you design without the use of latches whenever possible.

f For additional information about the issues involved in designing with latches and
combinational loops, refer to the Design Recommendations for Altera Devices and the
Quartus II Design Assistant chapter in volume 1 of the Quartus II Handbook.

Latches can be inferred from HDL code when you did not intend to use a latch, as
described in “Unintentional Latch Generation”. If you do intend to infer a latch, it is
important to infer it correctly to guarantee correct device operation as detailed in
“Inferring Latches Correctly” on page 13–51.

Unintentional Latch Generation
When you are designing combinational logic, certain coding styles can create an
unintentional latch. For example, when CASE or IF statements do not cover all possible
input conditions, latches may be required to hold the output if a new output value is
not assigned. Check your synthesis tool messages for references to inferred latches. If
your code unintentionally creates a latch, make code changes to remove the latch.

A latch is required if a signal is assigned a value outside of a clock edge (for example,
with an asynchronous reset), but is not assigned a value in an edge-triggered design
block. An unintentional latch may be generated if your HDL code assigns a value to a
signal in an edge-triggered design block, but that logic is removed during synthesis.
For example, when a CASE or IF statement tests the value of a condition with a
parameter or generic that evaluates to FALSE, any logic or signal assignment in that
statement is not required and is optimized away during synthesis. This optimization
may result in a latch being generated for the signal.

1 Latches have limited support in formal verification tools. Therefore, ensure that you
do not infer latches unintentionally.

Example 13–42. VHDL sload and sclr Control Signals

IF (ena ='1') THEN
IF (sclr = '1') THEN

q <= '0';
ELSIF (sload = '1') THEN

q <= sdata;
ELSE

q <= data;
END IF;

END IF;
Quartus II Handbook Version 13.1 November 2013 Altera Corporation
Volume 1: Design and Synthesis

http://www.altera.com/literature/hb/qts/qts_qii51006.pdf
http://www.altera.com/literature/hb/qts/qts_qii51006.pdf

Chapter 13: Recommended HDL Coding Styles 13–51
Coding Guidelines for Registers and Latches
The full_case attribute can be used in Verilog HDL designs to treat unspecified cases
as don’t care values (X). However, using the full_case attribute can cause simulation
mismatches because this attribute is a synthesis-only attribute, so simulation tools still
treat the unspecified cases as latches.

f For more information about using attributes in your synthesis tool, refer to the
appropriate chapter in the Synthesis section in volume 1 of the Quartus II Handbook.
The Quartus II Integrated Synthesis chapter in volume 1 of the Quartus II Handbook
provides an example explaining possible simulation mismatches.

Omitting the final else or when others clause in an if or case statement can also
generate a latch. Don’t care (X) assignments on the default conditions are useful in
preventing latch generation. For the best logic optimization, assign the default case or
final else value to don’t care (X) instead of a logic value.

The VHDL code sample in Example 13–43 prevents unintentional latches. Without the
final else clause, this code creates unintentional latches to cover the remaining
combinations of the sel inputs. When you are targeting a Stratix device with this
code, omitting the final else condition can cause the synthesis software to use up to
six LEs, instead of the three it uses with the else statement. Additionally, assigning
the final else clause to 1 instead of X can result in slightly more LEs, because the
synthesis software cannot perform as much optimization when you specify a constant
value compared to a don’t care value.

Inferring Latches Correctly
Synthesis tools can infer a latch that does not exhibit the glitch and timing hazard
problems typically associated with combinational loops.

Example 13–43. VHDL Code Preventing Unintentional Latch Creation

LIBRARY ieee;
USE IEEE.std_logic_1164.all;

ENTITY nolatch IS
PORT (a,b,c: IN STD_LOGIC;

sel: IN STD_LOGIC_VECTOR (4 DOWNTO 0);
oput: OUT STD_LOGIC);

END nolatch;

ARCHITECTURE rtl OF nolatch IS
BEGIN

PROCESS (a,b,c,sel) BEGIN
if sel = "00000" THEN

oput <= a;
ELSIF sel = "00001" THEN

oput <= b;
ELSIF sel = "00010" THEN

oput <= c;
ELSE --- Prevents latch inference

oput <= ''X'; --/
END if;

END PROCESS;
END rtl;
November 2013 Altera Corporation Quartus II Handbook Version 13.1
Volume 1: Design and Synthesis

http://www.altera.com/literature/hb/qts/qts_qii51008.pdf
http://www.altera.com/literature/hb/qts/qts_qii5v1_03.pdf

13–52 Chapter 13: Recommended HDL Coding Styles
Coding Guidelines for Registers and Latches
1 Timing analysis does not completely model latch timing in some cases. Do not use
latches unless required by your design, and you fully understand the impact of using
the latches.

When using Quartus II integrated synthesis, latches that are inferred by the software
are reported in the User-Specified and Inferred Latches section of the Compilation
Report. This report indicates whether the latch is considered safe and free of timing
hazards.

If a latch or combinational loop in your design is not listed in the User-Specified and
Inferred Latches section, it means that it was not inferred as a safe latch by the
software and is not considered glitch-free.

All combinational loops listed in the Analysis & Synthesis Logic Cells Representing
Combinational Loops table in the Compilation Report are at risk of timing hazards.
These entries indicate possible problems with your design that you should
investigate. However, it is possible to have a correct design that includes
combinational loops. For example, it is possible that the combinational loop cannot be
sensitized. This can occur in cases where there is an electrical path in the hardware,
but either the designer knows that the circuit never encounters data that causes that
path to be activated, or the surrounding logic is set up in a mutually exclusive manner
that prevents that path from ever being sensitized, independent of the data input.

For macrocell-based devices, such as MAX 7000 and MAX 3000, all data (D-type)
latches and set-reset (S-R) latches listed in the Analysis & Synthesis User-Specified
and Inferred Latches table have an implementation free of timing hazards, such as
glitches. The implementation includes both a cover term to ensure there is no
glitching and a single macrocell in the feedback loop.

For 4-input LUT-based devices, such as Stratix devices, the Cyclone series, and
MAX II devices, all latches in the User-Specified and Inferred Latches table with a
single LUT in the feedback loop are free of timing hazards when a single input
changes. Because of the hardware behavior of the LUT, the output does not glitch
when a single input toggles between two values that are supposed to produce the
same output value, such as a D-type input toggling when the enable input is inactive
or a set input toggling when a reset input with higher priority is active. This hardware
behavior of the LUT means that no cover term is required for a loop around a single
LUT. The Quartus II software uses a single LUT in the feedback loop whenever
possible. A latch that has data, enable, set, and reset inputs in addition to the output
fed back to the input cannot be implemented in a single 4-input LUT. If the Quartus II
software cannot implement the latch with a single-LUT loop because there are too
many inputs, the User-Specified and Inferred Latches table indicates that the latch is
not free of timing hazards.

For 6-input LUT-based devices, the software can implement all latch inputs with a
single adaptive look-up table (ALUT) in the combinational loop. Therefore, all latches
in the User-Specified and Inferred Latches table are free of timing hazards when a
single input changes.

If a latch is listed as a safe latch, other optimizations performed by the Quartus II
software, such as physical synthesis netlist optimizations in the Fitter, maintain the
hazard-free performance.
Quartus II Handbook Version 13.1 November 2013 Altera Corporation
Volume 1: Design and Synthesis

Chapter 13: Recommended HDL Coding Styles 13–53
Coding Guidelines for Registers and Latches
To ensure hazard-free behavior, only one control input can change at a time. Changing
two inputs simultaneously, such as deasserting set and reset at the same time, or
changing data and enable at the same time, can produce incorrect behavior in any
latch.

Quartus II integrated synthesis infers latches from always blocks in Verilog HDL and
process statements in VHDL, but not from continuous assignments in Verilog HDL or
concurrent signal assignments in VHDL. These rules are the same as for register
inference. The software infers registers or flipflops only from always blocks and
process statements.

The Verilog HDL code sample in Example 13–44 infers a S-R latch correctly in the
Quartus II software.

The VHDL code sample in Example 13–45 infers a D-type latch correctly in the
Quartus II software.

The following example shows a Verilog HDL continuous assignment that does not
infer a latch in the Quartus II software:

assign latch_out = (~en & latch_out) | (en & data);

Example 13–44. Verilog HDL Set-Reset Latch

module simple_latch (
input SetTerm,
input ResetTerm,
output reg LatchOut
);

always @ (SetTerm or ResetTerm) begin
if (SetTerm)

LatchOut = 1'b1
else if (ResetTerm)

LatchOut = 1'b0
end

endmodule

Example 13–45. VHDL Data Type Latch

LIBRARY IEEE;
USE IEEE.std_logic_1164.all;

ENTITY simple_latch IS
PORT (

enable, data : IN STD_LOGIC;
q : OUT STD_LOGIC

);
END simple_latch;

ARCHITECTURE rtl OF simple_latch IS
BEGIN

latch : PROCESS (enable, data)
BEGIN
IF (enable = '1') THEN

q <= data;
END IF;

END PROCESS latch;
END rtl;
November 2013 Altera Corporation Quartus II Handbook Version 13.1
Volume 1: Design and Synthesis

13–54 Chapter 13: Recommended HDL Coding Styles
General Coding Guidelines
The behavior of the assignment is similar to a latch, but it may not function correctly
as a latch, and its timing is not analyzed as a latch.

Quartus II integrated synthesis also creates safe latches when possible for
instantiations of the LPM_LATCH megafunction. You can use this megafunction to
create a latch with any combination of data, enable, set, and reset inputs. The same
limitations apply for creating safe latches as for inferring latches from HDL code.

Inferring the Altera LPM_LATCH function in another synthesis tool ensures that the
implementation is also recognized as a latch in the Quartus II software. If a
third-party synthesis tool implements a latch using the LPM_LATCH megafunction,
the Quartus II integrated synthesis lists the latch in the User-Specified and Inferred
Latches table in the same way as it lists latches created in HDL source code. The
coding style necessary to produce an LPM_LATCH implementation may depend on
your synthesis tool. Some third-party synthesis tools list the number of LPM_LATCH
functions that are inferred.

For LUT-based families, the Fitter uses global routing for control signals, including
signals that Analysis and Synthesis identifies as latch enables. In some cases the
global insertion delay may decrease the timing performance. If necessary, you can
turn off the Quartus II Global Signal logic option to manually prevent the use of
global signals. Global latch enables are listed in the Global & Other Fast Signals table
in the Compilation Report.

General Coding Guidelines
This section helps you understand how synthesis tools map various types of HDL
code into the target Altera device. Following Altera recommended coding styles, and
in some cases designing logic structures to match the appropriate device architecture,
can provide significant improvements in the design’s quality of results.

This section provides coding guidelines for the following logic structures:

■ “Tri-State Signals”. This section explains how to create tri-state signals for
bidirectional I/O pins.

■ “Clock Multiplexing” on page 13–56. This section provides recommendations for
multiplexing clock signals.

■ “Adder Trees” on page 13–59. This section explains the different coding styles that
lead to optimal results for devices with 4-input LUTs and 6-input ALUTs.

■ “State Machines” on page 13–61. This section helps ensure the best results when
you use state machines.

■ “Multiplexers” on page 13–68. This section explains how multiplexers can be
synthesized, addresses common problems, and provides guidelines to achieve
optimal resource utilization.

■ “Cyclic Redundancy Check Functions” on page 13–71. This section provides
guidelines for getting good results when designing Cyclic Redundancy Check
(CRC) functions.

■ “Comparators” on page 13–73. This section explains different comparator
implementations and provides suggestions for controlling the implementation.
Quartus II Handbook Version 13.1 November 2013 Altera Corporation
Volume 1: Design and Synthesis

Chapter 13: Recommended HDL Coding Styles 13–55
General Coding Guidelines
■ “Counters” on page 13–74. This section provides guidelines to ensure your
counter design targets the device architecture optimally.

Tri-State Signals
When you target Altera devices, you should use tri-state signals only when they are
attached to top-level bidirectional or output pins. Avoid lower-level bidirectional
pins, and avoid using the Z logic value unless it is driving an output or bidirectional
pin.

Synthesis tools implement designs with internal tri-state signals correctly in Altera
devices using multiplexer logic, but Altera does not recommend this coding practice.

1 In hierarchical block-based or incremental design flows, a hierarchical boundary
cannot contain any bidirectional ports, unless the lower-level bidirectional port is
connected directly through the hierarchy to a top-level output pin without connecting
to any other design logic. If you use boundary tri-states in a lower-level block,
synthesis software must push the tri-states through the hierarchy to the top level to
make use of the tri-state drivers on output pins of Altera devices. Because pushing
tri-states requires optimizing through hierarchies, lower-level tri-states are restricted
with block-based design methodologies.

The code in Example 13–46 and Example 13–47 show Verilog HDL and VHDL code
that creates tri-state bidirectional signals.

Example 13–46. Verilog HDL Tri-State Signal

module tristate (myinput, myenable, mybidir);
input myinput, myenable;
inout mybidir;
assign mybidir = (myenable ? myinput : 1'bZ);

endmodule

Example 13–47. VHDL Tri-State Signal

LIBRARY ieee;
USE ieee.std_logic_1164.all;
USE ieee.std_logic_arith.all;

ENTITY tristate IS
PORT (

mybidir : INOUT STD_LOGIC;
myinput : IN STD_LOGIC;
myenable : IN STD_LOGIC
);

END tristate;

ARCHITECTURE rtl OF tristate IS
BEGIN

mybidir <= 'Z' WHEN (myenable = '0') ELSE myinput;
END rtl;
November 2013 Altera Corporation Quartus II Handbook Version 13.1
Volume 1: Design and Synthesis

13–56 Chapter 13: Recommended HDL Coding Styles
General Coding Guidelines
Clock Multiplexing
Clock multiplexing is sometimes used to operate the same logic function with
different clock sources. This type of logic can introduce glitches that create functional
problems, and the delay inherent in the combinational logic can lead to timing
problems. Clock multiplexers trigger warnings from a wide range of design rule
check and timing analysis tools.

Altera recommends using dedicated hardware to perform clock multiplexing when it
is available, instead of using multiplexing logic. For example, you can use the Clock
Switchover feature or the Clock Control Block available in certain Altera devices.
These dedicated hardware blocks avoid glitches, ensure that you use global low-skew
routing lines, and avoid any possible hold time problems on the device due to logic
delay on the clock line. Many Altera devices also support dynamic PLL
reconfiguration, which is the safest and most robust method of changing clock rates
during device operation.

f Refer to the appropriate device data sheet or handbook for device-specific
information about clocking structures. Also refer to the ALTCLKCTRL Megafunction
User Guide, the ALTPLL Megafunction User Guide, and the Phase-Locked Loops
Reconfiguration (ALTPLL_RECONFIG) Megafunction User Guide.

If you implement a clock multiplexer in logic cells because the design has too many
clocks to use the clock control block, or if dynamic reconfiguration is too complex for
your design, it is important to consider simultaneous toggling inputs and ensure
glitch-free transitions.

Figure 13–2 shows a simple representation of a clock multiplexer (mux) in a device
with 6-input LUTs.

The data sheet for your target device describes how LUT outputs may glitch during a
simultaneous toggle of input signals, independent of the LUT function. Although, in
practice, the 4:1 MUX function does not generate detectable glitches during
simultaneous data input toggles, it is possible to construct cell implementations that
do exhibit significant glitches, so this simple clock mux structure is not recommended.
An additional problem with this implementation is that the output behaves erratically
during a change in the clk_select signals. This behavior could create timing
violations on all registers fed by the system clock and result in possible metastability.

Figure 13–2. Simple Clock Multiplexer in a 6-Input LUT

clk0

clk1

clk2

clk3

Sys_clk

clk_select (static)
Quartus II Handbook Version 13.1 November 2013 Altera Corporation
Volume 1: Design and Synthesis

http://www.altera.com/literature/ug/ug_altclock.pdf
http://www.altera.com/literature/ug/ug_altclock.pdf
http://www.altera.com/literature/ug/ug_altpll.pdf
http://www.altera.com/literature/ug/ug_altpll_reconfig.pdf
http://www.altera.com/literature/ug/ug_altpll_reconfig.pdf

Chapter 13: Recommended HDL Coding Styles 13–57
General Coding Guidelines
A more sophisticated clock select structure can eliminate the simultaneous toggle and
switching problems, as in Figure 13–3.

This structure can be generalized for any number of clock channels. Example 13–48
contains a parameterized version in Verilog HDL. The design enforces that no clock
activates until all others have been inactive for at least a few cycles, and that activation
occurs while the clock is low. The design applies a synthesis_keep directive to the
AND gates on the right side of the figure, which ensures there are no simultaneous
toggles on the input of the clk_out OR gate.

Figure 13–3. Glitch-Free Clock Multiplexer Structure

sel0

sel1

clk0

clk1

clk_out

DQ DQ DQ

DQDQDQ
November 2013 Altera Corporation Quartus II Handbook Version 13.1
Volume 1: Design and Synthesis

13–58 Chapter 13: Recommended HDL Coding Styles
General Coding Guidelines
1 Switching from clock A to clock B requires that clock A continue to operate for at least a
few cycles. If the old clock stops immediately, the design sticks. The select signals are
implemented as a “one-hot” control in this example, but you can use other encoding if
you prefer. The input side logic is asynchronous and is not critical. This design can
tolerate extreme glitching during the switch process.

Example 13–48. Verilog HDL Clock Multiplexing Design to Avoid Glitches

module clock_mux (clk,clk_select,clk_out);

parameter num_clocks = 4;

input [num_clocks-1:0] clk;
input [num_clocks-1:0] clk_select; // one hot
output clk_out;

genvar i;

reg [num_clocks-1:0] ena_r0;
reg [num_clocks-1:0] ena_r1;
reg [num_clocks-1:0] ena_r2;
wire [num_clocks-1:0] qualified_sel;

// A look-up-table (LUT) can glitch when multiple inputs
// change simultaneously. Use the keep attribute to
// insert a hard logic cell buffer and prevent
// the unrelated clocks from appearing on the same LUT.

wire [num_clocks-1:0] gated_clks /* synthesis keep */;

initial begin
ena_r0 = 0;
ena_r1 = 0;
ena_r2 = 0;

end

generate
for (i=0; i<num_clocks; i=i+1)
begin : lp0

wire [num_clocks-1:0] tmp_mask;
assign tmp_mask = {num_clocks{1'b1}} ^ (1 << i);

assign qualified_sel[i] = clk_select[i] & (~|(ena_r2 & tmp_mask));

always @(posedge clk[i]) begin
ena_r0[i] <= qualified_sel[i];
ena_r1[i] <= ena_r0[i];

end

always @(negedge clk[i]) begin
ena_r2[i] <= ena_r1[i];

end

assign gated_clks[i] = clk[i] & ena_r2[i];
end

endgenerate

// These will not exhibit simultaneous toggle by construction
assign clk_out = |gated_clks;

endmodule
Quartus II Handbook Version 13.1 November 2013 Altera Corporation
Volume 1: Design and Synthesis

Chapter 13: Recommended HDL Coding Styles 13–59
General Coding Guidelines
Adder Trees
Structuring adder trees appropriately to match your targeted Altera device
architecture can result in significant performance and density improvements. A good
example of an application using a large adder tree is a finite impulse response (FIR)
correlator. Using a pipelined binary or ternary adder tree appropriately can greatly
improve the quality of your results.

This section explains why coding recommendations are different for Altera 4-input
LUT devices and 6-input LUT devices.

Architectures with 4-Input LUTs in Logic Elements
Architectures such as Stratix devices and the Cyclone series of devices contain 4-input
LUTs as the standard combinational structure in the LE.

If your design can tolerate pipelining, the fastest way to add three numbers A, B, and C
in devices that use 4-input lookup tables is to add A + B, register the output, and then
add the registered output to C. Adding A + B takes one level of logic (one bit is added
in one LE), so this runs at full clock speed. This can be extended to as many numbers
as desired.

Example 13–49 shows five numbers A, B, C, D, and E are added. Adding five numbers
in devices that use 4-input lookup tables requires four adders and three levels of
registers for a total of 64 LEs (for 16-bit numbers).

Example 13–49. Verilog HDL Pipelined Binary Tree

module binary_adder_tree (a, b, c, d, e, clk, out);
parameter width = 16;
input [width-1:0] a, b, c, d, e;
input clk;
output [width-1:0] out;

wire [width-1:0] sum1, sum2, sum3, sum4;
reg [width-1:0] sumreg1, sumreg2, sumreg3, sumreg4;
// Registers

always @ (posedge CLK)
begin

sumreg1 <= sum1;
sumreg2 <= sum2;
sumreg3 <= sum3;
sumreg4 <= sum4;

end

// 2-bit additions
assign sum1 = A + B;
assign sum2 = C + D;
assign sum3 = sumreg1 + sumreg2;
assign sum4 = sumreg3 + E;
assign out = sumreg4;

endmodule
November 2013 Altera Corporation Quartus II Handbook Version 13.1
Volume 1: Design and Synthesis

13–60 Chapter 13: Recommended HDL Coding Styles
General Coding Guidelines
Architectures with 6-Input LUTs in Adaptive Logic Modules
High-performance Altera device families use a 6-input LUT in their basic logic
structure, so these devices benefit from a different coding style from the previous
example presented for 4-input LUTs. Specifically, in these devices, ALMs can
simultaneously add three bits. Therefore, the tree in Example 13–49 must be two
levels deep and contain just two add-by-three inputs instead of four add-by-two
inputs.

Although the code in the previous example compiles successfully for 6-input LUT
devices, the code is inefficient and does not take advantage of the 6-input adaptive
ALUT. By restructuring the tree as a ternary tree, the design becomes much more
efficient, significantly improving density utilization. Therefore, when you are
targeting with ALUTs and ALMs, large pipelined binary adder trees designed for
4-input LUT architectures should be rewritten to take advantage of the advanced
device architecture.

Example 13–50 uses just 32 ALUTs in a Stratix II device—more than a 4:1 advantage
over the number of LUTs in the prior example implemented in a Stratix device.

1 You cannot pack a LAB full when using this type of coding style because of the
number of LAB inputs. However, in a typical design, the Quartus II Fitter can pack
other logic into each LAB to take advantage of the unused ALMs.

These examples show pipelined adders, but partitioning your addition operations can
help you achieve better results in nonpipelined adders as well. If your design is not
pipelined, a ternary tree provides much better performance than a binary tree. For
example, depending on your synthesis tool, the HDL code
sum = (A + B + C) + (D + E) is more likely to create the optimal implementation of
a 3-input adder for A + B + C followed by a 3-input adder for sum1 + D + E than the
code without the parentheses. If you do not add the parentheses, the synthesis tool
may partition the addition in a way that is not optimal for the architecture.

Example 13–50. Verilog HDL Pipelined Ternary Tree

module ternary_adder_tree (a, b, c, d, e, clk, out);
parameter width = 16;
input [width-1:0] a, b, c, d, e;
input clk;
output [width-1:0] out;

wire [width-1:0] sum1, sum2;
reg [width-1:0] sumreg1, sumreg2;
// registers

always @ (posedge clk)
begin

sumreg1 <= sum1;
sumreg2 <= sum2;

end

// 3-bit additions
assign sum1 = a + b + c;
assign sum2 = sumreg1 + d + e;
assign out = sumreg2;

endmodule
Quartus II Handbook Version 13.1 November 2013 Altera Corporation
Volume 1: Design and Synthesis

Chapter 13: Recommended HDL Coding Styles 13–61
General Coding Guidelines
State Machines
Synthesis tools can recognize and encode Verilog HDL and VHDL state machines
during synthesis. This section presents guidelines to ensure the best results when you
use state machines. Ensuring that your synthesis tool recognizes a piece of code as a
state machine allows the tool to recode the state variables to improve the quality of
results, and allows the tool to use the known properties of state machines to optimize
other parts of the design. When synthesis recognizes a state machine, it is often able to
improve the design area and performance.

To achieve the best results on average, synthesis tools often use one-hot encoding for
FPGA devices and minimal-bit encoding for CPLD devices, although the choice of
implementation can vary for different state machines and different devices. Refer to
your synthesis tool documentation for specific ways to control the manner in which
state machines are encoded.

f For information about state machine encoding in Quartus II integrated synthesis,
refer to the State Machine Processing section in the Quartus II Integrated Synthesis
chapter in volume 1 of the Quartus II Handbook.

To ensure proper recognition and inference of state machines and to improve the
quality of results, Altera recommends that you observe the following guidelines,
which apply to both Verilog HDL and VHDL:

■ Assign default values to outputs derived from the state machine so that synthesis
does not generate unwanted latches.

■ Separate the state machine logic from all arithmetic functions and data paths,
including assigning output values.

■ If your design contains an operation that is used by more than one state, define the
operation outside the state machine and cause the output logic of the state
machine to use this value.

■ Use a simple asynchronous or synchronous reset to ensure a defined power-up
state. If your state machine design contains more elaborate reset logic, such as both
an asynchronous reset and an asynchronous load, the Quartus II software
generates regular logic rather than inferring a state machine.

If a state machine enters an illegal state due to a problem with the device, the design
likely ceases to function correctly until the next reset of the state machine. Synthesis
tools do not provide for this situation by default. The same issue applies to any other
registers if there is some kind of fault in the system. A default or when others clause
does not affect this operation, assuming that your design never deliberately enters
this state. Synthesis tools remove any logic generated by a default state if it is not
reachable by normal state machine operation.

Many synthesis tools (including Quartus II integrated synthesis) have an option to
implement a safe state machine. The software inserts extra logic to detect an illegal
state and force the state machine’s transition to the reset state. It is commonly used
when the state machine can enter an illegal state. The most common cause of this
situation is a state machine that has control inputs that come from another clock
domain, such as the control logic for a dual-clock FIFO.
November 2013 Altera Corporation Quartus II Handbook Version 13.1
Volume 1: Design and Synthesis

http://www.altera.com/literature/hb/qts/qts_qii51008.pdf

13–62 Chapter 13: Recommended HDL Coding Styles
General Coding Guidelines
This option protects only state machines by forcing them into the reset state. All other
registers in the design are not protected this way. If the design has asynchronous
inputs, Altera recommends using a synchronization register chain instead of relying
on the safe state machine option.

f For additional information about tool-specific options for implementing state
machines, refer to the tool vendor’s documentation or the appropriate chapter in the
Synthesis section in volume 1 of the Quartus II Handbook.

The following two sections, “Verilog HDL State Machines” and “VHDL State
Machines” on page 13–66, describe additional language-specific guidelines and
coding examples.

Verilog HDL State Machines
To ensure proper recognition and inference of Verilog HDL state machines, observe
the following additional Verilog HDL guidelines. Some of these guidelines may be
specific to Quartus II integrated synthesis. Refer to your synthesis tool documentation
for specific coding recommendations.

If the state machine is not recognized and inferred by the synthesis software (such as
Quartus II integrated synthesis), the state machine is implemented as regular logic
gates and registers, and the state machine is not listed as a state machine in the
Analysis & Synthesis section of the Quartus II Compilation Report. In this case, the
software does not perform any of the optimizations that are specific to state machines.

■ If you are using the SystemVerilog standard, use enumerated types to describe
state machines. For more information, refer too “SystemVerilog State Machine
Coding Example” on page 13–65.

■ Represent the states in a state machine with the parameter data types in
Verilog-1995 and Verilog-2001, and use the parameters to make state assignments.
For more information, refer too“Verilog-2001 State Machine Coding Example” on
page 13–63. This parameter implementation makes the state machine easier to
read and reduces the risk of errors during coding.

1 Altera recommends against the direct use of integer values for state
variables, such as next_state <= 0. However, using an integer does not
prevent inference in the Quartus II software.

■ No state machine is inferred in the Quartus II software if the state transition logic
uses arithmetic similar to that in the following example:

case (state)
0: begin

if (ena) next_state <= state + 2;
else next_state <= state + 1;

end
1: begin
...

endcase

■ No state machine is inferred in the Quartus II software if the state variable is an
output.

■ No state machine is inferred in the Quartus II software for signed variables.
Quartus II Handbook Version 13.1 November 2013 Altera Corporation
Volume 1: Design and Synthesis

http://www.altera.com/literature/hb/qts/qts_qii5v1_03.pdf

Chapter 13: Recommended HDL Coding Styles 13–63
General Coding Guidelines
Verilog-2001 State Machine Coding Example

The following module verilog_fsm is an example of a typical Verilog HDL state
machine implementation (Example 13–51).

This state machine has five states. The asynchronous reset sets the variable state to
state_0. The sum of in_1 and in_2 is an output of the state machine in state_1 and
state_2. The difference (in_1 – in_2) is also used in state_1 and state_2. The
temporary variables tmp_out_0 and tmp_out_1 store the sum and the difference of
in_1 and in_2. Using these temporary variables in the various states of the state
machine ensures proper resource sharing between the mutually exclusive states.
November 2013 Altera Corporation Quartus II Handbook Version 13.1
Volume 1: Design and Synthesis

13–64 Chapter 13: Recommended HDL Coding Styles
General Coding Guidelines
Example 13–51. Verilog-2001 State Machine

module verilog_fsm (clk, reset, in_1, in_2, out);
input clk, reset;
input [3:0] in_1, in_2;
output [4:0] out;
parameter state_0 = 3'b000;
parameter state_1 = 3'b001;
parameter state_2 = 3'b010;
parameter state_3 = 3'b011;
parameter state_4 = 3'b100;

reg [4:0] tmp_out_0, tmp_out_1, tmp_out_2;
reg [2:0] state, next_state;

always @ (posedge clk or posedge reset)
begin

if (reset)
state <= state_0;

else
state <= next_state;

end
always @ (*)
begin

tmp_out_0 = in_1 + in_2;
tmp_out_1 = in_1 - in_2;
case (state)

state_0: begin
tmp_out_2 = in_1 + 5'b00001;
next_state = state_1;

end
state_1: begin

if (in_1 < in_2) begin
next_state = state_2;
tmp_out_2 = tmp_out_0;

end
else begin

next_state = state_3;
tmp_out_2 = tmp_out_1;

end
end
state_2: begin

tmp_out_2 = tmp_out_0 - 5'b00001;
next_state = state_3;

end
state_3: begin

tmp_out_2 = tmp_out_1 + 5'b00001;
next_state = state_0;

end
state_4:begin

tmp_out_2 = in_2 + 5'b00001;
next_state = state_0;

end
default:begin

tmp_out_2 = 5'b00000;
next_state = state_0;

end
endcase

end
assign out = tmp_out_2;

endmodule
Quartus II Handbook Version 13.1 November 2013 Altera Corporation
Volume 1: Design and Synthesis

Chapter 13: Recommended HDL Coding Styles 13–65
General Coding Guidelines
An equivalent implementation of this state machine can be achieved by using ‘define
instead of the parameter data type, as follows:

‘define state_0 3'b000
‘define state_1 3'b001
‘define state_2 3'b010
‘define state_3 3'b011
‘define state_4 3'b100

In this case, the state and next_state assignments are assigned a ‘state_x instead of
a state_x, for example:

next_state <= ‘state_3;

1 Although the ‘define construct is supported, Altera strongly recommends the use of
the parameter data type because doing so preserves the state names throughout
synthesis.

SystemVerilog State Machine Coding Example

The module enum_fsm in Example 13–52 is an example of a SystemVerilog state
machine implementation that uses enumerated types. Altera recommends using this
coding style to describe state machines in SystemVerilog.

1 In Quartus II integrated synthesis, the enumerated type that defines the states for the
state machine must be of an unsigned integer type as in Example 13–52. If you do not
specify the enumerated type as int unsigned, a signed int type is used by default. In
this case, the Quartus II integrated synthesis synthesizes the design, but does not infer
or optimize the logic as a state machine.
November 2013 Altera Corporation Quartus II Handbook Version 13.1
Volume 1: Design and Synthesis

13–66 Chapter 13: Recommended HDL Coding Styles
General Coding Guidelines
VHDL State Machines
To ensure proper recognition and inference of VHDL state machines, represent the
states in a state machine with enumerated types and use the corresponding types to
make state assignments. This implementation makes the state machine easier to read
and reduces the risk of errors during coding. If the state is not represented by an
enumerated type, synthesis software (such as Quartus II integrated synthesis) does
not recognize the state machine. Instead, the state machine is implemented as regular
logic gates and registers and the state machine is not listed as a state machine in the
Analysis & Synthesis section of the Quartus II Compilation Report. In this case, the
software does not perform any of the optimizations that are specific to state machines.

VHDL State Machine Coding Example

The following entity, vhd1_fsm, is an example of a typical VHDL state machine
implementation (Example 13–53).

This state machine has five states. The asynchronous reset sets the variable state to
state_0. The sum of in1 and in2 is an output of the state machine in state_1 and
state_2. The difference (in1 - in2) is also used in state_1 and state_2. The
temporary variables tmp_out_0 and tmp_out_1 store the sum and the difference of in1
and in2. Using these temporary variables in the various states of the state machine
ensures proper resource sharing between the mutually exclusive states.

Example 13–52. SystemVerilog State Machine Using Enumerated Types

module enum_fsm (input clk, reset, input int data[3:0], output int o);

enum int unsigned { S0 = 0, S1 = 2, S2 = 4, S3 = 8 } state, next_state;

always_comb begin : next_state_logic
next_state = S0;
case(state)
S0: next_state = S1;
S1: next_state = S2;
S2: next_state = S3;
S3: next_state = S3;

endcase
end

always_comb begin
case(state)

S0: o = data[3];
S1: o = data[2];
S2: o = data[1];
S3: o = data[0];

endcase
end

always_ff@(posedge clk or negedge reset) begin
if(~reset)

state <= S0;
else

state <= next_state;
end
endmodule
Quartus II Handbook Version 13.1 November 2013 Altera Corporation
Volume 1: Design and Synthesis

Chapter 13: Recommended HDL Coding Styles 13–67
General Coding Guidelines
Example 13–53. VHDL State Machine

LIBRARY ieee;
USE ieee.std_logic_1164.all;
USE ieee.numeric_std.all;
ENTITY vhdl_fsm IS

PORT(
clk: IN STD_LOGIC;
reset: IN STD_LOGIC;
in1: IN UNSIGNED(4 downto 0);
in2: IN UNSIGNED(4 downto 0);
out_1: OUT UNSIGNED(4 downto 0)
);

END vhdl_fsm;
ARCHITECTURE rtl OF vhdl_fsm IS

TYPE Tstate IS (state_0, state_1, state_2, state_3, state_4);
SIGNAL state: Tstate;
SIGNAL next_state: Tstate;

BEGIN
PROCESS(clk, reset)
BEGIN

IF reset = '1' THEN
state <=state_0;

ELSIF rising_edge(clk) THEN
state <= next_state;

END IF;
END PROCESS;

PROCESS (state, in1, in2)
VARIABLE tmp_out_0: UNSIGNED (4 downto 0);
VARIABLE tmp_out_1: UNSIGNED (4 downto 0);

BEGIN
tmp_out_0 := in1 + in2;
tmp_out_1 := in1 - in2;
CASE state IS

WHEN state_0 =>
out_1 <= in1;
next_state <= state_1;

WHEN state_1 =>
IF (in1 < in2) then

next_state <= state_2;
out_1 <= tmp_out_0;

ELSE
next_state <= state_3;
out_1 <= tmp_out_1;

END IF;
WHEN state_2 =>

IF (in1 < "0100") then
out_1 <= tmp_out_0;

ELSE
out_1 <= tmp_out_1;

END IF;
next_state <= state_3;

WHEN state_3 =>
out_1 <= "11111";
next_state <= state_4;

WHEN state_4 =>
out_1 <= in2;
next_state <= state_0;

WHEN OTHERS =>
out_1 <= "00000";
next_state <= state_0;

END CASE;
END PROCESS;

END rtl;
November 2013 Altera Corporation Quartus II Handbook Version 13.1
Volume 1: Design and Synthesis

13–68 Chapter 13: Recommended HDL Coding Styles
General Coding Guidelines
Multiplexers
Multiplexers form a large portion of the logic utilization in many FPGA designs. By
optimizing your multiplexer logic, you ensure the most efficient implementation in
your Altera device. This section addresses common problems and provides design
guidelines to achieve optimal resource utilization for multiplexer designs. The section
also describes various types of multiplexers, and how they are implemented.

f For more information, refer to the Advanced Synthesis Cookbook.

Quartus II Software Option for Multiplexer Restructuring
Quartus II integrated synthesis provides the Restructure Multiplexers logic option
that extracts and optimizes buses of multiplexers during synthesis. The default setting
Auto for this option uses the optimization when it is most likely to benefit the
optimization targets for your design. You can turn the option on or off specifically to
have more control over its use.

f For details, refer to the Restructure Multiplexers section in the Quartus II Integrated
Synthesis chapter in volume 1 of the Quartus II Handbook.

Even with this Quartus II-specific option turned on, it is beneficial to understand how
your coding style can be interpreted by your synthesis tool, and avoid the situations
that can cause problems in your design.

Multiplexer Types
This section addresses how multiplexers are created from various types of HDL code.
CASE statements, IF statements, and state machines are all common sources of
multiplexer logic in designs. These HDL structures create different types of
multiplexers, including binary multiplexers, selector multiplexers, and priority
multiplexers. Understanding how multiplexers are created from HDL code, and how
they might be implemented during synthesis, is the first step toward optimizing
multiplexer structures for best results.

Binary Multiplexers

Binary multiplexers select inputs based on binary-encoded selection bits.
Example 13–54 shows Verilog HDL code for two ways to describe a simple 4:1 binary
multiplexer.

Example 13–54. Verilog HDL Binary-Encoded Multiplexers

case (sel)
2'b00: z = a;
2'b01: z = b;
2'b10: z = c;
2'b11: z = d;

endcase
Quartus II Handbook Version 13.1 November 2013 Altera Corporation
Volume 1: Design and Synthesis

http://www.altera.com/literature/hb/qts/qts_qii51008.pdf
http://www.altera.com/literature/hb/qts/qts_qii51008.pdf
http://www.altera.com/literature/manual/stx_cookbook.pdf

Chapter 13: Recommended HDL Coding Styles 13–69
General Coding Guidelines
Stratix series devices starting with the Stratix II device family feature 6-input look up
tables (LUTs) which are perfectly suited for 4:1 multiplexer building blocks (4 data
and 2 select inputs). The extended input mode facilitates implementing 8:1 blocks,
and the fractured mode handles residual 2:1 multiplexer pairs. For device families
using 4-input LUTs, such as the Cyclone series and Stratix devices, the 4:1 binary
multiplexer is efficiently implemented by using two 4-input LUTs. Larger binary
multiplexers are decomposed by the synthesis tool into 4:1 multiplexer blocks,
possibly with a residual 2:1 multiplexer at the head.

Selector Multiplexers

Selector multiplexers have a separate select line for each data input. The select lines
for the multiplexer are one-hot encoded. Example 13–55 shows a simple Verilog HDL
code example describing a one-hot selector multiplexer.

Selector multiplexers are commonly built as a tree of AND and OR gates. An N-input
selector multiplexer of this structure is slightly less efficient in implementation than a
binary multiplexer. However, in many cases the select signal is the output of a
decoder, in which case Quartus II Synthesis will try to combine the selector and
decoder into a binary multiplexer.

Priority Multiplexers

In priority multiplexers, the select logic implies a priority. The options to select the
correct item must be checked in a specific order based on signal priority. These
structures commonly are created from IF, ELSE, WHEN, SELECT, and ?: statements in
VHDL or Verilog HDL. The example VHDL code in Example 13–56 probably results
in the schematic implementation illustrated in Figure 13–4.

Example 13–55. Verilog HDL One-Hot-Encoded Case Statement

case (sel)
4'b0001: z = a;
4'b0010: z = b;
4'b0100: z = c;
4'b1000: z = d;
default: z = 1'bx;

endcase

Example 13–56. VHDL IF Statement Implying Priority

IF cond1 THEN z <= a;
ELSIF cond2 THEN z <= b;
ELSIF cond3 THEN z <= c;
ELSE z <= d;
END IF;
November 2013 Altera Corporation Quartus II Handbook Version 13.1
Volume 1: Design and Synthesis

13–70 Chapter 13: Recommended HDL Coding Styles
General Coding Guidelines
The multiplexers in Figure 13–4 form a chain, evaluating each condition or select bit
sequentially.

Depending on the number of multiplexers in the chain, the timing delay through this
chain can become large, especially for device families with 4-input LUTs.

To improve the timing delay through the multiplexer, avoid priority multiplexers if
priority is not required. If the order of the choices is not important to the design, use a
CASE statement to implement a binary or selector multiplexer instead of a priority
multiplexer. If delay through the structure is important in a multiplexed design
requiring priority, consider recoding the design to reduce the number of logic levels to
minimize delay, especially along your critical paths.

Implicit Defaults in If Statements
The IF statements in Verilog HDL and VHDL can be a convenient way to specify
conditions that do not easily lend themselves to a CASE-type approach. However,
using IF statements can result in complicated multiplexer trees that are not easy for
synthesis tools to optimize. In particular, every IF statement has an implicit ELSE
condition, even when it is not specified. These implicit defaults can cause additional
complexity in a multiplexed design.

There are several ways you can simplify multiplexed logic and remove unneeded
defaults. The optimal method may be to recode the design so the logic takes the
structure of a 4:1 CASE statement. Alternatively, if priority is important, you can
restructure the code to reduce default cases and flatten the multiplexer. Examine
whether the default "ELSE IF" conditions are don’t care cases. You may be able to
create a default ELSE statement to make the behavior explicit. Avoid unnecessary
default conditions in your multiplexer logic to reduce the complexity and logic
utilization required to implement your design.

Default or Others Case Assignment
To fully specify the cases in a CASE statement, include a default (Verilog HDL) or
OTHERS (VHDL) assignment. This assignment is especially important in one-hot
encoding schemes where many combinations of the select lines are unused.
Specifying a case for the unused select line combinations gives the synthesis tool
information about how to synthesize these cases, and is required by the Verilog HDL
and VHDL language specifications.

Figure 13–4. Priority Multiplexer Implementation of an IF Statement

1 0

1 0

cond3

cond2

cond1 1 0

c

b

a

z

d

Quartus II Handbook Version 13.1 November 2013 Altera Corporation
Volume 1: Design and Synthesis

Chapter 13: Recommended HDL Coding Styles 13–71
General Coding Guidelines
Some designs do not require that the outcome in the unused cases be considered,
often because designers assume these cases will not occur. For these types of designs,
you can specify any value for the default or OTHERS assignment. However, be aware
that the assignment value you choose can have a large effect on the logic utilization
required to implement the design due to the different ways synthesis tools treat
different values for the assignment, and how the synthesis tools use different speed
and area optimizations.

To obtain best results, explicitly define invalid CASE selections with a separate default
or OTHERS statement instead of combining the invalid cases with one of the defined
cases.

If the value in the invalid cases is not important, specify those cases explicitly by
assigning the X (don’t care) logic value instead of choosing another value. This
assignment allows your synthesis tool to perform the best area optimizations.

Cyclic Redundancy Check Functions
CRC computations are used heavily by communications protocols and storage
devices to detect any corruption of data. These functions are highly effective; there is a
very low probability that corrupted data can pass a 32-bit CRC check.

CRC functions typically use wide XOR gates to compare the data. The way synthesis
tools flatten and factor these XOR gates to implement the logic in FPGA LUTs can
greatly impact the area and performance results for the design. XOR gates have a
cancellation property that creates an exceptionally large number of reasonable
factoring combinations, so synthesis tools cannot always choose the best result by
default.

The 6-input ALUT has a significant advantage over 4-input LUTs for these designs.
When properly synthesized, CRC processing designs can run at high speeds in
devices with 6-input ALUTs.

The following guidelines help you improve the quality of results for CRC designs in
Altera devices.

If Performance is Important, Optimize for Speed
Synthesis tools flatten XOR gates to minimize area and depth of levels of logic.
Synthesis tools such as Quartus II integrated synthesis target area optimization by
default for these logic structures. Therefore, for more focus on depth reduction, set the
synthesis optimization technique to speed.

Flattening for depth sometimes causes a significant increase in area.

Use Separate CRC Blocks Instead of Cascaded Stages
Some designers optimize their CRC designs to use cascaded stages (for example, four
stages of 8 bits). In such designs, intermediate calculations are used as required (such
as the calculations after 8, 24, or 32 bits) depending on the data width. This design is
not optimal in FPGA devices. The XOR cancellations that can be performed in CRC
designs mean that the function does not require all the intermediate calculations to
November 2013 Altera Corporation Quartus II Handbook Version 13.1
Volume 1: Design and Synthesis

13–72 Chapter 13: Recommended HDL Coding Styles
General Coding Guidelines
determine the final result. Therefore, forcing the use of intermediate calculations
increases the area required to implement the function, as well as increasing the logic
depth because of the cascading. It is typically better to create full separate CRC blocks
for each data width that you require in the design, and then multiplex them together
to choose the appropriate mode at a given time

Use Separate CRC Blocks Instead of Allowing Blocks to Merge
Synthesis tools often attempt to optimize CRC designs by sharing resources and
extracting duplicates in two different CRC blocks because of the factoring options in
the XOR logic. As addressed previously, the CRC logic allows significant reductions,
but this works best when each CRC function is optimized separately. Check for
duplicate extraction behavior if you have different CRC functions that are driven by
common data signals or that feed the same destination signals.

If you are having problems with the quality of results and you see that two CRC
functions are sharing logic, ensure that the blocks are synthesized independently
using one of the following methods:

■ Define each CRC block as a separate design partition in an incremental
compilation design flow.

f For details, refer to the Quartus II Incremental Compilation for Hierarchical and
Team-Based Design chapter in volume 1 of the Quartus II Handbook.

■ Synthesize each CRC block as a separate project in your third-party synthesis tool
and then write a separate Verilog Quartus Mapping (.vqm) or EDIF netlist file for
each.

Take Advantage of Latency if Available
If your design can use more than one cycle to implement the CRC functionality,
adding registers and retiming the design can help reduce area, improve performance,
and reduce power utilization. If your synthesis tool offers a retiming feature (such as
the Quartus II software Perform gate-level register retiming option), you can insert
an extra bank of registers at the input and allow the retiming feature to move the
registers for better results. You can also build the CRC unit half as wide and alternate
between halves of the data in each clock cycle.

Save Power by Disabling CRC Blocks When Not in Use
CRC designs are heavy consumers of dynamic power because the logic toggles
whenever there is a change in the design. To save power, use clock enables to disable
the CRC function for every clock cycle that the logic is not required. Some designs
don’t check the CRC results for a few clock cycles while other logic is performed. It is
valuable to disable the CRC function even for this short amount of time.
Quartus II Handbook Version 13.1 November 2013 Altera Corporation
Volume 1: Design and Synthesis

http://www.altera.com/literature/hb/qts/qts_qii51015.pdf
http://www.altera.com/literature/hb/qts/qts_qii51015.pdf

Chapter 13: Recommended HDL Coding Styles 13–73
General Coding Guidelines
Use the Device Synchronous Load (sload) Signal to Initialize
The data in many CRC designs must be initialized to 1’s before operation. If your
target device supports the use of the sload signal, you should use it to set all the
registers in your design to 1’s before operation. To enable use of the sload signal,
follow the coding guidelines presented in “Secondary Register Control Signals Such
as Clear and Clock Enable” on page 13–46. You can check the register equations in the
Chip Planner to ensure that the signal was used as expected.

f If you must force a register implementation using an sload signal, you can use
low-level device primitives as described in the Designing with Low-Level Primitives
User Guide.

Comparators
Synthesis software, including Quartus II integrated synthesis, uses device and
context-specific implementation rules for comparators (<, >, or ==) and selects the best
one for your design. This section provides some information about the different types
of implementations available and provides suggestions on how you can code your
design to encourage a specific implementation.

The == comparator is implemented in general logic cells. The < comparison can be
implemented using the carry chain or general logic cells. In devices with 6-input
ALUTs, the carry chain is capable of comparing up to three bits per cell. In devices
with 4-input LUTs, the capacity is one bit of comparison per cell, which is similar to an
add/subtract chain. The carry chain implementation tends to be faster than the
general logic on standalone benchmark test cases, but can result in lower performance
when it is part of a larger design due to the increased restriction on the Fitter. The area
requirement is similar for most input patterns. The synthesis software selects an
appropriate implementation based on the input pattern.

If you are using Quartus II integrated synthesis, you can guide the synthesis by using
specific coding styles. To select a carry chain implementation explicitly, rephrase your
comparison in terms of addition. As a simple example, the following coding style
allows the synthesis tool to select the implementation, which is most likely using
general logic cells in modern device families:

wire [6:0] a,b;
wire alb = a<b;

In the following coding style, the synthesis tool uses a carry chain (except for a few
cases, such as when the chain is very short or the signals a and b minimize to the same
signal):

wire [6:0] a,b;
wire [7:0] tmp = a - b;
wire alb = tmp[7]

This second coding style uses the top bit of the tmp signal, which is 1 in twos
complement logic if a is less than b, because the subtraction a – b results in a negative
number.

If you have any information about the range of the input, you have “don’t care”
values that you can use to optimize the design. Because this information is not
available to the synthesis tool, you can often reduce the device area required to
implement the comparator with specific hand implementation of the logic.
November 2013 Altera Corporation Quartus II Handbook Version 13.1
Volume 1: Design and Synthesis

http://www.altera.com/literature/ug/ug_low_level.pdf
http://www.altera.com/literature/ug/ug_low_level.pdf

13–74 Chapter 13: Recommended HDL Coding Styles
Designing with Low-Level Primitives
You can also check whether a bus value is within a constant range with a small
amount of logic area by using the logic structure in Figure 13–5. This type of logic
occurs frequently in address decoders.

Counters
Implementing counters in HDL code is easy; they are implemented with an adder
followed by registers. Remember that the register control signals, such as enable (ena),
synchronous clear (sclr), and synchronous load (sload), are available. For the best
area utilization, ensure that the up/down control or controls are expressed in terms of
one addition instead of two separate addition operators.

If you use the following coding style, your synthesis tool may implement two
separate carry chains for addition (if it doesn’t detect the issue and optimize the logic):

out <= count_up ? out + 1 : out - 1;

The following coding style requires only one adder along with some other logic:

out <= out + (count_up ? 1 : -1);

In this case, the coding style better matches the device hardware because there is only
one carry chain adder, and the –1 constant logic is implemented in the LUT in front of
the adder without adding extra area utilization.

Designing with Low-Level Primitives
Low-level HDL design is the practice of using low-level primitives and assignments
to dictate a particular hardware implementation for a piece of logic. Low-level
primitives are small architectural building blocks that assist you in creating your
design. With the Quartus II software, you can use low-level HDL design techniques to
force a specific hardware implementation that can help you achieve better resource
utilization or faster timing results.

1 Using low-level primitives is an advanced technique to help with specific design
challenges, and is optional in the Altera design flow. For many designs, synthesizing
generic HDL source code and Altera megafunctions gives you the best results.

Low-level primitives allow you to use the following types of coding techniques:

■ Instantiate the logic cell or LCELL primitive to prevent Quartus II integrated
synthesis from performing optimizations across a logic cell

Figure 13–5. Example Logic Structure for Using Comparators to Check a Bus Value Range

Address[]

Select[0]Select[3] Select[2] Select[1]

< 200< 2f00 < 1a0 < 100
Quartus II Handbook Version 13.1 November 2013 Altera Corporation
Volume 1: Design and Synthesis

Chapter 13: Recommended HDL Coding Styles 13–75
Conclusion
■ Create carry and cascade chains using CARRY, CARRY_SUM, and CASCADE primitives

■ Instantiate registers with specific control signals using DFF primitives

■ Specify the creation of LUT functions by identifying the LUT boundaries

■ Use I/O buffers to specify I/O standards, current strengths, and other I/O
assignments

■ Use I/O buffers to specify differential pin names in your HDL code, instead of
using the automatically-generated negative pin name for each pair

f For details about and examples of using these types of assignments, refer to the
Designing with Low-Level Primitives User Guide.

Conclusion
Because coding style and megafunction implementation can have such a large effect
on your design performance, it is important to match the coding style to the device
architecture from the very beginning of the design process. To improve design
performance and area utilization, take advantage of advanced device features, such as
memory and DSP blocks, as well as the logic architecture of the targeted Altera device
by following the coding recommendations presented in this chapter.

f For additional optimization recommendations, refer to the Area and Timing
Optimization chapter in volume 2 of the Quartus II Handbook.

Document Revision History
Table 13–3 shows the revision history for this document.

Table 13–3. Document Revision History (Part 1 of 2)

Date Version Changes

November 2013 13.1.0 Removed HardCopy device information.

June 2012 12.0.0

■ Revised section on inserting Altera templates.

■ Code update for Example 11-51.

■ Minor corrections and updates.

November 2011 11.1.0
■ Updated document template.

■ Minor updates and corrections.

December 2010 10.1.0

■ Changed to new document template.

■ Updated Unintentional Latch Generation content.

■ Code update for Example 11-18.

July 2010 10.0.0

■ Added support for mixed-width RAM

■ Updated support for no_rw_check for inferring RAM blocks

■ Added support for byte-enable

November 2009 9.1.0
■ Updated support for Controlling Inference and Implementation in Device RAM Blocks

■ Updated support for Shift Registers
November 2013 Altera Corporation Quartus II Handbook Version 13.1
Volume 1: Design and Synthesis

http://www.altera.com/literature/hb/qts/qts_qii52005.pdf
http://www.altera.com/literature/hb/qts/qts_qii52005.pdf
http://www.altera.com/literature/ug/ug_low_level.pdf
http://www.altera.com/literature/ug/ug_low_level.pdf

13–76 Chapter 13: Recommended HDL Coding Styles
Document Revision History
f For previous versions of the Quartus II Handbook, refer to the Quartus II Handbook
Archive.

March 2009 9.0.0

■ Corrected and updated several examples

■ Added support for Arria II GX devices

■ Other minor changes to chapter

November 2008 8.1.0 Changed to 8-1/2 x 11 page size. No change to content.

May 2008 8.0.0

Updates for the Quartus II software version 8.0 release, including:

■ Added information to “RAM Functions—Inferring ALTSYNCRAM and ALTDPRAM
Megafunctions from HDL Code” on page 6–13

■ Added information to “Avoid Unsupported Reset and Control Conditions” on page 6–14

■ Added information to “Check Read-During-Write Behavior” on page 6–16

■ Added two new examples to “ROM Functions—Inferring ALTSYNCRAM and LPM_ROM
Megafunctions from HDL Code” on page 6–28: Example 6–24 and Example 6–25

■ Added new section: “Clock Multiplexing” on page 6–46

■ Added hyperlinks to references within the chapter

■ Minor editorial updates

Table 13–3. Document Revision History (Part 2 of 2)

Date Version Changes
Quartus II Handbook Version 13.1 November 2013 Altera Corporation
Volume 1: Design and Synthesis

http://www.altera.com/literature/lit-qts_archive.jsp
http://www.altera.com/literature/lit-qts_archive.jsp

13–76 Chapter 13: Recommended HDL Coding Styles
Document Revision History
f For previous versions of the Quartus II Handbook, refer to the Quartus II Handbook
Archive.

March 2009 9.0.0

■ Corrected and updated several examples

■ Added support for Arria II GX devices

■ Other minor changes to chapter

November 2008 8.1.0 Changed to 8-1/2 x 11 page size. No change to content.

May 2008 8.0.0

Updates for the Quartus II software version 8.0 release, including:

■ Added information to “RAM Functions—Inferring ALTSYNCRAM and ALTDPRAM
Megafunctions from HDL Code” on page 6–13

■ Added information to “Avoid Unsupported Reset and Control Conditions” on page 6–14

■ Added information to “Check Read-During-Write Behavior” on page 6–16

■ Added two new examples to “ROM Functions—Inferring ALTSYNCRAM and LPM_ROM
Megafunctions from HDL Code” on page 6–28: Example 6–24 and Example 6–25

■ Added new section: “Clock Multiplexing” on page 6–46

■ Added hyperlinks to references within the chapter

■ Minor editorial updates

Table 13–3. Document Revision History (Part 2 of 2)

Date Version Changes
Quartus II Handbook Version 13.1 June 2012 Altera Corporation
Volume 1: Design and Synthesis

http://www.altera.com/literature/lit-qts_archive.jsp
http://www.altera.com/literature/lit-qts_archive.jsp

QII51018-12.0.0

© 2012 Altera Corporation. All rights reserved. ALTERA, ARRI
are trademarks of Altera Corporation and registered in the U.S
trademarks or service marks are the property of their respectiv
semiconductor products to current specifications in accordance
services at any time without notice. Altera assumes no respons
described herein except as expressly agreed to in writing by Al
on any published information and before placing orders for pr

Quartus II Handbook Version 13.1
Volume 1: Design and Synthesis
June 2012

June 2012
QII51018-12.0.0
14. Managing Metastability with the
Quartus II Software
This chapter describes the industry-leading analysis, reporting, and optimization
features that can help you manage metastability in Altera® devices. You can use the
Quartus® II software to analyze the average mean time between failures (MTBF) due
to metastability caused by synchronization of asynchronous signals, and optimize the
design to improve the metastability MTBF. This chapter explains how to take
advantage of these features in the Quartus II software, and provides guidelines to
help you reduce the chance of metastability effects caused by signal synchronization.

Introduction
All registers in digital devices, such as FPGAs, have defined signal-timing
requirements that allow each register to correctly capture data at its input ports and
produce an output signal. To ensure reliable operation, the input to a register must be
stable for a minimum amount of time before the clock edge (register setup time or tSU)
and a minimum amount of time after the clock edge (register hold time or tH). The
register output is available after a specified clock-to-output delay (tCO).

If the data violates the setup or hold time requirements, the output of the register
might go into a metastable state. In a metastable state, the voltage at the register
output hovers at a value between the high and low states, which means the output
transition to a defined high or low state is delayed beyond the specified tCO. Different
destination registers might capture different values for the metastable signal, which
can cause the system to fail.

In synchronous systems, the input signals must always meet the register timing
requirements, so that metastability does not occur. Metastability problems commonly
occur when a signal is transferred between circuitry in unrelated or asynchronous
clock domains, because the signal can arrive at any time relative to the destination
clock.

The MTBF due to metastability is an estimate of the average time between instances
when metastability could cause a design failure. A high MTBF (such as hundreds or
thousands of years between metastability failures) indicates a more robust design.
You should determine an acceptable target MTBF in the context of your entire system
and taking in account that MTBF calculations are statistical estimates.

The metastability MTBF for a specific signal transfer, or all the transfers in a design,
can be calculated using information about the design and the device characteristics.
Improving the metastability MTBF for your design reduces the chance that signal
transfers could cause metastability problems in your device.
A, CYCLONE, HARDCOPY, MAX, MEGACORE, NIOS, QUARTUS and STRATIX words and logos
. Patent and Trademark Office and in other countries. All other words and logos identified as
e holders as described at www.altera.com/common/legal.html. Altera warrants performance of its
 with Altera's standard warranty, but reserves the right to make changes to any products and
ibility or liability arising out of the application or use of any information, product, or service
tera. Altera customers are advised to obtain the latest version of device specifications before relying
oducts or services.

Feedback SubscribeTwitter

ISO
9001:2008
Registered

https://www.altera.com/servlets/subscriptions/alert?id=QII51018
http://www.altera.com/common/legal.html
mailto:TechDocFeedback@altera.com?subject=Feedback on QII51018-12.0 (QII HB, Vol 1, Ch15: Managing Metastability)
http://www.altera.com/support/reliability/certifications/rel-certifications.html
http://www.altera.com/support/reliability/certifications/rel-certifications.html
http://twitter.com/home/?status=Managing+Metastability+with+the+Quartus+II+Software+http://www.altera.com/literature/hb/qts/qts_qii51018.pdf?WT.mc

14–2 Chapter 14: Managing Metastability with the Quartus II Software
Metastability Analysis in the Quartus II Software
f For more information about metastability due to signal synchronization, its effects in
FPGAs, and how MTBF is calculated, refer to the Understanding Metastability in FPGAs
white paper on the Altera website. Your overall device MTBF is also affected by other
FPGA failure mechanisms that you cannot control with your design. For information
about Altera device reliability, refer to the Reliability Report on the Altera website.

The Quartus II software provides analysis, optimization, and reporting features to
help manage metastability in Altera designs. These metastability features are
supported only for designs constrained with the Quartus II Timing Analyzer. Both
typical and worst-case MBTF values are generated for select device families.

h For information about device and version support for the metastability features in the
Quartus II software, refer to the Quartus II Help.

This chapter contains the following topics:

■ “Metastability Analysis in the Quartus II Software”

■ “Metastability and MTBF Reporting” on page 14–5

■ “MTBF Optimization” on page 14–8

■ “Reducing Metastability Effects” on page 14–9

■ “Scripting Support” on page 14–11

Metastability Analysis in the Quartus II Software
When a signal transfers between circuitry in unrelated or asynchronous clock
domains, the first register in the new clock domain acts as a synchronization register.
To minimize the failures due to metastability in asynchronous signal transfers, circuit
designers typically use a sequence of registers (a synchronization register chain or
synchronizer) in the destination clock domain to resynchronize the signal to the new
clock domain and allow additional time for a potentially metastable signal to resolve
to a known value. Designers commonly use two registers to synchronize a new signal,
but a standard of three registers provides better metastability protection.

The timing analyzer can analyze and report the MTBF for each identified
synchronizer that meets its timing requirements, and can generate an estimate of the
overall design MTBF. The software uses this information to optimize the design
MTBF, and you can use this information to determine whether your design requires
longer synchronizer chains.

This section contains the following subsections:

■ “Synchronization Register Chains”

■ “Identifying Synchronizers for Metastability Analysis” on page 14–4

■ “How Timing Constraints Affect Synchronizer Identification and Metastability
Analysis” on page 14–4

For information about the reports generated by the timing analyzer, refer to
“Metastability and MTBF Reporting” on page 14–5. For more information about
optimizing the MTBF, refer to “MTBF Optimization” on page 14–8.
Quartus II Handbook Version 13.1 June 2012 Altera Corporation
Volume 1: Design and Synthesis

http://www.altera.com/literature/rr/rr.pdf
http://www.altera.com/literature/wp/wp-01082-quartus-ii-metastability.pdf

Chapter 14: Managing Metastability with the Quartus II Software 14–3
Metastability Analysis in the Quartus II Software
Synchronization Register Chains
A synchronization register chain, or synchronizer, is defined as a sequence of registers
that meets the following requirements:

■ The registers in the chain are all clocked by the same clock or phase-related clocks.

■ The first register in the chain is driven asynchronously or from an unrelated clock
domain.

■ Each register fans out to only one register, except the last register in the chain.

The length of the synchronization register chain is the number of registers in the
synchronizing clock domain that meet the above requirements. Figure 14–1 shows a
sample two-register synchronization chain.

The path between synchronization registers can contain combinational logic as long
as all registers of the synchronization register chain are in the same clock domain.
Figure 14–2 shows an example of a synchronization register chain that includes logic
between the registers.

The Quartus II software uses the design timing constraints to determine which
connections are asynchronous signal transfers, as described in “How Timing
Constraints Affect Synchronizer Identification and Metastability Analysis” on
page 14–4.

Figure 14–1. Sample Synchronization Register Chain

Figure 14–2. Sample Synchronization Register Chain Containing Logic

Clock 1 Domain Clock 2 Domain

Data

Clock 1 Clock 2

Output
Registers

D Q D Q D Q

Synchronization Chain

Clock 1 Domain Clock 2 Domain

Data

Clock 1 Clock 2

Clock 2

Clock 2

Output
Registers

D Q D Q

D Q

D Q

Synchronization Chain

Data
June 2012 Altera Corporation Quartus II Handbook Version 13.1
Volume 1: Design and Synthesis

14–4 Chapter 14: Managing Metastability with the Quartus II Software
Metastability Analysis in the Quartus II Software
The timing slack available in the register-to-register paths of the synchronizer allows a
metastable signal to settle, and is referred to as the available settling time. The
available settling time in the MTBF calculation for a synchronizer is the sum of the
output timing slacks for each register in the chain. Adding available settling time with
additional synchronization registers improves the metastability MTBF.

Identifying Synchronizers for Metastability Analysis
The first step in enabling metastability MTBF analysis and optimization in the
Quartus II software is to identify which registers are part of a synchronization register
chain. You can apply synchronizer identification settings globally to automatically list
possible synchronizers with the Synchronizer identification option on the Timing
Analyzer page in the Settings dialog box.

Synchronization chains are already identified within most Altera intellectual property
(IP) cores.

h For more information about how to enable metastability MTBF analysis and
optimization in the Quartus II software, and more detailed descriptions of the
synchronizer identification settings, refer to Identifying Synchronizers for Metastability
Analysis in Quartus II Help.

How Timing Constraints Affect Synchronizer Identification and
Metastability Analysis

The timing analyzer can analyze metastability MTBF only if a synchronization chain
meets its timing requirements. The metastability failure rate depends on the timing
slack available in the synchronizer’s register-to-register connections, because that
slack is the available settling time for a potential metastable signal. Therefore, you
must ensure that your design is correctly constrained with the real application
frequency requirements to get an accurate MTBF report.

In addition, the Auto and Forced If Asynchronous synchronizer identification
options use timing constraints to automatically detect the synchronizer chains in the
design. These options check for signal transfers between circuitry in unrelated or
asynchronous clock domains, so clock domains must be related correctly with timing
constraints.

The timing analyzer views input ports as asynchronous signals unless they are
associated correctly with a clock domain. If an input port fans out to registers that are
not acting as synchronization registers, apply a set_input_delay constraint to the
input port; otherwise, the input register might be reported as a synchronization
register. Constraining a synchronous input port with a set_max_delay constraint for a
setup (tSU) requirement does not prevent synchronizer identification because the
constraint does not associate the input port with a clock domain.

Instead, use the following command to specify an input setup requirement associated
with a clock:

set_input_delay -max -clock <clock name> <latch – launch – tsu requirement> <input
port name>
Quartus II Handbook Version 13.1 June 2012 Altera Corporation
Volume 1: Design and Synthesis

http://quartushelp.altera.com/current/master.htm#mergedProjects/analyze/sta/sta_pro_identifying_synchronizers.htm
http://quartushelp.altera.com/current/master.htm#mergedProjects/analyze/sta/sta_pro_identifying_synchronizers.htm

Chapter 14: Managing Metastability with the Quartus II Software 14–5
Metastability and MTBF Reporting
Registers that are at the end of false paths are also considered synchronization
registers because false paths are not timing-analyzed. Because there are no timing
requirements for these paths, the signal may change at any point, which may violate
the tSU and tH of the register. Therefore, these registers are identified as
synchronization registers. If these registers are not used for synchronization, you can
turn off synchronizer identification and analysis. To do so, set Synchronizer
Identification to Off for the first synchronization register in these register chains.

Metastability and MTBF Reporting
The Quartus II software reports the metastability analysis results in the Compilation
Report and Timing Analyzer reports as described in “Metastability Reports”. The
MTBF calculation uses timing and structural information about the design, silicon
characteristics, and operating conditions, along with the data toggle rate described in
“Synchronizer Data Toggle Rate in MTBF Calculation” on page 14–7.

If you change the Synchronizer Identification settings, you can generate new
metastability reports by rerunning the timing analyzer. However, you should rerun
the Fitter first so that the registers identified with the new setting can be optimized for
metastability MTBF. For information about metastability optimization, refer to “MTBF
Optimization” on page 14–8.

For more information about how metastability MTBF is calculated, refer to the
Understanding Metastability in FPGAs white paper.

Metastability Reports
Metastability reports provide summaries of the metastability analysis results. In
addition to the MTBF Summary and Synchronizer Summary reports, the Timing
Analyzer tool reports additional statistics in a report for each synchronizer chain.

h For more information about how to access metastability reports in the Quartus II
software, refer to Viewing Metastability Reports in Quartus II Help.

1 If the design uses only the Auto Synchronizer Identification setting, the reports list
likely synchronizers but do not report MTBF. To obtain an MTBF for each register
chain, force identification of synchronization registers as described in “Identifying
Synchronizers for Metastability Analysis” on page 14–4.

1 If the synchronizer chain does not meet its timing requirements, the reports list
identified synchronizers but do not report MTBF. To obtain MTBF calculations, ensure
that the design is properly constrained and that the synchronizer meets its timing
requirements, as described in “How Timing Constraints Affect Synchronizer
Identification and Metastability Analysis” on page 14–4.

MTBF Summary Report
The MTBF Summary reports an estimate of the overall robustness of cross-clock
domain and asynchronous transfers in the design. This estimate uses the MTBF
results of all synchronization chains in the design to calculate an MTBF for the entire
design.
June 2012 Altera Corporation Quartus II Handbook Version 13.1
Volume 1: Design and Synthesis

http://quartushelp.altera.com/current/master.htm#mergedProjects/analyze/sta/sta_pro_viewing_metastability_reports.htm
http://www.altera.com/literature/wp/wp-01082-quartus-ii-metastability.pdf.

14–6 Chapter 14: Managing Metastability with the Quartus II Software
Metastability and MTBF Reporting
The MTBF Summary Report reports the Typical MTBF of Design and the Worst-Case
MTBF of Design for supported fully-characterized devices. The typical MTBF result
assumes typical conditions, defined as nominal silicon characteristics for the selected
device speed grade, as well as nominal operating conditions. The worst case MTBF
result uses the worst case silicon characteristics for the selected device speed grade.

When you analyze multiple timing corners in the timing analyzer, the MTBF
calculation may vary because of changes in the operating conditions, and the timing
slack or available metastability settling time. Altera recommends running
multi-corner timing analysis to ensure that you analyze the worst MTBF results,
because the worst timing corner for MTBF does not necessarily match the worst
corner for timing performance.

h For more information about turning on multicorner timing analysis in the Quartus II
software, refer to the Timing Analyzer page in Quartus II Help.

The MTBF Summary report also lists the Number of Synchronizer Chains Found
and the length of the Shortest Synchronizer Chain, which can help you identify
whether the report is based on accurate information. If the number of synchronizer
chains found is different from what you expect, or if the length of the shortest
synchronizer chain is less than you expect, you might have to add or change
Synchronizer Identification settings for the design. The report also provides the
Worst Case Available Settling Time, defined as the available settling time for the
synchronizer with the worst MTBF.

You can use the reported Fraction of Chains for which MTBFs Could Not be
Calculated to determine whether a high proportion of chains are missing in the
metastability analysis. A fraction of 1, for example, means that MTBF could not be
calculated for any chains in the design. MTBF is not calculated if you have not
identified the chain with the appropriate Synchronizer identification option, or if
paths are not timing-analyzed and therefore have no valid slack for metastability
analysis. You might have to correct your timing constraints to enable complete
analysis of the applicable register chains.

Finally, the MTBF Summary report specifies how an increase of 100ps in available
settling time increases the MTBF values. If your MTBF is not satisfactory, this metric
can help you determine how much extra slack would be required in your
synchronizer chain to allow you to reach the desired design MTBF.

Synchronizer Summary Report
The Synchronizer Summary lists the synchronization register chains detected in the
design depending on the Synchronizer Identification setting. The Source Node is the
register or input port that is the source of the asynchronous transfer. The
Synchronization Node is the first register of the synchronization chain. The Source
Clock is the clock domain of the source node, and the Synchronization Clock is the
clock domain of the synchronizer chain.

This summary reports the calculated Worst-Case MTBF, if available, and the Typical
MTBF, for each appropriately identified synchronization register chain that meets its
timing requirement. To see more detail about each synchronizer, refer to the statistics
report described in the following section.
Quartus II Handbook Version 13.1 June 2012 Altera Corporation
Volume 1: Design and Synthesis

http://quartushelp.altera.com/current/master.htm#mergedProjects/analyze/sta/sta_tqa_settings.htm

Chapter 14: Managing Metastability with the Quartus II Software 14–7
Metastability and MTBF Reporting
Synchronizer Chain Statistics Report in the Timing Analyzer
The timing analyzer provides an additional report for each synchronizer chain. The
Chain Summary tab matches the Synchronizer Summary information described in
the previous section, while the Statistics tab adds more details, including whether the
Method of Synchronizer Identification was User Specified (with the Forced if
Asynchronous or Forced settings for the Synchronizer Identification setting), or
Automatic (with the Auto setting). The Number of Synchronization Registers in
Chain report provides information about the parameters that affect the MTBF
calculation, including the Available Settling Time for the chain and the Data Toggle
Rate Used in MTBF Calculation.

1 For information about the toggle rate, see “Synchronizer Data Toggle Rate in MTBF
Calculation” on page 14–7.

The following information is also included to help you locate the chain is in your
design:

■ Source Clock and Asynchronous Source node of the signal.

■ Synchronization Clock in the destination clock domain.

■ Node names of the Synchronization Registers in the chain.

Synchronizer Data Toggle Rate in MTBF Calculation
The MTBF calculations assume the data being synchronized is switching at a toggle
rate of 12.5% of the source clock frequency. That is, the arriving data is assumed to
switch once every eight source clock cycles. If multiple clocks apply, the highest
frequency is used. If no source clocks can be determined, the data rate is taken as
12.5% of the synchronization clock frequency.

If you know an approximate rate at which the data changes, specify it with the
Synchronizer Toggle Rate assignment in the Assignment Editor. You can also apply
this assignment to an entity or the entire design. Set the data toggle rate, in number of
transitions per second, on the first register of a synchronization chain. The timing
analyzer takes the specified rate into account when computing the MTBF of that
particular register chain. If a data signal never toggles and does not affect the
reliability of the design, you can set the Synchronizer Toggle Rate to 0 for the
synchronization chain so the MTBF is not reported. To apply the assignment with Tcl,
use the following command:

set_instance_assignment -name SYNCHRONIZER_TOGGLE_RATE <toggle rate in
transitions/second> -to <register name>

1 There are two other assignments associated with toggle rates, which are not used for
metastability MTBF calculations. The I/O Maximum Toggle Rate is only used for
pins, and specifies the worst-case toggle rates used for signal integrity purposes. The
Power Toggle Rate assignment is used to specify the expected time-averaged toggle
rate, and is used by the PowerPlay Power Analyzer to estimate time-averaged power
consumption.
June 2012 Altera Corporation Quartus II Handbook Version 13.1
Volume 1: Design and Synthesis

14–8 Chapter 14: Managing Metastability with the Quartus II Software
MTBF Optimization
MTBF Optimization
In addition to reporting synchronization register chains and MTBF values found in
the design, the Quartus II software can also protect these registers from optimizations
that might negatively impact MTBF and can optimize the register placement and
routing if the MTBF is too low. Synchronization register chains must first be explicitly
identified as synchronizers, as described in “Identifying Synchronizers for
Metastability Analysis” on page 14–4. Altera recommends that you set Synchronizer
Identification to Forced If Asynchronous for all registers that are part of a
synchronizer chain.

Optimization algorithms, such as register duplication and logic retiming in physical
synthesis, are not performed on identified synchronization registers. The Fitter
protects the number of synchronization registers specified by the Synchronizer
Register Chain Length option which is described in the next section.

In addition, the Fitter optimizes identified synchronizers for improved MTBF by
placing and routing the registers to increase their output setup slack values. Adding
slack in the synchronizer chain increases the available settling time for a potentially
metastable signal, which improves the chance that the signal resolves to a known
value, and exponentially increases the design MTBF. The Fitter optimizes the number
of synchronization registers specified by the Synchronizer Register Chain Length
option.

Metastability optimization is on by default. To view or change the option, on the
Assignments menu, click Settings. Under Fitter Settings, click More Settings. From
the More Settings dialog box, you can turn on or off the Optimize Design for
Metastability option. To turn the optimization on or off with Tcl, use the following
command:

set_global_assignment -name OPTIMIZE_FOR_METASTABILITY <ON|OFF>

Synchronization Register Chain Length
The Synchronization Register Chain Length option specifies how many registers
should be protected from optimizations that might reduce MTBF for each register
chain, and controls how many registers should be optimized to increase MTBF with
the Optimize Design for Metastability option. For example, if the Synchronization
Register Chain Length option is set to 2, optimizations such as register duplication or
logic retiming are prevented from being performed on the first two registers in all
identified synchronization chains. The first two registers are also optimized to
improve MTBF when the Optimize Design for Metastability option is turned on.

The default setting for the Synchronization Register Chain Length option is 2. The
first register of a synchronization chain is always protected from operations that
might reduce MTBF, but you should set the protection length to protect more of the
synchronizer chain. Altera recommends that you set this option to the maximum
length of synchronization chains you have in your design so that all synchronization
registers are preserved and optimized for MTBF.

To change the global Synchronization Register Chain Length option, on the
Assignments menu, click Settings. Under Analysis & Synthesis Settings, click More
Settings. From the More Settings dialog box, you can set the Synchronization
Register Chain Length.
Quartus II Handbook Version 13.1 June 2012 Altera Corporation
Volume 1: Design and Synthesis

Chapter 14: Managing Metastability with the Quartus II Software 14–9
Reducing Metastability Effects
You can also set the Synchronization Register Chain Length on a node or an entity in
the Assignment Editor. You can set this value on the first register in a synchronization
chain to specify how many registers to protect and optimize in this chain. This
individual setting is useful if you want to protect and optimize extra registers that you
have created in a specific synchronization chain that has low MTBF, or optimize less
registers for MTBF in a specific chain where the maximum frequency or timing
performance is not being met. To make the global setting with Tcl, use the following
command:

set_global_assignment -name SYNCHRONIZATION_REGISTER_CHAIN_LENGTH
<number of registers>

To apply the assignment to a design instance or the first register in a specific chain
with Tcl, use the following command:

set_instance_assignment -name SYNCHRONIZATION_REGISTER_CHAIN_LENGTH
<number of registers> -to <register or instance name>

Reducing Metastability Effects
You can check your design's metastability MTBF in the Metastability Summary report
described in “Metastability Reports” on page 14–5, and determine an acceptable
target MTBF given the context of your entire system and the fact that MTBF
calculations are statistical estimates. A high metastability MTBF (such as hundreds or
thousands of years between metastability failures) indicates a more robust design.

This section provides guidelines to ensure complete and accurate metastability
analysis, and some suggestions to follow if the Quartus II metastability reports
calculate an unacceptable MTBF value. The Timing Optimization Advisor (available
from the Tools menu) gives similar suggestions in the Metastability Optimization
section.

Apply Complete System-Centric Timing Constraints for the Timing Analyzer
To enable the Quartus II metastability features, make sure that the timing analyzer is
used for timing analysis.

Ensure that the design is fully timing constrained and that it meets its timing
requirements. If the synchronization chain does not meet its timing requirements,
MTBF cannot be calculated. If the clock domain constraints are set up incorrectly, the
signal transfers between circuitry in unrelated or asynchronous clock domains might
be identified incorrectly.

Use industry-standard system-centric I/O timing constraints instead of using
FPGA-centric timing constraints. As described in “How Timing Constraints Affect
Synchronizer Identification and Metastability Analysis” on page 14–4, you should use
set_input_delay constraints in place of set_max_delay constraints to associate each
input port with a clock domain to help eliminate false positives during
synchronization register identification.

Force the Identification of Synchronization Registers
Use the guidelines in “Identifying Synchronizers for Metastability Analysis” on
page 14–4 to ensure the software reports and optimizes the appropriate register
chains.
June 2012 Altera Corporation Quartus II Handbook Version 13.1
Volume 1: Design and Synthesis

14–10 Chapter 14: Managing Metastability with the Quartus II Software
Reducing Metastability Effects
In summary, identify synchronization registers with the Synchronizer Identification
set to Forced If Asynchronous in the Assignment Editor. If there are any registers that
the software detects as synchronous but you want to be analyzed for metastability,
apply the Forced setting to the first synchronizing register. Set Synchronizer
Identification to Off for registers that are not synchronizers for asynchronous signals
or unrelated clock domains.

To help you find the synchronizers in your design, you can set the global
Synchronizer Identification setting on the Timing Analyzer page of the Settings
dialog box to Auto to generate a list of all the possible synchronization chains in your
design.

Set the Synchronizer Data Toggle Rate
The MTBF calculations assume the data being synchronized is switching at a toggle
rate of 12.5% of the source clock frequency. To obtain a more accurate MTBF for a
specific chain or all chains in your design, set the Synchronizer Toggle Rate as
described in “Synchronizer Data Toggle Rate in MTBF Calculation” on page 14–7.

Optimize Metastability During Fitting
Ensure that the Optimize Design for Metastability setting described in “MTBF
Optimization” on page 14–8 is turned on.

Increase the Length of Synchronizers to Protect and Optimize
Increase the Synchronizer Chain Length parameter to the maximum length of
synchronization chains in your design, as described in “Synchronization Register
Chain Length” on page 14–8. If you have synchronization chains longer than 2
identified in your design, you can protect the entire synchronization chain from
operations that might reduce MTBF and allow metastability optimizations to improve
the MTBF.

Set Fitter Effort to Standard Fit instead of Auto Fit
If your design MTBF is too low after following the previous guidelines in this section,
you can try increasing the Fitter effort to perform more metastability optimization.
The default Auto Fit setting reduces the Fitter’s effort after meeting the design’s
timing and routing requirements to reduce compilation time. This effort reduction can
result in less metastability optimization if the timing requirements are easy to meet. If
Auto Fit reduces the Fitter’s effort during your design compilation, setting the Fitter
effort to Standard Fit might improve the design’s MTBF results. In the Settings dialog
box, on the Fitter Settings page, set Fitter effort to Standard Fit.

Increase the Number of Stages Used in Synchronizers, If Possible
Designers commonly use two registers in a synchronization chain to minimize the
occurrence of metastable events, and a standard of three registers provides better
metastability protection. However, synchronization chains with two or even three
registers may not be enough to produce a high enough MTBF when the design runs at
high clock and data frequencies.
Quartus II Handbook Version 13.1 June 2012 Altera Corporation
Volume 1: Design and Synthesis

Chapter 14: Managing Metastability with the Quartus II Software 14–11
Scripting Support
If a synchronization chain is reported to have a low MTBF, consider adding an
additional register stage to your synchronization chain. This additional stage
increases the settling time of the synchronization chain, allowing more opportunity
for the signal to resolve to a known state during a metastable event. Additional
settling time increases the MTBF of the chain and improves the robustness of your
design. However, adding a synchronization stage introduces an additional stage of
latency on the signal.

If you use the Altera FIFO megafunction with separate read and write clocks to cross
clock domains, increase the metastability protection (and latency) for better MTBF. In
the MegaWizard™ Plug-In Manager for the DCFIFO function, choose the Best
metastability protection, best fmax, unsynchronized clocks option to add three or
more synchronization stages. You can increase the number of stages to more than
three using the How many sync stages? setting.

Select a Faster Speed Grade Device, if Possible
The design MTBF depends on process parameters of the device used. Faster devices
are less susceptible to metastability issues. If the design MTBF falls significantly
below the target MTBF, switching to a faster speed grade can improve the MTBF
substantially.

Scripting Support
You can run procedures and make settings described in this chapter in a Tcl script.
You can also run some procedures at a command prompt. For detailed information
about scripting command options, refer to the Quartus II Command-Line and Tcl API
Help browser. To run the Help browser, type the following command at the command
prompt:

quartus_sh --qhelp r

f For more information about Tcl scripting, refer to the Tcl Scripting chapter in volume 2
of the Quartus II Handbook. For more information about settings and constraints in the
Quartus II software, refer to the Quartus II Settings File Reference Manual. For more
information about command-line scripting, refer to the Command-Line Scripting
chapter in volume 2 of the Quartus II Handbook and About Quartus II Scripting in
Quartus II Help.

Identifying Synchronizers for Metastability Analysis
To apply the global Synchronizer Identification assignment described in “Identifying
Synchronizers for Metastability Analysis” on page 14–4, use the following command:

set_global_assignment -name SYNCHRONIZER_IDENTIFICATION
<OFF|AUTO|"FORCED IF ASYNCHRONOUS">

To apply the Synchronizer Identification assignment to a specific register or instance,
use the following command:

set_instance_assignment -name SYNCHRONIZER_IDENTIFICATION
<AUTO|"FORCED IF ASYNCHRONOUS"|FORCED|OFF> -to <register or instance
name>
June 2012 Altera Corporation Quartus II Handbook Version 13.1
Volume 1: Design and Synthesis

http://www.altera.com/literature/hb/qts/qts_qii52003.pdf
http://quartushelp.altera.com/current/master.htm#mergedProjects/reference/scripting/tcl_view_using_tcl_scripts.htm
http://www.altera.com/literature/manual/mnl_qsf_reference.pdf
http://www.altera.com/literature/hb/qts/qts_qii52002.pdf

14–12 Chapter 14: Managing Metastability with the Quartus II Software
Scripting Support
Synchronizer Data Toggle Rate in MTBF Calculation
To specify a toggle rate for MTBF calculations as described on page “Synchronizer
Data Toggle Rate in MTBF Calculation” on page 14–7, use the following command:

set_instance_assignment -name SYNCHRONIZER_TOGGLE_RATE <toggle rate in
transitions/second> -to <register name>

report_metastability and Tcl Command
If you use a command-line or scripting flow, you can generate the metastability
analysis reports described in “Metastability Reports” on page 14–5 outside of the
Quartus II and user interfaces. Table 14–1 describes the options for the
report_metastability and Tcl command.

MTBF Optimization
To ensure that metastability optimization described on page “MTBF Optimization” on
page 14–8 is turned on (or to turn it off), use the following command:

set_global_assignment -name OPTIMIZE_FOR_METASTABILITY <ON|OFF>

Synchronization Register Chain Length
To globally set the number of registers in a synchronization chain to be protected and
optimized as described on page “Synchronization Register Chain Length” on
page 14–8, use the following command:

set_global_assignment -name SYNCHRONIZATION_REGISTER_CHAIN_LENGTH
<number of registers>

To apply the assignment to a design instance or the first register in a specific chain,
use the following command:

set_instance_assignment -name SYNCHRONIZATION_REGISTER_CHAIN_LENGTH
<number of registers> -to <register or instance name>

Table 14–1. report_metastabilty Command Options

Option Description

-append
If output is sent to a file, this option appends the result to that file.
Otherwise, the file is overwritten.

-file <name> Sends the results to an ASCII or HTML file. The extension specified
in the file name determines the file type—either *.txt or *.html.

-panel_name <name> Sends the results to the panel and specifies the name of the new
panel.

-stdout
Indicates the report be sent to the standard output, via messages.
This option is required only if you have selected another output
format, such as a file, and would also like to receive messages.
Quartus II Handbook Version 13.1 June 2012 Altera Corporation
Volume 1: Design and Synthesis

Chapter 14: Managing Metastability with the Quartus II Software 14–13
Conclusion
Conclusion
Altera’s Quartus II software provides industry-leading analysis and optimization
features to help you manage metastability in your FPGA designs. Set up your
Quartus II project with the appropriate constraints and settings to enable the software
to analyze, report, and optimize the design MTBF. Take advantage of these features in
the Quartus II software and follow the guidelines in this chapter to make your design
more robust with respect to metastability.

Document Revision History
Table 14–2 shows the revision history for this document.

f For previous versions of the Quartus II Handbook, refer to the Quartus II Handbook
Archive.

Table 14–2. Document Revision History

Date Version Changes

June 2012 12.0.0 Removed survey link.

November 2011 10.0.2 Template update.

December 2010 10.0.1 Changed to new document template.

July 2010 10.0.0 Technical edit.

November 2009 9.1.0
Clarified description of synchronizer identification settings.

Minor changes to text and figures throughout document.

March 2009 9.0.0 Initial release.
June 2012 Altera Corporation Quartus II Handbook Version 13.1
Volume 1: Design and Synthesis

http://www.altera.com/literature/lit-qts_archive.jsp
http://www.altera.com/literature/lit-qts_archive.jsp

QII51017-13.1.0

© 2013 Altera Corporation. All rights reserved. ALTERA, ARRI
are trademarks of Altera Corporation and registered in the U.S
trademarks or service marks are the property of their respectiv
semiconductor products to current specifications in accordance
services at any time without notice. Altera assumes no respons
described herein except as expressly agreed to in writing by Al
on any published information and before placing orders for pr

Quartus II Handbook Version 13.1
Volume 1: Design and Synthesis
November 2013

November 2013
QII51017-13.1.0
15. Best Practices for Incremental
Compilation Partitions and

Floorplan Assignments
This chapter provides guidelines to help you partition your design to take advantage
of Quartus® II incremental compilation, and to help you create a design floorplan
using LogicLock™ regions when they are recommended to support the compilation
flow.

The Quartus II incremental compilation feature allows you to partition a design,
compile partitions separately, and reuse results for unchanged partitions. Incremental
compilation provides the following benefits:

■ Reduces compilation times by an average of 75% for large design changes

■ Preserves performance for unchanged design blocks

■ Provides repeatable results and reduces the number of compilations

■ Enables team-based design flows

f For more information about the incremental compilation feature and application
examples, refer to the Quartus II Incremental Compilation for Hierarchical and Team-Based
Design chapter in volume 1 of the Quartus II Handbook. For feature support, refer to
About Incremental Compilation in Quartus II Help.

This document contains the following sections:

■ “Overview: Incremental Compilation” on page 15–2

■ “Design Flows Using Incremental Compilation” on page 15–3

■ “Why Plan Partitions and Floorplan Assignments?” on page 15–6

■ “General Partitioning Guidelines” on page 15–8

■ “Design Partition Guidelines” on page 15–10

■ “Design Partition Guidelines for Third-Party IP Delivery” on page 15–25

■ “Checking Partition Quality” on page 15–30

■ “Including SDC Constraints from Lower-Level Partitions for Third-Party IP
Delivery” on page 15–36

■ “Introduction to Design Floorplans” on page 15–40

■ “Design Floorplan Placement Guidelines” on page 15–43

■ “Checking Floorplan Quality” on page 15–49

■ “Recommended Design Flows and Application Examples” on page 15–51
A, CYCLONE, HARDCOPY, MAX, MEGACORE, NIOS, QUARTUS and STRATIX words and logos
. Patent and Trademark Office and in other countries. All other words and logos identified as
e holders as described at www.altera.com/common/legal.html. Altera warrants performance of its
 with Altera's standard warranty, but reserves the right to make changes to any products and
ibility or liability arising out of the application or use of any information, product, or service
tera. Altera customers are advised to obtain the latest version of device specifications before relying
oducts or services.

Feedback SubscribeTwitter

ISO
9001:2008
Registered

mailto:TechDocFeedback@altera.com?subject=Feedback on QII51017-13.1.0
http://quartushelp.altera.com/current/master.htm#mergedProjects/comp/increment/comp_view_qid.htm
http://www.altera.com/literature/hb/qts/qts_qii51015.pdf
http://www.altera.com/literature/hb/qts/qts_qii51015.pdf
https://www.altera.com/servlets/subscriptions/alert?id=QII51017
http://www.altera.com/common/legal.html
http://twitter.com/home/?status=Best+Practices+for+Incremental+Compilation+Partitions+and+Floorplan+Assignments+http://www.altera.com/literature/hb/qts/qts_qii51017.pdf?WT.mc_id=gc_so_tw_st_tx_a_011+(via @alteracorp)+%23Altera
http://www.altera.com/support/reliability/certifications/rel-certifications.html
http://www.altera.com/support/reliability/certifications/rel-certifications.html

15–2 Chapter 15: Best Practices for Incremental Compilation Partitions and Floorplan Assignments
Overview: Incremental Compilation
Overview: Incremental Compilation
Quartus II incremental compilation is an optional compilation flow that enhances the
default Quartus II compilation. If you do not partition your design for incremental
compilation, your design is compiled using the default “flat” compilation flow. This
section provides an overview of the incremental compilation flow and highlights best
practices.

To prepare your design for incremental compilation, you first determine which logical
hierarchy boundaries should be defined as separate partitions in your design, and
ensure your design hierarchy and source code is set up to support this partitioning.
You can then create design partition assignments in the Quartus II software to specify
which hierarchy blocks are compiled independently as partitions (including empty
partitions for missing or incomplete logic blocks).

During compilation, Quartus II Analysis & Synthesis and the Fitter create separate
netlists for each partition. Netlists are internal post-synthesis and post-fit database
representations of your design.

In subsequent compilations, you can select which netlist to preserve for each partition.
You can either reuse the synthesis or fitting netlist, or instruct the Quartus II software
to resynthesize the source files. You can also use compilation results exported from
another Quartus II project.

When you make changes to your design, the Quartus II software recompiles only the
designated partitions and merges the new compilation results with existing netlists
for other partitions, according to the degree of results preservation you set with the
netlist for each design partition.

In some cases, as described in “Introduction to Design Floorplans” on page 15–40,
Altera recommends that you create a design floorplan with placement assignments to
constrain parts of the design to specific regions of the device.

h For step-by-step information about using incremental compilation to recompile only
changed parts of your design, refer to Using the Incremental Compilation Design Flow in
Quartus II Help.

You must use incremental compilation in conjunction with the partial reconfiguration
(PR) feature for Stratix® V device families. Partial reconfiguration allows you to
reconfigure a portion of the FPGA dynamically, while the remainder of the device
continues to operate as intended.

f For more information about partial reconfiguration, refer to the Design Planning for
Partial Reconfiguration chapter in volume 1 of the Quartus II Handbook.
Quartus II Handbook Version 13.1 November 2013 Altera Corporation
Volume 1: Design and Synthesis

http://www.altera.com/literature/hb/qts/qts_qii51026.pdf
http://www.altera.com/literature/hb/qts/qts_qii51026.pdf
http://quartushelp.altera.com/current/master.htm#mergedProjects/comp/increment/comp_pro_running_incremental_compilation.htm

Chapter 15: Best Practices for Incremental Compilation Partitions and Floorplan Assignments 15–3
Design Flows Using Incremental Compilation
Recommendations for the Netlist Type
For subsequent compilations, you specify which post-compilation netlist you want to
use with the netlist type for each partition.

Use the following general guidelines to set the netlist type for each partition:

■ Source File—Use this setting to resynthesize the source code (with any new
assignments, and replace any previous synthesis or Fitter results).

■ If you modify the design source, the software automatically resynthesizes the
partitions with the appropriate netlist type, which makes the Source File
setting optional in this case.

■ Most assignments do not trigger an automatic recompilation, so you must set
the netlist type to Source File to compile the source files with new assignments
or constraints that affect synthesis.

■ Post-Synthesis (default)—Use this setting to re-fit the design (with any new Fitter
assignments), but preserve the synthesis results when the source files have not
changed. If it is difficult to meet the required timing performance, you can use this
setting to allow the Fitter the most flexibility in placement and routing. This
setting does not reduce compilation time as much as the Post-Fit setting or
preserve timing performance from the previous compilation.

■ Post-Fit—Use this setting to preserve Fitter and performance results when the
source files have not changed. This setting reduces compilation time the most, and
preserves timing performance from the previous compilation.

■ Post-Fit with Fitter Preservation Level set to Placement—Use the Advanced
Fitter Preservation Level setting on the Advanced tab in the Design Partition
Properties dialog box to allow more flexibility and find the best routing for all
partitions given their placement.

The Quartus II software Rapid Recompile feature instructs the Compiler to reuse the
compatible compilation results if most of the design has not changed since the last
compilation. This feature reduces compilation time and preserves performance when
there are small and isolated design changes within a partition, and works with all
netlist type settings. With this feature, you do not have control over which parts of the
design are recompiled; the Compiler determines which parts of the design must be
recompiled. You can turn on the Rapid Recompile option in the Quartus II software
on the Incremental Compilation page of the Settings dialog box.

Design Flows Using Incremental Compilation
The Quartus II incremental compilation feature supports various design flows. Your
design flow affects the impact design partitions have on design optimization and the
amount of design planning required to obtain optimal results.
November 2013 Altera Corporation Quartus II Handbook Version 13.1
Volume 1: Design and Synthesis

15–4 Chapter 15: Best Practices for Incremental Compilation Partitions and Floorplan Assignments
Design Flows Using Incremental Compilation
In the standard incremental compilation flow, the top-level design is divided into
partitions, which can be compiled and optimized together in one Quartus II project. If
another team member or IP provider is developing source code for the top-level
design, they can functionally verify their partition independently, and then simply
provide the partition’s source code to the project lead for integration into the top-level
design. If the project lead wants to compile the top-level design when source code is
not yet complete for a partition, they can create an empty placeholder for the partition
until the code is ready and added to the top-level design.

Compiling all design partitions in a single Quartus II project ensures that all design
logic is compiled with a consistent set of assignments, and allows the software to
perform global placement and routing optimizations. Compiling all design logic
together is beneficial for FPGA design flows because all parts of the design must use
the same shared set of device resources. Therefore, it is often easier to ensure good
quality of results when partitions are developed within a single top-level Quartus II
project.

In the team-based incremental compilation flow, you can design and optimize
partitions by accessing the top-level project from a shared source control system or
creating copies of the top-level Quartus II project framework. As development
continues, designers export their partition so that the post-synthesis netlist or post-
fitting results can be integrated into the top-level design.

If required for third-party IP delivery, or in cases where designers cannot access a
shared or copied top-level project framework, you can create and compile a design
partition logic in isolation and export a partition that is included in the top-level
project. If this type of design flow is necessary, planning and rigorous design
guidelines might be required to ensure that designers have a consistent view of
project assignments and resource allocations. Therefore, developing partitions in
completely separate Quartus II projects can be more challenging than having all
source code within one project or developing design partitions within the same top-
level project framework.

You can also combine design flows and use exported partitions only when it is
necessary to support your design environment. For example, if the top-level design
includes one or more design blocks that will be optimized by remote designers or IP
providers, you can integrate those blocks into the reserved partitions in top-level
design when the code is complete, but also have other partitions that will be
developed within the top-level design.

If any partitions are developed independently, the project lead must ensure that
top-level constraints (such as timing constraints, any relevant floorplan or pin
assignments, and optimization settings) are consistent with those used by all
designers working independently.

Project Management in Team-Based Design Flows
If possible, each team member should work within the same top-level project
framework. Using the same project framework amongst team members ensures that
designers have the settings and constraints needed for their partition and allows
designers to analyze how their design block interacts with other partitions in the top-
level design.
Quartus II Handbook Version 13.1 November 2013 Altera Corporation
Volume 1: Design and Synthesis

Chapter 15: Best Practices for Incremental Compilation Partitions and Floorplan Assignments 15–5
Design Flows Using Incremental Compilation
In a team-based environment where designers have access to the project through
source control software, each designer can use project files as read-only and develop
their partition within the source control system. As designers check in their completed
partitions, other team members can see how their partitions interact. If designers do
not have access to a source control system, the project lead can provide each designer
with a copy of the top-level project framework to use as they develop their partitions.
In both cases, each designer exports their completed design as a partition, and then
the project lead integrates the partition into the top-level design. The project lead can
choose to use only the post-synthesis netlist and rerun placement and routing, or to
use the post-fitting results to preserve the placement and routing results from the
other designer's projects. Using post-synthesis partitions gives the Fitter the most
flexibility and is likely to achieve a good result for all partitions, but if one partition
has difficultly meeting timing, the designer can choose to preserve their successful
fitting results.

Alternatively, designers can use their own Quartus II project for their independent
design block. You might use this design flow if a designer, such as a third-party IP
provider, does not have access to the entire top-level project framework. In this case,
each designer must create their own project with all the relevant assignments and
constraints. As mentioned at the beginning of this section, this type of design flow
requires more planning and rigorous design guidelines. If the project lead plans to
incorporate the post-fitting compilation results for the partition, this design flow
requires especially careful planning to avoid resource conflicts.

The project lead also has the option to generate design partition scripts to manage
resource and timing budgets in the top-level design when partitions are developed
outside the top-level project framework. Scripts make it easier for designers of
independent Quartus II projects to follow instructions from the project lead. The
Quartus II design partition scripts feature creates Tcl scripts or .tcl files and makefiles
that an independent designer can run to set up an independent Quartus II project.

h For more information about how to generate design partition scripts, refer to
Generating Design Partition Scripts for Project Management in Quartus II Help.

If designers create Quartus II assignments or timing constraints for their partitions,
they must ensure that the constraints are integrated into the top-level design. If
partition designers use the same top-level project framework (and design hierarchy),
the constraints or Synopsys Design Constraints File (.sdc) can be easily copied or
included in the top-level design. If partition designers use a separate Quartus II
project with a different design hierarchy, they must ensure that constraints are applied
to the appropriate level of hierarchy in the top-level design, and design the .sdc for
easy delivery to the project lead, as described in “Including SDC Constraints from
Lower-Level Partitions for Third-Party IP Delivery” on page 15–36.

f For more information about the different types of incremental design flows and
example applications, as well as documented restrictions and limitations, refer to the
Quartus II Incremental Compilation for Hierarchical and Team-Based Design chapter in
volume 1 of the Quartus II Handbook.
November 2013 Altera Corporation Quartus II Handbook Version 13.1
Volume 1: Design and Synthesis

http://quartushelp.altera.com/current/master.htm#mergedProjects/comp/increment/comp_pro_generating_design_partition_scripts.htm
http://www.altera.com/literature/hb/qts/qts_qii51015.pdf

15–6 Chapter 15: Best Practices for Incremental Compilation Partitions and Floorplan Assignments
Why Plan Partitions and Floorplan Assignments?
Why Plan Partitions and Floorplan Assignments?
Incremental design flows typically require more planning than flat compilations, and
require you to be more rigorous about following good design practices. For example,
you might need to structure your source code or design hierarchy to ensure that logic
is grouped correctly for optimization. It is easier to implement the correct logic
grouping early in the design cycle than to restructure the code later.

Planning involves setting up the design logic for partitioning and may also involve
planning placement assignments to create a floorplan. Not all design flows require
floorplan assignments. For more information, refer to “Introduction to Design
Floorplans” on page 15–40. If you decide to add floorplan assignments later, when the
design is close to completion, well-planned partitions make floorplan creation easier.
Poor partition or floorplan assignments can worsen design area utilization and
performance and make timing closure more difficult.

As FPGA devices get larger and more complex, following good design practices
become more important for all design flows. Adhering to recommended synchronous
design practices makes designs more robust and easier to debug. Using an
incremental compilation flow adds additional steps and requirements to your project,
but can provide significant benefits in design productivity by preserving the
performance of critical blocks and reducing compilation time.

Partition Boundaries and Optimization
The logical hierarchical boundaries between partitions are treated as hard boundaries
for logic optimization (except for some limited cross-boundary optimizations) to
allow the software to size and place each partition independently. Figure 15–1 shows
the effects of partition boundaries during logic optimization.

You can use the Merge command in the Design Partitions window to combine
hierarchical partitions into a single partition, as long as they share the same
immediate parent partition. Merging partitions allows additional optimizations for
partition I/O ports that connect between or feed more than one of the merged
hierarchical design blocks.

Figure 15–1. Effects of Partition Boundaries During Logic Optimization

Hierarchy A

Hierarchy B

Compile
with

partition
 boundaries

Compile
without
partition

boundaries

Hierarchy A

Hierarchy A

Hierarchy B

Hierarchy B

Cannot obtain results of an
individual hierarchy for

incremental compilation

Hierarchies remain independent
during logic optimizations

(with limited cross-boundary optimizations)

Possible to incrementally
recompile each hierarchy
Quartus II Handbook Version 13.1 November 2013 Altera Corporation
Volume 1: Design and Synthesis

Chapter 15: Best Practices for Incremental Compilation Partitions and Floorplan Assignments 15–7
Why Plan Partitions and Floorplan Assignments?
When partitions are placed together, the Fitter can perform placement optimizations
on the design as a whole to optimize the placement of cross-boundary paths.
However, the Fitter can never perform logic optimizations such as physical synthesis
across the partition boundary. If partitions are fit separately in different projects, or if
some partitions use previous post-fitting results, the Fitter does not place and route
the entire cross-boundary path at the same time and cannot fully optimize placement
across the partition boundaries. Good design partitions can be placed independently
because cross-partition paths are not the critical timing paths in the design.

There are possible timing performance utilization effects due to partitioning and
creating a floorplan. Not all designs encounter these issues, but you should consider
these effects if a flat version of your design is very close to meeting its timing
requirements, or is close to using all the device resources, before adding partition or
floorplan assignments:

■ Partitions can increase resource utilization due to cross-boundary optimization
limitations if the design does not follow partitioning guidelines. For more
information, refer to “Design Partition Guidelines” on page 15–10. Floorplan
assignments can also increase resource utilization because regions can lead to
unused logic. If your device is full with the flat version of your design, you can
focus on creating partitions and floorplan assignments for timing-critical or
often-changing blocks to benefit most from incremental compilation. For more
information, refer to “Checking Floorplan Quality” on page 15–49.

■ Partitions and floorplan assignments might increase routing utilization compared
to a flat design. If long compilation times are due to routing congestion, you might
not be able to use the incremental flow to reduce compilation time. Review the
Fitter messages to check how much time is spent during routing optimizations to
determine the percentage of routing utilization. When routing is difficult, you can
use incremental compilation to lock the routing for routing-critical blocks only
(with other partitions empty), and then compile the rest of the design after the
critical blocks meets their requirements.

■ Partitions can reduce timing performance in some cases because of the
optimization and resource effects described above, causing longer logic delays.
Floorplan assignments restrict logic placement, which can make it more difficult
for the Fitter to meet timing requirements. Use the guidelines in this chapter to
reduce any effect on your design performance.

Turning On Supported Cross-boundary Optimizations
You can improve the optimizations performed between design partitions by turning
on the cross-boundary optimizations feature. You can select the optimizations as
individual assignments for each partition. This allows the cross-boundary
optimization feature to give you more control over the optimizations that work best
for your design.

You can turn on the cross-boundary optimizations for your design partitions on the
Advanced tab of the Design Partition Properties dialog box. Once you change the
optimization settings, the Quartus II software recompiles your partition from source
automatically. Cross-boundary optimizations include the following: propagate
constants, propagate inversions on partition inputs, merge inputs fed by a common
source, merge electrically equivalent bidirectional pins, absorb internal paths, and
remove logic connected to dangling outputs.
November 2013 Altera Corporation Quartus II Handbook Version 13.1
Volume 1: Design and Synthesis

15–8 Chapter 15: Best Practices for Incremental Compilation Partitions and Floorplan Assignments
General Partitioning Guidelines
Cross-boundary optimizations are implemented top-down from the parent partition
into the child partition, but not vice-versa. The cross-boundary optimization feature
cannot be used with partitions with multiple personas (partial reconfiguration
partitions).

h For more information about cross-boundary optimizations, refer to Design Partition
Properties Dialog Box in Quartus II Help.

Although more partitions allow for a greater reduction in compilation time, consider
limiting the number of partitions to prevent degradation in the quality of results.
Creating good design partitions and good floorplan location assignments helps to
improve the design resource utilization and timing performance results for
cross-partition paths.

General Partitioning Guidelines
The first step in planning your design partitions is to organize your source code so
that it supports good partition assignments. Although you can assign any hierarchical
block of your design as a design partition or merge hierarchical blocks into the same
partition, following the design guidelines presented in this section ensures better
results.

Plan Design Hierarchy and Design Files
You begin the partitioning process by planning the design hierarchy. When you assign
a hierarchical instance as a design partition, the partition includes the assigned
instance and entities instantiated below that are not defined as separate partitions.
You can use the Merge command in the Design Partitions window to combine
hierarchical partitions into a single partition, as long as they have the same immediate
parent partition.

When planning your design hierarchy, keep logic in the “leaves” of the hierarchy
instead of having logic at the top-level of the design so that you can isolate partitions
if required.

Create entities that can form partitions of approximately equal size. For example, do
not instantiate small entities at the same hierarchy level, because it is more difficult to
group them to form reasonably-sized partitions.

Create each entity in an independent file. The Quartus II software uses a file
checksum to detect changes, and automatically recompiles a partition if its source file
changes and its netlist type is set to either post-synthesis or post-fit. If the design
entities for two partitions are defined in the same file, changes to the logic in one
partition initiates recompilation for both partitions.

Design dependencies also affect which partitions are compiled when a source file
changes. If two partitions rely on the same lower-level entity definition, changes in
that lower-level entity affect both partitions. Commands such as VHDL use and
Verilog HDL include create dependencies between files, so that changes to one file
can trigger recompilations in all dependent files. Avoid these types of file
dependencies if possible. The Partition Dependent Files report for each partition in
the Analysis & Synthesis section of the Compilation report lists which files contribute
to each partition.
Quartus II Handbook Version 13.1 November 2013 Altera Corporation
Volume 1: Design and Synthesis

http://quartushelp.altera.com/current/master.htm#mergedProjects/comp/increment/comp_tab_qid_part_window_properties.htm
http://quartushelp.altera.com/current/master.htm#mergedProjects/comp/increment/comp_tab_qid_part_window_properties.htm

Chapter 15: Best Practices for Incremental Compilation Partitions and Floorplan Assignments 15–9
General Partitioning Guidelines
Using Partitions with Third-Party Synthesis Tools
Incremental compilation works well with third-party synthesis tools in addition to
Quartus II Integrated Synthesis. If you use a third-party synthesis tool, set up your
tool to create a separate Verilog Quartus Mapping File (.vqm) or EDIF Input File (.edf)
netlist for each hierarchical partition. In the Quartus II software, designate the
top-level entity from each netlist as a design partition. The .vqm or .edf netlist file is
treated as the source file for the partition in the Quartus II software.

f For more information about incremental synthesis in third-party tools, refer to the
documentation provided by your tool vendor, or the Quartus II Incremental Compilation
for Hierarchical and Team-Based Design chapter in volume 1 of the Quartus II Handbook.

Partition Design by Functionality and Block Size
Initially, you should partition your design along functional boundaries. In a top-level
system block diagram, each block is often a natural design partition. Typically, each
block of a system is relatively independent and has more signal interaction internally
than interaction between blocks, which helps reduce optimizations between partition
boundaries. Keeping functional blocks together means that synthesis and fitting can
optimize related logic as a whole, which can lead to improved optimization.

Consider how many partitions you want to maintain in your design to determine the
size of each partition. Your compilation time reduction goal is also a factor, because
compiling small partitions is typically faster than compiling large partitions.

There is no minimum size for partitions; however, having too many partitions can
reduce the quality of results by limiting optimization. Ensure that the design
partitions are not too small. As a general guideline, each partition should contain
more than approximately 2,000 logic elements (LEs) or adaptive logic modules
(ALMs). If your design is incomplete when you partition the design, use previous
designs to help estimate the size of each block.

Partition Design by Clock Domain and Timing Criticality
Consider which clock in your design feeds the logic in each partition. If possible, keep
clock domains within one partition. When a clock signal is isolated to one partition, it
reduces dependence on other partitions for timing optimization. Isolating a clock
domain to one partition also allows better use of regional clock routing networks if
the partition logic is constrained to one region of the design. Additionally, limiting the
number of clocks within each partition simplifies the timing requirements for each
partition during optimization. Use an appropriate subsystem to implement the
required logic for any clock domain transfers (such as a synchronization circuit, dual-
port RAM, or FIFO). You can include this logic inside the partition at one side of the
transfer.

f For more information about clock domains and their affect on partition design, refer
to the Analyzing and Optimizing the Design Floorplan with the Chip Planner chapter in
volume 2 of the Quartus II Handbook.
November 2013 Altera Corporation Quartus II Handbook Version 13.1
Volume 1: Design and Synthesis

http://www.altera.com/literature/hb/qts/qts_qii51015.pdf
http://www.altera.com/literature/hb/qts/qts_qii51015.pdf
http://www.altera.com/literature/hb/qts/qts_qii52006.pdf

15–10 Chapter 15: Best Practices for Incremental Compilation Partitions and Floorplan Assignments
Design Partition Guidelines
Try to isolate timing-critical logic from logic that you expect to easily meet timing
requirements. Doing so allows you to preserve the satisfactory results for non-critical
partitions and focus optimization iterations on only the timing-critical portions of the
design to minimize compilation time.

Consider What Is Changing
When assigning partitions, you should consider what is changing in the design. Is
there intellectual property (IP) or reused logic for which the source code will not
change during future design iterations? If so, define the logic in its own partition so
that you can compile one time and immediately preserve the results and not have to
compile that part of the design again. Is logic being tuned or optimized, or are
specifications changing for part of the design? If so, define changing logic in its own
partition so that you can recompile only the changing part while the rest of the design
remains unchanged.

As a general rule, create partitions to isolate logic that will change from logic that will
not change. Partitioning a design in this way maximizes the preservation of
unchanged logic and minimizes compilation time.

Design Partition Guidelines
Follow the partitioning guidelines presented in this section when you create or
modify the HDL code for each design block that you might want to assign as a design
partition. You do not need to follow all the recommendations exactly to achieve a
good quality of results with the incremental compilation flow, but adhering to as
many as possible maximizes your chances for success.

This section includes examples of the types of optimizations that are prevented by
partition boundaries, and describes how you can structure or modify your partitions
to avoid these limitations.

Register Partition Inputs and Outputs
Use registers at partition input and output connections that are potentially
timing-critical. Registers minimize the delays on inter-partition paths and prevent the
need for cross-boundary optimizations.
Quartus II Handbook Version 13.1 November 2013 Altera Corporation
Volume 1: Design and Synthesis

Chapter 15: Best Practices for Incremental Compilation Partitions and Floorplan Assignments 15–11
Design Partition Guidelines
If every partition boundary has a register as shown in Figure 15–2, every
register-to-register timing path between partitions includes only routing delay.
Therefore, the timing paths between partitions are likely not timing-critical, and the
Fitter can generally place each partition independently from other partitions. This
advantage makes it easier to create floorplan location assignments for each separate
partition, and is especially important for flows in which partitions are placed
independently in separate Quartus II projects. Additionally, the partition boundary
does not affect combinational logic optimization because each register-to-register
logic path is contained within a single partition.

If a design cannot include both input and output registers for each partition due to
latency or resource utilization concerns, choose to register one end of each connection.
If you register every partition output, for example, the combinational logic that occurs
in each cross-partition path is included in one partition so that it can be optimized
together.

It is a good synchronous design practice to include registers for every output of a
design block. Registered outputs ensure that the input timing performance for each
design block is controlled exclusively within the destination logic block. For more
information about I/O ports and registers for each partition, refer to “Partition
Statistics Report” on page 15–34, and “Incremental Compilation Advisor” on
page 15–49.

Minimize Cross-Partition-Boundary I/O
Minimize the number of I/O paths that cross between partition boundaries to keep
logic paths within a single partition for optimization. Doing so makes partitions more
independent for both logic and placement optimization.

This guideline is most important for timing-critical and high-speed connections
between partitions, especially in cases where the input and output of each partition is
not registered. Slow connections that are not timing-critical are acceptable because
they should not impact the overall timing performance of the design. If there are
timing-critical paths between partitions, rework or merge the partitions to avoid these
inter-partition paths.

Figure 15–2. Registering Partition I/O

Partition A Partition B

Cross-boundary partition
routing delay is not the

critical timing path

D Q D Q D Q D Q
November 2013 Altera Corporation Quartus II Handbook Version 13.1
Volume 1: Design and Synthesis

15–12 Chapter 15: Best Practices for Incremental Compilation Partitions and Floorplan Assignments
Design Partition Guidelines
When dividing your design into partitions, consider the types of functions at the
partition boundaries. Figure 15–3 shows an expansive function with more outputs
than inputs in the left diagram, which makes a poor partition boundary, and, on the
right side, a better place to assign the partition boundary that minimizes
cross-partition I/Os. Adding registers to one or both sides of the cross-partition path
in this example would further improve partition quality.

Another way to minimize connections between partitions is to avoid using
combinational ”glue logic” between partitions. You can often move the logic to the
partition at one end of the connection to keep more logic paths within one partition.
For example, the bottom diagram in Figure 15–4 includes a new level of hierarchy C
defined as a partition instead of block B. Clearly, there are fewer I/O connections
between partitions A and C than between partitions A and B.

Figure 15–3. Minimizing I/O Between Partitions by Moving the Partition Boundary

Expansive function:
Not ideal partition boundary

A A B

Better part of design to assign
a partition output boundary

B

Figure 15–4. Minimizing I/O between Partitions by Modifying Glue Logic

Top

A B
Glue
Logic

Many cross-boundary partition paths: Poor design partition assignment

Fewer cross-boundary partition paths: Better design partition assignment

Top

A
C

Glue
Logic

B

Quartus II Handbook Version 13.1 November 2013 Altera Corporation
Volume 1: Design and Synthesis

Chapter 15: Best Practices for Incremental Compilation Partitions and Floorplan Assignments 15–13
Design Partition Guidelines
For more information about the number of I/O ports, as well as the number of
inter-partition connections for each partition, refer to “Partition Statistics Report” on
page 15–34. For more information about the number of intra-partition (within a
partition) and inter-partition (between partitions) timing edges, refer to “Incremental
Compilation Advisor” on page 15–49.

Examine the Need for Logic Optimization Across Partitions
As discussed in “Partition Boundaries and Optimization” on page 15–6, partition
boundaries prevent logic optimizations across partitions (except for some limited
cross-boundary optimizations).

In some cases, especially if part of the design is complete or comes from another
designer, the designer might not have followed these guidelines when the source code
was created. These guidelines are not mandatory to implement an incremental
compilation flow, but can improve the quality of results. If assigning a partition affects
resource utilization or timing performance of a design block as compared to the flat
design, it might be due to one of the issues described in this section. Many of the
examples suggest simple changes to your partition definitions or hierarchy to move
the partition boundary to improve your results.

The following guidelines ensure that your design does not require logic optimization
across partition boundaries:

■ “Keep Logic in the Same Partition for Optimization and Merging” on page 15–13

■ “Keep Constants in the Same Partition as Logic” on page 15–15

■ “Avoid Signals That Drive Multiple Partition I/O or Connect I/O Together” on
page 15–16

■ “Invert Clocks in Destination Partitions” on page 15–17

■ “Connect I/O Pin Directly to I/O Register for Packing Across Partition
Boundaries” on page 15–17

■ “Do Not Use Internal Tri-States” on page 15–21

■ “Include All Tri-State and Enable Logic in the Same Partition” on page 15–22

■ “Include Bidirectional I/O Registers in the Same Partition (For Older Device
Families)” on page 15–23

■ “Summary of Guidelines Related to Logic Optimization Across Partitions” on
page 15–23

Keep Logic in the Same Partition for Optimization and Merging
If your design logic requires logic optimization or merging to obtain optimal results,
ensure that all the logic is part of the same partition because only limited cross-
boundary optimizations are permitted.
November 2013 Altera Corporation Quartus II Handbook Version 13.1
Volume 1: Design and Synthesis

15–14 Chapter 15: Best Practices for Incremental Compilation Partitions and Floorplan Assignments
Design Partition Guidelines
If a combinational logic path is split across two partitions, the logic cannot be
optimized or merged into one logic cell in the device. This effect can result in an extra
logic cell in the path, increasing the logic delay. As a very simple example, consider
two inverters on the same signal in two different partitions, A and B, as shown in the
left diagram of Figure 15–5. To maintain correct incremental functionality, these two
inverters cannot be removed from the design during optimization because they occur
in different design partitions. The Quartus II software cannot use information about
other partitions when it compiles each partition, because each partition is allowed to
change independently from the other.

On the right side of the figure, partitions A and B are merged to group the logic in
blocks A and B into one partition. If the two blocks A and B are not under the same
immediate parent partition, you can create a wrapper file to define a new level of
hierarchy that contains both blocks, and set this new hierarchy block as the partition.
With the logic contained in one partition, the software can optimize the logic and
remove the two inverters (shown in gray), which reduces the delay for that logic path.
Removing two inverters is not a significant reduction in resource utilization because
inversion logic is readily available in Altera device architecture. However, this
example is a simple demonstration of the types of logic optimization that are
prevented by partition boundaries.

In a flat design, the Fitter can also merge logical instantiations into the same physical
device resource. With incremental compilation, logic defined in different partitions
cannot be merged to use the same physical device resource.

For example, the Fitter can merge two single-port RAMs from a design into one
dedicated RAM block in the device. If the two RAMs are defined in different
partitions, the Fitter cannot merge them into one dedicated device RAM block.

This limitation is a only a concern if merging is required to fit the design in the target
device. Therefore, you are more likely to encounter this issue during troubleshooting
rather than during planning, if your design uses more logic than is available in the
device.

Figure 15–5. Keeping Logic in the Same Partition for Optimization

A B

Inverters in separate partitions A and B
cannot be removed from design:
Poor design partition assignment

Inverters in merged partition can be removed:
Better design partition assignment

A

Merged Parition

B

Quartus II Handbook Version 13.1 November 2013 Altera Corporation
Volume 1: Design and Synthesis

Chapter 15: Best Practices for Incremental Compilation Partitions and Floorplan Assignments 15–15
Design Partition Guidelines
Merging PLLs and Transceivers (GXB)

Multiple instances of the ALTPLL megafunction can use the same PLL resource on the
device. Similarly, GXB transceiver instances can share high-speed serial interface
(HSSI) resources in the same quad as other instances. The Fitter can merge multiple
instantiations of these blocks into the same device resource, even if it requires
optimization across partitions. Therefore, there are no restrictions for PLLs and
high-speed transceiver blocks when setting up partitions.

Keep Constants in the Same Partition as Logic
Because the Quartus II software cannot fully optimize across a partition boundary,
constants are not propagated across partition boundaries, except from parent
partition to child partition. A signal that is constant (1/VCC or 0/GND) in one
partition cannot affect another partition.

For example, the left diagram of Figure 15–6 shows part of a design in which partition
A defines some signals as constants (and assumes that the other input connections
come from elsewhere in the design and are not shown in the figure). Constants such
as these could appear due to parameter or generic settings or configurations with
parameters, setting a bus to a specific set of values, or could result from optimizations
that occur within a group of logic. Because the blocks are independent, the software
cannot optimize the logic in block B based on the information from block A. The right
side of Figure 15–6 shows a merged partition that groups the logic in blocks A and B.
If the two blocks A and B are not under the same immediate parent partition, you can
create a wrapper file to define a new level of hierarchy that contains both blocks, and
set this new hierarchical block as the partition.

Within the single merged partition, the Quartus II software can use the constants to
optimize and remove much of the logic in block B (shown in gray), as shown in
Figure 15–6.

For more information about how many input ports are fed by GND or VCC, refer to
“Partition Statistics Report” on page 15–34. For more information about port
connections, refer to “Incremental Compilation Advisor” on page 15–49.

Figure 15–6. Keeping Constants in the Same Partition as the Logic They Feed

Connections to constants in another partition:
Poor design partition assignment

Constants in merged partition are used to optimize:
Better design partition assignment

VCC

GND

A

M
er

ge
d

Pa
rt

iti
on

A

VCC

GND

B
B

November 2013 Altera Corporation Quartus II Handbook Version 13.1
Volume 1: Design and Synthesis

15–16 Chapter 15: Best Practices for Incremental Compilation Partitions and Floorplan Assignments
Design Partition Guidelines
Avoid Signals That Drive Multiple Partition I/O or Connect I/O Together
Do not use the same signal to drive multiple ports of a single partition or directly
connect two ports of a partition. If the same signal drives multiple ports of a partition,
or if two ports of a partition are directly connected, those ports are logically
equivalent. However, the software has limited information about connections made in
another partition (including the top-level partition), the compilation cannot take
advantage of the equivalence. This restriction usually produces sub-optimal results.

If your design has these types of connections, redefine the partition boundaries to
remove the affected ports. If one signal from a higher-level partition feeds two input
ports of the same partition, feed the one signal into the partition, and then make the
two connections within the partition. If an output port drives an input port of the
same partition, the connection can be made internally without going through any I/O
ports. If an input port drives an output port directly, the connection can likely be
implemented without the ports in the lower-level partition by connecting the signals
in a higher-level partition.

Figure 15–7 shows an example of one signal driving more than one port. The left
diagram shows a design where a single clock signal is used to drive both the read and
write clocks of a RAM block. Because the RAM block is compiled as a separate
partition A, the RAM block is implemented as though there are two unique clocks. If
you know that the port connectivity will not change (that is, the ports will always be
driven by the same signal in the top-level partition), redefine the port interface so that
there is only a single port that can drive both connections inside the partition. You can
create a wrapper file to define a partition that has fewer ports, as shown in the
diagram on the right side. With the single clock fed into the partition, the RAM can be
optimized into a single-clock RAM instead of a dual-clock RAM. Single-clock RAM
can provide better performance in the device architecture. Additionally, partition A
might use two global routing lines for the two copies of the clock signal. Partition B
can use one global line that fans out to all destinations. Using just the single port
connection prevents overuse of global routing resources.

For more information about partition ports that have the same driving signal and
ports that are directly connected together, refer to “Incremental Compilation Advisor”
on page 15–49.

Figure 15–7. Preventing One Signal from Driving Multiple Partition Inputs

Top

rd_clk

wr_clk

Dual-
clock
RAM

A

Clock

Top

rd_clk

wr_clk

Single-
clock
RAM

A

Clock

B

Two clocks cannot be
treated as the same signal:

Poor design partition assignment

With Partition B, RAM can
be optimized for one clock:

Better design partition assignment
Quartus II Handbook Version 13.1 November 2013 Altera Corporation
Volume 1: Design and Synthesis

Chapter 15: Best Practices for Incremental Compilation Partitions and Floorplan Assignments 15–17
Design Partition Guidelines
Invert Clocks in Destination Partitions
For best results, clock inversion should be performed in the destination logic array
block (LAB) because each LAB contains clock inversion circuitry in the device
architecture. In a flat compilation, the Quartus II software can optimize a clock
inversion to propagate it to the destination LABs regardless of where the inversion
takes place in the design hierarchy. However, clock inversion cannot propagate
through a partition boundary (except from a parent partition to a child partition) to
take advantage of the inversion architecture in the destination LABs.

With partition boundaries as shown in the left diagram of Figure 15–8, the Quartus II
software uses logic to invert the signal in the partition that defines the inversion (the
top-level partition in this example), and then routes the signal on a global clock
resource to its destinations (in partitions A and B). The inverted clock acts as a gated
clock with high skew. A better solution is to invert the clock signal in the destination
partitions as shown on the right side of the diagram. In this case, the correct logic and
routing resources can be used, and the signal does not behave like a gated clock.

Figure 15–8 shows the clock signal inversion in the destination partitions.

Notice that this diagram also shows another example of a single pin feeding two ports
of a partition boundary. In the left diagram, partition B does not have the information
that the clock and inverted clock come from the same source. In the right diagram,
partition B has more information to help optimize the design because the clock is
connected as one port of the partition.

Connect I/O Pin Directly to I/O Register for Packing Across
Partition Boundaries
The Quartus II software allows cross-partition register packing of I/O registers in
certain cases where your input and output pins are defined in the top-level hierarchy
(and the top-level partition), but the corresponding I/O registers are defined in other
partitions.

Input pin cross-partition register packing requires the following specific
circumstances:

■ The input pin feeds exactly one register.

Figure 15–8. Inverting Clock Signal in Destination Partitions

Inverter acts as clock gating (adding skew):
Poor design partition assignment

Clock inverted inside destination LABs,
only one global routing signal:

Better design partition assignment

Clock

Top Top

Clock

A

B

A

B

November 2013 Altera Corporation Quartus II Handbook Version 13.1
Volume 1: Design and Synthesis

15–18 Chapter 15: Best Practices for Incremental Compilation Partitions and Floorplan Assignments
Design Partition Guidelines
■ The path between the input pin and register includes only input ports of partitions
that have one fan-out each.

Output pin cross-partition register packing requires the following specific
circumstances:

■ The register feeds exactly one output pin.

■ The output pin is fed by only one signal.

■ The path between the register and output pin includes only output ports of
partitions that have one fan-out each.

The following examples of I/O register packing illustrate this point using Block
Design File (.bdf) schematics to describe the design logic.

Example 1—Output Register in Partition Feeding Multiple Output Pins

In this example, a subdesign contains a single register, as shown in Figure 15–9.

If the top-level design instantiates the subdesign with a single fan-out directly feeding
an output pin, and designates the subdesign as a separate design partition, the
Quartus II software can perform cross-partition register packing because the single
partition port feeds the output pin directly.

In Example 1, the top-level design instantiates the subdesign in Figure 15–9 as an
output register with more than one fan-out signal, as shown in Figure 15–10.

In this case, the Quartus II software does not perform output register packing. If there
is a Fast Output Register assignment on pin out, the software issues a warning that
the Fitter cannot pack the node to an I/O pin because the node and the I/O cell are
connected across a design partition boundary.

Figure 15–9. Subdesign with One Register, Designated as a Separate Partition

Figure 15–10. Top-Level Design Instantiating the Subdesign in Figure 15–9 with Two Output Pins
Quartus II Handbook Version 13.1 November 2013 Altera Corporation
Volume 1: Design and Synthesis

Chapter 15: Best Practices for Incremental Compilation Partitions and Floorplan Assignments 15–19
Design Partition Guidelines
This type of cross-partition register packing is not allowed because it requires
modification to the interface of the subdesign partition. To perform incremental
compilation, the Quartus II software must preserve the interface of design partitions.

To allow the Quartus II software to pack the register in the subdesign from
Figure 15–9 with the output pin out in Figure 15–10, restructure your HDL code so
that output registers directly connect to output pins by making one of the following
changes:

■ Place the register in the same partition as the output pin. The simplest method
is to move the register from the subdesign partition into the partition
containing the output pin. Doing so guarantees that the Fitter can optimize the
two nodes without violating partition boundaries.

■ Duplicate the register in your subdesign HDL as shown in Figure 15–11 so that
each register feeds only one pin, and then connect the extra output pin to the
new port in the top-level design as shown in Figure 15–12. Doing so converts
the cross-partition register packing into the simplest case where each register
has a single fan-out.

Figure 15–11. Modified Subdesign from Figure 15–9 with Two Output Registers and Two Output Ports

Figure 15–12. Modified Top-Level Design from Figure 15–10 Connecting Two Output Ports to Output Pins
November 2013 Altera Corporation Quartus II Handbook Version 13.1
Volume 1: Design and Synthesis

15–20 Chapter 15: Best Practices for Incremental Compilation Partitions and Floorplan Assignments
Design Partition Guidelines
Example 2—Input Register in Partition Fed by an Inverted Input Pin or Output Register in
Partition Feeding an Inverted Output Pin

In this example, a subdesign designated as a separate partition contains a register, as
shown in Figure 15–9. The top-level design in Figure 15–13 instantiates the subdesign
as an input register with the input pin inverted. The top-level design in Figure 15–14
instantiates the subdesign as an output register with the signal inverted before
feeding an output pin.

In these cases, the Quartus II software does not perform register packing. If there is a
Fast Input Register assignment on pin in, as shown in Figure 15–13, or a Fast Output
Register assignment on pin out, as shown in Figure 15–14, the Quartus II software
issues a warning that the Fitter cannot pack the node to an I/O pin because the node
and I/O cell are connected across a design partition boundary.

This type of register packing is not allowed because it requires moving logic across a
design partition boundary to place into a single I/O device atom. To perform register
packing, either the register must be moved out of the subdesign partition, or the
inverter must be moved into the subdesign partition to be implemented in the
register.

To allow the Quartus II software to pack the register in the subdesign from
Figure 15–9 with the input pin in, as shown in Figure 15–13 or the output pin out, as
shown in Figure 15–14, restructure your HDL code to place the register in the same
partition as the inverter by making one of the following changes:

■ Move the register from the subdesign partition into the top-level partition
containing the pin. Doing so ensures that the Fitter can optimize the I/O register
and inverter without violating partition boundaries.

Figure 15–13. Top-Level Design Instantiating the Subdesign in Figure 15–9 as an Input Register with an Inverted Input
Pin

Figure 15–14. Top-Level Design Instantiating the Subdesign in Figure 15–9 as an Output Register Feeding an Inverted
Output Pin
Quartus II Handbook Version 13.1 November 2013 Altera Corporation
Volume 1: Design and Synthesis

Chapter 15: Best Practices for Incremental Compilation Partitions and Floorplan Assignments 15–21
Design Partition Guidelines
■ Move the inverter from the top-level block into the subdesign, and then connect
the subdesign directly to a pin in the top-level design. Doing so allows the Fitter to
optimize the inverter into the register implementation, so that the register is
directly connected to a pin, which enables register packing.

Do Not Use Internal Tri-States
Internal tri-state signals are not recommended for FPGAs because the device
architecture does not include internal tri-state logic. If designs use internal tri-states in
a flat design, the tri-state logic is usually converted to OR gates or multiplexing logic. If
tri-state logic occurs on a hierarchical partition boundary, the Quartus II software
cannot convert the logic to combinational gates because the partition could be
connected to a top-level device I/O through another partition.

Figure 15–15 and Figure 15–16 show a design with partitions that are not supported
for incremental compilation due to the internal tri-state output logic on the partition
boundaries. Instead of using internal tri-state logic for partition outputs, implement
the correct logic to select between the two signals. Doing so is good practice even
when there are no partitions, because such logic explicitly defines the behavior for the
internal signals instead of relying on the Quartus II software to convert the tri-state
signals into logic.

Figure 15–15. Unsupported Internal Tri-State Signals

Figure 15–16. Merged Partition Allows Synthesis to Convert Internal Tri-State Logic to Combinational Logic

Top

Design results in Quartus II error message:
The software cannot synthesize this

design and maintain incremental functionality.

Top

Merged Partition

Merged partition allows synthesis to
convert tri-state logic into

combinational logic.
November 2013 Altera Corporation Quartus II Handbook Version 13.1
Volume 1: Design and Synthesis

15–22 Chapter 15: Best Practices for Incremental Compilation Partitions and Floorplan Assignments
Design Partition Guidelines
Do not use tri-state signals or bidirectional ports on hierarchical partition boundaries,
unless the port is connected directly to a top-level I/O pin on the device. If you must
use internal tri-state logic, ensure that all the control and destination logic is contained
in the same partition, in which case the Quartus II software can convert the internal
tri-state signals into combinational logic as in a flat design. In this example, you can
also merge all three partitions into one partition, as shown in Figure 15–16, to allow
the Quartus II software to treat the logic as internal tri-state and perform the same
type of optimization as a flat design. If possible, you should avoid using internal
tri-state logic in any Altera FPGA design to ensure that you get the desired
implementation when the design is compiled for the target device architecture.

Include All Tri-State and Enable Logic in the Same Partition
When multiple output signals use tri-state logic to drive a device output pin, the
Quartus II software merges the logic into one tri-state output pin. The Quartus II
software cannot merge tri-state outputs into one output pin if any of the tri-state logic
occurs on a partition boundary. Similarly, output pins with an output enable signal
cannot be packed into the device I/O cell if the output enable logic is part of a
different partition from the output register. To allow register packing for output pins
with an output enable signal, structure your HDL code or design partition
assignments so that the register and enable logic are defined in the same partition.

Figure 15–17 shows a design with tri-state output signals that feed a device
bidirectional I/O pin (assuming that the input connection feeds elsewhere in the
design and is not shown in the figure). In the left diagram below, the tri-state output
signals appear as the outputs of two separate partitions. In this case, the Quartus II
software cannot implement the specified logic and maintain incremental functionality.
In the right diagram, partitions A and B are merged to group the logic from the two
blocks. With this single partition, the Quartus II software can merge the two tri-state
output signals and implement them in the tri-state logic available in the device I/O
element.

Figure 15–17. Including All Tri-State Output Logic in the Same Partition

A

B

Top

A

B

Multiple tri-states on partition boundaries:
Illegal design partitions

Tri-state output logic within merged partition:
Better design partition

Top

Merged Partition
A

B

Quartus II Handbook Version 13.1 November 2013 Altera Corporation
Volume 1: Design and Synthesis

Chapter 15: Best Practices for Incremental Compilation Partitions and Floorplan Assignments 15–23
Design Partition Guidelines
Include Bidirectional I/O Registers in the Same Partition (For Older Device
Families)
For a bidirectional partition port that feeds a bidirectional I/O pin at the top level, all
logic that forms the bidirectional I/O cell must reside in the same partition in the
Stratix II, Stratix, Cyclone® II, and Cyclone device families (this restriction does not
apply to newer devices). Additionally, as discussed in the previous two
recommendations, the I/O logic must feed the I/O pin without any intervening logic.

In Figure 15–18, all the I/O logic must be defined inside the same partition for the
Quartus II software to implement all three registers in the I/O element along with the
tri-state logic in the affected devices. The logic connected to the registers can occur in
the same partition or any other partition; only the I/O registers must be grouped with
the tri-state logic definition. The bidirectional I/O port of the partition must be
directly connected to the bidirectional device pin at the top level. The signal can go
through several partition boundaries if necessary, as long as the connection path
contains no logic.

Summary of Guidelines Related to Logic Optimization Across Partitions
To ensure that your design does not require logic optimization across partitions,
follow the guidelines in this section:

■ Include logic in the same partition for optimization and merging

■ Include constants in the same partition as logic

■ Avoid signals that drive multiple partition I/O or connect I/O together

■ Invert clocks in destination partitions

■ Connect I/O directly to I/O register for packing across partition boundaries

■ Do not use internal tri-states

■ Include all tri-state and enable logic in the same partition

■ Include bidirectional I/O registers in the same partition (in older device families)

Figure 15–18. Including All Bidirectional I/O Registers in the Same Partition (for Older Devices)

Logic
to/from

any
partition

Top

Output Enable Register

Output
Register Tri-State

Logic

Input
Register

Partition

D

D

D

Q

Q

Q

Bidirectional logic is within one partition, and I/O logic directly feeds I/O pin

Bidir.
pin
November 2013 Altera Corporation Quartus II Handbook Version 13.1
Volume 1: Design and Synthesis

15–24 Chapter 15: Best Practices for Incremental Compilation Partitions and Floorplan Assignments
Design Partition Guidelines
Remember that these guidelines are not mandatory when implementing an
incremental compilation flow, but can improve the quality of results. When creating
source design code, follow these guidelines and organize your HDL code to support
good partition boundaries. For designs that are complete, assess whether assigning a
partition affects the resource utilization or timing performance of a design block as
compared to the flat design. Make the appropriate changes to your design or
hierarchy, or merge partitions as required, to improve your results.

Consider a Cascaded Reset Structure
Designs typically have a global asynchronous reset signal where a top-level signal
feeds all partitions. To minimize skew for the high fan-out signal, the global reset
signal is typically placed onto a global routing resource.

In some cases, having one global reset signal can lead to recovery and removal time
problems. This issue is not specific to incremental flows; it could be applicable in any
large high-speed design. In an incremental flow, the global reset signal creates a
timing dependency between the top-level partition and lower-level partitions.

For incremental compilation, it is helpful to minimize the impact of global structures.
To isolate each partition, consider adding reset synchronizers. Using cascaded reset
structures, the intent is to reduce the inter-partition fan-out of the reset signal, thereby
minimizing the effect of the global signal. Reducing the fan-out of the global reset
signal also provides more flexibility in routing the cascaded signals, and might help
recovery and removal times in some cases.

This recommendation can help in large designs, regardless of whether you are using
incremental compilation. However, if one global signal can feed all the logic in its
domain and meet recovery and removal times, this recommendation may not be
applicable for your design. Minimizing global structures is more relevant for
high-performance designs where meeting timing on the reset logic can be challenging.
Isolating each partition and allowing more flexibility in global routing structures is an
additional advantage in incremental flows.

If you add additional reset synchronizers to your design, latency is also added to the
reset path, so ensure that this is acceptable in your design. Additionally, parts of the
design may come out of the reset state in different clock cycles. You can balance the
latency or add hand-shaking logic between partitions, if necessary, to accommodate
these differences.

The signal is first synchronized on the chip following good synchronous design
practices, meaning that the design asynchronously resets, but synchronously releases
from reset to avoid any race conditions or metastability problems. Then, to minimize
the impact of global structures, the circuit employs a divide-and-conquer approach
for the reset structure. By implementing a cascaded reset structure, the reset paths for
each partition are independent. This structure reduces the effect of inter-partition
dependency because the inter-partition reset signals can now be treated as false paths
for timing analysis. In some cases, the reset signal of the partition can be placed on
local lines to reduce the delay added by routing to a global routing line. In other cases,
the signal can be routed on a regional or quadrant clock signal.
Quartus II Handbook Version 13.1 November 2013 Altera Corporation
Volume 1: Design and Synthesis

Chapter 15: Best Practices for Incremental Compilation Partitions and Floorplan Assignments 15–25
Design Partition Guidelines for Third-Party IP Delivery
Figure 15–19 shows a cascaded reset structure.

This circuit design can help you achieve timing closure and partition independence
for your global reset signal. Evaluate the circuit and consider how it works for your
design.

f For more information and design recommendations for reset structures, refer to the
Recommended Design Practices chapter in volume 1 of the Quartus II Handbook.

Design Partition Guidelines for Third-Party IP Delivery
This section includes additional design guidelines that can improve incremental
compilation flows where exported partitions are developed independently. These
guidelines are not always required, but are usually recommended if the design
includes partitions compiled in a separate Quartus II project, such as when delivering
intellectual property (IP). A unique challenge of IP delivery for FPGAs is the fact that
the partitions developed independently must share a common set of resources. To
minimize issues that might arise from sharing a common set of resources, you can
design partitions within a single Quartus II project, or a copy of the top-level design.
A common project ensures that designers have a consistent view of the top-level
design framework, as described in “Project Management in Team-Based Design
Flows” on page 15–4.

Alternatively, an IP designer can export just the post-synthesis results to be integrated
in the top-level design when the post-fitting results from the IP project are not
required. Using a post-synthesis netlist provides more flexibility to the Quartus II
Fitter, so that less resource allocation is required. If a common project is not possible,
especially when the project lead plans to integrate the IP's post-fitting results, it is
important that the project lead and IP designer clearly communicate their
requirements.

Figure 15–19. Cascaded Reset Structure

TopFalse Timing
Paths

VCC

Reset

CLRN CLRN

D DQ Q

CLRN CLRN

CLRN CLRN

VCC

VCC

A

B

A_Reset

B_Reset

D D

DD

Q Q

QQ
November 2013 Altera Corporation Quartus II Handbook Version 13.1
Volume 1: Design and Synthesis

http://www.altera.com/literature/hb/qts/qts_qii51006.pdf

15–26 Chapter 15: Best Practices for Incremental Compilation Partitions and Floorplan Assignments
Design Partition Guidelines for Third-Party IP Delivery
Allocate Logic Resources
In an incremental compilation design flow in which designers, such as third-party IP
providers, optimize partitions and then export them to a top-level design, the
Quartus II software places and routes each partition separately. In some cases,
partitions can use conflicting resources when combined at the top level. Allocation of
logic resources requires that you decide on a set of logic resources (including I/O,
LAB logic blocks, RAM and DSP blocks) that the IP block will ”own”. This process can
be interactive; the project lead and the IP designer might work together to determine
what resources are required for the IP block and are available in the top-level design.

You can constrain logic utilization for the IP core using design floorplan location
assignments, as described in “Introduction to Design Floorplans” on page 15–40. The
design should specify I/O pin locations with pin assignments.

You can also specify limits for Quartus II synthesis to allocate and balance resources.
This procedure can also help if device resources are overused in the individual
partitions during synthesis.

In the standard synthesis flow, the Quartus II software can perform automated
resource balancing for DSP blocks or RAM blocks and convert some of the logic into
regular logic cells to prevent overuse.

You can use the Quartus II synthesis options to control inference of megafunctions
that use the DSP, or RAM blocks. You can also use the MegaWizardTM Plug-In
Manager to customize your RAM or DSP megafunctions to use regular logic instead
of the dedicated hardware blocks.

f For more information about resource balancing DSP and RAM blocks when using
Quartus II synthesis, refer to the ”Megafunction Inference Control” section in the
Quartus II Integrated Synthesis chapter in volume 1 of the Quartus II Handbook. For tips
about resource balancing and reducing resource utilization, refer to the appropriate
“Resource Utilization Optimization Techniques” section in the Area and Timing
Optimization chapter in volume 2 of the Quartus II Handbook.

h For information about how to set global logic options for partitions, refer to More
Analysis & Synthesis Settings Dialog Box in Quartus II Help.

Allocate Global Routing Signals and Clock Networks if Required
In most cases, you do not have to allocate global routing signals because the
Quartus II software finds the best solution for the global signals. However, if your
design is complex and has multiple clocks, especially for a partition developed by a
third-party IP designer, you may have to allocate global routing resources between
various partitions.

Global routing signals can cause conflicts when independent partitions are integrated
into a top-level design. The Quartus II software automatically promotes high fan-out
signals to use global routing resources available in the device. Third-party partitions
can use the same global routing resources, thus causing conflicts in the top-level
design. Additionally, LAB placement depends on whether the inputs to the logic cells
within the LAB use a global clock signal. Problems can occur if a design does not use a
global signal in a lower-level partition, but does use a global signal in the top-level
design.
Quartus II Handbook Version 13.1 November 2013 Altera Corporation
Volume 1: Design and Synthesis

http://www.altera.com/literature/hb/qts/qts_qii51008.pdf
http://www.altera.com/literature/hb/qts/qts_qii52005.pdf
http://www.altera.com/literature/hb/qts/qts_qii52005.pdf
http://quartushelp.altera.com/current/master.htm#mergedProjects/comp/comp/comp_tab_asd.htm
http://quartushelp.altera.com/current/master.htm#mergedProjects/comp/comp/comp_tab_asd.htm

Chapter 15: Best Practices for Incremental Compilation Partitions and Floorplan Assignments 15–27
Design Partition Guidelines for Third-Party IP Delivery
If the exported IP core is small, you can reduce the potential for problems by using
constraints to promote clock and high fan-out signals to regional routing signals that
cover only part of the device, instead of global routing signals. In this case, the
Quartus II software is likely to find a routing solution in the top-level design because
there are many regional routing signals available on most Altera devices, and designs
do not typically overuse regional resources.

To ensure that an IP block can utilize a regional clock signal, view the resource
coverage of regional clocks in the Chip Planner, and then align LogicLock regions that
constrain partition placement with available global clock routing resources. For
example, if the LogicLock region for a particular partition is limited to one device
quadrant, that partition’s clock can use a regional clock routing type that covers only
one device quadrant. When all partition logic is available, the project lead can compile
the entire design at the top level with floorplan assignments to allow the use of
regional clocks that span only a part of the device.

If global resources are heavily used in the overall design, or the IP designer requires
global clocks for their partition, you can set up constraints to avoid signal overuse at
the top-level by assigning the appropriate type of global signals or setting a maximum
number of clock signals for the partition.

You can use the Global Signal assignment to force or prevent the use of a global
routing line, making the assignment to a clock source node or signal. You can also
assign certain types of global clock resources in some device families, such as regional
clocks. For example, if you have an IP core, such as a memory interface that specifies
the use of a dual regional clock, you can constrain the IP to part of the device covered
by a regional clock and change the Global Signal assignment to use a regional clock.
This type of assignment can reduce clocking congestion and conflicts.

Alternatively, partition designers can specify the number of clocks allowed in the
project using the maximum clocks allowed options in the More Fitter Settings dialog
box. Specify Maximum number of clocks of any type allowed, or use the Maximum
number of global clocks allowed, Maximum number of regional clocks allowed,
and Maximum number of periphery clocks allowed options to restrict the number of
clock resources of a particular type in your design.

If you require more control when planning a design with integrated partitions, you
can assign a specific signal to use a particular clock network in Stratix II and newer
device families by assigning the clock control block instance called CLKCTRL. You
can make a point-to-point assignment from a clock source node to a destination node,
or a single-point assignment to a clock source node with the Global Clock CLKCTRL
Location logic option. Set the assignment value to the name of the clock control block:
CLKCTRL_G<global network number> for a global routing network, or CLKCTRL_R<regional
network number> for a dedicated regional routing network in the device.

If you want to disable the automatic global promotion performed in the Fitter to
prevent other signals from being placed on global (or regional) routing networks, turn
off the Auto Global Clock and Auto Global Register Control Signals options in the
More Fitter Settings dialog box.

h For information about how to disable automatic global promotion, refer to More Fitter
Settings Dialog Box in Quartus II Help.
November 2013 Altera Corporation Quartus II Handbook Version 13.1
Volume 1: Design and Synthesis

http://quartushelp.altera.com/current/master.htm#mergedProjects/comp/comp/comp_db_fitter_settings.htm
http://quartushelp.altera.com/current/master.htm#mergedProjects/comp/comp/comp_db_fitter_settings.htm

15–28 Chapter 15: Best Practices for Incremental Compilation Partitions and Floorplan Assignments
Design Partition Guidelines for Third-Party IP Delivery
If you are using design partition scripts for independent partitions, the Quartus II
software can automatically write the commands to pass global constraints and turn
off automatic options.

h For more information about how to generate design partition scripts, refer to
Generating Design Partition Scripts for Project Management in Quartus II Help.

f For more information about how clock networks affect partition design, refer to the
Analyzing and Optimizing the Design Floorplan with the Chip Planner chapter in volume 2
of the Quartus II Handbook.

Alternatively, to avoid problems when integrating partitions into the top-level design,
you can direct the Fitter to discard the placement and routing of the partition netlist
by using the post-synthesis netlist, which forces the Fitter to reassign all the global
signals for the partition when compiling the top-level design.

Assign Virtual Pins
Virtual pins map lower-level design I/Os to internal cells. If you are developing an IP
block in an independent Quartus II project, use virtual pins when the number of I/Os
on a partition exceeds the device I/O count, and to increase the timing accuracy of
cross-partition paths.

You can create a virtual pin assignment in the Assignment Editor for partition I/Os
that will become internal nodes in the top-level design. Leave the clock pins mapped
to I/O pins to ensure proper routing.

You can specify locations for the virtual pins that correspond to the placement of other
partitions, and also make timing assignments to the virtual pins to define a timing
budget, as described in the following section. Virtual pins are created automatically
from the top-level design if you use design partition scripts. The scripts place the
virtual pins to correspond with the placement of the other partitions in the top-level
design.

h For more information about how to generate design partition scripts, refer to
Generating Design Partition Scripts for Project Management in Quartus II Help.

1 Tri-state outputs cannot be assigned as virtual pins because internal tri-state signals
are not supported in Altera devices. Connect the signal in the design with regular
logic, or allow the software to implement the signal as an external device I/O pin.

Perform Timing Budgeting if Required
If you optimize partitions independently and integrate them to the top-level design,
or compile with empty partitions, any unregistered paths that cross between
partitions are not optimized as entire paths. In these cases, the Quartus II software has
no information about the placement of the logic that connects to the I/O ports. If the
logic in one partition is placed far away from logic in another partition, the routing
Quartus II Handbook Version 13.1 November 2013 Altera Corporation
Volume 1: Design and Synthesis

http://quartushelp.altera.com/current/master.htm#mergedProjects/comp/increment/comp_pro_generating_design_partition_scripts.htm
http://quartushelp.altera.com/current/master.htm#mergedProjects/comp/increment/comp_pro_generating_design_partition_scripts.htm
http://www.altera.com/literature/hb/qts/qts_qii52006.pdf

Chapter 15: Best Practices for Incremental Compilation Partitions and Floorplan Assignments 15–29
Design Partition Guidelines for Third-Party IP Delivery
delay between the logic can lead to problems in meeting timing requirements. You can
reduce this effect by ensuring that input and output ports of the partitions are
registered whenever possible. Additionally, using the same top-level project
framework helps to avoid this problem by providing the software with full
information about other design partitions in the top-level design.

To ensure that the software correctly optimizes the input and output logic in any
independent partitions, you might be required to perform some manual timing
budgeting. For each unregistered timing path that crosses between partitions, make
timing assignments on the corresponding I/O path in each partition to constrain both
ends of the path to the budgeted timing delay. Assigning a timing budget for each
part of the connection ensures that the software optimizes the paths appropriately.

When performing manual timing budgeting in a partition for I/O ports that become
internal partition connections in a top-level design, you can assign location and
timing constraints to the virtual pin that represents each connection to further
improve the quality of the timing budget. Refer to “Assign Virtual Pins” on
page 15–28 for a description of virtual pins.

1 If you use design partition scripts, the Quartus II software can write I/O timing
budget constraints automatically for virtual pins.

h For more information about how to generate design partition scripts, refer to
Generating Design Partition Scripts for Project Management in Quartus II Help.

Drive Clocks Directly
When partitions are exported from another Quartus II project, you should drive
partition clock inputs directly with device clock input pins.

Connecting the clock signal directly avoids any timing analysis difficulties with gated
clocks. Clock gating is never recommended for FPGA designs because of potential
glitches and clock skew. Clock gating can be especially problematic with exported
partitions because the partitions have no information about gating that takes place at
the top-level design or in another partition. If a gated clock is required in a partition,
perform the gating within that partition, as described for clock inversion in “Invert
Clocks in Destination Partitions” on page 15–17.

Direct connections to input clock pins also allows design partition scripts to send
constraints from the top-level device pin to lower-level partitions.

Recreate PLLs for Lower-Level Partitions if Required
If you connect a PLL in your top-level design to partitions designed in separate
Quartus II projects by third-party IP designers, the IP partitions do not have
information about the multiplication, phase shift, or compensation delays for the PLL
in the top-level design. To accommodate the PLL timing, you can make appropriate
timing assignments in the projects created by IP designers to ensure that clocks are not
left unconstrained or constrained with an incorrect frequency. Alternatively, you can
duplicate the top-level PLL (or other derived clock logic) in the design file for the
project created by the IP designer to ensure that you have the correct PLL parameters
and clock delays for a complete and accurate timing analysis.
November 2013 Altera Corporation Quartus II Handbook Version 13.1
Volume 1: Design and Synthesis

http://quartushelp.altera.com/current/master.htm#mergedProjects/comp/increment/comp_pro_generating_design_partition_scripts.htm

15–30 Chapter 15: Best Practices for Incremental Compilation Partitions and Floorplan Assignments
Checking Partition Quality
If the project lead creates a copy of the top-level project framework that includes all
the settings and constraints needed for the design, this framework should include
PLLs and other interface logic if this information is important to optimize partitions.

If you use a separate Quartus II project for an independent design block (such as
when a designer or third-party IP provider does not have access to the entire design
framework), include a copy of the top-level PLL in the lower-level partition as shown
in Figure 15–20.

In either case, the IP partition in the separate Quartus II project should contain just the
partition logic that will be exported to the top-level design, while the full project
includes more information about the top-level design. When the partition is complete,
you can export just the partition without exporting the auxiliary PLL components to
the top-level design. When you export a partition, the Quartus II software exports any
hierarchy under the specified partition into the Quartus II Exported Partition File
(.qxp), but does not include logic defined outside the partition (the PLL in this
example).

Checking Partition Quality
This section provides an overview of tools you can use to create and analyze
partitions in the Quartus II software. Take advantage of these tools to assess your
partition quality, and use the information to improve your design or assignments as
required to achieve the best results.

Incremental Compilation Advisor
You can use the Incremental Compilation Advisor to ensure that your design follows
Altera’s recommendations for creating design partitions and implementing the
incremental compilation design flow methodology. Each recommendation in the
Incremental Compilation Advisor provides an explanation, describes the effect of the
recommendation, and provides the action required to make the suggested change.

f For more information about the Incremental Compilation Advisor, refer to Incremental
Compilation Advisor Command and Example of Using the Incremental Compilation Advisor
to Identify Non-Global Ports That Are Not Registered in Quartus II Help, and the
Quartus II Incremental Compilation for Hierarchical and Team-Based Design chapter in
volume 1 of the Quartus II Handbook.

Figure 15–20. Recreating a Top-Level PLL in a Lower-Level Partition

Device Input
Clock

Other Inputs
from Device

Pins

PLL From
Top-Level

Design

Virtual
Input
Pins

Lower-Level
Partition

to be
Exported

Virtual
Output
Pins

Outputs to
Device Pins

Top Partition
in Lower-Level

Project
Quartus II Handbook Version 13.1 November 2013 Altera Corporation
Volume 1: Design and Synthesis

http://quartushelp.altera.com/current/master.htm#mergedProjects/report/oaw/oaw_com_inc_compoa_command.htm
http://quartushelp.altera.com/current/master.htm#mergedProjects/report/oaw/oaw_com_inc_compoa_command.htm
http://quartushelp.altera.com/current/master.htm#mergedProjects/report/oaw/oaw_ex_inc_comp.htm
http://quartushelp.altera.com/current/master.htm#mergedProjects/report/oaw/oaw_ex_inc_comp.htm
http://www.altera.com/literature/hb/qts/qts_qii51015.pdf

Chapter 15: Best Practices for Incremental Compilation Partitions and Floorplan Assignments 15–31
Checking Partition Quality
Design Partition Planner
The Design Partition Planner allows you to view design connectivity and hierarchy,
and can assist you in creating effective design partitions that follow the guidelines in
this chapter. You can also use the Design Partition Planner to optimize design
performance by isolating and resolving failing paths on a partition-by-partition basis.

To view a design and create design partitions in the Design Partition Planner, you
must first compile the design, or perform Analysis & Synthesis. In the Design
Partition Planner, the design appears as a single top-level design block, with
lower-level instances displayed as color-specific boxes.

In the Design Partition Planner, you can show connectivity between blocks and
extract instances from the top-level design block. When you extract entities,
connection bundles are drawn between entities, showing the number of connections
existing between pairs of entities. When you have extracted a design block that you
want to set as a design partition, right-click that design block, and then click Create
Design Partition.

The Design Partition Planner also has an auto-partition feature that creates partitions
based on the size and connectivity of the hierarchical design blocks. You can
right-click the design block you want to partition (such as the top-level design
hierarchy), and then click Auto-Partition Children. You can then analyze and adjust
the partition assignments as required.
November 2013 Altera Corporation Quartus II Handbook Version 13.1
Volume 1: Design and Synthesis

15–32 Chapter 15: Best Practices for Incremental Compilation Partitions and Floorplan Assignments
Checking Partition Quality
Figure 15–21 shows the Design Partition Planner after making a design partition
assignment to one instance and dragging another instance away from the top-level
block within the same partition (two design blocks in the pale blue shaded box). The
figure shows the connections between each partition and information about the size
of each design instance.

You can switch between connectivity display mode and hierarchical display mode, or
temporarily to a view-only hierarchy display. You can also remove the connection
lines between partitions and I/O banks by turning off Display connections to I/O
banks, or use the settings on the Connection Counting tab in the Bundle
Configuration dialog box to adjust how the connections are counted in the bundles.

To optimize design performance, confine failing paths within individual design
partitions so that there are no failing paths passing between partitions, as discussed in
earlier sections. In the top-level entity, child entities that contain failing paths are
marked by a small red dot in the upper right corner of the entity box.

To view the critical timing paths from a timing analyzer report, first perform a timing
analysis on your design, and then in the Design Partition Planner, click Show Timing
Data on the View menu.

h For more information about the Design Partition Planner, refer to About the Design
Partition Planner and Using the Design Partition Planner in Quartus II Help.

Figure 15–21. Design Partition Planner
Quartus II Handbook Version 13.1 November 2013 Altera Corporation
Volume 1: Design and Synthesis

http://quartushelp.altera.com/current/master.htm#mergedProjects/optimize/dpp/dpp_about_dpp.htm
http://quartushelp.altera.com/current/master.htm#mergedProjects/optimize/dpp/dpp_about_dpp.htm
http://quartushelp.altera.com/current/master.htm#mergedProjects/optimize/dpp/dpp_pro_using_dpp.htm

Chapter 15: Best Practices for Incremental Compilation Partitions and Floorplan Assignments 15–33
Checking Partition Quality
Viewing Design Partition Planner and Floorplan Side-by-Side
You can use the Design Partition Planner together with the Chip Planner to analyze
natural placement groupings. This information can help you decide whether the
design blocks should be grouped together in one partition, or whether they will make
good partitions in the next compilation. It can also help determine whether the logic
can easily be constrained by a LogicLock region. If logic naturally groups together
when compiled without placement constraints, you can probably assign a reasonably
sized LogicLock region to constrain the placement for subsequent compilations. You
can experiment by extracting different design blocks in the Design Partition Planner
and viewing the placement results of those design blocks from the previous
compilation.

To view the Design Partition Planner and Chip Planner side-by-side, open the Design
Partition Planner, and then open the Chip Planner and select the Design Partition
Planner task. The Design Partition Planner task displays the physical locations of
design entities with the same colors as in the Design Partition Planner.

In the Design Partition Planner, you can extract instances of interest from their parents
by dragging and dropping, or with the Extract from Parent command. Evaluate the
physical locations of instances in the Chip Planner and the connectivity between
instances displayed in the Design Partition Planner. An entity is generally not suitable
to be set as a separate design partition or constrained in a LogicLock region if the Chip
Planner shows it physically dispersed over a noncontiguous area of the device after
compilation. Use the Design Partition Planner to analyze the design connections.
Child instances that are unsuitable to be set as separate design partitions or placed in
LogicLock regions can be returned to their parent by dragging and dropping, or with
the Collapse to Parent command.
November 2013 Altera Corporation Quartus II Handbook Version 13.1
Volume 1: Design and Synthesis

15–34 Chapter 15: Best Practices for Incremental Compilation Partitions and Floorplan Assignments
Checking Partition Quality
Figure 15–22 shows a design displayed in the Design Partition Planner and the Chip
Planner with different colors for the top-level design and the three major design
instances.

h For more information about the Design Partition Planner, refer to About the Design
Partition Planner and Using the Design Partition Planner in Quartus II Help.

Partition Statistics Report
You can view statistics about design partitions in the Partition Merge Partition
Statistics report and the Statistics tab of the Design Partitions Properties dialog box.
These reports are useful when optimizing your design partitions, or when compiling
the completed top-level design in a team-based compilation flow to ensure that
partitions meet the guidelines discussed in this chapter.

The Partition Merge Partition Statistics report in the Partition Merge section of the
Compilation report lists statistics about each partition. The statistics for each partition
(each row in the table) include the number of logic cells, as well as the number of
input and output pins and how many are registered. This report also lists how many
ports are unconnected, or driven by a constant VCC or GND. You can use this
information to assess whether you have followed the guidelines for partition
boundaries.

Figure 15–22. Design Partition Planner and Chip Planner
Quartus II Handbook Version 13.1 November 2013 Altera Corporation
Volume 1: Design and Synthesis

http://quartushelp.altera.com/current/master.htm#mergedProjects/optimize/dpp/dpp_about_dpp.htm
http://quartushelp.altera.com/current/master.htm#mergedProjects/optimize/dpp/dpp_about_dpp.htm
http://quartushelp.altera.com/current/master.htm#mergedProjects/optimize/dpp/dpp_pro_using_dpp.htm

Chapter 15: Best Practices for Incremental Compilation Partitions and Floorplan Assignments 15–35
Checking Partition Quality
You can also view statistics about the resource and port connections for a particular
partition on the Statistics tab of the Design Partition Properties dialog box. The
Show All Partitions button allows you to view all the partitions in the same report.
The Partition Merge Partition Statistics report also shows statistics for the Internal
Congestion: Total Connections and Registered Connections. This information
represents how many signals are connected within the partition. It then lists the
inter-partition connections for each partition, which helps you to see how partitions
are connected to each other.

h For more information about the Partition Merge Reports, refer to Partition Merge
Reports in Quartus II Help.

Report Partition Timing in the TimeQuest Timing Analyzer
The Report Partitions diagnostic report and the report_partitions SDC command in
the TimeQuest analyzer produce a Partition Timing Overview and Partition Timing
Details table, which lists the partitions, the number of failing paths, and the worst
case timing slack within each partition.

You can use these reports to analyze the location of the critical timing paths in the
design in relation to partitions. If a certain partition contains many failing paths, or
failing inter-partition paths, you might be able to change your partitioning scheme
and improve timing performance.

f For more information about the TimeQuest report_timing command and reports, see
the Quartus II TimeQuest Timing Analyzer chapter in volume 3 of the Quartus II
Handbook.

Check if Partition Assignments Impact the Quality of Results
You can ensure that you limit negative effect on the quality of results by following an
iterative methodology during the partitioning process. In any incremental
compilation flow where you can compile the source code for every partition during
the partition planning phase, Altera recommends the following iterative flow:

1. Start with a complete design that is not partitioned and has no location or
LogicLock region assignments.

After Analysis & Synthesis and Partition Merge, perform a placement and timing
analysis estimate with the Start Early Timing Estimate command. To run a full
compilation instead, use the Start Compilation command.

2. Record the quality of results from the Compilation report (timing slack or fMAX,
area and any other relevant results).

3. Create design partitions following the guidelines described in this chapter.

4. Perform another early timing estimate or a full compilation.

5. Record the quality of results from the Compilation report. If the quality of results
is significantly worse than those obtained in the previous compilation, repeat step
3 through step 5 to change your partition assignments and use a different
partitioning scheme.
November 2013 Altera Corporation Quartus II Handbook Version 13.1
Volume 1: Design and Synthesis

http://www.altera.com/literature/hb/qts/qts_qii53018.pdf
http://quartushelp.altera.com/current/master.htm#mergedProjects/report/rpt/rpt_file_part_merge_summary.htm
http://quartushelp.altera.com/current/master.htm#mergedProjects/report/rpt/rpt_file_part_merge_summary.htm

15–36 Chapter 15: Best Practices for Incremental Compilation Partitions and Floorplan Assignments
Including SDC Constraints from Lower-Level Partitions for Third-Party IP Delivery
6. Even if the quality of results is acceptable, you can repeat step 3 through step 5 by
further dividing a large partition into several smaller partitions, which can
improve compilation time in subsequent incremental compilations. You can repeat
these steps until you achieve a good trade-off point (that is, all critical paths are
localized within partitions, the quality of results is not negatively affected, and the
size of each partition is reasonable).

You can also remove or disable partition assignments defined in the top-level design
at any time during the design flow to compile the design as one flat compilation and
get all possible design optimizations to assess the results. To disable the partitions
without deleting the assignments, use the Ignore partition assignments during
compilation option on the Incremental Compilation page of the Settings dialog box
in the Quartus II software. This option disables all design partition assignments in
your project and runs a full compilation, ignoring all partition boundaries and
netlists. This option can be useful if you are using partitions to reduce compilation
time as you develop various parts of the design, but can run a long compilation near
the end of the design cycle to ensure the design meets its timing requirements.

Including SDC Constraints from Lower-Level Partitions for
Third-Party IP Delivery

When exported partitions are compiled in a separate Quartus II project, such as when
a third-party designer is delivering IP, the project lead must transfer the top-level
project framework information and constraints to the partitions, so that each designer
has a consistent view of the constraints that apply to the entire design. If the
independent partition designers make any changes or add any constraints, they might
have to transfer new constraints back to the project lead, so that these constraints are
included in final timing sign-off of the entire design. Many assignments from the
partition are carried with the partition into the top-level design; however, SDC format
constraints for the TimeQuest analyzer are not copied into the top-level design
automatically.

Passing additional timing constraints from a partition to the top-level design must be
managed carefully. This section provides recommendations for managing the timing
constraints in a third-party IP delivery flow. You can design within a single Quartus II
project or a copy of the top-level design to simplify constraint management.

To ensure that there are no conflicts between the project lead’s top-level constraints
and those added by the third-party IP designer, use two .sdc files for each separate
Quartus II project: an .sdc created by the project lead that includes project-wide
constraints, and an .sdc created by the IP designer that includes partition-specific
constraints.
Quartus II Handbook Version 13.1 November 2013 Altera Corporation
Volume 1: Design and Synthesis

Chapter 15: Best Practices for Incremental Compilation Partitions and Floorplan Assignments 15–37
Including SDC Constraints from Lower-Level Partitions for Third-Party IP Delivery
This section uses the example design shown in Figure 15–23 to illustrate these
recommendations. The top-level design instantiates a lower-level design block called
module_A that is set as a design partition and developed by an IP designer in a
separate Quartus II project.

In this top-level design, there is a single clock setting called clk associated with the
FPGA input called top_level_clk. The top-level .sdc contains the following
constraint for the clock:

create_clock -name {clk} -period 3.000 -waveform { 0.000 1.500 }
[get_ports {TOP_LEVEL_CLK}]

Creating an .sdc File with Project-Wide Constraints
The .sdc with project-wide constraints for the separate Quartus II project should
contain all constraints that are not completely localized to the partition. The .sdc
should be maintained by the project lead. The project lead must ensure that these
timing constraints are delivered to the individual partition owners and that they are
syntactically correct for each of the separate Quartus II projects. This communication
can be challenging when the design is in flux and hierarchies change. The project lead
can use design partition scripts to automatically pass some of these constraints to the
separate Quartus II projects.

h For more information about how to generate design partition scripts, refer to
Generating Design Partition Scripts for Project Management in Quartus II Help.

The .sdc with project-wide constraints is used in the partition, but is not exported
back to the top-level design. The partition designer should not modify this file. If
changes are necessary, they should be communicated to the project lead, who can then
update the SDC constraints and distribute new files to all partition designers as
required.

The .sdc should include clock creation and clock constraints for any clock used by
more than one partition. These constraints are particularly important when working
with complex clocking structures, such as the following:

■ Cascaded clock multiplexers

■ Cascaded PLLs

■ Multiple independent clocks on the same clock pin

Figure 15–23. Example Design to Illustrate SDC Constraints
November 2013 Altera Corporation Quartus II Handbook Version 13.1
Volume 1: Design and Synthesis

http://quartushelp.altera.com/current/master.htm#mergedProjects/comp/increment/comp_pro_generating_design_partition_scripts.htm

15–38 Chapter 15: Best Practices for Incremental Compilation Partitions and Floorplan Assignments
Including SDC Constraints from Lower-Level Partitions for Third-Party IP Delivery
■ Redundant clocking structures required for secure applications

■ Virtual clocks and generated clocks that are consistently used for source
synchronous interfaces

■ Clock uncertainties

Additionally, the .sdc with project-wide constraints should contain all project-wide
timing exception assignments, such as the following:

■ Multicycle assignments, set_multicycle_path

■ False path assignments, set_false_path

■ Maximum delay assignments, set_max_delay

■ Minimum delay assignments, set_min_delay

The project-wide .sdc can also contain any set_input_delay or set_output_delay
constraints that are used for ports in separate Quartus II projects, because these
represent delays external to a given partition. If the partition designer wants to set
these constraints within the separate Quartus II projects, the team must ensure that
the I/O port names are identical in all projects so that the assignments can be
integrated successfully without changes.

Similarly, a constraint on a path that crosses a partition boundary should be in the
project-wide .sdc, because it is not completely localized in a separate Quartus II
project.

Example Step 1: Project Lead Produces .sdc with Project-Wide Constraints for
Lower-Level Partitions

The device input top_level_clk in Figure 15–23 drives the input_clk port of
module_A. To make sure the clock constraint is passed correctly to the partition, the
project lead creates an .sdc with project-wide constraints for module_A that contains
the following command:

create_clock -name {clk} -period 3.000 -waveform { 0.000 1.500 }
[get_ports {INPUT_CLK}]

The designer of module_A includes this .sdc as part of the separate Quartus II project.

Creating an .sdc with Partition-Specific Constraints
The .sdc with partition-specific constraints should contain all constraints that affect
only the partition. For example, a set_false_path or set_multicycle_path constraint
for a path entirely within the partition should be in the partition-specific .sdc. These
constraints are required for correct compilation of the partition, but need not be
present in any other separate Quartus II projects.

The partition-specific .sdc should be maintained by the partition designer; they must
add any constraints required to properly compile and analyze their partition.
Quartus II Handbook Version 13.1 November 2013 Altera Corporation
Volume 1: Design and Synthesis

Chapter 15: Best Practices for Incremental Compilation Partitions and Floorplan Assignments 15–39
Including SDC Constraints from Lower-Level Partitions for Third-Party IP Delivery
The partition-specific .sdc is used in the separate Quartus II project and must be
exported back to the project lead for the top-level design. The project lead must use
the partition-specific constraints to properly constrain the placement, routing, or both,
if the partition logic is fit at the top level, and to ensure that final timing sign-off is
accurate. Use the following guidelines in the partition-specific .sdc to simplify these
export and integration steps:

■ Create a hierarchy variable for the partition (such as module_A_hierarchy) and set
it to an empty string because the partition is the top-level instance in the separate
Quartus II project. The project lead modifies this variable for the top-level
hierarchy, reducing the effort of translating constraints on lower-level design
hierarchies into constraints that apply in the top-level hierarchy. Use the following
Tcl command first to check if the variable is already defined in the project, so that
the top-level design does not use this empty hierarchy path: if {![info exists
module_A_hierarchy]}.

■ Use the hierarchy variable in the partition-specific .sdc as a prefix for assignments
in the project. For example, instead of naming a particular instance of a register
reg:inst, use ${module_A_hierarchy}reg:inst. Also, use the hierarchy variable
as a prefix to any wildcard characters (such as ” * ”).

■ Pay attention to the location of the assignments to I/O ports of the partition. In
most cases, these assignments should be specified in the .sdc with project-wide
constraints, because the partition interface depends on the top-level design. If you
want to set I/O constraints within the partition, the team must ensure that the I/O
port names are identical in all projects so that the assignments can be integrated
successfully without changes.

■ Use caution with the derive_clocks and derive_pll_clocks commands. In most
cases, the .sdc with project-wide constraints should call these commands. Because
these commands impact the entire design, integrating them unexpectedly into the
top-level design might cause problems.

If the design team follows these recommendations, the project lead should be able to
include the .sdc with the partition-specific constraints provided by the partition
designer directly in the top-level design.

Example Step 2: Partition Designer Creates .sdc with Partition-Specific Constraints

The partition designer compiles the design with the .sdc with project-wide constraints
and might want to add some additional constraints. In this example, the designer
realizes that he or she must specify a false path between the register called reg_in_1
and all destinations in this design block with the wildcard character (such as ” * ”).
This constraint applies entirely within the partition and must be exported to the
top-level design, so it qualifies for inclusion in the .sdc with partition-specific
constraints. The designer first defines the module_A_hierarchy variable and uses it
when writing the constraint as follows:

if {![info exists module_A_hierarchy]} {
set module_A_hierarchy ""

}
set_false_path -from [get_registers ${module_A_hierarchy}reg_in_1] -to
[get_registers ${module_A_hierarchy}*]
November 2013 Altera Corporation Quartus II Handbook Version 13.1
Volume 1: Design and Synthesis

15–40 Chapter 15: Best Practices for Incremental Compilation Partitions and Floorplan Assignments
Introduction to Design Floorplans
Consolidating the .sdc in the Top-Level Design
When the partition designers complete their designs, they export the results to the
project lead. The project lead receives the exported .qxp files and a copy of the .sdc
with partition-specific constraints.

To set up the top-level .sdc constraint file to accept the .sdc files from the separate
Quartus II projects, the top-level .sdc should define the hierarchy variables specified
in the partition .sdc files. List the variable for each partition and set it to the hierarchy
path, up to and including the instantiation of the partition in the top-level design,
including the final hierarchy character ”|”.

To ensure that the .sdc files are used in the correct order, the project lead can use the
Tcl Source command to load each .sdc.

Example Step 3: Project Lead Performs Final Timing Analysis and Sign-off

With these commands, the top-level .sdc file looks like the following example:

create_clock -name {clk} -period 3.000 -waveform { 0.000 1.500 }
[get_ports {TOP_LEVEL_CLK}]
Include the lower-level SDC file
set module_A_hierarchy "module_A:inst|" # Note the final '|' character
source <partition-specific constraint file such as
..\module_A\module_A_constraints>.sdc

When the project lead performs top-level timing analysis, the false path assignment
from the lower-level module_A project expands to the following:

set_false_path -from module_A:inst|reg_in_1 -to module_A:inst|*

Adding the hierarchy path as a prefix to the SDC command makes the constraint legal
in the top-level design, and ensures that the wildcard does not affect any nodes
outside the partition that it was intended to target.

By following the guidelines in this section, constraint propagation between the
separate Quartus II projects can be managed effectively.

Introduction to Design Floorplans
A floorplan represents the layout of the physical resources on the device. Creating a
design floorplan, or floorplanning, describes the process of mapping the logical
design hierarchy onto physical regions in the device.

In the Quartus II software, LogicLock regions can be used to constrain blocks of a
design to a particular region of the device. LogicLock regions represent an area on the
device with a user-defined or Fitter-defined size and location in the device layout.

f For more information about design floorplans and LogicLock regions, refer to the
Analyzing and Optimizing the Design Floorplan chapter in volume 2 of the Quartus II
Handbook.

The Difference between Logical Partitions and Physical Regions
Design partitions are logical entities based on the design hierarchy. LogicLock regions
are physical placement assignments that constrain logic to a particular region on the
device.
Quartus II Handbook Version 13.1 November 2013 Altera Corporation
Volume 1: Design and Synthesis

http://www.altera.com/literature/hb/qts/qts_qii52006.pdf

Chapter 15: Best Practices for Incremental Compilation Partitions and Floorplan Assignments 15–41
Introduction to Design Floorplans
A common misconception is that logic from a design partition is always grouped
together on the device when you use incremental compilation. Actually, logic from a
partition can be placed anywhere in the device if it is not constrained to a LogicLock
region, although the Fitter can pack related logic together to improve timing
performance. A logical design partition does not refer to any physical area on the
device and does not directly control where instances are placed on the device.

If you want to control the placement of logic from a design partition and isolate it to a
particular part of the device, you can assign the logical design partition to a physical
region in the device floorplan with a LogicLock region assignment. Altera
recommends creating a design floorplan by assigning design partitions to LogicLock
regions to improve the quality of results and avoid placement conflicts in some
situations for incremental compilation. For more information, refer to “Why Create a
Floorplan?” on page 15–41.

Another misconception is that LogicLock assignments are used to preserve placement
results for incremental compilation. Actually, LogicLock regions only constrain logic to
a physical region on the device. Incremental compilation does not use LogicLock
assignments or any location assignments to preserve the placement results; it simply
reuses the results stored in the database netlist from a previous compilation.

Why Create a Floorplan?
Creating a design floorplan is usually required if you want to preserve placement for
partitions that will be exported, to avoid resource conflicts between partitions in the
top-level design. Floorplan location planning can be important for a design that uses
incremental compilation, for the following reasons:

■ To avoid resource conflicts between partitions, predominantly when
integrating partitions exported from another Quartus II project.

■ To ensure good quality of results when recompiling individual timing-critical
partitions.

Location assignments for each partition ensure that there are no placement conflicts
between partitions. If there are no LogicLock region assignments, or if LogicLock
regions are set to auto-size or floating location, no device resources are specifically
allocated for the logic associated with the region. If you do not clearly define resource
allocation, logic placement can conflict when you integrate the partitions in the
top-level design if you reuse the placement information from the exported netlist.

Creating a floorplan is also recommended for timing-critical partitions that have little
timing margin to maintain good quality of results when the design changes.

Floorplan assignments are not required for non-critical partitions compiled in the
same Quartus II project. The logic for partitions that are not timing-critical can be
placed anywhere in the device on each recompilation if that is best for your design.

Design floorplan assignments prevent the situation in which the Fitter must place a
partition in an area of the device where most resources are used by other partitions. A
LogicLock region provides a reasonable region to re-place logic after a change, so the
Fitter does not have to scatter logic throughout the available space in the device.
November 2013 Altera Corporation Quartus II Handbook Version 13.1
Volume 1: Design and Synthesis

15–42 Chapter 15: Best Practices for Incremental Compilation Partitions and Floorplan Assignments
Introduction to Design Floorplans
Figure 15–24 illustrates the problems that may be associated with refitting designs
that do not have floorplan location assignments. The left floorplan shows the initial
placement of a four-partition design (P1-P4) without any floorplan location
assignments. The right floorplan shows the device if a change occurs to P3. After
removing the logic for the changed partition, the Fitter must re-place and reroute the
new logic for P3 in the scattered white space shown in Figure 15–24. The placement of
the post-fit netlists for other partitions forces the Fitter to implement P3 with the
device resources that have not been used.

The Fitter has a more difficult task because of more difficult physical constraints, and
as a result, compilation time often increases. The Fitter might not be able to find any
legal placement for the logic in partition P3, even if it could in the initial compilation.
Additionally, if the Fitter can find a legal placement, the quality of results often
decreases in these cases, sometimes dramatically, because the new partition is now
scattered throughout the device.

Figure 15–25 shows the initial placement of a four-partition design with floorplan
location assignments. Each partition is assigned to a LogicLock region. The second
part of the figure shows the device after partition P3 is removed. This placement
presents a much more reasonable task to the Fitter and yields better results.

Altera recommends that you create a LogicLock floorplan assignment for
timing-critical blocks with little timing margin that will be recompiled as you make
changes to the design.

Figure 15–24. Representation of Device Floorplan without Location Assignments

P1

P3

P3

P4P1

P2

P2

P1

No floorplan assignments: Device has 4 partitions
and the logic is placed throughout

P3

P1

P4P1

P2

P2

P1

Device after removing changed partition P3:
New P3 must be placed in empty areas

Change in P3

Figure 15–25. Representation of Device Floorplan with Location Assignments

P2 P3

P1 P4

With floorplan location assignments: Device has
4 partitions placed in 4 LogicLock regions

Device after removing changed partition P3:
Much easier to place new P3 partition in empty area

P2

P1 P4

Change in P3
Quartus II Handbook Version 13.1 November 2013 Altera Corporation
Volume 1: Design and Synthesis

Chapter 15: Best Practices for Incremental Compilation Partitions and Floorplan Assignments 15–43
Design Floorplan Placement Guidelines
When to Create a Floorplan
It is important that you plan early to incorporate partitions into the design, and
ensure that each partition follows partitioning guidelines. You can create floorplan
assignments at different stages of the design flow, early or late in the flow. These
guidelines help ensure better results as you begin creating floorplan location
assignments.

Early Floorplan
An early floorplan is created before the design stage. You can plan an early floorplan
at the top level of a design to allocate each partition a portion of the device resources.
Doing so allows the designer for each block to create the logic for their design
partition without conflicting with other logic. Each partition can be optimized in a
separate Quartus II project if required, and the design can still be easily integrated in
the top-level design. Even within one Quartus II project, each partition can be locked
down with a post-fit netlist, and you can be sure there is space in the device floorplan
for other partitions.

When you have compiled your complete design, or after you have integrated the first
versions of partitions developed in separate Quartus II projects, you can use the
design information and Quartus II features to tune and improve the floorplan, as
described in the following section.

Late Floorplan
A late floorplan is created or modified after the design is created, when the code is
close to complete and the design structure is likely to remain stable. Creating a late
floorplan is typically necessary only if you are starting to use incremental compilation
late in the design flow, or need to reserve space for a logic block that becomes
timing-critical but still has HDL changes to be integrated. When the design is
complete, you can take advantage of the Quartus II analysis features to check the
floorplan quality. To adjust the floorplan, you can perform iterative compilations as
required and assess the results of different assignments.

1 It may not be possible to create a good-quality late floorplan if you do not create
partitions in the early stages of the design.

Design Floorplan Placement Guidelines
The following guidelines are key to creating a good design floorplan:

■ Capture correct resources in each region.

■ Use good region placement to maintain design performance compared to flat
compilation.

A common misconception is that creating a floorplan enhances timing performance,
as compared to a flat compilation with no location assignments. The Fitter does not
usually require guidance to get optimal results for a full design.
November 2013 Altera Corporation Quartus II Handbook Version 13.1
Volume 1: Design and Synthesis

15–44 Chapter 15: Best Practices for Incremental Compilation Partitions and Floorplan Assignments
Design Floorplan Placement Guidelines
Floorplan assignments can help maintain good performance when designs change
incrementally, as described in “Why Create a Floorplan?” on page 15–41. However,
poor placement assignments in an incremental compilation can often adversely affect
performance results, as compared to a flat compilation, because the assignments limit
the options for the Fitter. Investing time to find good region placement is required to
match the performance of a full flat compilation.

Use the following general procedure to create a floorplan:

1. Divide the design into partitions.

2. Assign the partitions to LogicLock regions.

3. Compile the design.

4. Analyze the results.

5. Modify the placement and size of regions, as required.

You might have to perform these steps several times to find the best combination of
design partitions and LogicLock regions that meet the resource and timing goals of
the design.

f For more information about performing these steps, refer to the Quartus II Incremental
Compilation for Hierarchical and Team-Based Design chapter in volume 1 of the Quartus II
Handbook.

Assigning Partitions to LogicLock Regions
Before compiling a design with new LogicLock assignments, ensure that the partition
netlist type is set to Post-Synthesis or Source File, so that the Fitter does not reuse
previous placement results.

In most cases, you should include logic from one partition in each LogicLock region.
This organization helps to prevent resource conflicts when partitions are exported and
can lead to better performance preservation when locking down parts of a design in a
single project.

The Quartus II software is flexible and allows exceptions to this rule. For example,
you can place more than one partition in the same LogicLock region if the partitions
are tightly connected, but you do not want to merge the partitions into one larger
partition. For best results, ensure that you recompile all partitions in the LogicLock
region every time the logic in one partition changes. Additionally, if a partition
contains multiple lower-level entities, you can place those entities in different areas of
the device with multiple LogicLock regions, even if they are defined in the same
partition.

You can use the Reserved LogicLock option to ensure that you avoid conflicts with
other logic that is not locked into a LogicLock region. This option prevents other logic
from being placed in the region, and is useful if you have empty partitions at any
point during your design flow, so that you can reserve space in the floorplan. Do not
make reserved regions too large to prevent unused area because no other logic can be
placed in a region with the Reserved LogicLock option.

h For more information about LogicLock region properties, refer to the LogicLock Region
Properties Dialog Box in Quartus II Help.
Quartus II Handbook Version 13.1 November 2013 Altera Corporation
Volume 1: Design and Synthesis

http://www.altera.com/literature/hb/qts/qts_qii51015.pdf
http://www.altera.com/literature/hb/qts/qts_qii51015.pdf
http://quartushelp.altera.com/current/master.htm#mergedProjects/optimize/lock/asd_com_logiclock_properties.htm
http://quartushelp.altera.com/current/master.htm#mergedProjects/optimize/lock/asd_com_logiclock_properties.htm

Chapter 15: Best Practices for Incremental Compilation Partitions and Floorplan Assignments 15–45
Design Floorplan Placement Guidelines
How to Size and Place Regions
In an early floorplan, assign physical locations based on design specifications. Use
information about the connections between partitions, the partition size, and the type
of device resources required.

In a late floorplan, when the design is complete, you can use locations or regions
chosen by the Fitter as a guideline. If you have compiled the full design, you can view
the location of the partition logic in the Chip Planner. Refer to “Checking Partition
Quality” on page 15–30 for information about viewing placement results for each
partition in the device floorplan. You can use the natural grouping of each
unconstrained partition as a starting point for a LogicLock region constraint. View the
placement for each partition that requires a floorplan constraint, and create a new
LogicLock region by drawing a box around the area on the floorplan, and then
assigning the partition to the region to constrain the partition placement.

h For a step-by-step procedure to create a LogicLock region, refer to Creating and
Manipulating LogicLock Regions in Quartus II Help.

Instead of creating regions based on the previous compilation results, you can start
with the Fitter results for a default auto size and floating origin location for each new
region when the design logic is complete. After compilation, lock the size and origin
location. Instead of a full compilation, you can use the Start Early Timing Estimate
command to perform a fast placement.

Alternatively, if the design logic is complete with auto-sized or floating location
regions, you can specify the size based on the synthesis results and use the locations
chosen by the Fitter with the Set to Estimated Size command. Like the previous
option, start with floating origin location. After compilation, lock the origin location.
Again, instead of a full compilation, you can use the Start Early Timing Estimate
command to perform a fast placement. You can also enable the Fast Synthesis Effort
setting to reduce synthesis time.

After a compilation or early timing estimate, save the Fitter size and origin location of
the Fitter with the Set Size and Origin to Previous Fitter Results command.

1 It is important that you use the Fitter-chosen locations only as a starting point to give
the regions a good fixed size and location. Ensure that all LogicLock regions in the
design have a fixed size and have their origin locked to a specific location on the
device. On average, regions with fixed size and location yield better timing
performance than auto-sized regions.

Modifying Region Size and Origin
After saving the Fitter results from an initial compilation for a late floorplan, modify
the regions using your knowledge of the design to set a specific size and location. If
you have a good understanding of how the design fits together, you can often
improve upon the regions placed in the initial compilation. In an early floorplan,
when the design has not yet been created, you can use the guidelines in this section to
set the size and origin, even though there is no initial Fitter placement.
November 2013 Altera Corporation Quartus II Handbook Version 13.1
Volume 1: Design and Synthesis

http://quartushelp.altera.com/current/master.htm#mergedProjects/optimize/lock/flp_pro_def_logiclock_reg.htm
http://quartushelp.altera.com/current/master.htm#mergedProjects/optimize/lock/flp_pro_def_logiclock_reg.htm

15–46 Chapter 15: Best Practices for Incremental Compilation Partitions and Floorplan Assignments
Design Floorplan Placement Guidelines
The easiest way to move and resize regions is to drag the region location and borders
in the Chip Planner. Make sure that you select the User-Defined region in the
floorplan (as opposed to the Fitter-Placed region from the last compilation) so that
you can change the region.

Generally, you can keep the Fitter-determined relative placement of the regions, but
make adjustments if required to meet timing performance. If you find that the early
timing estimate did not result in good relative placements, try performing a full
compilation so that the Fitter can optimize for a full placement and routing.

If two LogicLock regions have several connections between them, ensure they are
placed near each other to improve timing performance. By placing connected regions
near each other, the Fitter has more opportunity to optimize inter-region paths when
both partitions are recompiled. Reducing the criticality of inter-region paths also
allows the Fitter more flexibility when placing other logic in each region.

If resource utilization is low in the overall device, enlarge the regions. Doing so
usually improves the final results because it gives the Fitter more freedom to place
additional or modified logic added to the partition during subsequent incremental
compilations. It also allows room for optimizations such as pipelining and physical
synthesis logic duplication.

Try to have each region evenly full, with the same ”fullness” that the complete design
would have without LogicLock regions; Altera recommends approximately 75% full.

Allow more area for regions that are densely populated, because overly congested
regions can lead to poor results. Allow more empty space for timing-critical partitions
to improve results. However, do not make regions too large for their logic. Regions
that are too large can result in wasted resources and also lead to suboptimal results.

Ideally, almost the entire device should be covered by LogicLock regions if all
partitions are assigned to regions.

Regions should not overlap in the device floorplan. If two partitions are allocated on
an overlapping portion of the chip, each may independently claim common resources
in this region. This leads to resource conflicts when integrating results into a top-level
design. In a single project, overlapping regions give more difficult constraints to the
Fitter and can lead to reduced quality of results.

You can create hierarchical LogicLock regions to ensure that the logic in a child
partition is physically placed inside the LogicLock region for its parent partition. This
can be useful when the parent partition does not contain registers at the boundary
with the lower-level child partition and has a lot of signal connectivity. To create a
hierarchical relationship between regions in the LogicLock Regions window, drag and
drop the child region to the parent region.

I/O Connections
Consider I/O timing when placing regions. Using I/O registers can minimize I/O
timing problems, and using boundary registers on partitions can minimize problems
connecting regions or partitions. However, I/O timing might still be a concern. It is
most important for flows where each partition is compiled independently, because the
Fitter can optimize the placement for paths between partitions if the partitions are
compiled at the same time.
Quartus II Handbook Version 13.1 November 2013 Altera Corporation
Volume 1: Design and Synthesis

Chapter 15: Best Practices for Incremental Compilation Partitions and Floorplan Assignments 15–47
Design Floorplan Placement Guidelines
Place regions close to the appropriate I/O, if necessary. For example, DDR memory
interfaces have very strict placement rules to meet timing requirements. Incorporate
any specific placement requirements into your floorplan as required. You should
create LogicLock regions for internal logic only, and provide pin location assignments
for external device I/O pins (instead of including the I/O cells in a LogicLock region
to control placement).

LogicLock Resource Exclusions
You can exclude certain resource types from a LogicLock region to manage the ratio of
logic to dedicated DSP and RAM resources in the region.

If your design contains memory or Digital Signal Processing (DSP) elements, you may
want to exclude these elements from the LogicLock region. LogicLock resource
exceptions prevent certain types of elements from being assigned to a region.
Therefore, those elements are not required to be placed inside the region boundaries.
The option does not prevent them from being placed inside the region boundaries
unless the Reserved property of the region is turned on.

Resource exceptions are useful in cases where it is difficult to place rectangular
regions for design blocks that contain memory and DSP elements, due to their
placement in columns throughout the device floorplan. Exclude RAMs, DSPs, or logic
cells to give the Fitter more flexibility with region sizing and placement. Excluding
RAM or DSP elements can help to resolve no-fit errors that are caused by regions
spanning too many resources, especially for designs that are memory-intensive,
DSP-intensive, or both. Figure 15–26 shows an example of a design with an
odd-shaped region to accommodate DSP blocks for a region that does not contain
very much logic. The right side of the figure shows the result after excluding DSP
blocks from the region. The region can be placed more easily without wasting logic
resources.

Figure 15–26. LogicLock Resource Exclusion Example

DSP blocks force
odd-shaped region

D
SPM
4K

 R
AM

M
51

2
R

AM

M
R

AM

Allows better shape, easier
placement, and less unused

logic resources

D
SP

M
4K

 R
AM

M
51

2
R

AM

M
R

AM

D
SP

M
4K

 R
AM

M
51

2
R

AM

M
R

AM

Exclude DSP
blocks from
LogicLock region
November 2013 Altera Corporation Quartus II Handbook Version 13.1
Volume 1: Design and Synthesis

15–48 Chapter 15: Best Practices for Incremental Compilation Partitions and Floorplan Assignments
Design Floorplan Placement Guidelines
To view any resource exceptions, right-click in the LogicLock Regions window, and
then click LogicLock Regions Properties. In the LogicLock Regions Properties dialog
box, select the design element (module or entity) in the Members box, and then click
Edit. In the Edit Node dialog box, to set up a resource exception, click the Edit button
next to the Excluded element types box, and then turn on the design element types to
be excluded from the region. You can choose to exclude combinational logic or
registers from logic cells, or any of the sizes of TriMatrix memory blocks, or DSP
blocks.

If the excluded logic is in its own lower-level design entity (even if it is within the
same design partition), you can assign the entity to a separate LogicLock region to
constrain its placement in the device.

You can also use this feature with the LogicLock Reserved property to reserve specific
resources for logic that will be added to the design.

Creating Floorplan Location Assignments With Tcl Commands—Excluding or Filtering
Certain Device Elements (Such as RAM or DSP Blocks)

To assign a code block to a LogicLock region, with exclusions, use the following
command:

set_logiclock_contents -region <LogicLock region name> -to <block>
-exceptions \"<keyword>:<keyword>"

■ <LogicLock region name>—The name of the LogicLock region to which the code
block is assigned.

■ block—A code block in a Quartus II project hierarchy, which can aslo be a design
partition.

■ <keyword>—The list of exceptions made during assignment. For example, if DSP
was in the keyword list, the named block of code would be assigned to the
LogicLock region, except for any DSP block within the code block. You can include
the following exceptions in the set_logiclock_contents command:

Keyword variables:

■ REGISTER—Any registers in the logic cells.

■ COMBINATIONAL—Any combinational elements in the logic cells.

■ SMALL_MEM—Small TriMatrix memory blocks (M512 or MLAB).

■ MEDIUM_MEM—Medium TriMatrix memory blocks (M4K or M9K).

■ LARGE_MEM—Large TriMatrix memory blocks (M-RAM or M144K).

■ DSP—Any DSP blocks.

■ VIRTUAL_PIN—Any virtual pins.

1 Resource filtering uses the optional Tcl argument -exclude_resources in the
set_logiclock_contents function. If left unspecified, no resource filter is created. In
the .qsf, resource filtering uses an extra LogicLock membership assignment called
LL_MEMBER_RESOURCE_EXCLUDE. For example, the following line in the .qsf is used to
specify a resource filter for the alu:alu_unit entity assigned to the ALU region.

set_instance_assignment -name LL_MEMBER_RESOURCE_EXCLUDE \
"DSP:SMALL_MEM" -to "alu:alu_unit" -section_id ALU
Quartus II Handbook Version 13.1 November 2013 Altera Corporation
Volume 1: Design and Synthesis

Chapter 15: Best Practices for Incremental Compilation Partitions and Floorplan Assignments 15–49
Checking Floorplan Quality
Creating Non-Rectangular Regions
To constrain placement to non-rectangular or non-contiguous areas of the device, you
can connect multiple rectangular regions together using the Merge command.

For devices that do not support the Merge command (Arria TM GX, Cyclone,
Cyclone II, MAX TM II, Stratix, Stratix II, Stratix II GX, and Stratix GX devices), you can
limit entity placement to a sub-area of a LogicLock region to create non-rectangular
constraints. In these devices, construct a LogicLock hierarchy by creating child
regions inside of parent regions, and then use the Reserved option to control which
logic can be placed inside these child regions. Setting the Reserved option for the
region prevents the Fitter from placing nodes that are not assigned to the region inside
the boundary of the region.

h For more information and examples of creating non-rectangular regions, refer to
Creating and Manipulating LogicLock Regions in Quartus II Help.

Checking Floorplan Quality
This section provides an overview of tools that you can use as you create a floorplan
in the Quartus II software. You can use these tools to assess your floorplan quality and
use the information to improve your design or assignments as required to achieve the
best results.

Incremental Compilation Advisor
You can use the Incremental Compilation Advisor to check that your design follows
the recommendations for creating floorplan location assignments that are presented
in this chapter. For more information, refer to “Incremental Compilation Advisor” on
page 15–30.

LogicLock Region Resource Estimates
You can view resource estimates for a LogicLock region to determine the region’s
resource coverage, and use this estimate before compilation to check region size.
Using this estimate helps to ensure adequate resources when you are sizing or
moving regions.

h For information about how to view the properties of a LogicLock region, refer to
LogicLock Region Properties Dialog Box in Quartus II Help.

LogicLock Region Properties Statistics Report
LogicLock region statistics are similar to design partition properties, but also include
resource usage details after compilation.

The statistics report the number of resources used and the total resources covered by
the region, and also list the number of I/O connections and how many I/Os are
registered (good), as well as the number of internal connections and the number of
inter-region connections (bad).
November 2013 Altera Corporation Quartus II Handbook Version 13.1
Volume 1: Design and Synthesis

http://quartushelp.altera.com/current/master.htm#mergedProjects/optimize/lock/asd_com_logiclock_properties.htm
http://quartushelp.altera.com/current/master.htm#mergedProjects/optimize/lock/flp_pro_def_logiclock_reg.htm

15–50 Chapter 15: Best Practices for Incremental Compilation Partitions and Floorplan Assignments
Checking Floorplan Quality
h For information about the Statistics tab in the LogicLock Region Properties dialog
box, refer to LogicLock Region Properties Dialog Box in Quartus II Help.

Locate the Quartus II TimeQuest Timing Analyzer Path in the Chip Planner
In the TimeQuest analyzer user interface, you can locate a specific path in the Chip
Planner to view its placement and perform a report timing operation (for example,
report timing for all paths with less than 0 ns slack).

h For information about how to locate paths between the TimeQuest analyzer and the
Chip Planner, refer to Locate Dialog Box in Quartus II Help.

Inter-Region Connection Bundles
The Chip Planner can display bundles of connections between LogicLock regions,
with filtering options that allow you to choose the relevant data for display. These
bundles can help you to visualize how many connections there are between each
LogicLock region to improve floorplan assignments or to change partition
assignments, if required.

h For information about how to display bundles of connections between LogicLock
regions, refer to Inter-region Bundles Dialog Box in Quartus II Help.

Routing Utilization
The Chip Planner includes a feature to display a color map of routing congestion. This
display helps identify areas of the chip that are too tightly packed.

In the Chip Planner, red LAB blocks indicate higher routing congestion. You can
position the mouse pointer over a LAB to display a tooltip that reports the logic and
routing utilization information.

h For information about how to how to view a color map of routing congestion in the
Chip Planner, refer to About the Chip Planner in Quartus II Help.

Ensure Floorplan Assignments Do Not Significantly Impact Quality of
Results

The end results of design partitioning and floorplan creation differ from design to
design. However, it is important to evaluate your results to ensure that your scheme is
successful. Compare your before and after results, and consider using another scheme
if any of the following guidelines are not met:

■ You should see only minor degradation in fMAX after the design is partitioned and
floorplan location assignments are created. There is some performance cost
associated with setting up a design for incremental compilation; approximately
3% is typical.

■ The area increase should be no more than 5% after the design is partitioned and
floorplan location assignments are created.

■ The time spent in the routing stage should not significantly increase.
Quartus II Handbook Version 13.1 November 2013 Altera Corporation
Volume 1: Design and Synthesis

http://quartushelp.altera.com/current/master.htm#mergedProjects/optimize/ace/acv_db_generate_interregion_bundles.htm
http://quartushelp.altera.com/current/master.htm#mergedProjects/optimize/lock/asd_com_logiclock_properties.htm
http://quartushelp.altera.com/current/master.htm#mergedProjects/analyze/sta/sta_db_locate_path.htm
http://quartushelp.altera.com/current/master.htm#mergedProjects/optimize/ace/acv_view_acv_overview.htm

Chapter 15: Best Practices for Incremental Compilation Partitions and Floorplan Assignments 15–51
Recommended Design Flows and Application Examples
The amount of compilation time spent in the routing stage is reported in the Messages
window with an Info message that indicates the elapsed time for Fitter routing
operations. If you notice a dramatic increase in routing time, the floorplan location
assignments may be creating substantial routing congestion. In this case, decrease the
number of LogicLock regions, which typically reduces the compilation time in
subsequent incremental compilations and may also improve design performance.

Recommended Design Flows and Application Examples
This section provides design flows for partitioning and creating a design floorplan
during common timing closure and team-based design scenarios. Each flow describes
the situation in which it should be used, and provides a step-by-step description of
the commands required to implement the flow.

Create a Floorplan for Major Design Blocks
Use this incremental compilation flow for designs when you want to assign a
floorplan location for each major block in your design. A full floorplan ensures that
partitions do not interact as they are changed and recompiled—each partition has its
own area of the device floorplan.

To create a floorplan for major design blocks, follow this general methodology:

1. In the Design Partitions window, ensure that all partitions have their netlist type
set to Source File or Post-Synthesis. If the netlist type is set to Post-Fit, floorplan
location assignments are not used when recompiling the design.

2. Create a LogicLock region for each partition (including the top-level entity, which
is set as a partition by default).

3. Run a full compilation of your design to view the initial Fitter-chosen placement of
the LogicLock regions as a guideline.

4. In the Chip Planner, view the placement results of each partition and LogicLock
region on the device.

5. If required, modify the size and location of the LogicLock regions in the Chip
Planner. For example, enlarge the regions to fill up the device and allow for future
logic changes.

You can also, if needed, create a new LogicLock region by drawing a box around
an area on the floorplan.

6. Run an early timing estimate with the Start Early Timing Estimate command to
estimate the timing performance of your design with the modified or new
LogicLock regions.

7. Repeat steps 5 and 6 until you are satisfied with the quality of results for your
design floorplan. Once you are satisfied with your results, run a full compilation of
your design.
November 2013 Altera Corporation Quartus II Handbook Version 13.1
Volume 1: Design and Synthesis

15–52 Chapter 15: Best Practices for Incremental Compilation Partitions and Floorplan Assignments
Recommended Design Flows and Application Examples
Create a Floorplan Assignment for One Design Block with Difficult Timing
Use this flow when you have one timing-critical design block that requires more
optimization than the rest of your design. You can take advantage of incremental
compilation to reduce your compilation time without creating a full design floorplan.

In this scenario, you do not want to create floorplan assignments for the entire design.
Instead, you can create a region to constrain the location of your critical design block,
and allow the rest of the logic to be placed anywhere on the device. To create a region
for critical design block, follow these steps:

1. Divide up your design into partitions. Consider the guidelines in “Design
Partition Guidelines” on page 15–10 to determine partition boundaries. Ensure
that you isolate the timing-critical logic in a separate partition.

2. Define a LogicLock region for the timing-critical partition. Ensure that you capture
the correct amount of device resources in the region. Turn on the Reserved
property to prevent any other logic from being placed in the region.

■ If the design block is not complete, reserve space in the design floorplan based
on your knowledge of the design specifications, connectivity between design
blocks, and estimates of the size of the partition based on any initial
implementation numbers.

■ If the critical design block has initial source code ready, compile the design to
place the LogicLock region. Save the Fitter-determined size and origin, and
then enlarge the region to provide more flexibility and allow for future design
changes.

As the rest of the design is completed, and the device fills up, the timing-critical
region reserves an area of the floorplan. When you make changes to the design block,
the logic will be re-placed in the same part of the device, which helps ensure good
quality of results.

Create a Floorplan as the Project Lead in a Team-Based Flow
Use this approach when you have several designs that will be implemented in
separate Quartus II projects by different designers, or third-party IP designers who
want to optimize their designs independently and pass the results to the project lead.

As the project lead in this scenario, follow these steps to prepare the top-level design
for a successful team-based design methodology with early floorplan planning:

1. Create a new Quartus II project that will ultimately contain the full
implementation of the entire design.

2. Create a “skeleton” or framework of the design that defines the hierarchy for the
subdesigns that will be implemented by separate designers. Consider the
partitioning guidelines in this chapter when determining the design hierarchy.

3. Make project-wide settings. Select the device, make global assignments for clocks
and device I/O ports, and make any global signal constraints to specify which
signals can use global routing resources.

4. Make design partition assignments for each major subdesign. Set the netlist type
for each partition that will be implemented in a separate Quartus II project and
later exported and integrated with the top-level design set to Empty.
Quartus II Handbook Version 13.1 November 2013 Altera Corporation
Volume 1: Design and Synthesis

Chapter 15: Best Practices for Incremental Compilation Partitions and Floorplan Assignments 15–53
Conclusion
5. Create LogicLock regions for each partition to create a design floorplan. This
floorplan should consider the connectivity between partitions and estimates of the
size of each partition based on any initial implementation numbers and
knowledge of the design specifications. Use the guidelines described in this
chapter to choose a size and location for each LogicLock region.

6. Provide the constraints from the top-level design to partition designers using one
of the following procedures:

a. Create a copy of the top-level Quartus II project framework by checking out the
appropriate files from a source control system, using the Copy Project
command, or creating a project archive. Provide each partition designer with
the copy of the project.

b. Provide the constraints with documentation or scripts.

h To use design partition scripts to pass constraints and generate separate Quartus II
projects, refer to Generating Design Partition Scripts for Project Management in Quartus II
Help.

Conclusion
Incremental compilation can significantly improve your design productivity,
especially for large, complex designs. To take advantage of the feature, it is worth
spending time to create quality partition and floorplan assignments. Follow the
guidelines to set up your design hierarchy and source code for incremental
compilation.

Floorplan location assignments are required when design blocks are developed
independently and are recommended for timing-critical partitions that are expected
to change. Follow the guidelines to create and modify LogicLock regions to create
good placement assignments for your design partitions.

Remember that you do not have to follow all the guidelines exactly to implement an
incremental compilation design flow, but following the guidelines can maximize your
chances of success.

Document Revision History
Table 15–1 shows the revision history for this chapter.

Table 15–1. Document Revision History (Part 1 of 2)

Date Version Changes

November 2013 13.1.0 Removed HardCopy device information.

November 2012 12.1.0 Added “Turning On Supported Cross-boundary Optimizations” on page 15–7.

June 2012 12.0.0 Removed survey link.

November 2011 11.0.1 Template update.

May 2011 11.0.0 Updated links.
November 2013 Altera Corporation Quartus II Handbook Version 13.1
Volume 1: Design and Synthesis

http://quartushelp.altera.com/current/master.htm#mergedProjects/comp/increment/comp_pro_generating_design_partition_scripts.htm

15–54 Chapter 15: Best Practices for Incremental Compilation Partitions and Floorplan Assignments
Document Revision History
f For previous versions of the Quartus II Handbook, refer to the Quartus II Handbook
Archive.

December 2010 10.1.0

■ Changed to new document template.

■ Moved "Creating Floorplan Location Assignments With Tcl Commands—Excluding or
Filtering Certain Device Elements (Such as RAM or DSP Blocks)" from the Quartus II
Incremental Compilation for Hierarchical and Team-Based Design chapter in volume 1 of
the Quartus II Handbook.

■ Consolidated Design Partition Planner and Incremental Compilation Advisor information
between the Quartus II Incremental Compilation for Hierarchical and Team-Based Design
and Best Practices for Incremental Compilation Partitions and Floorplan Assignments
handbook chapters.

July 2010 10.0.0

■ Removed the explanation of the “bottom-up design flow” where designers work
completely independently, and replaced with Altera’s recommendations for team-based
environments where partitions are developed in the same top-level project framework,
plus an explanation of the bottom-up process for including independent partitions from
third-party IP designers.

■ Expanded the Merge command explanation to explain how it now accommodates cross-
partition boundary optimizations.

■ Restructured Altera recommendations for when to use a floorplan.

October 2009 9.1.0

■ Redefined the bottom-up design flow as team-based and reorganized previous design
flow examples to include steps on how to pass top-level design information to lower-level
projects.

■ Added "Including SDC Constraints from Lower-Level Partitions for Third-Party IP
Delivery" from the Quartus II Incremental Compilation for Hierarchical and Team-Based
Design chapter in volume 1 of the Quartus II Handbook.

■ Reorganized the "Recommended Design Flows and Application Examples" section.

■ Removed HardCopy APEX and HardCopy Stratix Devices section.

March 2009 9.0.0

■ Added I/O register packing examples from Incremental Compilation for Hierarchical and
Team-Based Designs chapter

■ Moved "Incremental Compilation Advisor" section

■ Added "Viewing Design Partition Planner and Floorplan Side-by-Side" section

■ Updated Figure 15-22

■ Chapter 8 was previously Chapter 7 in software release 8.1.

November 2008 8.1.0 ■ Changed to 8-1/2 x 11 page size. No change to content.

May 2007 8.0.0 ■ Initial release.

Table 15–1. Document Revision History (Part 2 of 2)

Date Version Changes
Quartus II Handbook Version 13.1 November 2013 Altera Corporation
Volume 1: Design and Synthesis

http://www.altera.com/literature/lit-qts_archive.jsp
http://www.altera.com/literature/lit-qts_archive.jsp

© 2013 Altera Corporation. All rights reserved. ALTERA, ARRI
are trademarks of Altera Corporation and registered in the U.S
trademarks or service marks are the property of their respectiv
semiconductor products to current specifications in accordance
services at any time without notice. Altera assumes no respons
described herein except as expressly agreed to in writing by Al
on any published information and before placing orders for pr

Quartus II Handbook Version 13.1
Volume 1: Design and Synthesis
November 2013
Section 4. Synthesis
As programmable logic devices become more complex and require increased
performance, advanced design synthesis has become an important part of the design
flow. In the Quartus® II software you can use the integrated Analysis and Synthesis
module of the Compiler to synthesize your design files and create the project database
for future stages of the compilation flow. You can also use other EDA synthesis tools
to first synthesize your designs, and then generate EDIF netlist files or Verilog
Quartus Mapping Files (.vqm) that you can use with the Quartus II software. The
Quartus II netlist viewers allow you to visually analyze the design netlist at different
stages of synthesis and compilation. This section explains the options that are
available for each of these flows and how they are supported in the Quartus II
software.

This section includes the following chapters:

■ Chapter 16, Quartus II Integrated Synthesis

This chapter documents the integrated synthesis design flow and language
support in the Quartus II software. It explains how you can improve synthesis
results with Quartus II synthesis options and optimization techniques, and how
you can control the inference of architecture-specific megafunctions. This chapter
also explains some of the node-naming conventions used during synthesis to help
you better understand your synthesized design and the messages issued during
synthesis to improve your HDL code. Scripting techniques for applying all the
options and settings described are also provided.

■ Chapter 17, Synopsys Synplify Support

This chapter documents support for the Synopsys Synplify software in the
Quartus II software, as well as key design flows, methodologies, and techniques
for achieving good results in Altera® devices with the Synplify software.

■ Chapter 18, Mentor Graphics Precision Synthesis Support

This chapter documents support for the Mentor Graphics® Precision Synthesis
software in the Quartus II software, as well as key design flows, methodologies,
and techniques for achieving good results in Altera® devices with the Precision
Synthesis software.

■ Chapter 19, Analyzing Designs with Quartus II Netlist Viewers

This chapter shows how to use the Quartus II netlist viewers to analyze your
design at various stages of the design cycle. It also provides an introduction to the
Quartus II design flow using netlist viewers, an overview of each viewer, and an
explanation of the user interface.
A, CYCLONE, HARDCOPY, MAX, MEGACORE, NIOS, QUARTUS and STRATIX words and logos
. Patent and Trademark Office and in other countries. All other words and logos identified as
e holders as described at www.altera.com/common/legal.html. Altera warrants performance of its
 with Altera's standard warranty, but reserves the right to make changes to any products and
ibility or liability arising out of the application or use of any information, product, or service
tera. Altera customers are advised to obtain the latest version of device specifications before relying
oducts or services.

ISO
9001:2008
Registered

http://www.altera.com/common/legal.html
http://www.altera.com/support/devices/reliability/certifications/rel-certifications.html
http://www.altera.com/support/devices/reliability/certifications/rel-certifications.html

QII51008-13.1.0

© 2013 Altera Corporation. All rights reserved. ALTERA, ARRI
are trademarks of Altera Corporation and registered in the U.S
trademarks or service marks are the property of their respectiv
semiconductor products to current specifications in accordance
services at any time without notice. Altera assumes no respons
described herein except as expressly agreed to in writing by Al
on any published information and before placing orders for pr

Quartus II Handbook Version 13.1
Volume 1: Design and Synthesis
November 2013

May 2013
QII51008-13.0.0
16. Quartus II Integrated Synthesis
This chapter describes the Integrated Synthesis design flow and provides scripting
techniques for applying all the options and settings described in this chapter.

As programmable logic designs become more complex and require increased
performance, advanced synthesis becomes an important part of a design flow. The
Altera® Quartus® II software includes advanced Integrated Synthesis that fully
supports VHDL, Verilog HDL, and Altera-specific design entry languages, and
provides options to control the synthesis process. With this synthesis support, the
Quartus II software provides a complete, easy-to-use solution.

This chapter contains the following sections:

■ “Design Flow” on page 16–1

■ “Language Support” on page 16–4

■ “Incremental Compilation” on page 16–21

■ “Quartus II Synthesis Options” on page 16–23

■ “Analyzing Synthesis Results” on page 16–73

■ “Analyzing and Controlling Synthesis Messages” on page 16–74

■ “Node-Naming Conventions in Quartus II Integrated Synthesis” on page 16–78

■ “Scripting Support” on page 16–84

f For examples of Verilog HDL and VHDL code synthesized for specific logic functions,
refer to the Recommended HDL Coding Styles chapter in volume 1 of the Quartus II
Handbook. For more information about coding with primitives that describe specific
low-level functions in Altera devices, refer to the Designing With Low-Level Primitives
User Guide.

Design Flow
The Quartus II Analysis & Synthesis stage of the compilation flow runs Integrated
Synthesis, which fully supports Verilog HDL, VHDL, and Altera-specific languages,
and major features of the SystemVerilog language. For more information, refer to
“Language Support” on page 16–4.

In the synthesis stage of the compilation flow, the Quartus II software performs logic
synthesis to optimize design logic and performs technology mapping to implement
the design logic in device resources such as logic elements (LEs) or adaptive logic
modules (ALMs), and other dedicated logic blocks. The synthesis stage generates a
single project database that integrates all your design files in a project (including any
netlists from third-party synthesis tools).
A, CYCLONE, HARDCOPY, MAX, MEGACORE, NIOS, QUARTUS and STRATIX words and logos
. Patent and Trademark Office and in other countries. All other words and logos identified as
e holders as described at www.altera.com/common/legal.html. Altera warrants performance of its
 with Altera's standard warranty, but reserves the right to make changes to any products and
ibility or liability arising out of the application or use of any information, product, or service
tera. Altera customers are advised to obtain the latest version of device specifications before relying
oducts or services.

Feedback SubscribeTwitter

ISO
9001:2008
Registered

http://www.altera.com/literature/hb/qts/qts_qii51007.pdf
http://www.altera.com/literature/ug/ug_low_level.pdf
http://www.altera.com/literature/ug/ug_low_level.pdf
mailto:TechDocFeedback@altera.com?subject=Feedback on QII51008-12.0 (QII HB, Vol 1, Ch14: Quartus II Integrated Synthesis)
mailto:TechDocFeedback@altera.com?subject=Feedback on QII51008-12.0 (QII HB, Vol 1, Ch14: Quartus II Integrated Synthesis)
mailto:TechDocFeedback@altera.com?subject=Feedback on QII51008-13.0 (QII HB, Vol 1, Ch17: Quartus II Integrated Synthesis)
http://www.altera.com/common/legal.html
https://www.altera.com/servlets/subscriptions/alert?id=QII51008
http://www.altera.com/support/reliability/certifications/rel-certifications.html
http://www.altera.com/support/reliability/certifications/rel-certifications.html
http://twitter.com/home/?status=Quartus+II+Integrated+Synthesis+http://www.altera.com/literature/hb/qts/qts_qii51008.pdf?WT.mc_id=gc_so_tw_st_tx_a_011+(via @alteracorp)+%23Altera

16–2 Chapter 16: Quartus II Integrated Synthesis
Design Flow
You can use Analysis & Synthesis to perform the following compilation processes:

■ Analyze Current File—parses your current design source file to check for syntax
errors. This command does not report many semantic errors that require further
design synthesis. To perform this analysis, on the Processing menu, click Analyze
Current File.

■ Analysis & Elaboration—checks your design for syntax and semantic errors and
performs elaboration to identify your design hierarchy. To perform Analysis &
Elaboration, on the Processing menu, point to Start, and then click Start
Analysis & Elaboration.

■ Hierarchy Elaboration—parses HDL designs and generates a skeleton of
hierarchies. Hierarchy Elaboration is similar to the Analysis & Elaboration flow,
but without any elaborated logic, thus making it much faster to generate.

h For more information about the Hierarchy Elaboration flow, refer to Start
Hierarchy Elaboration Command (Processing Menu) in Quartus II Help.

■ Analysis & Synthesis—performs complete Analysis & Synthesis on a design,
including technology mapping. To perform Analysis & Synthesis, on the
Processing menu, point to Start, and then click Start Analysis & Synthesis.

The Quartus II Integrated Synthesis design and compilation flow consists of the
following steps:

1. Create a project in the Quartus II software and specify the general project
information, including the top-level design entity name.

2. Create design files in the Quartus II software or with a text editor.

3. On the Project menu, click Add/Remove Files in Project and add all design files to
your Quartus II project using the Files page of the Settings dialog box.

4. Specify Compiler settings that control the compilation and optimization of your
design during synthesis and fitting. For synthesis settings, refer to “Quartus II
Synthesis Options” on page 16–23.

5. Add timing constraints to specify the timing requirements.

1 To partition your design to reduce compilation time, refer to “Incremental
Compilation” on page 16–21.

6. Compile your design. To synthesize your design, on the Processing menu, point to
Start, and then click Start Analysis & Synthesis. To run a complete compilation
flow including placement, routing, creation of a programming file, and timing
analysis, click Start Compilation on the Processing menu.

7. After obtaining synthesis and placement and routing results that meet your
requirements, program or configure your Altera device.

Integrated Synthesis generates netlists that enable you to perform functional
simulation or gate-level timing simulation, timing analysis, and formal verification.
Quartus II Handbook Version 13.1 May 2013 Altera Corporation
Volume 1: Design and Synthesis

http://quartushelp.altera.com/current/master.htm#mergedProjects/comp/comp/comp_com_elaborate_hierarchy.htm
http://quartushelp.altera.com/current/master.htm#mergedProjects/comp/comp/comp_com_elaborate_hierarchy.htm

Chapter 16: Quartus II Integrated Synthesis 16–3
Design Flow
Figure 16–1 shows the basic design flow using Quartus II Integrated Synthesis.

f For an overall summary of features in the Quartus II software, refer to the Introduction
to the Quartus II Software manual.

h For more information about Quartus II projects and the compilation flow, refer to
Managing Files in a Project and About Compilation Flows in Quartus II Help.

Figure 16–1. Quartus II Design Flow Using Quartus II Integrated Synthesis

Notes to Figure 16–1:

(1) AHDL stands for the Altera Hardware Description Language.
(2) BDF stands for the Altera schematic Block Design File (.bdf).
(3) The Quartus II Exported Partition File (.qxp) is a precompiled netlist that you can use as a design source file. For more information about using

.qxp as a design source file, refer to “Quartus II Exported Partition File as Source” on page 16–22.

No

Gate-Level
Functional
Simulation

Functional/RTL
Simulation

Yes

Timing & Area
Requirements

Satisfied?

Gate-Level Timing
Simulation

Formal Verification
Using Source Code as
Golden Netlist, and VO

as Revised Netlist

Internal
Synthesis

Netlist

Configuration/
Programming
Files (.sof/.pof)

Analysis & Synthesis
Constraints
& Settings

Constraints
& Settings

Fitter Assembler
Timing

Analyzer

Post Synthesis
Simulation File

(.vho/.vo)

Post
 Placement and Routing

Simulation Files
(.vho/.vo and .sdo)

Post
Placement and Routing
Formal Verification File

(.vo)

Verilog HDL VHDL AHDL (1) BDF (2)

Configure/Program Device

.qxp file (3)System Verilog
May 2013 Altera Corporation Quartus II Handbook Version 13.1
Volume 1: Design and Synthesis

http://www.altera.com/literature/manual/intro_to_quartus2.pdf
http://www.altera.com/literature/manual/intro_to_quartus2.pdf
http://quartushelp.altera.com/current/master.htm#mergedProjects/global/pjn/pjn_pro_add_delete_files.htm
http://quartushelp.altera.com/current/master.htm#mergedProjects/comp/comp/comp_view_flow.htm

16–4 Chapter 16: Quartus II Integrated Synthesis
Language Support
Language Support
This section describes Quartus II Integrated Synthesis support for HDL, schematic
design entry, graphical state machine entry, and how to specify the Verilog HDL or
VHDL language version in your design. This section also describes language features
such as Verilog HDL macros, initial constructs and memory system tasks, and VHDL
libraries. “Design Libraries” on page 16–12 describes how to compile and reference
design units in custom libraries, and “Using Parameters/Generics” on page 16–16
describes how to use parameters or generics and pass them between languages.

To ensure that the Quartus II software reads all associated project files, add each file to
your Quartus II project by clicking Add/Remove Files in Project on the Project menu.
You can add design files to your project. You can mix all supported languages and
netlists generated by third-party synthesis tools in a single Quartus II project.

h You can also use the available templates in the Quartus II Text Editor for various
Verilog and VHDL features. For more information, refer to Insert Template Dialog Box
in Quartus II Help.

Verilog HDL Support
The Quartus II Compiler’s Analysis & Synthesis module supports the following
Verilog HDL standards:

■ Verilog-1995 (IEEE Standard 1364-1995)

■ Verilog-2001 (IEEE Standard 1364-2001)

■ SystemVerilog-2005 (IEEE Standard 1800-2005) (the Compiler does not support all
constructs)

The Verilog HDL code samples provided in this document follow the Verilog-2001
standard unless otherwise specified. The Quartus II Compiler uses the Verilog-2001
standard by default for files that have the extension .v, and the SystemVerilog
standard for files that have the extension .sv.

If you use scripts to add design files, you can use the -HDL_VERSION command to
specify the HDL version for each design file. For more information, refer to “Adding
an HDL File to a Project and Setting the HDL Version” on page 16–85.

The Quartus II software support for Verilog HDL is case sensitive in accordance with
the Verilog HDL standard. The Quartus II software supports the compiler directive
`define, in accordance with the Verilog HDL standard.

The Quartus II software supports the include compiler directive to include files with
absolute paths (with either “/” or “\” as the separator), or relative paths. When
searching for a relative path, the Quartus II software initially searches relative to the
project directory. If the Quartus II software cannot find the file, the software then
searches relative to all user libraries and then relative to the directory location of the
current file.

For more information about specifying synthesis directives, refer to “Synthesis
Directives” on page 16–27.

h For more information about Verilog HDL, refer to About Verilog HDL in Quartus II
Help.
Quartus II Handbook Version 13.1 May 2013 Altera Corporation
Volume 1: Design and Synthesis

http://quartushelp.altera.com/current/master.htm#mergedProjects/hdl/vlog/vlog_intro.htm
http://quartushelp.altera.com/current/master.htm#mergedProjects/design/ted/ted_com_insert_template.htm

Chapter 16: Quartus II Integrated Synthesis 16–5
Language Support
h For more information about Quartus II Verilog HDL support, refer to Quartus II
Verilog HDL Support in Quartus II Help.

h For more information about specifying a default Verilog HDL version for all files,
refer to Specifying Verilog Input Settings in Quartus II Help.

h For more information about controlling the Verilog HDL version that compiles your
design in a design file with the VERILOG_INPUT_VERSION synthesis directive, refer to
verilog_input_version Synthesis Directive in Quartus II Help.

h For more information about Verilog HDL synthesis attributes and directives, refer to
Verilog HDL Synthesis Attributes and Directives in Quartus II Help.

Verilog HDL Configuration
Verilog HDL configuration is a set of rules that specify the source code for particular
instances.

Verilog HDL configuration allows you to perform the following tasks:

■ Specify a library search order for resolving cell instances (as does a library
mapping file)

■ Specify overrides to the logical library search order for specified instances

■ Specify overrides to the logical library search order for all instances of specified
cells

For more information about these tasks, refer to Table 16–1.

Configuration Syntax

A configuration contains the following statements:

Where:

■ config—the keyword that begins the configuration.

■ config_identifier—the name you enter for the configuration.

■ design—the keyword that starts a design statement for specifying the top of the
design.

■ [library_identifier.]cell_identifier—specifies the top-level module (or
top-level modules) in the design and the logical library for this module (modules).

■ config_rule_statement—one or more of the following clauses: default, instance,
or cell. For more information, refer to Table 16–1.

■ endconfig—the keyword that ends a configuration.

Example 16–1. Verilog HDL Configuration Statement

config config_identifier;
design [library_identifier.]cell_identifier;
config_rule_statement;
endconfig
May 2013 Altera Corporation Quartus II Handbook Version 13.1
Volume 1: Design and Synthesis

http://quartushelp.altera.com/current/master.htm#mergedProjects/hdl/vlog/vlog_file_dir.htm
http://quartushelp.altera.com/current/master.htm#mergedProjects/hdl/vlog/vlog_list_support.htm
http://quartushelp.altera.com/current/master.htm#mergedProjects/hdl/vlog/vlog_list_support.htm
http://quartushelp.altera.com/current/master.htm#mergedProjects/hdl/vlog/vlog_pro_vlog_input_settings.htm
http://quartushelp.altera.com/current/master.htm#mergedProjects/hdl/vlog/vlog_input_ver_synth_dir.htm

16–6 Chapter 16: Quartus II Integrated Synthesis
Language Support
Table 16–1 lists the type of clauses for the config_rule_statement keyword:

Hierarchical Configurations

A design can have more than one configuration. For example, you can define a
configuration that specifies the source code you use in particular instances in a sub
hierarchy, then define a configuration for a higher level of the design.

Suppose, for example, a sub hierarchy of a design is an eight-bit adder and the RTL
Verilog code describes the adder in a logical library named rtllib and the gate-level
code describes the adder in a logical library named gatelib. If you want to use the
gate-level code for the 0 (zero) bit of the adder and the RTL level code for the other
seven bits, the configuration might appear as shown in Example 16–2:

Table 16–1. Type of Clauses for the config_rule_statement Keyword

Clause Type Description

default

Specifies the logical libraries to search to resolve a default cell instance. A default cell instance is an
instance in the design that is not specified in a subsequent instance or cell clause in the configuration.

You specify these libraries with the liblist keyword. The following is an example of a default clause:
default liblist lib1 lib2;

Also specifies resolving default instances in the logical libraries (lib1 and lib2).

Because libraries are inherited, some simulators (for example, VCS) also search the default (or current)
library as well after the searching the logical libraries (lib1 and lib2).

instance

Specifies a specific instance. The specified instance clause depends on the use of the following
keywords:

■ liblist—specifies the logical libraries to search to resolve the instance.

■ use—specifies that the instance is an instance of the specified cell in the specified logical library.

The following are examples of instance clauses:

instance top.dev1 liblist lib1 lib2;

This instance clause specifies to resolve instance top.dev1 with the cells assigned to logical libraries
lib1 and lib2;

instance top.dev1.gm1 use lib2.gizmult;

This instance clause specifies that top.dev1.gm1 is an instance of the cell named gizmult in logical
library lib2.

cell

 A cell clause is similar to an instance clause, except that the cell clause specifies all instances of a
cell definition instead of specifying a particular instance. What it specifies depends on the use of the
liblist or use keywords:

■ liblist—specifies the logical libraries to search to resolve all instances of the cell.

■ use—the specified cell’s definition is in the specified library.

Example 16–2.

config cfg1;
design aLib.eight_adder;
default liblist rtllib;
instance adder.fulladd0 liblist gatelib;
endconfig
Quartus II Handbook Version 13.1 May 2013 Altera Corporation
Volume 1: Design and Synthesis

Chapter 16: Quartus II Integrated Synthesis 16–7
Language Support
If you are instantiating this eight-bit adder eight times to create a 64-bit adder, use
configuration cfg1 for the first instance of the eight-bit adder, but not in any other
instance. A configuration that would perform this function is shown in Example 16–3:

1 The name of the unbound module may be different than the name of the cell that is
bounded to the instance.

Suffix :config

To distinguish between a module by the same name, use the optional extension
:config to refer to configuration names. For example, you can always refer to a cfg2
configuration as cfg2:config (even if the cfg2 module does not exist).

SystemVerilog Support
The Quartus II software supports the SystemVerilog constructs.

1 Designs written to support the Verilog-2001 standard might not compile with the
SystemVerilog setting because the SystemVerilog standard has several new reserved
keywords.

h For more information about the supported SystemVerilog constructs and the
supported Verilog-2001 features, refer to Quartus II Support for SystemVerilog and
Quartus II Support for Verilog 2001 in Quartus II Help.

Initial Constructs and Memory System Tasks
The Quartus II software infers power-up conditions from Verilog HDL initial
constructs. The Quartus II software also creates power-up settings for variables,
including RAM blocks. If the Quartus II software encounters nonsynthesizable
constructs in an initial block, it generates an error. To avoid such errors, enclose
nonsynthesizable constructs (such as those intended only for simulation) in
translate_off and translate_on synthesis directives, as described in “Translate Off
and On / Synthesis Off and On” on page 16–64. Synthesis of initial constructs enables
the power-up state of the synthesized design to match the power-up state of the
original HDL code in simulation. For more information, refer to “Power-Up Level” on
page 16–40.

1 Initial blocks do not infer power-up conditions in some third-party EDA synthesis
tools. If you convert between synthesis tools, you must set your power-up conditions
correctly.

Example 16–3.

config cfg2;
design bLib.64_adder;
default liblist bLib;
instance top.64add0 use work.cfg1:config;
endconfig
May 2013 Altera Corporation Quartus II Handbook Version 13.1
Volume 1: Design and Synthesis

http://quartushelp.altera.com/current/master.htm#mergedProjects/hdl/vlog/vlog_list_sys_vlog.htm
http://quartushelp.altera.com/current/master.htm#mergedProjects/hdl/vlog/vlog_support_2001.htm

16–8 Chapter 16: Quartus II Integrated Synthesis
Language Support
Quartus II Integrated Synthesis supports the $readmemb and $readmemh system tasks
to initialize memories. Example 16–4 shows an initial construct that initializes an
inferred RAM with $readmemb.

When creating a text file to use for memory initialization, specify the address using
the format @<location> on a new line, and then specify the memory word such as
110101 or abcde on the next line. Example 16–5 shows a portion of a Memory
Initialization File (.mif) for the RAM in Example 16–4.

Verilog HDL Macros
The Quartus II software fully supports Verilog HDL macros, which you can define
with the 'define compiler directive in your source code. You can also define macros
in the Quartus II software or on the command line.

Setting a Verilog HDL Macro Default Value in the Quartus II Software

To specify a macro in the Quartus II software, follow these steps:

1. On the Assignments menu, click Settings.

2. In the Category list, expand Analysis & Synthesis Settings and select Verilog
HDL Input.

3. Under Verilog HDL macro, type the macro name in the Name box and the value
in the Setting box.

4. Click Add.

Example 16–4. Verilog HDL Code: Initializing RAM with the readmemb Command

reg [7:0] ram[0:15];
initial
begin
$readmemb("ram.txt", ram);
end

Example 16–5. Text File Format: Initializing RAM with the readmemb Command

@0
00000000
@1
00000001
@2
00000010
…
@e
00001110
@f
00001111
Quartus II Handbook Version 13.1 May 2013 Altera Corporation
Volume 1: Design and Synthesis

Chapter 16: Quartus II Integrated Synthesis 16–9
Language Support
Setting a Verilog HDL Macro Default Value on the Command Line

To set a default value for a Verilog HDL macro on the command line, use the
--verilog_macro option, as shown in Example 16–6.

The command in Example 16–7 has the same effect as specifying
`define a 2 in the Verilog HDL source code.

To specify multiple macros, you can repeat the option more than once, as in
Example 16–8.

VHDL Support
The Quartus II Compiler’s Analysis & Synthesis module supports the following
VHDL standards:

■ VHDL 1987 (IEEE Standard 1076-1987)

■ VHDL 1993 (IEEE Standard 1076-1993)

■ VHDL 2008 (IEEE Standard 1076-2008)

The Quartus II Compiler uses the VHDL 1993 standard by default for files that have
the extension .vhdl or .vhd.

1 The VHDL code samples provided in this chapter follow the VHDL 1993 standard.

To specify a default VHDL version for all files, follow these steps:

1. On the Assignments menu, click Settings.

2. In the Category list, expand Analysis & Synthesis Settings and select VHDL
Input.

3. On the VHDL Input page, under VHDL version, select the appropriate version,
and then click OK.

To override the default VHDL version for each VHDL design file, follow these steps:

1. On the Project menu, click Add/Remove Files in Project.

2. On the Files page, select the appropriate file in the list, and then click Properties.

3. In the HDL version list, select VHDL_2008, VHDL_1993, or VHDL_1987, and
then click OK.

Example 16–6. Command Syntax for Specifying a Verilog HDL Macro

quartus_map <Design name> --verilog_macro= "<Macro name>=<Macro setting>" r

Example 16–7. Specifying a Verilog HDL Macro a = 2

quartus_map my_design --verilog_macro="a=2" r

Example 16–8. Specifying Verilog HDL Macros a = 2 and b = 3

quartus_map my_design --verilog_macro="a=2" --verilog_macro="b=3" r
May 2013 Altera Corporation Quartus II Handbook Version 13.1
Volume 1: Design and Synthesis

16–10 Chapter 16: Quartus II Integrated Synthesis
Language Support
You can also specify the VHDL version that compiles your design for each design file
with the VHDL_INPUT_VERSION synthesis directive, as shown in Example 16–9. This
directive overrides the default HDL version and any HDL version specified in the File
Properties dialog box.

The variable <language version> requires one of the following values:

■ VHDL_1987

■ VHDL_1993

■ VHDL_2008

When the Quartus II software reads a VHDL_INPUT_VERSION synthesis directive, it
changes the current language version as specified until after the file or until it reaches
the next VHDL_INPUT_VERSION directive.

1 You cannot change the language version in a VHDL design unit.

For more information about specifying synthesis directives, refer to “Synthesis
Directives” on page 16–27.

If you use scripts to add design files, you can use the -HDL_VERSION command to
specify the HDL version for each design file. For more information, refer to “Adding
an HDL File to a Project and Setting the HDL Version” on page 16–85.

The Quartus II software reads default values for registered signals defined in the
VHDL code and converts the default values into power-up level settings. This enables
the power-up state of the synthesized design to match, as closely as possible, the
power-up state of the original HDL code in simulation. For more information, refer to
“Power-Up Level” on page 16–40.

VHDL-2008 Support
The Quartus II software contains support for VHDL 2008 with constructs defined in
the IEEE Standard 1076-2008 version of the IEEE Standard VHDL Language Reference
Manual.

h For more information, refer to Quartus II Support for VHDL 2008 in Quartus II Help.

Example 16–9. Controlling the VHDL Input Version with a Synthesis Directive

--synthesis VHDL_INPUT_VERSION <language version>

Example 16–10. VHDL 2008—Controlling the VHDL Input Version with a Synthesis Directive

/* synthesis VHDL_INPUT_VERSION <language version> */
Quartus II Handbook Version 13.1 May 2013 Altera Corporation
Volume 1: Design and Synthesis

http://quartushelp.altera.com/current/master.htm#mergedProjects/hdl/vhdl/vhdl_list_2008_vhdl_support.htm

Chapter 16: Quartus II Integrated Synthesis 16–11
Language Support
VHDL Standard Libraries and Packages
The Quartus II software includes the standard IEEE libraries and several
vendor-specific VHDL libraries. For information about organizing your own design
units into custom libraries, refer to “Design Libraries” on page 16–12.

The IEEE library includes the standard VHDL packages std_logic_1164,
numeric_std, numeric_bit, and math_real. The STD library is part of the VHDL
language standard and includes the packages standard (included in every project by
default) and textio. For compatibility with older designs, the Quartus II software
also supports the following vendor-specific packages and libraries:

■ Synopsys packages such as std_logic_arith and std_logic_unsigned in the IEEE
library

■ Mentor Graphics® packages such as std_logic_arith in the ARITHMETIC library

■ Altera primitive packages altera_primitives_components (for primitives such as
GLOBAL and DFFE) and maxplus2 (for legacy support of MAX+PLUS® II primitives)
in the ALTERA library

■ Altera megafunction packages altera_mf_components and
stratixgx_mf_components in the ALTERA_MF library (for Altera-specific
megafunctions including LCELL), and lpm_components in the LPM library for
library of parameterized modules (LPM) functions.

1 Altera recommends that you import component declarations for Altera primitives
such as GLOBAL and DFFE from the altera_primitives_components package and not
the altera_mf_components package.

VHDL wait Constructs
The Quartus II software supports one VHDL wait until statement per process block.
However, the Quartus II software does not support other VHDL wait constructs, such
as wait for and wait on statements, or processes with multiple wait statements.

Example 16–11 is a VHDL code example of a supported wait until construct.

Example 16–11. VHDL Code: Supported wait until Construct

architecture dff_arch of ls_dff is
begin
output: process begin
wait until (CLK'event and CLK='1');
Q <= D;
Qbar <= not D;
end process output;
end dff_arch;
May 2013 Altera Corporation Quartus II Handbook Version 13.1
Volume 1: Design and Synthesis

16–12 Chapter 16: Quartus II Integrated Synthesis
Language Support
AHDL Support
The Quartus II Compiler’s Analysis & Synthesis module fully supports the Altera
Hardware Description Language (AHDL).

AHDL designs use Text Design Files (.tdf). You can import AHDL Include Files (.inc)
into a .tdf with an AHDL include statement. Altera provides .inc files for all
megafunctions shipped with the Quartus II software.

1 The AHDL language does not support the synthesis directives or attributes in this
chapter.

h For more information about AHDL, refer to About AHDL in the Quartus II Help.

Schematic Design Entry Support
The Quartus II Compiler’s Analysis & Synthesis module fully supports .bdf for
schematic design entry.

1 Schematic entry methods do not support the synthesis directives or attributes in this
chapter.

h For information about creating and editing schematic designs, refer to About Schematic
Design Entry in Quartus II Help.

State Machine Editor
The Quartus II software supports graphical state machine entry. To create a new finite
state machine (FSM) design, on the File menu, click New. In the New dialog box,
expand the Design Files list, and then select State Machine File.

h For more information about the State Machine Editor, refer to About the State Machine
Editor in Quartus II Help.

Design Libraries
By default, the Quartus II software compiles all design files into the work library. If
you do not specify a design library, if a file refers to a library that does not exist, or if
the referenced library does not contain a referenced design unit, the Quartus II
software searches the work library. This behavior allows the Quartus II software to
compile most designs with minimal setup, but you have the option of creating
separate custom design libraries.

To compile your design files into specific libraries (for example, when you have two
or more functionally different design entities that share the same name), you can
specify a destination library for each design file in various ways, as described in the
following subsections:

■ “Specifying a Destination Library Name in the Settings Dialog Box” on page 16–13

■ “Specifying a Destination Library Name in the Quartus II Settings File or with Tcl”
on page 16–13
Quartus II Handbook Version 13.1 May 2013 Altera Corporation
Volume 1: Design and Synthesis

http://quartushelp.altera.com/current/master.htm#mergedProjects/verify/rtl/rtl_view_sme.htm
http://quartushelp.altera.com/current/master.htm#mergedProjects/verify/rtl/rtl_view_sme.htm
http://quartushelp.altera.com/current/master.htm#mergedProjects/design/ged/ged_intro.htm
http://quartushelp.altera.com/current/master.htm#mergedProjects/design/ged/ged_intro.htm
http://quartushelp.altera.com/current/master.htm#mergedProjects/hdl/ahdl/ahdl_intro.htm

Chapter 16: Quartus II Integrated Synthesis 16–13
Language Support
When the Quartus II Compiler analyzes the file, it stores the analyzed design units in
the destination library of the file.

1 A design can contain two or more entities with the same name if the Quartus II
software compiles the entities into separate libraries.

When compiling a design instance, the Quartus II software initially searches for the
entity in the library associated with the instance (which is the work library if you do
not specify any library). If the Quartus II software could not locate the entity
definition, the software searches for a unique entity definition in all design libraries. If
the Quartus II software finds more than one entity with the same name, the software
generates an error. If your design uses multiple entities with the same name, you must
compile the entities into separate libraries.

In VHDL, you can associate an instance with an entity in several ways, as described in
“Mapping a VHDL Instance to an Entity in a Specific Library” on page 16–14. In
Verilog HDL, BDF schematic entry, AHDL, VQM and EDIF netlists, you can use
different libraries for each of the entities that have the same name, and compile the
instantiation into the same library as the appropriate entity.

Specifying a Destination Library Name in the Settings Dialog Box
To specify a library name for one of your design files, follow these steps:

1. On the Assignments menu, click Settings.

2. In the Category list, select Files.

3. Select the file in the File Name list.

4. Click Properties.

5. In the File Properties dialog box, select the type of design file from the Type list.

6. Type the library name in the Library field.

7. Click OK.

Specifying a Destination Library Name in the Quartus II Settings File or
with Tcl
You can specify the library name with the -library option to the
<language type>_FILE assignment in the Quartus II Settings File (.qsf) or with Tcl
commands.

For example, the following assignments specify that the Quartus II software analyzes
the my_file.vhd and stores its contents (design units) in the VHDL library my_lib,
and then analyzes the Verilog HDL file my_header_file.h and stores its contents in a
library called another_lib. Refer to Example 16–12.

For more information about Tcl scripting, refer to “Scripting Support” on page 16–84.

Example 16–12. Specifying a Destination Library Name

set_global_assignment –name VHDL_FILE my_file.vhd –library my_lib
set_global_assignment –name VERILOG_FILE my_header_file.h –library another_lib
May 2013 Altera Corporation Quartus II Handbook Version 13.1
Volume 1: Design and Synthesis

16–14 Chapter 16: Quartus II Integrated Synthesis
Language Support
Specifying a Destination Library Name in a VHDL File
You can use the library synthesis directive to specify a library name in your VHDL
source file. This directive takes the name of the destination library as a single string
argument. Specify the library directive in a VHDL comment before the context
clause for a primary design unit (that is, a package declaration, an entity declaration,
or a configuration), with one of the supported keywords for synthesis directives, that
is, altera, synthesis, pragma, synopsys, or exemplar.

For more information about specifying synthesis directives, refer to “Synthesis
Directives” on page 16–27.

The library directive overrides the default library destination work, the library
setting specified for the current file in the Settings dialog box, any existing .qsf
setting, any setting made through the Tcl interface, or any prior library directive in
the current file. The directive remains effective until the end of the file or the next
library synthesis directive.

Example 16–13 uses the library synthesis directive to create a library called my_lib
that contains the design unit my_entity.

1 You can specify a single destination library for all your design units in a given source
file by specifying the library name in the Settings dialog box, editing the .qsf, or using
the Tcl interface. To organize your design units in a single file into different libraries
rather than just a single library, you can use the library directive to change the
destination VHDL library in a source file.

The Quartus II software generates an error if you use the library directive in a design
unit.

Mapping a VHDL Instance to an Entity in a Specific Library
The VHDL language provides several ways to map or bind an instance to an entity in
a specific library, as described in the following subsections.

Example 16–13. Using the Library Synthesis Directive

-- synthesis library my_lib
library ieee;
use ieee.std_logic_1164.all;
entity my_entity(...)
end entity my_entity;
Quartus II Handbook Version 13.1 May 2013 Altera Corporation
Volume 1: Design and Synthesis

Chapter 16: Quartus II Integrated Synthesis 16–15
Language Support
Direct Entity Instantiation

In the direct entity instantiation method, the instantiation refers to an entity in a
specific library, as shown in Example 16–14.

Component Instantiation—Explicit Binding Instantiation

You can bind a component to an entity in several mechanisms. In an explicit binding
indication, you bind a component instance to a specific entity, as shown in
Example 16–15.

Example 16–14. VHDL Code: Direct Entity Instantiation

entity entity1 is
port(...);
end entity entity1;

architecture arch of entity1 is
begin
inst: entity lib1.foo
port map(...);
end architecture arch;

Example 16–15. VHDL Code: Binding Instantiation

entity entity1 is
port(...);
end entity entity1;

package components is
component entity1 is
port map (...);
end component entity1;
end package components;

entity top_entity is
port(...);
end entity top_entity;

use lib1.components.all;
architecture arch of top_entity is
-- Explicitly bind instance I1 to entity1 from lib1
for I1: entity1 use entity lib1.entity1
port map(...);
end for;
begin
I1: entity1 port map(...);
end architecture arch;
May 2013 Altera Corporation Quartus II Handbook Version 13.1
Volume 1: Design and Synthesis

16–16 Chapter 16: Quartus II Integrated Synthesis
Language Support
Component Instantiation—Default Binding

If you do not provide an explicit binding indication, the Quartus II software binds a
component instance to the nearest visible entity with the same name. If no such entity
is visible in the current scope, the Quartus II software binds the instance to the entity
in the library in which you declare the component. For example, if you declare the
component in a package in the MY_LIB library, an instance of the component binds to
the entity in the MY_LIB library. The code examples in Example 16–16 and
Example 16–17 show this instantiation method:

Using Parameters/Generics
This section describes how the Quartus II software supports parameters (known as
generics in VHDL) and how you can pass these parameters between design
languages.

You can enter default parameter values for your design in the Default Parameters
page under the Analysis & Synthesis Settings page in the Settings dialog box.
Default parameters enable you to add, change, and delete global parameters for the
current assignment. In AHDL, the Quartus II software inherits parameters, so any
default parameters apply to all AHDL instances in your design. You can also specify
parameters for instantiated modules in a .bdf. To specify parameters in a .bdf
instance, double-click the parameter value box for the instance symbol, or right-click
the symbol and click Properties, and then click the Parameters tab. For more
information about the GUI-based entry methods, the interpretation of parameter
values, and format recommendations, refer to “Setting Default Parameter Values and
BDF Instance Parameter Values” on page 16–17.

Example 16–16. VHDL Code: Default Binding to the Entity in the Same Library as the Component Declaration

use mylib.pkg.foo; -- import component declaration from package “pkg” in
-- library “mylib”

architecture rtl of top
...
begin
-- This instance will be bound to entity “foo” in library “mylib”
inst: foo
port map(...);
end architecture rtl;

Example 16–17. VHDL Code: Default Binding to the Directly Visible Entity

use mylib.foo; -- make entity “foo” in library “mylib” directly visible
architecture rtl of top
component foo is
generic (...)
port (...);
end component;
begin
-- This instance will be bound to entity “foo” in library “mylib”
inst: foo
port map(...);
end architecture rtl;
Quartus II Handbook Version 13.1 May 2013 Altera Corporation
Volume 1: Design and Synthesis

Chapter 16: Quartus II Integrated Synthesis 16–17
Language Support
You can specify parameters for instantiated modules in your design source files with
the provided syntax for your chosen language. Some designs instantiate entities in a
different language; for example, they might instantiate a VHDL entity from a Verilog
HDL design file. You can pass parameters or generics between VHDL, Verilog HDL,
AHDL, and BDF schematic entry, and from EDIF or VQM to any of these languages.
You do not require an additional procedure to pass parameters from one language to
another. However, sometimes you must specify the type of parameter you are
passing. In those cases, you must follow certain guidelines to ensure that the
Quartus II software correctly interprets the parameter value. For more information
about parameter type rules, refer to “Passing Parameters Between Two Design
Languages” on page 16–19.

Setting Default Parameter Values and BDF Instance Parameter Values
Default parameter values and BDF instance parameter values do not have an
explicitly declared type. Usually, the Quartus II software can correctly infer the type
from the value without ambiguity. For example, the Quartus II software interprets
“ABC” as a string, 123 as an integer, and 15.4 as a floating-point value. In other cases,
such as when the instantiated subdesign language is VHDL, the Quartus II software
uses the type of the parameter, generic, or both in the instantiated entity to determine
how to interpret the value, so that the Quartus II software interprets a value of 123 as
a string if the VHDL parameter is of a type string. In addition, you can set the
parameter value in a format that is legal in the language of the instantiated entity. For
example, to pass an unsized bit literal value from .bdf to Verilog HDL, you can use '1
as the parameter value, and to pass a 4-bit binary vector from .bdf to Verilog HDL,
you can use 4'b1111 as the parameter value.

In a few cases, the Quartus II software cannot infer the correct type of parameter
value. To avoid ambiguity, specify the parameter value in a type-encoded format in
which the first or first and second characters of the parameter indicate the type of the
parameter, and the rest of the string indicates the value in a quoted sub-string. For
example, to pass a binary string 1001 from .bdf to Verilog HDL, you cannot use the
value 1001, because the Quartus II software interprets it as a decimal value. You also
cannot use the string "1001" because the Quartus II software interprets it as an ASCII
string. You must use the type-encoded string B"1001" for the Quartus II software to
correctly interpret the parameter value.
May 2013 Altera Corporation Quartus II Handbook Version 13.1
Volume 1: Design and Synthesis

16–18 Chapter 16: Quartus II Integrated Synthesis
Language Support
Table 16–2 lists valid parameter strings and how the Quartus II software interprets the
parameter strings. Use the type-encoded format only when necessary to resolve
ambiguity.

You can select the parameter type for global parameters or global constants with the
pull-down list in the Parameter tab of the Symbol Properties dialog box. If you do not
specify the parameter type, the Quartus II software interprets the parameter value
and defines the parameter type. You must specify parameter type with the pull-down
list to avoid ambiguity.

1 If you open a .bdf in the Quartus II software, the software automatically updates the
parameter types of old symbol blocks by interpreting the parameter value based on
the language-independent format. If the Quartus II software does not recognize the
parameter value type, the software sets the parameter type as untyped.

The Quartus II software supports the following parameter types:

■ Unsigned Integer

■ Signed Integer

■ Unsigned Binary

■ Signed Binary

■ Octal

■ Hexadecimal

■ Float

■ Enum

■ String

Table 16–2. Valid Parameter Strings and Interpretations

Parameter String Quartus II Parameter Type, Format, and Value

S"abc", s"abc" String value abc

"abc123", "123abc" String value abc123 or 123abc

F"12.3", f"12.3" Floating point number 12.3

-5.4 Floating point number -5.4

D"123", d"123" Decimal number 123

123, -123 Decimal number 123, -123

X"ff", H"ff" Hexadecimal value FF

Q"77", O"77" Octal value 77

B"1010", b"1010" Unsigned binary value 1010

SB"1010", sb"1010" Signed binary value 1010

R"1", R"0", R"X", R"Z", r"1", r"0", r"X", r"Z" Unsized bit literal

E"apple", e"apple" Enumeration type, value name is apple

P"1 unit" Physical literal, the value is (1, unit)

A(...), a(...) Array type or record type. The string (...) determines the
array type or record type content
Quartus II Handbook Version 13.1 May 2013 Altera Corporation
Volume 1: Design and Synthesis

Chapter 16: Quartus II Integrated Synthesis 16–19
Language Support
■ Boolean

■ Char

■ Untyped/Auto

Passing Parameters Between Two Design Languages
When passing a parameter between two different languages, a design block that is
higher in the design hierarchy instantiates a lower-level subdesign block and provides
parameter information. The subdesign language (the design entity that you
instantiate) must correctly interpret the parameter. Based on the information provided
by the higher-level design and the value format, and sometimes by the parameter
type of the subdesign entity, the Quartus II software interprets the type and value of
the passed parameter.

When passing a parameter whose value is an enumerated type value or literal from a
language that does not support enumerated types to one that does (for example, from
Verilog HDL to VHDL), you must ensure that the enumeration literal is in the correct
spelling in the language of the higher-level design block (block that is higher in the
hierarchy). The Quartus II software passes the parameter value as a string literal, and
the language of the lower-level design correctly convert the string literal into the
correct enumeration literal.

If the language of the lower-level entity is SystemVerilog, you must ensure that the
enum value is in the correct case. In SystemVerilog, two enumeration literals differ in
more than just case. For example, enum {item, ITEM} is not a good choice of item
names because these names can create confusion and is more difficult to pass
parameters from case-insensitive HDLs, such as VHDL.

Arrays have different support in different design languages. For details about the
array parameter format, refer to the Parameter section in the Analysis & Synthesis
Report of a design that contains array parameters or generics.

The following code shows examples of passing parameters from one design entry
language to a subdesign written in another language. Example 16–18 shows a VHDL
subdesign that you instantiate in a top-level Verilog HDL design in Example 16–19.
Example 16–20 shows a Verilog HDL subdesign that you instantiate in a top-level
VHDL design in Example 16–21.

Example 16–18. VHDL Parameterized Subdesign Entity

type fruit is (apple, orange, grape);
entity vhdl_sub is
generic (
name : string := "default",
width : integer := 8,
number_string : string := "123",
f : fruit := apple,
binary_vector : std_logic_vector(3 downto 0) := "0101",
signed_vector : signed (3 downto 0) := "1111");
May 2013 Altera Corporation Quartus II Handbook Version 13.1
Volume 1: Design and Synthesis

16–20 Chapter 16: Quartus II Integrated Synthesis
Language Support
To use an HDL subdesign such as the one shown in Example 16–20 in a top-level .bdf
design, you must generate a symbol for the HDL file, as shown in Figure 16–2. Open
the HDL file in the Quartus II software, and then, on the File menu, point to
Create/Update, and then click Create Symbol Files for Current File.

To specify parameters on a .bdf instance, double-click the parameter value box for the
instance symbol, or right-click the symbol and click Properties, and then click the
Parameters tab. Right-click the symbol and click Update Design File from Selected
Block to pass the updated parameter to the HDL file.

Example 16–19. Verilog HDL Top-Level Design Instantiating and Passing Parameters to VHDL
Entity from Example 16–18

vhdl_sub inst (...);
defparam inst.name = "lower";
defparam inst.width = 3;
defparam inst.num_string = "321";
defparam inst.f = "grape"; // Must exactly match enum value
defparam inst.binary_vector = 4'b1010;

defparam inst.signed_vector = 4'sb1010;

Example 16–20. Verilog HDL Parameterized Subdesign Module

module veri_sub (...)
parameter name = "default";
parameter width = 8;
parameter number_string = "123";
parameter binary_vector = 4'b0101;
parameter signed_vector = 4'sb1111;

Example 16–21. VHDL Top-Level Design Instantiating and Passing Parameters to the Verilog HDL
Module from Example 16–20

inst:veri_sub
generic map (
name => "lower",
width => 3,
number_string => "321"
binary_vector = "1010"
signed_vector = "1010")

Figure 16–2. BDF Top-Level Design Instantiating and Passing Parameters to the Verilog HDL
Module from Example 16–20
Quartus II Handbook Version 13.1 May 2013 Altera Corporation
Volume 1: Design and Synthesis

Chapter 16: Quartus II Integrated Synthesis 16–21
Incremental Compilation
Incremental Compilation
Incremental compilation manages a design hierarchy for incremental design by
allowing you to divide your design into multiple partitions. Incremental compilation
ensures that the Quartus II software resynthesizes only the updated partitions of your
design during compilation, to reduce the compilation time and the runtime memory
usage. The feature maintains node names during synthesis for all registered and
combinational nodes in unchanged partitions. You can perform incremental synthesis
by setting the netlist type for all design partitions to Post-Synthesis.

You can also preserve the placement and routing information for unchanged
partitions. This feature allows you to preserve performance of unchanged blocks in
your design and reduces the time required for placement and routing, which
significantly reduces your design compilation time.

h For more information about incremental compilation, refer to About Incremental
Compilation in Quartus II Help.

f For more information about incremental compilation, refer to Quartus II Incremental
Compilation for Hierarchical and Team-Based Design and Best Practices for Incremental
Compilation Partitions and Floorplan Assignments chapters in volume 1 of the Quartus II
Handbook.

Partitions for Preserving Hierarchical Boundaries
A design partition represents a portion of your design that you want to synthesize
and fit incrementally.

If you want to preserve the Optimization Technique and Restructure Multiplexers
logic options in any entity, you must create new partitions for the entity instead of
using the Preserve Hierarchical Boundary logic option. If you have settings applied
to specific existing design hierarchies, particularly those created in the Quartus II
software versions before 9.0, you must create a design partition for the design
hierarchy so that synthesis can optimize the design instance independently and
preserve the hierarchical boundaries.

1 The Preserve Hierarchical Boundary logic option is available only in Quartus II
software versions 8.1 and earlier. Altera recommends using design partitions if you
want to preserve hierarchical boundaries through the synthesis and fitting process,
because incremental compilation maintains the hierarchical boundaries of design
partitions.

Parallel Synthesis
The Parallel Synthesis logic option reduces compilation time for synthesis. The
option enables the Quartus II software to use multiple processors to synthesize
multiple partitions in parallel.

This option is available when you perform the following tasks:

■ Specifying the maximum number of processors allowed under Parallel
Compilation options in the Compilation Process Settings page of the Settings
dialog box.
May 2013 Altera Corporation Quartus II Handbook Version 13.1
Volume 1: Design and Synthesis

http://quartushelp.altera.com/current/master.htm#mergedProjects/comp/increment/comp_view_qid.htm
http://quartushelp.altera.com/current/master.htm#mergedProjects/comp/increment/comp_view_qid.htm
www.altera.com/literature/hb/qts/qts_qii51015.pdf
www.altera.com/literature/hb/qts/qts_qii51015.pdf
www.altera.com/literature/hb/qts/qts_qii51017.pdf
www.altera.com/literature/hb/qts/qts_qii51017.pdf

16–22 Chapter 16: Quartus II Integrated Synthesis
Incremental Compilation
■ Enabling the incremental compilation feature.

■ Using two or more partitions in your design.

■ Turning on the Parallel Synthesis option.

By default, the Quartus II software enables the Parallel Synthesis option. To disable
parallel synthesis, follow these steps:

1. On the Assignments menu, click Settings.

2. In the Category list, click Analysis & Synthesis Settings, and then click More
Settings to select Parallel Synthesis.

You can also set the Parallel Synthesis option with the following Tcl command, as
shown in Example 16–22:

If you use the command line, you can differentiate among the interleaved messages
by turning on the Show partition that generated the message option in the Messages
page. This option shows the partition ID in parenthesis for each message.

You can view all the interleaved messages from different partitions in the Messages
window. The Partition column in the Messages window displays the partition ID of
the partition referred to in the message. After compilation, you can sort the messages
by partition.

h For more information about displaying the Partition column, refer to About the
Messages Window in Quartus II Help.

Quartus II Exported Partition File as Source
You can use a .qxp as a source file in incremental compilation. The .qxp contains the
precompiled design netlist exported as a partition from another Quartus II project,
and fully defines the entity. Project team members or intellectual property (IP)
providers can use a .qxp to send their design to the project lead, instead of sending the
original HDL source code. The .qxp preserves the compilation results and
instance-specific assignments. Not all global assignments can function in a different
Quartus II project. You can override the assignments for the entity in the .qxp by
applying assignments in the top-level design.

h For more information about .qxp, refer to Quartus II Exported Partition File (.qxp) in
Quartus II Help.

f For more information about exporting design partitions and using .qxp files, refer to
the Quartus II Incremental Compilation for Hierarchical and Team-Based Design chapter in
volume 1 of the Quartus II Handbook.

Example 16–22. Setting the Parallel Synthesis Option with Tcl Command

set_global_assignment -name parallel_synthesis off
Quartus II Handbook Version 13.1 May 2013 Altera Corporation
Volume 1: Design and Synthesis

http://quartushelp.altera.com/current/master.htm#mergedProjects/reference/glossary/def_qxp.htm
http://www.altera.com/literature/hb/qts/qts_qii51015.pdf
http://quartushelp.altera.com/current/master.htm#mergedProjects/report/msw/msw_com_msw.htm
http://quartushelp.altera.com/current/master.htm#mergedProjects/report/msw/msw_com_msw.htm

Chapter 16: Quartus II Integrated Synthesis 16–23
Quartus II Synthesis Options
Quartus II Synthesis Options
The Quartus II software offers several options to help you control the synthesis
process and achieve optimal results for your design. “Setting Synthesis Options” on
page 16–25 describes the Analysis & Synthesis Settings page of the Settings dialog
box, in which you can set the most common global settings and options, and defines
the following types of synthesis options: Quartus II logic options, synthesis attributes,
and synthesis directives.

1 When you apply a Quartus II Synthesis option globally or to an entity, the option
affects all lower-level entities in the hierarchy path, including entities instantiated
with Altera and third-party IP.

The following subsections describe the following common synthesis options in the
Quartus II software, and provide HDL examples on how to use each option:

■ Major Optimization Settings:

■ “Optimization Technique” on page 16–28

■ “Auto Gated Clock Conversion” on page 16–29

■ “PowerPlay Power Optimization” on page 16–31

■ “Restructure Multiplexers” on page 16–34

■ Settings Related to Timing Constraints:

■ “Timing-Driven Synthesis” on page 16–30

■ “Optimization Technique” on page 16–28

■ “Auto Gated Clock Conversion” on page 16–29

■ “SDC Constraint Protection” on page 16–31

■ State Machine Settings and Enumerated Types:

■ “State Machine Processing” on page 16–34

■ “Manually Specifying State Assignments Using the syn_encoding Attribute”
on page 16–36

■ “Manually Specifying Enumerated Types Using the enum_encoding Attribute”
on page 16–37

■ “Safe State Machine” on page 16–38

■ Register Power-Up Settings:

■ “Power-Up Level” on page 16–40

■ “Power-Up Don’t Care” on page 16–41
May 2013 Altera Corporation Quartus II Handbook Version 13.1
Volume 1: Design and Synthesis

16–24 Chapter 16: Quartus II Integrated Synthesis
Quartus II Synthesis Options
■ Controlling, Preserving, Removing, and Duplicating Logic and Registers:

■ “Limiting Resource Usage in Partitions” on page 16–32

■ “Remove Duplicate Registers” on page 16–41

■ “Preserve Registers” on page 16–42

■ “Disable Register Merging/Don’t Merge Register” on page 16–43

■ “Noprune Synthesis Attribute/Preserve Fan-out Free Register Node” on
page 16–43

■ “Keep Combinational Node/Implement as Output of Logic Cell” on
page 16–44

■ “Disabling Synthesis Netlist Optimizations with dont_retime Attribute” on
page 16–45

■ “Disabling Synthesis Netlist Optimizations with dont_replicate Attribute” on
page 16–46

■ “Maximum Fan-Out” on page 16–47

■ “Controlling Clock Enable Signals with Auto Clock Enable Replacement and
direct_enable” on page 16–48

■ “Auto Gated Clock Conversion” on page 16–29

■ “Partitions for Preserving Hierarchical Boundaries” on page 16–21

■ Megafunction Inference Options:

■ “Inferring Multiplier, DSP, and Memory Functions from HDL Code” on
page 16–49

■ “RAM Style and ROM Style—for Inferred Memory” on page 16–53

■ “Turning Off the Add Pass-Through Logic to Inferred RAMs no_rw_check
Attribute” on page 16–56

■ “RAM Initialization File—for Inferred Memory” on page 16–59

■ “Multiplier Style—for Inferred Multipliers” on page 16–60

■ Controlling Synthesis with Other Synthesis Directives:

■ “Full Case Attribute” on page 16–62

■ “Parallel Case” on page 16–63

■ “Translate Off and On / Synthesis Off and On” on page 16–64

■ “Ignore translate_off and synthesis_off Directives” on page 16–65

■ “Read Comments as HDL” on page 16–66

■ Specifying I/O-Related Assignments:

■ “Use I/O Flipflops” on page 16–67

■ “Specifying Pin Locations with chip_pin” on page 16–68

■ Setting Quartus II Logic Options in Your HDL Source Code:

■ “Using altera_attribute to Set Quartus II Logic Options” on page 16–70
Quartus II Handbook Version 13.1 May 2013 Altera Corporation
Volume 1: Design and Synthesis

Chapter 16: Quartus II Integrated Synthesis 16–25
Quartus II Synthesis Options
■ Other Settings:

■ “Synthesis Effort” on page 16–34

■ “Synthesis Seed” on page 16–34

Setting Synthesis Options
You can set synthesis options in the Settings dialog box, or with logic options in the
Quartus II software, or you can use synthesis attributes and directives in your HDL
source code.

The Analysis & Synthesis Settings page of the Settings dialog box allows you to set
global synthesis options that apply to the entire project. You can also use a
corresponding Tcl command.

You can set some of the advanced synthesis settings in the Physical Synthesis
Optimizations page under Compilation Process Settings.

f For more information about Physical Synthesis options, refer to the Netlist
Optimizations and Physical Synthesis chapter in volume 2 of the Quartus II Handbook.

Quartus II Logic Options
The Quartus II logic options control many aspects of the synthesis and placement and
routing process. To set logic options in the Quartus II software, on the Assignments
menu, click Assignment Editor. You can also use a corresponding Tcl command to set
global assignments. The Quartus II logic options enable you to set instance or node-
specific assignments without editing the source HDL code.

h For more information about using the Assignment Editor, refer to the About the
Assignment Editor in Quartus II Help.

Synthesis Attributes
The Quartus II software supports synthesis attributes for Verilog HDL and VHDL,
also commonly called pragmas. These attributes are not standard Verilog HDL or
VHDL commands. Synthesis tools use attributes to control the synthesis process. The
Quartus II software applies the attributes in the HDL source code, and attributes
always apply to a specific design element. Some synthesis attributes are also available
as Quartus II logic options via the Quartus II software or scripting. Each attribute
description in this chapter indicates a corresponding setting or a logic option that you
can set in the Quartus II software. You can specify only some attributes with HDL
synthesis attributes.

Attributes specified in your HDL code are not visible in the Assignment Editor or in
the .qsf. Assignments or settings made with the Quartus II software, the .qsf, or the
Tcl interface take precedence over assignments or settings made with synthesis
attributes in your HDL code. The Quartus II software generates warning messages if
the software finds invalid attributes, but does not generate an error or stop the
compilation. This behavior is necessary because attributes are specific to various
design tools, and attributes not recognized in the Quartus II software might be for a
different EDA tool. The Quartus II software lists the attributes specified in your HDL
code in the Source assignments table of the Analysis & Synthesis report.
May 2013 Altera Corporation Quartus II Handbook Version 13.1
Volume 1: Design and Synthesis

http://quartushelp.altera.com/current/master.htm#mergedProjects/assign/ase/ase_intro.htm
http://quartushelp.altera.com/current/master.htm#mergedProjects/assign/ase/ase_intro.htm
http://www.altera.com/literature/hb/qts/qts_qii52007.pdf
http://www.altera.com/literature/hb/qts/qts_qii52007.pdf

16–26 Chapter 16: Quartus II Integrated Synthesis
Quartus II Synthesis Options
The Verilog-2001, SystemVerilog, and VHDL language definitions provide specific
syntax for specifying attributes, but in Verilog-1995, you must embed attribute
assignments in comments. You can enter attributes in your code using the syntax in
Example 16–23 through Example 16–29, in which <attribute>, <attribute type>, <value>,
<object>, and <object type> are variables, and the entry in brackets is optional. The
examples in this chapter demonstrate each syntax form.

1 Verilog HDL is case sensitive; therefore, synthesis attributes in Verilog HDL files are
also case sensitive.

You must use Verilog-1995 comment-embedded attributes as a suffix to the
declaration of an item and must appear before a semicolon, when a semicolon is
necessary (refer to Example 16–23).

1 You cannot use the open one-line comment in Verilog HDL when a semicolon is
necessary after the line, because it is not clear to which HDL element that the attribute
applies. For example, you cannot make an attribute assignment such as
reg r; // synthesis <attribute> because the Quartus II software could read the
attribute as part of the next line.

To apply multiple attributes to the same instance in Verilog-1995, separate the
attributes with spaces, as shown in Example 16–24:

For example, to set the maxfan attribute to 16 (for details, refer to “Maximum Fan-
Out” on page 16–47) and set the preserve attribute (for details, refer to “Preserve
Registers” on page 16–42) on a register called my_reg, use the following syntax as
shown in Example 16–25:

In addition to the synthesis keyword shown above, the Quartus II software supports
the pragma, synopsys, and exemplar keywords for compatibility with other synthesis
tools. The software also supports the altera keyword, which allows you to add
synthesis attributes that the Quartus II Integrated Synthesis feature recognizes and
not by other tools that recognize the same synthesis attribute.

1 Because formal verification tools do not recognize the exemplar, pragma, and altera
keywords, avoid using these attribute keywords when using formal verification.

Example 16–23. Specifying Synthesis Attributes in Verilog-1995

// synthesis <attribute> [= <value>]
or
/* synthesis <attribute> [= <value>] */

Example 16–24. Applying Multiple Attributes to the Same Instance in Verilog-1996

//synthesis <attribute1> [= <value>] <attribute2> [= <value>]

Example 16–25. Setting maxfan and preserve Attribute on a Register

reg my_reg /* synthesis maxfan = 16 preserve */;
Quartus II Handbook Version 13.1 May 2013 Altera Corporation
Volume 1: Design and Synthesis

Chapter 16: Quartus II Integrated Synthesis 16–27
Quartus II Synthesis Options
You must use Verilog-2001 attributes as a prefix to a declaration, module item,
statement, or port connection, and as a suffix to an operator or a Verilog HDL function
name in an expression (refer to Example 16–26).

1 Formal verification does not support the Verilog-2001 attribute syntax because the
tools do not recognize the syntax.

To apply multiple attributes to the same instance in Verilog-2001 or SystemVerilog,
separate the attributes with commas, as shown in Example 16–27:

For example, to set the maxfan attribute to 16 (refer to “Maximum Fan-Out” on
page 16–47 for details) and set the preserve attribute (refer to “Preserve Registers” on
page 16–42 for details) on a register called my_reg, use the following syntax as shown
in Example 16–28:

VHDL attributes, as shown in Example 16–29, declare and apply the attribute type to
the object you specify.

The Quartus II software defines and applies each attribute separately to a given node.
For VHDL designs, the software declares all supported synthesis attributes in the
altera_syn_attributes package in the Altera library. You can call this library from
your VHDL code to declare the synthesis attributes, as shown in Example 16–30:

Synthesis Directives
The Quartus II software supports synthesis directives, also commonly called compiler
directives or pragmas. You can include synthesis directives in Verilog HDL or VHDL
code as comments. These directives are not standard Verilog HDL or VHDL
commands. Synthesis tools use directives to control the synthesis process. Directives
do not apply to a specific design node, but change the behavior of the synthesis tool
from the point in which they occur in the HDL source code. Other tools, such as
simulators, ignore these directives and treat them as comments.

Example 16–26. Specifying Synthesis Attributes in Verilog-2001 and SystemVerilog

(* <attribute> [= <value>] *)

Example 16–27. Applying Multiple Attributes

(* <attribute1> [= <value1>], <attribute2> [= <value2>] *)

Example 16–28. Setting Attribute

(* maxfan = 16, preserve *) reg my_reg;

Example 16–29. Synthesis Attributes in VHDL

attribute <attribute> : <attribute type> ;
attribute <attribute> of <object> : <object type> is <value>;

Example 16–30.

LIBRARY altera;
USE altera.altera_syn_attributes.all;
May 2013 Altera Corporation Quartus II Handbook Version 13.1
Volume 1: Design and Synthesis

16–28 Chapter 16: Quartus II Integrated Synthesis
Quartus II Synthesis Options
You can enter synthesis directives in your code using the syntax in Example 16–31,
Example 16–32, and Example 16–33, in which <directive> and <value> are variables,
and the entry in brackets are optional. For synthesis directives, no equal sign before
the value is necessary; this is different than the Verilog syntax for synthesis attributes.
The examples in this chapter demonstrate each syntax form.

1 Verilog HDL is case sensitive; therefore, all synthesis directives are also case sensitive.

In addition to the synthesis keyword shown above, the software supports the
pragma, synopsys, and exemplar keywords in Verilog HDL and VHDL for
compatibility with other synthesis tools. The Quartus II software also supports the
keyword altera, which allows you to add synthesis directives that only Quartus II
Integrated Synthesis feature recognizes, and not by other tools that recognize the
same synthesis directives.

1 Because formal verification tools ignore the exemplar, pragma, and altera keywords,
Altera recommends that you avoid using these directive keywords when you use
formal verification to prevent mismatches with the Quartus II results.

Optimization Technique
The Optimization Technique logic option specifies the goal for logic optimization
during compilation; that is, whether to attempt to achieve maximum speed
performance or minimum area usage, or a balance between the two.

h For more information about the Optimization Technique logic option, refer to
Optimization Technique logic option in Quartus II Help.

Example 16–31. Specifying Synthesis Directives with Verilog HDL

// synthesis <directive> [<value>]
or
/* synthesis <directive> [<value>] */

Example 16–32. Specifying Synthesis Directives with VHDL

-- synthesis <directive> [<value>]

Example 16–33. Specifying Synthesis Directives with VHDL-2008

/* synthesis <directive> [<value>] */
Quartus II Handbook Version 13.1 May 2013 Altera Corporation
Volume 1: Design and Synthesis

http://quartushelp.altera.com/current/master.htm#mergedProjects/logicops/logicops/def_optimization_technique.htm

Chapter 16: Quartus II Integrated Synthesis 16–29
Quartus II Synthesis Options
Auto Gated Clock Conversion
Clock gating is a common optimization technique in ASIC designs to minimize power
consumption. You can use the Auto Gated Clock Conversion logic option to optimize
your prototype ASIC designs by converting gated clocks into clock enables when you
use FPGAs in your ASIC prototyping. The automatic conversion of gated clocks to
clock enables is more efficient than manually modifying source code. The Auto Gated
Clock Conversion logic option automatically converts qualified gated clocks (base
clocks as defined in the Synopsys Design Constraints [SDC]) to clock enables. To use
Auto Gated Clock Conversion, you must select the option from the More Analysis &
Synthesis Settings dialog box, in the Analysis & Synthesis Settings page.

The gated clock conversion occurs when all these conditions are met:

■ Only one base clock drives a gated-clock

■ For one set of gating input values, the value output of the gated clock remains
constant and does not change as the base clock changes

■ For one value of the base clock, changes in the gating inputs do not change the
value output for the gated clock

The option supports combinational gates in clock gating network.

Figure 16–3 shows example of gated clock conversions.

Figure 16–3. Example Gated Clock Conversion

clk

ena1

clk

ena1

ena

ena

clk

ena1

ena

ena

ena2

ena

ena

clk

ena

enaena1

ena2
May 2013 Altera Corporation Quartus II Handbook Version 13.1
Volume 1: Design and Synthesis

16–30 Chapter 16: Quartus II Integrated Synthesis
Quartus II Synthesis Options
1 This option does not support registers in RAM, DSP blocks, or I/O related WYSIWYG
primitives. Because the gated-clock conversion cannot trace the base clock from the
gated clock, the gated clock conversion does not support multiple design partitions
from incremental compilation in which the gated clock and base clock are not in the
same hierarchical partition. A gated clock tree, instead of every gated clock, is the
basis of each conversion. Therefore, if you cannot convert a gated clock from a root
gated clock of a multiple cascaded gated clock, the conversion of the entire gated
clock tree fails.

The Info tab in the Messages window lists all the converted gated clocks. You can
view a list of converted and nonconverted gated clocks from the Compilation Report
under the Optimization Results of the Analysis & Synthesis Report. The Gated Clock
Conversion Details table lists the reasons for nonconverted gated clocks.

h For more information about Auto Gated Clock Conversion logic option and a list of
supported devices, refer to Auto Gated Clock Conversion logic option in Quartus II Help.

Timing-Driven Synthesis
The Timing-Driven Synthesis logic option specifies whether Analysis & Synthesis
should use the SDC timing constraints of your design to better optimize the circuit.
When you turn on this option, Analysis & Synthesis runs timing analysis to obtain
timing information about the netlist, and then considers the SDC timing constraints to
focus on critical portions of your design when optimizing for performance, while
optimizing noncritical portions for area. When you turn on this option, Analysis &
Synthesis also protects SDC constraints by not merging duplicate registers that have
incompatible timing constraints. For more information, refer to “SDC Constraint
Protection” on page 16–31.

When you turn on the Timing-Driven Synthesis logic option, Analysis & Synthesis
increases performance by improving logic depth on critical portions of your design,
and improving area on noncritical portions of your design. The increased
performance affects the amount of area used, specifically adaptive look-up tables
(ALUTs) and registers in your design. Depending on how much of your design is
timing critical, overall area can increase or decrease when you turn on the
Timing-Driven Synthesis logic option. Runtime and peak memory use increases
slightly if you turn on the Timing-Driven Synthesis logic option.

When you turn on the Timing-Driven Synthesis logic option, the Optimization
Technique logic option has the following effect. With Optimization Technique
Speed, Timing-Driven Synthesis optimizes timing-critical portions of your design for
performance at the cost of increasing area (logic and register utilization). With an
Optimization Technique of Balanced, Timing-Driven Synthesis also optimizes the
timing-critical portions of your design for performance, but the option allows only
limited area increase. With Optimization Technique Area, Timing-Driven Synthesis
optimizes your design only for area. Timing-Driven Synthesis prevents registers
with incompatible timing constraints from merging for any Optimization Technique
setting. If your design contains multiple partitions, you can select Timing-Driven
Synthesis unique options for each partition. If you use a .qxp as a source file, or if
your design uses partitions developed in separate Quartus II projects, the software
cannot properly compute timing of paths that cross the partition boundaries.
Quartus II Handbook Version 13.1 May 2013 Altera Corporation
Volume 1: Design and Synthesis

http://quartushelp.altera.com/current/master.htm#mergedProjects/logicops/logicops/def_synth_gated_clock_conversion.htm

Chapter 16: Quartus II Integrated Synthesis 16–31
Quartus II Synthesis Options
Even with the Optimization Technique logic option set to Speed, the Timing-Driven
Synthesis option still considers the resource usage in your design when increasing
area to improve timing. For example, the Timing-Driven Synthesis option checks if a
device has enough registers before deciding to implement the shift registers in logic
cells instead of RAM for better timing performance.

When using incremental compilation, Integrated Synthesis allows each partition to
use up all the registers in a device. You can use the Maximum Number of LABs
settings to specify the number of LABs that every partition can use. If your design has
only one partition, you can also use the Maximum Number of LABs settings to limit
the number of resources that your design can use. This limitation is useful when you
add more logic to your design.

To turn on or turn off the Timing-Driven Synthesis logic option, follow these steps:

1. On the Assignment menu, click Settings.

2. In the Category list, select Analysis & Synthesis Settings. In the Analysis &
Synthesis Settings page, turn on or turn off Timing-Driven Synthesis.

1 Altera recommends that you select a specific device for timing-driven synthesis to
have the most accurate timing information. When you select auto device,
timing-driven synthesis uses the smallest device for the selected family to obtain
timing information.

h For more information about Timing-Driven Synthesis logic option and a list of
supported devices, refer to Timing-Driven Synthesis logic option in Quartus II Help.

SDC Constraint Protection
The SDC Constraint Protection option specifies whether Analysis & Synthesis should
protect registers from merging when they have incompatible timing constraints. For
example, when you turn on this option, the software does not merge two registers that
are duplicates of each other but have different multicycle constraints on them. When
you turn on the Timing-Driven Synthesis option, the software detects registers with
incompatible constraints, and you do not need to turn on SDC Constraint Protection.
To use the SDC constraint protection option, you must turn on the option in the
More Analysis & Synthesis Settings dialog box in the Analysis & Synthesis Settings
page.

PowerPlay Power Optimization
The PowerPlay Power Optimization logic option controls the power-driven
compilation setting of Analysis & Synthesis and determines how aggressively
Analysis & Synthesis optimizes your design for power.

h For more information about the available settings for the PowerPlay power
optimization logic option and a list of supported devices, refer to PowerPlay Power
Optimization logic option in Quartus II Help.
May 2013 Altera Corporation Quartus II Handbook Version 13.1
Volume 1: Design and Synthesis

http://quartushelp.altera.com/current/master.htm#mergedProjects/logicops/logicops/def_synth_timing_driven_synthesis.htm
http://quartushelp.altera.com/current/master.htm#mergedProjects/logicops/logicops/def_optimize_power_during_synth.htm
http://quartushelp.altera.com/current/master.htm#mergedProjects/logicops/logicops/def_optimize_power_during_synth.htm

16–32 Chapter 16: Quartus II Integrated Synthesis
Quartus II Synthesis Options
f For more information about optimizing your design for power utilization, refer to the
Power Optimization chapter in volume 2 of the Quartus II Handbook. For information
about analyzing your power results, refer to the PowerPlay Power Analysis chapter in
volume 3 of the Quartus II Handbook.

Limiting Resource Usage in Partitions
Resource balancing is important when performing Analysis & Synthesis. During
resource balancing, Quartus II Integrated Synthesis considers the amount of used and
available DSP and RAM blocks in the device, and tries to balance these resources to
prevent no-fit errors.

For DSP blocks, resource balancing converts the remaining DSP blocks to equivalent
logic if there are more DSP blocks in your design that the software can place in the
device. For RAM blocks, resource balancing converts RAM blocks to different types of
RAM blocks if there are not enough blocks of a certain type available in the device;
however, Quartus II Integrated Synthesis does not convert RAM blocks to logic.

1 The RAM balancing feature does not support Stratix V devices because Stratix V has
only M20K memory blocks.

By default, Quartus II Integrated Synthesis considers the information in the targeted
device to identify the number of available DSP or RAM blocks. However, in
incremental compilation, each partition considers the information in the device
independently and consequently assumes that the partition has all the DSP and RAM
blocks in the device available for use, resulting in over allocation of DSP or RAM
blocks in your design, which means that the total number of DSP or RAM blocks used
by all the partitions is greater than the number of DSP or RAM blocks available in the
device, leading to a no-fit error during the fitting process.

The following sections describe the methods to prevent a no-fit error during the fitting
process:

■ “Creating LogicLock Regions” on page 16–32

■ “Using Assignments to Limit the Number of RAM and DSP Blocks” on page 16–33

Creating LogicLock Regions
The floorplan-aware synthesis feature allows you to use LogicLock regions to define
resource allocation for DSP blocks and RAM blocks. For example, if you assign a
certain partition to a certain LogicLock region, resource balancing takes into account
that all the DSP and RAM blocks in that partition need to fit in this LogicLock region.
Resource balancing then balances the DSP and RAM blocks accordingly.

Because floorplan-aware balancing step considers only one partition at a time, it does
not know that nodes from another partition may be using the same resources. When
using this feature, Altera recommends that you do not manually assign nodes from
different partitions to the same LogicLock region.

If you do not want the software to consider the LogicLock floorplan constraints when
performing DSP and RAM balancing, you can turn off the floorplan-aware synthesis
feature. You can turn off the Use LogicLock Constraints During Resource Balancing
option in the More Analysis & Synthesis Settings dialog box in the Analysis &
Synthesis Settings page.
Quartus II Handbook Version 13.1 May 2013 Altera Corporation
Volume 1: Design and Synthesis

http://www.altera.com/literature/hb/qts/qts_qii52016.pdf
http://www.altera.com/literature/hb/qts/qts_qii53013.pdf

Chapter 16: Quartus II Integrated Synthesis 16–33
Quartus II Synthesis Options
f For more information about using LogicLock regions to create a floorplan for
incremental compilation, refer to the Quartus II Incremental Compilation for Hierarchical
and Team-Based Design chapter in volume 1 of the Quartus II Handbook.

Using Assignments to Limit the Number of RAM and DSP Blocks
For DSP and RAM block balancing, you can use assignments to limit the maximum
number of blocks that the balancer allows. You can set these assignments globally or
on individual partitions. For DSP block balancing, the Maximum DSP Block Usage
logic option allows you to specify the maximum number of DSP blocks that the DSP
block balancer assumes are available for the current partition. For RAM blocks, the
floorplan-aware logic option allows you to specify maximum resources for different
RAM types, such as Maximum Number of M4K/M9K/M20K/M10K Memory Blocks,
Maximum Number of M512 Memory Blocks, Maximum Number of
M-RAM/M144K Memory Blocks, or Maximum Number of LABs.

The partition-specific assignment overrides the global assignment, if any. However,
each partition that does not have a partition-specific assignment uses the value set by
the global assignment, or the value derived from the device size if no global
assignment exists. This action can also lead to over allocation. Therefore, Altera
recommends that you always set the assignment on each partition individually.

To select the Maximum Number <block type> Memory Blocks option or the
Maximum DSP Block Usage option globally, follow these steps:

1. On the Assignment menu, click Settings.

2. Under Category, click Analysis & Synthesis Settings.

3. In the Analysis & Synthesis Settings dialog box, click More Settings.

4. In the Name list, select the required option and set the necessary value.

You can use the Assignment Editor to set this assignment on a partition by selecting
the assignment, and setting it on the root entity of a partition. You can set any positive
integer as the value of this assignment. If you set this assignment on a name other
than a partition root, Analysis & Synthesis gives an error.

h For more information about the logic options, including a list of supported device
families, refer to Maximum DSP Block Usage logic option, Maximum Number of
M4K/M9K/M20K/M10K Memory Blocks logic option, Maximum Number of M512 Memory
Blocks logic option, Maximum Number of M-RAM/144K Memory Blocks logic option, and
Maximum Number of LABs logic option in Quartus II Help.
May 2013 Altera Corporation Quartus II Handbook Version 13.1
Volume 1: Design and Synthesis

http://quartushelp.altera.com/current/master.htm#mergedProjects/logicops/logicops/def_max_ram_blocks_m4k.htm
http://quartushelp.altera.com/current/master.htm#mergedProjects/logicops/logicops/def_max_ram_blocks_m4k.htm
http://quartushelp.altera.com/current/master.htm#mergedProjects/logicops/logicops/def_max_balancing_dsp_blocks.htm
http://www.altera.com/literature/hb/qts/qts_qii51015.pdf
http://www.altera.com/literature/hb/qts/qts_qii51015.pdf
http://quartushelp.altera.com/current/master.htm#mergedProjects/logicops/logicops/def_max_ram_blocks_m512.htm
http://quartushelp.altera.com/current/master.htm#mergedProjects/logicops/logicops/def_max_ram_blocks_m512.htm
http://quartushelp.altera.com/current/master.htm#mergedProjects/logicops/logicops/def_max_ram_blocks_mram.htm
http://quartushelp.altera.com/current/master.htm#mergedProjects/logicops/logicops/def_max_labs.htm

16–34 Chapter 16: Quartus II Integrated Synthesis
Quartus II Synthesis Options
Restructure Multiplexers
The Restructure Multiplexers logic option restructures multiplexers to create more
efficient use of area, allowing you to implement multiplexers with a reduced number
of LEs or ALMs.

When multiplexers from one part of your design feed multiplexers in another part of
your design, trees of multiplexers form. Multiplexers may arise in different parts of
your design through Verilog HDL or VHDL constructs such as the “if,” “case,” or
“?:” statements. Multiplexer buses occur most often as a result of multiplexing
together arrays in Verilog HDL, or STD_LOGIC_VECTOR signals in VHDL. The
Restructure Multiplexers logic option identifies buses of multiplexer trees that have a
similar structure. This logic option optimizes the structure of each multiplexer bus for
the target device to reduce the overall amount of logic in your design.

Results of the multiplexer optimizations are design dependent, but area reductions as
high as 20% are possible. The option can negatively affect your design’s fMAX.

f For more information about optimizing for multiplexers, refer to the “Multiplexers”
section of the Recommended HDL Coding Styles chapter in volume 1 of the Quartus II
Handbook.

h For more information about the Multiplexer Restructuring Statistics report table for
each bus of multiplexers, refer to Analysis & Synthesis Optimization Results Reports in
Quartus II Help.

h For more information about the Restructure Multiplexers logic option, including the
settings and a list of supported device families, refer to Restructure Multiplexers logic
option in Quartus II Help.

Synthesis Effort
The Synthesis Effort logic option specifies the overall synthesis effort level in the
Quartus II software.

h For more information about Synthesis Effort logic option, including a list of
supported device families, refer to Synthesis Effort logic option in Quartus II Help.

Synthesis Seed
The Synthesis Seed option specifies the seed that Synthesis uses to randomly run
synthesis in a slightly different way. You can use this seed when your design is close
to meeting requirements, to get a slightly different result. The seeds that produce the
best result for a design might change if your design changes.

To set the Synthesis Seed option from the Quartus II software, on the Analysis &
Synthesis Settings page, click More Settings. The default value is 1. You can specify a
positive integer value.

State Machine Processing
The State Machine Processing logic option specifies the processing style to synthesize
a state machine.
Quartus II Handbook Version 13.1 May 2013 Altera Corporation
Volume 1: Design and Synthesis

http://quartushelp.altera.com/current/master.htm#mergedProjects/report/rpt/rpt_file_analysis_optimize_results.htm
http://quartushelp.altera.com/current/master.htm#mergedProjects/logicops/logicops/def_synthesis_effort.htm
http://www.altera.com/literature/hb/qts/qts_qii51007.pdf
http://quartushelp.altera.com/current/master.htm#mergedProjects/logicops/logicops/def_mux_restructure.htm
http://quartushelp.altera.com/current/master.htm#mergedProjects/logicops/logicops/def_mux_restructure.htm

Chapter 16: Quartus II Integrated Synthesis 16–35
Quartus II Synthesis Options
The default state machine encoding, Auto, uses one-hot encoding for FPGA devices
and minimal-bits encoding for CPLDs. These settings achieve the best results on
average, but another encoding style might be more appropriate for your design, so
this option allows you to control the state machine encoding.

f For guidelines on how to correctly infer and encode your state machine, refer to the
Recommended HDL Coding Styles chapter in volume 1 of the Quartus II Handbook.

For one-hot encoding, the Quartus II software does not guarantee that each state has
one bit set to one and all other bits set to zero. Quartus II Integrated Synthesis creates
one-hot register encoding with standard one-hot encoding and then inverts the first
bit. This results in an initial state with all zero values, and the remaining states have
two 1 values. Quartus II Integrated Synthesis encodes the initial state with all zeros
for the state machine power-up because all device registers power up to a low value.
This encoding has the same properties as true one-hot encoding: the software
recognizes each state by the value of one bit. For example, in a one-hot-encoded state
machine with five states, including an initial or reset state, the software uses the
register encoding shown in Example 16–34:

If you set the State Machine Processing logic option to User-Encoded in a Verilog
HDL design, the software starts with the original design values for the state constants.
For example, a Verilog HDL design can contain a declaration such as shown in
Example 16–35:

If the software infers the states S0, S1,... the software uses the encoding 4'b1010,
4'b0101,... . If necessary, the software inverts bits in a user-encoded state machine to
ensure that all bits of the reset state of the state machine are zero.

1 You can view the state machine encoding from the Compilation Report under the
State Machines of the Analysis & Synthesis Report. The State Machine Viewer
displays only a graphical representation of the state machines as interpreted from
your design.

f For more information about the State Machine Viewer, refer to the State Machine
Viewer section of the Analyzing Designs with Quartus II Netlist Viewers chapter in
volume 1 of the Quartus II Handbook.

Example 16–34. Register Encoding

State 0 0 0 0 0 0
State 1 0 0 0 1 1
State 2 0 0 1 0 1
State 3 0 1 0 0 1
State 4 1 0 0 0 1

Example 16–35.

parameter S0 = 4'b1010, S1 = 4'b0101, ...
May 2013 Altera Corporation Quartus II Handbook Version 13.1
Volume 1: Design and Synthesis

http://www.altera.com/literature/hb/qts/qts_qii51007.pdf
www.altera.com/literature/hb/qts/qts_qii51013.pdf

16–36 Chapter 16: Quartus II Integrated Synthesis
Quartus II Synthesis Options
To assign your own state encoding with the User-Encoded setting of the State
Machine Processing option in a VHDL design, you must apply specific binary
encoding to the elements of an enumerated type because enumeration literals have no
numeric values in VHDL. Use the syn_encoding synthesis attribute to apply your
encoding values. For more information, refer to “Manually Specifying State
Assignments Using the syn_encoding Attribute”.

h For information about the State Machine Processing logic option, including the
settings and supported devices, refer to State Machine Processing logic option in
Quartus II Help.

Manually Specifying State Assignments Using the syn_encoding Attribute
The Quartus II software infers state machines from enumerated types and
automatically assigns state encoding based on “State Machine Processing” on
page 16–34. With this logic option, you can choose the value User-Encoded to use the
encoding from your HDL code. However, in standard VHDL code, you cannot specify
user encoding in the state machine description because enumeration literals have no
numeric values in VHDL.

To assign your own state encoding for the User-Encoded State Machine Processing
setting, use the syn_encoding synthesis attribute to apply specific binary encodings to
the elements of an enumerated type or to specify an encoding style. The Quartus II
software can implement Enumeration Types with different encoding styles, as shown
in Table 16–3.

The syn_encoding attribute must follow the enumeration type definition, but precede
its use.

Table 16–3. syn_encoding Attribute Values

Attribute Value Enumeration Types

"default"
Use an encoding based on the number of enumeration literals in the Enumeration Type. If the number
of literals is less than five, use the "sequential" encoding. If the number of literals is more than five,
but fewer than 50, use a "one-hot" encoding. Otherwise, use a "gray" encoding.

"sequential"
Use a binary encoding in which the first enumeration literal in the Enumeration Type has encoding 0
and the second 1.

"gray"
Use an encoding in which the encodings for adjacent enumeration literals differ by exactly one bit. An
N-bit gray code can represent 2N values.

"johnson"
Use an encoding similar to a gray code. An N-bit Johnson code can represent at most 2N states, but
requires less logic than a gray encoding.

"one-hot"
The default encoding style requiring N bits, in which N is the number of enumeration literals in the
Enumeration Type.

"compact" Use an encoding with the fewest bits.

"user"
Encode each state using its value in the Verilog source. By changing the values of your state constants,
you can change the encoding of your state machine.
Quartus II Handbook Version 13.1 May 2013 Altera Corporation
Volume 1: Design and Synthesis

http://quartushelp.altera.com/current/master.htm#mergedProjects/logicops/logicops/def_smp_process_type.htm

Chapter 16: Quartus II Integrated Synthesis 16–37
Quartus II Synthesis Options
Manually Specifying Enumerated Types Using the enum_encoding Attribute
By default, the Quartus II software one-hot encodes all enumerated types you
defined. With the enum_encoding attribute, you can specify the logic encoding for an
enumerated type and override the default one-hot encoding to improve the logic
efficiency.

1 If an enumerated type represents the states of a state machine, using the
enum_encoding attribute to specify a manual state encoding prevents the Compiler
from recognizing state machines based on the enumerated type. Instead, the Compiler
processes these state machines as regular logic with the encoding specified by the
attribute, and the Report window for your project does not list these states machines
as state machines. If you want to control the encoding for a recognized state machine,
use the State Machine Processing logic option and the syn_encoding synthesis
attribute.

To use the enum_encoding attribute in a VHDL design file, associate the attribute with
the enumeration type whose encoding you want to control. The enum_encoding
attribute must follow the enumeration type definition, but precede its use. In
addition, the attribute value should be a string literal that specifies either an arbitrary
user encoding or an encoding style of "default", "sequential", "gray", "johnson", or
"one-hot".

An arbitrary user encoding consists of a space-delimited list of encodings. The list
must contain as many encodings as the number of enumeration literals in your
enumeration type. In addition, the encodings should have the same length, and each
encoding must consist solely of values from the std_ulogic type declared by the
std_logic_1164 package in the IEEE library. In Example 16–36, the enum_encoding
attribute specifies an arbitrary user encoding for the enumeration type fruit.

Example 16–37 shows the encoded enumeration literals:

Example 16–36. Specifying an Arbitrary User Encoding for Enumerated Type

type fruit is (apple, orange, pear, mango);
attribute enum_encoding : string;
attribute enum_encoding of fruit : type is "11 01 10 00";

Example 16–37. Encoded Enumeration Literals

apple = "11"
orange = "01"
pear = "10"
mango = "00"
May 2013 Altera Corporation Quartus II Handbook Version 13.1
Volume 1: Design and Synthesis

16–38 Chapter 16: Quartus II Integrated Synthesis
Quartus II Synthesis Options
Altera recommends that you specify an encoding style, rather than a manual user
encoding, especially when the enumeration type has a large number of enumeration
literals. The Quartus II software can implement Enumeration Types with the different
encoding styles, as shown in Table 16–4.

In Example 16–36, the enum_encoding attribute manually specified a gray encoding
for the enumeration type fruit. You can concisely write this example by specifying
the "gray" encoding style instead of a manual encoding, as shown in Example 16–38.

Safe State Machine
The Safe State Machine logic option and corresponding syn_encoding attribute value
safe specify that the software must insert extra logic to detect an illegal state, and
force the transition of the state machine to the reset state.

A finite state machine can enter an illegal state—meaning the state registers contain a
value that does not correspond to any defined state. By default, the behavior of the
state machine that enters an illegal state is undefined. However, you can set the
syn_encoding attribute to safe or use the Safe State Machine logic option if you want
the state machine to recover deterministically from an illegal state. The software
inserts extra logic to detect an illegal state, and forces the transition of the state
machine to the reset state. You can use this logic option when the state machine enters
an illegal state. The most common cause of an illegal state is a state machine that has
control inputs that come from another clock domain, such as the control logic for a
clock-crossing FIFO, because the state machine must have inputs from another clock
domain. This option protects only state machines (and not other registers) by forcing
them into the reset state. You can use this option if your design has asynchronous
inputs. However, Altera recommends using a synchronization register chain instead
of relying on the safe state machine option.

Table 16–4. enum_encoding Attribute Values

Attribute Value Enumeration Types

"default"
Use an encoding based on the number of enumeration literals in the enumeration type. If the number
of literals are fewer than five, use the "sequential" encoding. If the number of literals are more than
five, but fewer than 50 literals, use a "one-hot" encoding. Otherwise, use a "gray" encoding.

"sequential"
Use a binary encoding in which the first enumeration literal in the enumeration type has encoding 0
and the second 1.

"gray"
Use an encoding in which the encodings for adjacent enumeration literals differ by exactly one bit. An
N-bit gray code can represent 2N values.

"johnson"
Use an encoding similar to a gray code. An N-bit Johnson code can represent at most 2N states, but
requires less logic than a gray encoding.

"one-hot"
The default encoding style requiring N bits, in which N is the number of enumeration literals in the
enumeration type.

Example 16–38. Specifying the “gray” Encoding Style or Enumeration Type

type fruit is (apple, orange, pear, mango);
attribute enum_encoding : string;
attribute enum_encoding of fruit : type is "gray";
Quartus II Handbook Version 13.1 May 2013 Altera Corporation
Volume 1: Design and Synthesis

Chapter 16: Quartus II Integrated Synthesis 16–39
Quartus II Synthesis Options
The safe state machine value does not use any user-defined default logic from your
HDL code that corresponds to unreachable states. Verilog HDL and VHDL enable you
to specify a behavior for all states in the state machine explicitly, including
unreachable states. However, synthesis tools detect if state machine logic is
unreachable and minimize or remove the logic. Synthesis tools also remove any flag
signals or logic that indicate such an illegal state. If the software implements the state
machine as safe, the recovery logic added by Quartus II Integrated Synthesis forces its
transition from an illegal state to the reset state.

You can set the Safe State Machine logic option globally, or on individual state
machines. To set this logic option, on the Analysis & Synthesis Settings page, select
More Settings. In the Existing option settings list, select Safe State Machine, and
turn on this option in the Setting list.

You can set the syn_encoding safe attribute on a state machine in HDL, as shown in
Example 16–39 through Example 16–41.

If you specify an encoding style (refer to “Manually Specifying State Assignments
Using the syn_encoding Attribute” on page 16–36), separate the encoding style value
in the quotation marks with the safe value with a comma, as follows: "safe,
one-hot" or "safe, gray".

Safe state machine implementation can result in a noticeable area increase for your
design. Therefore, Altera recommends that you set this option only on the critical state
machines in your design in which the safe mode is necessary, such as a state machine
that uses inputs from asynchronous clock domains. You may not need to use this
option if you correctly synchronize inputs coming from other clock domains.

1 If you create the safe state machine assignment on an instance that the software fails
to recognize as a state machine, or an entity that contains a state machine, the software
takes no action. You must restructure the code, so that the software recognizes and
infers the instance as a state machine.

h For more information about the Safe State Machine logic option, refer to Safe State
Machine logic option in Quartus II Help.

f For guidelines to ensure that the software correctly infers your state machine, refer to
the Recommended HDL Coding Styles chapter in volume 1 of the Quartus II Handbook.

Example 16–39. Verilog HDL Code: a Safe State Machine Attribute

reg [2:0] my_fsm /* synthesis syn_encoding = "safe" */;

Example 16–40. Verilog-2001 and SystemVerilog Code: a Safe State Machine Attribute

(* syn_encoding = "safe" *) reg [2:0] my_fsm;

Example 16–41. VHDL Code: a Safe State Machine Attribute

ATTRIBUTE syn_encoding OF my_fsm : TYPE IS "safe";
May 2013 Altera Corporation Quartus II Handbook Version 13.1
Volume 1: Design and Synthesis

http://www.altera.com/literature/hb/qts/qts_qii51007.pdf
http://quartushelp.altera.com/current/master.htm#mergedProjects/logicops/logicops/def_safe_state_machine.htm
http://quartushelp.altera.com/current/master.htm#mergedProjects/logicops/logicops/def_safe_state_machine.htm

16–40 Chapter 16: Quartus II Integrated Synthesis
Quartus II Synthesis Options
Power-Up Level
This logic option causes a register (flipflop) to power up with the specified logic level,
either high (1) or low (0). The registers in the core hardware power up to 0 in all Altera
devices. For the register to power up with a logic level high, the Compiler performs an
optimization referred to as NOT-gate push back on the register. NOT-gate push back
adds an inverter to the input and the output of the register, so that the reset and
power-up conditions appear to be high and the device operates as expected. The
register itself still powers up to 0, but the register output inverts so the signal arriving
at all destinations is 1.

The Power-Up Level option supports wildcard characters, and you can apply this
option to any register, registered logic cell WYSIWYG primitive, or to a design entity
containing registers, if you want to set the power level for all registers in your design
entity. If you assign this option to a registered logic cell WYSIWYG primitive, such as
an atom primitive from a third-party synthesis tool, you must turn on the Perform
WYSIWYG Primitive Resynthesis logic option for the option to take effect. You can
also apply the option to a pin with the logic configurations described in the following
list:

■ If you turn on this option for an input pin, the option transfers to the register that
the pin drives, if all these conditions are present:

■ No logic, other than inversion, between the pin and the register.

■ The input pin drives the data input of the register.

■ The input pin does not fan-out to any other logic.

■ If you turn on this option for an output or bidirectional pin, the option transfers to
the register that feeds the pin, if all these conditions are present:

■ No logic, other than inversion, between the register and the pin.

■ The register does not fan out to any other logic.

h For more information about the Power-Up Level logic option, including information
on the supported device families, refer to Power-Up Level logic option in Quartus II
Help.

Inferred Power-Up Levels
Quartus II Integrated Synthesis reads default values for registered signals defined in
Verilog HDL and VHDL code, and converts the default values into Power-Up Level
settings. The software also synthesizes variables with assigned values in Verilog HDL
initial blocks into power-up conditions. Synthesis of these default and initial
constructs allows synthesized behavior of your design to match, as closely as possible,
the power-up state of the HDL code during a functional simulation.
Quartus II Handbook Version 13.1 May 2013 Altera Corporation
Volume 1: Design and Synthesis

http://quartushelp.altera.com/current/master.htm#mergedProjects/logicops/logicops/def_power_up_high.htm

Chapter 16: Quartus II Integrated Synthesis 16–41
Quartus II Synthesis Options
The following register declarations all set a power-up level of VCC or a logic value “1”,
as shown in Example 16–42:

f For more information about NOT-gate push back, the power-up states for Altera
devices, and how set and reset control signals affect the power-up level, refer to the
Recommended HDL Coding Styles chapter in volume 1 of the Quartus II Handbook.

Power-Up Don’t Care
This logic option allows the Compiler to optimize registers in your design that do not
have a defined power-up condition.

For example, your design might have a register with its D input tied to VCC, and with
no clear signal or other secondary signals. If you turn on this option, the Compiler can
choose for the register to power up to VCC. Therefore, the output of the register is
always VCC. The Compiler can remove the register and connect its output to VCC. If
you turn this option off or if you set a Power-Up Level assignment of Low for this
register, the register transitions from GND to VCC when your design starts up on the
first clock signal. Thus, the register is at VCC and you cannot remove the register.
Similarly, if the register has a clear signal, the Compiler cannot remove the register
because after asserting the clear signal, the register transitions again to GND and back
to VCC.

If the Compiler performs a Power-Up Don’t Care optimization that allows it to
remove a register, it issues a message to indicate that it is doing so.

This project-wide option does not apply to registers that have the Power-Up Level
logic option set to either High or Low.

h For more information about Power-Up Don’t Care logic option and a list of supported
devices, refer to Power-Up Don’t Care logic option in Quartus II Help.

Remove Duplicate Registers
The Remove Duplicate Registers logic option removes registers that are identical to
other registers.

h For more information about Remove Duplicate Registers logic option and the
supported devices, refer to Remove Duplicate Registers logic option in Quartus II Help.

Example 16–42.

signal q : std_logic = '1'; -- power-up to VCC

reg q = 1'b1; // power-up to VCC

reg q;
initial begin q = 1'b1; end // power-up to VCC
May 2013 Altera Corporation Quartus II Handbook Version 13.1
Volume 1: Design and Synthesis

http://quartushelp.altera.com/current/master.htm#mergedProjects/logicops/logicops/def_dup_reg_extraction.htm
http://www.altera.com/literature/hb/qts/qts_qii51007.pdf
http://quartushelp.altera.com/current/master.htm#mergedProjects/logicops/logicops/def_allow_power_up_dont_care.htm

16–42 Chapter 16: Quartus II Integrated Synthesis
Quartus II Synthesis Options
Preserve Registers
This attribute and logic option directs the Compiler not to minimize or remove a
specified register during synthesis optimizations or register netlist optimizations.
Optimizations can eliminate redundant registers and registers with constant drivers;
this option prevents the software from reducing a register to a constant or merging
with a duplicate register. This option can preserve a register so you can observe the
register during simulation or with the SignalTap® II Logic Analyzer. Additionally, this
option can preserve registers if you create a preliminary version of your design in
which you have not specified the secondary signals. You can also use the attribute to
preserve a duplicate of an I/O register so that you can place one copy of the I/O
register in an I/O cell and the second in the core.

1 This option cannot preserve registers that have no fan-out. To prevent the removal of
registers with no fan-out, refer to “Noprune Synthesis Attribute/Preserve Fan-out
Free Register Node” on page 16–43.

The Preserve Registers logic option prevents the software from inferring a register as
a state machine.

You can set the Preserve Registers logic option in the Quartus II software, or you can
set the preserve attribute in your HDL code, as shown in Example 16–43 through
Example 16–45. In these examples, the Quartus II software preserves the my_reg
register.

1 In addition to preserve, the Quartus II software supports the syn_preserve attribute
name for compatibility with other synthesis tools.

1 The = 1 after the preserve in Example 16–43 and Example 16–44 is optional, because
the assignment uses a default value of 1 when you specify the assignment.

h For more information about the Preserve Registers logic option and the supported
devices, refer to Preserve Registers logic option in Quartus II Help.

Example 16–43. Verilog HDL Code: syn_preserve Attribute

reg my_reg /* synthesis syn_preserve = 1 */;

Example 16–44. Verilog-2001 Code: syn_preserve Attribute

(* syn_preserve = 1 *) reg my_reg;

Example 16–45. VHDL Code: preserve Attribute

signal my_reg : stdlogic;
attribute preserve : boolean;
attribute preserve of my_reg : signal is true;
Quartus II Handbook Version 13.1 May 2013 Altera Corporation
Volume 1: Design and Synthesis

http://quartushelp.altera.com/current/master.htm#mergedProjects/logicops/logicops/def_preserve_register.htm

Chapter 16: Quartus II Integrated Synthesis 16–43
Quartus II Synthesis Options
Disable Register Merging/Don’t Merge Register
This logic option and attribute prevents the specified register from merging with
other registers and prevents other registers from merging with the specified register.
When applied to a design entity, it applies to all registers in the entity.

You can set the Disable Register Merging logic option in the Quartus II software, or
you can set the dont_merge attribute in your HDL code, as shown in Example 16–46
through Example 16–48. In these examples, the logic option or the attribute prevents
the my_reg register from merging.

h For more information about the Disable Register Merging logic option and the
supported devices, refer to Disable Register Merging logic option in Quartus II Help.

Noprune Synthesis Attribute/Preserve Fan-out Free Register Node
This synthesis attribute and corresponding logic option direct the Compiler to
preserve a fan-out-free register through the entire compilation flow. This option is
different from the Preserve Registers option, which prevents the Quartus II software
from reducing a register to a constant or merging with a duplicate register. Standard
synthesis optimizations remove nodes that do not directly or indirectly feed a
top-level output pin. This option can retain a register so you can observe the register
in the Simulator or the SignalTap II Logic Analyzer. Additionally, this option can
retain registers if you create a preliminary version of your design in which you have
not specified the fan-out logic of the register.

You can set the Preserve Fan-out Free Register Node logic option in the Quartus II
software, or you can set the noprune attribute in your HDL code, as shown in
Example 16–49 though Example 16–51. In these examples, the logic option or the
attribute preserves the my_reg register.

1 You must use the noprune attribute instead of the logic option if the register has no
immediate fan-out in its module or entity. If you do not use the synthesis attribute, the
software removes (or “prunes”) registers with no fan-out during Analysis &
Elaboration before the logic synthesis stage applies any logic options. If the register
has no fan-out in the full design, but has fan-out in its module or entity, you can use
the logic option to retain the register through compilation.

Example 16–46. Verilog HDL Code: dont_merge Attribute

reg my_reg /* synthesis dont_merge */;

Example 16–47. Verilog-2001 and SystemVerilog Code: dont_merge Attribute

(* dont_merge *) reg my_reg;

Example 16–48. VHDL Code: dont_merge Attribute

signal my_reg : stdlogic;
attribute dont_merge : boolean;
attribute dont_merge of my_reg : signal is true;
May 2013 Altera Corporation Quartus II Handbook Version 13.1
Volume 1: Design and Synthesis

http://quartushelp.altera.com/current/master.htm#mergedProjects/logicops/logicops/def_dont_merge_register.htm

16–44 Chapter 16: Quartus II Integrated Synthesis
Quartus II Synthesis Options
The software supports the attribute name syn_noprune for compatibility with other
synthesis tools.

h For more information about Preserve Fan-out Free Register Node logic option and a
list of supported devices, refer to Preserve Fan-out Free Register logic option in Quartus II
Help.

Keep Combinational Node/Implement as Output of Logic Cell
This synthesis attribute and corresponding logic option direct the Compiler to keep a
wire or combinational node through logic synthesis minimizations and netlist
optimizations. A wire that has a keep attribute or a node that has the Implement as
Output of Logic Cell logic option applied becomes the output of a logic cell in the
final synthesis netlist, and the name of the logic cell remains the same as the name of
the wire or node. You can use this directive to make combinational nodes visible to the
SignalTap II Logic Analyzer.

1 The option cannot keep nodes that have no fan-out. You cannot maintain node names
for wires with tri-state drivers, or if the signal feeds a top-level pin of the same name
(the software changes the node name to a name such as <net name>~buf0).

You can use the Ignore LCELL Buffers logic option to direct Analysis & Synthesis to
ignore logic cell buffers that the Implement as Output of Logic Cell logic option or
the LCELL primitive created. If you apply this logic option to an entity, it affects all
lower-level entities in the hierarchy path.

1 To avoid unintended design optimizations, ensure that any entity instantiated with
Altera or third-party IP that relies on logic cell buffers for correct behavior does not
inherit the Ignore LCELL Buffers logic option. For example, if an IP core uses logic
cell buffers to manage high fan-out signals and inherits the Ignore LCELL Buffers
logic option, the target device may no longer function properly.

You can turn off the Ignore LCELL Buffers logic option for a specific entity to
override any assignments inherited from higher-level entities in the hierarchy path if
logic cell buffers created by the Implement as Output of Logic Cell logic option or
the LCELL primitive are required for correct behavior.

Example 16–49. Verilog HDL Code: syn_noprune Attribute

reg my_reg /* synthesis syn_noprune */;

Example 16–50. Verilog-2001 and SystemVerilog Code: noprune Attribute

(* noprune *) reg my_reg;

Example 16–51. VHDL Code: noprune Attribute

signal my_reg : stdlogic;
attribute noprune: boolean;
attribute noprune of my_reg : signal is true;
Quartus II Handbook Version 13.1 May 2013 Altera Corporation
Volume 1: Design and Synthesis

http://quartushelp.altera.com/current/master.htm#mergedProjects/logicops/logicops/def_preserve_fanout_free_node.htm

Chapter 16: Quartus II Integrated Synthesis 16–45
Quartus II Synthesis Options
You can set the Implement as Output of Logic Cell logic option in the Quartus II
software, or you can set the keep attribute in your HDL code, as shown in
Example 16–52 through Example 16–54. In these examples, the Compiler maintains
the node name my_wire.

1 In addition to keep, the Quartus II software supports the syn_keep attribute name for
compatibility with other synthesis tools.

h For more information about the Implement as Output of Logic Cell logic option and
the supported devices, refer to Implement as Output of Logic Cell logic option in
Quartus II Help.

Disabling Synthesis Netlist Optimizations with dont_retime Attribute
This attribute disables synthesis retiming optimizations on the register you specify.
When applied to a design entity, it applies to all registers in the entity.

You can turn off retiming optimizations with this option and prevent node name
changes, so that the Compiler can correctly use your timing constraints for the
register.

Example 16–52. Verilog HDL Code: keep Attribute

wire my_wire /* synthesis keep = 1 */;

Example 16–53. Verilog-2001 Code: keep Attribute

(* keep = 1 *) wire my_wire;

Example 16–54. VHDL Code: syn_keep Attribute

signal my_wire: bit;
attribute syn_keep: boolean;
attribute syn_keep of my_wire: signal is true;
May 2013 Altera Corporation Quartus II Handbook Version 13.1
Volume 1: Design and Synthesis

http://quartushelp.altera.com/current/master.htm#mergedProjects/logicops/logicops/def_implement_as_lcell.htm

16–46 Chapter 16: Quartus II Integrated Synthesis
Quartus II Synthesis Options
You can set the Netlist Optimizations logic option to Never Allow in the Quartus II
software to disable retiming along with other synthesis netlist optimizations, or you
can set the dont_retime attribute in your HDL code, as shown in Example 16–55
through Example 16–57. In these examples, the code prevents my_reg register from
being retimed.

1 For compatibility with third-party synthesis tools, Quartus II Integrated Synthesis
also supports the attribute syn_allow_retiming. To disable retiming, set
syn_allow_retiming to 0 (Verilog HDL) or false (VHDL). This attribute does not
have any effect when you set the attribute to 1 or true.

Disabling Synthesis Netlist Optimizations with dont_replicate Attribute
This attribute disables synthesis replication optimizations on the register you specify.
When applied to a design entity, it applies to all registers in the entity.

You can turn off register replication (or duplication) optimizations with this option, so
that the Compiler uses your timing constraints for the register.

You can set the Netlist Optimizations logic option to Never Allow in the Quartus II
software to disable replication along with other synthesis netlist optimizations, or you
can set the dont_replicate attribute in your HDL code, as shown in Example 16–58
through Example 16–60. In these examples, the code prevents the replication of the
my_reg register.

Example 16–55. Verilog HDL Code: dont_retime Attribute

reg my_reg /* synthesis dont_retime */;

Example 16–56. Verilog-2001 and SystemVerilog Code: dont_retime Attribute

(* dont_retime *) reg my_reg;

Example 16–57. VHDL Code: dont_retime Attribute

signal my_reg : std_logic;
attribute dont_retime : boolean;
attribute dont_retime of my_reg : signal is true;

Example 16–58. Verilog HDL Code: dont_replicate Attribute

reg my_reg /* synthesis dont_replicate */;

Example 16–59. Verilog-2001 and SystemVerilog Code: dont_replicate Attribute

(* dont_replicate *) reg my_reg;

Example 16–60. VHDL Code: dont_replicate Attribute

signal my_reg : std_logic;
attribute dont_replicate : boolean;
attribute dont_replicate of my_reg : signal is true;
Quartus II Handbook Version 13.1 May 2013 Altera Corporation
Volume 1: Design and Synthesis

Chapter 16: Quartus II Integrated Synthesis 16–47
Quartus II Synthesis Options
1 For compatibility with third-party synthesis tools, Quartus II Integrated Synthesis
also supports the attribute syn_replicate. To disable replication, set syn_replicate
to 0 (Verilog HDL) or false (VHDL). This attribute does not have any effect when you
set the attribute to 1 or true.

Maximum Fan-Out
This Maximum Fan-Out attribute and logic option direct the Compiler to control the
number of destinations that a node feeds. The Compiler duplicates a node and splits
its fan-out until the individual fan-out of each copy falls below the maximum fan-out
restriction. You can apply this option to a register or a logic cell buffer, or to a design
entity that contains these elements. You can use this option to reduce the load of
critical signals, which can improve performance. You can use the option to instruct the
Compiler to duplicate a register that feeds nodes in different locations on the target
device. Duplicating the register can enable the Fitter to place these new registers
closer to their destination logic to minimize routing delay.

To turn off the option for a given node if you set the option at a higher level of the
design hierarchy, in the Netlist Optimizations logic option, select Never Allow. If not
disabled by the Netlist Optimizations option, the Compiler acknowledges the
maximum fan-out constraint as long as the following conditions are met:

■ The node is not part of a cascade, carry, or register cascade chain.

■ The node does not feed itself.

■ The node feeds other logic cells, DSP blocks, RAM blocks, and pins through data,
address, clock enable, and other ports, but not through any asynchronous control
ports (such as asynchronous clear).

The Compiler does not create duplicate nodes in these cases, because there is no clear
way to duplicate the node, or to avoid the small differences in timing which could
produce functional differences in the implementation (in the third condition above in
which asynchronous control signals are involved). If you cannot apply the constraint
because you do not meet one of these conditions, the Compiler issues a message to
indicate that the Compiler ignores the maximum fan-out assignment. To instruct the
Compiler not to check node destinations for possible problems such as the third
condition, you can set the Netlist Optimizations logic option to Always Allow for a
given node.

1 If you have enabled any of the Quartus II netlist optimizations that affect registers,
add the preserve attribute to any registers to which you have set a maxfan attribute.
The preserve attribute ensures that the netlist optimization algorithms, such as
register retiming, do not affect the registers.

f For details about netlist optimizations, refer to the Netlist Optimizations and Physical
Synthesis chapter in volume 2 of the Quartus II Handbook.

You can set the Maximum Fan-Out logic option in the Quartus II software. This
option supports wildcard characters. You can also set the maxfan attribute in your
HDL code, as shown in Example 16–61 through Example 16–63. In these examples,
the Compiler duplicates the clk_gen register, so its fan-out is not greater than 50.
May 2013 Altera Corporation Quartus II Handbook Version 13.1
Volume 1: Design and Synthesis

http://www.altera.com/literature/hb/qts/qts_qii52007.pdf
http://www.altera.com/literature/hb/qts/qts_qii52007.pdf

16–48 Chapter 16: Quartus II Integrated Synthesis
Quartus II Synthesis Options
1 In addition to maxfan, the Quartus II software supports the syn_maxfan attribute for
compatibility with other synthesis tools.

h For more information about the Maximum Fan-Out logic option and the supported
devices, refer to Maximum Fan-Out logic option in Quartus II Help.

Controlling Clock Enable Signals with Auto Clock Enable Replacement and
direct_enable

The Auto Clock Enable Replacement logic option allows the software to find logic
that feeds a register and move the logic to the register’s clock enable input port. To
solve fitting or performance issues with designs that have many clock enables, you
can turn off this option for individual registers or design entities. Turning the option
off prevents the software from using the register’s clock enable port. The software
implements the clock enable functionality using multiplexers in logic cells.

If the software does not move the specific logic to a clock enable input with the Auto
Clock Enable Replacement logic option, you can instruct the software to use a direct
clock enable signal. The attribute ensures that the signal drives the clock enable port,
and the software does not optimize or combine the signal with other logic.

Example 16–64 through Example 16–66 show how to set this attribute to ensure that
the attribute preserves the signal and uses the signal as a clock enable.

Example 16–61. Verilog HDL Code: syn_maxfan Attribute

reg clk_gen /* synthesis syn_maxfan = 50 */;

Example 16–62. Verilog-2001 Code: maxfan Attribute

(* maxfan = 50 *) reg clk_gen;

Example 16–63. VHDL Code: maxfan Attribute

signal clk_gen : stdlogic;
attribute maxfan : signal ;
attribute maxfan of clk_gen : signal is 50;
Quartus II Handbook Version 13.1 May 2013 Altera Corporation
Volume 1: Design and Synthesis

http://quartushelp.altera.com/current/master.htm#mergedProjects/logicops/logicops/def_max_fanout.htm

Chapter 16: Quartus II Integrated Synthesis 16–49
Inferring Multiplier, DSP, and Memory Functions from HDL Code
1 In addition to direct_enable, the Quartus II software supports the
syn_direct_enable attribute name for compatibility with other synthesis tools.

h For more information about the Auto Clock Enable Replacement logic option and
the supported devices, refer to Auto Clock Enable Replacement logic option in Quartus II
Help.

Inferring Multiplier, DSP, and Memory Functions from HDL Code
The Quartus II Compiler automatically recognizes multipliers,
multiply-accumulators, multiply-adders, or memory functions described in HDL
code, and either converts the HDL code into respective megafunction or maps them
directly to device atoms or memory atoms. If the software converts the HDL code into
a megafunction, the software uses the Altera megafunction code when you compile
your design, even when you do not specifically instantiate the megafunction. The
software infers megafunctions to take advantage of logic that you optimize for Altera
devices. The area and performance of such logic can be better than the results from
inferring generic logic from the same HDL code.

Additionally, you must use megafunctions to access certain architecture-specific
features, such as RAM, DSP blocks, and shift registers that provide improved
performance compared with basic logic cells.

f For details about coding style recommendations when targeting megafunctions in
Altera devices, refer to the Recommended HDL Coding Styles chapter in volume 1 of the
Quartus II Handbook.

The Quartus II software provides options to control the inference of certain types of
megafunctions, as described in the following subsections:

■ “Multiply-Accumulators and Multiply-Adders”

■ “Shift Registers” on page 16–50

■ “RAM and ROM” on page 16–51

■ “Resource Aware RAM, ROM, and Shift-Register Inference” on page 16–51

■ “Auto RAM to Logic Cell Conversion” on page 16–52

Example 16–64. Verilog HDL Code: direct_enable attribute

wire my_enable /* synthesis direct_enable = 1 */ ;

Example 16–65. Verilog-2001 and SystemVerilog Code: syn_direct_enable attribute

(* syn_direct_enable *) wire my_enable;

Example 16–66. VHDL Code: direct_enable attribute

attribute direct_enable: boolean;
attribute direct_enable of my_enable: signal is true;
May 2013 Altera Corporation Quartus II Handbook Version 13.1
Volume 1: Design and Synthesis

http://www.altera.com/literature/hb/qts/qts_qii51007.pdf
http://quartushelp.altera.com/current/master.htm#mergedProjects/logicops/logicops/def_auto_clock_enable_recognition.htm

16–50 Chapter 16: Quartus II Integrated Synthesis
Inferring Multiplier, DSP, and Memory Functions from HDL Code
Multiply-Accumulators and Multiply-Adders
Use the Auto DSP Block Replacement logic option to control DSP block inference for
multiply-accumulations and multiply-adders. To disable inference, turn off this
option for the entire project on the Analysis & Synthesis Settings page of the
Settings dialog box, or turn off the option for a specific block with the Assignment
Editor. By default, the software enables this logic option for Stratix V devices.

h For more information about the Auto DSP Block Replacement logic option and the
supported devices, refer to Auto DSP Block Replacement logic option in Quartus II Help.

Shift Registers
Use the Auto Shift Register Replacement logic option to control shift register
inference. This option has three settings: Off, Auto and Always. Auto is the default
setting in which Quartus II Integrated Synthesis decides which shift registers to
replace or leave in registers. Placing shift registers in memory saves logic area, but can
have a negative effect on fmax. Quartus II Integrated Synthesis uses the optimization
technique setting, logic and RAM utilization of your design, and timing information
from Timing-Driven Synthesis to determine which shift registers are located in
memory and which are located in registers. To disable inference, turn off this option
for the entire project on the Analysis & Synthesis Settings page of the Settings dialog
box by clicking More Settings and setting the option to Off. You can also disable the
option for a specific block with the Assignment Editor. Even if you set the logic option
to On or Auto, the software might not infer small shift registers because small shift
registers do not benefit from implementation in dedicated memory. However, you can
use the Allow Any Shift Register Size for Recognition logic option to instruct
synthesis to infer a shift register even when its size is too small.

You can use the Allow Shift Register Merging across Hierarchies option to prevent
the Compiler from merging shift registers in different hierarchies into one larger shift
register. The option has three settings: On, Off, and Auto. The Auto setting is the
default setting, and the Compiler decides whether or not to merge shift registers
across hierarchies. When you turn on this option, the Compiler allows all shift
registers to merge across hierarchies, and when you turn off this option, the Compiler
does not allow any shift registers to merge across hierarchies. You can set this option
globally or on entities or individual nodes.

1 The registers that the software maps to the ALTSHIFT_TAPS megafunction and places
in RAM are not available in the Simulator because their node names do not exist after
synthesis.

The Compiler turns off the Auto Shift Register Replacement logic option when you
select a formal verification tool on the EDA Tool Settings page. If you do not select a
formal verification tool, the Compiler issues a warning and the compilation report
lists shift registers that the logic option might infer. To enable a megafunction for the
shift register in the formal verification flow, you can either instantiate a shift register
explicitly with the MegaWizard™ Plug-In Manager or make the shift register into a
black box in a separate entity or module.

h For more information about the Auto Shift Register Replacement logic option and
the supported devices, refer to Auto Shift Register Replacement logic option in Quartus II
Help.
Quartus II Handbook Version 13.1 May 2013 Altera Corporation
Volume 1: Design and Synthesis

http://quartushelp.altera.com/current/master.htm#mergedProjects/logicops/logicops/def_auto_dsp_recognition.htm
http://quartushelp.altera.com/current/master.htm#mergedProjects/logicops/logicops/def_auto_shift_register_recognition.htm

Chapter 16: Quartus II Integrated Synthesis 16–51
Inferring Multiplier, DSP, and Memory Functions from HDL Code
RAM and ROM
Use the Auto RAM Replacement and Auto ROM Replacement logic options to
control RAM and ROM inference, respectively. To disable inference, turn off the
appropriate option for the entire project on the Analysis & Synthesis Settings page of
the Settings dialog box by clicking More Settings and setting the option to Off. You
can also disable the option for a specific block with the Assignment Editor.

1 Although the software implements inferred shift registers in RAM blocks, you cannot
turn off the Auto RAM Replacement option to disable shift register replacement. Use
the Auto Shift Register Replacement option (refer to “Shift Registers” on
page 16–50).

The software might not infer very small RAM or ROM blocks because you can
implement very small memory blocks with the registers in the logic. However, you
can use the Allow Any RAM Size for Recognition and Allow Any ROM Size for
Recognition logic options to instruct synthesis to infer a memory block even when its
size is too small.

1 The software turns off the Auto ROM Replacement logic option when you select a
formal verification tool in the EDA Tool Settings page. If you do not select a formal
verification tool, the software issues a warning and a report panel provides a list of
ROMs that the logic option might infer. To enable a megafunction for the shift register
in the formal verification flow, you can either instantiate a ROM explicitly using the
MegaWizard Plug-In Manager or create a black box for the ROM in a separate entity
or in a separate module.

Although formal verification tools do not support inferred RAM blocks, due to the
importance of inferring RAM in many designs, the software turns on the Auto RAM
Replacement logic option when you select a formal verification tool in the EDA Tool
Settings page. The software automatically performs black box instance for any
module or entity that contains an inferred RAM block. The software issues a warning
and lists the black box created in the compilation report. This black box allows formal
verification tools to proceed; however, the formal verification tool cannot verify the
entire module or entire entity that contains the RAM. Altera recommends that you
explicitly instantiate RAM blocks in separate modules or in separate entities so that
the formal verification tool can verify as much logic as possible.

h For more information about the Auto RAM Replacement and Auto ROM
Replacement logic options and their supported devices, refer to Auto RAM
Replacement logic option and Auto ROM Replacement logic option in Quartus II Help.

Resource Aware RAM, ROM, and Shift-Register Inference
The Quartus II Integrated Synthesis considers resource usage when inferring RAM,
ROM, and shift registers. During RAM, ROM, and shift register inferencing, synthesis
looks at the number of memories available in the current device and does not infer
more memory than is available to avoid a no-fit error. Synthesis tries to select the
memories that are not inferred in a way that aims at the smallest increase in logic and
registers.
May 2013 Altera Corporation Quartus II Handbook Version 13.1
Volume 1: Design and Synthesis

http://quartushelp.altera.com/current/master.htm#mergedProjects/logicops/logicops/def_auto_ram_recognition.htm
http://quartushelp.altera.com/current/master.htm#mergedProjects/logicops/logicops/def_auto_ram_recognition.htm
http://quartushelp.altera.com/current/master.htm#mergedProjects/logicops/logicops/def_auto_rom_recognition.htm

16–52 Chapter 16: Quartus II Integrated Synthesis
Inferring Multiplier, DSP, and Memory Functions from HDL Code
Resource aware RAM, ROM and shift register inference is controlled by the Resource
Aware Inference for Block RAM option. You can disable this option for the entire
project in the More Analysis & Synthesis Settings dialog box, or per partition in the
Assignment Editor.

When you select the Auto setting, resource aware RAM, ROM, and shift register
inference use the resource counts from the largest device.

For designs with multiple partitions, Quartus II Integrated Synthesis considers one
partition at a time. Therefore, for each partition, it assumes that all RAM blocks are
available to that partition. If this causes a no-fit error, you can limit the number of
RAM blocks available per partition with the Maximum Number of M512 Memory
Blocks, Maximum Number of M4K/M9K/M20K/M10K Memory Blocks, Maximum
Number of M-RAM/M144K Memory Blocks and Maximum Number of LABs
settings in the Assignment Editor. The balancer also uses these options. For more
information, refer to “Limiting Resource Usage in Partitions” on page 16–32.

Auto RAM to Logic Cell Conversion
The Auto RAM to Logic Cell Conversion logic option allows Quartus II Integrated
Synthesis to convert small RAM blocks to logic cells if the logic cell implementation
gives better quality of results. The software converts only single-port or simple-dual
port RAMs with no initialization files to logic cells. You can set this option globally or
apply it to individual RAM nodes. You can enable this option by turning on the
appropriate option for the entire project in the More Analysis & Synthesis Settings
dialog box.

For Arria GX and Stratix family of devices, the software uses the following rules to
determine the placement of a RAM, either in logic cells or a dedicated RAM block:

■ If the number of words is less than 16, use a RAM block if the total number of bits
is greater than or equal to 64.

■ If the number of words is greater than or equal to 16, use a RAM block if the total
number of bits is greater than or equal to 32.

■ Otherwise, implement the RAM in logic cells.

For the Cyclone family of devices, the software uses the following rules:

■ If the number of words is greater than or equal to 64, use a RAM block.

■ If the number of words is greater than or equal to 16 and less than 64, use a RAM
block if the total number of bits is greater than or equal to 128.

■ Otherwise, implement the RAM in logic cells.

h For more information about the Auto RAM to Logic Cell Conversion logic options
and the supported devices, refer to Auto RAM to Logic Cell Conversion logic option in
Quartus II Help.
Quartus II Handbook Version 13.1 May 2013 Altera Corporation
Volume 1: Design and Synthesis

http://quartushelp.altera.com/current/master.htm#mergedProjects/logicops/logicops/def_auto_ram_to_lcell_conversion.htm

Chapter 16: Quartus II Integrated Synthesis 16–53
Inferring Multiplier, DSP, and Memory Functions from HDL Code
RAM Style and ROM Style—for Inferred Memory
These attributes specify the implementation for an inferred RAM or ROM block. You
can specify the type of TriMatrix embedded memory block, or specify the use of
standard logic cells (LEs or ALMs). The Quartus II software supports the attributes
only for device families with TriMatrix embedded memory blocks.

The ramstyle and romstyle attributes take a single string value. The M512, M4K, M-RAM,
MLAB, M9K, M144K, M20K, and M10K values (as applicable for the target device family)
indicate the type of memory block to use for the inferred RAM or ROM. If you set the
attribute to a block type that does not exist in the target device family, the software
generates a warning and ignores the assignment. The logic value indicates that the
Quartus II software implements the RAM or ROM in regular logic rather than
dedicated memory blocks. You can set the attribute on a module or entity, in which
case it specifies the default implementation style for all inferred memory blocks in the
immediate hierarchy. You can also set the attribute on a specific signal (VHDL) or
variable (Verilog HDL) declaration, in which case it specifies the preferred
implementation style for that specific memory, overriding the default implementation
style.

1 If you specify a logic value, the memory appears as a RAM or ROM block in the RTL
Viewer, but Integrated Synthesis converts the memory to regular logic during
synthesis.

In addition to ramstyle and romstyle, the Quartus II software supports the
syn_ramstyle attribute name for compatibility with other synthesis tools.

Example 16–67 through Example 16–69 specify that you must implement all memory
in the module or the my_memory_blocks entity with a specific type of block.

Example 16–67. Verilog-1995 Code: Applying a romstyle Attribute to a Module Declaration

module my_memory_blocks (...) /* synthesis romstyle = "M4K" */;

Example 16–68. Verilog-2001 and SystemVerilog Code: Applying a ramstyle Attribute to a
Module Declaration

 (* ramstyle = "M512" *) module my_memory_blocks (...);

Example 16–69. VHDL Code: Applying a romstyle Attribute to an Architecture

architecture rtl of my_ my_memory_blocks is
attribute romstyle : string;
attribute romstyle of rtl : architecture is "M-RAM";
begin
May 2013 Altera Corporation Quartus II Handbook Version 13.1
Volume 1: Design and Synthesis

16–54 Chapter 16: Quartus II Integrated Synthesis
Inferring Multiplier, DSP, and Memory Functions from HDL Code
Example 16–70 through Example 16–72 specify that you must implement the inferred
my_ram or my_rom memory with regular logic instead of a TriMatrix memory block.

You can control the depth of an inferred memory block and optimize its usage with
the max_depth attribute. You can also optimize the usage of the memory block with
this attribute. Example 16–73 through Example 16–75 specify the depth of the inferred
memory mem using the max_depth synthesis attribute.

The syntax for setting these attributes in HDL is the same as the syntax for other
synthesis attributes, as shown in “Synthesis Attributes” on page 16–25.

Example 16–70. Verilog-1995 Code: Applying a syn_ramstyle Attribute to a Variable Declaration

reg [0:7] my_ram[0:63] /* synthesis syn_ramstyle = "logic" */;

Example 16–71. Verilog-2001 and SystemVerilog Code: Applying a romstyle Attribute to a
Variable Declaration

(* romstyle = "logic" *) reg [0:7] my_rom[0:63];

Example 16–72. VHDL Code: Applying a ramstyle Attribute to a Signal Declaration

type memory_t is array (0 to 63) of std_logic_vector (0 to 7);
signal my_ram : memory_t;
attribute ramstyle : string;
attribute ramstyle of my_ram : signal is "logic";

Example 16–73. Verilog-1995 Code: Applying a max_depth Attribute to a Variable Declaration

reg [7:0] mem [127:0] /* synthesis max_depth = 2048 */

Example 16–74. Verilog-2001 and SystemVerilog Code: Applying a max_depth Attribute to a
Variable Declaration

(* max_depth = 2048*) reg [7:0] mem [127:0];

Example 16–75. VHDL Code: Applying a max_depth Attribute to a Variable Declaration

type ram_block is array (0 to 31) of std_logic_vector (2 downto 0);
signal mem : ram_block;
attribute max_depth : natural;
attribute max_depth OF mem : signal is 2048;
Quartus II Handbook Version 13.1 May 2013 Altera Corporation
Volume 1: Design and Synthesis

Chapter 16: Quartus II Integrated Synthesis 16–55
Inferring Multiplier, DSP, and Memory Functions from HDL Code
RAM Style Attribute—For Shift Registers Inference
The RAM style attribute for shift register allows you to use the RAM style attribute for
shift registers, just as you use them for RAM or ROMs. The Quartus II Synthesis uses
the RAM style attribute during shift register inference. If synthesis infers the shift
register to RAM, it will be sent to the requested RAM block type. Shift registers are
merged only if the RAM style attributes are compatible. If the RAM style is set to
logic, a shift register does not get inferred to RAM.

Example 16–76 shows the code to set the RAM style attribute for shift registers in
Verilog.

Example 16–77 shows the code to set the RAM style attribute for shift registers in
VHDL.

1 You can also assign the RAM style attribute for shift registers globally, which will
affect all shift registers.

Example 16–76. Verilog Code: Setting the RAM Style Attribute for Shift Registers

(* ramstyle = "mlab" *)reg [N-1:0] sr;

Example 16–77. VHDL Code: Setting the RAM Style Attribute for Shift Registers

attribute ramstyle : string;attribute ramstyle of sr : signal is "M20K";
May 2013 Altera Corporation Quartus II Handbook Version 13.1
Volume 1: Design and Synthesis

16–56 Chapter 16: Quartus II Integrated Synthesis
Inferring Multiplier, DSP, and Memory Functions from HDL Code
Turning Off the Add Pass-Through Logic to Inferred RAMs no_rw_check
Attribute

Setting the no_rw_check value for the ramstyle attribute, or turning off the
corresponding global Add Pass-Through Logic to Inferred RAMs logic option
indicates that your design does not depend on the behavior of the inferred RAM
when there are reads and writes to the same address in the same clock cycle. If you
specify the attribute or turn off the logic option, the Quartus II software can choose a
read-during-write behavior instead of using the read-during-write behavior of your
HDL source code.

Sometimes, you must map an inferred RAM into regular logic cells because the
inferred RAM has a read-during-write behavior that the TriMatrix memory blocks in
your target device do not support. In other cases, the Quartus II software must insert
extra logic to mimic read-during-write behavior of the HDL source to increase the
area of your design and potentially reduce its performance. In some of these cases,
you can use the attribute to specify that the software can implement the RAM directly
in a TriMatrix memory block without using logic. You can also use the attribute to
prevent a warning message for dual-clock RAMs in the case that the inferred behavior
in the device does not exactly match the read-during-write conditions described in the
HDL code.

f For more information about recommended styles for inferring RAM and some of the
issues involved with different read-during-write conditions, refer to the Recommended
HDL Coding Styles chapter in volume 1 of the Quartus II Handbook.
Quartus II Handbook Version 13.1 May 2013 Altera Corporation
Volume 1: Design and Synthesis

http://www.altera.com/literature/hb/qts/qts_qii51007.pdf
http://www.altera.com/literature/hb/qts/qts_qii51007.pdf

Chapter 16: Quartus II Integrated Synthesis 16–57
Inferring Multiplier, DSP, and Memory Functions from HDL Code
To set the Add Pass-Through Logic to Inferred RAMs logic option with the
Quartus II software, click More Settings on the Analysis & Synthesis Settings page
of the Settings dialog box. Example 16–78 and Example 16–79 use two addresses and
normally require extra logic after the RAM to ensure that the read-during-write
conditions in the device match the HDL code. If your design does not require a
defined read-during-write condition, the extra logic is not necessary. With the
no_rw_check attribute, Quartus II Integrated Synthesis does not generate the extra
logic.

Example 16–78. Verilog HDL Inferred RAM Using no_rw_check Attribute

module ram_infer (q, wa, ra, d, we, clk);
output [7:0] q;
input [7:0] d;
input [6:0] wa;
input [6:0] ra;
input we, clk;
reg [6:0] read_add;
(* ramstyle = "no_rw_check" *) reg [7:0] mem [127:0];
always @ (posedge clk) begin

if (we)
mem[wa] <= d;

read_add <= ra;
end
assign q = mem[read_add];

endmodule

Example 16–79. VHDL Inferred RAM Using no_rw_check Attribute

LIBRARY ieee;
USE ieee.std_logic_1164.ALL;

ENTITY ram IS
PORT (

clock: IN STD_LOGIC;
data: IN STD_LOGIC_VECTOR (2 DOWNTO 0);
write_address: IN INTEGER RANGE 0 to 31;
read_address: IN INTEGER RANGE 0 to 31;
we: IN STD_LOGIC;
q: OUT STD_LOGIC_VECTOR (2 DOWNTO 0));

END ram;

ARCHITECTURE rtl OF ram IS
TYPE MEM IS ARRAY(0 TO 31) OF STD_LOGIC_VECTOR(2 DOWNTO 0);
SIGNAL ram_block: MEM;
ATTRIBUTE ramstyle : string;
ATTRIBUTE ramstyle of ram_block : signal is "no_rw_check";
SIGNAL read_address_reg: INTEGER RANGE 0 to 31;

BEGIN
PROCESS (clock)
BEGIN

IF (clock'event AND clock = '1') THEN
IF (we = '1') THEN

ram_block(write_address) <= data;
END IF;
read_address_reg <= read_address;

END IF;
END PROCESS;
q <= ram_block(read_address_reg);

END rtl;
May 2013 Altera Corporation Quartus II Handbook Version 13.1
Volume 1: Design and Synthesis

16–58 Chapter 16: Quartus II Integrated Synthesis
Inferring Multiplier, DSP, and Memory Functions from HDL Code
You can use a ramstyle attribute with the MLAB value, so that the Quartus II software
can infer a small RAM block and place it in an MLAB.

1 You can use this attribute in cases in which some asynchronous RAM blocks might be
coded with read-during-write behavior that does not match the Stratix III, Stratix IV,
and Stratix V architectures. Thus, the device behavior would not exactly match the
behavior that the code describes. If the difference in behavior is acceptable in your
design, use the ramstyle attribute with the no_rw_check value to specify that the
software should not check the read-during-write behavior when inferring the RAM.
When you set this attribute, Quartus II Integrated Synthesis allows the behavior of the
output to differ when the asynchronous read occurs on an address that had a write on
the most recent clock edge. That is, the functional HDL simulation results do not
match the hardware behavior if you write to an address that is being read. To include
these attributes, set the value of the ramstyle attribute to MLAB, no_rw_check.

Example 16–80 and Example 16–81 show the method of setting two values to the
ramstyle attribute with a small asynchronous RAM block, with the ramstyle
synthesis attribute set, so that the software can implement the memory in the MLAB
memory block and so that the read-during-write behavior is not important. Without
the attribute, this design requires 512 registers and 240 ALUTs. With the attribute, the
design requires eight memory ALUTs and only 15 registers.

Example 16–80. Verilog HDL Inferred RAM Using no_rw_check and MLAB Attributes

module async_ram (
 input [5:0] addr,
 input [7:0] data_in,
 input clk,
 input write,
 output [7:0] data_out);

 (* ramstyle = "MLAB, no_rw_check" *) reg [7:0] mem[0:63];

 assign data_out = mem[addr];

 always @ (posedge clk)
 begin
 if (write)
 mem[addr] = data_in;
 end
endmodule
Quartus II Handbook Version 13.1 May 2013 Altera Corporation
Volume 1: Design and Synthesis

Chapter 16: Quartus II Integrated Synthesis 16–59
Inferring Multiplier, DSP, and Memory Functions from HDL Code
h For more information about the Add Pass-Through Logic to Inferred RAMs logic
option and the supported devices, refer to Add Pass-Through Logic to Inferred RAMs
logic option in Quartus II Help.

RAM Initialization File—for Inferred Memory
The ram_init_file attribute specifies the initial contents of an inferred memory with
a .mif. The attribute takes a string value containing the name of the RAM
initialization file.

Example 16–81. VHDL Inferred RAM Using no_rw_check and MLAB Attributes

LIBRARY ieee;
USE ieee.std_logic_1164.ALL;
ENTITY ram IS

PORT (
clock: IN STD_LOGIC;
data: IN STD_LOGIC_VECTOR (2 DOWNTO 0);
write_address: IN INTEGER RANGE 0 to 31;
read_address: IN INTEGER RANGE 0 to 31;
we: IN STD_LOGIC;
q: OUT STD_LOGIC_VECTOR (2 DOWNTO 0));

END ram;

ARCHITECTURE rtl OF ram IS
TYPE MEM IS ARRAY(0 TO 31) OF STD_LOGIC_VECTOR(2 DOWNTO 0);
SIGNAL ram_block: MEM;
ATTRIBUTE ramstyle : string;
ATTRIBUTE ramstyle of ram_block : signal is "MLAB , no_rw_check";
SIGNAL read_address_reg: INTEGER RANGE 0 to 31;

BEGIN
PROCESS (clock)
BEGIN

IF (clock'event AND clock = '1') THEN
IF (we = '1') THEN

ram_block(write_address) <= data;
END IF;
read_address_reg <= read_address;

END IF;
END PROCESS;
q <= ram_block(read_address_reg);

END rtl;

Example 16–82. Verilog-1995 Code: Applying a ram_init_file Attribute

reg [7:0] mem[0:255] /* synthesis ram_init_file
= " my_init_file.mif" */;

Example 16–83. Verilog-2001 Code: Applying a ram_init_file Attribute

(* ram_init_file = "my_init_file.mif" *) reg [7:0] mem[0:255];
May 2013 Altera Corporation Quartus II Handbook Version 13.1
Volume 1: Design and Synthesis

http://quartushelp.altera.com/current/master.htm#mergedProjects/logicops/logicops/def_add_pass_through_logic_to_inferred_rams.htm
http://quartushelp.altera.com/current/master.htm#mergedProjects/logicops/logicops/def_add_pass_through_logic_to_inferred_rams.htm

16–60 Chapter 16: Quartus II Integrated Synthesis
Inferring Multiplier, DSP, and Memory Functions from HDL Code
1 In VHDL, you can also initialize the contents of an inferred memory by specifying a
default value for the corresponding signal. In Verilog HDL, you can use an initial
block to specify the memory contents. Quartus II Integrated Synthesis automatically
converts the default value into a .mif for the inferred RAM.

1 The ram_init_file attribute is supported for ROM too. For more information, refer to
Inferring ROM Functions from HDL Code section in the Recommended HDL Coding Styles
chapter of the Quartus II Handbook.

Multiplier Style—for Inferred Multipliers
The multstyle attribute specifies the implementation style for multiplication
operations (*) in your HDL source code. You can use this attribute to specify whether
you prefer the Compiler to implement a multiplication operation in general logic or
dedicated hardware, if available in the target device.

The multstyle attribute takes a string value of "logic" or "dsp", indicating a
preferred implementation in logic or in dedicated hardware, respectively. In Verilog
HDL, apply the attribute to a module declaration, a variable declaration, or a specific
binary expression that contains the * operator. In VHDL, apply the synthesis attribute
to a signal, variable, entity, or architecture.

1 Specifying a multstyle of "dsp" does not guarantee that the Quartus II software can
implement a multiplication in dedicated DSP hardware. The final implementation
depends on several conditions, including the availability of dedicated hardware in the
target device, the size of the operands, and whether or not one or both operands are
constant.

In addition to multstyle, the Quartus II software supports the syn_multstyle
attribute name for compatibility with other synthesis tools.

When applied to a Verilog HDL module declaration, the attribute specifies the default
implementation style for all instances of the * operator in the module. For example, in
the following code examples, the multstyle attribute directs the Quartus II software
to implement all multiplications inside module my_module in the dedicated
multiplication hardware.

Example 16–84. VHDL Code: Applying a ram_init_file Attribute

type mem_t is array(0 to 255) of unsigned(7 downto 0);
signal ram : mem_t;
attribute ram_init_file : string;
attribute ram_init_file of ram :
signal is "my_init_file.mif";

Example 16–85. Verilog-1995 Code: Applying a multstyle Attribute to a Module Declaration

module my_module (...) /* synthesis multstyle = "dsp" */;

Example 16–86. Verilog-2001 Code: Applying a multstyle Attribute to a Module Declaration

(* multstyle = "dsp" *) module my_module(...);
Quartus II Handbook Version 13.1 May 2013 Altera Corporation
Volume 1: Design and Synthesis

http://www.altera.com/literature/hb/qts/qts_qii51007.pdf

Chapter 16: Quartus II Integrated Synthesis 16–61
Inferring Multiplier, DSP, and Memory Functions from HDL Code
When applied to a Verilog HDL variable declaration, the attribute specifies the
implementation style for a multiplication operator, which has a result directly
assigned to the variable. The attribute overrides the multstyle attribute with the
enclosing module, if present. In Example 16–87 and Example 16–88, the multstyle
attribute applied to variable result directs the Quartus II software to implement a *
b in logic rather than the dedicated hardware.

When applied directly to a binary expression that contains the * operator, the attribute
specifies the implementation style for that specific operator alone and overrides any
multstyle attribute with the target variable or enclosing module. In Example 16–89,
the multstyle attribute indicates that you must implement a * b in the dedicated
hardware.

1 You cannot use Verilog-1995 attribute syntax to apply the multstyle attribute to a
binary expression.

When applied to a VHDL entity or architecture, the attribute specifies the default
implementation style for all instances of the * operator in the entity or architecture. In
Example 16–90, the multstyle attribute directs the Quartus II software to use
dedicated hardware, if possible, for all multiplications inside architecture rtl of entity
my_entity.

Example 16–87. Verilog-2001 Code: Applying a multstyle Attribute to a Variable Declaration

wire [8:0] a, b;
(* multstyle = "logic" *) wire [17:0] result;
assign result = a * b; //Multiplication must be

//directly assigned to result

Example 16–88. Verilog-1995 Code: Applying a multstyle Attribute to a Variable Declaration

wire [8:0] a, b;
wire [17:0] result /* synthesis multstyle = "logic" */;
assign result = a * b; //Multiplication must be

//directly assigned to result

Example 16–89. Verilog-2001 Code: Applying a multstyle Attribute to a Binary Expression

wire [8:0] a, b;
wire [17:0] result;
assign result = a * (* multstyle = "dsp" *) b;

Example 16–90. VHDL Code: Applying a multstyle Attribute to an Architecture

architecture rtl of my_entity is
attribute multstyle : string;
attribute multstyle of rtl : architecture is "dsp";

begin
May 2013 Altera Corporation Quartus II Handbook Version 13.1
Volume 1: Design and Synthesis

16–62 Chapter 16: Quartus II Integrated Synthesis
Inferring Multiplier, DSP, and Memory Functions from HDL Code
When applied to a VHDL signal or variable, the attribute specifies the
implementation style for all instances of the * operator, which has a result directly
assigned to the signal or variable. The attribute overrides the multstyle attribute with
the enclosing entity or architecture, if present. In Example 16–91, the multstyle
attribute associated with signal result directs the Quartus II software to implement a
* b in logic rather than the dedicated hardware.

Full Case Attribute
A Verilog HDL case statement is full when its case items cover all possible binary
values of the case expression or when a default case statement is present. A full_case
attribute attached to a case statement header that is not full forces synthesis to treat
the unspecified states as a don’t care value. VHDL case statements must be full, so the
attribute does not apply to VHDL.

f Using this attribute on a case statement that is not full allows you to avoid the latch
inference problems discussed in the Recommended Design Practices chapter in volume 1
of the Quartus II Handbook.

1 Latches have limited support in formal verification tools. Do not infer latches
unintentionally, for example, through an incomplete case statement when using
formal verification. Formal verification tools support the full_case synthesis
attribute (with limited support for attribute syntax, as described in “Synthesis
Attributes” on page 16–25).

Using the full_case attribute might cause a simulation mismatch between the
Verilog HDL functional and the post-Quartus II simulation because unknown case
statement cases can still function as latches during functional simulation. For
example, a simulation mismatch can occur with the code in Example 16–92 when sel
is 2'b11 because a functional HDL simulation output behaves as a latch and the
Quartus II simulation output behaves as a don’t care value.

1 Altera recommends making the case statement “full” in your regular HDL code,
instead of using the full_case attribute.

Example 16–91. VHDL Code: Applying a multstyle Attribute to a Signal or Variable

signal a, b : unsigned(8 downto 0);
signal result : unsigned(17 downto 0);

attribute multstyle : string;
attribute multstyle of result : signal is "logic";
result <= a * b;
Quartus II Handbook Version 13.1 May 2013 Altera Corporation
Volume 1: Design and Synthesis

http://www.altera.com/literature/hb/qts/qts_qii51006.pdf

Chapter 16: Quartus II Integrated Synthesis 16–63
Inferring Multiplier, DSP, and Memory Functions from HDL Code
The case statement in Example 16–92 is not full because you do not specify some sel
binary values. Because you use the full_case attribute, synthesis treats the output as
“don’t care” when the sel input is 2'b11.

Verilog-2001 syntax also accepts the statements in Example 16–93 in the case header
instead of the comment form as shown in Example 16–92.

Parallel Case
The parallel_case attribute indicates that you must consider a Verilog HDL case
statement as parallel; that is, you can match only one case item at a time. Case items in
Verilog HDL case statements might overlap. To resolve multiple matching case items,
the Verilog HDL language defines a priority among case items in which the case
statement always executes the first case item that matches the case expression value.
By default, the Quartus II software implements the extra logic necessary to satisfy this
priority relationship.

Attaching a parallel_case attribute to a case statement header allows the Quartus II
software to consider its case items as inherently parallel; that is, at most one case item
matches the case expression value. Parallel case items simplify the generated logic.

In VHDL, the individual choices in a case statement might not overlap, so they are
always parallel and this attribute does not apply.

Altera recommends that you use this attribute only when the case statement is truly
parallel. If you use the attribute in any other situation, the generated logic does not
match the functional simulation behavior of the Verilog HDL.

1 Altera recommends that you avoid using the parallel_case attribute, because you
may mismatch the Verilog HDL functional and the post-Quartus II simulation.

If you specify SystemVerilog-2005 as the supported Verilog HDL version for your
design, you can use the SystemVerilog keyword unique to achieve the same result as
the parallel_case directive without causing simulation mismatches.

Example 16–92. Verilog HDL Code: a full_case Attribute

module full_case (a, sel, y);
input [3:0] a;
input [1:0] sel;
output y;
reg y;
always @ (a or sel)
case (sel) // synthesis full_case

2'b00: y=a[0];
2'b01: y=a[1];
2'b10: y=a[2];

endcase
endmodule

Example 16–93. Verilog-2001 Syntax for the full_case Attribute

(* full_case *) case (sel)
May 2013 Altera Corporation Quartus II Handbook Version 13.1
Volume 1: Design and Synthesis

16–64 Chapter 16: Quartus II Integrated Synthesis
Inferring Multiplier, DSP, and Memory Functions from HDL Code
Example 16–94 shows a casez statement with overlapping case items. In functional
HDL simulation, the software prioritizes the three case items by the bits in sel. For
example, sel[2] takes priority over sel[1], which takes priority over sel[0].
However, the synthesized design can simulate differently because the parallel_case
attribute eliminates this priority. If more than one bit of sel is high, more than one
output (a, b, or c) is high as well, a situation that cannot occur in functional HDL
simulation.

Verilog-2001 syntax also accepts the statements as shown in Example 16–95 in the
case (or casez) header instead of the comment form, as shown in Example 16–94.

Translate Off and On / Synthesis Off and On
The translate_off and translate_on synthesis directives indicate whether the
Quartus II software or a third-party synthesis tool should compile a portion of HDL
code that is not relevant for synthesis. The translate_off directive marks the
beginning of code that the synthesis tool should ignore; the translate_on directive
indicates that synthesis should resume. You can also use the synthesis_on and
synthesis_off directives as a synonym for translate on and off.

Example 16–94. Verilog HDL Code: a parallel_case Attribute

module parallel_case (sel, a, b, c);
input [2:0] sel;
output a, b, c;
reg a, b, c;
always @ (sel)
begin

{a, b, c} = 3'b0;
casez (sel) // synthesis parallel_case

3'b1??: a = 1'b1;
3'b?1?: b = 1'b1;
3'b??1: c = 1'b1;

endcase
end

endmodule

Example 16–95. Verilog-2001 Syntax

(* parallel_case *) casez (sel)
Quartus II Handbook Version 13.1 May 2013 Altera Corporation
Volume 1: Design and Synthesis

Chapter 16: Quartus II Integrated Synthesis 16–65
Inferring Multiplier, DSP, and Memory Functions from HDL Code
You can use these directives to indicate a portion of code for simulation only. The
synthesis tool reads synthesis-specific directives and processes them during synthesis;
however, third-party simulation tools read the directives as comments and ignore
them. Example 16–96, Example 16–97, and Example 16–98 show these directives.

If you want to ignore only a portion of code in Quartus II Integrated Synthesis, you
can use the Altera-specific attribute keyword altera. For example, use the // altera
translate_off and // altera translate_on directives to direct Quartus II
Integrated Synthesis to ignore a portion of code that you intend only for other
synthesis tools.

Ignore translate_off and synthesis_off Directives
The Ignore translate_off and synthesis_off Directives logic option directs Quartus II
Integrated Synthesis to ignore the translate_off and synthesis_off directives
described in the previous section. Turning on this logic option allows you to compile
code that you want the third-party synthesis tools to ignore; for example,
megafunction declarations that the other tools treat as black boxes but the Quartus II
software can compile. To set the Ignore translate_off and synthesis_off Directives
logic option, click More Settings on the Analysis & Synthesis Settings page of the
Settings dialog box.

h For more information about the Ignore translate_off and synthesis_off Directives
logic option and the supported devices, refer to Ignore translate_off and synthesis_off
Directives logic option in Quartus II Help.

Example 16–96. Verilog HDL Code: Translate Off and On

// synthesis translate_off
parameter tpd = 2; // Delay for simulation
#tpd;
// synthesis translate_on

Example 16–97. VHDL Code: Translate Off and On

-- synthesis translate_off
use std.textio.all;
-- synthesis translate_on

Example 16–98. VHDL 2008 Code: Translate Off and On

/* synthesis translate_off */
use std.textio.all;
/* synthesis translate_on */
May 2013 Altera Corporation Quartus II Handbook Version 13.1
Volume 1: Design and Synthesis

http://quartushelp.altera.com/current/master.htm#mergedProjects/logicops/logicops/def_ignore_translate_off.htm
http://quartushelp.altera.com/current/master.htm#mergedProjects/logicops/logicops/def_ignore_translate_off.htm

16–66 Chapter 16: Quartus II Integrated Synthesis
Inferring Multiplier, DSP, and Memory Functions from HDL Code
Read Comments as HDL
The read_comments_as_HDL synthesis directive indicates that the Quartus II software
should compile a portion of HDL code that you commented out. This directive allows
you to comment out portions of HDL source code that are not relevant for simulation,
while instructing the Quartus II software to read and synthesize that same source
code. Setting the read_comments_as_HDL directive to on indicates the beginning of
commented code that the synthesis tool should read; setting the
read_comments_as_HDL directive to off indicates the end of the code.

1 You can use this directive with translate_off and translate_on to create one HDL
source file that includes a megafunction instantiation for synthesis and a behavioral
description for simulation.

Formal verification tools do not support the read_comments_as_HDL directive because
the tools do not recognize the directive.

In Example 16–99, Example 16–100, and Example 16–101, the Compiler synthesizes
the commented code enclosed by read_comments_as_HDL because the directive is
visible to the Quartus II Compiler. VHDL 2008 allows block comments, which
comments are also supported for synthesis directives.

1 Because synthesis directives are case sensitive in Verilog HDL, you must match the
case of the directive, as shown in the following examples.

Example 16–99. Verilog HDL Code: Read Comments as HDL

// synthesis read_comments_as_HDL on
// my_rom lpm_rom (.address (address),
// .data (data));
// synthesis read_comments_as_HDL off

Example 16–100. VHDL Code: Read Comments as HDL

-- synthesis read_comments_as_HDL on
-- my_rom : entity lpm_rom
-- port map (
-- address => address,
-- data => data,);
-- synthesis read_comments_as_HDL off

Example 16–101. VHDL 2008 Code: Read Block Comments as HDL

/* synthesis read_comments_as_HDL on */
/* my_rom : entity lpm_rom
 port map (
 address => address,
 data => data,); */
 synthesis read_comments_as_HDL off */
Quartus II Handbook Version 13.1 May 2013 Altera Corporation
Volume 1: Design and Synthesis

Chapter 16: Quartus II Integrated Synthesis 16–67
Inferring Multiplier, DSP, and Memory Functions from HDL Code
Use I/O Flipflops
The useioff attribute directs the Quartus II software to implement input, output, and
output enable flipflops (or registers) in I/O cells that have fast, direct connections to
an I/O pin, when possible. To improve I/O performance by minimizing setup,
clock-to-output, and clock-to-output enable times, you can apply the useioff
synthesis attribute. The Fast Input Register, Fast Output Register, and Fast Output
Enable Register logic options support this synthesis attribute. You can also set this
synthesis attribute in the Assignment Editor.

The useioff synthesis attribute takes a boolean value. You can apply the value only to
the port declarations of a top-level Verilog HDL module or VHDL entity (it is ignored
if applied elsewhere). Setting the value to 1 (Verilog HDL) or TRUE (VHDL) instructs
the Quartus II software to pack registers into I/O cells. Setting the value to 0 (Verilog
HDL) or FALSE (VHDL) prevents register packing into I/O cells.

In Example 16–102 and Example 16–103, the useioff synthesis attribute directs the
Quartus II software to implement the a_reg, b_reg, and o_reg registers in the I/O
cells corresponding to the a, b, and o ports, respectively.

Example 16–102. Verilog HDL Code: the useioff Attribute

module top_level(clk, a, b, o);
 input clk;
input [1:0] a, b /* synthesis useioff = 1 */;
output [2:0] o /* synthesis useioff = 1 */;
reg [1:0] a_reg, b_reg;
reg [2:0] o_reg;
always @ (posedge clk)
begin

a_reg <= a;
b_reg <= b;
o_reg <= a_reg + b_reg;

end
assign o = o_reg;

endmodule
May 2013 Altera Corporation Quartus II Handbook Version 13.1
Volume 1: Design and Synthesis

16–68 Chapter 16: Quartus II Integrated Synthesis
Inferring Multiplier, DSP, and Memory Functions from HDL Code
Example 16–103 and Example 16–104 show that the Verilog-2001 syntax also accepts
the type of statements instead of the comment form in Example 16–102.

Specifying Pin Locations with chip_pin
The chip_pin attribute allows you to assign pin locations in your HDL source. You
can use the attribute only on the ports of the top-level entity or module in your
design. You can assign pins only to single-bit or one-dimensional bus ports in your
design.

For single-bit ports, the value of the chip_pin attribute is the name of the pin on the
target device, as specified by the pin table of the device.

1 In addition to the chip_pin attribute, the Quartus II software supports the
altera_chip_pin_lc attribute name for compatibility with other synthesis tools.
When using this attribute in other synthesis tools, some older device families require
an “@” symbol in front of each pin assignment. In the Quartus II software, the “@” is
optional.

Example 16–103. Verilog-2001 Code: the useioff Attribute

(* useioff = 1 *) input [1:0] a, b;
(* useioff = 1 *) output [2:0] o;

Example 16–104. VHDL Code: the useioff Attribute

library ieee;
use ieee.std_logic_1164.all;
use ieee.numeric_std.all;
entity useioff_example is

port (
clk : in std_logic;
a, b : in unsigned(1 downto 0);
o : out unsigned(1 downto 0));

attribute useioff : boolean;
attribute useioff of a : signal is true;
attribute useioff of b : signal is true;
attribute useioff of o : signal is true;

end useioff_example;
architecture rtl of useioff_example is

signal o_reg, a_reg, b_reg : unsigned(1 downto 0);
begin

process(clk)
begin

if (clk = '1' AND clk'event) then
a_reg <= a;
b_reg <= b;
o_reg <= a_reg + b_reg;

end if;
end process;

o <= o_reg;
end rtl;
Quartus II Handbook Version 13.1 May 2013 Altera Corporation
Volume 1: Design and Synthesis

Chapter 16: Quartus II Integrated Synthesis 16–69
Inferring Multiplier, DSP, and Memory Functions from HDL Code
Example 16–105 through Example 16–107 show different ways of assigning my_pin1
to Pin C1 and my_pin2 to Pin 4 on a different target device.

For bus I/O ports, the value of the chip pin attribute is a comma-delimited list of pin
assignments. The order in which you declare the range of the port determines the
mapping of assignments to individual bits in the port. To leave a bit unassigned, leave
its corresponding pin assignment blank.

Example 16–108 assigns my_pin[2] to Pin_4, my_pin[1] to Pin_5, and my_pin[0] to
Pin_6.

Example 16–109 reverses the order of the signals in the bus, assigning my_pin[0] to
Pin_4 and my_pin[2] to Pin_6 but leaves my_pin[1] unassigned.

Example 16–110 assigns my_pin[2] to Pin 4 and my_pin[0] to Pin 6, but leaves
my_pin[1] unassigned.

Example 16–105. Verilog-1995 Code: Applying Chip Pin to a Single Pin

input my_pin1 /* synthesis chip_pin = "C1" */;
input my_pin2 /* synthesis altera_chip_pin_lc = "@4" */;

Example 16–106. Verilog-2001 Code: Applying Chip Pin to a Single Pin

(* chip_pin = "C1" *) input my_pin1;
(* altera_chip_pin_lc = "@4" *) input my_pin2;

Example 16–107. VHDL Code: Applying Chip Pin to a Single Pin

entity my_entity is
port(my_pin1: in std_logic; my_pin2: in std_logic;…);
end my_entity;
attribute chip_pin : string;
attribute altera_chip_pin_lc : string;
attribute chip_pin of my_pin1 : signal is "C1";
attribute altera_chip_pin_lc of my_pin2 : signal is "@4";

Example 16–108. Verilog-1995 Code: Applying Chip Pin to a Bus of Pins

input [2:0] my_pin /* synthesis chip_pin = "4, 5, 6" */;

Example 16–109. Verilog-1995 Code: Applying Chip Pin to Part of a Bus

input [0:2] my_pin /* synthesis chip_pin = "4, ,6" */;

Example 16–110. VHDL Code: Applying Chip Pin to Part of a Bus of Pins

entity my_entity is
port(my_pin: in std_logic_vector(2 downto 0);…);
end my_entity;

attribute chip_pin of my_pin: signal is "4, , 6";
May 2013 Altera Corporation Quartus II Handbook Version 13.1
Volume 1: Design and Synthesis

16–70 Chapter 16: Quartus II Integrated Synthesis
Inferring Multiplier, DSP, and Memory Functions from HDL Code
Example 16–111 shows a VHDL example on how to assign pin location and I/O
standard.

Example 16–112 shows a Verilog-2001 example on how to assign pin location and I/O
standard.

Using altera_attribute to Set Quartus II Logic Options
The altera_attribute attribute allows you to apply Quartus II logic options and
assignments to an object in your HDL source code. You can set this attribute on an
entity, architecture, instance, register, RAM block, or I/O pin. You cannot set it on an
arbitrary combinational node such as a net. With altera_attribute, you can control
synthesis options from your HDL source even when the options lack a specific HDL
synthesis attribute (such as many of the logic options presented earlier in this
chapter). You can also use this attribute to pass entity-level settings and assignments
to phases of the Compiler flow that follow Analysis & Synthesis, such as Fitting.

Assignments or settings made through the Quartus II software, the .qsf, or the Tcl
interface take precedence over assignments or settings made with the
altera_attribute synthesis attribute in your HDL code.

The syntax for setting this attribute in HDL is the same as the syntax for other
synthesis attributes, as shown in “Synthesis Attributes” on page 16–25.

The attribute value is a single string containing a list of .qsf variable assignments
separated by semicolons, as shown in Example 16–113.

If the Quartus II option or assignment includes a target, source, and section tag, you
must use the syntax in Example 16–114 for each .qsf variable assignment:

Example 16–111. VHDL Code: Assigning Pin Location and I/O Standard

attribute altera_chip_pin_lc: string;
attribute altera_attribute: string;
attribute altera_chip_pin_lc of clk: signal is "B13";
attribute altera_attribute of clk:signal is "-name IO_STANDARD ""3.3-V
LVCMOS""";

Example 16–112. Verilog-2001 Code: Assigning Pin Location and I/O Standard

(* altera_attribute = "-name IO_STANDARD \"3.3-V LVCMOS\"" *)(* chip_pin
= "L5" *)input clk;
(* altera_attribute = "-name IO_STANDARD LVDS" *)(* chip_pin = "L4"
*)input sel;
output [3:0] data_o, input [3:0] data_i);

Example 16–113. Variable Assignments Separated by Semicolons

-name <variable_1> <value_1>;-name <variable_2> <value_2>[;…]

Example 16–114. Syntax for Each .qsf Variable Assignment

-name <variable> <value>
-from <source> -to <target> -section_id <section>
Quartus II Handbook Version 13.1 May 2013 Altera Corporation
Volume 1: Design and Synthesis

Chapter 16: Quartus II Integrated Synthesis 16–71
Inferring Multiplier, DSP, and Memory Functions from HDL Code
Example 16–115 shows the syntax for the full attribute value, including the optional
target, source, and section tags for two different .qsf assignments.

If the assigned value of a variable is a string of text, you must use escaped quotes
around the value in Verilog HDL (as shown in Example 16–116), or double-quotes in
VHDL (as shown in Example 16–117):

To find the .qsf variable name or value corresponding to a specific Quartus II option
or assignment, you can set the option setting or assignment in the Quartus II software,
and then make the changes in the .qsf. You can also refer to the Quartus II Settings File
Manual, which documents all variable names.

Example 16–118 through Example 16–120 use altera_attribute to set the power-up
level of an inferred register.

1 For inferred instances, you cannot apply the attribute to the instance directly.
Therefore, you must apply the attribute to one of the output nets of the instance. The
Quartus II software automatically moves the attribute to the inferred instance.

Example 16–115. Syntax for Full Attribute Value

" -name <variable_1> <value_1> [-from <source_1>] [-to <target_1>] [-section_id \
<section_1>]; -name <variable_2> <value_2> [-from <source_2>] [-to <target_2>] \
[-section_id <section_2>] "

Example 16–116. Assigned Value of a Variable in Verilog HDL (With Nonexistent Variable and
Value Terms)

"VARIABLE_NAME \"STRING_VALUE\""

Example 16–117. Assigned Value of a Variable in VHDL (With Nonexistent Variable and Value
Terms)

"VARIABLE_NAME ""STRING_VALUE"""

Example 16–118. Verilog-1995 Code: Applying altera_attribute to an Instance

reg my_reg /* synthesis altera_attribute = "-name POWER_UP_LEVEL HIGH"
*/;

Example 16–119. Verilog-2001 Code: Applying altera_attribute to an Instance

(* altera_attribute = "-name POWER_UP_LEVEL HIGH" *) reg my_reg;

Example 16–120. VHDL Code: Applying altera_attribute to an Instance

signal my_reg : std_logic;
attribute altera_attribute : string;
attribute altera_attribute of my_reg: signal is "-name POWER_UP_LEVEL
HIGH";
May 2013 Altera Corporation Quartus II Handbook Version 13.1
Volume 1: Design and Synthesis

http://www.altera.com/literature/manual/mnl_qsf_reference.pdf
http://www.altera.com/literature/manual/mnl_qsf_reference.pdf

16–72 Chapter 16: Quartus II Integrated Synthesis
Inferring Multiplier, DSP, and Memory Functions from HDL Code
Example 16–121 through Example 16–123 use the altera_attribute to disable the
Auto Shift Register Replacement synthesis option for an entity. To apply the Altera
Attribute to a VHDL entity, you must set the attribute on its architecture rather than
on the entity itself.

You can also use altera_attribute for more complex assignments that have more
than one instance. In Example 16–125 through Example 16–127, the altera_attribute
cuts all timing paths from reg1 to reg2, equivalent to this Tcl or .qsf command, as
shown in Example 16–124:

Example 16–121. Verilog-1995 Code: Applying altera_attribute to an Entity

module my_entity(…) /* synthesis altera_attribute = "-name
AUTO_SHIFT_REGISTER_RECOGNITION OFF" */;

Example 16–122. Verilog-2001 Code: Applying altera_attribute to an Entity

(* altera_attribute = "-name AUTO_SHIFT_REGISTER_RECOGNITION OFF" *)
module my_entity(…) ;

Example 16–123. VHDL Code: Applying altera_attribute to an Entity

entity my_entity is
-- Declare generics and ports
end my_entity;
architecture rtl of my_entity is
attribute altera_attribute : string;
-- Attribute set on architecture, not entity
attribute altera_attribute of rtl: architecture is "-name
AUTO_SHIFT_REGISTER_RECOGNITION OFF";
begin
-- The architecture body
end rtl;

Example 16–124.

set_instance_assignment -name CUT ON -from reg1 -to reg2 r

Example 16–125. Verilog-1995 Code: Applying altera_attribute with the -to Option

reg reg2;
reg reg1 /* synthesis altera_attribute = "-name CUT ON -to reg2" */;

Example 16–126. Verilog-2001 and SystemVerilog Code: Applying altera_attribute with the -to
Option

reg reg2;
(* altera_attribute = "-name CUT ON -to reg2" *) reg reg1;

Example 16–127. VHDL Code: Applying altera_attribute with the -to Option

signal reg1, reg2 : std_logic;
attribute altera_attribute: string;
attribute altera_attribute of reg1 : signal is "-name CUT ON -to reg2";
Quartus II Handbook Version 13.1 May 2013 Altera Corporation
Volume 1: Design and Synthesis

Chapter 16: Quartus II Integrated Synthesis 16–73
Analyzing Synthesis Results
You can specify either the -to option or the -from option in a single
altera_attribute; Integrated Synthesis automatically sets the remaining option to
the target of the altera_attribute. You can also specify wildcards for either option.
For example, if you specify “*” for the -to option instead of reg2 in these examples,
the Quartus II software cuts all timing paths from reg1 to every other register in this
design entity.

You can use the altera_attribute only for entity-level settings, and the assignments
(including wildcards) apply only to the current entity.

Analyzing Synthesis Results
After performing synthesis, you can check your synthesis results in the Analysis &
Synthesis section of the Compilation Report and the Project Navigator.

Analysis & Synthesis Section of the Compilation Report
The Compilation Report, which provides a summary of results for the project, appears
after a successful compilation. After Analysis & Synthesis, the Summary section of the
Compilation Report provides a summary of utilization based on synthesis data,
before Fitter optimizations have occurred. The Analysis & Synthesis section lists
synthesis-specific information.

Analysis & Synthesis includes various report sections, including a list of the source
files read for the project, the resource utilization by entity after synthesis, and
information about state machines, latches, optimization results, and parameter
settings.

h For more information about each report section, refer to the Analysis & Synthesis
Summary Reports in Quartus II Help.

Project Navigator
The Hierarchy tab of the Project Navigator provides a view of the project hierarchy
and a summary of resource and device information about the current project. After
Analysis & Synthesis, before the Fitter begins, the Project Navigator provides a
summary of utilization based on synthesis data, before Fitter optimizations have
occurred.

If an entity in the Hierarchy tab contains parameter settings, a tooltip displays the
settings when you hold the pointer over the entity.

Upgrade IP Components Dialog Box
In the Quartus II software version 12.1 SP1 and later, the Upgrade IP Components
dialog box allows you to upgrade all outdated IP in your project after you move to a
newer version of the Quartus II software.

f For more information about the Upgrade IP Components dialog box, refer to Upgrade
IP Components dialog box in Quartus II Help.
May 2013 Altera Corporation Quartus II Handbook Version 13.1
Volume 1: Design and Synthesis

http://quartushelp.altera.com/current/master.htm#mergedProjects/report/rpt/rpt_file_analysis_summary.htm
http://quartushelp.altera.com/current/master.htm#mergedProjects/report/rpt/rpt_file_analysis_summary.htm
http://quartushelp.altera.com/current/master.htm#mergedProjects/global/pjn/pjn_com_regenerate_ip.htm
http://quartushelp.altera.com/current/master.htm#mergedProjects/global/pjn/pjn_com_regenerate_ip.htm

16–74 Chapter 16: Quartus II Integrated Synthesis
Analyzing and Controlling Synthesis Messages
Analyzing and Controlling Synthesis Messages
This section provides information about the generated messages during synthesis,
and how you can control which messages appear during compilation.

Quartus II Messages
The messages that appear during Analysis & Synthesis describe many of the
optimizations during the synthesis stage, and provide information about how the
software interprets your design. Altera recommends checking the messages to
analyze Critical Warnings and Warnings, because these messages can relate to
important design problems. Read the Info messages to get more information about
how the software processes your design.

The software groups the messages by following types: Info, Warning, Critical
Warning, and Error.

h For more information about the Messages window and message suppression, refer to
About the Messages Window and About Message Suppression in Quartus II Help.

f For more information about the Messages, refer to Managing Quartus II Projects
chapter in volume 2 of the Quartus II Handbook.

You can specify the type of Analysis & Synthesis messages that you want to view by
selecting the Analysis & Synthesis Message Level option. You can specify the
display level by performing the following steps:

1. On the Assignments menu, click Settings.

2. In the Category list, click Analysis & Synthesis Settings.

3. Click More Settings. Select the level for the Analysis & Synthesis Message Level
option.

VHDL and Verilog HDL Messages
The Quartus II software issues a variety of messages when it is analyzing and
elaborating the Verilog HDL and VHDL files in your design. These HDL messages are
a subset of all Quartus II messages that help you identify potential problems early in
the design process.

HDL messages fall into the following categories:

■ Info message—lists a property of your design.

■ Warning message—indicates a potential problem in your design. Potential
problems come from a variety of sources, including typos, inappropriate design
practices, or the functional limitations of your target device. Though HDL warning
messages do not always identify actual problems, Altera recommends
investigating code that generates an HDL warning. Otherwise, the synthesized
behavior of your design might not match your original intent or its simulated
behavior.

■ Error message—indicates an actual problem with your design. Your HDL code
can be invalid due to a syntax or semantic error, or it might not be synthesizable as
written.
Quartus II Handbook Version 13.1 May 2013 Altera Corporation
Volume 1: Design and Synthesis

http://www.altera.com/literature/hb/qts/qts_qii52012.pdf
http://quartushelp.altera.com/current/master.htm#mergedProjects/report/msw/msw_com_msw.htm
http://quartushelp.altera.com/current/master.htm#mergedProjects/report/msw/msw_view_message_suppression.htm

Chapter 16: Quartus II Integrated Synthesis 16–75
Analyzing and Controlling Synthesis Messages
In Example 16–128, the sensitivity list contains multiple copies of the variable i. While
the Verilog HDL language does not prohibit duplicate entries in a sensitivity list, it is
clear that this design has a typing error: Variable j should be listed on the sensitivity
list to avoid a possible simulation or synthesis mismatch.

When processing the HDL code, the Quartus II software generates the warning
message shown in Example 16–129:

In Verilog HDL, variable names are case sensitive, so the variables my_reg and MY_REG
in Example 16–130 are two different variables. However, declaring variables that have
names in different cases is confusing, especially if you use VHDL, in which variables
are not case sensitive.

When processing the HDL code, the Quartus II software generates the following
informational message, as shown in Example 16–131:

In addition, the Quartus II software generates additional HDL info messages to
inform you that this small design does not use neither my_reg nor MY_REG , as shown
in Example 16–132:

Example 16–128. Generating an HDL Warning Message

//dup.v
module dup(input i, input j, output reg o);
always @ (i or i)

o = i & j;
endmodule

Example 16–129.

Warning: (10276) Verilog HDL sensitivity list warning at dup.v(2):
sensitivity list contains multiple entries for "i".

Example 16–130. Generating HDL Info Messages

// namecase.v
module namecase (input i, output o);

reg my_reg;
reg MY_REG;
assign o = i;

endmodule

Example 16–131.

Info: (10281) Verilog HDL information at namecase.v(3): variable name
"MY_REG" and variable name "my_reg" should not differ only in case.

Example 16–132.

Info: (10035) Verilog HDL or VHDL information at namecase.v(3): object
"my_reg" declared but not used
Info: (10035) Verilog HDL or VHDL information at namecase.v(4): object
"MY_REG" declared but not used
May 2013 Altera Corporation Quartus II Handbook Version 13.1
Volume 1: Design and Synthesis

16–76 Chapter 16: Quartus II Integrated Synthesis
Analyzing and Controlling Synthesis Messages
The Quartus II software allows you to control how many HDL messages you can
view during the Analysis & Elaboration of your design files. You can set the HDL
Message Level to enable or disable groups of HDL messages, or you can enable or
disable specific messages, as described in the following sections.

For more information about synthesis directives and their syntax, refer to “Synthesis
Directives” on page 16–27.

Setting the HDL Message Level
The HDL Message Level specifies the types of messages that the Quartus II software
displays when it is analyzing and elaborating your design files. Table 16–5 describes
the HDL message levels.

You must address all issues reported at the Level1 setting. The default HDL message
level is Level2.

To set the HDL Message Level in the Quartus II software, follow these steps:

1. On the Assignments menu, click Settings.

2. In the Category list, click Analysis & Synthesis Settings.

3. Set the necessary message level from the pull-down menu in the HDL Message
Level list, and then click OK.

You can override this default setting in a source file with the message_level
synthesis directive, which takes the values level1, level2, and level3, as shown in
Example 16–133 and Example 16–134.

Table 16–5. HDL Info Message Level

Level Purpose Description

Level1 High-severity messages only

If you want to view only the HDL messages that identify
likely problems with your design, select Level1. When you
select Level1, the Quartus II software issues a message
only if there is an actual problem with your design.

Level2 High-severity and
medium-severity messages

If you want to view additional HDL messages that identify
possible problems with your design, select Level2. Level2
is the default setting.

Level3 All messages, including
low-severity messages

If you want to view all HDL info and warning messages,
select Level3. This level includes extra “LINT” messages
that suggest changes to improve the style of your HDL
code.

Example 16–133. Verilog HDL Examples of message_level Directive

// altera message_level level1
or
/* altera message_level level3 */

Example 16–134. VHDL Code: message_level Directive

-- altera message_level level2
Quartus II Handbook Version 13.1 May 2013 Altera Corporation
Volume 1: Design and Synthesis

Chapter 16: Quartus II Integrated Synthesis 16–77
Analyzing and Controlling Synthesis Messages
A message_level synthesis directive remains effective until the end of a file or until
the next message_level directive. In VHDL, you can use the message_level synthesis
directive to set the HDL Message Level for entities and architectures, but not for other
design units. An HDL Message Level for an entity applies to its architectures, unless
overridden by another message_level directive. In Verilog HDL, you can use the
message_level directive to set the HDL Message Level for a module.

Enabling or Disabling Specific HDL Messages by Module/Entity
Message ID is in parentheses at the beginning of the message. Use the Message ID to
enable or disable a specific HDL info or warning message. Enabling or disabling a
specific message overrides its HDL Message Level. This method is different from the
message suppression in the Messages window because you can disable messages for a
specific module or a specific entity. This method applies only to the HDL messages,
and if you disable a message with this method, the Quartus II software lists the
message as a suppressed message.

To disable specific HDL messages in the Quartus II software, follow these steps:

1. On the Assignments menu, click Settings.

2. In the Category list, expand Analysis & Synthesis Settings and select Advanced.

3. In the Advanced Message Settings dialog box, add the Message IDs you want to
enable or disable.

To enable or disable specific HDL messages in your HDL, use the message_on and
message_off synthesis directives. These directives require a space-separated list of
Message IDs. You can enable or disable messages with these synthesis directives
immediately before Verilog HDL modules, VHDL entities, or VHDL architectures.
You cannot enable or disable a message during an HDL construct.

A message enabled or disabled via a message_on or message_off synthesis directive
overrides its HDL Message Level or any message_level synthesis directive. The
message remains disabled until the end of the source file or until you use another
message_on or message_off directive to change the status of the message.

Example 16–135. Verilog HDL message_off Directive for Message with ID 10000

// altera message_off 10000
or
/* altera message_off 10000 */

Example 16–136. VHDL message_off Directive for Message with ID 10000

-- altera message_off 10000
May 2013 Altera Corporation Quartus II Handbook Version 13.1
Volume 1: Design and Synthesis

16–78 Chapter 16: Quartus II Integrated Synthesis
Node-Naming Conventions in Quartus II Integrated Synthesis
Node-Naming Conventions in Quartus II Integrated Synthesis
This section provides an overview of the conventions that the Quartus II software
uses during synthesis to name the nodes created from your HDL design. This
information is useful for finding logic node names during verification and debugging
of a design. This section focuses on the conventions for Verilog HDL and VHDL code,
but discusses AHDL and .bdf files when appropriate.

Whenever possible, Quartus II Integrated Synthesis uses wire or signal names from
your source code to name nodes such as LEs or ALMs. Some nodes, such as registers,
have predictable names that do not change when a design is resynthesized, although
certain optimizations can affect register names. The names of other nodes, particularly
LEs or ALMs that contain only combinational logic, can change due to logic
optimizations that the software performs.

This section describes the following topics:

■ “Hierarchical Node-Naming Conventions”

■ “Node-Naming Conventions for Registers (DFF or D Flipflop Atoms)”

■ “Register Changes During Synthesis” on page 16–80

■ “Preserving Register Names” on page 16–82

■ “Node-Naming Conventions for Combinational Logic Cells” on page 16–82

■ “Preserving Combinational Logic Names” on page 16–83

Hierarchical Node-Naming Conventions
To make each name in your design unique, the Quartus II software adds the hierarchy
path to the beginning of each name. The “|” separator indicates a level of hierarchy.
For each instance in the hierarchy, the software adds the entity name and the instance
name of that entity, with the “:” separator between each entity name and its instance
name. For example, if a design defines entity A with the name my_A_inst, the
hierarchy path of that entity would be A:my_A_inst. You can obtain the full name of
any node by starting with the hierarchical instance path, followed by a “|”, and
ending with the node name inside that entity. Example 16–137 shows you the
convention:

For example, if entity A contains a register (DFF atom) called my_dff, its full hierarchy
name would be A:my_A_inst|my_dff.

To instruct the Compiler to generate node names that do not contain entity names, on
the Compilation Process Settings page of the Settings dialog box, click More
Settings, and then turn off Display entity name for node name. With this option
turned off, the node names use the convention in shown in Example 16–138:

Example 16–137.

<entity 0>:<instance_name 0>|<entity 1>:<instance_name 1>|...|<instance_name n>|<node_name>

Example 16–138.

<instance_name 0>|<instance_name 1>|...|<instance_name n> |<node_name>
Quartus II Handbook Version 13.1 May 2013 Altera Corporation
Volume 1: Design and Synthesis

Chapter 16: Quartus II Integrated Synthesis 16–79
Node-Naming Conventions in Quartus II Integrated Synthesis
Node-Naming Conventions for Registers (DFF or D Flipflop Atoms)
In Verilog HDL and VHDL, inferred registers use the names of the reg or signal
connected to the output.

Example 16–139 is an example of a register in Verilog HDL that creates a DFF
primitive called my_dff_out:

Similarly, Example 16–140 is an example of a register in VHDL that creates a DFF
primitive called my_dff_out.

AHDL designs explicitly declare DFF registers rather than infer, so the software uses
the user-declared name for the register.

For schematic designs using a .bdf, your design names all elements when you
instantiate the elements in your design, so the software uses the name you defined for
the register or DFF.

In the special case that a wire or signal (such as my_dff_out in the preceding
examples) is also an output pin of your top-level design, the Quartus II software
cannot use that name for the register (for example, cannot use my_dff_out) because
the software requires that all logic and I/O cells have unique names. Here, Quartus II
Integrated Synthesis appends ~reg0 to the register name.

For example, the Verilog HDL code in Example 16–141 generates a register called
q~reg0:

This situation occurs only for registers driving top-level pins. If a register drives a port
of a lower level of the hierarchy, the software removes the port during hierarchy
flattening and the register retains its original name, in this case, q.

Example 16–139. Verilog HDL Register

wire dff_in, my_dff_out, clk;

always @ (posedge clk)
my_dff_out <= dff_in;

Example 16–140. VHDL Register

signal dff_in, my_dff_out, clk;
process (clk)
begin
if (rising_edge(clk)) then
my_dff_out <= dff_in;
end if;
end process;

Example 16–141. Verilog HDL Register Feeding Output Pin

module my_dff (input clk, input d, output q);
always @ (posedge clk)
q <= d;
endmodule
May 2013 Altera Corporation Quartus II Handbook Version 13.1
Volume 1: Design and Synthesis

16–80 Chapter 16: Quartus II Integrated Synthesis
Node-Naming Conventions in Quartus II Integrated Synthesis
Register Changes During Synthesis
On some occasions, you might not find registers that you expect to view in the
synthesis netlist. Logic optimization might remove registers and synthesis
optimizations might change the names of the registers. Common optimizations
include inference of a state machine, counter, adder-subtractor, or shift register from
registers and surrounding logic. Other common register changes occur when the
software packs these registers into dedicated hardware on the FPGA, such as a DSP
block or a RAM block.

This section describes the following factors that can affect register names:

■ “Synthesis and Fitting Optimizations”

■ “State Machines”

■ “Inferred Adder-Subtractors, Shift Registers, Memory, and DSP Functions” on
page 16–81

■ “Packed Input and Output Registers of RAM and DSP Blocks” on page 16–82

■ “Preserving Register Names” on page 16–82

■ “Preserving Combinational Logic Names” on page 16–83

Synthesis and Fitting Optimizations
Logic optimization during synthesis might remove registers if you do not connect the
registers to inputs or outputs in your design, or if you can simplify the logic due to
constant signal values. Synthesis optimizations might change register names, such as
when the software merges duplicate registers to reduce resource utilization.

NOT-gate push back optimizations can affect registers that use preset signals. This
type of optimization can impact your timing assignments when the software uses
registers as clock dividers. If this situation occurs in your design, change the clock
settings to work on the new register name.

Synthesis netlist optimizations often change node names because the software can
combine or duplicate registers to optimize your design.

f For more information about the type of optimizations performed by synthesis netlist
optimizations, refer to the Netlist Optimizations and Physical Synthesis chapter in
volume 2 of the Quartus II Handbook.

The Quartus II Compilation Report provides a list of registers that synthesis
optimizations remove, and a brief reason for the removal. To generate the Quartus II
Compilation Report, follow these steps:

1. In the Analysis & Synthesis folder, open Optimization Results.

2. Open Register Statistics, and then click the Registers Removed During Synthesis
report.

3. Click Removed Registers Triggering Further Register Optimizations.

The second report contains a list of registers that causes synthesis optimizations to
remove other registers from your design. The report provides a brief reason for the
removal, and a list of registers that synthesis optimizations remove due to the
removal of the initial register.
Quartus II Handbook Version 13.1 May 2013 Altera Corporation
Volume 1: Design and Synthesis

http://www.altera.com/literature/hb/qts/qts_qii52007.pdf

Chapter 16: Quartus II Integrated Synthesis 16–81
Node-Naming Conventions in Quartus II Integrated Synthesis
Quartus II Integrated Synthesis creates synonyms for registers duplicated with the
Maximum Fan-Out option (or maxfan attribute). Therefore, timing assignments
applied to nodes that are duplicated with this option are applied to the new nodes as
well.

The Quartus II Fitter can also change node names after synthesis (for example, when
the Fitter uses register packing to pack a register into an I/O element, or when
physical synthesis modifies logic). The Fitter creates synonyms for duplicated
registers so timing analysis can use the existing node name when applying
assignments.

You can instruct the Quartus II software to preserve certain nodes throughout
compilation so you can use them for verification or making assignments. For more
information, refer to “Preserving Register Names” on page 16–82.

State Machines
If your HDL code infers a state machine, the software maps the registers that
represent the states into a new set of registers that implement the state machine. Most
commonly, the software converts the state machine into a one-hot form in which one
register represents each state. In this case, for Verilog HDL or VHDL designs, the
registers take the name of the state register and the states.

For example, consider a Verilog HDL state machine in which the states are parameter
state0 = 1, state1 = 2, state2 = 3, and in which the software declares the state
machine register as reg [1:0] my_fsm. In this example, the three one-hot state
registers are my_fsm.state0, my_fsm.state1, and my_fsm.state2.

An AHDL design explicitly specifies state machines with a state machine name. Your
design names state machine registers with synthesized names based on the state
machine name, but not the state names. For example, if a my_fsm state machine has
four state bits, The software might synthesize these state bits with names such as
my_fsm~12, my_fsm~13, my_fsm~14, and my_fsm~15.

Inferred Adder-Subtractors, Shift Registers, Memory, and DSP Functions
The Quartus II software infers megafunctions from Verilog HDL and VHDL code for
logic that forms adder-subtractors, shift registers, RAM, ROM, and arithmetic
functions that are placed in DSP blocks.

f For information about inferring megafunctions, refer to the Recommended HDL Coding
Styles chapter in volume 1 of the Quartus II Handbook.

Because adder-subtractors are part of a megafunction instead of generic logic, the
combinational logic exists in the design with different names. For shift registers,
memory, and DSP functions, the software implements the registers and logic inside
the dedicated RAM or DSP blocks in the device. Thus, the registers are not visible as
separate LEs or ALMs.
May 2013 Altera Corporation Quartus II Handbook Version 13.1
Volume 1: Design and Synthesis

http://www.altera.com/literature/hb/qts/qts_qii51007.pdf
http://www.altera.com/literature/hb/qts/qts_qii51007.pdf

16–82 Chapter 16: Quartus II Integrated Synthesis
Node-Naming Conventions in Quartus II Integrated Synthesis
Packed Input and Output Registers of RAM and DSP Blocks
The software packs registers into the input registers and output registers of RAM and
DSP blocks, so that they are not visible as separate registers in LEs or ALMs.

f For information about packing registers into RAM and DSP megafunctions, refer to
the Recommended HDL Coding Styles chapter in volume 1 of the Quartus II Handbook.

Preserving Register Names
Altera recommends that you preserve certain register names for verification or
debugging, or to ensure that you applied timing assignments correctly. Quartus II
Integrated Synthesis preserves certain nodes automatically if the software uses the
nodes in a timing constraint.

Use the preserve attribute to instruct the Compiler not to minimize or remove a
specified register during synthesis optimizations or register netlist optimizations. For
details, refer to “Preserve Registers” on page 16–42.

Use the noprune attribute to preserve a fan-out-free register through the entire
compilation flow. For details, refer to “Noprune Synthesis Attribute/Preserve Fan-out
Free Register Node” on page 16–43.

Use the synthesis attribute syn_dont_merge to ensure that the Compiler does not
merge registers with other registers. For more information, refer to “Disable Register
Merging/Don’t Merge Register” on page 16–43.

Node-Naming Conventions for Combinational Logic Cells
Whenever possible for Verilog HDL, VHDL, and AHDL code, the Quartus II software
uses wire names that are the targets of assignments, but can change the node names
due to synthesis optimizations.

For example, consider the Verilog HDL code in Example 16–142. Quartus II Integrated
Synthesis uses the names c, d, e, and f for the generated combinational logic cells.

For schematic designs using a .bdf, your design names all elements when you
instantiate the elements in your design and the software uses the name you defined
when possible.

Example 16–142. Naming Nodes for Combinational Logic Cells in Verilog HDL

wire c;
reg d, e, f;

assign c = a | b;
always @ (a or b)
d = a & b;
always @ (a or b) begin : my_label
e = a ^ b;
end

always @ (a or b)
f = ~(a | b);
Quartus II Handbook Version 13.1 May 2013 Altera Corporation
Volume 1: Design and Synthesis

http://www.altera.com/literature/hb/qts/qts_qii51007.pdf

Chapter 16: Quartus II Integrated Synthesis 16–83
Node-Naming Conventions in Quartus II Integrated Synthesis
If logic cells, such as those created in Example 16–142, are packed with registers in
device architectures such as the Stratix and Cyclone device families, those names
might not appear in the netlist after fitting. In other devices, such as newer families in
the Stratix and Cyclone series device families, the register and combinational nodes
are kept separate throughout the compilation, so these names are more often
maintained through fitting.

When logic optimizations occur during synthesis, it is not always possible to retain
the initial names as described. Sometimes, synthesized names are used, which are the
wire names with a tilde (~) and a number appended. For example, if a complex
expression is assigned to wire w and that expression generates several logic cells, those
cells can have names such as w, w~1, and w~2. Sometimes the original wire name w is
removed, and an arbitrary name such as rtl~123 is created. Quartus II Integrated
Synthesis attempts to retain user names whenever possible. Any node name ending
with ~<number> is a name created during synthesis, which can change if the design is
changed and re-synthesized. Knowing these naming conventions helps you
understand your post-synthesis results, helping you to debug your design or create
assignments.

During synthesis, the software maintains combinational clock logic by not changing
nodes that might be clocks. The software also maintains or protects multiplexers in
clock trees, so that the TimeQuest analyzer has information about which paths are
unate, to allow complete and correct analysis of combinational clocks. Multiplexers
often occur in clock trees when the software selects between different clocks. To help
with the analysis of clock trees, the software ensures that each multiplexer
encountered in a clock tree is broken into 2:1 multiplexers, and each of those 2:1
multiplexers is mapped into one lookup table (independent of the device family). This
optimization might result in a slight increase in area, and for some designs a decrease
in timing performance. You can turn off this multiplexer protection with the option
Clock MUX Protection under More Settings on the Analysis & Synthesis Settings
page of the Settings dialog box.

h For more information about Clock MUX Protection logic option and a list of
supported devices, refer to Clock MUX Protection logic option in Quartus II Help.

Preserving Combinational Logic Names
You can preserve certain combinational logic node names for verification or
debugging, or to ensure that timing assignments are applied correctly.

Use the keep attribute to keep a wire name or combinational node name through logic
synthesis minimizations and netlist optimizations. For details, refer to “Keep
Combinational Node/Implement as Output of Logic Cell” on page 16–44.

For any internal node in your design clock network, use keep to protect the name so
that you can apply correct clock settings. Also, set the attribute for combinational
logic involved in cut and -through assignments.

1 Setting the keep attribute for combinational logic can increase the area utilization and
increase the delay of the final mapped logic because the attribute requires the
insertion of extra combinational logic. Use the attribute only when necessary.
May 2013 Altera Corporation Quartus II Handbook Version 13.1
Volume 1: Design and Synthesis

http://quartushelp.altera.com/current/master.htm#mergedProjects/logicops/logicops/def_synth_clock_mux_protection.htm

16–84 Chapter 16: Quartus II Integrated Synthesis
Scripting Support
Scripting Support
You can run procedures and make settings in a Tcl script. You can also run some
procedures at a command prompt. For detailed information about scripting command
options, refer to the Quartus II Command-Line and Tcl API Help browser.

To run the Help browser, type the command at the command prompt shown in
Example 16–143:

f For more information about Tcl scripting, refer to the Tcl Scripting chapter in volume 2
of the Quartus II Handbook. For more information about all settings and constraints in
the Quartus II software, refer to the Quartus II Settings File Manual. For more
information about command-line scripting, refer to the Command-Line Scripting
chapter in volume 2 of the Quartus II Handbook.

h For more information about Tcl scripting, refer to API Functions for Tcl in Quartus II
Help.

You can specify many of the options described in this section either on an instance, at
the global level, or both.

To make a global assignment, use the Tcl command shown in Example 16–144:

To make an instance assignment, use the Tcl command shown in Example 16–145:

To set the Synthesis Effort option at the command line, use the --effort option with
the quartus_map executable, as shown in Example 16–146.

The early timing estimate feature gives you preliminary timing estimates before
running a full compilation, which results in a quicker iteration time; therefore, you
can save significant compilation time to get a good estimation of the final timing of
your design.

Example 16–143.

quartus_sh --qhelp r

Example 16–144.

set_global_assignment -name <QSF Variable Name> <Value> r

Example 16–145.

set_instance_assignment -name <QSF Variable Name> <Value>\ -to
<Instance Name> r

Example 16–146. Command Syntax for Specifying Synthesis Effort Option

quartus_map <Design name> --effort= "auto | fast" r
Quartus II Handbook Version 13.1 May 2013 Altera Corporation
Volume 1: Design and Synthesis

http://www.altera.com/literature/hb/qts/qts_qii52003.pdf
http://www.altera.com/literature/hb/qts/qts_qii52002.pdf
http://www.altera.com/literature/manual/mnl_qsf_reference.pdf
http://quartushelp.altera.com/current/master.htm#mergedProjects/tafs/tafs/tcl_list_of_packages.htm

Chapter 16: Quartus II Integrated Synthesis 16–85
Scripting Support
If you want to run fast synthesis with the Fitter Early Timing Estimate option, use the
command shown in Example 16–147. This command runs the full flow with timing
analysis:

For more information, refer to “Synthesis Effort” on page 16–34.

Adding an HDL File to a Project and Setting the HDL Version
To add an HDL or schematic entry design file to your project, use the Tcl assignments
shown in Example 16–148:

1 You can use any file extension for design files, as long as you specify the correct
language when adding the design file. For example, you can use .h for Verilog HDL
header files.

To specify the Verilog HDL or VHDL version, use the option shown in
Example 16–149, at the end of the VERILOG_FILE or VHDL_FILE command:

The variable <language version> takes one of the following values:

■ VERILOG_1995

■ VERILOG_2001

■ SYSTEMVERILOG_2005

■ VHDL_1987

■ VHDL_1993

■ VHDL_2008

For example, to add a Verilog HDL file called my_file.v written in Verilog-1995, use
the command shown in Example 16–150:

Example 16–147. Command Syntax for Running Fast Synthesis with Early Timing Estimate Option

quartus_sh --flow early_timing_estimate_with_synthesis <Design name> r

Example 16–148.

set_global_assignment –name VERILOG_FILE <file name>.<v|sv>
set_global_assignment –name SYSTEMVERILOG_FILE <file name>.sv
set_global_assignment –name VHDL_FILE <file name>.<vhd|vhdl>
set_global_assignment -name AHDL_FILE <file name>.tdf
set_global_assignment -name BDF_FILE <file name>.bdf

Example 16–149.

- HDL_VERSION <language version> r

Example 16–150.

set_global_assignment –name VERILOG_FILE my_file.v –HDL_VERSION \
VERILOG_1995
May 2013 Altera Corporation Quartus II Handbook Version 13.1
Volume 1: Design and Synthesis

16–86 Chapter 16: Quartus II Integrated Synthesis
Scripting Support
In Example 16–151, the syn_encoding attribute associates a binary encoding with the
states in the enumerated type count_state. In this example, the states are encoded
with the following values: zero = "11", one = "01", two = "10", three = "00".

You can also use the syn_encoding attribute in Verilog HDL to direct the synthesis tool
to use the encoding from your HDL code, instead of using the State Machine
Processing option.

The syn_encoding value "user" instructs the Quartus II software to encode each state
with its corresponding value from the Verilog HDL source code. By changing the
values of your state constants, you can change the encoding of your state machine.

In Example 16–152, the states are encoded as follows:

init = "00"
last = "11"
next = "01"
later = "10"

Without the syn_encoding attribute, the Quartus II software encodes the state
machine based on the current value of the State Machine Processing logic option.

If you also specify a safe state machine (as described in “Safe State Machine” on
page 16–38), separate the encoding style value in the quotation marks from the safe
value with a comma, as follows: “safe, one-hot” or “safe, gray”.

For more information, refer to “Manually Specifying State Assignments Using the
syn_encoding Attribute” on page 16–36.

Example 16–151. Specifying User-Encoded States with the syn_encoding Attribute in VHDL

ARCHITECTURE rtl OF my_fsm IS
TYPE count_state is (zero, one, two, three);
ATTRIBUTE syn_encoding : STRING;
ATTRIBUTE syn_encoding OF count_state : TYPE IS "11 01 10 00";
SIGNAL present_state, next_state : count_state;

BEGIN

Example 16–152. Verilog-2001 and SystemVerilog Code: Specifying User-Encoded States with
the syn_encoding Attribute

(* syn_encoding = "user" *) reg [1:0] state;
parameter init = 0, last = 3, next = 1, later = 2;
always @ (state) begin
case (state)
init:
out = 2'b01;
next:
out = 2'b10;
later:
out = 2'b11;
last:
out = 2'b00;
endcase
end
Quartus II Handbook Version 13.1 May 2013 Altera Corporation
Volume 1: Design and Synthesis

Chapter 16: Quartus II Integrated Synthesis 16–87
Scripting Support
Assigning a Pin
To assign a signal to a pin or device location, use the Tcl command shown in
Example 16–153:

Valid locations are pin location names. Some device families also support edge and
I/O bank locations. Edge locations are EDGE_BOTTOM, EDGE_LEFT, EDGE_TOP, and
EDGE_RIGHT. I/O bank locations include IOBANK_1 to IOBANK_n, where n is the number
of I/O banks in a device.

Creating Design Partitions for Incremental Compilation
To create a partition, use the command shown in Example 16–154:

The <file name> variable is the name used for internally generated netlist files during
incremental compilation. If you create the partition in the Quartus II software, netlist
files are named automatically by the Quartus II software based on the instance name.
If you use Tcl to create your partitions, you must assign a custom file name that is
unique across all partitions. For the top-level partition, the specified file name is
ignored, and you can use any dummy value. To ensure the names are safe and
platform independent, file names should be unique, regardless of case. For example, if
a partition uses the file name my_file, no other partition can use the file name
MY_FILE. To make file naming simple, Altera recommends that you base each file
name on the corresponding instance name for the partition.

The <destination> is the short hierarchy path of the entity. A short hierarchy path is the
full hierarchy path without the top-level name, for example:
"ram:ram_unit|altsyncram:altsyncram_component" (with quotation marks). For the
top-level partition, you can use the pipe (|) symbol to represent the top-level entity.

For more information about hierarchical naming conventions, refer to “Node-Naming
Conventions in Quartus II Integrated Synthesis” on page 16–78.

The <partition name> is the partition name you designate, which should be unique and
less than 1024 characters long. The name may only consist of alphanumeric
characters, as well as pipe (|), colon (:), and underscore (_) characters. Altera
recommends enclosing the name in double quotation marks (" ").

Example 16–153.

set_location_assignment -to <signal name> <location>

Example 16–154.

set_instance_assignment -name PARTITION_HIERARCHY \
<file name> -to <destination> -section_id <partition name>
May 2013 Altera Corporation Quartus II Handbook Version 13.1
Volume 1: Design and Synthesis

16–88 Chapter 16: Quartus II Integrated Synthesis
Conclusion
Quartus II Synthesis Options

h For more information about the .qsf variable names and applicable values for the
settings discussed in this chapter, refer to Logic options in Quartus II Help.

Conclusion
The Quartus II Integrated Synthesis supports Verilog HDL, SystemVerilog, VHDL,
and Altera-specific languages, making the synthesis feature an easy-to-use,
standalone solution for Altera designs. You can use the synthesis options in the
software or in your HDL code to better control the way your design is synthesized,
helping you improve your synthesis results. Use Quartus II reports and messages to
analyze your compilation results.

Document Revision History
Table 16–6 lists the revision history for this document.

Table 16–6. Document Revision History (Part 1 of 3)

Date Version Changes

November 2013 13.1.0 ■ Added a note regarding ROM inference using the ram_init_file in “RAM Initialization
File—for Inferred Memory” on page 16–59.

May 2013 13.0.0

■ Added “Verilog HDL Configuration” on page 16–5.

■ Added “RAM Style Attribute—For Shift Registers Inference” on page 16–55.

■ Added “Upgrade IP Components Dialog Box” on page 16–73.

June 2012 12.0.0 ■ Updated “Design Flow” on page 16–1.

November 2011 11.1.0 ■ Updated “Language Support” on page 16–4, “Incremental Compilation” on page 16–21,
“Quartus II Synthesis Options” on page 16–23.

May 2011 11.0.0

■ Updated “Specifying Pin Locations with chip_pin” on page 14–65, and “Shift Registers”
on page 14–48.

■ Added a link to Quartus II Help in “SystemVerilog Support” on page 14–5.

■ Added Example 14–106 and Example 14–107 on page 14–67.

December 2010 10.1.0

■ Updated “Verilog HDL Support” on page 13–4 to include Verilog-2001 support.

■ Updated “VHDL-2008 Support” on page 13–9 to include the condition operator (explicit
and implicit) support.

■ Rewrote “Limiting Resource Usage in Partitions” on page 13–32.

■ Added “Creating LogicLock Regions” on page 13–32 and “Using Assignments to Limit
the Number of RAM and DSP Blocks” on page 13–33.

■ Updated “Turning Off the Add Pass-Through Logic to Inferred RAMs no_rw_check
Attribute” on page 13–55.

■ Updated “Auto Gated Clock Conversion” on page 13–28.

■ Added links to Quartus II Help.
Quartus II Handbook Version 13.1 May 2013 Altera Corporation
Volume 1: Design and Synthesis

http://quartushelp.altera.com/current/master.htm#mergedProjects/logicops/logicops/def_list_log_op.htm

Chapter 16: Quartus II Integrated Synthesis 16–89
Document Revision History
July 2010 10.0.0

■ Removed Referenced Documents section.

■ Added “Synthesis Seed” on page 9–36 section.

■ Updated the following sections:

■ “SystemVerilog Support” on page 9–5

■ “VHDL-2008 Support” on page 9–10

■ “Using Parameters/Generics” on page 9–16

■ “Parallel Synthesis” on page 9–21

■ “Limiting Resource Usage in Partitions” on page 9–32

■ “Synthesis Effort” on page 9–35

■ “Synthesis Attributes” on page 9–25

■ “Synthesis Directives” on page 9–27

■ “Auto Gated Clock Conversion” on page 9–29

■ “State Machine Processing” on page 9–36

■ “Multiply-Accumulators and Multiply-Adders” on page 9–50

■ “Resource Aware RAM, ROM, and Shift-Register Inference” on page 9–52

■ “RAM Style and ROM Style—for Inferred Memory” on page 9–53

■ “Turning Off the Add Pass-Through Logic to Inferred RAMs no_rw_check Attribute” on
page 9–55

■ “Using altera_attribute to Set Quartus II Logic Options” on page 9–68

■ “Adding an HDL File to a Project and Setting the HDL Version” on page 9–83

■ “Creating Design Partitions for Incremental Compilation” on page 9–85

■ “Inferring Multiplier, DSP, and Memory Functions from HDL Code” on page 9–50

■ Updated Table 9–9 on page 9–86.

December 2009 9.1.1
■ Added information clarifying inheritance of Synthesis settings by lower-level entities,

including Altera and third-party IP

■ Updated “Keep Combinational Node/Implement as Output of Logic Cell” on page 9–46

Table 16–6. Document Revision History (Part 2 of 3)

Date Version Changes
May 2013 Altera Corporation Quartus II Handbook Version 13.1
Volume 1: Design and Synthesis

16–90 Chapter 16: Quartus II Integrated Synthesis
Document Revision History
f For previous versions of the Quartus II Handbook, refer to the Quartus II Handbook
Archive.

November 2009 9.1.0

■ Updated the following sections:

■ “Initial Constructs and Memory System Tasks” on page 9–7

■ “VHDL Support” on page 9–9

■ “Parallel Synthesis” on page 9–21

■ “Synthesis Directives” on page 9–27

■ “Timing-Driven Synthesis” on page 9–31

■ “Safe State Machines” on page 9–40

■ “RAM Style and ROM Style—for Inferred Memory” on page 9–53

■ “Translate Off and On / Synthesis Off and On” on page 9–62

■ “Read Comments as HDL” on page 9–63

■ “Adding an HDL File to a Project and Setting the HDL Version” on page 9–81

■ Removed “Remove Redundant Logic Cells” section

■ Added “Resource Aware RAM, ROM, and Shift-Register Inference” section

■ Updated Table 9–9 on page 9–83

March 2009 9.0.0

■ Updated Table 9–9.

■ Updated the following sections:

■ “Partitions for Preserving Hierarchical Boundaries” on page 9–20

■ “Analysis & Synthesis Settings Page of the Settings Dialog Box” on page 9–24

■ “Timing-Driven Synthesis” on page 9–30

■ “Turning Off Add Pass-Through Logic to Inferred RAMs/ no_rw_check Attribute
Setting” on page 9–54

■ Added “Parallel Synthesis” on page 9–21

■ Chapter 9 was previously Chapter 8 in software version 8.1

Table 16–6. Document Revision History (Part 3 of 3)

Date Version Changes
Quartus II Handbook Version 13.1 May 2013 Altera Corporation
Volume 1: Design and Synthesis

http://www.altera.com/literature/lit-qts_archive.jsp
http://www.altera.com/literature/lit-qts_archive.jsp

17Synopsys Synplify Support

2013.11.04

QII51009 Subscribe Send Feedback

About Synplify Support
This manual delineates the support for the Synopsys Synplify software in the Quartus® II software, as well
as key design flows, methodologies, and techniques for achieving optimal results in Altera® devices. The
content in this manual applies to the Synplify, Synplify Pro, and Synplify Premier software unless otherwise
specified. This manual assumes that you have set up, licensed, and are familiar with the Synplify software.

This manual includes the following information:

• General design flow with the Synplify and Quartus II software
• Exporting designs and constraints to the Quartus II software using NativeLink integration
• Synplify software optimization strategies, including timing-driven compilation settings, optimization

options, and Altera-specific attributes
• Guidelines for Altera megafunctions and library of parameterized module (LPM) functions, instantiating

them with the MegaWizard™ Plug-In Manager, and tips for inferring them from hardware description
language (HDL) code

• Incremental compilation and block-based design, including the MultiPoint flow in the Synplify Pro and
Synplify Premier software

Design Flow
The following steps describe a basic Quartus II software design flow using the Synplify software:

1. Create Verilog HDL or VHDL design files.
2. Set up a project in the Synplify software and add the HDL design files for synthesis.
3. Select a target device and add timing constraints and compiler directives in the Synplify software to help

optimize the design during synthesis.
4. Synthesize the project in the Synplify software.
5. Create a Quartus II project and import the following files generated by the Synplify software into the

Quartus II software. Use the following files for placement and routing, and for performance evaluation:

ISO
9001:2008
Registered

© 2013 Altera Corporation. All rights reserved. ALTERA, ARRIA, CYCLONE, HARDCOPY, MAX, MEGACORE, NIOS, QUARTUS and STRATIX words
and logos are trademarks of Altera Corporation and registered in the U.S. Patent and Trademark Office and in other countries. All other
words and logos identified as trademarks or service marks are the property of their respective holders as described at
www.altera.com/common/legal.html. Altera warrants performance of its semiconductor products to current specifications in accordance with
Altera's standard warranty, but reserves the right to make changes to any products and services at any time without notice. Altera assumes
no responsibility or liability arising out of the application or use of any information, product, or service described herein except as expressly
agreed to in writing by Altera. Altera customers are advised to obtain the latest version of device specifications before relying on any published
information and before placing orders for products or services.

www.altera.com

101 Innovation Drive, San Jose, CA 95134

https://www.altera.com/servlets/subscriptions/alert?id=QII51009
mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20(QII51009%202013.11.04)%20Synopsys%20Synplify%20Support&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.
http://www.altera.com/support/devices/reliability/certifications/rel-certifications.html
http://www.altera.com/support/devices/reliability/certifications/rel-certifications.html
http://www.altera.com/support/devices/reliability/certifications/rel-certifications.html

• The technology-specific Verilog Quartus Mapping File (.vqm) netlist or EDIF Input File (.edf) netlist
for legacy devices also supported by the MAX+PLUS II software.

• The Synopsys Constraints Format (.scf) file for TimeQuest Timing Analyzer constraints.

If your design uses the Classic Timing Analyzer for timing analysis in the Quartus II software
versions 10.0 and earlier, the Synplify software generates timing constraints in the Tcl
Constraints File (.tcl). If you are using the Quartus II software versions 10.1 and later, you
must use the TimeQuest Timing Analyzer for timing analysis.

Note:

• The .tcl file to set up your Quartus II project and pass constraints.

Alternatively, you can run the Quartus II software from within the Synplify software.Note:

6. After obtaining place-and-route results that meet your requirements, configure or program the Altera
device.

Figure 17-1: Recommended Design Flow

VHDL
(.vhd)

Verilog
HDL
(.v)

System
Verilog
(.v)

Synplify Software

Synopsys Constraints
format (.scf) File

Timing & Area
Requirements
Satisfied?

Functional/RTL
Simulation

Gate-Level Timing
Simulation

Gate-Level
Functional
Simulation

Constraints & Settings

Constraints & Settings

Program/Configure Device

Forward-Annotated
Project Constraints
(.tcl/.acf)

Configuation/Programming
Files (.sof/.pof)

Technology-
Specific Netlist

(.vqm/edf)

Post-Synthesis
Simulation Files

(.vho/.vo)

Post-Place-and-Route
Simulation File

(.vho/.vo)

Quartus II Software

Yes

No

Related Information
Running the Quartus II Software from within the Synplify Software on page 17-4

Synopsys Synplify SupportAltera Corporation

Send Feedback

QII51009
Design Flow17-2 2013.11.04

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Synopsys%20Synplify%20Support%20(QII51009%202013.11.04)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Hardware Description Language Support
The Synplify software supports VHDL, Verilog HDL, and SystemVerilog source files. However, only the
Synplify Pro and Premier software support mixed synthesis, allowing a combination of VHDL and Verilog
HDL or SystemVerilog format source files.

The HDL Analyst that is included in the Synplify software is a graphical tool for generating schematic views
of the technology-independent RTL view netlist (.srs) and technology-view netlist (.srm) files. You can use
the Synplify HDL Analyst to analyze and debug your design visually. The HDL Analyst supports cross-
probing between the RTL and Technology views, the HDL source code, the Finite State Machine (FSM)
viewer, and between the technology view and the timing report file in the Quartus II software. A separate
license file is required to enable the HDL Analyst in the Synplify software. The Synplify Pro and Premier
software include the HDL Analyst.

Related Information
Guidelines for Altera Megafunctions and Architecture-Specific Features on page 17-15

Altera Device Family Support
Support for newly released device families may require an overlay. Contact Synopsys for more information.

Related Information
Synopsys Website

Specifying the Quartus II Software Version
You can specify your version of theQuartus II software in ImplementationOptions in the Synplify software.
This option ensures that the netlist is compatible with the software version and supports the newest features.
Altera recommends using the latest version of the Quartus II software whenever possible. If your Quartus II
software version is newer than the versions available in the Quartus Version list, check if there is a newer
version of the Synplify software available that supports the current Quartus II software version. Otherwise,
select the latest version in the list for the best compatibility.

The Quartus Version list is available only after selecting an Altera device.Note:

Example 17-1: Specifying Quartus II Software Version at the Command Line

set_option -quartus_version <version number>

Exporting Designs to the Quartus II Software Using NativeLink Integration
The NativeLink feature in the Quartus II software facilitates the seamless transfer of information between
theQuartus II software and EDA tools, and allows you to run other EDAdesign entry or synthesis, simulation,
and timing analysis tools automatically from within the Quartus II software. After a design is synthesized
in the Synplify software, a .vqm or .edf netlist file, an .scf file for TimeQuest Timing Analyzer timing
constraints, and .tcl files are used to import the design into the Quartus II software for place-and-route. You

Altera CorporationSynopsys Synplify Support

Send Feedback

17-3Hardware Description Language Support
QII51009
2013.11.04

http://www.synopsys.com
mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Synopsys%20Synplify%20Support%20(QII51009%202013.11.04)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

can run the Quartus II software from within the Synplify software or as a stand-alone application. After you
import the design into the Quartus II software, you can specify different options to further optimize the
design.

When you are using NativeLink integration, the path to your project must not contain empty spaces.
The Synplify software uses Tcl scripts to communicate with the Quartus II software, and the Tcl
language does not accept arguments with empty spaces in the path.

Note:

Use NativeLink integration to integrate the Synplify software and Quartus II software with a single GUI for
both synthesis and place-and-route operations. NativeLink integration allows you to run the Quartus II
software from within the Synplify software GUI, or to run the Synplify software from within the Quartus II
software GUI.

Running the Quartus II Software from within the Synplify Software
To run the Quartus II software from within the Synplify software, you must set the QUARTUS_ROOTDIR
environment variable to the Quartus II software installation directory located in the <Quartus II system
directory>\altera\ <version number>\quartus. You must set this environment variable to use the Synplify
and Quartus II software together. Synplify also uses this variable to open the Quartus II software in the
background and obtain detailed information for Altera megafunctions used in the design.

For the Windows operating system, do the following:

1. Point to Start, and click Control Panel.
2. Click System.
3. Click Advanced system settings.
4. Click Environment Variables.
5. Create a QUARTUS_ROOTDIR system variable.

For the Linux operating system, do the following:

• Create an environment variableQUARTUS_ROOTDIR that points to the<home directory>/altera<version
number> location.

You can create new place and route implementations with the New P&R button in the Synplify software
GUI. Under each implementation, the Synplify Pro software creates a place-and-route implementation called
pr_<number> Altera Place and Route. To run the Quartus II software in command-line mode after each
synthesis run, use the text box to turn on the place-and-route implementation. The results of the place-and-
route are written to a log file in the pr_ <number> directory under the current implementation directory.

You can also use the commands in the Quartus II menu to run the Quartus II software at any time following
a successful completion of synthesis. In the Synplify software, on the Options menu, click Quartus II and
then choose one of the following commands:

• Launch Quartus —Opens the Quartus II software GUI and creates a Quartus II project with the
synthesized output file, forward-annotated timing constraints, and pin assignments. Use this command
to configure options for the project and to execute any Quartus II commands.

• Run Background Compile—Runs the Quartus II software in command-line mode with the project
settings from the synthesis run. The results of the place-and-route are written to a log file.

The <project_name>_cons.tcl file is used to set up the Quartus II project and directs the <project_name>.tcl
file to pass constraints from the Synplify software to theQuartus II software. By default, the <project_name>.tcl

Synopsys Synplify SupportAltera Corporation

Send Feedback

QII51009
Running the Quartus II Software from within the Synplify Software17-4 2013.11.04

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Synopsys%20Synplify%20Support%20(QII51009%202013.11.04)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

file contains device, timing, and location assignments. The <project_name>.tcl file contains the command
to use the Synplify-generated .scf constraints file with the TimeQuest Timing Analyzer.

Related Information
Design Flow on page 17-1

Using the Quartus II Software to Run the Synplify Software
You can set up the Quartus II software to run the Synplify software for synthesis with NativeLink integration.
This feature allows you to use the Synplify software to quickly synthesize a design as part of a standard
compilation in the Quartus II software. When you use this feature, the Synplify software does not use any
timing constraints or assignments, such as incremental compilation partitions, that you have set in the
Quartus II software.

For best results, Synopsys recommends that you set constraints in the Synplify software and use a
Tcl script to pass these constraints to the Quartus II software, instead of opening the Synplify software
from within the Quartus II software.

Note:

To set up the Quartus II software to run the Synplify software, do the following:

1. On the Tools menu, click Options.
2. In the Options dialog box, click EDA Tool Options and specify the path of the Synplify or Synplify Pro

software under Location of Executable.

Running the Synplify software with NativeLink integration is supported on both floating network and node-
locked fixed PC licenses. Both types of licenses support batch mode compilation.

Related Information
About Using the Synplify Software with the Quartus II Software Online Help

Synplify Software Generated Files
During synthesis, the Synplify software produces several intermediate and output files.

Table 17-1: Synplify Intermediate and Output Files

File DescriptionFile Extensions

Technology-independent RTL netlist file that can be
read only by the Synplify software.

.srs

Technology view netlist file..srm

Technology-specific netlist in .vqm or .edf file format.

A .vqm file is created for all Altera device families
supported by the Quartus II software. An .edf file is
created for devices supported by the MAX+PLUS II
software.

.vqm/.edf

Altera CorporationSynopsys Synplify Support

Send Feedback

17-5Using the Quartus II Software to Run the Synplify Software
QII51009
2013.11.04

http://quartushelp.altera.com/current/mergedProjects/eda/synthesis/synplicity/eda_view_using_synplty.htm
mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Synopsys%20Synplify%20Support%20(QII51009%202013.11.04)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

File DescriptionFile Extensions

Assignment and Configurations file for backward
compatibility with the MAX+PLUS II software. For
devices supported by theMAX+PLUS II software, the
MAX+PLUS II assignments are imported from the
MAX+PLUS II .acf file.

.acf

Synopsys Constraint Format file containing timing
constraints for the TimeQuest Timing Analyzer.

.scf

Forward-annotated constraints file containing
constraints and assignments.

A .tcl file for the Quartus II software is created for all
devices. The .tcl file contains the appropriate Tcl
commands to create and set up a Quartus II project
and pass placement constraints.

.tcl

Synthesis Report file..srr(1)

Design Constraints Support
You can specify timing constraints and attributes by using the SCOPE window of the Synplify software, by
editing the .sdc file, or by defining the compiler directives in the HDL source file. The Synplify software
forward-annotates many of these constraints to the Quartus II software.

After synthesis is complete, do the following steps:

1. Import the .vqm or .edf netlist to the Quartus II software for place-and-route.
2. Use the .tcl file generated by the Synplify software to forward-annotate your project constraints including

device selection. The .tcl file calls the generated .scf to foward-annotate TimeQuest Timing Analyzer
timing constraints.

Related Information

• Netlist Optimizations and Physical Synthesis Documentation

• Synplify Optimization Strategies on page 17-8

(1) This report file includes performance estimates that are often based on pre-place-and-route information. Use
the fMAX reported by the Quartus II software after place-and-route—it is the only reliable source of timing
information. This report file includes post-synthesis device resource utilization statistics thatmight inaccurately
predict resource usage after place-and-route. The Synplify software does not account for black box functions
nor for logic usage reduction achieved through register packing performed by theQuartus II software. Register
packing combines a single register and look-up table (LUT) into a single logic cell, reducing logic cell utilization
below the Synplify software estimate. Use the device utilization reported by the Quartus II software after place-
and-route.

Synopsys Synplify SupportAltera Corporation

Send Feedback

QII51009
Design Constraints Support17-6 2013.11.04

http://www.altera.com/literature/hb/qts/qts_qii52007.pdf
mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Synopsys%20Synplify%20Support%20(QII51009%202013.11.04)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Specifying the Output Netlist File Name and Result Format
The Result Format list, in Implementation Options, specifies an .edf or .vqm netlist, depending on your
device family. The software creates an .edf output netlist file only for devices supported by the MAX+PLUS
II software. For current Altera devices, the software generates a .vqm-formatted netlist.

Running the Quartus II Software Manually With the Synplify-Generated Tcl Script
You can run the Quartus II software with a Synplify-generated Tcl script.

To run the Tcl script to set up your project assignments, perform the following steps:

1. Ensure the .vqm/.edf, .scf, and .tcl files are located in the same directory.
2. In the Quartus II software, on the View menu, point to Utility Windows and click Tcl Console. The

Quartus II Tcl Console opens.
3. At the Tcl Console command prompt, type the following:

source <path>/<project name>_cons.tcl

Passing TimeQuest SDC Timing Constraints to the Quartus II Software
The TimeQuest Timing Analyzer is a powerful ASIC-style timing analysis tool that validates the timing
performance of all logic in your design using an industry standard constraints format, Synopsys Design
Constraints (SDC).

The Synplify-generated .tcl file contains constraints for theQuartus II software, such as the device specification
and any location constraints. Timing constraints are forward-annotated in the Synopsys Constraints Format
(.scf) file.

Synopsys recommends that you modify constraints using the SCOPE constraint editor window,
rather than using the generated .sdc, .scf, or .tcl file.

Note:

The following list of Synplify constraints are converted to the equivalent Quartus II SDC commands and
are forward-annotated to the Quartus II software in the .scf file:

• define_clock

• define_input_delay

• define_output_delay

• define_multicycle_path

• define_false_path

All Synplify constraints described above aremapped to SDC commands for the TimeQuest TimingAnalyzer.

For syntax and arguments for these commands, refer to the applicable topic in thismanual or refer to Synplify
Help. For a list of corresponding commands in the Quartus II software, refer to the Quartus II Help.

Related Information

• Quartus II TimeQuest Timing Analyzer Documentation

• Quartus II Online Help

• Timing-Driven Synthesis Settings on page 17-9

Altera CorporationSynopsys Synplify Support

Send Feedback

17-7Specifying the Output Netlist File Name and Result Format
QII51009
2013.11.04

http://www.altera.com/literature/hb/qts/qts_qii53018.pdf
http://quartushelp.altera.com/current/mergedProjects/analyze/sta/sta_pro_constraints.htm
mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Synopsys%20Synplify%20Support%20(QII51009%202013.11.04)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Individual Clocks and Frequencies
Specify clock frequencies for individual clocks in the Synplify softwarewith thedefine_clock command.
This command is passed to the Quartus II software with the create_clock command.

Input and Output Delay
Specify input delay and output delay constraints in the Synplify software with thedefine_input_delay
and define_output_delay commands, respectively. These commands are passed to the Quartus II
software with the set_input_delay and set_output_delay commands.

Multicycle Path
Specify a multicycle path constraint in the Synplify software with the define_multicycle_path
command.This command is passed to theQuartus II softwarewith theset_multicycle_path command.

False Path
Specify a false path constraint in the Synplify software with the define_false_path command. This
command is passed to the Quartus II software with the set_false_path command.

Simulation and Formal Verification
You can perform simulation and formal verification at various stages in the design process. You can perform
final timing analysis after placement and routing is complete.

If area and timing requirements are satisfied, use the files generated by the Quartus II software to program
or configure theAltera device. If your area or timing requirements are notmet, you can change the constraints
in the Synplify software or the Quartus II software and rerun synthesis. Altera recommends that you provide
timing constraints in the Synplify software and any placement constraints in the Quartus II software. Repeat
the process until area and timing requirements are met.

You can also use other options and techniques in the Quartus II software to meet area and timing require-
ments, such as WYSIWYG Primitive Resynthesis, which can perform optimizations on your .vqm netlist
within the Quartus II software.

In some cases, you might be required to modify the source code if the area and timing requirements
cannot be met using options in the Synplify and Quartus II software.

Note:

Related Information
Quartus II Handbook Volume 3: Verification

Synplify Optimization Strategies
Combining Synplify software constraints with VHDL and Verilog HDL coding techniques and Quartus II
software options can help you obtain the results that you require.

For more information about applying attributes, refer to the Synopsys FPGA Synthesis Reference Manual.

Related Information

• Recommended Design Practices Documentation

• Timing Closure and Optimization Documentation

Synopsys Synplify SupportAltera Corporation

Send Feedback

QII51009
Individual Clocks and Frequencies17-8 2013.11.04

http://www.altera.com/literature/hb/qts/qts_qii5v3_06.pdf
http://www.altera.com/literature/hb/qts/qts_qii51006.pdf
http://www.altera.com/literature/hb/qts/qts_qii52005.pdf
mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Synopsys%20Synplify%20Support%20(QII51009%202013.11.04)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

• Design Constraints Support on page 17-6

Using Synplify Premier to Optimize Your Design
Compared to other Synplify products, the Synplify Premier software offers additional physical synthesis
optimizations. After typical logic synthesis, the Synplify Premier software places and routes the design and
attempts to restructure the netlist based on the physical location of the logic in the Altera device. The Synplify
Premier software forward-annotates the design netlist to the Quartus II software to perform the final
placement and routing. In the default flow, the Synplify Premier software also forward-annotates placement
information for the critical path(s) in the design, which can improve the compilation time in the Quartus
II software.

The physical location annotation file is called <design name>_plc.tcl. If you open the Quartus II software
from the Synplify Premier software user interface, the Quartus II software automatically uses this file for the
placement information.

The Physical Analyst allows you to examine the placed netlist from the Synplify Premier software, which is
similar to the HDL Analyst for a logical netlist. You can use this display to analyze and diagnose potential
problems.

Using Implementations in Synplify Pro or Premier
You can create different synthesis results without overwriting the existing results, in the Synplify Pro or
Premier software, by creating a new implementation from the Project menu. For each implementation,
specify the target device, synthesis options, and constraint files. Each implementation generates its own
subdirectory that contains all the resulting files, including .vqm/.edf, .scf, and .tcl files, from a compilation
of the particular implementation. You can then compare the results of the different implementations to find
the optimal set of synthesis options and constraints for a design.

Timing-Driven Synthesis Settings
The Synplify software supports timing-driven synthesis with user-assigned timing constraints to optimize
the performance of the design.

The Quartus II NativeLink feature allows timing constraints that are applied in the Synplify software to be
forward-annotated for the Quartus II software with an .scf file for timing-driven place and route.

The Synplify Synthesis Report File (.srr) contains timing reports of estimated place-and-route delays. The
Quartus II software can perform further optimizations on a post-synthesis netlist from third-party synthesis
tools. In addition, designs might contain black boxes or intellectual property (IP) functions that have not
been optimized by the third-party synthesis software. Actual timing results are obtained only after the design
has been fully placed and routed in the Quartus II software. For these reasons, the Quartus II post place-
and-route timing reports provide a more accurate representation of the design. Use the statistics in these
reports to evaluate design performance.

Related Information

• Passing TimeQuest SDC Timing Constraints to the Quartus II Software on page 17-7

• Exporting Designs to the Quartus II Software Using NativeLink Integration on page 17-3

Altera CorporationSynopsys Synplify Support

Send Feedback

17-9Using Synplify Premier to Optimize Your Design
QII51009
2013.11.04

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Synopsys%20Synplify%20Support%20(QII51009%202013.11.04)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Clock Frequencies
For single-clock designs, you can specify a global frequency when using the push-button flow. While this
flow is simple and provides good results, it often does not meet the performance requirements for more
advanced designs. You can use timing constraints, compiler directives, and other attributes to help optimize
the performance of a design. You can enter these attributes and directives directly in the HDL code.
Alternatively, you can enter attributes (not directives) into an .sdc file with the SCOPEwindow in the Synplify
software.

Use the SCOPE window to set global frequency requirements for the entire design and individual clock
settings. Use the Clocks tab in the SCOPE window to specify frequency (or period), rise times, fall times,
duty cycle, and other settings. Assigning individual clock settings, rather than over-constraining the global
frequency, helps the Quartus II software and the Synplify software achieve the fastest clock frequency for
the overall design. The define_clock attribute assigns clock constraints.

Multiple Clock Domains
The Synplify software can perform timing analysis on unrelated clock domains. Each clock group is a different
clock domain and is treated as unrelated to the clocks in all other clock groups. All clocks in a single clock
group are assumed to be related, and the Synplify software automatically calculates the relationship between
the clocks. You can assign clocks to a new clock group or put related clocks in the same clock group with
the Clocks tab in the SCOPE window, or with the define_clock attribute.

Input and Output Delays
Specify the input and output delays for the ports of a design in the Input/Output tab of the SCOPE window,
or with the define_input_delay and define_output_delay attributes. The Synplify software
does not allow you to assign the tCO and tSU values directly to inputs and outputs. However, a tCO value can
be inferred by setting an external output delay; a tSU value can be inferred by setting an external input delay.

Relationship Between tCO and the Output Delay

tCO = clock period – external output delay

Relationship Between tSU and the Input Delay

tSU = clock period – external input delay

When thesyn_forward_io_constraints attribute is set to 1, the Synplify software passes the external
input and output delays to the Quartus II software using NativeLink integration. The Quartus II software
then uses the external delays to calculate the maximum system frequency.

Multicycle Paths
A multicycle path is a path that requires more than one clock cycle to propagate. Specify any multicycle
paths in the design in the Multi-Cycle Paths tab of the SCOPE window, or with the
define_multicycle_path attribute. You should specify which paths are multicycle to prevent the
Quartus II and the Synplify compilers from working excessively on a non-critical path. Not specifying these
paths can also result in an inaccurate critical path reported during timing analysis.

False Paths
False paths are paths that should be ignored during timing analysis, or should be assigned low (or no) priority
during optimization. Some examples of false paths include slow asynchronous resets, and test logic that has

Synopsys Synplify SupportAltera Corporation

Send Feedback

QII51009
Clock Frequencies17-10 2013.11.04

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Synopsys%20Synplify%20Support%20(QII51009%202013.11.04)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

been added to the design. Set these paths in the False Paths tab of the SCOPE window, or use the
define_false_path attribute.

FSM Compiler
If the FSM Compiler is turned on, the compiler automatically detects state machines in a design, which are
then extracted and optimized. The FSM Compiler analyzes state machines and implements sequential, gray,
or one-hot encoding, based on the number of states. The compiler also performs unused-state analysis,
optimization of unreachable states, and minimization of transition logic. Implementation is based on the
number of states, regardless of the coding style in the HDL code.

If the FSMCompiler is turned off, the compiler does not optimize logic as statemachines. The statemachines
are implemented asHDL code. Thus, if the coding style for a statemachine is sequential, the implementation
is also sequential.

Use the syn_state_machine compiler directive to specify or prevent a state machine from being
extracted and optimized. To override the default encoding of the FSM Compiler, use the syn_encoding
directive.

Table 17-2: syn_encoding Directive Values

DescriptionValue

Generates statemachines with the fewest possible flipflops. Sequential, also called binary,
statemachines are useful for area-critical designswhen timing is not the primary concern.

Sequential

Generates state machines where only one flipflop changes during each transition. Gray-
encoded state machines tend to be glitches.

Gray

Generates statemachines containing one flipflop for each state. One-hot statemachines
typically provide the best performance and shortest clock-to-output delays. However,
one-hot implementations are usually larger than sequential implementations.

One-hot

Generates extra control logic to force the state machine to the reset state if an invalid
state is reached. You can use the safe value in conjunction with any of the other three
values, which results in the statemachine being implementedwith the requested encoding
scheme and the generation of the reset logic.

Safe

Example 17-2: Sample VHDL Code for Applying syn_encoding Directive

SIGNAL current_state : STD_LOGIC_VECTOR (7 DOWNTO 0);
ATTRIBUTE syn_encoding : STRING;
ATTRIBUTE syn_encoding OF current_state : SIGNAL IS "sequential";

By default, the state machine logic is optimized for speed and area, which may be potentially
undesirable for critical systems. The safe value generates extra control logic to force the statemachine
to the reset state if an invalid state is reached.

FSM Explorer in Synplify Pro and Premier
The Synplify Pro and Premier software use the FSM Explorer to explore different encoding styles for a state
machine automatically, and then implement the best encoding based on the overall design constraints. The

Altera CorporationSynopsys Synplify Support

Send Feedback

17-11FSM Compiler
QII51009
2013.11.04

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Synopsys%20Synplify%20Support%20(QII51009%202013.11.04)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

FSM Explorer uses the FSM Compiler to identify and extract state machines from a design. However, unlike
the FSM Compiler, which chooses the encoding style based on the number of states, the FSM Explorer
attempts several different encoding styles before choosing a specific one. The trade-off is that the compilation
requiresmore time to analyze the statemachine, but finds an optimal encoding scheme for the statemachine.

Optimization Attributes and Options

Retiming in Synplify Pro and Premier
The Synplify Pro and Premier software can retime a design, which can improve the timing performance of
sequential circuits by moving registers (register balancing) across combinational elements. Be aware that
retimed registers incur name changes. You can retime your design from Implementation Options or you
can use the syn_allow_retiming attribute.

Maximum Fan-Out
When your design has critical path nets with high fan-out, use the syn_maxfan attribute to control the
fan-out of the net. Setting this attribute for a specific net results in the replication of the driver of the net to
reduce overall fan-out. Thesyn_maxfan attribute takes an integer value and applies it to inputs or registers.
The syn_maxfan attribute cannot be used to duplicate control signals. The minimum allowed value of
the attribute is 4. Using this attribute might result in increased logic resource utilization, thus straining
routing resources, which can lead to long compilation times and difficult fitting.

If youmust duplicate an output register or an output enable register, you can create a register for each output
pin by using the syn_useioff attribute.

Related Information
Register Packing on page 17-12

Preserving Nets
During synthesis, the compiler maintains ports, registers, and instantiated components. However, some nets
cannot be maintained to create an optimized circuit. Applying the syn_keep directive overrides the
optimization of the compiler and preserves the net during synthesis. The syn_keep directive is a Boolean
data type value and can be applied to wires (Verilog HDL) and signals (VHDL). Setting the value to true
preserves the net through synthesis.

Register Packing
Altera devices allow register packing into I/O cells. Altera recommends allowing the Quartus II software to
make the I/O register assignments. However, you can control register packing with the syn_useioff
attribute. The syn_useioff attribute is a Boolean data type value that can be applied to ports or entire
modules. Setting the value to 1 instructs the compiler to pack the register into an I/O cell. Setting the value
to 0 prevents register packing in both the Synplify and Quartus II software.

Related Information
Maximum Fan-Out on page 17-12

Resource Sharing
The Synplify software uses resource sharing techniques during synthesis, by default, to reduce area. Turning
off the Resource Sharing option on the Options tab of the Implementation Options dialog box improves
performance results for some designs. You can also turn off the option for a specific module with the

Synopsys Synplify SupportAltera Corporation

Send Feedback

QII51009
Optimization Attributes and Options17-12 2013.11.04

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Synopsys%20Synplify%20Support%20(QII51009%202013.11.04)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

syn_sharing attribute. If you turn off this option, be sure to check the results to verify improvement in
timing performance. If there is no improvement, turn on Resource Sharing.

Preserving Hierarchy
The Synplify software performs cross-boundary optimization by default, which causes the design to flatten
to allow optimization. You can use the syn_hier attribute to override the default compiler settings. The
syn_hier attribute applies a string value to modules, architectures, or both. Setting the value to hard
maintains the boundaries of a module, architecture, or both, but allows constant propagation. Setting the
value to locked prevents all cross-boundary optimizations. Use the locked setting with the partition setting
to create separate design blocks and multiple output netlists for incremental compilation.

By default, the Synplify software generates a hierarchical .vqm file. To flatten the file, set the
syn_netlist_hierarchy attribute to 0.

Related Information
Using MultiPoint Synthesis with Incremental Compilation on page 17-26

Register Input and Output Delays
Two advanced options, define_reg_input_delay and define_reg_output_delay, can speed
up paths feeding a register, or coming from a register, by a specific number of nanoseconds. The Synplify
software attempts tomeet the global clock frequency goals for a design aswell as the individual clock frequency
goals (set with the define_clock attribute). You can use these attributes to add a delay to paths feeding
into or out of registers to further constrain critical paths. You can slow down a path that is too highly
optimized by setting this attributes to a negative number.

The define_reg_input_delay and define_reg_output_delay options are useful to close
timing if your design does not meet timing goals, because the routing delay after placement and routing
exceeds the delay predicted by the Synplify software. Rerun synthesis using these options, specifying the
actual routing delay (from place-and-route results) so that the tool can meet the required clock frequency.
Synopsys recommends that for best results, do not make these assignments too aggressively. For example,
you can increase the routing delay value, but do not also use the full routing delay from the last compilation.

In the SCOPE constraint window, the registers panel contains the following options:

• Register—Specifies the name of the register. If you have initialized a compiled design, select the name
from the list.

• Type—Specifies whether the delay is an input or output delay.
• Route—Shrinks the effective period for the constrained registers by the specified value without affecting

the clock period that is forward-annotated to the Quartus II software.

Use the following Tcl command syntax to specify an input or output register delay in nanoseconds.

Example 17-3: Input and Output Register Delay

define_reg_input_delay {<register>} -route <delay in ns>
define_reg_output_delay {<register>} -route <delay in ns>

Altera CorporationSynopsys Synplify Support

Send Feedback

17-13Preserving Hierarchy
QII51009
2013.11.04

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Synopsys%20Synplify%20Support%20(QII51009%202013.11.04)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

syn_direct_enable
This attribute controls the assignment of a clock-enable net to the dedicated enable pin of a register. With
this attribute, you can direct the Synplify mapper to use a particular net as the only clock enable when the
design has multiple clock enable candidates.

To use this attribute as a compiler directive to infer registers with clock enables, enter the
syn_direct_enable directive in your source code, instead of the SCOPE spreadsheet.

The syn_direct_enable data type is Boolean. A value of 1 or true enables net assignment to the clock-
enable pin. The following is the syntax for Verilog HDL:

object /* synthesis syn_direct_enable = 1 */ ;

I/O Standard
For certain Altera devices, specify the I/O standard type for an I/O pad in the design with the I/O Standard
panel in the Synplify SCOPE window.

The Synplify SDC syntax for the define_io_standard constraint, in which the delay_typemust
be either input_delay or output_delay.

Example 17-4: define_io_standard Constraint

define_io_standard [–disable|–enable] {<objectName>} -delay_type \
[input_delay|output_delay] <columnTclName>{<value>} [<columnTclName>{<value>}...]

For details about supported I/O standards, refer to the Synopsys FPGA Synthesis Reference Manual.

Altera-Specific Attributes
You can use the altera_chip_pin_lc, altera_io_powerup, and altera_io_opendrain
attributes with specific Altera device features, which are forward-annotated to the Quartus II project, and
are used during place-and-route.

altera_chip_pin_lc
Use the altera_chip_pin_lc attribute to make pin assignments. This attribute applies a string value
to inputs and outputs. Use the attribute only on the ports of the top-level entity in the design. Do not use
this attribute to assign pin locations from entities at lower levels of the design hierarchy.

The altera_chip_pin_lc attribute is not supported for any MAX series device.Note:

In the SCOPE window, set the value of the altera_chip_pin_lc attribute to a pin number or a list of
pin numbers.

You can use VHDL code for making location assignments for supported Altera devices. Pin location
assignments for these devices are written to the output .tcl file.

The data_out signal is a 4-bit signal; data_out[3] is assigned to pin 14 and data_out[0]
is assigned to pin 15.

Note:

Synopsys Synplify SupportAltera Corporation

Send Feedback

QII51009
syn_direct_enable17-14 2013.11.04

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Synopsys%20Synplify%20Support%20(QII51009%202013.11.04)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Example 17-5: Making Location Assignments in VHDL

ENTITY sample (data_in : IN STD_LOGIC_VECTOR (3 DOWNTO 0);
 data_out: OUT STD_LOGIC_VECTOR (3 DOWNTO 0));
ATTRIBUTE altera_chip_pin_lc : STRING;
ATTRIBUTE altera_chip_pin_lc OF data_out : SIGNAL IS "14, 5, 16, 15";

altera_io_powerup
Use the altera_io_powerup attribute to define the power-up value of an I/O register that has no set
or reset. This attribute applies a string value (high|low) to ports with I/O registers. By default, the power-up
value of the I/O register is set to low.

altera_io_opendrain
Use the altera_io_opendrain attribute to specify open-drain mode I/O ports. This attribute applies
a boolean data type value to outputs or bidirectional ports for devices that support open-drain mode.

Guidelines for Altera Megafunctions and Architecture-Specific Features
Altera provides parameterizable megafunctions, including LPMs, device-specific Altera megafunctions, IP
available as AlteraMegaCore® functions, and IP available through theAlteraMegafunction Partners Program
(AMPPSM). You can use megafunctions and IP functions by instantiating them in your HDL code, or by
inferring certain megafunctions from generic HDL code.

You can instantiate amegafunction in yourHDL codewith theMegaWizard Plug-InManager to parameterize
the function, or instantiate the function using the port and parameter definition. The MegaWizard Plug-In
Manager provides a graphical interface within the Quartus II software for customizing and parameterizing
any available megafunction for the design.

The Synplify software also automatically recognizes certain types of HDL code, and infers the appropriate
megafunction when a megafunction provides optimal results. The Synplify software provides options to
control inference of certain types of megafunctions.

Related Information

• Recommended HDL Coding Styles Documentation

• About the MegaWizard Plug-In Manager Online Help

• Hardware Description Language Support on page 17-3

Instantiating Altera Megafunctions With the MegaWizard Plug-In Manager
When youuse theMegaWizard Plug-InManager to set up andparameterize amegafunction, theMegaWizard
Plug-In Manager creates a VHDL or Verilog HDL wrapper file <output file>.v|vhd that instantiates the
megafunction.

The Synplify software uses the Quartus II timing and resource estimation netlist feature to report more
accurate resource utilization and timing performance estimates, and leverages timing-driven optimization,
instead of treating the megafunction as a “black box.” Including the MegaWizard-generated megafunction

Altera CorporationSynopsys Synplify Support

Send Feedback

17-15altera_io_powerup
QII51009
2013.11.04

http://www.altera.com/literature/hb/qts/qts_qii51007.pdf
http://quartushelp.altera.com/current/mergedProjects/hdl/mega/mega_view_megawiz.htm
mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Synopsys%20Synplify%20Support%20(QII51009%202013.11.04)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

variation wrapper file in your Synplify project, gives the Synplify software complete information about the
megafunction.

There is an option in the MegaWizard Plug-In Manager to generate a netlist for resource and timing
estimation. This option is not recommended for the Synplify software because the software

Note:

automatically generates this information in the background without a separate netlist. If you do
create a separate netlist <output file>_syn.v and use that file in your synthesis project, you must also
include the <output file>.v|vhd file in your Quartus II project.

Verify that the correct Quartus II version is specified in the Synplify software before compiling the
MegaWizard-generated file to ensure that the software uses the correct library definitions for the
megafunction. The Quartus Version setting must match the version of the Quartus II software used to
generate the customized megafunction in the MegaWizard Plug-In Manager.

In addition, ensure that the QUARTUS_ROOTDIR environment variable specifies the installation directory
location of the correctQuartus II version. The Synplify software uses this information to launch theQuartus II
software in the background. The environment variable setting must match the version of the Quartus II
software used to generate the customized megafunction in the MegaWizard Plug-In Manager.

Related Information

• Specifying the Quartus II Software Version on page 17-3

• Using the Quartus II Software to Run the Synplify Software on page 17-5

Instantiating Megafunctions With MegaWizard Plug-In Manager-Generated Verilog HDL Files
If you turn on the <output file>_inst.v option on the last page of theMegaWizard interface, theMegaWizard
Plug-In Manager generates a Verilog HDL instantiation template file for use in your Synplify design. The
instantiation template file, <output file>_inst.v, helps to instantiate the megafunction variation wrapper file,
<output file>.v, in your top-level design. Include the megafunction variation wrapper file <output file>.v in
your Synplify project. The Synplify software includes the megafunction information in the output .vqm
netlist file. You do not need to include the MegaWizard-generated megafunction variation wrapper file in
your Quartus II project.

Instantiating Megafunctions with MegaWizard Plug-In Manager-Generated VHDL Files
If you turn on the <output file>.cmp and <output file>_inst.vhd options on the last page of the MegaWizard
interface, the MegaWizard Plug-In Manager generates a VHDL component declaration file and a VHDL
instantiation template file for use in your Synplify design. These files can help you instantiate themegafunction
variation wrapper file, <output file>.vhd, in your top-level design. Include the <output file>.vhd in your
Synplify project. The Synplify software includes the megafunction information in the output .vqm netlist
file. You do not need to include the MegaWizard-generated megafunction variation wrapper file in your
Quartus II project.

Changing Synplify’s Default Behavior for Instantiated Altera Megafunctions
By default, the Synplify software automatically opens the Quartus II software in the background to generate
a resource and timing estimation netlist for megafunctions.

You might want to change this behavior to reduce run times in the Synplify software, because generating
the netlist files can take several minutes for large designs, or if the Synplify software cannot access your
Quartus II software installation to generate the files. Changing this behavior might speed up the compilation
time in the Synplify software, but the Quality of Results (QoR) might be reduced.

Synopsys Synplify SupportAltera Corporation

Send Feedback

QII51009
Instantiating Megafunctions With MegaWizard Plug-In Manager-Generated Verilog HDL Files17-16 2013.11.04

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Synopsys%20Synplify%20Support%20(QII51009%202013.11.04)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

The Synplify software directs the Quartus II software to generate information in two ways:

• Some megafunctions provide a “clear box” model—the Synplify software fully synthesizes this model
and includes the device architecture-specific primitives in the output .vqm netlist file.

• Other megafunctions provide a “grey box” model—the Synplify software reads the resource information,
but the netlist does not contain all the logic functionality.

For these functions, the Synplify software uses the logic information for resource and timing estimation and
optimization, and then instantiates themegafunction in the output .vqm netlist file so theQuartus II software
can implement the appropriate device primitives. By default, the Synplify software uses the clear box model
when available, and otherwise uses the grey box model.

Instantiating Intellectual Property With the MegaWizard Plug-In Manager and IP Toolbench
Many Altera IP functions include a resource and timing estimation netlist that the Synplify software uses to
report more accurate resource utilization and timing performance estimates, and leverage timing-driven
optimization rather than a black box function.

To create this netlist file, perform the following steps:

1. Select the IP function in the MegaWizard Plug-In Manager.
2. Click Next to open the IP Toolbench.
3. Click Set Up Simulation, which sets up all the EDA options.
4. Turn on the Generate netlist option to generate a netlist for resource and timing estimation and click

OK.
5. Click Generate to generate the netlist file.

The Quartus II software generates a file <output file>_syn.v. This netlist contains the grey box information
for resource and timing estimation, but does not contain the actual implementation. Include this netlist file
in your Synplify project. Next, include the megafunction variation wrapper file <output file>.v|vhd in the
Quartus II project along with your Synplify .vqm output netlist.

If your IP function does not include a resource and timing estimation netlist, the Synplify software must
treat the IP function as a black box.

Related Information
Including Files for Quartus II Placement and Routing Only on page 17-19

Instantiating Black Box IP Functions With Generated Verilog HDL Files
Use the syn_black_box compiler directive to declare a module as a black box. The top-level design files
must contain the IP port-mapping and a hollow-body module declaration. Apply the syn_black_box
directive to the module declaration in the top-level file or a separate file included in the project so that the
Synplify software recognizes the module is a black box. The software compiles successfully without this
directive, but reports an additional warning message. Using this directive allows you to add other directives.

The example shows a top-level file that instantiates my_verilogIP.v, which is a simple customized variation
generated by the MegaWizard Plug-In Manager and the IP Toolbench.

Example 17-6: Sample Top-Level Verilog HDL Code with Black Box Instantiation of IP

module top (clk, count);
 input clk;
 output [7:0] count;

Altera CorporationSynopsys Synplify Support

Send Feedback

17-17Instantiating Intellectual Property With the MegaWizard Plug-In Manager and IP Toolbench
QII51009
2013.11.04

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Synopsys%20Synplify%20Support%20(QII51009%202013.11.04)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

 my_verilogIP verilogIP_inst (.clock (clk), .q (count));
endmodule
// Module declaration
// The following attribute is added to create a
// black box for this module.
module my_verilogIP (clock, q) /* synthesis syn_black_box */;
 input clock;
 output [7:0] q;
endmodule

Related Information
Other Synplify Software Attributes for Creating Black Boxes on page 17-19

Instantiating Black Box IP Functions With Generated VHDL Files
Use the syn_black_box compiler directive to declare a component as a black box. The top-level design
files must contain the megafunction variation component declaration and port-mapping. Apply the
syn_black_box directive to the component declaration in the top-level file. The software compiles
successfully without this directive, but reports an additional warning message. Using this directive allow
you to add other directives.

The example shows a top-level file that instantiatesmy_vhdlIP.vhd, which is a simplified customized variation
generated by the MegaWizard Plug-In Manager and the IP Toolbench.

Example 17-7: Sample Top-Level VHDL Code with Black Box Instantiation of IP

LIBRARY ieee;
USE ieee.std_logic_1164.all;

ENTITY top IS
 PORT (
 clk: IN STD_LOGIC ;
 count: OUT STD_LOGIC_VECTOR (7 DOWNTO 0)
);
END top;

ARCHITECTURE rtl OF top IS
COMPONENT my_vhdlIP
 PORT (
 clock: IN STD_LOGIC ;
 q: OUT STD_LOGIC_VECTOR (7 DOWNTO 0)
);
end COMPONENT;
attribute syn_black_box : boolean;
attribute syn_black_box of my_vhdlIP: component is true;
BEGIN
 vhdlIP_inst : my_vhdlIP PORT MAP (
 clock => clk,
 q => count
);
END rtl;

Synopsys Synplify SupportAltera Corporation

Send Feedback

QII51009
Instantiating Black Box IP Functions With Generated VHDL Files17-18 2013.11.04

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Synopsys%20Synplify%20Support%20(QII51009%202013.11.04)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Related Information
Other Synplify Software Attributes for Creating Black Boxes on page 17-19

Other Synplify Software Attributes for Creating Black Boxes
Instantiating a function as a black box does not provide visibility into the function module for the synthesis
tool. Thus, it does not take full advantage of the synthesis tool's timing-driven optimization. For better timing
optimization, especially if the black box does not have registered inputs and outputs, add timing models to
black boxes by adding the syn_tpd, syn_tsu, and syn_tco attributes.

Example 17-8: Adding Timing Models to Black Boxes in Verilog HDL

module ram32x4(z,d,addr,we,clk);
 /* synthesis syn_black_box syn_tcol="clk->z[3:0]=4.0"
 syn_tpd1="addr[3:0]->[3:0]=8.0"
 syn_tsu1="addr[3:0]->clk=2.0"
 syn_tsu2="we->clk=3.0" */
 output [3:0]z;
 input[3:0]d;
 input[3:0]addr;
 input we
 input clk
endmodule

The following additional attributes are supported by the Synplify software to communicate details
about the characteristics of the black box module within the HDL code:

• syn_resources—Specifies the resources used in a particular black box.
• black_box_pad_pin—Prevents mapping to I/O cells.
• black_box_tri_pin—Indicates a tri-stated signal.

Formore information about applying these attributes, refer to the Synopsys FPGA Synthesis Reference
Manual.

Related Information

• Instantiating Black Box IP Functions With Generated Verilog HDL Files on page 17-17

• Instantiating Black Box IP Functions With Generated VHDL Files on page 17-18

Including Files for Quartus II Placement and Routing Only
In the Synplify software, you can add files to your project that are used only during placement and routing
in the Quartus II software. This can be useful if you have grey or black boxes for Synplify synthesis that
require the full design files to be compiled in the Quartus II software.

You can also set the option in a script using the -job_owner par option.

The example shows how to define files for a Synplify project that includes a top-level design file, a grey box
netlist file, an IPwrapper file, and an encrypted IP file.With these files, the Synplify software writes an empty
instantiation of “core” in the .vqm file and uses the grey box netlist for resource and timing estimation. The
files core.v and core_enc8b10b.v are not compiled by the Synplify software, but are copied into the place-
and-route directory. The Quartus II software compiles these files to implement the “core” IP block.

Altera CorporationSynopsys Synplify Support

Send Feedback

17-19Other Synplify Software Attributes for Creating Black Boxes
QII51009
2013.11.04

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Synopsys%20Synplify%20Support%20(QII51009%202013.11.04)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Example 17-9: Commands to Define Files for a Synplify Project

add_file -verilog -job_owner par "core_enc8b10b.v"
add_file -verilog -job_owner par "core.v"
add_file -verilog "core_gb.v"
add_file -verilog "top.v"

Inferring Altera Megafunctions from HDL Code
The Synplify software uses Behavior Extraction Synthesis Technology (BEST) algorithms to infer high-level
structures such as RAMs, ROMs, operators, FSMs, and DSP multiplication operations. Then, the Synplify
software keeps the structures abstract for as long as possible in the synthesis process. This allows the use of
technology-specific resources to implement these structures by inferring the appropriate Alteramegafunction
when a megafunction provides optimal results.

Related Information
Recommended HDL Coding Styles Documentation

Inferring Multipliers
The Figure shows the HDL Analyst view of an unsigned 8 × 8 multiplier with two pipeline stages after
synthesis in the Synplify software. This multiplier is converted into an ALTMULT_ADD or
ALTMULT_ACCUM megafunction. For devices with DSP blocks, the software might implement the
function in a DSP block instead of regular logic, depending on device utilization. For some devices, the
software maps directly to DSP block device primitives instead of instantiating a megafunction in the .vqm
file.

Figure 17-2: HDL Analyst View of LPM_MULT Megafunction (Unsigned 8x8 Multiplier with Pipeline=2)

Resource Balancing
While mapping multipliers to DSP blocks, the Synplify software performs resource balancing for optimum
performance.

Altera devices have a fixed number of DSP blocks, which includes a fixed number of embedded multipliers.
If the design uses more multipliers than are available, the Synplify software automatically maps the extra
multipliers to logic elements (LEs), or adaptive logic modules (ALMs).

If a design uses more multipliers than are available in the DSP blocks, the Synplify software maps the
multipliers in the critical paths to DSP blocks. Next, any wide multipliers, which might or might not be in
the critical paths, are mapped to DSP blocks. Smaller multipliers and multipliers that are not in the critical
paths might then be implemented in the logic (LEs or ALMs). This ensures that the design fits successfully
in the device.

Synopsys Synplify SupportAltera Corporation

Send Feedback

QII51009
Inferring Altera Megafunctions from HDL Code17-20 2013.11.04

http://www.altera.com/literature/hb/qts/qts_qii51007.pdf
mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Synopsys%20Synplify%20Support%20(QII51009%202013.11.04)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Controlling the DSP Block Inference
You can implement multipliers in DSP blocks or in logic in Altera devices that contain DSP blocks. You can
control this implementation through attribute settings in the Synplify software.

Signal Level Attribute
You can control the implementation of individual multipliers by using the syn_multstyle attribute as
shown in the following Verilog HDL code (where <signal_name> is the name of the signal):

<signal_name> /* synthesis syn_multstyle = "logic" */;

The syn_multstyle attribute applies to wires only; it cannot be applied to registers.

Table 17-3: DSP Block Attribute Setting in the Synplify Software

DescriptionValueAttribute Name

LPM function inferred and multipliers
implemented in DSP blocks.

lpm_mult

syn_multstyle

LPM function not inferred and
multipliers implemented as LEs by the
Synplify software.

logic

DSP megafunction is inferred and
multipliers aremapped directly toDSP
block device primitives (for supported
devices).

block_mult

Example 17-10: Signal Attributes for Controlling DSP Block Inference in Verilog HDL Code

module mult(a,b,c,r,en);
 input [7:0] a,b;
 output [15:0] r;
 input [15:0] c;
 input en;
 wire [15:0] temp /* synthesis syn_multstyle="logic" */;

 assign temp = a*b;
 assign r = en ? temp : c;
endmodule

Example 17-11: Signal Attributes for Controlling DSP Block Inference in VHDL Code

library ieee;
use ieee.std_logic_1164.all;
use ieee.std_logic_unsigned.all;

entity onereg is port (
 r : out std_logic_vector (15 downto 0);

Altera CorporationSynopsys Synplify Support

Send Feedback

17-21Controlling the DSP Block Inference
QII51009
2013.11.04

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Synopsys%20Synplify%20Support%20(QII51009%202013.11.04)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

 en : in std_logic;
 a : in std_logic_vector (7 downto 0);
 b : in std_logic_vector (7 downto 0);
 c : in std_logic_vector (15 downto 0);
);
end onereg;

architecture beh of onereg is
signal temp : std_logic_vector (15 downto 0);
attribute syn_multstyle : string;
attribute syn_multstyle of temp : signal is "logic";

begin
 temp <= a * b;
 r <= temp when en='1' else c;
end beh;

Inferring RAM
When a RAM block is inferred from an HDL design, the Synplify software uses an Altera megafunction to
target the device memory architecture. For some devices, the Synplify software maps directly to memory
block device primitives instead of instantiating a megafunction in the .vqm file.

Follow these guidelines for the Synplify software to successfully infer RAM in a design:

• The address line must be at least two bits wide.
• Resets on thememory are not supported. Refer to the device family documentation for information about

whether read and write ports must be synchronous.
• Some Verilog HDL statements with blocking assignments might not be mapped to RAM blocks, so avoid

blocking statements when modeling RAMs in Verilog HDL.

For some device families, the syn_ramstyle attribute specifies the implementation to use for an inferred
RAM. You can apply the syn_ramstyle attribute globally to a module or a RAM instance, to specify
registers or block_ram values. To turn off RAM inference, set the attribute value to registers.

When inferring RAM for some Altera device families, the Synplify software generates additional bypass
logic. This logic is generated to resolve a half-cycle read/write behavior difference between the RTL and
post-synthesis simulations. The RTL simulation shows the memory being updated on the positive edge of
the clock; the post-synthesis simulation shows the memory being updated on the negative edge of the clock.
To eliminate bypass logic, the output of the RAM must be registered. By adding this register, the output of
the RAM is seen after a full clock cycle, by which time the update has occurred, thus eliminating the need
for bypass logic.

For deviceswith TriMatrixmemory blocks, disable the creation of glue logic by setting thesyn_ramstyle
value to no_rw_check. Set syn_ramstyle to no_rw_check to disable the creation of glue logic in
dual-port mode.

Example 17-12: VHDL Code for Inferred Dual-Port RAM

LIBRARY ieee;
USE ieee.std_logic_1164.all;

Synopsys Synplify SupportAltera Corporation

Send Feedback

QII51009
Inferring RAM17-22 2013.11.04

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Synopsys%20Synplify%20Support%20(QII51009%202013.11.04)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

USE ieee.std_logic_signed.all;

ENTITY dualport_ram IS
PORT (data_out: OUT STD_LOGIC_VECTOR (7 DOWNTO 0);
 data_in: IN STD_LOGIC_VECTOR (7 DOWNTO 0)
 wr_addr, rd_addr: IN STD_LOGIC_VECTOR (6 DOWNTO 0);
 we: IN STD_LOGIC);
 clk: IN STD_LOGIC);
END dualport_ram;

ARCHITECTURE ram_infer OF dualport_ram IS
TYPE Mem_Type IS ARRAY (127 DOWNTO 0) OF STD_LOGIC_VECOR (7 DOWNTO 0);
SIGNAL mem; Mem_Type;
SIGNAL addr_reg: STD_LOGIC_VECTOR (6 DOWNTO 0);

BEGIN
 data_out <= mem (CONV_INTEGER(rd_addr));
 PROCESS (clk, we, data_in) BEGIN
 IF (clk='1' AND clk'EVENT) THEN
 IF (we='1') THEN
 mem(CONV_INTEGER(wr_addr)) <= data_in;
 END IF;
 END IF;
 END PROCESS;
END ram_infer;

Example 17-13: VHDL Code for Inferred Dual-Port RAM Preventing Bypass Logic

LIBRARY ieee;
USE ieee.std_logic_1164.all;
USE ieee.std_logic_signed.all;

ENTITY dualport_ram IS
PORT (data_out: OUT STD_LOGIC_VECTOR (7 DOWNTO 0);
 data_in : IN STD_LOGIC_VECTOR (7 DOWNTO 0);
 wr_addr, rd_addr : IN STD_LOGIC_VECTOR (6 DOWNTO 0);
 we : IN STD_LOGIC;
 clk : IN STD_LOGIC);
END dualport_ram;

ARCHITECTURE ram_infer OF dualport_ram IS
TYPE Mem_Type IS ARRAY (127 DOWNTO 0) OF STD_LOGIC_VECTOR (7 DOWNTO 0);
SIGNAL mem : Mem_Type;
SIGNAL addr_reg : STD_LOGIC_VECTOR (6 DOWNTO 0);
SIGNAL tmp_out : STD_LOGIC_VECTOR (7 DOWNTO 0); --output register

BEGIN
 tmp_out <= mem (CONV_INTEGER (rd_addr));
 PROCESS (clk, we, data_in) BEGIN
 IF (clk='1' AND clk'EVENT) THEN
 IF (we='1') THEN
 mem(CONV_INTEGER(wr_addr)) <= data_in;
 END IF;
 data_out <= tmp_out; --registers output preventing
 -- bypass logic generation
 END IF;
 END PROCESS;
END ram_infer;

Altera CorporationSynopsys Synplify Support

Send Feedback

17-23Inferring RAM
QII51009
2013.11.04

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Synopsys%20Synplify%20Support%20(QII51009%202013.11.04)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

RAM Initialization
Use the Verilog HDL $readmemb or $readmemh system tasks in your HDL code to initialize RAM
memories. The Synplify compiler forward-annotates the initialization values in the .srs
(technology-independent RTLnetlist) file and themapper generates the corresponding hexadecimalmemory
initialization (.hex) file. One .hex file is created for each of thealtsyncrammegafunctions that are inferred
in the design. The .hex file is associated with the altsyncram instance in the .vqm file using the
init_file attribute.

The examples show how RAM can be initialized through HDL code, and how the corresponding .hex file
is generated using Verilog HDL.

Example 17-14: Using $readmemb System Task to Initialize an Inferred RAM in Verilog HDL Code

initial
begin
 $readmemb("mem.ini", mem);
end
always @(posedge clk)
begin
 raddr_reg <= raddr;
 if(we)
 mem[waddr] <= data;
end

Example 17-15: Sample of .vqm Instance Containing Memory Initialization File

altsyncram mem_hex(.wren_a(we),.wren_b(GND),...);

defparam mem_hex.lpm_type = "altsyncram";
defparam mem_hex.operation_mode = "Dual_Port";
...
defparam mem_hex.init_file = "mem_hex.hex";

Inferring ROM
When a ROM block is inferred from an HDL design, the Synplify software uses an Altera megafunction to
target the device memory architecture. For some devices, the Synplify software maps directly to memory
block device atoms instead of instantiating a megafunction in the .vqm file.

Follow these guidelines for the Synplify software to successfully infer ROM in a design:

• The address line must be at least two bits wide.
• The ROM must be at least half full.
• A CASE or IF statement must make 16 or more assignments using constant values of the same width.

Inferring Shift Registers
The Synplify software infers shift registers for sequential shift components so that they can be placed in
dedicated memory blocks in supported device architectures using the ALTSHIFT_TAPS megafunction.

Synopsys Synplify SupportAltera Corporation

Send Feedback

QII51009
RAM Initialization17-24 2013.11.04

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Synopsys%20Synplify%20Support%20(QII51009%202013.11.04)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

If necessary, set the implementation style with the syn_srlstyle attribute. If you do not want the
components automatically mapped to shift registers, set the value to registers. You can set the value
globally, or on individual modules or registers.

For some designs, turning off shift register inference improves the design performance.

Incremental Compilation and Block-Based Design
As designs become more complex and designers work in teams, a block-based incremental design flow is
often an effective design approach. In an incremental compilation flow, you can make changes to part of
the design while maintaining the placement and performance of unchanged parts of the design. Design
iterations are made dramatically faster by focusing new compilations on particular design partitions and
merging results with previous compilation results of other partitions. You can perform optimization on
individual subblocks and then preserve the results before you integrate the blocks into a final design and
optimize it at the top-level.

MultiPoint synthesis, which is available for certain device technologies in the Synplify Pro and Premier
software, provides an automated block-based incremental synthesis flow. The MultiPoint feature manages
a design hierarchy to let you design incrementally and synthesize designs that take too long for synthesis of
the entire project. MultiPoint synthesis allows different netlist files to be created for different sections of a
design hierarchy and supports theQuartus II incremental compilationmethodology. This feature also ensures
that only those sections of a design that have been updated are resynthesized when the design is compiled,
reducing synthesis run time and preserving the results for the unchanged blocks. You can change and
resynthesize one section of a design without affecting other sections.

You can also partition your design and create different netlist files manually with the Synplify software by
creating a separate project for the logic in each partition of the design. Creating different netlist files for each
partition of the design also means that each partition can be independent of the others.

Hierarchical designmethodologies can improve the efficiency of your design process, providing better design
reuse opportunities and fewer integration problems when working in a team environment. When you use
these incremental synthesis methodologies, you can take advantage of incremental compilation in the
Quartus II software. You can perform placement and routing on only the changed partitions of the design,
which reduces place-and-route time and preserves your fitting results.

Related Information
Quartus II Incremental Compilation for Hierarchical and Team-Based Design Documentation

Design Flow for Incremental Compilation
The following steps describe the general incremental compilation flow when using these features of the
Quartus II software:

1. Create Verilog HDL or VHDL design files.
2. Determine which hierarchical blocks you want to treat as separate partitions in your design.
3. Set up your design using the MultiPoint synthesis feature or separate projects so that a separate netlist

file is created for each design partition.
4. If using separate projects, disable I/O pad insertion in the implementations for lower-level partitions.
5. Compile and map each partition in the Synplify software, making constraints as you would in a non-

incremental design flow.

Altera CorporationSynopsys Synplify Support

Send Feedback

17-25Incremental Compilation and Block-Based Design
QII51009
2013.11.04

http://www.altera.com/literature/hb/qts/qts_qii51015.pdf
mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Synopsys%20Synplify%20Support%20(QII51009%202013.11.04)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

6. Import the .vqm netlist and .tcl file for each partition into theQuartus II software and set up theQuartus II
project(s) for incremental compilation.

7. Compile your design in the Quartus II software and preserve the compilation results with the post-fit
netlist in incremental compilation.

8. When you make design or synthesis optimization changes to part of your design, resynthesize only the
partition you modified to generate a new netlist and .tcl file. Do not regenerate netlist files for the
unmodified partitions.

9. Import the new netlist and .tcl file into theQuartus II software and recompile the design in theQuartus II
software with incremental compilation.

Creating a Design with Separate Netlist Files for Incremental Compilation
The first stage of a hierarchical or incremental design flow is to ensure that different parts of your design do
not affect each other. Ensure that you have separate netlists for each partition in your design so you can take
advantage of incremental compilation in the Quartus II software. If the entire design is in one netlist file,
changes in one partition might affect other partitions because of possible node name changes when you
resynthesize the design.

To ensure proper functionality of the synthesis flow, create separate netlist files only for modules and entities.
In addition, each module or entity requires its own design file. If two different modules are in the same
design file, but are defined as being part of different partitions, incremental compilation cannot bemaintained
since both partitions must be recompiled when one module is changed.

Altera recommends that you register all inputs and outputs of each partition. This makes logic synchronous,
and avoids any delay penalty on signals that cross partition boundaries.

If you use boundary tri-states in a lower-level block, the Synplify software pushes, or bubbles, the tri-states
through the hierarchy to the top-level to use the tri-state drivers on output pins of Altera devices. Because
bubbling tri-states requires optimizing through hierarchies, lower-level tri-states are not supported with a
block-based compilation methodology. Use tri-state drivers only at the external output pins of the device
and in the top-level block in the hierarchy.

You can generate multiple .vqm netlist files with the MultiPoint synthesis flow in the Synplify Pro and
Premier software, or by manually creating separate Synplify projects and creating a black box for each block
that you want to designate as a separate design partition.

In the MultiPoint synthesis flow in the Synplify Pro and Premier software, you create multiple .vqm netlist
files from one easy-to-manage, top-level synthesis project. By using the manual black box method, you have
multiple synthesis projects, which might be required for certain team-based or bottom-up designs where a
single top-level project is not desired.

After you have created multiple .vqm files using one of these two methods, you must create the appropriate
Quartus II projects to place-and-route the design.

Related Information
Best Practices for Incremental Compilation Partitions and Floorplan Assignments Documentation

Using MultiPoint Synthesis with Incremental Compilation
This topic describes how to generate multiple .vqm files using the Synplify Pro and Premier software
MultiPoint synthesis flow. You must first set up your constraint file and Synplify options, then apply the
appropriate Compile Point settings to write multiple .vqm files and create design partition assignments for
incremental compilation.

Synopsys Synplify SupportAltera Corporation

Send Feedback

QII51009
Creating a Design with Separate Netlist Files for Incremental Compilation17-26 2013.11.04

http://www.altera.com/literature/hb/qts/qts_qii51017.pdf
mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Synopsys%20Synplify%20Support%20(QII51009%202013.11.04)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Related Information
Preserving Hierarchy on page 17-13

Set Compile Points and Create Constraint Files
The MultiPoint flow lets you segment a design into smaller synthesis units, called Compile Points. The
synthesis software treats each Compile Point as a partition for incremental mapping, which allows you to
isolate and work on each Compile Point module as independent segments of the larger design without
impacting other design modules. A design can have any number of Compile Points, and Compile Points
can be nested. The top-level module is always treated as a Compile Point.

Compile Points are optimized in isolation from their parent, which can be another Compile Point or a top-
level design. Each block created with a Compile Point is unaffected by critical paths or constraints on its
parent or other blocks. ACompile Point is independent, with its own individual constraints. During synthesis,
any Compile Points that have not yet been synthesized are synthesized before the top level. Nested Compile
Points are synthesized before the parent Compile Points in which they are contained. When you apply the
appropriate setting for the Compile Point, a separate netlist is created for that Compile Point, isolating that
logic from any other logic in the design.

The Figure shows an example of a design hierarchy that is split into multiple partitions. The top-level block
of each partition can be synthesized as a separate Compile Point.

Figure 17-3: Partitions in a Hierarchical Design

Partition Top

Partition B Partition F

D E

B

A

F

C

In this case, modules A, B, and F are Compile Points. The top-level Compile Point consists of the top-level
block in the design (that is, block A in this example), including the logic that is not defined under another
Compile Point. In this example, the design for top-level Compile Point A also includes the logic in one of
its subblocks, C. Because block F is defined as its own Compile Point, it is not treated as part of the top-level
Compile Point A. Another separate Compile Point B contains the logic in blocks B, D, and E. One netlist is
created for the top-level module A and submodule C, another netlist is created for B and its submodules D
and E, while a third netlist is created for F.

Apply Compile Points to the module, or to the architecture in the Synplify Pro SCOPE spreadsheet, or to
the .sdc file. You cannot set a Compile Point in the Verilog HDL or VHDL source code. You can set the
constraints manually using Tcl, by editing the .sdc file, or you can use the GUI.

Defining Compile Points With .tcl or .sdc Files
To set Compile Points with a .tcl or .sdc file, use the define_compile_point command.

Altera CorporationSynopsys Synplify Support

Send Feedback

17-27Set Compile Points and Create Constraint Files
QII51009
2013.11.04

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Synopsys%20Synplify%20Support%20(QII51009%202013.11.04)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Example 17-16: The define_compile_point Command

define_compile_point [-disable] {<objname>} -type {locked, partition}

<objname> represents anymodule in the design. TheCompile Point type{locked, partition}
indicates that the Compile Point represents a partition for the Quartus II incremental compilation
flow.

Each Compile Point has a set of constraint files that begin with the define_current_design
command to set up the SCOPE environment, as follows:

define_current_design {<my_module>}

Additional Considerations for Compile Points
To ensure that changes to a Compile Point do not affect the top-level parent module, turn off the Update
Compile Point Timing Data option in the Implementation Options dialog box. If this option is turned
on, updates to a child module can impact the top-level module.

You can apply thesyn_allowed_resources attribute to anyCompile Point view to restrict the number
of resources for a particular module.

When using Compile Points with incremental compilation, be aware of the following restrictions:

• To use Compile Points effectively, you must provide timing constraints (timing budgeting) for each
Compile Point; the more accurate the constraints, the better your results are. Constraints are not
automatically budgeted, so manual time budgeting is essential. Altera recommends that you register all
inputs and outputs of each partition. This avoids any logic delay penalty on signals that cross-partition
boundaries.

• When using the Synplify attribute syn_useioff to pack registers in the I/O Elements (IOEs) of Altera
devices, these registersmust be in the top-levelmodule. Otherwise, youmust direct theQuartus II software
to perform I/O register packing instead of the syn_useioff attribute. You can use the Fast Input
Register or Fast Output Register options, or set I/O timing constraints and turn on Optimize I/O cell
register placement for timing on the Fitter Settings page of the Settings dialog box in the Quartus II
software.

• There is no incremental synthesis support for top-level logic; any logic in the top-level is resynthesized
during every compilation in the Synplify software.

For more information about using Compile Points and setting Synplify attributes and constraints for both
top-level and lower-level Compile Points, refer to the Synopsys FPGA Synthesis User Guide and the Synopsys
FPGA Synthesis Reference Manual.

Creating a Quartus II Project for Compile Points and Multiple .vqm Files
During compilation, the Synplify Pro and Premier software creates a <top-level project>.tcl file that provides
theQuartus II softwarewith the appropriate constraints and design partition assignments, creating a partition
for each .vqm file along with the information to set up a Quartus II project.

Depending on your design methodology, you can create one Quartus II project for all netlists or a separate
Quartus II project for each netlist. In the standard incremental compilation design flow, you create design
partition assignments and optional LogicLock™ floorplan location assignments for each partition in the
design within a single Quartus II project. This methodology allows for the best quality of results and
performance preservation during incremental changes to your design.

Synopsys Synplify SupportAltera Corporation

Send Feedback

QII51009
Additional Considerations for Compile Points17-28 2013.11.04

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Synopsys%20Synplify%20Support%20(QII51009%202013.11.04)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

You might require a bottom-up design flow if each partition must be optimized separately, such as for third-
party IP delivery. If you use this flow, Altera recommends you create a design floorplan to avoid placement
conflicts between each partition. To follow this design flow in the Quartus II software, create separate
Quartus II projects, export each design partition and incorporate them into a top-level design using the
incremental compilation features to maintain placement results.

Related Information
Running the Quartus II Software Manually With the Synplify-Generated Tcl Script on page 17-7

Creating a Single Quartus II Project for a Standard Incremental Compilation Flow
Use the <top-level project>.tcl file that contains the Synplify assignments for all partitions within the project.
This method allows you to import all the partitions into one Quartus II project and optimize all modules
within the project at once, while taking advantage of the performance preservation and compilation-time
reduction that incremental compilation offers.

Figure 17-4: Design Flow Using Multiple .vqm Files with One Quartus II Project

a.vqm

b.vqm f.vqm

Quartus II Project

Use the top-level Tcl file a.tcl
to import Synplify Pro assignments.

Creating Multiple Quartus II Projects for a Bottom-Up Incremental Compilation Flow
Use the <lower-level compile point>.tcl files that contain the Synplify assignments for each Compile Point.
Generate multiple Quartus II projects, one for each partition and netlist in the design. The designers in the
project can optimize their own partitions separately within the Quartus II software and export the results
for their own partitions. You can export the optimized subdesigns and then import them into one top-level
Quartus II project using incremental compilation to complete the design.

Altera CorporationSynopsys Synplify Support

Send Feedback

17-29Creating a Single Quartus II Project for a Standard Incremental Compilation Flow
QII51009
2013.11.04

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Synopsys%20Synplify%20Support%20(QII51009%202013.11.04)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Figure 17-5: Design Flow Using Multiple .vqm Files with Multiple Quartus II Projects

Quartus II Project Quartus II Project

a.vqm

b.vqm f.vqm

Quartus II Project

Use the top-level Tcl file a.tcl to Import
Synplify Pro Assignments

Use the lower-level
Tcl file f.tcl to Import
Synplify Pro Assignments

Use the lower-level
Tcl file b.tcl to Import

Synplify Pro Assignments

Creating Multiple .vqm Files for a Incremental Compilation Flow With Separate Synplify
Projects

You can manually generate multiple .vqm files for a incremental compilation flow with black boxes and
separate Synplify projects for each design partition. This manual flow is supported by versions of the Synplify
software without the MultiPoint Synthesis feature.

Manually Creating Multiple .vqm Files With Black Boxes
To create multiple .vqm files manually in the Synplify software, create a separate project for each lower-level
module and top-level design that youwant tomaintain as a separate .vqm file for an incremental compilation
partition. Implement black box instantiations of lower-level partitions in your top-level project.

Figure 17-6: Partitions in a Hierarchical Design

Partition Top

Partition B Partition F

D E

B

A

F

C

The partition top contains the top-level block in the design (block A) and the logic that is not defined as part
of another partition. In this example, the partition for top-level block A also includes the logic in one of its
sub-blocks, block C. Because block F is contained in its own partition, it is not treated as part of the top-level
partition A. Another separate partition, partition B, contains the logic in blocks B, D, and E. In a team-based
design, engineers can work independently on the logic in different partitions. One netlist is created for the

Synopsys Synplify SupportAltera Corporation

Send Feedback

QII51009
Creating Multiple .vqm Files for a Incremental Compilation Flow With Separate Synplify Projects17-30 2013.11.04

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Synopsys%20Synplify%20Support%20(QII51009%202013.11.04)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

top-level module A and its submodule C, another netlist is created for module B and its submodules D and
E, while a third netlist is created for module F.

Creating Multiple .vqm Files for this Design
To create multiple .vqm files for this design, follow these steps:

1. Generate a .vqm file for module B. Use B.v/.vhd, D.v/.vhd, and E.v/.vhd as the source files.
2. Generate a .vqm file for module F. Use F.v/.vhd as the source files.
3. Generate a top-level .vqm file for module A. Use A.v/.vhd and C.v/.vhd as the source files. Ensure that

you use black box modules B and F, which were optimized separately in the previous steps.

Creating Black Boxes in Verilog HDL
Any design block that is not defined in the project, or included in the list of files to be read for a project, is
treated as a black box by the software. Use the syn_black_box attribute to indicate that you intend to
create a black box for the module. In Verilog HDL, you must provide an empty module declaration for a
module that is treated as a black box.

The example shows the A.v top-level file. Follow the same procedure for lower-level files that also contain
a black box for any module beneath the current level hierarchy.

Example 17-17: Verilog HDL Black Box for Top-Level File A.v

module A (data_in, clk, e, ld, data_out);
 input data_in, clk, e, ld;
 output [15:0] data_out;

 wire [15:0] cnt_out;

 B U1 (.data_in (data_in),.clk(clk), .ld (ld),.data_out(cnt_out));
 F U2 (.d(cnt_out), .clk(clk), .e(e), .q(data_out));

 // Any other code in A.v goes here.
endmodule

// Empty Module Declarations of Sub-Blocks B and F follow here.
// These module declarations (including ports) are required for black boxes.

module B (data_in, clk, ld, data_out) /* synthesis syn_black_box */ ;
 input data_in, clk, ld;
 output [15:0} data_out;
endmodule

module F (d, clk, e, q) /* synthesis syn_black_box */ ;
 input [15:0] d;
 input clk, e;
 output [15:0] q;
endmodule

Creating Black Boxes in VHDL
Any design that is not defined in the project, or included in the list of files to be read for a project, is treated
as a black box by the software. Use the syn_black_box attribute to indicate that you intend to treat the
component as a black box. In VHDL, you must have a component declaration for the black box.

Although VHDL is not case-sensitive, a .vqm (a subset of Verilog HDL) file is case-sensitive. Entity names
and their port declarations are forwarded to the .vqm file. Black box names and port declarations are also

Altera CorporationSynopsys Synplify Support

Send Feedback

17-31Creating Multiple .vqm Files for this Design
QII51009
2013.11.04

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Synopsys%20Synplify%20Support%20(QII51009%202013.11.04)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

passed to the .vqm file. To prevent case-based mismatches, use the same capitalization for black box and
entity declarations in VHDL designs.

The example shows theA.vhd top-level file. Follow this same procedure for any lower-level files that contain
a black box for any block beneath the current level of hierarchy.

Example 17-18: VHDL Black Box for Top-Level File A.vhd

LIBRARY ieee;
USE ieee.std_logic_1164.all;
LIBRARY synplify;
USE synplify.attributes.all;

ENTITY A IS
PORT (data_in : IN INTEGER RANGE 0 TO 15;
 clk, e, ld : IN STD_LOGIC;
 data_out : OUT INTEGER RANGE 0 TO 15);
END A;

ARCHITECTURE a_arch OF A IS

COMPONENT B PORT(
 data_in : IN INTEGER RANGE 0 TO 15;
 clk, ld : IN STD_LOGIC;
 d_out : OUT INTEGER RANGE 0 TO 15);
END COMPONENT;

COMPONENT F PORT(
 d : IN INTEGER RANGE 0 TO 15;
 clk, e: IN STD_LOGIC;
 q : OUT INTEGER RANGE 0 TO 15);
END COMPONENT;

attribute syn_black_box of B: component is true;
atrribute syn_black_box of F: component is true;

-- Other component declarations in A.vhd go here
signal cnt_out : INTEGER RANGE 0 TO 15;

BEGIN

U1 : B
PORT MAP (
 data_in => data_in,
 clk => clk,
 ld => ld,
 d_out => cnt_out);

U2 : F
PORT MAP (
 d => cnt_out,
 clk => clk,
 e => e,
 q => data_out);

-- Any other code in A.vhd goes here

END a_arch;

After you complete the steps above, you have a netlist for each partition of the design. These files
are ready for use with the incremental compilation flow in the Quartus II software.

Synopsys Synplify SupportAltera Corporation

Send Feedback

QII51009
Creating Black Boxes in VHDL17-32 2013.11.04

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Synopsys%20Synplify%20Support%20(QII51009%202013.11.04)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Creating a Quartus II Project for Multiple .vqm Files
The Synplify software creates a .tcl file for each .vqm file that provides the Quartus II software with the
appropriate constraints and information to set up a project.

Depending on your design methodology, you can create one Quartus II project for all netlists or a separate
Quartus II project for each netlist. In the standard incremental compilation design flow, you create design
partition assignments and optional LogicLock floorplan location assignments for each partition in the design
within a single Quartus II project. This methodology allows for the best quality of results and performance
preservation during incremental changes to your design. You might require a bottom-up design flow where
each partition must be optimized separately, such as for third-party IP delivery.

To perform this design flow in the Quartus II software, create separate Quartus II projects, export each
design partition and incorporate it into a top-level design using the incremental compilation features to
maintain the results.

Related Information
Running the Quartus II Software Manually With the Synplify-Generated Tcl Script on page 17-7

Creating a Single Quartus II Project for a Standard Incremental Compilation Flow
Use the <top-level project>.tcl file that contains the Synplify assignments for the top-level design. Thismethod
allows you to import all of the partitions into one Quartus II project and optimize all modules within the
project at once, taking advantage of the performance preservation and compilation time reduction offered
by incremental compilation.

All of the constraints from the top-level project are passed to the Quartus II software in the top-level .tcl
file, but constraints made in the lower-level projects within the Synplify software are not forward-annotated.
Enter these constraints manually in your Quartus II project.

Figure 17-7: Design Flow Using Multiple .vqm Files with One Quartus II Project

a.vqm

b.vqm f.vqm

Quartus II Project

Use a.tcl to import top-level
Synplify Pro assignments.

Enter any lower-level
assignments manually.

Creating Multiple Quartus II Projects for a Bottom-Up Incremental Compilation Flow
Use the .tcl file that is created for each .vqm file by the Synplify software for each Synplify project. This
method generates multiple Quartus II projects, one for each block in the design. The designers in the project
can optimize their own blocks separately within the Quartus II software and export the placement of their
own blocks.

Designers should create a LogicLock region to create a design floorplan for each block to avoid conflicts
between partitions. The top-level designer then imports all the blocks and assignments into the top-level
project. This method allows each block in the design to be optimized separately and then imported into one
top-level project.

Altera CorporationSynopsys Synplify Support

Send Feedback

17-33Creating a Quartus II Project for Multiple .vqm Files
QII51009
2013.11.04

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Synopsys%20Synplify%20Support%20(QII51009%202013.11.04)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Figure 17-8: Design Flow Using Multiple Synplify Projects and Multiple Quartus II Projects

Quartus II Project Quartus II Project

a.vqm

b.vqm f.vqm

Quartus II Project

Use the top-level
Tcl file a.tcl to Import
Synplify Assignments

Use the lower-level
Tcl file f.tcl to Import
Synplify Assignments

Use the lower-level
Tcl file b.tcl to Import
Synplify Assignments

Performing Incremental Compilation in the Quartus II Software
In a standard design flow using Multipoint Synthesis, the Synplify software uses the Quartus II top-level .tcl
file to ensure that the two tools databases stay synchronized. The Tcl file creates, changes, or deletes partition
assignments in the Quartus II software for Compile Points that you create, change, or delete in the Synplify
software. However, if you create, change, or delete a partition in theQuartus II software, the Synplify software
does not change your Compile Point settings. Make any corresponding change in your Synplify project to
ensure that you create the correct .vqm files.

If you use the NativeLink integration feature, the Synplify software does not use any information
about design partition assignments that you have set in the Quartus II software.

Note:

If you create netlist files with multiple Synplify projects, or if you do not use the Synplify Pro or Premier-
generated .tcl files to update constraints in your Quartus II project, you must ensure that your Synplify .vqm
netlists align with your Quartus II partition settings.

After you have set up your Quartus II project with .vqm netlist files as separate design partitions, set the
appropriateQuartus II options to preserve your compilation results. On theAssignmentsmenu, clickDesign
Partitions Window. Change the Netlist Type to Post-Fit to preserve the previous compilation’s post-fit
placement results. If you do not make these settings, the Quartus II software does not reuse the placement
or routing results from the previous compilation.

You can take advantage of incremental compilation with your Synplify design to reduce compilation time
in the Quartus II software and preserve the results for unchanged design blocks.

Related Information

• Quartus II Incremental Compilation for Hierarchical and TeamBased Design Documentation

• Using the Quartus II Software to Run the Synplify Software on page 17-5

Synopsys Synplify SupportAltera Corporation

Send Feedback

QII51009
Performing Incremental Compilation in the Quartus II Software17-34 2013.11.04

http://www.altera.com/literature/hb/qts/qts_qii51015.pdf
mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Synopsys%20Synplify%20Support%20(QII51009%202013.11.04)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Document Revision History

Table 17-4: Document Revision History

ChangesVersionDate

Dita conversion. Restructured
content.

13.1.0November 2013

Removed survey link.12.0.0June 2012

Template update.10.1.1November 2011

• Changed to new document
template.

• Removed Classic Timing
Analyzer support.

• Removed the “altera_
implement_in_esb or altera_
implement_in_eab” section.

• Edited the “Creating a
Quartus II Project for Compile
Points and Multiple .vqm
Files” on page 14–33 section
for changes with the
incremental compilation flow.

• Edited the “Creating a
Quartus II Project forMultiple
.vqm Files” on page 14–39
section for changes with the
incremental compilation flow.

• Editorial changes.

10.1.0December 2010

• Minor updates for theQuartus
II software version 10.0 release.

10.0.0July 2010

• Minor updates for theQuartus
II software version 9.1 release.

9.1.0November 2009

• Added new section “Exporting
Designs to the Quartus II
Software Using NativeLink
Integration” on page 14–14.

• Minor updates for theQuartus
II software version 9.0 release.

• Chapter 10 was previously
Chapter 9 in software version
8.1.

9.0.0March 2009

Altera CorporationSynopsys Synplify Support

Send Feedback

17-35Document Revision History
QII51009
2013.11.04

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Synopsys%20Synplify%20Support%20(QII51009%202013.11.04)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

ChangesVersionDate

• Changed to 8-1/2 x 11 page
size

• Changed the chapter title from
“Synplicity Synplify & Synplify
Pro Support” to “Synopsys
Synplify Support”

• Replaced references to
Synplicity with references to
Synopsys

• Added information about
Synplify Premier

• Updated supported device list
• Added SystemVerilog

information to Figure 14–1

8.1.0November 2008

Synopsys Synplify SupportAltera Corporation

Send Feedback

QII51009
Document Revision History17-36 2013.11.04

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Synopsys%20Synplify%20Support%20(QII51009%202013.11.04)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

ChangesVersionDate

• Updated supported device list
• Updated constraint annotation

information for theTimeQuest
Timing Analyzer

• Updated RAM and MAC
constraint limitations

• Revised Table 9–1
• Added new section “Changing

Synplify’s Default Behavior for
Instantiated Altera Megafunc-
tions”

• Added new section “Instanti-
ating Intellectual Property
Using the MegaWizard Plug-
InManager and IPToolbench”

• Added new section “Including
Files for Quartus II Placement
and Routing Only”

• Addednew section “Additional
Considerations for Compile
Points”

• Removed section “Apply the
LogicLock Attributes”

• Modified Figure 9–4, 9–43,
9–47. and 9–48

• Added new section
“Performing Incremental
Compilation in the Quartus II
Software”

• Numerous text changes and
additions throughout the
chapter

• Renamed several sections
• Updated “Referenced

Documents” section

8.0.0May 2008

Related Information
Quartus II Handbook Archive Website

Altera CorporationSynopsys Synplify Support

Send Feedback

17-37Document Revision History
QII51009
2013.11.04

http://www.altera.com/literature/lit-qts_archive.jsp
mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Synopsys%20Synplify%20Support%20(QII51009%202013.11.04)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

QII51011-12.0.0

© 2012 Altera Corporation. All rights reserved. ALTERA, ARRI
are trademarks of Altera Corporation and registered in the U.S
trademarks or service marks are the property of their respectiv
semiconductor products to current specifications in accordance
services at any time without notice. Altera assumes no respons
described herein except as expressly agreed to in writing by Al
on any published information and before placing orders for pr

Quartus II Handbook Version 13.1
Volume 1: Design and Synthesis
June 2012

June 2012
QII51011-12.0.0
18. Mentor Graphics Precision Synthesis
Support
This chapter documents support for the Mentor Graphics® Precision RTL Synthesis
and Precision RTL Plus Synthesis software in the Quartus® II software design flow, as
well as key design methodologies and techniques for improving your results for
Altera® devices.

The topics discussed in this chapter include:

■ “Altera Device Family Support”

■ “Design Flow” on page 18–2

■ “Creating and Compiling a Project in the Precision Synthesis Software” on
page 18–5

■ “Mapping the Precision Synthesis Design” on page 18–5

■ “Synthesizing the Design and Evaluating the Results” on page 18–9

■ “Exporting Designs to the Quartus II Software Using NativeLink Integration” on
page 18–10

■ “Guidelines for Altera Megafunctions and Architecture-Specific Features” on
page 18–15

■ “Incremental Compilation and Block-Based Design” on page 18–24

This chapter assumes that you have set up, licensed, and installed the Precision
Synthesis software and the Quartus II software. You must set up, license, and install
the Precision RTL Plus Synthesis software if you want to use the incremental synthesis
feature for incremental compilation and block-based design.

f To obtain and license the Precision Synthesis software, refer to the Mentor Graphics
website at www.mentor.com. To install and run the Precision Synthesis software and
to set up your work environment, refer to the Precision Synthesis Installation Guide in
the Precision Manuals Bookcase. To access the Manuals Bookcase in the Precision
Synthesis software, click Help and select Open Manuals Bookcase.

Altera Device Family Support
The Precision Synthesis software supports active devices available in the current
version of the Quartus II software. Support for newly released device families may
require an overlay. Contact Mentor Graphics for more information.
A, CYCLONE, HARDCOPY, MAX, MEGACORE, NIOS, QUARTUS and STRATIX words and logos
. Patent and Trademark Office and in other countries. All other words and logos identified as
e holders as described at www.altera.com/common/legal.html. Altera warrants performance of its
 with Altera's standard warranty, but reserves the right to make changes to any products and
ibility or liability arising out of the application or use of any information, product, or service
tera. Altera customers are advised to obtain the latest version of device specifications before relying
oducts or services.

Feedback SubscribeTwitter

ISO
9001:2008
Registered

https://www.altera.com/servlets/subscriptions/alert?id=QII51011
http://www.altera.com/common/legal.html
http://www.mentor.com
mailto:TechDocFeedback@altera.com?subject=Feedback on QII51011-12.0 (QII HB, Vol 1, Ch19: Mentor Graphics Precision Synthesis Support)
http://www.altera.com/support/reliability/certifications/rel-certifications.html
http://www.altera.com/support/reliability/certifications/rel-certifications.html
http://twitter.com/home/?status=Mentor+Graphics+Precision+Synthesis+Support+http://www.altera.com/literature/hb/qts/qts_qii51011.pdf?WT.mc_id=gc_so_tw_st_tx_a_011+(via @alteracorp)+%23Altera

18–2 Chapter 18: Mentor Graphics Precision Synthesis Support
Design Flow
The Precision Synthesis software also supports the FLEX 8000 and MAX 9000 legacy
devices that are supported only in the Altera MAX+PLUS® II software, as well as
ACEX® 1K, APEX™ II, APEX 20K, APEX 20KC, APEX 20KE, FLEX® 10K, and FLEX
6000 legacy devices that are supported by the Quartus II software version 9.0 and
earlier.

Design Flow
The following steps describe a basic Quartus II design flow using the Precision
Synthesis software:

1. Create Verilog HDL or VHDL design files.

2. Create a project in the Precision Synthesis software that contains the HDL files for
your design, select your target device, and set global constraints. Refer to
“Creating and Compiling a Project in the Precision Synthesis Software” on
page 18–5 for details.

3. Compile the project in the Precision Synthesis software.

4. Add specific timing constraints, optimization attributes, and compiler directives to
optimize the design during synthesis.

1 For best results, Mentor Graphics recommends specifying constraints that
are as close as possible to actual operating requirements. Properly setting
clock and I/O constraints, assigning clock domains, and indicating false
and multicycle paths guide the synthesis algorithms more accurately
toward a suitable solution in the shortest synthesis time.

5. Synthesize the project in the Precision Synthesis software. With the design analysis
and cross-probing capabilities of the Precision Synthesis software, you can identify
and improve circuit area and performance issues using prelayout timing
estimates.

6. Create a Quartus II project and import the following files generated by the
Precision Synthesis software into the Quartus II project:

■ The technology-specific EDIF (.edf) netlist or Verilog Quartus Mapping File
(.vqm) netlist

■ Synopsys Design Constraints File (.sdc) for TimeQuest Timing Analyzer
constraints
Quartus II Handbook Version 13.1 June 2012 Altera Corporation
Volume 1: Design and Synthesis

Chapter 18: Mentor Graphics Precision Synthesis Support 18–3
Design Flow
1 If your design uses the Classic Timing Analyzer for timing analysis in the
Quartus II software versions 10.0 and earlier, the Precision Synthesis
software generates timing constraints in the Tcl Constraints File (.tcl). If you
are using the Quartus II software versions 10.1 and later, you must use the
TimeQuest Timing Analyzer for timing analysis.

■ Tcl Script Files (.tcl) to set up your Quartus II project and pass constraints

You can run the Quartus II software from within the Precision Synthesis software,
or run the Precision Synthesis software using the Quartus II software. Refer to
“Running the Quartus II Software from within the Precision Synthesis Software”
on page 18–10 and “Using the Quartus II Software to Run the Precision Synthesis
Software” on page 18–12 for more information.

7. After obtaining place-and-route results that meet your requirements, configure or
program the Altera device.

Figure 18–1 shows the Quartus II design flow using the Precision Synthesis software
as described in these steps, which are further described in detail in this chapter.

Figure 18–1. Design Flow Using the Precision Synthesis Software and Quartus II Software

VHDL Verilog HDL

Constraints and
Settings

Constraints and
Settings

Precision Synthesis

Timing and Area
Requirements

Satisfied?

Forward-Annotated Projec
Configuration
(.tcl/.acf)

Technology-
Specific Netlist

(.edf)

Post-Synthesis
Simulation Files

(.vho/.vo)

Post Place-and-Route
Simulation File

(.vho/.vo)

Configuration/Programming Files
(.sof/.pof)

Program/Configure Device

Quartus II Software

Quartus II Timing Constraints
in SDC format (.sdc)

System
Verilog

Design Specifications

No

Yes
June 2012 Altera Corporation Quartus II Handbook Version 13.1
Volume 1: Design and Synthesis

18–4 Chapter 18: Mentor Graphics Precision Synthesis Support
Design Flow
If your area or timing requirements are not met, you can change the constraints and
resynthesize the design in the Precision Synthesis software, or you can change the
constraints to optimize the design during place-and-route in the Quartus II software.
Repeat the process until the area and timing requirements are met.

You can use other options and techniques in the Quartus II software to meet area and
timing requirements. For example, the WYSIWYG Primitive Resynthesis option can
perform optimizations on your EDIF netlist in the Quartus II software.

f For more information about netlist optimizations, refer to the Netlist Optimizations and
Physical Synthesis chapter in volume 2 of the Quartus II Handbook. For more
recommendations about how to optimize your design, refer to the Area and Timing
Optimization chapter in volume 2 of the Quartus II Handbook.

While simulation and analysis can be performed at various points in the design
process, final timing analysis should be performed after placement and routing is
complete.

During synthesis, the Precision Synthesis software produces several intermediate and
output files, which are described in Table 18–1.

Table 18–1. Precision Synthesis Software Intermediate and Output Files

File Extension File Description

.psp Precision Synthesis Project File.

.xdb Mentor Graphics Design Database File.

.rep (1) Synthesis Area and Timing Report File.

.vqm/.edf (2)

Technology-specific netlist in .vqm or .edf file format.

By default, the Precision Synthesis software creates .vqm files for Arria series, Cyclone series, and Stratix
series devices, and creates .edf files for ACEX, APEX, FLEX, and MAX series devices. The Precision
Synthesis software can create .edf files for all Altera devices supported by the Quartus II software, but
defaults to creating .vqm files when the device is supported.

.tcl
Forward-annotated Tcl assignments and constraints file. The <project name>.tcl file is generated for all
devices. The .tcl file acts as the Quartus II Project Configuration file and is used to make basic project and
placement assignments, and to create and compile a Quartus II project.

.acf
Assignment and Configurations file for backward compatibility with the MAX+PLUS II software. For
devices supported by the MAX+PLUS II software, the MAX+PLUS II assignments are imported from the
MAX+PLUS II .acf file.

.sdc

Quartus II timing constraints file in Synopsys Design Constraints format.

This file is generated automatically if the device uses the TimeQuest Timing Analyzer by default in the
Quartus II software, and has the naming convention <project name>_pnr_constraints.sdc. For more
information about generating a TimeQuest constraint file, refer to “Exporting Designs to the Quartus II
Software Using NativeLink Integration” on page 18–10.

Notes to Table 18–1:

(1) The timing report file includes performance estimates that are based on pre-place-and-route information. Use the fMAX reported by the
Quartus II software after place-and-route for accurate post-place-and-route timing information. The area report file includes post-synthesis
device resource utilization statistics that can differ from the resource usage after place-and-route due to black boxes or further optimizations
performed during placement and routing. Use the device utilization reported by the Quartus II software after place-and-route for final resource
utilization results. See “Synthesizing the Design and Evaluating the Results” on page 18–9 for details.

(2) The Precision Synthesis software-generated VQM file is supported by the Quartus II software version 10.1 and later.
Quartus II Handbook Version 13.1 June 2012 Altera Corporation
Volume 1: Design and Synthesis

http://www.altera.com/literature/hb/qts/qts_qii52007.pdf
http://www.altera.com/literature/hb/qts/qts_qii52007.pdf
http://www.altera.com/literature/hb/qts/qts_qii52005.pdf
http://www.altera.com/literature/hb/qts/qts_qii52005.pdf

Chapter 18: Mentor Graphics Precision Synthesis Support 18–5
Creating and Compiling a Project in the Precision Synthesis Software
Creating and Compiling a Project in the Precision Synthesis Software
After creating your design files, create a project in the Precision Synthesis software
that contains the basic settings for compiling the design.

To create a project, follow these steps:

1. In the Precision Synthesis software, click New Project in the Design Bar on the left
side of the GUI.

2. Specify the Project Name and the Project Folder. The implementation name of the
design corresponds to this project name.

3. Add input files to the project by clicking Add Input Files in the Design Bar. The
Precision Synthesis software automatically detects the top-level module/entity of
the design and uses it to name the current implementation directory, logs, reports,
and netlist files.

4. In the Design Bar, click Setup Design.

5. To specify a target device family, expand Altera and select the target device and
speed grade.

6. If you want, you can set a global design frequency and/or default input and
output delays. This constrains all clock paths and I/O pins in your design. Modify
the settings for individual paths or pins that do not require such a setting.

7. On the Design Center tab, right-click the Output Files folder and click Output
Options.

8. To generate additional HDL netlists for post-synthesis simulation, select the
desired output format. The Precision Synthesis software generates a separate file
for each selected type of file: EDIF and Verilog HDL or VHDL.

9. To compile the design into a technology-independent implementation, in the
Design Bar, click Compile.

Mapping the Precision Synthesis Design
In the next steps, you set constraints and map the design to technology-specific cells.
The Precision Synthesis software maps the design by default to the fastest possible
implementation that meets your timing constraints. To accomplish this, you must
specify timing requirements for the automatically determined clock sources. With this
information, the Precision Synthesis software performs static timing analysis to
determine the location of the critical timing paths. The Precision Synthesis software
achieves the best results for your design when you set as many realistic constraints as
possible. Be sure to set constraints for timing, mapping, false paths, multicycle paths,
and other factors that control the structure of the implemented design.

Mentor Graphics recommends creating an .sdc file and adding this file to the
Constraint Files section of the Project Files list. You can create this file with a text
editor, by issuing command-line constraint parameters, or by directing the Precision
Synthesis software to generate the file automatically the first time you synthesize your
design. To create a constraint file with the user interface, set constraints on design
objects (such as clocks, design blocks, or pins) in the Design Hierarchy browser. By
June 2012 Altera Corporation Quartus II Handbook Version 13.1
Volume 1: Design and Synthesis

18–6 Chapter 18: Mentor Graphics Precision Synthesis Support
Mapping the Precision Synthesis Design
default, the Precision Synthesis software saves all timing constraints and attributes in
two files: precision_rtl.sdc and precision_tech.sdc. The precision_rtl.sdc file contains
constraints set on the RTL-level database (post-compilation) and the
precision_tech.sdc file contains constraints set on the gate-level database
(post- synthesis) located in the current implementation directory.

You can also enter constraints at the command line. After adding constraints at the
command line, update the .sdc file with the update constraint file command. You can
add constraints that change infrequently directly to the HDL source files with HDL
attributes or pragmas.

1 The Precision .sdc file contains all the constraints for the Precision Synthesis project.
For the Quartus II software, placement constraints are written in a .tcl file and timing
constraints for the TimeQuest Timing Analyzer are written in the Quartus II .sdc file.

f For details about the syntax of Synopsys Design Constraint commands, refer to the
Precision RTL Synthesis User’s Manual and the Precision Synthesis Reference Manual. For
more details and examples of attributes, refer to the Attributes chapter in the Precision
Synthesis Reference Manual. To access these manuals in the Precision Synthesis
software, click Help and select Open Manuals Bookcase.

Setting Timing Constraints
The Precision Synthesis software uses timing constraints, based on the industry-
standard .sdc file format, to deliver optimal results. Missing timing constraints can
result in incomplete timing analysis and might prevent timing errors from being
detected. The Precision Synthesis software provides constraint analysis prior to
synthesis to ensure that designs are fully and accurately constrained. The
<project name>_pnr_constraints.sdc file, which contains timing constraints in SDC
format, is generated in the Quartus II software.

1 Because the .sdc file format requires that timing constraints be set relative to defined
clocks, you must specify your clock constraints before applying any other timing
constraints.

You also can use multicycle path and false path assignments to relax requirements or
exclude nodes from timing requirements, which can improve area utilization and
allow the software optimizations to focus on the most critical parts of the design.

f For details about the syntax of Synopsys Design Constraint commands, refer to the
Precision RTL Synthesis User’s Manual and the Precision Synthesis Reference Manual. To
access these manuals in the Precision Synthesis software, click Help and select Open
Manuals Bookcase.

Setting Mapping Constraints
Mapping constraints affect how your design is mapped into the target Altera device.
You can set mapping constraints in the user interface, in HDL code, or with the
set_attribute command in the constraint file.
Quartus II Handbook Version 13.1 June 2012 Altera Corporation
Volume 1: Design and Synthesis

Chapter 18: Mentor Graphics Precision Synthesis Support 18–7
Mapping the Precision Synthesis Design
Assigning Pin Numbers and I/O Settings
The Precision Synthesis software supports assigning device pin numbers, I/O
standards, drive strengths, and slew-rate settings to top-level ports of the design. You
can set these timing constraints with the set_attribute command, the GUI, or by
specifying synthesis attributes in your HDL code. These constraints are
forward-annotated in the <project name>.tcl file that is read by the Quartus II software
during place-and-route and do not affect synthesis.

You can use the set_attribute command in the Precision Synthesis software .sdc file
format to specify pin number constraints, I/O standards, drive strengths, and slow
slew-rate settings. Table 18–2 describes the format to use for entries in the Precision
Synthesis software constraint file.

You can also specify these options in the GUI. To specify a pin number or other I/O
setting in the Precision Synthesis GUI, follow these steps:

1. After compiling the design, expand Ports in the Design Hierarchy Browser.

2. Under Ports, expand Inputs or Outputs.

1 You also can assign I/O settings by right-clicking the pin in the Schematic
Viewer.

3. Right-click the desired pin name and select Set Input Constraints under Inputs or
Set Output Constraints under Outputs.

4. Type the desired pin number on the Altera device in the Pin Number box in the
Port Constraints dialog box.

5. Select the I/O standard from the IO_STANDARD list.

6. For output pins, you can also select a drive strength setting and slew rate setting
using the DRIVE and SLOW SLEW lists.

You also can use synthesis attributes or pragmas in your HDL code to make these
assignments. Example 18–1 and Example 18–2 show code samples that make a pin
assignment in your HDL code.

Table 18–2. Constraint File Settings

Constraint Entry Format for Precision Constraint File

Pin number set_attribute -name PIN_NUMBER -value "<pin number>" -port <port name>

I/O standard set_attribute -name IOSTANDARD -value "<I/O Standard>" -port <port name>

Drive strength set_attribute -name DRIVE -value "<drive strength in mA>" -port <port name>

Slew rate set_attribute -name SLEW -value "TRUE | FALSE" -port <port name>

Example 18–1. Verilog HDL Pin Assignment

//pragma attribute clk pin_number P10;

Example 18–2. VHDL Pin Assignment

attribute pin_number : string
attribute pin_number of clk : signal is “P10”;
June 2012 Altera Corporation Quartus II Handbook Version 13.1
Volume 1: Design and Synthesis

18–8 Chapter 18: Mentor Graphics Precision Synthesis Support
Mapping the Precision Synthesis Design
You can use the same syntax to assign the I/O standard using the IOSTANDARD
attribute, drive strength using the attribute DRIVE, and slew rate using the
SLEW attribute.

1 For more details about attributes and how to set these attributes in your HDL code,
refer to the Precision Synthesis Reference Manual. To access this manual, in the Precision
Synthesis software, click Help and select Open Manuals Bookcase.

Assigning I/O Registers
The Precision Synthesis software performs timing-driven I/O register mapping by
default. You can force a register to the device’s IO element (IOE) using the Complex
I/O constraint. This option does not apply if you turn off I/O pad insertion. Refer to
“Disabling I/O Pad Insertion” on page 18–8 for more information.

To force an I/O register into the device’s IOE using the GUI, follow these steps:

1. After compiling the design, expand Ports in the Design Hierarchy browser.

2. Under Ports, expand Inputs or Outputs.

3. Under Inputs or Outputs, right-click the desired pin name, point to Map Input
Register to IO or Map Output Register to IO, for input or output respectively,
and click True.

1 You also can make the assignment by right-clicking on the pin in the Schematic
Viewer.

For the Stratix series, Cyclone series, and the MAX II device families, the Precision
Synthesis software can move an internal register to an I/O register without any
restrictions on design hierarchy.

For more mature devices, the Precision Synthesis software can move an internal
register to an I/O register only when the register exists in the top-level of the
hierarchy. If the register is buried in the hierarchy, you must flatten the hierarchy so
that the buried registers are moved to the top-level of the design.

Disabling I/O Pad Insertion
The Precision Synthesis software assigns I/O pad atoms (device primitives used to
represent the I/O pins and I/O registers) to all ports in the top-level of a design by
default. In certain situations, you might not want the software to add I/O pads to all
I/O pins in the design. The Quartus II software can compile a design without I/O
pads; however, including I/O pads provides the Precision Synthesis software with
more information about the top-level pins in the design.

Preventing the Precision Synthesis Software from Adding I/O Pads
If you are compiling a subdesign as a separate project, I/O pins cannot be primary
inputs or outputs of the device; therefore, the I/O pins should not have an I/O pad
associated with them. To prevent the Precision Synthesis software from adding I/O
pads, perform the following steps:

1. On the Tools menu, click Set Options. The Options dialog box appears.
Quartus II Handbook Version 13.1 June 2012 Altera Corporation
Volume 1: Design and Synthesis

Chapter 18: Mentor Graphics Precision Synthesis Support 18–9
Synthesizing the Design and Evaluating the Results
2. On the Optimization page, turn off Add IO Pads.

3. Click Apply.

These steps add the following command to the project file:

setup_design -addio=false

Preventing the Precision Synthesis Software from Adding an I/O Pad on an
Individual Pin
To prevent I/O pad insertion on an individual pin when you are using a black box,
such as DDR or a phase-locked loop (PLL), at the external ports of the design, perform
the following steps:

1. After compiling the design, in the Design Hierarchy browser, expand Ports.

2. Under Ports, expand Inputs or Outputs.

3. Under Inputs or Outputs, right-click the desired pin name and click Set Input
Constraints.

4. In the Port Constraints dialog box for the selected pin name, turn off Insert Pad.

1 You also can make this assignment by right-clicking the pin in the Schematic Viewer
or by attaching the nopad attribute to the port in the HDL source code.

Controlling Fan-Out on Data Nets
Fan-out is defined as the number of nodes driven by an instance or top-level port.
High fan-out nets can cause significant delays that result in an unroutable net. On a
critical path, high fan-out nets can cause longer delays in a single net segment that
result in the timing constraints not being met. To prevent this behavior, each device
family has a global fan-out value set in the Precision Synthesis software library. In
addition, the Quartus II software automatically routes high fan-out signals on global
routing lines in the Altera device whenever possible.

To eliminate routability and timing issues associated with high fan-out nets, the
Precision Synthesis software also allows you to override the library default value on a
global or individual net basis. You can override the library value by setting a
max_fanout attribute on the net.

Synthesizing the Design and Evaluating the Results
To synthesize the design for the target device, click Synthesize in the Precision
Synthesis Design Bar. During synthesis, the Precision Synthesis software optimizes
the compiled design, and then writes out netlists and reports to the implementation
subdirectory of your working directory after the implementation is saved, using the
following naming convention:

<project name>_impl_<number>

f After synthesis is complete, you can evaluate the results for area and timing. The
Precision RTL Synthesis User’s Manual on the Mentor Graphics website describes
different results that can be evaluated in the software.
June 2012 Altera Corporation Quartus II Handbook Version 13.1
Volume 1: Design and Synthesis

18–10 Chapter 18: Mentor Graphics Precision Synthesis Support
Exporting Designs to the Quartus II Software Using NativeLink Integration
There are several schematic viewers available in the Precision Synthesis software: RTL
schematic, Technology-mapped schematic, and Critical Path schematic. These
analysis tools allow you to quickly and easily isolate the source of timing or area
issues, and to make additional constraint or code changes to optimize the design.

Obtaining Accurate Logic Utilization and Timing Analysis Reports
Historically, designers have relied on post-synthesis logic utilization and timing
reports to determine the amount of logic their design requires, the size of the device
required, and how fast the design runs. However, today’s FPGA devices provide a
wide variety of advanced features in addition to basic registers and look-up tables
(LUTs). The Quartus II software has advanced algorithms to take advantage of these
features, as well as optimization techniques to increase performance and reduce the
amount of logic required for a given design. In addition, designs can contain black
boxes and functions that take advantage of specific device features. Because of these
advances, synthesis tool reports provide post-synthesis area and timing estimates, but
you should use the place-and-route software to obtain final logic utilization and
timing reports.

Exporting Designs to the Quartus II Software Using NativeLink
Integration

The NativeLink feature in the Quartus II software facilitates the seamless transfer of
information between the Quartus II software and EDA tools, which allows you to run
other EDA design entry/synthesis, simulation, and timing analysis tools
automatically from within the Quartus II software.

After a design is synthesized in the Precision Synthesis software, the
technology-mapped design is written to the current implementation directory as an
EDIF netlist file, along with a Quartus II Project Configuration File and a
place-and-route constraints file. You can use the Project Configuration script,
<project name>.tcl, to create and compile a Quartus II project for your EDIF or VQM
netlist. This script makes basic project assignments, such as assigning the target
device specified in the Precision Synthesis software. If you select an Arria GX,
Stratix III, Cyclone III, or newer device, the constraints are written in SDC format to
the <project name>_pnr_constraints.sdc file by default, which is used by the Fitter and
the TimeQuest Timing Analyzer in the Quartus II software.

Use the following Precision Synthesis software command before compilation to
generate the <project name>_pnr_constraints.sdc:

setup_design -timequest_sdc

With this command, the file is generated after the synthesis.

Running the Quartus II Software from within the Precision Synthesis
Software

The Precision Synthesis software also has a built-in place-and-route environment that
allows you to run the Quartus II Fitter and view the results in the Precision Synthesis
GUI. This feature is useful when performing an initial compilation of your design to
view post-place-and-route timing and device utilization results, but not all the
advanced Quartus II options that control the compilation process are available.
Quartus II Handbook Version 13.1 June 2012 Altera Corporation
Volume 1: Design and Synthesis

Chapter 18: Mentor Graphics Precision Synthesis Support 18–11
Exporting Designs to the Quartus II Software Using NativeLink Integration
After you specify an Altera device as the target, set the options for the Quartus II
software. On the Tools menu, click Set Options. On the Integrated Place and Route
page, under Quartus II Modular, specify the path to the Quartus II executables in the
Path to Quartus II installation tree box.

To automate the place-and-route process, click Run Quartus II in the Quartus II
Modular window of the Precision Synthesis toolbar. The Quartus II software uses the
current implementation directory as the Quartus II project directory and runs a full
compilation in the background (that is, the user interface does not appear).

Two primary Precision Synthesis software commands control the place-and-route
process. Use the setup_place_and_route command to set the place-and-route
options. Start the process with the place_and_route command.

Precision Synthesis software uses individual Quartus II executables, such as analysis
and synthesis (quartus_map), Fitter (quartus_fit), and the TimeQuest Timing
Analyzer (quartus_sta) for improved runtime and memory utilization during place
and route. This flow is referred to as the Quartus II Modular flow option in the
Precision Synthesis software. By default, the Precision Synthesis software generates a
Quartus II Project Configuration File (.tcl file) for current device families. Timing
constraints that you set during synthesis are exported to the Quartus II
place-and-route constraints file <project name>_pnr_constraints.sdc.

After you compile the design in the Quartus II software from within the Precision
Synthesis software, you can invoke the Quartus II GUI manually and then open the
project using the generated Quartus II project file. You can view reports, run analysis
tools, specify options, and run the various processing flows available in the Quartus II
software.

f For more information about running the Quartus II software from within the
Precision Synthesis software, refer to the Altera Quartus II Integration chapter in the
Precision Synthesis Reference Manual. To access this manual in the Precision Synthesis
software, click Help and select Open Manuals Bookcase.

Running the Quartus II Software Manually Using the Precision
Synthesis-Generated Tcl Script

You can run the Quartus II software using a Tcl script generated by the Precision
Synthesis software. To run the Tcl script generated by the Precision Synthesis software
to set up your project and start a full compilation, perform the following steps:

1. Ensure the .edf or .vqm file, .tcl files, and .sdc file are located in the same directory.
The files should be located in the implementation directory by default.

2. In the Quartus II software, on the View menu, point to Utility Windows and click
Tcl Console.

3. At the Tcl Console command prompt, type the command:

source <path>/<project name>.tcl r
4. On the File menu, click Open Project. Browse to the project name and click Open.

5. Compile the project in the Quartus II software.
June 2012 Altera Corporation Quartus II Handbook Version 13.1
Volume 1: Design and Synthesis

18–12 Chapter 18: Mentor Graphics Precision Synthesis Support
Exporting Designs to the Quartus II Software Using NativeLink Integration
Using the Quartus II Software to Run the Precision Synthesis Software
With NativeLink integration, you can set up the Quartus II software to run the
Precision Synthesis software. This feature allows you to use the Precision Synthesis
software to synthesize a design as part of a standard compilation. When you use this
feature, the Precision Synthesis software does not use any timing constraints or
assignments, such as incremental compilation partitions, that you have set in the
Quartus II software.

h For detailed information about using NativeLink integration with the Precision
Synthesis software, refer to Using the NativeLink Feature with Other EDA Tools in the
Quartus II Help.

Passing Constraints to the Quartus II Software
The place-and-route constraints script forward-annotates timing constraints that you
made in the Precision Synthesis software. This integration allows you to enter these
constraints once in the Precision Synthesis software, and then pass them
automatically to the Quartus II software.

Refer to the introductory text in the section “Exporting Designs to the Quartus II
Software Using NativeLink Integration” on page 18–10 for information on how to
ensure the Precision Synthesis software targets the TimeQuest Timing Analyzer.

The following constraints are translated by the Precision Synthesis software and are
applicable to the TimeQuest Timing Analyzer:

■ create_clock

■ set_input_delay

■ set_output_delay

■ set_max_delay

■ set_min_delay

■ set_false_path

■ set_multicycle_path

create_clock
You can specify a clock in the Precision Synthesis software, as shown in Example 18–3.

Example 18–3. Specifying a Clock using create_clock

create_clock -name <clock_name> -period <period in ns> -waveform {<edge_list>} -domain \
<ClockDomain> <pin>
Quartus II Handbook Version 13.1 June 2012 Altera Corporation
Volume 1: Design and Synthesis

http://quartushelp.altera.com/10.1/master.htm#mergedProjects/eda/quartus2/eda_pro_using_nativelink.htm

Chapter 18: Mentor Graphics Precision Synthesis Support 18–13
Exporting Designs to the Quartus II Software Using NativeLink Integration
The period is specified in units of nanoseconds (ns). If no clock domain is specified,
the clock belongs to a default clock domain main. All clocks in the same clock domain
are treated as synchronous (related) clocks. If no <clock_name> is provided, the default
name virtual_default is used. The <edge_list> sets the rise and fall edges of the clock
signal over an entire clock period. The first value in the list is a rising transition,
typically the first rising transition after time zero. The waveform can contain any even
number of alternating edges, and the edges listed should alternate between rising and
falling. The position of any edge can be equal to or greater than zero but must be
equal to or less than the clock period.

If -waveform <edge_list> is not specified and -period <period in ns> is specified, the
default waveform has a rising edge of 0.0 and a falling edge of <period_value>/2.

The Precision Synthesis software maps the clock constraint to the TimeQuest
create_clock setting in the Quartus II software.

The Quartus II software supports only clock waveforms with two edges in a clock
cycle. If the Precision Synthesis software finds a multi-edge clock, it issues an error
message when you synthesize your design in the Precision Synthesis software.

set_input_delay
This port-specific input delay constraint is specified in the Precision Synthesis
software, as shown in Example 18–4.

This constraint is mapped to the set_input_delay setting in the Quartus II software.

When the reference clock <clock_name> is not specified, all clocks are assumed to be
the reference clocks for this assignment. The input pin name for the assignment can be
an input pin name of a time group. The software can use the clock_fall option to
specify delay relative to the falling edge of the clock.

1 Although the Precision Synthesis software allows you to set input delays on pins
inside the design, these constraints are not sent to the Quartus II software, and a
message is displayed.

set_output_delay
This port-specific output delay constraint is specified in the Precision Synthesis
software, as shown in Example 18–5.

This constraint is mapped to the set_output_delay setting in the Quartus II software.

When the reference clock <clock_name> is not specified, all clocks are assumed to be
the reference clocks for this assignment. The output pin name for the assignment can
be an output pin name of a time group.

Example 18–4. Specifying set_input_delay

set_input_delay {<delay_value> <port_pin_list>} -clock <clock_name> -rise -fall -add_delay

Example 18–5. Using the set_output_delay Constraint

set_output_delay {<delay_value> <port_pin_list>} -clock <clock_name> -rise -fall -add_delay
June 2012 Altera Corporation Quartus II Handbook Version 13.1
Volume 1: Design and Synthesis

18–14 Chapter 18: Mentor Graphics Precision Synthesis Support
Exporting Designs to the Quartus II Software Using NativeLink Integration
1 Although the Precision Synthesis software allows you to set output delays on pins
inside the design, these constraints are not sent to the Quartus II software.

set_max_delay and set_min_delay
The maximum delay for a point-to-point timing path constraint is specified in the
Precision Synthesis software, as shown in Example 18–6. The minimum delay for a
point-to-point timing path constraint is shown in Example 18–7.

The set_max_delay and set_min_delay commands specify that the maximum and
minimum respectively, required delay for any start point in <from_node_list> to any
endpoint in <to_node_list> must be less than or greater than <delay_value>. Typically,
you use these commands to override the default setup constraint for any path with a
specific maximum or minimum time value for the path.

The node lists can contain a collection of clocks, registers, ports, pins, or cells. The
-from and -to parameters specify the source (start point) and the destination
(endpoint) of the timing path, respectively. The source list (<from_node_list>) cannot
include output ports, and the destination list (<to_node_list>) cannot include input
ports. If you include more than one node on a list, you must enclose the nodes in
quotes or in braces ({ }).

If you specify a clock in the source list, you must specify a clock in the destination list.
Applying set_max_delay or set_min_delay setting between clocks applies the
exception from all registers or ports driven by the source clock to all registers or ports
driven by the destination clock. Applying exceptions between clocks is more efficient
than applying them for specific node-to-node, or node-to-clock paths. If you want to
specify pin names in the list, the source must be a clock pin and the destination must
be any non-clock input pin to a register. Assignments from clock pins, or to and from
cells, apply to all registers in the cell or for those driven by the clock pin.

set_false_path
The false path constraint is specified in the Precision Synthesis software, as shown in
Example 18–8.

The node lists can be a list of clocks, ports, instances, and pins. Multiple elements in
the list can be represented using wildcards such as * and ?.

In a place-and-route Tcl constraints file, this false path setting in the Precision
Synthesis software is mapped to a set_false_path setting. The Quartus II software
supports setup, hold, rise, or fall options for this assignment.

Example 18–6. Using the set_max_delay Constraint

set_max_delay -from {<from_node_list>} -to {<to_node_list>} <delay_value>

Example 18–7. Using the set_min_delay Constraint

set_min_delay -from {<from_node_list>} -to {<to_node_list>} <delay_value>

Example 18–8. Using the set_false_path Constraint

set_false_path -to <to_node_list> -from <from_node_list> -reset_path
Quartus II Handbook Version 13.1 June 2012 Altera Corporation
Volume 1: Design and Synthesis

Chapter 18: Mentor Graphics Precision Synthesis Support 18–15
Guidelines for Altera Megafunctions and Architecture-Specific Features
The node lists for this assignment represents top-level ports and/or nets connected to
instances (end points of timing assignments).

Any false path setting in the Precision Synthesis software can be mapped to a setting
in the Quartus II software with a through path specification.

set_multicycle_path
This multicycle path constraint is specified in the Precision Synthesis software, as
shown in Example 18–9.

The node list can contain clocks, ports, instances, and pins. Multiple elements in the
list can be represented using wildcards such as * and ?. Paths without multicycle path
definitions are identical to paths with multipliers of 1. To add one additional cycle to
the datapath, use a multiplier value of 2. The option start indicates that source clock
cycles should be considered for the multiplier. The option end indicates that
destination clock cycles should be considered for the multiplier. The default is to
reference the end clock.

In the place-and-route Tcl constraints file, the multicycle path setting in the Precision
Synthesis software is mapped to a set_multicycle_path setting. The Quartus II
software supports the rise or fall options on this assignment.

The node lists represent top-level ports and/or nets connected to instances (end
points of timing assignments). The node lists can contain wildcards (such as *); the
Quartus II software automatically expands all wildcards.

Any multicycle path setting in Precision Synthesis software can be mapped to a
setting in the Quartus II software with a -through specification.

Guidelines for Altera Megafunctions and Architecture-Specific
Features

Altera provides parameterizable megafunctions, including the LPMs, device-specific
Altera megafunctions, IP available as Altera MegaCore functions, and IP available
through the Altera Megafunction Partners Program (AMPPSM). You can use
megafunctions and IP functions by instantiating them in your HDL code or by
inferring certain megafunctions from generic HDL code.

If you want to instantiate a megafunction such as a PLL in your HDL code, you can
instantiate and parameterize the function using the port and parameter definitions, or
you can customize a function with the MegaWizard™ Plug-In Manager. Altera
recommends using the MegaWizard Plug-In Manager, which provides a graphical
interface within the Quartus II software for customizing and parameterizing any
available megafunction for the design. “Instantiating Altera Megafunctions Using the
MegaWizard Plug-In Manager” and “Instantiating Intellectual Property With the
MegaWizard Plug-In Manager and IP Toolbench” on page 18–17 describe the
MegaWizard Plug-In Manager flow with the Precision Synthesis software.

Example 18–9. Using the set_multicycle_path Constraint

set_multicycle_path <multiplier_value> [-start] [-end] -to <to_node_list> -from <from_node_list> \
-reset_path
June 2012 Altera Corporation Quartus II Handbook Version 13.1
Volume 1: Design and Synthesis

18–16 Chapter 18: Mentor Graphics Precision Synthesis Support
Guidelines for Altera Megafunctions and Architecture-Specific Features
f For more information about specific Altera megafunctions and IP functions, refer to
the IP and Megafunctions page of the Altera website.

The Precision Synthesis software automatically recognizes certain types of HDL code
and infers the appropriate function. The Precision Synthesis software provides
options to control inference of certain types of megafunctions, as described in
“Inferring Altera Megafunctions from HDL Code” on page 18–19.

f For a detailed discussion about instantiating functions versus inferring functions to
target Altera architecture-specific features, refer to the Recommended HDL Coding
Styles chapter in volume 1 of the Quartus II Handbook. This chapter also provides
details on using the MegaWizard Plug-In Manager in the Quartus II software and
explains the files generated by the wizard, as well as coding style recommendations
and HDL examples for inferring functions in Altera devices.

Instantiating Altera Megafunctions Using the MegaWizard Plug-In
Manager

This section describes how to instantiate Altera megafunctions with the MegaWizard
Plug-In Manager, and how to generate the files that are included in the Precision
Synthesis project for synthesis.

You can run the stand-alone version of the MegaWizard Plug-In Manager by typing
the following command at a command prompt:

qmegawiz r

Instantiating Megafunctions With MegaWizard Plug-In Manager-Generated
Verilog HDL Files
The MegaWizard Plug-In Manager generates a Verilog HDL instantiation template
file <output file>_inst.v and a hollow-body black box module declaration <output
file>_bb.v for use in your Precision Synthesis design. Incorporate the instantiation
template file, <output file>_inst.v, into your top-level design to instantiate the
megafunction wrapper file, <output file>.v.

Include the hollow-body black box module declaration <output file>_bb.v in your
Precision Synthesis project to describe the port connections of the black box. Adding
the megafunction wrapper file <output file>.v in your Precision Synthesis project is
optional, but you must add it to your Quartus II project along with the Precision
Synthesis-generated EDIF or VQM netlist.

Alternatively, you can include the megafunction wrapper file <output file>.v in your
Precision Synthesis project and then right-click the file in the input file list, and select
Properties. In the Input file properties dialog box, turn on Exclude file from
Compile Phase and click OK. When this option is turned on, the Precision Synthesis
software excludes the file from compilation and copies the file to the appropriate
directory for use by the Quartus II software during place-and-route.
Quartus II Handbook Version 13.1 June 2012 Altera Corporation
Volume 1: Design and Synthesis

http://www.altera.com/literature/lit-ip.jsp
http://www.altera.com/literature/hb/qts/qts_qii51007.pdf
http://www.altera.com/literature/hb/qts/qts_qii51007.pdf

Chapter 18: Mentor Graphics Precision Synthesis Support 18–17
Guidelines for Altera Megafunctions and Architecture-Specific Features
Instantiating Megafunctions With MegaWizard Plug-In Manager-Generated
VHDL Files
The MegaWizard Plug-In Manager generates a VHDL component declaration file
<output file>.cmp and a VHDL instantiation template file <output file>_inst.vhd for
use in your Precision Synthesis design. Incorporate the component declaration and
instantiation template into your top-level design to instantiate the megafunction
wrapper file, <output file>.vhd.

Adding the megafunction wrapper file <output file>.vhd in your Precision Synthesis
project is optional, but you must add the file to your Quartus II project along with the
Precision Synthesis-generated EDIF or VQM netlist.

Alternatively, you can include the megafunction wrapper file <output file>.vhd in
your Precision Synthesis project and then right-click the file in the input file list, and
select Properties. In the Input file properties dialog box, turn on Exclude file from
Compile Phase and click OK. When this option is turned on, the Precision Synthesis
software excludes the file from compilation and copies the file to the appropriate
directory for use by the Quartus II software during place-and-route.

Instantiating Intellectual Property With the MegaWizard Plug-In Manager
and IP Toolbench
Many Altera IP functions include a resource and timing estimation netlist that the
Precision Synthesis software can use to synthesize and optimize logic around the IP
efficiently. As a result, the Precision Synthesis software provides better timing
correlation, area estimates, and Quality of Results (QoR) than a black box approach.

To create this netlist file, perform the following steps:

1. Select the IP function in the MegaWizard Plug-In Manager.

2. Click Next to open the IP Toolbench.

3. Click Set Up Simulation, which sets up all the EDA options.

4. Turn on the Generate netlist option to generate a netlist for resource and timing
estimation and click OK.

5. Click Generate to generate the netlist file.

The Quartus II software generates a file <output file>_syn.v. This netlist contains the
“grey box” information for resource and timing estimation, but does not contain the
actual implementation. Include this netlist file into your Precision Synthesis project as
an input file. Then include the megafunction wrapper file <output file>.v|vhd in the
Quartus II project along with your EDIF or VQM output netlist.

1 The generated “grey box” netlist file, <output file>_syn.v, is always in Verilog HDL
format, even if you select VHDL as the output file format.

1 For information about creating a grey box netlist file from the command line, search
Altera's Knowledge Database. Alternatively, you can use a black box approach as
described in “Instantiating Black Box IP Functions With Generated Verilog HDL
Files”.
June 2012 Altera Corporation Quartus II Handbook Version 13.1
Volume 1: Design and Synthesis

18–18 Chapter 18: Mentor Graphics Precision Synthesis Support
Guidelines for Altera Megafunctions and Architecture-Specific Features
Instantiating Black Box IP Functions With Generated Verilog HDL Files
You can use the syn_black_box or black_box compiler directives to declare a module
as a black box. The top-level design files must contain the IP port mapping and a
hollow-body module declaration. You can apply the directive to the module
declaration in the top-level file or a separate file included in the project so that the
Precision Synthesis software recognizes the module is a black box.

1 The syn_black_box and black_box directives are supported only on module or entity
definitions.

Example 18–10 shows a sample top-level file that instantiates my_verilogIP.v, which
is a simplified customized variation generated by the MegaWizard Plug-In Manager
and IP Toolbench.

Instantiating Black Box IP Functions With Generated VHDL Files
You can use the syn_black_box or black_box compiler directives to declare a
component as a black box. The top-level design files must contain the megafunction
variation component declaration and port mapping. Apply the directive to the
component declaration in the top-level file.

1 The syn_black_box and black_box directives are supported only on module or entity
definitions.

Example 18–10. Top-Level Verilog HDL Code with Black Box Instantiation of IP

module top (clk, count);
 input clk;
 output[7:0] count;

 my_verilogIP verilogIP_inst (.clock (clk), .q (count));
endmodule

// Module declaration
// The following attribute is added to create a
// black box for this module.
module my_verilogIP (clock, q) /* synthesis syn_black_box */;
 input clock;
 output[7:0] q;
endmodule
Quartus II Handbook Version 13.1 June 2012 Altera Corporation
Volume 1: Design and Synthesis

Chapter 18: Mentor Graphics Precision Synthesis Support 18–19
Guidelines for Altera Megafunctions and Architecture-Specific Features
Example 18–11 shows a sample top-level file that instantiates my_vhdlIP.vhd, which
is a simplified customized variation generated by the MegaWizard Plug-In Manager
and IP Toolbench.

Inferring Altera Megafunctions from HDL Code
The Precision Synthesis software automatically recognizes certain types of HDL code
and maps arithmetical and relational operators, and memory (RAM and ROM), to
efficient technology-specific implementations. This functionality allows
technology-specific resources to implement these structures by inferring the
appropriate Altera function to provide optimal results. In some cases, the Precision
Synthesis software has options that you can use to disable or control inference.

f For coding style recommendations and examples for inferring technology-specific
architecture in Altera devices, refer to the Recommended HDL Coding Styles chapter in
volume 1 of the Quartus II Handbook, and the Precision Synthesis Style Guide in the
Precision Manuals Bookcase. To access these manuals, in the Precision Synthesis
software, click Help and select Open Manuals Bookcase.

Multipliers
The Precision Synthesis software detects multipliers in HDL code and maps them
directly to device atoms to implement the multiplier in the appropriate type of logic.
The Precision Synthesis software also allows you to control the device resources that
are used to implement individual multipliers, as described in the following section.

Example 18–11. Top-Level VHDL Code with Black Box Instantiation of IP

LIBRARY ieee;
USE ieee.std_logic_1164.all;
ENTITY top IS
 PORT (
 clk: IN STD_LOGIC ;
 count: OUT STD_LOGIC_VECTOR (7 DOWNTO 0)
);
END top;

ARCHITECTURE rtl OF top IS
 COMPONENT my_vhdlIP
 PORT (
 clock: IN STD_LOGIC ;
 q: OUT STD_LOGIC_VECTOR (7 DOWNTO 0)
);
 end COMPONENT;
 attribute syn_black_box : boolean;
 attribute syn_black_box of my_vhdlIP: component is true;
 BEGIN
 vhdlIP_inst : my_vhdlIP PORT MAP (
 clock => clk,
 q => count
);
END rtl;
June 2012 Altera Corporation Quartus II Handbook Version 13.1
Volume 1: Design and Synthesis

http://www.altera.com/literature/hb/qts/qts_qii51007.pdf

18–20 Chapter 18: Mentor Graphics Precision Synthesis Support
Guidelines for Altera Megafunctions and Architecture-Specific Features
Controlling DSP Block Inference for Multipliers

By default, the Precision Synthesis software uses DSP blocks available in Stratix series
devices to implement multipliers. The default setting is AUTO, which allows the
Precision Synthesis software to map to logic look-up tables (LUTs) or DSP blocks,
depending on the size of the multiplier. You can use the Precision Synthesis GUI or
HDL attributes to direct mapping to only logic elements or to only DSP blocks.

The options for multiplier mapping in the Precision Synthesis software are described
in Table 18–3.

Setting the Use Dedicated Multiplier Option
To set the Use Dedicated Multiplier option in the Precision Synthesis GUI, compile
the design, and then in the Design Hierarchy browser, right-click the operator for the
desired multiplier and click Use Dedicated Multiplier.

Setting the dedicated_mult Attribute
To control the implementation of a multiplier in your HDL code, use the
dedicated_mult attribute with the appropriate value from Table 18–3, as shown in
Example 18–12 and Example 18–13.

The dedicated_mult attribute can be applied to signals and wires; it does not work
when applied to a register. This attribute can be applied only to simple multiplier
code, such as a = b * c.

Some signals for which the dedicated_mult attribute is set can be removed during
synthesis by the Precision Synthesis software for design optimization. In such cases, if
you want to force the implementation, you should preserve the signal by setting the
preserve_signal attribute to TRUE, as shown in Example 18–14 and Example 18–15.

Table 18–3. Options for dedicated_mult Parameter to Control Multiplier Implementation in
Precision Synthesis

Value Description

ON Use only DSP blocks to implement multipliers, regardless of the size of the multiplier.

OFF Use only logic (LUTs) to implement multipliers, regardless of the size of the multiplier.

AUTO Use logic (LUTs) or DSP blocks to implement multipliers, depending on the size of the
multipliers.

Example 18–12. Setting the dedicated_mult Attribute in Verilog HDL

//synthesis attribute <signal name> dedicated_mult <value>

Example 18–13. Setting the dedicated_mult Attribute in VHDL

ATTRIBUTE dedicated_mult: STRING;
ATTRIBUTE dedicated_mult OF <signal name>: SIGNAL IS <value>;

Example 18–14. Setting the preserve_signal Attribute in Verilog HDL

//synthesis attribute <signal name> preserve_signal TRUE
Quartus II Handbook Version 13.1 June 2012 Altera Corporation
Volume 1: Design and Synthesis

Chapter 18: Mentor Graphics Precision Synthesis Support 18–21
Guidelines for Altera Megafunctions and Architecture-Specific Features
Example 18–16 and Example 18–17 are examples, in Verilog HDL and VHDL, of using
the dedicated_mult attribute to implement the given multiplier in regular logic in the
Quartus II software.

Multiplier-Accumulators and Multiplier-Adders
The Precision Synthesis software also allows you to control the device resources used
to implement multiply-accumulators or multiply-adders in your project or in a
particular module.

The Precision Synthesis software detects multiply-accumulators or multiply-adders in
HDL code and infers an ALTMULT_ACCUM or ALTMULT_ADD megafunction so
that the logic can be placed in DSP blocks, or the software maps these functions
directly to device atoms to implement the multiplier in the appropriate type of logic.

Example 18–15. Setting the preserve_signal Attribute in VHDL

ATTRIBUTE preserve_signal: BOOLEAN;
ATTRIBUTE preserve_signal OF <signal name>: SIGNAL IS TRUE;

Example 18–16. Verilog HDL Multiplier Implemented in Logic

module unsigned_mult (result, a, b);
output [15:0] result;
input [7:0] a;
input [7:0] b;
assign result = a * b;
//synthesis attribute result dedicated_mult OFF

endmodule

Example 18–17. VHDL Multiplier Implemented in Logic

LIBRARY ieee;
USE ieee.std_logic_1164.ALL;
USE ieee.std_logic_arith.ALL;
USE ieee.std_logic_unsigned.ALL;

ENTITY unsigned_mult IS
PORT(

a: IN std_logic_vector (7 DOWNTO 0);
b: IN std_logic_vector (7 DOWNTO 0);
result: OUT std_logic_vector (15 DOWNTO 0));

ATTRIBUTE dedicated_mult: STRING;
END unsigned_mult;

ARCHITECTURE rtl OF unsigned_mult IS
SIGNAL a_int, b_int: UNSIGNED (7 downto 0);
SIGNAL pdt_int: UNSIGNED (15 downto 0);

ATTRIBUTE dedicated_mult OF pdt_int: SIGNAL IS "OFF";
BEGIN

a_int <= UNSIGNED (a);
b_int <= UNSIGNED (b);
pdt_int <= a_int * b_int;
result <= std_logic_vector(pdt_int);

END rtl;
June 2012 Altera Corporation Quartus II Handbook Version 13.1
Volume 1: Design and Synthesis

18–22 Chapter 18: Mentor Graphics Precision Synthesis Support
Guidelines for Altera Megafunctions and Architecture-Specific Features
1 The Precision Synthesis software supports inference for these functions only if the
target device family has dedicated DSP blocks. Refer to “Controlling DSP Block
Inference” for more information.

f For more information about DSP blocks in Altera devices, refer to the appropriate
Altera device family handbook and device-specific documentation. For details about
which functions a given DSP block can implement, refer to the DSP Solutions Center
on the Altera website at www.altera.com.

f For more information about inferring multiply-accumulator and multiply-adder
megafunctions in HDL code, refer to the Recommended HDL Coding Styles chapter in
volume 1 of the Quartus II Handbook, and the Precision Synthesis Style Guide in the
Precision Synthesis Manuals Bookcase.

Controlling DSP Block Inference
By default, the Precision Synthesis software infers the ALTMULT_ADD or
ALTMULT_ACCUM megafunction appropriately in your design. These
megafunctions allow the Quartus II software to select either logic or DSP blocks,
depending on the device utilization and the size of the function.

You can use the extract_mac attribute to prevent inference of an ALTMULT_ADD or
ALTMULT_ACCUM megafunction in a certain module or entity. The options for this
attribute are described in Table 18–4.

To control inference, use the extract_mac attribute with the appropriate value from
Table 18–4 in your HDL code, as shown in Example 18–18 and Example 18–19.

To control the implementation of the multiplier portion of a multiply-accumulator or
multiply-adder, you must use the dedicated_mult attribute.

Example 18–20 and Example 18–21 on page 18–23 use the extract_mac,
dedicated_mult, and preserve_signal attributes (in Verilog HDL and VHDL) to
implement the given DSP function in logic in the Quartus II software.

Table 18–4. Options for extract_mac Attribute Controlling DSP Implementation

Value Description

TRUE The ALTMULT_ADD or ALTMULT_ACCUM megafunction is inferred.

FALSE The ALTMULT_ADD or ALTMULT_ACCUM megafunction is not inferred.

Example 18–18. Setting the extract_mac Attribute in Verilog HDL

//synthesis attribute <module name> extract_mac <value>

Example 18–19. Setting the extract_mac Attribute in VHDL

ATTRIBUTE extract_mac: BOOLEAN;
ATTRIBUTE extract_mac OF <entity name>: ENTITY IS <value>;
Quartus II Handbook Version 13.1 June 2012 Altera Corporation
Volume 1: Design and Synthesis

http://www.altera.com
http://www.altera.com/literature/hb/qts/qts_qii51007.pdf

Chapter 18: Mentor Graphics Precision Synthesis Support 18–23
Guidelines for Altera Megafunctions and Architecture-Specific Features
Example 18–20. Using extract_mac, dedicated_mult and preserve_signal in Verilog HDL

module unsig_altmult_accum1 (dataout, dataa, datab, clk, aclr, clken);
input [7:0] dataa, datab;
input clk, aclr, clken;
output [31:0] dataout;

reg [31:0] dataout;
wire [15:0] multa;
wire [31:0] adder_out;

assign multa = dataa * datab;

//synthesis attribute multa preserve_signal TRUE
//synthesis attribute multa dedicated_mult OFF
assign adder_out = multa + dataout;

always @ (posedge clk or posedge aclr)
begin

if (aclr)
dataout <= 0;
else if (clken)
dataout <= adder_out;

end

//synthesis attribute unsig_altmult_accum1 extract_mac FALSE
endmodule

Example 18–21. Using extract_mac, dedicated_mult, and preserve_signal in VHDL

LIBRARY ieee;
USE ieee.std_logic_1164.all;
USE ieee.std_logic_arith.all;
USE ieee.std_logic_signed.all;
ENTITY signedmult_add IS

PORT(
a, b, c, d: IN STD_LOGIC_VECTOR (7 DOWNTO 0);
result: OUT STD_LOGIC_VECTOR (15 DOWNTO 0));

ATTRIBUTE preserve_signal: BOOLEAN;
ATTRIBUTE dedicated_mult: STRING;
ATTRIBUTE extract_mac: BOOLEAN;
ATTRIBUTE extract_mac OF signedmult_add: ENTITY IS FALSE;

END signedmult_add;
ARCHITECTURE rtl OF signedmult_add IS

SIGNAL a_int, b_int, c_int, d_int : signed (7 DOWNTO 0);
SIGNAL pdt_int, pdt2_int : signed (15 DOWNTO 0);
SIGNAL result_int: signed (15 DOWNTO 0);
ATTRIBUTE preserve_signal OF pdt_int: SIGNAL IS TRUE;
ATTRIBUTE dedicated_mult OF pdt_int: SIGNAL IS "OFF";
ATTRIBUTE preserve_signal OF pdt2_int: SIGNAL IS TRUE;
ATTRIBUTE dedicated_mult OF pdt2_int: SIGNAL IS "OFF";

BEGIN
a_int <= signed (a);
b_int <= signed (b);
c_int <= signed (c);
d_int <= signed (d);
pdt_int <= a_int * b_int;
pdt2_int <= c_int * d_int;
result_int <= pdt_int + pdt2_int;
result <= STD_LOGIC_VECTOR(result_int);

END rtl;
June 2012 Altera Corporation Quartus II Handbook Version 13.1
Volume 1: Design and Synthesis

18–24 Chapter 18: Mentor Graphics Precision Synthesis Support
Incremental Compilation and Block-Based Design
RAM and ROM
The Precision Synthesis software detects memory structures in HDL code and
converts them to an operator that infers an ALTSYNCRAM or LPM_RAM_DP
megafunction, depending on the device family. The software then places these
functions in memory blocks.

The software supports inference for these functions only if the target device family
has dedicated memory blocks.

f For more information about inferring RAM and ROM megafunctions in HDL code,
refer to the Recommended HDL Coding Styles chapter in volume 1 of the Quartus II
Handbook, and the Precision Synthesis Style Guide in the Precision Synthesis Manuals
Bookcase. To access these manuals, in the Precision Synthesis software, click Help and
select Open Manuals Bookcase.

Incremental Compilation and Block-Based Design
As designs become more complex and designers work in teams, a block-based
incremental design flow is often an effective design approach. In an incremental
compilation flow, you can make changes to one part of the design while maintaining
the placement and performance of unchanged parts of the design. Design iterations
can be made dramatically faster by focusing new compilations on particular design
partitions and merging results with the results of previous compilations of other
partitions. You can perform optimization on individual blocks and then integrate
them into a final design and optimize the design at the top-level.

The first step in an incremental design flow is to make sure that different parts of your
design do not affect each other. You must ensure that you have separate netlists for
each partition in your design. If the whole design is in one netlist file, changes in one
partition affect other partitions because of possible node name changes when you
resynthesize the design.

You can create different implementations for each partition in your Precision
Synthesis project, which allows you to switch between partitions without leaving the
current project file. You can also create a separate project for each partition if you
require separate projects for a team-based design flow. Alternatively, you can use the
incremental synthesis capability in the Precision RTL Plus software.

f For more information about creating partitions and using incremental compilation in
the Quartus II software, refer to the Quartus II Incremental Compilation for Hierarchical
and Team-Based Design chapter in volume 1 of the Quartus II Handbook.

Creating a Design with Precision RTL Plus Incremental Synthesis
The Precision RTL Plus incremental synthesis flow for Quartus II incremental
compilation uses a partition-based approach to achieve faster design cycle time.

Using the incremental synthesis feature, you can create different netlist files for
different partitions of a design hierarchy within one partition implementation, which
makes each partition independent of the others in an incremental compilation flow.
Only the portions of a design that have been updated must be recompiled during
design iterations. You can make changes and resynthesize one partition in a design to
create a new netlist without affecting the synthesis results or fitting of other partitions.
Quartus II Handbook Version 13.1 June 2012 Altera Corporation
Volume 1: Design and Synthesis

http://www.altera.com/literature/hb/qts/qts_qii51007.pdf
http://www.altera.com/literature/hb/qts/qts_qii51015.pdf
http://www.altera.com/literature/hb/qts/qts_qii51015.pdf

Chapter 18: Mentor Graphics Precision Synthesis Support 18–25
Incremental Compilation and Block-Based Design
The following steps show a general flow for partition-based incremental synthesis
with Quartus II incremental compilation.

1. Create Verilog HDL or VHDL design files.

2. Determine which hierarchical blocks you want to treat as separate partitions in
your design, and designate the partitions with the incr_partition attribute. For
the syntax to create partitions, refer to “Creating Partitions with the incr_partition
Attribute” on page 18–25.

3. Create a project in the Precision RTL Plus Synthesis software and add the HDL
design files to the project.

4. Enable incremental synthesis in the Precision RTL Plus Synthesis software using
one of these methods:

■ On the Tools menu, click Set Options. On the Optimization page, turn on
Enable Incremental Synthesis.

■ Run the following command in the Transcript Window:

setup_design -enable_incr_synth r
5. Run the basic Precision Synthesis flow of compilation, synthesis, and place-and-

route on your design. In subsequent runs, the Precision RTL Plus Synthesis
software processes only the parts of the design that have changed, resulting in a
shorter iteration than the initial run. The performance of the unchanged partitions
is preserved.

The Precision RTL Plus Synthesis software sets the netlist types of the unchanged
partitions to Post-Fit and the changed partitions to Post-Synthesis. You can
change the netlist type during timing closure in the Quartus II software to obtain
the best QoR.

6. Import the EDIF or VQM netlist for each partition and the top-level .tcl file into the
Quartus II software, and set up the Quartus II project to use incremental
compilation.

7. Compile your Quartus II project.

8. If you want, you can change the Quartus II incremental compilation netlist type
for a partition with the Design Partitions Window. You can change the Netlist
Type to one of the following options:

■ To preserve the previous post-fit placement results, change the Netlist Type of
the partition to Post-Fit.

■ To preserve the previous routing results, set the Fitter Preservation Level of
the partition to Placement and Routing.

Creating Partitions with the incr_partition Attribute
Partitions are set using the HDL incr_partition attribute. The Precision Synthesis
software creates or deletes partitions by reading this attribute during compilation
iterations. The attribute can be attached to either the design unit definition or an
instance. Example 18–22 and Example 18–23 show how to use the attribute to create
partitions.

To delete partitions, you can remove the attribute or set the attribute value to false.
June 2012 Altera Corporation Quartus II Handbook Version 13.1
Volume 1: Design and Synthesis

18–26 Chapter 18: Mentor Graphics Precision Synthesis Support
Incremental Compilation and Block-Based Design
1 The Precision Synthesis software ignores partitions set in a black box.

Creating Multiple Mapped Netlist Files With Separate Precision Projects
or Implementations

This section describes how to manually generate multiple netlist files, which can be
VQM or EDIF files, for incremental compilation using black boxes and separate
Precision projects or implementations for each design partition. This manual flow is
supported in versions of the Precision software that do not include the incremental
synthesis feature. You might also use this feature if you perform synthesis in a
team-based environment without a top-level synthesis project that includes all of the
lower-level design blocks.

Example 18–22. Using incr_partition Attribute to Create a Partition in Verilog HDL

Design unit partition:

module my_block(
 input clk;
 output reg [31:0] data_out) /* synthesis incr_partition */ ;

Instance partition:

my_block my_block_inst(.clk(clk), .data_out(data_out));
// synthesis attribute my_block_inst incr_partition true

Example 18–23. Using incr_partition Attribute to a Create Partition in VHDL

Design unit partition:

entity my_block is
 port(
 clk : in std_logic;
 data_out : out std_logic_vector(31 downto 0)
);
 attribute incr_partition : boolean;
 attribute incr_partition of my_block : entity is true;
end entity my_block;

Instance partition:

component my_block is
 port(

clk : in std_logic;
data_out : out std_logic_vector(31 downto 0)
);

end component;

attribute incr_partition : boolean;
attribute incr_partition of my_block_inst : label is true;

my_block_inst my_block
 port map(clk, data_out);
Quartus II Handbook Version 13.1 June 2012 Altera Corporation
Volume 1: Design and Synthesis

Chapter 18: Mentor Graphics Precision Synthesis Support 18–27
Incremental Compilation and Block-Based Design
In the Precision Synthesis software, create a separate implementation, or a separate
project, for each lower-level module and for the top-level design that you want to
maintain as a separate netlist file. Implement black box instantiations of lower-level
modules in your top-level implementation or project.

f For more information about managing implementations and projects, refer to the
Precision RTL Synthesis User’s Manual. To access this manual, in the Precision Synthesis
software, click Help and select Open Manuals Bookcase.

When synthesizing the implementations for lower-level modules, perform these steps
in the Precision Synthesis software:

1. On the Tools menu, turn off Add IO Pads on the Optimization page under Set
Options.

1 You must turn off the Add IO Pads option while synthesizing the
lower-level modules individually. Enable the Add IO Pads option only
while synthesizing the top-level module.

2. Read the HDL files for the modules.

1 Modules can include black box instantiations of lower-level modules that
are also maintained as separate netlist files.

3. Add constraints for all partitions in the design.

When synthesizing the top-level design implementation, perform these steps:

1. Read the HDL files for top-level designs.

2. On the Tools menu, click Set Options. On the Optimization page, turn on Add IO
Pads.

3. Create black boxes for lower-level modules in the top-level design.

4. Add constraints.

1 In a standard Quartus II incremental compilation flow, Precision Synthesis software
constraints made on lower-level modules are not passed to the Quartus II software.
Ensure that appropriate constraints are made in the top-level Precision Synthesis
project, or in the Quartus II project.
June 2012 Altera Corporation Quartus II Handbook Version 13.1
Volume 1: Design and Synthesis

18–28 Chapter 18: Mentor Graphics Precision Synthesis Support
Incremental Compilation and Block-Based Design
Creating Black Boxes to Create EDIF Netlists
This section describes how to create black boxes to create separate EDIF netlists.
Figure 18–2 shows an example of a design hierarchy separated into various partitions.

In Figure 18–2, the top-level partition contains the top-level block in the design
(block A) and the logic that is not defined as part of another partition. In this example,
the partition for top-level block A also includes the logic in the sub-block C. Because
block F is contained in its own partition, it is not treated as part of the top-level
partition A. Another separate partition, B, contains the logic in blocks B, D, and E. In a
team-based design, different engineers may work on the logic in different partitions.
One netlist is created for the top-level module A and its submodule C, another netlist
is created for module B and its submodules D and E, while a third netlist is created for
module F. To create multiple EDIF netlist files for this design, follow these steps:

1. Generate an .edf file for module B. Use B.v/.vhd, D.v/.vhd, and E.v/.vhd as the
source files.

2. Generate an .edf file for module F. Use F.v/.vhd as the source file.

3. Generate a top-level .edf file for module A. Use A.v/.vhd and C.v/.vhd as the
source files. Ensure that you create black boxes for modules B and F, which were
optimized separately in the previous steps.

The goal is to individually synthesize and generate an .edf netlist file for each
lower-level module and then instantiate these modules as black boxes in the top-level
file. You can then synthesize the top-level file to generate the .edf netlist file for the
top-level design. Finally, both the lower-level and top-level .edf netlist files are
provided to your Quartus II project.

1 When you make design or synthesis optimization changes to part of your design,
resynthesize only the changed partition to generate the new .edf netlist file. Do not
resynthesize the implementations or projects for the unchanged partitions.

Creating Black Boxes in Verilog HDL
Any design block that is not defined in the project or included in the list of files to be
read for a project is treated as a black box by the software. In Verilog HDL, you must
provide an empty module declaration for any module that is treated as a black box.

Figure 18–2. Partitions in a Hierarchical Design

Partition Top

Partition B Partition F

D E

B

A

F

C

Quartus II Handbook Version 13.1 June 2012 Altera Corporation
Volume 1: Design and Synthesis

Chapter 18: Mentor Graphics Precision Synthesis Support 18–29
Incremental Compilation and Block-Based Design
A black box for the top-level file A.v is shown in the following example. Provide an
empty module declaration for any lower-level files, which also contain a black box for
any module beneath the current level of hierarchy.

Creating Black Boxes in VHDL
Any design block that is not defined in the project or included in the list of files to be
read for a project is treated as a black box by the software. In VHDL, you must
provide a component declaration for the black box.

A black box for the top-level file A.vhd is shown in Example 18–25. Provide a
component declaration for any lower-level files that also contain a black box or for
any block beneath the current level of hierarchy.

Example 18–24. Verilog HDL Black Box for Top-Level File A.v

module A (data_in, clk, e, ld, data_out);
input data_in, clk, e, ld;
output [15:0] data_out;
wire [15:0] cnt_out;
B U1 (.data_in (data_in),.clk(clk), .ld (ld),.data_out(cnt_out));
F U2 (.d(cnt_out), .clk(clk), .e(e), .q(data_out));
// Any other code in A.v goes here.

endmodule
// Empty Module Declarations of Sub-Blocks B and F follow here.
// These module declarations (including ports) are required for black
// boxes.
module B (data_in, clk, ld, data_out);

input data_in, clk, ld;
output [15:0] data_out;

endmodule
module F (d, clk, e, q);

input [15:0] d;
input clk, e;
output [15:0] q;

endmodule
June 2012 Altera Corporation Quartus II Handbook Version 13.1
Volume 1: Design and Synthesis

18–30 Chapter 18: Mentor Graphics Precision Synthesis Support
Incremental Compilation and Block-Based Design
After you complete the steps outlined in this section, you have different EDIF netlist
files for each partition of the design. These files are ready for use with incremental
compilation in the Quartus II software.

Creating Quartus II Projects for Multiple EDIF Files
The Precision Synthesis software creates a .tcl file for each implementation, and
provides the Quartus II software with the appropriate constraints and information to
set up a project. When using incremental synthesis, the Precision RTL Plus Synthesis
software creates only a single .tcl file, <project name>_incr_partitions.tcl, to pass the
partition information to the Quartus II software. For details about using this Tcl script
to set up your Quartus II project and to pass your top-level constraints, refer to
“Running the Quartus II Software Manually Using the Precision Synthesis-Generated
Tcl Script” on page 18–11.

Example 18–25. VHDL Black Box for Top-Level File A.vhd

LIBRARY ieee;
USE ieee.std_logic_1164.all;
ENTITY A IS

PORT (data_in : IN INTEGER RANGE 0 TO 15;
clk, e, ld : IN STD_LOGIC;
data_out : OUT INTEGER RANGE 0 TO 15);

END A;
ARCHITECTURE a_arch OF A IS
COMPONENT B PORT(

data_in : IN INTEGER RANGE 0 TO 15;
clk, ld : IN STD_LOGIC;
d_out : OUT INTEGER RANGE 0 TO 15);

END COMPONENT;
COMPONENT F PORT(

d : IN INTEGER RANGE 0 TO 15;
clk, e: IN STD_LOGIC;
q : OUT INTEGER RANGE 0 TO 15);

END COMPONENT;
-- Other component declarations in A.vhd go here
signal cnt_out : INTEGER RANGE 0 TO 15;
BEGIN

U1 : B
PORT MAP (

data_in => data_in,
clk => clk,
ld => ld,
d_out => cnt_out);

U2 : F
PORT MAP (

d => cnt_out,
clk => clk,
e => e,
q => data_out);

-- Any other code in A.vhd goes here
END a_arch;
Quartus II Handbook Version 13.1 June 2012 Altera Corporation
Volume 1: Design and Synthesis

Chapter 18: Mentor Graphics Precision Synthesis Support 18–31
Incremental Compilation and Block-Based Design
Depending on your design methodology, you can create one Quartus II project for all
EDIF netlists, or a separate Quartus II project for each EDIF netlist. In the standard
incremental compilation design flow, you create design partition assignments for each
partition in the design within a single Quartus II project. This methodology provides
the best QoR and performance preservation during incremental changes to your
design. You might require a bottom-up design flow if each partition must be
optimized separately, such as for third-party IP delivery.

To follow this design flow in the Quartus II software, create separate Quartus II
projects and export each design partition and incorporate it into a top-level design
using the incremental compilation features to maintain placement results.

The following sections describe how to create the Quartus II projects for these two
design flows.

Creating a Single Quartus II Project for a Standard Incremental Compilation
Flow
Use the <top-level project>.tcl file generated for the top-level partition to create your
Quartus II project and import all the netlists into this one Quartus II project for an
incremental compilation flow. You can optimize all partitions within the single
Quartus II project and take advantage of the performance preservation and
compilation time reduction that incremental compilation provides. Figure 18–3 shows
the design flow for the example design in Figure 18–2 on page 18–28.

All the constraints from the top-level implementation are passed to the Quartus II
software in the top-level .tcl file, but any constraints made only in the lower-level
implementations within the Precision Synthesis software are not forward-annotated.
Enter these constraints manually in your Quartus II project.

Figure 18–3. Design Flow Using Multiple EDIF Files with One Quartus II Project

a.edf

b.edf f.edf

Quartus II Project

Use a.tcl to import
top-level Precsion
Synthesis software

assignments.
Enter any lower level

assignments manually.
June 2012 Altera Corporation Quartus II Handbook Version 13.1
Volume 1: Design and Synthesis

18–32 Chapter 18: Mentor Graphics Precision Synthesis Support
Incremental Compilation and Block-Based Design
Creating Multiple Quartus II Projects for a Bottom-Up Flow
Use the .tcl files generated by the Precision Synthesis software for each Precision
Synthesis software implementation or project to generate multiple Quartus II projects,
one for each partition in the design. Each designer in the project can optimize their
block separately in the Quartus II software and export the placement of their blocks
using incremental compilation. Designers should create a LogicLock region to
provide a floorplan location assignment for each block; the top-level designer should
then import all the blocks and assignments into the top-level project. Figure 18–4
shows the design flow for the example design in Figure 18–2 on page 18–28.

Hierarchy and Design Considerations
To ensure the proper functioning of the synthesis flow, you can create separate
partitions only for modules, entities, or existing netlist files. In addition, each module
or entity must have its own design file. If two different modules are in the same
design file, but are defined as being part of different partitions, incremental synthesis
cannot be maintained because both regions must be recompiled when you change one
of the modules.

Altera recommends that you register all inputs and outputs of each partition. This
makes logic synchronous and avoids any delay penalty on signals that cross partition
boundaries.

If you use boundary tri-states in a lower-level block, the Precision Synthesis software
pushes the tri-states through the hierarchy to the top-level to make use of the tri-state
drivers on output pins of Altera devices. Because pushing tri-states requires
optimizing through hierarchies, lower-level tri-states are not supported with a
block-based compilation methodology. You should use tri-state drivers only at the
external output pins of the device and in the top-level block in the hierarchy.

f For more tips on design partitioning, refer to the Best Practices for Incremental
Compilation Partitions and Floorplan Assignments chapter in volume 1 of the Quartus II
Handbook.

Figure 18–4. Design Flow: Using Multiple EDIF Files with Multiple Quartus II Projects

Quartus II Project Quartus II Project

a.edf

b.edf f.edf

Quartus II Project

Use a.tcl to import
Precision Synthesis
software assignments.

Use f.tcl to import
Precision Synthesis
software assignments.

Use b.tcl to import
Precision Synthesis

software assignments.
Quartus II Handbook Version 13.1 June 2012 Altera Corporation
Volume 1: Design and Synthesis

http://www.altera.com/literature/hb/qts/qts_qii51017.pdf
http://www.altera.com/literature/hb/qts/qts_qii51017.pdf

Chapter 18: Mentor Graphics Precision Synthesis Support 18–33
Conclusion
Conclusion
The Mentor Graphics Precision Synthesis software and Quartus II design flow allow
you to control how to prepare your design files for the Quartus II place-and-route
process, which allows you to improve performance and optimizes your design for use
with Altera devices. Several of the methodologies outlined in this chapter can help
you optimize your design to achieve performance goals and decrease design time.

Document Revision History
Table 18–5 shows the revision history for this document.

Table 18–5. Document Revision History

Date Version Changes

June 2012 12.0.0 ■ Removed survey link.

November 2011 10.1.1
■ Template update.

■ Minor editorial changes.

December 2010 10.1.0

■ Changed to new document template.

■ Removed Classic Timing Analyzer support.

■ Added support for .vqm netlist files.

■ Edited the “Creating Quartus II Projects for Multiple EDIF Files” on page 15–30 section for
changes with the incremental compilation flow.

■ Editorial changes.

July 2010 10.0.0 ■ Minor updates for the Quartus II software version 10.0 release

November 2009 9.1.0 ■ Minor updates for the Quartus II software version 9.1 release

March 2009 9.0.0
■ Updated list of supported devices for the Quartus II software version 9.0 release

■ Chapter 11 was previously Chapter 10 in software version 8.1

November 2008 8.1.0

■ Changed to 8-1/2 x 11 page size

■ Title changed to Mentor Graphics Precision Synthesis Support

■ Updated list of supported devices

■ Added information about the Precision RTL Plus incremental synthesis flow

■ Updated Figure 10-1 to include SystemVerilog

■ Updated “Guidelines for Altera Megafunctions and Architecture-Specific Features” on
page 10–19

■ Updated “Incremental Compilation and Block-Based Design” on page 10–28

■ Added section “Creating Partitions with the incr_partition Attribute” on page 10–29

May 2008 8.0.0

■ Removed Mercury from the list of supported devices

■ Changed Precision version to 2007a update 3

■ Added note for Stratix IV support

■ Renamed “Creating a Project and Compiling the Design” section to “Creating and
Compiling a Project in the Precision RTL Synthesis Software”

■ Added information about constraints in the Tcl file

■ Updated document based on the Quartus II software version 8.0
June 2012 Altera Corporation Quartus II Handbook Version 13.1
Volume 1: Design and Synthesis

18–34 Chapter 18: Mentor Graphics Precision Synthesis Support
Document Revision History
f For previous versions of the Quartus II Handbook, refer to the Quartus II Handbook
Archive.
Quartus II Handbook Version 13.1 June 2012 Altera Corporation
Volume 1: Design and Synthesis

http://www.altera.com/literature/lit-qts_archive.jsp
http://www.altera.com/literature/lit-qts_archive.jsp

19Analyzing Designs with Quartus II Netlist Viewers

2013.11.04

QII51013 Subscribe Send Feedback

This chapter describes how you can use the Quartus® II Netlist Viewers to analyze and debug your designs.

As FPGA designs grow in size and complexity, the ability to analyze, debug, optimize, and constrain your
design is critical. With today’s advanced designs, several design engineers are involved in coding and
synthesizing different design blocks, making it difficult to analyze and debug the design. The Quartus II RTL
Viewer, State Machine Viewer, and Technology Map Viewer provide powerful ways to view your initial and
fully mapped synthesis results during the debugging, optimization, and constraint entry processes.

This chapter contains the following sections:

Related Information

• When to Use the Netlist Viewers: Analyzing Design Problems on page 19-1

• Introduction to the User Interface on page 19-5

• Quartus II Design Flow with the Netlist Viewers on page 19-2

• State Machine Viewer Overview on page 19-4

• RTL Viewer Overview on page 19-3

• Technology Map Viewer Overview on page 19-4

• Filtering in the Schematic View on page 19-14

• Probing to a Source Design File and Other Quartus II Windows on page 19-20

• Viewing a Timing Path on page 19-21

When to Use the Netlist Viewers: Analyzing Design Problems
You can use the Netlist Viewers to analyze and debug your design. This section provides simple examples
of how to use the RTL Viewer, State Machine Viewer, and Technology Map Viewer to analyze problems
encountered in the design process.

Using the RTL Viewer is a good way to view your initial synthesis results to determine whether you have
created the necessary logic, and that the logic and connections have been interpreted correctly by the software.
You can use the RTL Viewer and State Machine Viewer to check your design visually before simulation or

ISO
9001:2008
Registered

© 2013 Altera Corporation. All rights reserved. ALTERA, ARRIA, CYCLONE, HARDCOPY, MAX, MEGACORE, NIOS, QUARTUS and STRATIX words
and logos are trademarks of Altera Corporation and registered in the U.S. Patent and Trademark Office and in other countries. All other
words and logos identified as trademarks or service marks are the property of their respective holders as described at
www.altera.com/common/legal.html. Altera warrants performance of its semiconductor products to current specifications in accordance with
Altera's standard warranty, but reserves the right to make changes to any products and services at any time without notice. Altera assumes
no responsibility or liability arising out of the application or use of any information, product, or service described herein except as expressly
agreed to in writing by Altera. Altera customers are advised to obtain the latest version of device specifications before relying on any published
information and before placing orders for products or services.

www.altera.com

101 Innovation Drive, San Jose, CA 95134

https://www.altera.com/servlets/subscriptions/alert?id=QII51013
mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20(QII51013%202013.11.04)%20Analyzing%20Designs%20with%20Quartus%20%C2%A0II%20Netlist%20Viewers&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.
http://www.altera.com/support/devices/reliability/certifications/rel-certifications.html
http://www.altera.com/support/devices/reliability/certifications/rel-certifications.html
http://www.altera.com/support/devices/reliability/certifications/rel-certifications.html

other verification processes. Catching design errors at this early stage of the design process can save you
valuable time.

If you see unexpected behavior during verification, use the RTL Viewer to trace through the netlist and
ensure that the connections and logic in your design are as expected. You can also view state machine
transitions and transition equations with the State Machine Viewer. Viewing your design helps you find and
analyze the source of design problems. If your design looks correct in the RTL Viewer, you know to focus
your analysis on later stages of the design process and investigate potential timing violations or issues in the
verification flow itself.

You can use the Technology Map Viewer to look at the results at the end of Analysis and Synthesis. If you
have compiled your design through the Fitter stage, you can view your post-mapping netlist in the Technology
Map Viewer (Post-Mapping) and your post-fitting netlist in the Technology Map Viewer. If you perform
only Analysis and Synthesis, both the Netlist Viewers display the same post-mapping netlist.

In addition, you can use the RTL Viewer or Technology Map Viewer to locate the source of a particular
signal, which can help you debug your design. Use the navigation techniques described in this chapter to
search easily through your design. You can trace back from a point of interest to find the source of the signal
and ensure the connections are as expected.

The Technology Map Viewer can help you locate post-synthesis nodes in your netlist and make assignments
when optimizing your design. This functionality is useful whenmaking amulticycle clock timing assignment
between two registers in your design. Start at an I/O port and trace forward or backward through the design
and through levels of hierarchy to find nodes of interest, or locate a specific register by visually inspecting
the schematic.

You can use the RTL Viewer, State Machine Viewer, and Technology Map Viewer in many other ways
throughout the design, debug, and optimization stages. This chapter shows you how to use the various
features of the Netlist Viewers to increase your productivity when analyzing a design.

Related Information

• Quartus II Design Flow with the Netlist Viewers on page 19-2

• State Machine Viewer Overview on page 19-4

• RTL Viewer Overview on page 19-3

• Technology Map Viewer Overview on page 19-4

Quartus II Design Flow with the Netlist Viewers
When you first open one of the Netlist Viewers after compiling the design, a preprocessor stage runs
automatically before the Netlist Viewer opens.

The preprocessor process box contains a link to the Settings > Compilation Process Settings page where
you can turn on the Run Netlist Viewers preprocessing during compilation option. When this option is
turned on, the preprocessing becomes part of the full project compilation flow and the Netlist Viewer opens
immediately without displaying the preprocessing dialog.

Analyzing Designs with Quartus II Netlist ViewersAltera Corporation

Send Feedback

QII51013
Quartus II Design Flow with the Netlist Viewers19-2 2013.11.04

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Analyzing%20Designs%20with%20Quartus%C2%A0II%20Netlist%20Viewers%20(QII51013%202013.11.04)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Figure 19-1: Quartus II Design Flow Including the RTL Viewer and Technology Map Viewer

This figure shows how Netlist Viewers fit into the basic Quartus II design flow.

Before the Netlist Viewer can run the preprocessor stage, you must compile your design:

• To open the RTL Viewer or State Machine Viewer, first perform Analysis and Elaboration.
• To open the Technology Map Viewer (Post-Fitting) or the Technology Map Viewer (Post-Mapping),

first perform Analysis and Synthesis.

The Netlist Viewers display the results of the last successful compilation. Therefore, if you make a design
change that causes an error during Analysis and Elaboration, you cannot view the netlist for the new design
files, but you can still see the results from the last successfully compiled version of the design files. If you
receive an error during compilation and you have not yet successfully run the appropriate compilation stage
for your project, the Netlist Viewer cannot be displayed; in this case, the Quartus II software issues an error
message when you try to open the Netlist Viewer.

If theNetlist Viewer is openwhen you start a new compilation, theNetlist Viewer closes automatically.
You must open the Netlist Viewer again to view the new design netlist after compilation completes
successfully.

Note:

RTL Viewer Overview
The Quartus II RTL Viewer allows you to view a register transfer level (RTL) graphical representation of
your Quartus II integrated synthesis results or your third-party netlist file in the Quartus II software.

You can view results after Analysis and Elaboration when your design uses any supported Quartus II design
entry method, including Verilog HDL Design Files (.v), SystemVerilog Design Files (. sv), VHDL Design
Files (. vhd), AHDL Text Design Files (.tdf), or schematic Block Design Files (.bdf). You can also view the
hierarchy of atom primitives (such as device logic cells and I/O ports) when your design uses a synthesis
tool to generate a Verilog Quartus Mapping File (.vqm) or Electronic Design Interchange Format (.edf) file.

Altera CorporationAnalyzing Designs with Quartus II Netlist Viewers

Send Feedback

19-3RTL Viewer Overview
QII51013
2013.11.04

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Analyzing%20Designs%20with%20Quartus%C2%A0II%20Netlist%20Viewers%20(QII51013%202013.11.04)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

The Quartus II RTL Viewer displays a schematic view of the design netlist after Analysis and Elaboration
or netlist extraction is performed by theQuartus II software, but before technologymapping and any synthesis
or fitter optimizations. This view is not the final design structure because optimizations have not yet occurred.
This view most closely represents your original source design. If you synthesized your design with the
Quartus II integrated synthesis, this view shows how the Quartus II software interpreted your design files.
If you use a third-party synthesis tool, this view shows the netlist written by your synthesis tool.

When displaying your design, the RTL Viewer optimizes the netlist to maximize readability in the following
ways:

• Logic with no fan-out (its outputs are unconnected) and logic with no fan-in (its inputs are unconnected)
are removed from the display.

• Default connections such as VCC and GND are not shown.
• Pins, nets, wires, module ports, and certain logic are grouped into buses where appropriate.
• Constant bus connections are grouped.
• Values are displayed in hexadecimal format.
• NOT gates are converted to bubble inversion symbols in the schematic.
• Chains of equivalent combinational gates are merged into a single gate. For example, a 2-input AND gate

feeding a 2-input AND gate is converted to a single 3-input AND gate.
• State machine logic is converted into a state diagram, state transition table, and state encoding table,

which are displayed in the State Machine Viewer.

To run the RTL Viewer for a Quartus II project, first analyze the design to generate an RTL netlist. To analyze
the design and generate an RTL netlist, on the Processing menu, point to Start and click Start Analysis &
Elaboration. You can also perform a full compilation on any process that includes the initial Analysis and
Elaboration stage of the Quartus II compilation flow.

To run the RTL Viewer, on the Tools menu, point to Netlist Viewers and click RTL Viewer.

State Machine Viewer Overview
The State Machine Viewer presents a high-level view of finite state machines in your design. The State
Machine Viewer provides a graphical representation of the states and their related transitions, as well as a
state transition table that displays the condition equation for each of the state transitions, and encoding
information for each state.

To run the State Machine Viewer, on the Tools menu, point to Netlist Viewers and click State
Machine Viewer. To open the State Machine Viewer for a particular state machine, double-click the state
machine instance in the RTL Viewer.

Related Information
State Machine Viewer on page 19-18

Technology Map Viewer Overview
The Quartus II Technology Map Viewer provides a technology-specific, graphical representation of your
design after Analysis and Synthesis or after the Fitter has mapped your design into the target device.

Analyzing Designs with Quartus II Netlist ViewersAltera Corporation

Send Feedback

QII51013
State Machine Viewer Overview19-4 2013.11.04

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Analyzing%20Designs%20with%20Quartus%C2%A0II%20Netlist%20Viewers%20(QII51013%202013.11.04)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

The Technology Map Viewer shows the hierarchy of atom primitives (such as device logic cells and I/O
ports) in your design. For supported families, you can also view internal registers and look-up tables (LUTs)
inside logic cells (LCELLs) and registers in I/O atom primitives.

Where possible, the port names of each hierarchy aremaintained throughout synthesis; however, port names
might change or be removed from the design. For example, if a port is unconnected or driven by GND or
VCC, it is removed during synthesis. When a port name changes, the port is assigned a related user logic
name in the design or a generic port name such as IN1 or OUT1.

You can view your Quartus II technology-mapped results after synthesis, fitting, or timing analysis. To run
the Technology Map Viewer for a Quartus II project, on the Processing menu, point to Start and click Start
Analysis& Synthesis to synthesize andmap the design to the target technology. At this stage, the Technology
Map Viewer shows the same post-mapping netlist as the Technology Map Viewer (Post-Mapping). You can
also perform a full compilation, or any process that includes the synthesis stage in the compilation flow.

If you have completed the Fitter stage, the Technology Map Viewer shows the changes made to your netlist
by the Fitter, such as physical synthesis optimizations, while the Technology Map Viewer (Post-Mapping)
shows the post-mapping netlist. If you have completed the Timing Analysis stage, you can locate timing
paths from the Timing Analyzer report in the Technology Map Viewer.

To open the Technology Map Viewer, on the Tools menu, point to Netlist Viewers and click Technology
Map Viewer (Post-Fitting) or Technology Map Viewer (Post Mapping).

Related Information

• View Contents of Nodes in the Schematic View on page 19-15

• Viewing a Timing Path on page 19-21

Introduction to the User Interface
The Netlist Viewer is a graphical user-interface for viewing and manipulating nodes and nets in the netlist.

The RTL Viewer and Technology Map Viewer each consist of these main parts:

• The Netlist Navigator pane—displays a representation of the project hierarchy.
• The Find pane—allows you to find and locate specific design elements in the schematic view.
• The Properties pane displays the properties of the selected block when you select Properties from the

shortcut menu.
• The schematic view—displays a graphical representation of the internal structure of your design.

Altera CorporationAnalyzing Designs with Quartus II Netlist Viewers

Send Feedback

19-5Introduction to the User Interface
QII51013
2013.11.04

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Analyzing%20Designs%20with%20Quartus%C2%A0II%20Netlist%20Viewers%20(QII51013%202013.11.04)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Figure 19-2: RTL Viewer

This figure shows the schematic view and the Netlist Navigator pane of the RTL Viewer.

Netlist Viewers also contain a toolbar that provides tools to use in the schematic view.

• Use the Back and Forward buttons to switch between schematic views. You can go forward only if you
have not made any changes to the view since going back. These commands do not undo an action, such
as selecting a node. The Netlist Viewer caches up to ten actions including filtering, hierarchy navigation,
netlist navigation, and zooming.

• The Refresh button restores the schematic view and optimizes the layout. Refresh does not reload the
database if you change your design and recompile.

• The Find button opens and closes the Find pane.
• The Selection tool and Zoom tool buttons toggle between the selection mode and zoom mode.
• The Fit in Page button resets the schematic view to encompass the entire design.
• The Netlist Navigator button opens or closes the Netlist Navigator pane.
• The Color Settings button opens the Colors pane where you can customize the color scheme used in

the Netlist Viewer.
• The Bird's Eye View opens the Bird's Eye View window which displays a miniature version of your

design and allows you to navigate within the design and adjust the magnification in the schematic view
quickly.

Analyzing Designs with Quartus II Netlist ViewersAltera Corporation

Send Feedback

QII51013
Introduction to the User Interface19-6 2013.11.04

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Analyzing%20Designs%20with%20Quartus%C2%A0II%20Netlist%20Viewers%20(QII51013%202013.11.04)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

You can have only one RTL Viewer, one Technology Map Viewer (Post-Fitting), one Technology Map
Viewer (Post-Mapping), and one State Machine Viewer window open at the same time, although each
window can show multiple pages, each with multiple tabs. For example, you cannot have two RTL Viewer
windows open at the same time.

Related Information

• Netlist Navigator Pane on page 19-7

• Netlist Viewers Find Pane on page 19-9

• Properties Pane on page 19-8

Netlist Navigator Pane
The Netlist Navigator pane displays the entire netlist in a tree format based on the hierarchical levels of the
design. In each level, similar elements are grouped into subcategories.

You can use the Netlist Navigator pane to traverse through the design hierarchy to view the logic schematic
for each level. You can also select an element in the Netlist Navigator to highlight in the schematic view.

Nodes inside atom primitives are not listed in the Netlist Navigator pane.Note:

For each module in the design hierarchy, the Netlist Navigator pane displays the applicable elements listed
in the following table. Click the “+” icon to expand an element.

Table 19-1: Netlist Navigator Pane Elements

DescriptionElements

Modules or instances in the design that can be
expanded to lower hierarchy levels.

Instances

State machine instances in the design that can be
viewed in the State Machine Viewer.

State Machines

Low-level nodes that cannot be expanded to any lower
hierarchy level. These primitives include:

• Registers and gates that you can view in the RTL
Viewerwhen usingQuartus II integrated synthesis

• Logic cell atoms in the Technology Map Viewer
or in the RTL Viewer when using a VQM or EDIF
from third-party synthesis software

In the Technology Map Viewer, you can view the
internal implementation of certain atom primitives,
but you cannot traverse into a lower-level of hierarchy.

Primitives

Altera CorporationAnalyzing Designs with Quartus II Netlist Viewers

Send Feedback

19-7Netlist Navigator Pane
QII51013
2013.11.04

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Analyzing%20Designs%20with%20Quartus%C2%A0II%20Netlist%20Viewers%20(QII51013%202013.11.04)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

DescriptionElements

The I/O ports in the current level of hierarchy.

• Pins are device I/O pins when viewing the top
hierarchy level and are I/O ports of the design
when viewing the lower-levels.

• When a pin represents a bus or an array of pins,
expand the pin entry in the list view to see
individual pin names.

Ports

Properties Pane
You can view the properties of an instance or primitive using the Properties pane.

Figure 19-3: Properties Pane

To view the properties of an instance or primitive in the RTL Viewer or Technology Map Viewer, right-click
the node and click Properties.

Analyzing Designs with Quartus II Netlist ViewersAltera Corporation

Send Feedback

QII51013
Properties Pane19-8 2013.11.04

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Analyzing%20Designs%20with%20Quartus%C2%A0II%20Netlist%20Viewers%20(QII51013%202013.11.04)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

The Properties pane contains tabs with the following information about the selected node:

• The Fan-in tab displays the Input port and Fan-in Node.
• The Fan-out tab displays the Output port and Fan-out Node.
• The Parameters tab displays the Parameter Name and Values of an instance.
• The Ports tab displays the Port Name and Constant value (for example, VCC or GND). The possible

value of a port are listed below.

Table 19-2: Possible Port Values

DescriptionValue

The port is not connected and has VCC value (tied to
VCC)

VCC

The port is not connected and has GND value (tied
to GND)

GND

The port is connected and has value (other than VCC
or GND)

--

The port is not connected and has no value (hanging)Unconnected

If the selected node is an atom primitive, the Properties pane displays a schematic of the internal logic.

Netlist Viewers Find Pane
You can narrow the range of the search process by setting the following options in the Find pane:

• Click Browse in the Find pane to specify the hierarchy level of the search. In the Select Hierarchy Level
dialog box, select the particular instance you want to search.

• Turn on the Include subentities option to include child hierarchies of the parent instance during the
search.

• Click Options to open the Find Options dialog box. Turn on Instances, Nodes, Ports, or any
combination of the three to further refine the parameters of the search.

When you click the List button, a progress bar appears below the Find box.

All results that match the criteria you set are listed in a table. When you double-click an item in the table,
the related node is highlighted in red in the schematic view.

Schematic View
The schematic view is shown on the right side of the RTLViewer andTechnologyMapViewer. The schematic
view contains a schematic representing the design logic in the netlist. This view is the main screen for viewing
your gate-level netlist in the RTLViewer and your technology-mapped netlist in the TechnologyMapViewer.

The RTL Viewer and Technology Map Viewer attempt to display schematic in a single page view by default.
If the schematic crosses over to several pages, you can highlight a net and use connectors to trace the signal
in a single page.

Display Schematics in Multiple Tabbed View
The RTL Viewer and Technology Map Viewer support multiple tabbed views.

Altera CorporationAnalyzing Designs with Quartus II Netlist Viewers

Send Feedback

19-9Netlist Viewers Find Pane
QII51013
2013.11.04

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Analyzing%20Designs%20with%20Quartus%C2%A0II%20Netlist%20Viewers%20(QII51013%202013.11.04)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

With multiple tabbed view, schematics can be displayed in different tabs. Selection is independent between
tabbed views, but selection in the tab in focus is synchronous with the Netlist Navigator pane.

To create a new blank tab, click the New Tab button at the end of the tab row . You can now drag a node
from the Netlist Navigator pane into the schematic view.

You can right-click in a tab to see a shortcut menu where you can:

• Create a blank view with New Tab
• Create a Duplicate Tab of the tab in focus
• Choose to Cascade Tabs
• Choose toTile Tabs
• Choose Close Tab to close the tab in focus
• Choose Close Other Tabs to close all tabs except the tab in focus

Schematic Symbols
The symbols for nodes in the schematic represent elements of your design netlist. These elements include
input and output ports, registers, logic gates, Altera® primitives, high-level operators, and hierarchical
instances

The following table lists and describes the primitives and basic symbols that you can display in the schematic
view of the RTL Viewer and Technology Map Viewer.

The logic gates and operator primitives appear only in the RTL Viewer. Logic in the Technology
Map Viewer is represented by atom primitives, such as registers and LCELLs.

Note:

Table 19-3: Symbols in the Schematic View

DescriptionSymbol

An input, output, or bidirectional port in the current
level of hierarchy. A device input, output, or bidirec-
tional pin when viewing the top-level hierarchy. The
symbol can also represent a bus. Only one wire is
shown connected to the bidirectional symbol,
representing the input and output paths.

Input symbols appear on the left-most side of the
schematic. Output and bidirectional symbols appear
on the right-most side of the schematic.

I/O Ports
CLK_SEL[1:0]

RESET_N

An input or output connector, representing a net that
comes from another page of the same hierarchy. To
go to the page that contains the source or the
destination, double-click on the connector to jump
to the appropriate page.

I/O Connectors

MEM_OE_N
[1,15]

[1,3]

An OR, AND, or XOR gate primitive (the number of
ports can vary). A small circle (bubble symbol) on an
input or output port indicates the port is inverted.

OR, AND, XOR Gates

always1 always0 C

Analyzing Designs with Quartus II Netlist ViewersAltera Corporation

Send Feedback

QII51013
Schematic Symbols19-10 2013.11.04

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Analyzing%20Designs%20with%20Quartus%C2%A0II%20Netlist%20Viewers%20(QII51013%202013.11.04)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

DescriptionSymbol

A multiplexer primitive with a selector port that
selects between port0 and port1. A multiplexer with
more than two inputs is displayed as an operator.

MULTIPLEXER
Mux5

SEL[2:0]
DATA[7:0] OUT

A buffer primitive. The figure shows the tri-state
buffer, with an inverted output enable port. Other
bufferswithout an enable port include LCELL, SOFT,
CARRY, and GLOBAL. The NOT gate and EXP
expander buffers use this symbol without an enable
port and with an inverted output port.

BUFFER
OE

DATAIN OUT0

A latch/DFF (data flipflop) primitive. A DFF has the
same ports as a latch and a clock trigger. The other
flipflop primitives are similar:

• DFFEA (data flipflop with enable and
asynchronous load) primitive with additional
ALOAD asynchronous load andADATAdata signals

• DFFEAS (data flipflop with enable and
synchronous and asynchronous load), which has
ASDATA as the secondary data port

LATCH

PRE
D

ENA

Q

latch

CLR

An atom primitive. The symbol displays the atom
name, the port names, and the atom type. The blue
shading indicates an atom primitive for which you
can view the internal details.

Atom Primitive

DATAA
DATABCOMBOUT
DATAC

F

LOGIC_CELL_COMB (7F7F7F7F7F7F7F7F)

Any primitive that does not fall into the previous
categories. Primitives are low-level nodes that cannot
be expanded to any lower hierarchy. The symbol
displays the port names, the primitive or operator
type, and its name.

Other Primitive

PADIO

PADOUT

CPU_D[10]

BIDIR

PADIN

An instance in the design that does not correspond
to a primitive or operator (a user-defined hierarchy
block). The symbol displays the port name and the
instance name.

Instance
speed_ch:speed

get_ticket
accel_in

clk
reset

A user-defined encrypted instance in the design. The
symbol displays the instance name. You cannot open
the schematic for the lower-level hierarchy, because
the source design is encrypted.

Ecrypted Instance
streaming_cont

OUT0
OUT1
OUT2
OUT3
OUT4
OUT5

IN0
IN1
IN2
IN3
IN4
IN5
IN6
IN7
IN8

Altera CorporationAnalyzing Designs with Quartus II Netlist Viewers

Send Feedback

19-11Schematic Symbols
QII51013
2013.11.04

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Analyzing%20Designs%20with%20Quartus%C2%A0II%20Netlist%20Viewers%20(QII51013%202013.11.04)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

DescriptionSymbol

A finite state machine instance in the design.State Machine Instance
speed

warning
accel_in
clk
reset

A synchronous memory instance with registered
inputs and optionally registered outputs. The symbol
shows the device family and the type ofmemory block.
This figure shows a true dual-port memory block in
a Stratix M-RAM block.

RAM
my_20k_sdp

PORTBDATAOUT[35:0]

RAM

CLK0
CLK1
CLR0
PORTAADDRSTALL
PORTAADDR[8:0]
PORTABYTEENMASK[3:0]
PORTADATAIN[35:0]
PORTAWE
PORTBADDRSTALL
PORTBADDR[8:0]
PORTBRE

A constant signal value that is highlighted in gray and
displayed in hexadecimal format by default
throughout the schematic.

Constant

8’h80

The following table lists and describes the symbol open only in the State Machine Viewer.

Table 19-4: Symbol Available Only in the State Machine Viewer

DescriptionSymbol

The node representing a state in a finite statemachine.
State transitions are indicated with arcs between state
nodes. The double circle border indicates the state
connects to logic outside the state machine, and a
single circle border indicates the state node does not
feed outside logic.

State Node

The following lists and describes the additional higher level operator symbols in the RTL Viewer schematic
view.

Table 19-5: Operator Symbols in the RTL Viewer Schematic View

DescriptionSymbol

An adder operator:

OUT = A + B

Add0
A[3:0]

B[3:0]
OUT[3:0]

A multiplier operator:

OUT = A ¥ B

Mult0
A[0]

B[0]
OUT[0]

Analyzing Designs with Quartus II Netlist ViewersAltera Corporation

Send Feedback

QII51013
Schematic Symbols19-12 2013.11.04

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Analyzing%20Designs%20with%20Quartus%C2%A0II%20Netlist%20Viewers%20(QII51013%202013.11.04)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

DescriptionSymbol

A divider operator:

OUT = A / B

Div0
A[0]

B[0]
OUT[0]

EqualsEqual3
A[1:0]

B[1:0]
OUT

A left shift operator:

OUT = (A << COUNT)

ShiftLeft0
A[0]

COUNT[0]
OUT[0]

A right shift operator:

OUT = (A >> COUNT)

ShiftRight0
A[0]

COUNT[0]
OUT[0]

A modulo operator:

OUT = (A%B)

Mod0
A[0]

B[0]
OUT[0]

A less than comparator:

OUT = (A<:B:A>B)

LessThan0
A[0]

B[0]
OUT

A multiplexer:

OUT = DATA [SEL]

The data range size is 2sel range size

Mux5
SEL[2:0]

DATA[7:0] OUT

A selector:

A multiplexer with one-hot select input and more
than two input signals

Selector1
SEL[2:0]

DATA[2:0] OUT

A binary number decoder:

OUT = (binary_number (IN) == x)

for x = 0 to x = 2(n+1) - 1

Decoder0

IN[5:0] OUT[63:0]

Related Information

• Partition the Schematic into Pages on page 19-17

• Follow Nets Across Schematic Pages on page 19-17

• State Machine Viewer on page 19-18

Select Items in the Schematic View
To select an item in the schematic view, ensure that the Selection Tool is enabled in the Netlist Viewer
toolbar (this tool is enabled by default). Click an item in the schematic view to highlight it in red.

Select multiple items by pressing the Shift key while selecting with your mouse.

Altera CorporationAnalyzing Designs with Quartus II Netlist Viewers

Send Feedback

19-13Select Items in the Schematic View
QII51013
2013.11.04

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Analyzing%20Designs%20with%20Quartus%C2%A0II%20Netlist%20Viewers%20(QII51013%202013.11.04)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Items selected in the schematic view are automatically selected in the Netlist Navigator pane. The folder
then expands automatically if it is required to show the selected entry; however, the folder does not collapse
automatically when you are not using or you have deselected the entries.

When you select a hierarchy box, node, or port in the schematic view, the item is highlighted in red but none
of the connecting nets are highlighted.When you select a net (wire or bus) in the schematic view, all connected
nets are highlighted in red.

Once you have selected an item, you can perform different actions on it based on the contents of the shortcut
menu which appears when you right-click on your selection.

Related Information
Netlist Navigator Pane on page 19-7

Shortcut Menu Commands in the Schematic View
When you right-click on an instance or primitive selected in the schematic view, the Netlist Viewer displays
a shortcut menu.

If the selected item is a node, you see the following options:

• Click Expand to Upper Hierarchy to displays the parent hierarchy of the node in focus.
• Click Copy ToolTip to copy the selected item name to the clipboard. This command does not work on

nets.
• Click Hide Selection to remove the selected item from the schematic view. This does not delete the item

from the design, merely masks it in the current view.
• Click Filtering to display a sub-menu with options for filtering your selection.

When the selected item is a net, the shortcutmenu displays the option toUnbundleNet.When you unbundle
a net, all connected bus pins and ports are ungrouped and displayed. You can use this to trace bundled
connections more easily.

Filtering in the Schematic View
Filtering allows you to filter out nodes and nets in your netlist to view only the logic elements of interest to
you.

You can filter your netlist by selecting hierarchy boxes, nodes, ports of a node, or states in a state machine
that are part of the path you want to see. The following filter commands are available:

• Sources—Displays the sources of the selection.
• Destinations—Displays the destinations of the selection.
• Sources & Destinations—displays the sources and destinations of the selection.
• Selected Nodes—Displays only the selected nodes.
• Between Selected Nodes—Displays nodes and connections in the path between the selected nodes .
• Bus Index—Displays the sources or destinations for one or more indices of an output or input bus port

.
• Filtering Options—Displays the Filtering Options dialog box:

• Stop filtering at register—Turning this option on directs theNetlist Viewer to filter out to the nearest
register boundary.

• Filter across hierarchies—Turning this option on directs theNetlist Viewer to filter across hierarchies.
• Maximumnumber of hierarchy levels—Sets the maximium number of hierarchy levels displayed in

the schematic view.

Analyzing Designs with Quartus II Netlist ViewersAltera Corporation

Send Feedback

QII51013
Shortcut Menu Commands in the Schematic View19-14 2013.11.04

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Analyzing%20Designs%20with%20Quartus%C2%A0II%20Netlist%20Viewers%20(QII51013%202013.11.04)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

To filter your netlist, select a hierarchy box, node, port, net, or state node, right-click in the window, point
to Filter and click the appropriate filter command. The Netlist Viewer generates a new page showing the
netlist that remains after filtering.

When filtering in a state diagram in the State Machine Viewer, sources and destinations refer to the previous
and next transition states or paths between transition states in the state diagram. The transition table and
encoding table also reflect the filtering.

View Contents of Nodes in the Schematic View
In theRTLViewer and theTechnologyMapViewer, you can view the contents of nodes to see their underlying
implementation details.

You can view LUTs, registers, and logic gates. You can also view the implementation of RAM and DSP
blocks in certain devices in the RTL Viewer or Technology Map Viewer. In the Technology Map Viewer,
you can view the contents of primitives to see their underlying implementation details.

Figure 19-4: Wrapping and Unwrapping Objects

If you can unwrap the contents of an instance, a plus symbol appears in the upper right corner of the object
in the schematic view. To wrap the contents (and revert to the compact format), click the minus symbol in
the upper right corner of the unwrapped instance.

In the schematic view, the internal details in an atom instance cannot be selected as individual nodes.
Any mouse action on any of the internal details is treated as a mouse action on the atom instance.

Note:

Figure 19-5: Nodes with Connections Outside the Hierarchy

In some cases, the selected instance connects to something outside the visible level of the hierarchy in the
schematic view. In this case, the net appears as a dotted line. Double-click on the dotted line to expand the
view to display the destination of the connection .

Altera CorporationAnalyzing Designs with Quartus II Netlist Viewers

Send Feedback

19-15View Contents of Nodes in the Schematic View
QII51013
2013.11.04

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Analyzing%20Designs%20with%20Quartus%C2%A0II%20Netlist%20Viewers%20(QII51013%202013.11.04)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Moving Nodes in the Schematic View
You can drag and drop items in the schematic view to rearrange them.

Figure 19-6: Drag and Drop Movement of Nodes

To move a node from one area of the netlist to another, select the node and hold down the Shift key. Legal
placements appear as shaded areas within the hierarchy. Click to drop the selected node.

Right-click and click on Refresh to restore the schematic view to its default arrangement.

View LUT Representations in the Technology Map Viewer
You can view different representations of a LUT by right-clicking the selected LUT and clicking Properties.

You can view the LUT representations in the following three tabs in the Properties dialog box:

• The Schematic tab—the equivalent gate representations of the LUT.
• The Truth Table tab—the truth table representations.

Related Information
Properties Pane on page 19-8

Zoom Controls
You can control the magnification of your schematic on the View menu, with the Zoom Tool in the toolbar,
or with mouse gestures.

By default, the Netlist Viewer displays most pages sized to fit in the window. If the schematic page is very
large, the schematic is displayed at the minimum zoom level, and the view is centered on the first node. Click
Zoom In to view the image at a larger size, and click Zoom Out to view the image (when the entire image
is not displayed) at a smaller size. The Zoom command allows you to specify a magnification percentage
(100% is considered the normal size for the schematic symbols).

Analyzing Designs with Quartus II Netlist ViewersAltera Corporation

Send Feedback

QII51013
Moving Nodes in the Schematic View19-16 2013.11.04

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Analyzing%20Designs%20with%20Quartus%C2%A0II%20Netlist%20Viewers%20(QII51013%202013.11.04)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Within the schematic view, you can also use the following mouse gestures to zoom in on a specific section:

• zoom in—Dragging a box around an area starting in the upper-left and dragging to the lower right zooms
in on that area.

• zoom -0.5—Dragging a line from lower-left to upper-right zooms out 0.5 levels of magnification.
• zoom 0.5—Dragging a line from lower-right to upper-left zooms in 0.5 levels of magnification.
• zoom fit—Dragging a line from upper-right to lower-left fits the schematic view in the page.

You can also use the Zoom Tool on the Netlist Viewer toolbar to control magnification in the schematic
view. When you select the Zoom Tool in the toolbar, clicking in the schematic zooms in and centers the
view on the location you clicked. Right-click in the schematic to zoom out and center the view on the location
you clicked. When you select the Zoom Tool, you can also zoom into a certain portion of the schematic by
selecting a rectangular box area with your mouse cursor. The schematic is enlarged to show the selected
area.

Related Information
Filtering in the Schematic View on page 19-14

Navigating with the Bird's Eye View
To open the Bird’s Eye View, on the View menu, click Bird’s Eye View, or click on the Bird’s Eye View icon
in the toolbar.

Viewing the entire schematic can be useful when debugging and tracing through a large netlist. TheQuartus II
software allows you to quickly navigate to a specific section of the schematic using the Bird’s Eye View
feature, which is available in the RTL Viewer and Technology Map Viewer.

The Bird’s Eye View shows the current area of interest.

• Select an area by clicking and dragging the indicator or right-clicking to form a rectangular box around
an area.

• Click and drag the rectangular box to move around the schematic.
• Resize the rectangular box to zoom-in or zoom-out in the schematic view.

Partition the Schematic into Pages
For large design hierarchies, the RTLViewer andTechnologyMapViewer partition your netlist intomultiple
pages in the schematic view.

When a hierarchy level is partitioned into multiple pages, the title bar for the schematic window indicates
which page is displayed and howmany total pages exist for this level of hierarchy. The schematic view displays
this as Page <current page number> of <total number of pages>.

Related Information
Introduction to the User Interface on page 19-5

Follow Nets Across Schematic Pages
Input and output connector symbols indicate nodes that connect across pages of the same hierarchy.
Double-click a connector to trace the net to the next page of the hierarchy.

After you double-click to follow a connector port, theNetlist Viewer opens a newpage, which centers
the view on the particular source or destination net using the same zoom factor as the previous page.

Note:

To trace a specific net to the new page of the hierarchy, Altera recommends that you first select the
necessary net, which highlights it in red, before you double-click to traverse pages.

Altera CorporationAnalyzing Designs with Quartus II Netlist Viewers

Send Feedback

19-17Navigating with the Bird's Eye View
QII51013
2013.11.04

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Analyzing%20Designs%20with%20Quartus%C2%A0II%20Netlist%20Viewers%20(QII51013%202013.11.04)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Related Information
Schematic Symbols on page 19-10

State Machine Viewer
The State Machine Viewer displays a graphical representation of the state machines in your design.

You can open the State Machine Viewer in any of the following ways:

• On the Tools menu, point to Netlist Viewers and click State Machine Viewer.
• Double-click a state machine instance in the RTL Viewer

Figure 19-7: The State Machine Viewer

The following figure shows an example of the State Machine Viewer for a simple state machine and lists the
components of the viewer.

State Machine Selection Box

State Diagram View

State Machine
Viewer Toolbar

Back/Forward Display
Toolbar

Highlight
Fan-in/Fan-out

Toolbar

View
Toolbar

Tool
Toolbar

State Transition Tab

State Encoding Table Tab

State Diagram View
The state diagram view appears at the top of the State Machine Viewer. It contains a diagram of the states
and state transitions.

Analyzing Designs with Quartus II Netlist ViewersAltera Corporation

Send Feedback

QII51013
State Machine Viewer19-18 2013.11.04

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Analyzing%20Designs%20with%20Quartus%C2%A0II%20Netlist%20Viewers%20(QII51013%202013.11.04)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

The nodes that represent each state are arranged horizontally in the state diagram view with the initial state
(the state node that receives the reset signal) in the left-most position. Nodes that connect to logic outside
of the state machine instance are represented by a double circle. The state transition is represented by an arc
with an arrow pointing in the direction of the transition.

When you select a node in the state diagram view, and turn on the Highlight Fan-in or Highlight Fan-out
command from the View menu or the State Machine Viewer toolbar, the respective fan-in or fan-out
transitions from the node are highlighted in red.

An encrypted block with a state machine displays encoding information in the state encoding table,
but does not display a state transition diagram or table.

Note:

State Transition Table
The state transition table on the Transitions tab at the bottom of the State Machine Viewer displays the
condition equation for each state transition.

Each row in the table represents a transition (each arc in the state diagram view). The table has the following
columns:

• Source State—the name of the source state for the transition
• Destination State—the name of the destination state for the transition
• Condition—the condition equation that causes the transition from source state to destination state

To see all of the transitions to and from each state name, click the appropriate column heading to sort on
that column.

The text in each column is left-aligned by default; to change the alignment and to make it easier to see the
relevant part of the text, right-click the column and clickAlignRight. To revert to left alignment, clickAlign
Left.

Click in any cell in the table to select it. To select all cells, right-click in the cell and click Select All; or, on
the Edit menu, click Select All. To copy selected cells to the clipboard, right-click the cells and click Copy
Table; or, on the Edit menu, point toCopy and clickCopyTable. You can paste the table into any text editor
as tab-separated columns.

State Encoding Table
The state encoding table on the Encoding tab at the bottom of the State Machine Viewer displays encoding
information for each state transition.

To view state encoding information in the State Machine Viewer, you must synthesize your design with the
Start Analysis & Synthesis command. If you have only elaborated your design with the Start Analysis &
Elaboration command, the encoding information is not displayed.

Select Items in the State Machine Viewer
You can select and highlight each state node and transition in the State Machine Viewer. To select a state
transition, click the arc that represents the transition.

When you select a node or transition arc in the state diagram view, the matching state node or equation
conditions in the state transition table are highlighted; conversely, when you select a state node or equation
condition in the state transition table, the corresponding state node or transition arc is highlighted in the
state diagram view.

Altera CorporationAnalyzing Designs with Quartus II Netlist Viewers

Send Feedback

19-19State Transition Table
QII51013
2013.11.04

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Analyzing%20Designs%20with%20Quartus%C2%A0II%20Netlist%20Viewers%20(QII51013%202013.11.04)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Switch Between State Machines
Adesignmay containmultiple statemachines. To choosewhich statemachine to view, use the StateMachine
selection box located at the top of the State Machine Viewer. Click in the drop-down box and select the
necessary state machine.

Probing to a Source Design File and Other Quartus II Windows
TheRTLViewer, TechnologyMapViewer, and StateMachineViewer allow you to cross-probe to the source
design file and to various other windows in the Quartus II software.

You can select one or more hierarchy boxes, nodes, state nodes, or state transition arcs that interest you in
the Netlist Viewer and locate the corresponding items in another applicable Quartus II software window.
You can then view and make changes or assignments in the appropriate editor or floorplan.

To locate an item from theNetlist Viewer in another window, right-click the items of interest in the schematic
or state diagram, point toLocate, and click the appropriate command. The following commands are available:

• Locate in Assignment Editor
• Locate in Pin Planner
• Locate in Chip Planner
• Locate in Resource Property Editor
• Locate in Technology Map Viewer
• Locate in RTL Viewer
• Locate in Design File

The options available for locating an item depend on the type of node and whether it exists after placement
and routing. If a command is enabled in the menu, it is available for the selected node. You can use the
Locate in Assignment Editor command for all nodes, but assignments might be ignored during placement
and routing if they are applied to nodes that do not exist after synthesis.

TheNetlist Viewer automatically opens anotherwindow for the appropriate editor or floorplan and highlights
the selected node or net in the newly opened window. You can switch back to the Netlist Viewer by selecting
it in the Window menu or by closing, minimizing, or moving the new window.

Probing to the Netlist Viewers from Other Quartus II Windows
You can cross-probe to the RTL Viewer and Technology Map Viewer from other windows in the Quartus II
software. You can select one or more nodes or nets in another window and locate them in one of the Netlist
Viewers.

You can locate nodes between the RTL Viewer, State Machine Viewer, and Technology Map Viewer, and
you can locate nodes in the RTLViewer andTechnologyMapViewer from the followingQuartus II software
windows:

• Project Navigator
• Timing Closure Floorplan
• Chip Planner
• Resource Property Editor
• Node Finder
• Assignment Editor

Analyzing Designs with Quartus II Netlist ViewersAltera Corporation

Send Feedback

QII51013
Switch Between State Machines19-20 2013.11.04

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Analyzing%20Designs%20with%20Quartus%C2%A0II%20Netlist%20Viewers%20(QII51013%202013.11.04)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

• Messages Window
• Compilation Report
• TimeQuest Timing Analyzer (supports the Technology Map Viewer only)

To locate elements in the Netlist Viewer from another Quartus II window, select the node or nodes in the
appropriate window; for example, select an entity in the Entity list on the Hierarchy tab in the Project
Navigator, or select nodes in the Timing Closure Floorplan, or select node names in the From orTo column
in the Assignment Editor. Next, right-click the selected object, point to Locate, and click Locate in RTL
Viewer or Locate in Technology Map Viewer. After you click this command, the Netlist Viewer opens, or
is brought to the foreground if the Netlist Viewer is open.

The first time the window opens after a compilation, the preprocessor stage runs before the Netlist
Viewer opens.

Note:

The Netlist Viewer shows the selected nodes and, if applicable, the connections between the nodes. The
display is similar to what you see if you right-click the object, point to Filter, and click SelectedNodes using
Filter across hierarchy. If the nodes cannot be found in the Netlist Viewer, a message box displays the
message: Can’t find requested location.

Viewing a Timing Path
You can cross-probe from a report panel in the TimeQuest Timing Analyzer to see a visual representation
of a timing path.

To take advantage of this feature, you must complete a full compilation of your design, including the timing
analyzer stage. To see the timing results for your design, on the Processingmenu, clickCompilationReport.
On the left side of the Compilation Report, select TimeQuest Timing Analyzer. When you select a detailed
report, the timing information is listed in a table format on the right side of the Compilation Report; each
row of the table represents a timing path in the design. You can also view timing paths in TimeQuest analyzer
report panels. To view a particular timing path in the Technology Map Viewer or RTL Viewer, right-click
the appropriate row in the table, point to Locate, and click Locate in TechnologyMap Viewer or Locate in
RTL Viewer.

• To locate a path, on the Tasks pane, in the Custom Reports folder, double-click Report Timing.
• In the Report Timing dialog box, make necessary settings, and then click the Report Timing button.
• After the TimeQuest analyzer generates the report, right-click on the node in the table and select Locate

Path. In the Technology Map Viewer, the schematic page displays the nodes along the timing path with
a summary of the total delay.

When you locate the timing path from the TimeQuest analyzer to the Technology Map Viewer, the
interconnect and cell delay associated with each node is displayed on top of the schematic symbols. The total
slack of the selected timing path is displayed in the Page Title section of the schematic.

In the RTL Viewer, the schematic page displays the nodes in the paths between the source and destination
registers with a summary of the total delay.

The RTL Viewer netlist is based on an initial stage of synthesis, so the post-fitting nodes might not exist in
the RTL Viewer netlist. Therefore, the internal delay numbers are not displayed in the RTL Viewer as they
are in the Technology Map Viewer, and the timing path might not be displayed exactly as it appears in the
timing analysis report. If multiple paths exist between the source and destination registers, the RTL Viewer
might displaymore than just the timing path. There are also some cases inwhich the path cannot be displayed,
such as paths through statemachines, encrypted intellectual property (IP), or registers that are created during
the fitting process. In cases where the timing path displayed in the RTL Viewer might not be the correct
path, the compiler issues messages.

Altera CorporationAnalyzing Designs with Quartus II Netlist Viewers

Send Feedback

19-21Viewing a Timing Path
QII51013
2013.11.04

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Analyzing%20Designs%20with%20Quartus%C2%A0II%20Netlist%20Viewers%20(QII51013%202013.11.04)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Document Revision History

ChangesVersionDate

Removed HardCopy device
information.

Reorganized and migrated to new
template.

Added support for new Netlist
viewer.

13.1.0November 2013

Added sections to support Global
Net Routing feature.

12.1.0November 2012

Removed survey link.12.0.0June 2012

Template update.10.0.2November 2011

Changed to new document
template.

10.0.1December 2010

• Updated screenshots
• Updated chapter for the

Quartus II software version
10.0, including major user
interface changes

10.0.0July 2010

• Updated devices
• Minor text edits

9.1.0November 2009

• Chapter 13 was formerly
Chapter 12 in version 8.1.0

• Updated Figure 13–2,
Figure 13–3, Figure 13–4,
Figure 13–14, and
Figure 13–30

• Added “Enable or Disable the
Auto Hierarchy List” on
page 13–15

• Updated “Find Command” on
page 13–44

9.0.0March 2009

Changed page size to 8.5” × 11”8.1.0November 2008

Analyzing Designs with Quartus II Netlist ViewersAltera Corporation

Send Feedback

QII51013
Document Revision History19-22 2013.11.04

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Analyzing%20Designs%20with%20Quartus%C2%A0II%20Netlist%20Viewers%20(QII51013%202013.11.04)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

November 2013 Altera Corporation
Additional Information
This chapter provides additional information about the document and Altera.

About this Handbook
This handbook provides comprehensive information about the current release of the
Altera® Quartus® II design software.

How to Contact Altera
To locate the most up-to-date information about Altera products, refer to the
following table.

Third-Party Software Product Information
Third-party software products described in this handbook are not Altera products, are
licensed by Altera from third parties, and are subject to change without notice.
Updates to these third-party software products may not be concurrent with Quartus II
software releases. Altera has assumed responsibility for the selection of such third-
party software products and its use in the Quartus II version 12.0 software release. To
the extent that the software products described in this handbook are derived from
third-party software, no third party warrants the software, assumes any liability
regarding use of the software, or undertakes to furnish you any support or
information relating to the software. EXCEPT AS EXPRESSLY SET FORTH IN THE
APPLICABLE ALTERA PROGRAM LICENSE SUBSCRIPTION AGREEMENT
UNDER WHICH THIS SOFTWARE WAS PROVDED TO YOU, ALTERA AND
THIRD-PARTY LICENSORS DISCLAIM ALL WARRANTIES WITH RESPECT TO
THE USE OF SUCH THIRD-PARTY SOFTWARE CODE OR DOCUMENTATION IN
THE SOFTWARE, INCLUDING, WITHOUT LIMITATION, ANY WARRANTIES OF
MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE, TITLE, AND
NONINFRINGEMENT. For more information, including the latest available version
of specific third-party software products, refer to the documentation for the software
in question.

Contact (1) Contact Method Address

Technical support Website www.altera.com/support

Technical training
Website www.altera.com/training

Email custrain@altera.com

Product literature Website www.altera.com/literature

Nontechnical support (general) Email nacomp@altera.com

(software licensing) Email authorization@altera.com

Note to Table:

(1) You can also contact your local Altera sales office or sales representative.
Quartus II Handbook Version 13.1
Volume 1: Design and Synthesis

http://www.altera.com/support
http://www.altera.com/training
mailto:custrain@altera.com
http://www.altera.com/literature/
mailto:nacomp@altera.com
mailto:authorization@altera.com

Info–2 Additional Information
Typographic Conventions
Typographic Conventions
The following table shows the typographic conventions this document uses.

Visual Cue Meaning

Bold Type with Initial Capital
Letters

Indicate command names, dialog box titles, dialog box options, and other GUI
labels. For example, Save As dialog box. For GUI elements, capitalization matches
the GUI.

bold type
Indicates directory names, project names, disk drive names, file names, file name
extensions, software utility names, and GUI labels. For example, \qdesigns
directory, D: drive, and chiptrip.gdf file.

Italic Type with Initial Capital Letters Indicate document titles. For example, Stratix IV Design Guidelines.

italic type
Indicates variables. For example, n + 1.

Variable names are enclosed in angle brackets (< >). For example, <file name> and
<project name>.pof file.

Initial Capital Letters Indicate keyboard keys and menu names. For example, the Delete key and the
Options menu.

“Subheading Title” Quotation marks indicate references to sections in a document and titles of
Quartus II Help topics. For example, “Typographic Conventions.”

Courier type

Indicates signal, port, register, bit, block, and primitive names. For example, data1,
tdi, and input. The suffix n denotes an active-low signal. For example, resetn.

Indicates command line commands and anything that must be typed exactly as it
appears. For example, c:\qdesigns\tutorial\chiptrip.gdf.

Also indicates sections of an actual file, such as a Report File, references to parts of
files (for example, the AHDL keyword SUBDESIGN), and logic function names (for
example, TRI).

r An angled arrow instructs you to press the Enter key.

1., 2., 3., and
a., b., c., and so on

Numbered steps indicate a list of items when the sequence of the items is important,
such as the steps listed in a procedure.

■ ■ ■ Bullets indicate a list of items when the sequence of the items is not important.

1 The hand points to information that requires special attention.

h The question mark directs you to a software help system with related information.

f The feet direct you to another document or website with related information.

m The multimedia icon directs you to a related multimedia presentation.

c A caution calls attention to a condition or possible situation that can damage or
destroy the product or your work.

w A warning calls attention to a condition or possible situation that can cause you
injury.

The envelope links to the Email Subscription Management Center page of the Altera
website, where you can sign up to receive update notifications for Altera documents.

The feedback icon allows you to submit feedback to Altera about the document.
Methods for collecting feedback vary as appropriate for each document.

The social media icons allow you to inform others about Altera documents. Methods
for submitting information vary as appropriate for each medium.
Quartus II Handbook Version 13.1 November 2013 Altera Corporation
Volume 1: Design and Synthesis

https://www.altera.com/subscriptions/email/signup/eml-index.jsp

101 Innovation Drive
San Jose, CA 95134
www.altera.com

QII5V2-13.1.0

 Volume 2: Design Implementation and Optimization

Quartus II Handbook Version 13.1

Quartus II Handbook Version 13.1 Volume 2: Design
Implementation and Optimization

http://www.altera.com

© 2013 Altera Corporation. All rights reserved. ALTERA, ARRIA, CYCLONE, HARDCOPY, MAX, MEGACORE, NIOS, QUARTUS and STRATIX words and logos
are trademarks of Altera Corporation and registered in the U.S. Patent and Trademark Office and in other countries. All other words and logos identified as
trademarks or service marks are the property of their respective holders as described at www.altera.com/common/legal.html. Altera warrants performance of its
semiconductor products to current specifications in accordance with Altera's standard warranty, but reserves the right to make changes to any products and
services at any time without notice. Altera assumes no responsibility or liability arising out of the application or use of any information, product, or service
described herein except as expressly agreed to in writing by Altera. Altera customers are advised to obtain the latest version of device specifications before relying
on any published information and before placing orders for products or services.

November 2013 Altera Corporation Quartus II Handbook Version 13.1
Volume 2: Design Implementation and Optimization

ISO
9001:2008
Registered

http://www.altera.com/common/legal.html
http://www.altera.com/support/devices/reliability/certifications/rel-certifications.html
http://www.altera.com/support/devices/reliability/certifications/rel-certifications.html

November 2013 Altera Corporation
Chapter Revision Dates
The Quartus II Handbook Volume 2: Design Implementation and Optimization was
revised on the following dates.

Chapter 1. Constraining Designs
Revised: November 2012
Part Number: QII52001-12.1.0

Chapter 2. Command-Line Scripting
Revised: November 2013
Part Number: QII52002-13.1.0

Chapter 3. Tcl Scripting
Revised: June 2012
Part Number: QII52003-12.0.0

Chapter 4. Managing Device I/O Pins
Revised: November 2013
Part Number: QII52013-13.1.0

Chapter 5. Simultaneous Switching Noise (SSN) Analysis and Optimizations
Revised: June 2012
Part Number: QII52018-12.0.0

Chapter 6. Signal Integrity Analysis with Third-Party Tools
Revised: November 2013
Part Number: QII53020-13.1.0

Chapter 7. Mentor Graphics PCB Design Tools Support
Revised: June 2012
Part Number: QII52015-12.0.0

Chapter 8. Cadence PCB Design Tools Support
Revised: June 2012
Part Number: QII52014-12.0.0

Chapter 9. Reviewing Printed Circuit Board Schematics with the Quartus II Software
Revised: November 2012
Part Number: QII52019-12.1.0

Chapter 10. Design Optimization Overview
Revised: November 2013
Part Number: QII52021-13.1.0

Chapter 11. Reducing Compilation Time
Revised: May 2013
Part Number: QII52022-13.0.0

Chapter 12. Timing Closure and Optimization
Revised: November 2013
Quartus II Handbook Version 13.1
Volume 2: Design Implementation and Optimization

xviii Chapter Revision Dates
Part Number: QII52005-13.1.0

Chapter 13. Power Optimization
Revised: May 2013
Part Number: QII52016-13.0.0

Chapter 14. Area Optimization
Revised: May 2013
Part Number: QII52023-13.0.0

Chapter 15. Analyzing and Optimizing the Design Floorplan with the Chip Planner
Revised: November 2013
Part Number: QII52006-13.1.0

Chapter 16. Netlist Optimizations and Physical Synthesis
Revised: November 2013
Part Number: QII52007-13.1.0

Chapter 17. Engineering Change Management with the Chip Planner
Revised: June 2012
Part Number: QII52017-12.0.0
Quartus II Handbook Version 13.1 November 2013 Altera Corporation
Volume 2: Design Implementation and Optimization

© 2013 Altera Corporation. All rights reserved. ALTERA, ARRI
are trademarks of Altera Corporation and registered in the U.S
trademarks or service marks are the property of their respectiv
semiconductor products to current specifications in accordance
services at any time without notice. Altera assumes no respons
described herein except as expressly agreed to in writing by Al
on any published information and before placing orders for pr

Quartus II Handbook Version 13.1
Volume 2: Design Implementation and Optimization
November 2013
Section I. Scripting and Constraint Entry
As a result of the increasing complexity of today’s FPGA designs and the demand for
higher performance, designers must make a large number of complex timing and
logic constraints to meet their performance requirements. After you create a project
and design, you can use the Quartus® II software Assignment Editor and other GUI
features to specify your initial design constraints, such as pin assignments, device
options, logic options, and timing constraints.

This section describes how to constrain designs, how to take advantage of Quartus II
modular executables, how to develop and run Tcl scripts to perform a wide range of
functions, and how to manage the Quartus II projects.

This section includes the following chapters:

■ Chapter 1, Constraining Designs

This chapter discusses the ways to constrain designs in the Quartus II software,
including the tools avaliable in the Quartus II software GUI, as well as Tcl
scripting flows.

■ Chapter 2, Command-Line Scripting

This chapter discusses Quartus II command-line executables, which provide
command-line control over each step of the design flow. Each executable includes
options to control commonly used software settings. Each executable also
provides detailed, built-in help describing its function, available options, and
settings.

■ Chapter 3, Tcl Scripting

This chapter discusses developing and running Tcl scripts in the Quartus II
software to allow you to perform a wide range of functions, such as compiling a
design or automating common tasks. This chapter includes sample Tcl scripts for
automating the Quartus II software. You can modify these example scripts for use
with your own designs.
A, CYCLONE, HARDCOPY, MAX, MEGACORE, NIOS, QUARTUS and STRATIX words and logos
. Patent and Trademark Office and in other countries. All other words and logos identified as
e holders as described at www.altera.com/common/legal.html. Altera warrants performance of its
 with Altera's standard warranty, but reserves the right to make changes to any products and
ibility or liability arising out of the application or use of any information, product, or service
tera. Altera customers are advised to obtain the latest version of device specifications before relying
oducts or services.

ISO
9001:2008
Registered

http://www.altera.com/common/legal.html
http://www.altera.com/support/devices/reliability/certifications/rel-certifications.html
http://www.altera.com/support/devices/reliability/certifications/rel-certifications.html
https://www.altera.com/servlets/subscriptions/alert?id=UG-00000

QII52001-12.1.0

© 2012 Altera Corporation. All rights reserved. ALTERA, ARRI
are trademarks of Altera Corporation and registered in the U.S
trademarks or service marks are the property of their respectiv
semiconductor products to current specifications in accordance
services at any time without notice. Altera assumes no respons
described herein except as expressly agreed to in writing by Al
on any published information and before placing orders for pr

Quartus II Handbook Version 13.1
Volume 2: Design Implementation and Optimization
November 2012

November 2012
QII52001-12.1.0
1. Constraining Designs
This chapter discusses the various tools and methods for constraining and
re-constraining Quartus II designs in different design flows, both with the Quartus II
GUI and with Tcl to facilitate a scripted flow.

Constraints, sometimes known as assignments or logic options, control the way the
Quartus II software implements a design for an FPGA. Constraints are also central in
the way that the TimeQuest Timing Analyzer and the PowerPlay Power Analyzer
inform synthesis, placement, and routing. There are several types of constraints:

■ Global design constraints and software settings, such as device family selection,
package type, and pin count.

■ Entity-level constraints, such as logic options and placement assignments.

■ Instance-level constraints.

■ Pin assignments and I/O constraints.

User-created constraints are contained in one of two files: the Quartus II Settings File
(.qsf) or, in the case of timing constraints, the Synopsys Design Constraints file (.sdc).
Constraints and assignments made with the Device dialog box, Settings dialog box,
Assignment Editor, Chip Planner, and Pin Planner are contained in the Quartus II
Settings File. The .qsf file contains project-wide and instance-level assignments for the
current revision of the project in Tcl syntax. You can create separate revisions of your
project with different settings, and there is a separate .qsf file for each revision.

The TimeQuest Timing Analyzer uses industry-standard Synopsys Design
Constraints, also using Tcl syntax, that are contained in Synopsys Design Constraints
(.sdc) files. The TimeQuest Timing Analyzer GUI is a tool for making timing
constraints and viewing the results of subsequent analysis.

There are several ways to constrain a design, each potentially more appropriate than
the others, depending on your tool chain and design flow. You can constrain designs
for compilation and analysis in the Quartus II software using the GUI, as well as using
Tcl syntax and scripting. By combining the Tcl syntax of the .qsf files and the .sdc files
with procedural Tcl, you can automate iteration over several different settings,
changing constraints and recompiling.
A, CYCLONE, HARDCOPY, MAX, MEGACORE, NIOS, QUARTUS and STRATIX words and logos
. Patent and Trademark Office and in other countries. All other words and logos identified as
e holders as described at www.altera.com/common/legal.html. Altera warrants performance of its
 with Altera's standard warranty, but reserves the right to make changes to any products and
ibility or liability arising out of the application or use of any information, product, or service
tera. Altera customers are advised to obtain the latest version of device specifications before relying
oducts or services.

Feedback SubscribeTwitter

ISO
9001:2008
Registered

http://www.altera.com/common/legal.html
http://www.altera.com/support/reliability/certifications/rel-certifications.html
http://www.altera.com/support/reliability/certifications/rel-certifications.html
https://www.altera.com/servlets/subscriptions/alert?id=QII52001
mailto:TechDocFeedback@altera.com?subject=Feedback on qts_qii52001-13.1
http://twitter.com/home/?status=Constraining+Designs+http://www.altera.com/literature/hb/qts/qts_qii52001.pdf?WT.mc_id=gc_so_tw_st_tx_a_011+(via @alteracorp)+%23Altera

1–2 Chapter 1: Constraining Designs
Constraining Designs with the Quartus II GUI
Constraining Designs with the Quartus II GUI
In the Quartus II GUI, the New Project Wizard, Device dialog box, and Settings
dialog box allow you to make global constraints and software settings. The
Assignment Editor and Pin Planner are spreadsheet-style interfaces for constraining
your design at the instance or entity level. The Assignment Editor and Pin Planner
make constraint types and values available based on global design characteristics
such as the targeted device. These tools help you verify that your constraints are valid
before compilation by allowing you to pick only from valid values for each constraint.

The TimeQuest Timing Analyzer GUI allows you to make timing constraints in SDC
format and view the effects of those constraints on the timing in your design. Before
running the TimeQuest timing analyzer, you must specify initial timing constraints
that describe the clock characteristics, timing exceptions, and external signal arrival
and required times. The Quartus II Fitter optimizes the placement of logic in the
device to meet your specified constraints.

h For more information about timing constraints and the TimeQuest Timing Analyzer,
refer to About TimeQuest Timing Analysis in Quartus II Help.

Global Constraints
Global constraints affect the entire Quartus II project and all of the applicable logic in
the design. Many of these constraints are simply project settings, such as the targeted
device selected for the design. Synthesis optimizations and global timing and power
analysis settings can also be applied with globally. Global constraints are often made
when running the New Project Wizard, or in the Device dialog box or the Settings
dialog box, early project development.

The following are the most common types of global constraints:

■ Target device specification

■ Top-level entity of your design, and the names of the design files included in the
project

■ Operating temperature limits and conditions

■ Physical synthesis optimizations

■ Analysis and synthesis options and optimization techniques

■ Verilog HDL and VHDL language versions used in your project

■ Fitter effort and timing driven compilation settings

■ .sdc files for the TimeQuest timing analyzer to use during analysis as part of a full
compilation flow

Settings that direct compilation and analysis flows in the Quartus II software are also
stored in the Quartus II Settings File for your project, including the following global
software settings:

■ Early Timing Estimate mode

■ Settings for EDA tool integration such as third-party synthesis tools, simulation
tools, timing analysis tools, and formal verification tools.
Quartus II Handbook Version 13.1 November 2012 Altera Corporation
Volume 2: Design Implementation and Optimization

http://quartushelp.altera.com/current/master.htm#mergedProjects/analyze/sta/sta_about_sta.htm

Chapter 1: Constraining Designs 1–3
Constraining Designs with the Quartus II GUI
■ Settings and settings file specifications for the Quartus II Assembler, SignalTap II
Logic Analyzer, PowerPlay power analyzer, and SSN Analyzer.

Global constraints and software settings stored in the Quartus II settings file are
specific to each revision of your design, allowing you to control the operation of the
software differently for different revisions. For example, different revisions can
specify different operating temperatures and different devices, so that you can
compare results.

Only the valid assignments made in the Assignment Editor are saved in the
Quartus II Settings File, which is located in the project directory. When you make a
design constraint, the new assignment is placed on a new line at the end of the file.

When you create or update a constraint in the GUI, the Quartus II software displays
the equivalent Tcl command in the System tab of the Messages window. You can use
the displayed messages as references when making assignments using Tcl commands.

h For more information about specifying initial global constraints and software settings,
refer to Setting up and Running a Compilation in Quartus II Help.

f For more information about how the Quartus II software uses Quartus II Settings
Files, refer to the Managing Quartus II Projects chapter in volume 2 of the Quartus II
Handbook.

Node, Entity, and Instance-Level Constraints
Node, entity, and instance-level constraints constrain a particular segment of the
design hierarchy, as opposed to the entire design. In the Quartus II software GUI,
most instance-level constraints are made with the Assignment Editor, Pin Planner,
and Chip Planner. Both the Assignment Editor and Pin Planner aid you in correctly
constraining your design, both passively, through device-and-assignment-determined
pick lists, and actively, through live I/O checking.

You can assign logic functions to physical resources on the device, using location
assignments with the Assignment Editor or the Chip Planner. Node, entity, and
instance-level constraints take precedence over any global constraints that affect the
same sections of the design hierarchy. You can edit and view all node and entity-level
constraints you created in the Assignment Editor, or you can filter the assignments by
choosing to view assignments only for specific locations, such as DSP blocks.

The Pin Planner helps you visualize, plan, and assign device I/O pins to ensure
compatibility with your PCB layout. The Pin Planner provides a graphical view of the
I/O resources in the target device package. You can quickly locate various I/O pins
and assign them design elements or other properties. The Quartus II software uses
these assignments to place and route your design during device programming. The
Pin Planner also helps with early pin planning by allowing you to plan and assign IP
interface or user nodes not yet defined in the design.

The Pin Planner Task window provides one-click access to common pin planning
tasks. After clicking a pin planning task, you view and highlight the results in the
Report window by selecting or deselecting I/O types.You can quickly identify I/O
banks, VREF groups, edges, and differential pin pairings to assist you in the pin
planning process. You can verify the legality of new and existing pin assignments
with the live I/O check feature and view the results in the Live I/O Check Status
window.
November 2012 Altera Corporation Quartus II Handbook Version 13.1
Volume 2: Design Implementation and Optimization

http://www.altera.com/literature/hb/qts/qts_qii52012.pdf
http://quartushelp.altera.com/current/master.htm#mergedProjects/comp/comp/comp_pro_compile.htm

1–4 Chapter 1: Constraining Designs
Constraining Designs with the Quartus II GUI
The Chip Planner allows you to view the device from a variety of different
perspectives, and you can make precise assignments to specific floorplan locations.
With the Chip Planner, you can adjust existing assignments to device resources, such
as pins, logic cells, and LABs using drag and drop features and a graphical interface.
You can also view equations and routing information, and demote assignments by
dragging and dropping assignments to various regions in the Regions window.

h For more information about the Assignment Editor, refer to About the Assignment
Editor in Quartus II Help. For more information about the Chip Planner, refer to About
the Chip Planner in Quartus II Help. For more information about the Pin Planner, refer
to Assigning Device I/O Pins in Pin Planner in Quartus II Help.

Probing Between Components of the Quartus II GUI
The Assignment Editor, Chip Planner, and Pin Planner let you locate nodes and
instances in the source files for your design in other Quartus II viewers. You can select
a cell in the Assignment Editor spreadsheet and locate the corresponding item in
another applicable Quartus II software window, such as the Chip Planner. To locate an
item from the Assignment Editor in another window, right-click the item of interest in
the spreadsheet, point to Locate, and click the appropriate command.

You can also locate nodes in the Assignment Editor and other constraint tools from
other windows within the Quartus II software. First, select the node or nodes in the
appropriate window. For example, select an entity in the Entity list in the Hierarchy
tab in the Project Navigator, or select nodes in the Chip Planner. Next, right-click the
selected object, point to Locate, and click Locate in Assignment Editor. The
Assignment Editor opens, or it is brought to the foreground if it is already open.

h For more information about the Assignment Editor, refer to About the Assignment
Editor in Quartus II Help. For more information about the Chip Planner, refer to About
the Chip Planner in Quartus II Help. For more information about the Pin Planner, refer
to Assigning Device I/O Pins in Pin Planner in Quartus II Help.

SDC and the TimeQuest Timing Analyzer
You can make individual timing constraints for individual entities, nodes, and pins
with the Constraints menu of the TimeQuest Timing Analyzer. The TimeQuest Timing
Analyzer GUI provides easy access to timing constraints, and reporting, without
requiring knowledge of SDC syntax. As you specify commands and options in the
GUI, the corresponding SDC or Tcl command appears in the Console. This lets you
know exactly what constraint you have added to your Synopsys Design Constraints
file, and also enables you to learn SDC syntax for use in scripted flows. The GUI also
provides enhanced graphical reporting features.

Individual timing assignments override project-wide requirements. You can also
assign timing exceptions to nodes and paths to avoid reporting of incorrect or
irrelevant timing violations. The TimeQuest timing analyzer supports point-to-point
timing constraints, wildcards to identify specific nodes when making constraints, and
assignment groups to make individual constraints to groups of nodes.

h For more information about timing constraints and the TimeQuest Timing Analyzer,
refer to About TimeQuest Timing Analysis in Quartus II Help.
Quartus II Handbook Version 13.1 November 2012 Altera Corporation
Volume 2: Design Implementation and Optimization

http://quartushelp.altera.com/current/master.htm#mergedProjects/assign/ase/ase_intro.htm
http://quartushelp.altera.com/current/master.htm#mergedProjects/assign/ase/ase_intro.htm
http://quartushelp.altera.com/current/master.htm#mergedProjects/analyze/sta/sta_about_sta.htm
http://quartushelp.altera.com/current/master.htm#mergedProjects/optimize/ace/acv_view_acv_overview.htm
http://quartushelp.altera.com/current/master.htm#mergedProjects/optimize/ace/acv_view_acv_overview.htm
http://quartushelp.altera.com/current/master.htm#mergedProjects/assign/ase/ase_pro_assigning_pins.htm
http://quartushelp.altera.com/current/master.htm#mergedProjects/assign/ase/ase_intro.htm
http://quartushelp.altera.com/current/master.htm#mergedProjects/assign/ase/ase_intro.htm
http://quartushelp.altera.com/current/master.htm#mergedProjects/optimize/ace/acv_view_acv_overview.htm
http://quartushelp.altera.com/current/master.htm#mergedProjects/optimize/ace/acv_view_acv_overview.htm
http://quartushelp.altera.com/current/master.htm#mergedProjects/assign/ase/ase_pro_assigning_pins.htm

Chapter 1: Constraining Designs 1–5
Constraining Designs with Tcl
Constraining Designs with Tcl
Because .sdc files and .qsf files are both in Tcl syntax, you can modify these files to be
part of a scripted constraint and compilation flow. With Quartus II Tcl packages, Tcl
scripts can open projects, make the assignments procedurally that would otherwise be
specified in a .qsf file, compile a design, and compare compilation results against
known goals and benchmarks for the design. Such a script can further automate the
iterative process by modifying design constraints and recompiling the design.

h For more information about controlling the Quartus II software with Tcl, refer to
About Quartus II Tcl Scripting in Quartus II Help.

Quartus II Settings Files and Tcl
QSF files use Tcl syntax, but, unmodified, are not executable scripts. However, you
can embed QSF constraints in a scripted iterative compilation flow, where the script
that automates compilation and custom results reporting also contains the design
constraints. Example 1–1 shows an example QSF file with boilerplate comments
removed.
November 2012 Altera Corporation Quartus II Handbook Version 13.1
Volume 2: Design Implementation and Optimization

http://quartushelp.altera.com/current/master.htm#mergedProjects/reference/scripting/tcl_pro_command.htm

1–6 Chapter 1: Constraining Designs
Constraining Designs with Tcl
Example 1–1 shows the way that the set_global_assignment Quartus II Tcl command
makes all global constraints and software settings, with set_location_assignment
constraining each I/O node in the design to a physical pin on the device.

However, after you initially create the Quartus II Settings File for your design, you
can export the contents to a procedural, executable Tcl (.tcl) file. You can then use that
generated script to restore certain settings after experimenting with other constraints.
You can also use the generated Tcl script to archive your assignments instead of
archiving the Quartus II Settings file itself.

Example 1–1. Quartus II Settings File

set_global_assignment -name FAMILY "Cyclone II"
set_global_assignment -name DEVICE EP2C35F672C6
set_global_assignment -name TOP_LEVEL_ENTITY chiptrip
set_global_assignment -name ORIGINAL_QUARTUS_VERSION 10.0
set_global_assignment -name PROJECT_CREATION_TIME_DATE "11:45:02 JUNE 08, 2010"
set_global_assignment -name LAST_QUARTUS_VERSION 10.0
set_global_assignment -name MIN_CORE_JUNCTION_TEMP 0
set_global_assignment -name MAX_CORE_JUNCTION_TEMP 85
set_instance_assignment -name PARTITION_HIERARCHY root_partition -to | -section_id Top
set_global_assignment -name PARTITION_NETLIST_TYPE SOURCE -section_id Top
set_global_assignment -name PARTITION_FITTER_PRESERVATION_LEVEL PLACEMENT_AND_ROUTING \
-section_id Top
set_global_assignment -name PARTITION_COLOR 16764057 -section_id Top
set_global_assignment -name LL_ROOT_REGION ON -section_id "Root Region"
set_global_assignment -name LL_MEMBER_STATE LOCKED -section_id "Root Region"
set_global_assignment -name STRATIX_DEVICE_IO_STANDARD "3.3-V LVTTL"
set_location_assignment PIN_P2 -to clk2
set_location_assignment PIN_AE4 -to ticket[0]
set_location_assignment PIN_J23 -to ticket[2]
set_location_assignment PIN_Y12 -to timeo[1]
set_location_assignment PIN_N2 -to reset
set_location_assignment PIN_R2 -to timeo[7]
set_location_assignment PIN_P1 -to clk1
set_location_assignment PIN_M3 -to ticket[1]
set_location_assignment PIN_AE24 -to ~LVDS150p/nCEO~
set_location_assignment PIN_C2 -to accel
set_location_assignment PIN_K4 -to ticket[3]
set_location_assignment PIN_B3 -to stf
set_location_assignment PIN_T9 -to timeo[0]
set_location_assignment PIN_M5 -to timeo[6]
set_location_assignment PIN_J8 -to dir[1]
set_location_assignment PIN_C5 -to timeo[5]
set_location_assignment PIN_F6 -to gt1
set_location_assignment PIN_P24 -to timeo[2]
set_location_assignment PIN_B2 -to at_altera
set_location_assignment PIN_P3 -to timeo[4]
set_location_assignment PIN_M4 -to enable
set_location_assignment PIN_E3 -to ~ASDO~
set_location_assignment PIN_E5 -to dir[0]
set_location_assignment PIN_R25 -to timeo[3]
set_location_assignment PIN_D3 -to ~nCSO~
set_location_assignment PIN_G4 -to gt2
set_global_assignment -name MISC_FILE "D:/altera/chiptrip/chiptrip.dpf"
set_global_assignment -name USE_TIMEQUEST_TIMING_ANALYZER ON
set_global_assignment -name POWER_PRESET_COOLING_SOLUTION \
"23 MM HEAT SINK WITH 200 LFPM AIRFLOW"
set_global_assignment -name POWER_BOARD_THERMAL_MODEL "NONE (CONSERVATIVE)"
set_global_assignment -name SDC_FILE chiptrip.sdc
Quartus II Handbook Version 13.1 November 2012 Altera Corporation
Volume 2: Design Implementation and Optimization

Chapter 1: Constraining Designs 1–7
Constraining Designs with Tcl
To export your constraints as an executable Tcl script, on the Project menu, click
Generate Tcl File for Project. Example 1–2 shows the constraints in Example 1–1
converted to an executable Tcl script.

Example 1–2. Generated Tcl Script for a Quartus II Project (Part 1 of 2)

Quartus II: Generate Tcl File for Project
File: chiptrip.tcl
Generated on: Tue Jun 08 13:08:48 2010

Load Quartus II Tcl Project package
package require ::quartus::project

set need_to_close_project 0
set make_assignments 1

Check that the right project is open
if {[is_project_open]} {

if {[string compare $quartus(project) "chiptrip"]} {
puts "Project chiptrip is not open"
set make_assignments 0

}
} else {

Only open if not already open
if {[project_exists chiptrip]} {

project_open -revision chiptrip chiptrip
} else {

project_new -revision chiptrip chiptrip
}
set need_to_close_project 1

}

Make assignments
if {$make_assignments} {
set_global_assignment -name FAMILY "Cyclone II"
set_global_assignment -name DEVICE EP2C35F672C6
set_global_assignment -name TOP_LEVEL_ENTITY chiptrip
set_global_assignment -name ORIGINAL_QUARTUS_VERSION 10.0
set_global_assignment -name PROJECT_CREATION_TIME_DATE "11:45:02 JUNE 08, 2010"
set_global_assignment -name LAST_QUARTUS_VERSION 10.0
set_global_assignment -name MIN_CORE_JUNCTION_TEMP 0
set_global_assignment -name MAX_CORE_JUNCTION_TEMP 85
set_instance_assignment -name PARTITION_HIERARCHY root_partition -to | -section_id Top
set_global_assignment -name PARTITION_NETLIST_TYPE SOURCE -section_id Top
set_global_assignment -name PARTITION_FITTER_PRESERVATION_LEVEL PLACEMENT_AND_ROUTING \
-section_id Top
November 2012 Altera Corporation Quartus II Handbook Version 13.1
Volume 2: Design Implementation and Optimization

1–8 Chapter 1: Constraining Designs
Constraining Designs with Tcl
After setting initial values for variables to control constraint creation and whether or
not the project needs to be closed at the end of the script, the generated script checks
to see if a project is open. If a project is open but it is not the correct project, in this
case, chiptrip, the script prints Project chiptrip is not open to the console and
does nothing else.

If no project is open, the script determines if chiptrip exists in the current directory. If
the project exists, the script opens the project. If the project does not exist, the script
creates a new project and opens the project.

The script then creates the constraints. After creating the constraints, the script writes
the constraints to the Quartus II Settings File and then closes the project.

set_global_assignment -name PARTITION_COLOR 16764057 -section_id Top
set_global_assignment -name LL_ROOT_REGION ON -section_id "Root Region"
set_global_assignment -name LL_MEMBER_STATE LOCKED -section_id "Root Region"
set_global_assignment -name STRATIX_DEVICE_IO_STANDARD "3.3-V LVTTL"
set_location_assignment PIN_P2 -to clk2
set_location_assignment PIN_AE4 -to ticket[0]
set_location_assignment PIN_J23 -to ticket[2]
set_location_assignment PIN_Y12 -to timeo[1]
set_location_assignment PIN_N2 -to reset
set_location_assignment PIN_R2 -to timeo[7]
set_location_assignment PIN_P1 -to clk1
set_location_assignment PIN_M3 -to ticket[1]
set_location_assignment PIN_AE24 -to ~LVDS150p/nCEO~
set_location_assignment PIN_C2 -to accel
set_location_assignment PIN_K4 -to ticket[3]
set_location_assignment PIN_B3 -to stf
set_location_assignment PIN_T9 -to timeo[0]
set_location_assignment PIN_M5 -to timeo[6]
set_location_assignment PIN_J8 -to dir[1]
set_location_assignment PIN_C5 -to timeo[5]
set_location_assignment PIN_F6 -to gt1
set_location_assignment PIN_P24 -to timeo[2]
set_location_assignment PIN_B2 -to at_altera
set_location_assignment PIN_P3 -to timeo[4]
set_location_assignment PIN_M4 -to enable
set_location_assignment PIN_E3 -to ~ASDO~
set_location_assignment PIN_E5 -to dir[0]
set_location_assignment PIN_R25 -to timeo[3]
set_location_assignment PIN_D3 -to ~nCSO~
set_location_assignment PIN_G4 -to gt2
set_global_assignment -name MISC_FILE "D:/altera/chiptrip/chiptrip.dpf"
set_global_assignment -name USE_TIMEQUEST_TIMING_ANALYZER ON
set_global_assignment -name POWER_PRESET_COOLING_SOLUTION \
"23 MM HEAT SINK WITH 200 LFPM AIRFLOW"
set_global_assignment -name POWER_BOARD_THERMAL_MODEL "NONE (CONSERVATIVE)"
set_global_assignment -name SDC_FILE chiptrip.sdc

Commit assignments
export_assignments

Close project
if {$need_to_close_project} {

project_close
}

}

Example 1–2. Generated Tcl Script for a Quartus II Project (Part 2 of 2)
Quartus II Handbook Version 13.1 November 2012 Altera Corporation
Volume 2: Design Implementation and Optimization

Chapter 1: Constraining Designs 1–9
Constraining Designs with Tcl
Timing Analysis with Synopsys Design Constraints and Tcl
Timing constraints used in analysis by the Quartus II TimeQuest Timing Analyzer are
stored in .sdc files. Because they use Tcl syntax, the constraints in .sdc files can be
incorporated into other scripts for iterative timing analysis. Example 1–3 shows a
basic .sdc file for the chiptrip project.

Similar to the constraints in the Quartus II Settings File, you can make the SDC
constraints in Example 1–3 part of an executable timing analysis script, as shown in
example Example 1–4.

Example 1–3. Initial .sdc file for the chiptrip Project

--

set_time_unit ns
set_decimal_places 3

--
#
create_clock -period 10.0 -waveform { 0 5.0 } clk2 -name clk2
create_clock -period 4.0 -waveform { 0 2.0 } clk1 -name clk1

clk1 -> dir* : INPUT_MAX_DELAY = 1 ns
set_input_delay -max 1ns -clock clk1 [get_ports dir*]
clk2 -> time* : OUTPUT_MAX_DELAY = -2 ns
set_output_delay -max -2ns -clock clk2 [get_ports time*]

Example 1–4. Tcl Script Making Basic Timing Constraints and Performing Mult-Corner Timing Analysis

project_open chiptrip
create_timing_netlist

#
Create Constraints
#
create_clock -period 10.0 -waveform { 0 5.0 } clk2 -name clk2
create_clock -period 4.0 -waveform { 0 2.0 } clk1 -name clk1

clk1 -> dir* : INPUT_MAX_DELAY = 1 ns
set_input_delay -max 1ns -clock clk1 [get_ports dir*]
clk2 -> time* : OUTPUT_MAX_DELAY = -2 ns
set_output_delay -max -2ns -clock clk2 [get_ports time*]

#
Perform timing analysis for several different sets of operating conditions
#
foreach_in_collection oc [get_available_operating_conditions] {
 set_operating_conditions $oc
 update_timing_netlist

 report_timing -setup -npaths 1
 report_timing -hold -npaths 1
 report_timing -recovery -npaths 1
 report_timing -removal -npaths 1
 report_min_pulse_width -nworst 1
}

delete_timing_netlist
project_close
November 2012 Altera Corporation Quartus II Handbook Version 13.1
Volume 2: Design Implementation and Optimization

1–10 Chapter 1: Constraining Designs
A Fully Iterative Scripted Flow
The script in Example 1–4 opens the project, creates a timing netlist, then constrains
the two clocks in the design and applies input and output delay constraints. The clock
settings and delay constraints are identical to those in the .sdc file shown in
Example 1–3. The next section of the script updates the timing netlist for the
constraints and performs multi-corner timing analysis on the design.

A Fully Iterative Scripted Flow
You can use the ::quartus::flow Tcl package and other packages in the Quartus II Tcl
API to add flow control to modify constraints and recompile your design in an
automated flow. You can combine your timing constraints with the other constraints
for your design, and embed them in an executable Tcl script that also iteratively
compiles your design as different constraints are applied.

Each time such a modified generated script is run, it can modify the .qsf file and .sdc
file for your project based on the results of iterative compilations, effectively replacing
these files for the purposes of archiving and version control using industry-standard
source control methods and practices.

This type of scripted flow can include automated compilation of a design,
modification of design constraints, and recompilation of the design, based on how
you foresee results and pre-determine next-step constraint changes in response to
those results.

h For more information about the Quartus II Tcl API, refer to API Functions for Tcl in
Quartus II Help. For more information about controlling the Quartus II software with
Tcl scripts, refer to About Quartus II Tcl Scripting in Quartus II Help.

Document Revision History
Table 1–1 shows the revision history for this chapter.

Table 1–1. Document Revision History (Part 1 of 2)

Date Version Changes

November 2012 12.1.0 Update Pin Planner description for task and report windows.

June 2012 12.0.0 Removed survey link.

November 2011 10.0.2 Template update.

December 2010 10.0.1 Template update.

July 2010 10.0.0 Rewrote chapter to more broadly cover all design constraint methods. Removed procedural
steps and user interface details, and replaced with links to Quartus II Help.

November 2009 9.1.0
■ Added two notes.

■ Minor text edits.

March 2009 9.0.0

■ Revised and reorganized the entire chapter.

■ Added section “Probing to Source Design Files and Other Quartus II Windows” on
page 1–2.

■ Added description of node type icons (Table 1–3).

■ Added explanation of wildcard characters.
Quartus II Handbook Version 13.1 November 2012 Altera Corporation
Volume 2: Design Implementation and Optimization

http://quartushelp.altera.com/current/master.htm#mergedProjects/tafs/tafs/tcl_list_of_packages.htm
http://quartushelp.altera.com/current/master.htm#mergedProjects/reference/scripting/tcl_pro_command.htm

Chapter 1: Constraining Designs 1–11
Document Revision History
f For previous versions of the Quartus II Handbook, refer to the Quartus II Handbook
Archive.

November 2008 8.1.0 Changed to 8½” × 11” page size. No change to content.

May 2008 8.0.0 Updated Quartus II software 8.0 revision and date.

Table 1–1. Document Revision History (Part 2 of 2)

Date Version Changes
November 2012 Altera Corporation Quartus II Handbook Version 13.1
Volume 2: Design Implementation and Optimization

http://www.altera.com/literature/lit-qts_archive.jsp
http://www.altera.com/literature/lit-qts_archive.jsp

QII52002-13.1.0

© 2013 Altera Corporation. All rights reserved. ALTERA, ARRI
are trademarks of Altera Corporation and registered in the U.S
trademarks or service marks are the property of their respectiv
semiconductor products to current specifications in accordance
services at any time without notice. Altera assumes no respons
described herein except as expressly agreed to in writing by Al
on any published information and before placing orders for pr

Quartus II Handbook Version 13.1
Volume 2: Design Implementation and Optimization
November 2013

November 2013
QII52002-13.1.0
2. Command-Line Scripting
FPGA design software that easily integrates into your design flow saves time and
improves productivity. The Altera® Quartus® II software provides you with a
command-line executable for each step of the FPGA design flow to make the design
process customizable and flexible.

The benefits provided by command-line executables include:

■ Command-line control over each step of the design flow

■ Easy integration with scripted design flows including makefiles

■ Reduced memory requirements

■ Improved performance

The command-line executables are also completely interchangable with the Quartus II
GUI, allowing you to use the exact combination of tools that you prefer.

This chapter describes how to take advantage of Quartus II command-line
executables, and provides several examples of scripts that automate different
segments of the FPGA design flow. This chapter includes the following topics:

■ “Benefits of Command-Line Executables”

■ “Introductory Example” on page 2–2

■ “Compilation with quartus_sh --flow” on page 2–7

■ “The MegaWizard Plug-In Manager” on page 2–11

■ “Command-Line Scripting Examples” on page 2–17

Benefits of Command-Line Executables
The Quartus II command-line executables provide control over each step of the
design flow. Each executable includes options to control commonly used software
settings. Each executable also provides detailed, built-in help describing its function,
available options, and settings.

Command-line executables allow for easy integration with scripted design flows. You
can easily create scripts with a series of commands. These scripts can be
batch-processed, allowing for integration with distributed computing in server farms.
You can also integrate the Quartus II command-line executables in makefile-based
design flows. These features enhance the ease of integration between the Quartus II
software and other EDA synthesis, simulation, and verification software.
A, CYCLONE, HARDCOPY, MAX, MEGACORE, NIOS, QUARTUS and STRATIX words and logos
. Patent and Trademark Office and in other countries. All other words and logos identified as
e holders as described at www.altera.com/common/legal.html. Altera warrants performance of its
 with Altera's standard warranty, but reserves the right to make changes to any products and
ibility or liability arising out of the application or use of any information, product, or service
tera. Altera customers are advised to obtain the latest version of device specifications before relying
oducts or services.

Feedback SubscribeTwitter

ISO
9001:2008
Registered

https://www.altera.com/servlets/subscriptions/alert?id=QII52002
http://www.altera.com/common/legal.html
http://www.altera.com/support/reliability/certifications/rel-certifications.html
http://www.altera.com/support/reliability/certifications/rel-certifications.html
http://twitter.com/home/?status=Command-Line+Scripting+http://www.altera.com/literature/hb/qts/qts_qii52002.pdf?WT.mc_id=gc_so_tw_st_tx_a_011+(via @alteracorp)+%23Altera
mailto:TechDocFeedback@altera.com?subject=Feedback on qts_qii52002-13.1

2–2 Chapter 2: Command-Line Scripting
Introductory Example
Command-line executables add flexibility without sacrificing the ease-of-use of the
Quartus II GUI. You can use the Quartus II GUI and command-line executables at
different stages in the design flow. For example, you might use the Quartus II GUI to
edit the floorplan for the design, use the command-line executables to perform
place-and-route, and return to the Quartus II GUI to perform debugging with the
Chip Editor.

Command-line executables reduce the amount of memory required during each step
in the design flow. Because each executable targets only one step in the design flow,
the executables themselves are relatively compact, both in file size and the amount of
memory used during processing. This memory usage reduction improves
performance, and is particularly beneficial in design environments where heavy
usage of computing resources results in reduced memory availability.

h For a complete list of the Quartus II command-line executables, refer to Using the
Quartus II Executables in Shell Scripts in Quartus II Help.

Introductory Example
The following introduction to command-line executables demonstrates how to create
a project, fit the design, and generate programming files.

The tutorial design included with the Quartus II software is used to demonstrate this
functionality. If installed, the tutorial design is found in the
<Quartus II directory>/qdesigns/fir_filter directory.

Before making changes, copy the tutorial directory and type the four commands
shown in Example 2–1 at a command prompt in the new project directory.

1 The <Quartus II directory>/quartus/bin directory must be in your PATH environment
variable.

The quartus_map filtref --source=filtref.bdf --family=”Cyclone III”
command creates a new Quartus II project called filtref with filtref.bdf as the
top-level file. It targets the Cyclone® III device family and performs logic synthesis
and technology mapping on the design files.

The quartus_fit filtref --part=EP3C10F256C8 --pack_register=minimize_area
command performs fitting on the filtref project. This command specifies an
EP3C10F256C8 device, and the --pack_register=minimize_area option causes the
Fitter to pack sequential and combinational functions into single logic cells to reduce
device resource usage.

The quartus_asm filtref command creates programming files for the filtref project.

The quartus_sta filtref command performs basic timing analysis on the filtref
project using the Quartus II TimeQuest Timing Analyzer, reporting worst-case setup
slack, worst-case hold slack, and other measurements.

Example 2–1. Introductory Example

quartus_map filtref --source=filtref.bdf --family=”Cyclone III” r
quartus_fit filtref --part=EP3C10F256C8 --pack_register=minimize_area r
quartus_asm filtref r
quartus_sta filtref r
Quartus II Handbook Version 13.1 November 2013 Altera Corporation
Volume 2: Design Implementation and Optimization

http://quartushelp.altera.com/current/master.htm#mergedProjects/reference/scripting/tcl_about_execs_scripts_makes.htm
http://quartushelp.altera.com/current/master.htm#mergedProjects/reference/scripting/tcl_about_execs_scripts_makes.htm

Chapter 2: Command-Line Scripting 2–3
Introductory Example
f The TimeQuest Timing Analyzer employs Synopsys Design Constraints to fully
analyze the timing of your design. For more information about using all of the
features of the quartus_sta executable, refer to the TimeQuest Timing Analyzer Quick
Start Tutorial.

You can put the four commands from Example 2–1 into a batch file or script file, and
run them. For example, you can create a simple UNIX shell script called compile.sh,
which includes the code shown in Example 2–2.

Edit the script as necessary and compile your project.

Command-Line Scripting Help
Help for command-line executables is available through different methods. You can
access help built in to the executables with command-line options. You can use the
Quartus II Command-Line and Tcl API Help browser for an easy graphical view of
the help information.

To use the Quartus II Command-Line and Tcl API Help browser, type the following
command:

quartus_sh --qhelp r
This command starts the Quartus II Command-Line and Tcl API Help browser, a
viewer for information about the Quartus II Command-Line executables and Tcl API
(Figure 2–1).

Example 2–2. UNIX Shell Script: compile.sh

#!/bin/sh
PROJECT=filtref
TOP_LEVEL_FILE=filtref.bdf
FAMILY=”Cyclone III”
PART=EP3C10F256C8
PACKING_OPTION=minimize_area
quartus_map $PROJECT --source=$TOP_LEVEL_FILE --family=$FAMILY
quartus_fit $PROJECT --part=$PART --pack_register=$PACKING_OPTION
quartus_asm $PROJECT
quartus_sta $PROJECT
November 2013 Altera Corporation Quartus II Handbook Version 13.1
Volume 2: Design Implementation and Optimization

http://www.altera.com/literature/hb/qts/ug_tq_tutorial.pdf
http://www.altera.com/literature/hb/qts/ug_tq_tutorial.pdf

2–4 Chapter 2: Command-Line Scripting
Project Settings with Command-Line Options
Use the -h option with any of the Quartus II Command-Line executables to get a
description and list of supported options. Use the --help=<option name> option for
detailed information about each option.

Project Settings with Command-Line Options
Command-line options are provided for many common global project settings and for
performing common tasks. You can use either of two methods to make assignments to
an individual entity. If the project exists, open the project in the Quartus II GUI,
change the assignment, and close the project. The changed assignment is updated in
the .qsf. Any command-line executables that are run after this update use the updated
assignment. For more information refer to “Option Precedence” on page 2–5. You can
also make assignments using the Quartus II Tcl scripting API. If you want to
completely script the creation of a Quartus II project, choose this method.

f For more information about the Quartus II Tcl scripting API, refer to the Tcl Scripting
chapter in volume 2 of the Quartus II Handbook. For more information about
Quartus II project settings and assignments, refer to the QSF Reference Manual.

Figure 2–1. Quartus II Command-Line and Tcl API Help Browser
Quartus II Handbook Version 13.1 November 2013 Altera Corporation
Volume 2: Design Implementation and Optimization

http://www.altera.com/literature/hb/qts/qts_qii52003.pdf
http://www.altera.com/literature/manual/mnl_qsf_reference.pdf

Chapter 2: Command-Line Scripting 2–5
Project Settings with Command-Line Options
Option Precedence
If you use command-line executables, you must be aware of the precedence of various
project assignments and how to control the precedence. Assignments for a particular
project exist in the Quartus II Settings File (.qsf) for the project. Before the .qsf is
updated after assignment changes, the updated assignments are reflected in compiler
database files that hold intermediate compilation results..

All command-line options override any conflicting assignments found in the .qsf or
the compiler database files. There are two command-line options to specify whether
the .qsf or compiler database files take precedence for any assignments not specified
as command-line options.

1 Any assignment not specified as a command-line option or found in the .qsf or
compiler database file is set to its default value.

The file precedence command-line options are --read_settings_files and
--write_settings_files.

By default, the --read_settings_files and --write_settings_files options are
turned on. Turning on the --read_settings_files option causes a command-line
executable to read assignments from the .qsf instead of from the compiler database
files. Turning on the --write_settings_files option causes a command-line
executable to update the .qsf to reflect any specified options, as happens when you
close a project in the Quartus II GUI.

If you use command-line executables, be aware of the precedence of various project
assignments and how to control the precedence. Assignments for a particular project
can exist in three places:

■ The .qsf for the project

■ The result of the last compilation, in the /db directory, which reflects the
assignments that existed when the project was compiled

■ Command-line options

Table 2–1 lists the precedence for reading assignments depending on the value of the
--read_settings_files option.

Table 2–1. Precedence for Reading Assignments

Option Specified Precedence for Reading Assignments

--read_settings_files = on

(Default)

1. Command-line options

2. The .qsf for the project

3. Project database (db directory, if it exists)

4. Quartus II software defaults

--read_settings_files = off

1. Command-line options

2. Project database (db directory, if it exists)

3. Quartus II software defaults
November 2013 Altera Corporation Quartus II Handbook Version 13.1
Volume 2: Design Implementation and Optimization

2–6 Chapter 2: Command-Line Scripting
Project Settings with Command-Line Options
Table 2–2 lists the locations to which assignments are written, depending on the value
of the --write_settings_files command-line option.

Example 2–3 assumes that a project named fir_filter exists, and that the analysis and
synthesis step has been performed (using the quartus_map executable).

The first command, quartus_fit fir_filter --pack_register=off, runs the
quartus_fit executable with no aggressive attempts to reduce device resource usage.

The second command, quartus_sta fir_filter, performs basic timing analysis for
the results of the previous fit.

The third command uses the UNIX mv command to copy the report file output from
quartus_sta to a file with a new name, so that the results are not overwritten by
subsequent timing analysis.

The fourth command runs quartus_fit a second time, and directs it to attempt to pack
logic into registers to reduce device resource usage. With the
--write_settings_files=off option, the command-line executable does not update
the .qsf to reflect the changed register packing setting. Instead, only the compiler
database files reflect the changed setting. If the --write_settings_files=off option
is not specified, the command-line executable updates the .qsf to reflect the register
packing setting.

The fifth command reruns timing analysis, and the sixth command renames the report
file, so that it is not overwritten by subsequent timing anlysis.

Use the options --read_settings_files=off and --write_settings_files=off
(where appropriate) to optimize the way that the Quartus II software reads and
updates settings files. In Example 2–4, the quartus_asm executable does not read or
write settings files because doing so would not change any settings for the project.

Table 2–2. Location for Writing Assignments

Option Specified Location for Writing Assignments

--write_settings_files = on (Default) .qsf and compiler database

--write_settings_files = off Compiler database

Example 2–3. Write Settings Files

quartus_fit fir_filter --pack_register=off r
quartus_sta fir_filter r
mv fir_filter_sta.rpt fir_filter_1_sta.rpt r
quartus_fit fir_filter --pack_register=minimize_area

--write_settings_files=off r
quartus_sta fir_filter r
mv fir_filter_sta.rpt fir_filter_2_sta.rpt r

Example 2–4. Avoiding Unnecessary Reading and Writing

quartus_map filtref --source=filtref --part=EP3C10F256C8 r
quartus_fit filtref --pack_register=off --read_settings_files=off r
quartus_asm filtref --read_settings_files=off --write_settings_files=off r
Quartus II Handbook Version 13.1 November 2013 Altera Corporation
Volume 2: Design Implementation and Optimization

Chapter 2: Command-Line Scripting 2–7
Compilation with quartus_sh --flow
Compilation with quartus_sh --flow
Figure 2–2 shows a typical Quartus II FPGA design flow using command-line
executables.

Use the quartus_sh executable with the --flow option to perform a complete
compilation flow with a single command. The --flow option supports the smart
recompile feature and efficiently sets command-line arguments for each executable in
the flow.

The following example runs compilation, timing analysis, and programming file
generation with a single command:

quartus_sh --flow compile filtref r

1 For information about specialized flows, type quartus_sh --help=flow r at a
command prompt.

Figure 2–2. Typical Design Flow

Programmer
quartus_pgm

TimeQuest
Timing Analyzer
quartus_sta

Analysis &
Synthesis

quartus_map

Design Assistant
quartus_drc

Quartus II Shell
quartus_sh

Programming File
Converter
quartus_cpf

EDA Netlist Writer
quartus_eda

Compiler Database
quartus_cdb

Verilog Design Files (.v), VHDL Design Files (.vhd),
Verilog Quartus Mapping Files (.vqm), Text Design
Files (.tdf), Block Design Files (.bdf) & EDIF netlist
files (.edf)

Output files for EDA tools
including Verilog Output
Files (.vo), VHDL Output
Files (.vho), VQM Files &
Standard Delay Format
Output Files (.sdo)

SignalTap II Logic
Analyzer

quartus_stp

PowerPlay Power
Analyzer

quartus_pow

Fitter
quartus_fit

Assembler
quartus_asm
November 2013 Altera Corporation Quartus II Handbook Version 13.1
Volume 2: Design Implementation and Optimization

2–8 Chapter 2: Command-Line Scripting
Text-Based Report Files
Text-Based Report Files
Each command-line executable creates a text report file when it is run. These files
report success or failure, and contain information about the processing performed by
the executable.

Report file names contain the revision name and the short-form name of the
executable that generated the report file, in the format <revision>.<executable>.rpt. For
example, using the quartus_fit executable to place and route a project with the
revision name design_top generates a report file named design_top.fit.rpt. Similarly,
using the quartus_sta executable to perform timing analysis on a project with the
revision name fir_filter generates a report file named fir_filter.sta.rpt.

h As an alternative to parsing text-based report files, you can use the ::quartus::report
Tcl package. For more information about this package, refer to ::quartus::report in
Quartus II Help.

Using Command-Line Executables In Scripts
You can use command-line executables in scripts that control other software in
addition to the Quartus II software. For example, if your design flow uses third-party
synthesis or simulation software, and if you can run the other software at a command
prompt, you can include those commands with Quartus II executables in a single
script.

The Quartus II command-line executables include options for common global project
settings and operations, but you must use a Tcl script or the Quartus II GUI to set up a
new project and apply individual constraints, such as pin location assignments and
timing requirements. Command-line executables are very useful for working with
existing projects, for making common global settings, and for performing common
operations. For more flexibility in a flow, use a Tcl script, which makes it easier to pass
data between different stages of the design flow and have more control during the
flow.

f For more information about Tcl scripts, refer to the Tcl Scripting chapter in volume 2 of
the Quartus II Handbook, or About Quartus II Tcl Scripting in Quartus II Help.
Quartus II Handbook Version 13.1 November 2013 Altera Corporation
Volume 2: Design Implementation and Optimization

http://www.altera.com/literature/hb/qts/qts_qii52003.pdf
http://quartushelp.altera.com/current/master.htm#mergedProjects/reference/scripting/tcl_pro_command.htm
http://quartushelp.altera.com/current/master.htm#mergedProjects/tafs/tafs/tcl_pkg_report_ver_2.1.htm

Chapter 2: Command-Line Scripting 2–9
Using Command-Line Executables In Scripts
For example, a UNIX shell script could run other synthesis software, then
place-and-route the design in the Quartus II software, then generate output netlists
for other simulation software. Example 2–5 shows a script that synthesizes a design
with the Synopsys Synplify software, simulates the design using the Mentor Graphics
ModelSim® software, and then compiles the design targeting a Cyclone III device.

Makefile Implementation
You can use the Quartus II command-line executables in conjunction with the make
utility to automatically update files when other files they depend on change. The file
dependencies and commands used to update files are specified in a text file called a
makefile.

To facilitate easier development of efficient makefiles, the following “smart action”
scripting command is provided with the Quartus II software:

quartus_sh --determine_smart_action r
Because assignments for a Quartus II project are stored in the .qsf, including it in
every rule results in unnecessary processing steps. For example, updating a setting
related to programming file generation, which requires re-running only quartus_asm,
modifies the .qsf, requiring a complete recompilation if the .qsf is included in every
rule.

The smart action command determines the earliest command-line executable in the
compilation flow that must be run based on the current .qsf, and generates a change
file corresponding to that executable. For example, if quartus_map must be re-run, the
smart action command creates or updates a file named map.chg. Thus, rather than
including the .qsf in each makefile rule, include only the appropriate change file.

Example 2–5. Script for End-to-End Flow

#!/bin/sh
Run synthesis first.
This example assumes you use Synplify software
synplify -batch synthesize.tcl

If your Quartus II project exists already, you can just
recompile the design.
You can also use the script described in a later example to
create a new project from scratch
quartus_sh --flow compile myproject

Use the quartus_sta executable to do fast and slow-model
timing analysis
quartus_sta myproject --model=slow
quartus_sta myproject --model=fast

Use the quartus_eda executable to write out a gate-level
Verilog simulation netlist for ModelSim
quartus_eda my_project --simulation --tool=modelsim --format=verilog

Perform the simulation with the ModelSim software
vlib cycloneiii_ver
vlog -work cycloneiii_ver /opt/quartusii/eda/sim_lib/cycloneiii_atoms.v
vlib work
vlog -work work my_project.vo
vsim -L cycloneiii_ver -t 1ps work.my_project
November 2013 Altera Corporation Quartus II Handbook Version 13.1
Volume 2: Design Implementation and Optimization

2–10 Chapter 2: Command-Line Scripting
Using Command-Line Executables In Scripts
Example 2–6 uses change files and the smart action command. You can copy and
modify it for your own use. A copy of this example is included in the help for the
makefile option, which is available by typing:

quartus_sh --help=makefiles r

Example 2–6. Sample Makefile (Part 1 of 2)

###
Project Configuration:

Specify the name of the design (project), the Quartus II Settings
File (.qsf), and the list of source files used.
###

PROJECT = chiptrip
SOURCE_FILES = auto_max.v chiptrip.v speed_ch.v tick_cnt.v time_cnt.v
ASSIGNMENT_FILES = chiptrip.qpf chiptrip.qsf

###
Main Targets
#
all: build everything
clean: remove output files and database
###
all: smart.log $(PROJECT).asm.rpt $(PROJECT).sta.rpt

clean:
rm -rf *.rpt *.chg smart.log *.htm *.eqn *.pin *.sof *.pof db

map: smart.log $(PROJECT).map.rpt
fit: smart.log $(PROJECT).fit.rpt
asm: smart.log $(PROJECT).asm.rpt
sta: smart.log $(PROJECT).sta.rpt
smart: smart.log
###
Executable Configuration
###

MAP_ARGS = --family=Stratix
FIT_ARGS = --part=EP1S20F484C6
ASM_ARGS =
STA_ARGS =

###
Target implementations
###

STAMP = echo done >

$(PROJECT).map.rpt: map.chg $(SOURCE_FILES)
quartus_map $(MAP_ARGS) $(PROJECT)
$(STAMP) fit.chg
Quartus II Handbook Version 13.1 November 2013 Altera Corporation
Volume 2: Design Implementation and Optimization

Chapter 2: Command-Line Scripting 2–11
The MegaWizard Plug-In Manager
A Tcl script is provided with the Quartus II software to create or modify files that are
specified as dependencies in the make rules, assisting you in makefile development.
Complete information about this Tcl script and how to integrate it with makefiles is
available by running the following command:

quartus_sh --help=determine_smart_action r

The MegaWizard Plug-In Manager
The MegaWizard™ Plug-In Manager provides a GUI-based flow to configure
megafunction and IP variation files. However, you can use command-line options for
the qmegawiz executable to modify, update, or create variation files without using the
GUI. This capability is useful in a fully scripted design flow, or in cases where you
want to generate variation files without using the wizard GUI flow.

The MegaWizard Plug-In Manager has three functions:

■ Providing an interface for you to select the output file or files

■ Running a specific MegaWizard Plug-In

■ Creating output files (such as variation files, symbol files, and simulation netlist
files)

Each MegaWizard Plug-In provides a user interface for configuring the variation, and
performs validation and error checking of your selected ports and parameters. When
you create or update a variation with the GUI, the parameters and values are entered
through the GUI provided by the Plug-In. When you create a Plug-In variation with
the command line, you provide the parameters and values as command-line options.

Example 2–7 shows how to create a new variation file at a system command prompt.

When you use qmegawiz to update an existing variation file, the module or wizard
name is not required.

###
Project initialization
###

$(ASSIGNMENT_FILES):
quartus_sh --prepare $(PROJECT)

map.chg:
$(STAMP) map.chg

fit.chg:
$(STAMP) fit.chg

sta.chg:
$(STAMP) sta.chg

asm.chg:
$(STAMP) asm.chg

Example 2–6. Sample Makefile (Part 2 of 2)

Example 2–7. MegaWizard Plug-In Manager Command-Line Executable

qmegawiz [options] [module=<module name>|wizard=<wizard name>] [<param>=<value> ...
<port>=<used|unused> ...] [OPTIONAL_FILES=<optional files>] <variation file name>
November 2013 Altera Corporation Quartus II Handbook Version 13.1
Volume 2: Design Implementation and Optimization

2–12 Chapter 2: Command-Line Scripting
The MegaWizard Plug-In Manager
For more information on updating megafunction variation files as part of a scripted
flow, refer to “Regenerating Megafunctions After Updating the Quartus II Software”
on page 2–23.

Table 2–3 describes the supported options.

For information about specifying the module name or wizard name, refer to “Module
and Wizard Names” on page 2–13.

For information about specifying ports and parameters, refer to “Ports and
Parameters” on page 2–14.

For information about generating optional files, refer to “Optional Files” on
page 2–15.

For information about specifying the variation file name, refer to “Variation File
Name” on page 2–17.

Command-Line Support
Only the MegaWizard Plug-Ins listed in Table 2–4 support creation and update in
command-line mode. For Plug-Ins not listed in the table, you must use the
MegaWizard Plug-In Manager GUI for creation and updates.

Table 2–3. qmegawiz Options

Option Description

-silent
Run the MegaWizard Plug-In Manager in command-line mode, without displaying the
GUI.

-f:<param file> A file that contains all options for the qmegawiz command. Refer to “Parameter File” on
page 2–16.

-p:<working directory> Sets the default working directory. Refer to“Working Directory” on page 2–17.

Table 2–4. MegaWizard Plug-Ins with Command Line Support (Part 1 of 2)

MegaWizard Plug-In Wizard Name Module Name

alt2gxb ALT2GXB alt2gxb

alt4gxb ALTGX alt4gxb

altasmi_parallel ALTASMI_PARALLEL altasmi_parallel

altclkctrl ALTCLKCTRL altclkctrl

altddio_bidir ALTDDIO_BIDIR altddio_bidir

altddio_in ALTDDIO_IN altddio_in

altddio_out ALTDDIO_OUT altddio_out

altecc_decoder
ALTECC

altecc_decoder

altecc_encoder altecc_encoder

altfp_abs ALTFP_ABS altfp_abs

altfp_add_sub ALTFP_ADD_SUB altfp_add_sub

altfp_atan ALTFP_ATAN altfp_atan

altfp_compare ALTFP_COMPARE altfp_compare

altfp_convert ALTFP_CONVERT altfp_convert
Quartus II Handbook Version 13.1 November 2013 Altera Corporation
Volume 2: Design Implementation and Optimization

Chapter 2: Command-Line Scripting 2–13
The MegaWizard Plug-In Manager
Module and Wizard Names
You must specify the wizard or module name, shown in Table 2–4, as a command-line
option when you create a variation file. Use the option module=<module name> to
specify the module, or use the option wizard=<wizard name> to specify the wizard.
If there are spaces in the wizard or module name, enclose the name in double quotes,
for example:

wizard="RAM: 2-PORT"

When there is a one-to-one mapping between the MegaWizard Plug-In, the wizard
name, and the module name, you can use either the wizard option or the module
option.

altfp_div ALTFP_DIV altfp_div

altfp_exp ALTFP_EXP altfp_exp

altfp_inv_sqrt ALTFP_INV_SQRT altfp_inv_sqrt

altfp_inv ALTFP_INV altfp_inv

altfp_log ALTFP_LOG altfp_log

altfp_matrix_inv ALTFP_MATRIX_INV altfp_matrix_inv

altfp_matrix_mult ALTFP_MATRIX_MULT altfp_matrix_mult

altfp_mult ALTFP_MULT altfp_mult

altfp_sincos ALTFP_SINCOS altfp_sincos

altfp_sqrt ALTFP_SQRT altfp_sqrt

altiobuf_bidir

ALTIOBUF

altiobuf_bidir

altiobuf_in altiobuf_in

altiobuf_out altiobuf_out

altlvds_rx
ALTLVDS

altlvds_rx

altlvds_tx altlvds_tx

altmult_accum ALTMULT_ACCUM (MAC) altmult_accum

altmult_complex ALTMULT_COMPLEX altmult_complex

altotp ALTOTP altotp

altpll_reconfig ALTPLL_RECONFIG altpll_reconfig

altpll ALTPLL altpll

altremote_update ALTREMOTE_UPDATE altremote_update

altshift_taps ALTSHIFT_TAPS altshift_taps

altsyncram

RAM: 2-PORT

altsyncramRAM: 1-PORT

ROM: 1-PORT

alttemp_sense ALTTEMP_SENSE alttemp_sense

alt_c3gxb ALT_C3GXB alt_c3gxb

dcfifo
FIFO

dcfifo

scfifo scfifo

Table 2–4. MegaWizard Plug-Ins with Command Line Support (Part 2 of 2)

MegaWizard Plug-In Wizard Name Module Name
November 2013 Altera Corporation Quartus II Handbook Version 13.1
Volume 2: Design Implementation and Optimization

2–14 Chapter 2: Command-Line Scripting
The MegaWizard Plug-In Manager
When there are multiple wizard names that correspond to one module name, use the
wizard option to specify one wizard. For example, use the wizard option if you create
a RAM, because one module is common to three wizards.

When there are multiple module names that correspond to one wizard name, use the
module option to specify one module. For example, use the module option if you
create a FIFO because one wizard is common to both modules.

If you edit or update an existing variation file, the wizard or module option is not
necessary, because information about the wizard or module is already in the variation
file.

Ports and Parameters
Ports and parameters for each MegaWizard Plug-In are described in Quartus II Help,
and in the Megafunction User Guides on the Altera website. Use these references to
determine appropriate values for each port and parameter required for a particular
variation configuration. Refer to “Strategies to Determine Port and Parameter Values”
for more information. You do not have to specify every port and parameter supported
by a Plug-In. The MegaWizard Plug-In Manager uses default values for any port or
parameter you do not specify.

Specify ports as used or unused, for example:

<port>=used
<port>=unused

You can specify port names in any order. Grouping does not matter. Separate port
configuration options from each other with spaces.

Specify a value for a parameter with the equal sign, for example:

<parameter>=<value>

You can specify parameters in any order. Grouping does not matter. Separate
parameter configuration options from each other with spaces. You can specify port
names and parameter names in upper or lower case; case does not matter.

All MegaWizard Plug-Ins allow you to specify the target device family with the
INTENDED_DEVICE_FAMILY parameter, as shown in the following example:

qmegawiz wizard=<wizard> INTENDED_DEVICE_FAMILY="Cyclone III" <file>

You must specify enough ports and parameters to create a legal configuration of the
Plug-In. When you use the GUI flow, each MegaWizard Plug-In performs validation
and error checking for the particular ports and parameters you choose. When you use
command-line options to specify ports and parameters, you must ensure that the
ports and parameters you use are complete for your particular configuration.

For example, when you use a RAM Plug-In to configure a RAM to be 32 words deep,
the Plug-In automatically configures an address port that is five bits wide. If you use
the command-line flow to configure a RAM that is 32 words deep, you must use one
option to specify the depth of the RAM, then calculate the width of the address port
and specify that width with another option.
Quartus II Handbook Version 13.1 November 2013 Altera Corporation
Volume 2: Design Implementation and Optimization

http://www.altera.com/literature/lit-ip.jsp

Chapter 2: Command-Line Scripting 2–15
The MegaWizard Plug-In Manager
Invalid Configurations
If the combination of default and specified ports and parameters is not complete to
create a legal configuration of the Plug-In, qmegawiz generates an error message that
indicates what is missing and what values are supported. If the combination of
default and specified ports and parameters results in an illegal configuration of the
Plug-In, qmegawiz generates an error message that indicates what is illegal, and
displays the legal values.

Strategies to Determine Port and Parameter Values
For simple Plug-In variations, it is often easy to determine appropriate port and
parameter values with the information in Quartus II Help and other megafunction
documentation. For example, determining that a 32-word-deep RAM requires an
address port that is five bits wide is straightforward. For complex Plug-In variations,
an option in the GUI might affect multiple port and parameter settings, so it can be
difficult to determine a complete set of ports and parameters. In this case, use the GUI
to generate a variation file that includes the ports and parameters for your desired
configuration. Open the variation file in a text editor and use the port and parameter
values in the variation file as command-line options.

Optional Files
In addition to the variation file, the MegaWizard Plug-In Manager can generate other
files, such as instantiation templates, simulation netlists, and symbols for graphic
design entry. Use the OPTIONAL_FILES parameter to control whether the MegaWizard
Plug-In Manager generates optional files. Table 2–5 lists valid arguments for the
OPTIONAL_FILES parameter.

Specify a single optional file, for example:

OPTIONAL_FILES=<argument>

Specify multiple optional files separated by a vertical bar character, for example:

OPTIONAL_FILES=<argument 1>|...|<argument n>

Table 2–5. Arguments for the OPTIONAL_FILES Parameter

Argument Description

INST Controls the generation of the <variation>_inst.v file.

INC Controls the generation of the <variation>.inc file.

CMP Controls the generation of the <variation>.cmp file.

BSF Controls the generation of the <variation>.bsf file.

BB Controls the generation of the <variation>_bb.v file.

SIM_NETLIST Controls the generation of the simulation netlist file, wherever there is wizard support.

SYNTH_NETLIST Controls the generation of the synthesis netlist file, wherever there is wizard support.

ALL Generates all applicable optional files.

NONE Disables the generation of all optional files.
November 2013 Altera Corporation Quartus II Handbook Version 13.1
Volume 2: Design Implementation and Optimization

2–16 Chapter 2: Command-Line Scripting
The MegaWizard Plug-In Manager
If you prefix an argument with a dash (for example, -BB), it is excluded from the
generated optional files. If any of the optional files exist when you run qmegawiz and
they are excluded in the OPTIONAL_FILES parameter (with the NONE argument, or
prefixed with a dash), they are deleted.

You can combine the ALL argument with other excluded arguments to generate “all
files except <excluded files>.” You can combine the NONE argument with other included
arguments to generate “no files except <files>.

When you combine multiple arguments, they are processed from left to right, and
arguments evaluated later have precedence over arguments evaluated earlier.
Therefore, use the ALL or NONE arguments first in a series of multiple arguments. When
ALL is the first argument, all optional files are generated before exclusions are
processed (deleted). When NONE is the first argument, none of the optional files are
generated (in other words, any that exist are deleted), then any files you subsequently
specify are generated.

Table 2–6 shows examples for the OPTIONAL_FILES parameter and describes the result
of each example.

The qmegawiz command accepts the ALL argument combined with other included file
arguments, for example, ALL|BB, but that combination is equivalent to ALL because
first all optional files are generated, and then the file <variation>_bb.v is generated a
second time. Additionally, the software accepts the NONE argument combined with
other excluded file arguments, for example, NONE|-BB, but that combination is
equivalent to NONE because no optional files are generated, any that exist are deleted,
and then the file <variation>_bb.v is deleted if it exists.

Parameter File
You can put all parameter values and port values in a file, and pass the file name as an
argument to qmegawiz with the -f:<parameter file> option. For example, the following
command specifies a parameter file named rom_params.txt:

qmegawiz -silent module=altsyncram -f:rom_params.txt myrom.v r
The rom_params.txt parameter file can include options similar to the following:

Table 2–6. Examples of Different Optional File Arguments

Example Values for
OPTIONAL_FILES Description

BB The optional file <variation>_bb.v is generated, and no optional files are deleted

BB|INST
The optional file <variation>_bb.v is generated, then the optional file <variation>_inst.v is
generated, and no optional files are deleted.

NONE No optional files are generated, and any existing optional files are deleted.

NONE|INC|BSF
Any existing optional files are deleted, then the optional file <variation>.inc is generated, then
the optional file <variation>.bsf is generated.

ALL|-INST All optional files are generated, then <variation>_inst.v is deleted if it exists.

-BB The optional file <variation>_bb.v is deleted if it exists.

-BB|INST
The optional file <variation>_bb.v is deleted if it exists, then the optional file <variation>_inst.v
is generated.
Quartus II Handbook Version 13.1 November 2013 Altera Corporation
Volume 2: Design Implementation and Optimization

Chapter 2: Command-Line Scripting 2–17
Command-Line Scripting Examples
RAM_BLOCK_TYPE=M4K DEVICE_FAMILY=Stratix WIDTH_A=5 WIDTHAD_A=5
NUMWORDS_A=32 INIT_FILE=rom.hex OPERATION_MODE=ROM

Working Directory
You can change the working directory that qmegawiz uses when it generates files. By
default, the working directory is the current directory when you execute the qmegawiz
command. Use the -p option to specify a different working directory, for example:

-p:<working directory>

You can specify the working directory with an absolute or relative path. Specify an
alternative working directory any time you do not want files generated in the current
directory. The alternative working directory can be useful if you generate multiple
variations in a batch script, and keep generated files for the different Plug-In
variations in separate directories.

1 If you use the -f option and the -p option together, the MegaWizard Plug-In Manager
sources the parameter file in a directory specified with the -p option, or in a directory
relative to that directory. For example, if you specify C:\project\work with the -p
option and work\params.txt with the -f option, the MegaWizard Plug-In Manager
attempts to source the file params.txt in C:\project\work\work.

Variation File Name
The language used for a variation file depends on the file extension of the variation
file name. The MegaWizard Plug-In Manager creates HDL output files in a language
based on the file name extension. Therefore, you must always specify a complete file
name, including file extension, as the last argument to the qmegawiz command.
Table 2–7 shows the file extension that corresponds to supported HDL types.

Command-Line Scripting Examples
This section presents various examples of command-line executable use.

Create a Project and Apply Constraints
The command-line executables include options for common global project settings
and commands. To apply constraints such as pin locations and timing assignments,
run a Tcl script with the constraints in it. You can write a Tcl constraint file yourself, or
generate one for an existing project. From the Project menu, click Generate Tcl File for
Project.

Table 2–7. Variation File Extensions

Variation File HDL Type Required File Extension

Verilog HDL .v

VHDL .vhd

AHDL .tdf
November 2013 Altera Corporation Quartus II Handbook Version 13.1
Volume 2: Design Implementation and Optimization

2–18 Chapter 2: Command-Line Scripting
Command-Line Scripting Examples
Example 2–8 creates a project with a Tcl script and applies project constraints using
the tutorial design files in the <Quartus II installation directory>/qdesigns/fir_filter/
directory.

Save the script in a file called setup_proj.tcl and type the commands illustrated in
Example 2–9 at a command prompt to create the design, apply constraints, compile
the design, and perform fast-corner and slow-corner timing analysis. Timing analysis
results are saved in two files, filtref_sta_1.rpt and filtref_sta_2.rpt.

Type the following commands to create the design, apply constraints, and compile the
design, without performing timing analysis:

quartus_sh -t setup_proj.tcl r
quartus_sh --flow compile filtref r
The quartus_sh --flow compile command performs a full compilation, and is
equivalent to clicking the Start Compilation button in the toolbar.

Check Design File Syntax
The UNIX shell script example shown in Example 2–10 assumes that the Quartus II
software fir_filter tutorial project exists in the current directory. You can find the
fir_filter project in the <Quartus II directory>/qdesigns/fir_filter directory unless the
Quartus II software tutorial files are not installed.

The --analyze_file option causes the quartus_map executable to perform a syntax
check on each file. The script checks the exit code of the quartus_map executable to
determine whether there is an error during the syntax check. Files with syntax errors
are added to the FILES_WITH_ERRORS variable, and when all files are checked, the
script prints a message indicating syntax errors.

Example 2–8. Tcl Script to Create Project and Apply Constraints

project_new filtref -overwrite
Assign family, device, and top-level file
set_global_assignment -name FAMILY Cyclone
set_global_assignment -name DEVICE EP1C12F256C6
set_global_assignment -name BDF_FILE filtref.bdf
Assign pins
set_location_assignment -to clk Pin_28
set_location_assignment -to clkx2 Pin_29
set_location_assignment -to d[0] Pin_139
set_location_assignment -to d[1] Pin_140
Other assignments could follow
project_close

Example 2–9. Script to Create and Compile a Project

quartus_sh -t setup_proj.tcl r
quartus_map filtref r
quartus_fit filtref r
quartus_asm filtref r
quartus_sta filtref --model=fast --export_settings=off r
mv filtref_sta.rpt filtref_sta_1.rpt r
quartus_sta filtref --export_settings=off r
mv filtref_sta.rpt filtref_sta_2.rpt r
Quartus II Handbook Version 13.1 November 2013 Altera Corporation
Volume 2: Design Implementation and Optimization

Chapter 2: Command-Line Scripting 2–19
Command-Line Scripting Examples
When options are not specified, the executable uses the project database values. If not
specified in the project database, the executable uses the Quartus II software default
values. For example, the fir_filter project is set to target the Cyclone device family, so
it is not necessary to specify the --family option.

Create a Project and Synthesize a Netlist Using Netlist Optimizations
This example creates a new Quartus II project with a file top.edf as the top-level
entity. The --enable_register_retiming=on and --enable_wysiwyg_resynthesis=on
options cause quartus_map to optimize the design using gate-level register retiming
and technology remapping.

h For more information about register retiming, WYSIWYG primitive resynthesis, and
other netlist optimization options, refer to Quartus II Help.

The --part option causes quartus_map to target an EP3C10F256C8 device. To create
the project and synthesize it using the netlist optimizations described above, type the
command shown in Example 2–11 at a command prompt.

Example 2–10. Shell Script to Check Design File Syntax

#!/bin/sh
FILES_WITH_ERRORS=""
Iterate over each file with a .bdf or .v extension
for filename in `ls *.bdf *.v`
do
Perform a syntax check on the specified file

quartus_map fir_filter --analyze_file=$filename
If the exit code is non-zero, the file has a syntax error
if [$? -ne 0]
then

FILES_WITH_ERRORS="$FILES_WITH_ERRORS $filename"
fi

done
if [-z "$FILES_WITH_ERRORS"]
then

echo "All files passed the syntax check"
exit 0

else
echo "There were syntax errors in the following file(s)"
echo $FILES_WITH_ERRORS
exit 1

fi

Example 2–11. Creating a Project and Synthesizing a Netlist Using Netlist Optimizations

quartus_map top --source=top.edf --enable_register_retiming=on
--enable_wysiwyg_resynthesis=on --part=EP3C10F256C8 r
November 2013 Altera Corporation Quartus II Handbook Version 13.1
Volume 2: Design Implementation and Optimization

2–20 Chapter 2: Command-Line Scripting
Command-Line Scripting Examples
Archive and Restore Projects
You can archive or restore a Quartus II Archive File (.qar) with a single command.
This makes it easy to take snapshots of projects when you use batch files or shell
scripts for compilation and project management. Use the --archive or --restore
options for quartus_sh as appropriate. Type the command shown in Example 2–12 at
a command prompt to archive your project.

The archive file is automatically named <project name>.qar. If you want to use a
different name, type the command with the -output option as shown in example
Example 2–13.

To restore a project archive, type the command shown in Example 2–14 at a command
prompt.

The command restores the project archive to the current directory and overwrites
existing files.

f For more information about archiving and restoring projects, refer to the Managing
Quartus II Projects chapter in volume 2 of the Quartus II Handbook.

Perform I/O Assignment Analysis
You can perform I/O assignment analysis with a single command. I/O assignment
analysis checks pin assignments to ensure they do not violate board layout guidelines.
I/O assignment analysis does not require a complete place and route, so it can quickly
verify that your pin assignments are correct. The command shown in Example 2–15
performs I/O assignment analysis for the specified project and revision.

Update Memory Contents Without Recompiling
You can use two commands to update the contents of memory blocks in your design
without recompiling. Use the quartus_cdb executable with the --update_mif option
to update memory contents from .mif or .hexout files. Then, rerun the assembler with
the quartus_asm executable to regenerate the .sof, .pof, and any other programming
files.

Example 2–12. Archiving a Project

quartus_sh --archive <project name> r

Example 2–13. Archiving a Project

quartus_sh --archive <project name> -output <filename> r

Example 2–14. Restoring a Project Archive

quartus_sh --restore <archive name> r

Example 2–15. Performing I/O Assignment Analysis

quartus_fit --check_ios <project name> --rev=<revision name> r
Quartus II Handbook Version 13.1 November 2013 Altera Corporation
Volume 2: Design Implementation and Optimization

http://www.altera.com/literature/hb/qts/qts_qii52012.pdf
http://www.altera.com/literature/hb/qts/qts_qii52012.pdf

Chapter 2: Command-Line Scripting 2–21
Command-Line Scripting Examples
Example 2–16 shows these two commands.

Example 2–17 shows the commands for a DOS batch file for this example. With a DOS
batch file, you can specify the project name and the revision name once for both
commands. To create the DOS batch file, paste the following lines into a file called
update_memory.bat.

To run the batch file, type the following command at a command prompt:

update_memory.bat <project name> <revision name> r

Create a Compressed Configuration File
You can create a compressed configuration file in two ways. The first way is to run
quartus_cpf with an option file that turns on compression.

To create an option file that turns on compression, type the following command at a
command prompt:

quartus_cpf -w <filename>.opt r
This interactive command guides you through some questions, then creates an option
file based on your answers. Use --option to cause quartus_cpf to use the option file.
For example, the following command creates a compressed .pof that targets an
EPCS64 device:

quartus_cpf --convert --option=<filename>.opt --device=EPCS64 <file>.sof <file>.pof r
Alternatively, you can use the Convert Programming Files utility in the Quartus II
software GUI to create a Conversion Setup File (.cof). Configure any options you
want, including compression, then save the conversion setup. Use the following
command to run the conversion setup you specified.

quartus_cpf --convert <file>.cof r

Fit a Design as Quickly as Possible
This example assumes that a project called top exists in the current directory, and that
the name of the top-level entity is top. The --effort=fast option causes the
quartus_fit to use the fast fit algorithm to increase compilation speed, possibly at the
expense of reduced fMAX performance. The --one_fit_attempt=on option restricts the
Fitter to only one fitting attempt for the design.

Example 2–16. Commands to Update Memory Contents Without Recompiling

quartus_cdb --update_mif <project name> [--rev=<revision name>]r
quartus_asm <project name> [--rev=<revision name>]r

Example 2–17. Batch file to Update Memory Contents Without Recompiling

quartus_cdb --update_mif %1 --rev=%2
quartus_asm %1 --rev=%2
November 2013 Altera Corporation Quartus II Handbook Version 13.1
Volume 2: Design Implementation and Optimization

2–22 Chapter 2: Command-Line Scripting
Command-Line Scripting Examples
To attempt to fit the project called top as quickly as possible, type the command
shown in Example 2–18 at a command prompt.

Fit a Design Using Multiple Seeds
This shell script example assumes that the Quartus II software tutorial project called
fir_filter exists in the current directory (defined in the file fir_filter.qpf). If the tutorial
files are installed on your system, this project exists in the <Quartus II
directory>/qdesigns<quartus_version_number> /fir_filter directory. Because the
top-level entity in the project does not have the same name as the project, you must
specify the revision name for the top-level entity with the --rev option. The --seed
option specifies the seeds to use for fitting.

A seed is a parameter that affects the random initial placement of the Quartus II Fitter.
Varying the seed can result in better performance for some designs.

After each fitting attempt, the script creates new directories for the results of each
fitting attempt and copies the complete project to the new directory so that the results
are available for viewing and debugging after the script has completed.

Example 2–19 is designed for use on UNIX systems using sh (the shell).

Example 2–18. Fitting a Project Quickly

quartus_fit top --effort=fast --one_fit_attempt=on r

Example 2–19. Shell Script to Fit a Design Using Multiple Seeds

#!/bin/sh
ERROR_SEEDS=""
quartus_map fir_filter --rev=filtref
Iterate over a number of seeds
for seed in 1 2 3 4 5
do
echo "Starting fit with seed=$seed"
Perform a fitting attempt with the specified seed
quartus_fit fir_filter --seed=$seed --rev=filtref
If the exit-code is non-zero, the fitting attempt was
successful, so copy the project to a new directory
if [$? -eq 0]
then

mkdir ../fir_filter-seed_$seed
mkdir ../fir_filter-seed_$seed/db
cp * ../fir_filter-seed_$seed
cp db/* ../fir_filter-seed_$seed/db

else
ERROR_SEEDS="$ERROR_SEEDS $seed"

fi
done
if [-z "$ERROR_SEEDS"]
then
echo "Seed sweeping was successful"
exit 0
else
echo "There were errors with the following seed(s)"
echo $ERROR_SEEDS
exit 1
fi
Quartus II Handbook Version 13.1 November 2013 Altera Corporation
Volume 2: Design Implementation and Optimization

Chapter 2: Command-Line Scripting 2–23
Command-Line Scripting Examples
1 Use the Design Space Explorer (DSE) included with the Quartus II software script (by
typing quartus_sh --dse r at a command prompt) to improve design performance
by performing automated seed sweeping.

h For more information about the DSE, type quartus_sh --help=dse r at a command
prompt, or refer to Design Space Explorer in Quartus II Help.

Regenerating Megafunctions After Updating the Quartus II Software
Some megafunction variations may reqiure regeneration when you update your
installation of the Quartus II software. Read the release notes for the Quartus II
software and any new documentation for the IP functions used in your design to
determine if regeneration is necessary.

If regeneration is necessary, you can use a Tcl script to run the qmegawiz executable
to update each function, allowing you to avoid regenerating each function in the
Megawizard Plug-In Manager GUI.

Wizard-generated files are identified in the Source Files Used report panel (contained
in <project name>.map.rpt) in the File Type column as “Auto-Found
Wizard-Generated File”. In a Tcl script, use the commands in the ::quartus::report
package from the Quartus II Tcl API to recover the list of files. Use the qexec
command in a loop to run qmegawiz for each variation file:

qexec “qmegawiz -silent <variation file name>”

For example, if your script determines that your design contains a variation file called
myrom.v, in one iteration of the loop in your script, a combination of strings and
variables passed to the qexec command would be equivalent to the following
command:

qexec “qmegawiz -silent myrom.v”

If your design flow incorporates parameter files, those can be included in the
qmegawiz call in the same way you would include them from a command prompt:

qexec “qmegawiz -silent -f:<parameter file>.txt <variation file name>”

h For more information about the ::quartus::report Tcl package, refer to ::quartus::report
in Quartus II Help.

f For more information about the Quartus II Tcl scripting API, refer to the Tcl Scripting
chapter in volume 2 of the Quartus II Handbook.

The QFlow Script
A Tcl/Tk-based graphical interface called QFlow is included with the command-line
executables. You can use the QFlow interface to open projects, launch some of the
command-line executables, view report files, and make some global project
assignments. The QFlow interface can run the following command-line executables:

■ quartus_map (Analysis and Synthesis)

■ quartus_fit (Fitter)

■ quartus_sta (TimeQuest timing analyzer)
November 2013 Altera Corporation Quartus II Handbook Version 13.1
Volume 2: Design Implementation and Optimization

http://www.altera.com/literature/hb/qts/qts_qii52003.pdf
http://quartushelp.altera.com/current/master.htm#mergedProjects/tafs/tafs/tcl_pkg_report_ver_2.1.htm
http://quartushelp.altera.com/current/master.htm#mergedProjects/optimize/dse/dse_about_dse.htm

2–24 Chapter 2: Command-Line Scripting
Document Revision History
■ quartus_asm (Assembler)

■ quartus_eda (EDA Netlist Writer)

To view floorplans or perform other GUI-intensive tasks, launch the Quartus II
software.

Start QFlow by typing the following command at a command prompt:

quartus_sh -g r

1 The QFlow script is located in the <Quartus II directory>/common/tcl/apps/qflow/
directory.

Document Revision History
Table 2–8 shows the revision history for this chapter.

Table 2–8. Document Revision History (Part 1 of 2)

Date Version Changes

November 2013 13.1.0 Removed information about -silnet qmegawiz command

June 2012 12.0.0 Removed survey link.

November 2011 11.0.1 Template update.

May 2011 11.0.0
Corrected quartus_qpf example usage.

Updated examples.

December 2010 10.1.0

Template update.

Added section on using a script to regenerate megafunction variations.

Removed references to the Classic Timing Analyzer (quartus_tan).

Removed Qflow illustration.

July 2010 10.0.0 Updated script examples to use quartus_sta instead of quartus_tan, and other minor
updates throughout document.

November 2009 9.1.0 Updated Table 2–1 to add quartus_jli and quartus_jbcc executables and descriptions, and
other minor updates throughout document.

March 2009 9.0.0 No change to content.
Quartus II Handbook Version 13.1 November 2013 Altera Corporation
Volume 2: Design Implementation and Optimization

Chapter 2: Command-Line Scripting 2–25
Document Revision History
f For previous versions of the Quartus II Handbook, refer to the Quartus II Handbook
Archive.

November 2008 8.1.0

Added the following sections:

■ “The MegaWizard Plug-In Manager” on page 2–11

■ “Command-Line Support” on page 2–12

■ “Module and Wizard Names” on page 2–13

■ “Ports and Parameters” on page 2–14

■ “Invalid Configurations” on page 2–15

■ “Strategies to Determine Port and Parameter Values” on page 2–15

■ “Optional Files” on page 2–15

■ “Parameter File” on page 2–16

■ “Working Directory” on page 2–17

■ “Variation File Name” on page 2–17

■ “Create a Compressed Configuration File” on page 2–21

■ Updated “Option Precedence” on page 2–5 to clarify how to control precedence

■ Corrected Example 2–5 on page 2–8

■ Changed Example 2–1, Example 2–2, Example 2–4, and Example 2–7 to use the
EP1C12F256C6 device

■ Minor editorial updates

■ Updated entire chapter using 8½” × 11” chapter template

May 2008 8.0.0
■ Updated “Referenced Documents” on page 2–20.

■ Updated references in document.

Table 2–8. Document Revision History (Part 2 of 2)

Date Version Changes
November 2013 Altera Corporation Quartus II Handbook Version 13.1
Volume 2: Design Implementation and Optimization

http://www.altera.com/literature/lit-qts_archive.jsp
http://www.altera.com/literature/lit-qts_archive.jsp

QII52003-12.0.0

© 2012 Altera Corporation. All rights reserved. ALTERA, ARRI
are trademarks of Altera Corporation and registered in the U.S
trademarks or service marks are the property of their respectiv
semiconductor products to current specifications in accordance
services at any time without notice. Altera assumes no respons
described herein except as expressly agreed to in writing by Al
on any published information and before placing orders for pr

Quartus II Handbook Version 13.1
Volume 2: Design Implementation and Optimization
June 2012

June 2012
QII52003-12.0.0
3. Tcl Scripting
Introduction
Developing and running Tcl scripts to control the Altera® Quartus® II software allows
you to perform a wide range of functions, such as compiling a design or writing
procedures to automate common tasks.

You can use Tcl scripts to manage a Quartus II project, make assignments, define
design constraints, make device assignments, compile your design, perform timing
analysis, and access reports. Tcl scripts also facilitate project or assignment migration.
For example, when designing in different projects with the same prototype or
development board, you can automate reassignment of pin locations in each new
project. The Quartus II software can also generate a Tcl script based on all the current
assignments in the project, which aids in switching assignments to another project.

The Quartus II software Tcl commands follow the EDA industry Tcl application
programming interface (API) standards for command-line options. This simplifies
learning and using Tcl commands. If you encounter an error with a command
argument, the Tcl interpreter includes help information showing correct usage.

This chapter includes sample Tcl scripts for automating the Quartus II software. You
can modify these example scripts for use with your own designs. You can find more
Tcl scripts in the Design Examples section of the Support area on the Altera website.

This chapter includes the following topics:

■ “Quartus II Tcl Packages” on page 3–2

■ “Quartus II Tcl API Help” on page 3–3

■ “Command-Line Options: -t, -s, and --tcl_eval” on page 3–5

■ “End-to-End Design Flows” on page 3–7

■ “Creating Projects and Making Assignments” on page 3–7

■ “Compiling Designs” on page 3–8

■ “Reporting” on page 3–9

■ “Timing Analysis” on page 3–10

■ “Automating Script Execution” on page 3–10

■ “Other Scripting Features” on page 3–13

■ “The Quartus II Tcl Shell in Interactive Mode” on page 3–17
A, CYCLONE, HARDCOPY, MAX, MEGACORE, NIOS, QUARTUS and STRATIX words and logos
. Patent and Trademark Office and in other countries. All other words and logos identified as
e holders as described at www.altera.com/common/legal.html. Altera warrants performance of its
 with Altera's standard warranty, but reserves the right to make changes to any products and
ibility or liability arising out of the application or use of any information, product, or service
tera. Altera customers are advised to obtain the latest version of device specifications before relying
oducts or services.

Feedback SubscribeTwitter

ISO
9001:2008
Registered

https://www.altera.com/servlets/subscriptions/alert?id=QII52003
http://www.altera.com/common/legal.html
http://www.altera.com/support/reliability/certifications/rel-certifications.html
http://www.altera.com/support/reliability/certifications/rel-certifications.html
http://twitter.com/home/?status=Tcl+Scripting+http://www.altera.com/literature/hb/qts/qts_qii52003.pdf?WT.mc_id=gc_so_tw_st_tx_a_011+(via @alteracorp)+%23Altera
mailto:TechDocFeedback@altera.com?subject=Feedback on qts_qii52003-13.1

3–2 Chapter 3: Tcl Scripting
Tool Command Language
■ “The tclsh Shell” on page 3–18

■ “Tcl Scripting Basics” on page 3–18

Tool Command Language
Tcl (pronounced “tickle”) stands for Tool Command Language, a popular scripting
language that is similar to many shell scripting and high-level programming
languages. It provides support for control structures, variables, network socket access,
and APIs. Tcl is the EDA industry-standard scripting language used by Synopsys,
Mentor Graphics®, and Altera software. It allows you to create custom commands and
works seamlessly across most development platforms. For a list of recommended
literature on Tcl, refer to “External References” on page 3–25.

You can create your own procedures by writing scripts containing basic Tcl
commands and Quartus II API functions. You can then automate your design flow,
run the Quartus II software in batch mode, or execute the individual Tcl commands
interactively in the Quartus II Tcl interactive shell.

If you are unfamiliar with Tcl scripting, or are a Tcl beginner, refer to “Tcl Scripting
Basics” on page 3–18 for an introduction to Tcl scripting.

The Quartus II software supports Tcl/Tk version 8.5, supplied by the Tcl
DeveloperXchange at tcl.activestate.com.

Quartus II Tcl Packages
The Quartus II Tcl commands are grouped in packages by function. Table 3–1
describes each Tcl package.

Table 3–1. Tcl Packages (Part 1 of 2)

Package Name Package Description

backannotate Back annotate assignments

chip_planner Identify and modify resource usage and routing with the Chip Editor

database_manager Manage version-compatible database files

device Get device and family information from the device database

flow Compile a project, run command-line executables and other common flows

incremental compilation Manipulate design partitions and LogicLock regions, and settings related to incremental
compilation

insystem_memory_edit Read and edit memory contents in Altera devices

insystem_source_probe interact with the In-System Sources and Probes tool in an Altera device

jtag Control the JTAG chain

logic_analyzer_interface Query and modify the logic analyzer interface output pin state

misc Perform miscellaneous tasks such as enabling natural bus naming, package loading, and
message posting

project Create and manage projects and revisions, make any project assignments including timing
assignments

rapid_recompile Manipulate Quartus II Rapid Recompile features

report Get information from report tables, create custom reports
Quartus II Handbook Version 13.1 June 2012 Altera Corporation
Volume 2: Design Implementation and Optimization

http://tcl.activestate.com/

Chapter 3: Tcl Scripting 3–3
Quartus II Tcl API Help
By default, only the minimum number of packages is loaded automatically with each
Quartus II executable. This keeps the memory requirement for each executable as low
as possible. Because the minimum number of packages is automatically loaded, you
must load other packages before you can run commands in those packages.

Because different packages are available in different executables, you must run your
scripts with executables that include the packages you use in the scripts. For example,
if you use commands in the sdc_ext package, you must use the quartus_sta
executable to run the script because the quartus_sta executable is the only one with
support for the sdc_ext package.

The following command prints lists of the packages loaded or available to load for an
executable, to the console:

<executable name> --tcl_eval help r
For example, type the following command to list the packages loaded or available to
load by the quartus_fit executable:

quartus_fit --tcl_eval help r

Loading Packages
To load a Quartus II Tcl package, use the load_package command as follows:

load_package [-version <version number>] <package name>

This command is similar to the package require Tcl command (described in Table 3–2
on page 3–4), but you can easily alternate between different versions of a Quartus II
Tcl package with the load_package command because of the -version option.

f For additional information about these and other Quartus II command-line
executables, refer to the Command-Line Scripting chapter in volume 2 of the Quartus II
Handbook.

Quartus II Tcl API Help
Access the Quartus II Tcl API Help reference by typing the following command at a
system command prompt:

quartus_sh --qhelp r
This command runs the Quartus II Command-Line and Tcl API help browser, which
documents all commands and options in the Quartus II Tcl API.

rtl Traversing and querying the RTL netlist of your design

sdc Specifies constraints and exceptions to the TimeQuest Timing Analyzer

sdc_ext Altera-specific SDC commands

simulator Configure and perform simulations

sta Contains the set of Tcl functions for obtaining advanced information from the Quartus II
TimeQuest Timing Analyzer

stp Run the SignalTap® II Logic Analyzer

Table 3–1. Tcl Packages (Part 2 of 2)

Package Name Package Description
June 2012 Altera Corporation Quartus II Handbook Version 13.1
Volume 2: Design Implementation and Optimization

http://www.altera.com/literature/hb/qts/qts_qii52002.pdf

3–4 Chapter 3: Tcl Scripting
Quartus II Tcl API Help
Quartus II Tcl help allows easy access to information about the Quartus II Tcl
commands. To access the help information, type help at a Tcl prompt, as shown in
Example 3–1.

Table 3–2 summarizes the help options available in the Tcl environment.

Example 3–1. Help Output

tcl> help
--

Available Quartus II Tcl Packages:

Loaded Not Loaded
---------------------------- -----------------------
::quartus::misc ::quartus::device
::quartus::old_api ::quartus::backannotate
::quartus::project ::quartus::flow
::quartus::timing_assignment ::quartus::logiclock
::quartus::timing_report ::quartus::report

* Type "help -tcl"
to get an overview on Quartus II Tcl usages.

Table 3–2. Help Options Available in the Quartus II Tcl Environment (Part 1 of 2)

Help Command Description

help To view a list of available Quartus II Tcl packages, loaded and not loaded.

help -tcl
To view a list of commands used to load Tcl packages and access command-line
help.

help -pkg <package_name>
[-version <version number>]

To view help for a specified Quartus II package that includes the list of available
Tcl commands. For convenience, you can omit the ::quartus:: package prefix,
and type help -pkg <package name> r.

If you do not specify the -version option, help for the currently loaded package
is displayed by default. If the package for which you want help is not loaded, help
for the latest version of the package is displayed by default.

Examples:

help -pkg ::quartus::project r
help -pkg project r
help -pkg project -version 1.0 r

<command_name> -h

or

<command_name> -help

To view short help for a Quartus II Tcl command for which the package is loaded.

Examples:

project_open -h r
project_open -help r
Quartus II Handbook Version 13.1 June 2012 Altera Corporation
Volume 2: Design Implementation and Optimization

Chapter 3: Tcl Scripting 3–5
Quartus II Tcl API Help
h The Tcl API help is also available in Quartus II online help. Search for the command or
package name to find details about that command or package.

Command-Line Options: -t, -s, and --tcl_eval
Table 3–3 lists three command-line options you can use with executables that support
Tcl.

package require
::quartus::<package name>
[<version>]

To load a Quartus II Tcl package with the specified version. If <version> is not
specified, the latest version of the package is loaded by default.

Example:

package require ::quartus::project 1.0 r
This command is similar to the load_package command.

The advantage of the load_package command is that you can alternate freely
between different versions of the same package.

Type load_package <package name> [-version <version number>]r to
load a Quartus II Tcl package with the specified version. If the -version option is
not specified, the latest version of the package is loaded by default.

Example:

load_package ::quartus::project -version 1.0 r

help -cmd <command_name>
[-version <version>]

or

<command_name> -long_help

To view complete help text for a Quartus II Tcl command.

If you do not specify the -version option, help for the command in the currently
loaded package version is displayed by default.

If the package version for which you want help is not loaded, help for the latest
version of the package is displayed by default.

Examples:

project_open -long_help r

help -cmd project_open r

help -cmd project_open -version 1.0 r

help -examples To view examples of Quartus II Tcl usage.

help -quartus
To view help on the predefined global Tcl array that contains project information
and information about the Quartus II executable that is currently running.

quartus_sh --qhelp

To launch the Tk viewer for Quartus II command-line help and display help for the
command-line executables and Tcl API packages.

For more information about this utility, refer to the Command-Line Scripting
chapter in volume 2 of the Quartus II Handbook.

Table 3–2. Help Options Available in the Quartus II Tcl Environment (Part 2 of 2)

Help Command Description

Table 3–3. Command-Line Options Supporting Tcl Scripting (Part 1 of 2)

Command-Line Option Description

--script=<script file> [<script args>] Run the specified Tcl script with optional arguments.

-t <script file> [<script args>]
Run the specified Tcl script with optional arguments. The -t option is
the short form of the --script option.

--shell Open the executable in the interactive Tcl shell mode.
June 2012 Altera Corporation Quartus II Handbook Version 13.1
Volume 2: Design Implementation and Optimization

http://www.altera.com/literature/hb/qts/qts_qii52002.pdf

3–6 Chapter 3: Tcl Scripting
Quartus II Tcl API Help
Run a Tcl Script
Running an executable with the -t option runs the specified Tcl script. You can also
specify arguments to the script. Access the arguments through the argv variable, or
use a package such as cmdline, which supports arguments of the following form:

-<argument name> <argument value>

The cmdline package is included in the <Quartus II directory>/common/tcl/packages
directory.

For example, to run a script called myscript.tcl with one argument, Stratix, type the
following command at a system command prompt:

quartus_sh -t myscript.tcl Stratix r
Refer to “Accessing Command-Line Arguments” on page 3–15 for more information.

Interactive Shell Mode
Running an executable with the -s option starts an interactive Tcl shell. For example,
to open the Quartus II TimeQuest Timing Analyzer executable in interactive shell
mode, type the following command:

quartus_sta -s r
Commands you type in the Tcl shell are interpreted when you click Enter. You can run
a Tcl script in the interactive shell with the following command:

source <script name> r
If a command is not recognized by the shell, it is assumed to be an external command
and executed with the exec command.

Evaluate as Tcl
Running an executable with the --tcl_eval option causes the executable to
immediately evaluate the remaining command-line arguments as Tcl commands. This
can be useful if you want to run simple Tcl commands from other scripting languages.

For example, the following command runs the Tcl command that prints out the
commands available in the project package.

quartus_sh --tcl_eval help -pkg project r

-s
Open the executable in the interactive Tcl shell mode. The -s option is
the short form of the --shell option.

--tcl_eval <tcl command>
Evaluate the remaining command-line arguments as Tcl commands. For
example, the following command displays help for the project package:
quartus_sh --tcl_eval help -pkg project

Table 3–3. Command-Line Options Supporting Tcl Scripting (Part 2 of 2)

Command-Line Option Description
Quartus II Handbook Version 13.1 June 2012 Altera Corporation
Volume 2: Design Implementation and Optimization

Chapter 3: Tcl Scripting 3–7
End-to-End Design Flows
The Quartus II Tcl Console Window
You can run Tcl commands directly in the Quartus II Tcl Console window. On the
View menu, click Utility Windows. By default, the Tcl Console window is docked in
the bottom-right corner of the Quartus II GUI. All Tcl commands typed in the Tcl
Console are interpreted by the Quartus II Tcl shell.

1 Some shell commands such as cd, ls, and others can be run in the Tcl Console
window, with the Tcl exec command. However, for best results, run shell commands
and Quartus II executables from a system command prompt outside of the Quartus II
software GUI.

Tcl messages appear in the System tab (Messages window). Errors and messages
written to stdout and stderr also are shown in the Quartus II Tcl Console window.

End-to-End Design Flows
You can use Tcl scripts to control all aspects of the design flow, including controlling
other software, when the other software also includes a scripting interface.

Typically, EDA tools include their own script interpreters that extend core language
functionality with tool-specific commands. For example, the Quartus II Tcl interpreter
supports all core Tcl commands, and adds numerous commands specific to the
Quartus II software. You can include commands in one Tcl script to run another script,
which allows you to combine or chain together scripts to control different tools.
Because scripts for different tools must be executed with different Tcl interpreters, it is
difficult to pass information between the scripts unless one script writes information
into a file and another script reads it.

Within the Quartus II software, you can perform many different operations in a
design flow (such as synthesis, fitting, and timing analysis) from a single script,
making it easy to maintain global state information and pass data between the
operations. However, there are some limitations on the operations you can perform in
a single script due to the various packages supported by each executable.

There are no limitations on running flows from any executable. Flows include
operations found in the Start section of the Processing menu in the Quartus II GUI,
and are also documented as options for the execute_flow Tcl command. If you can
make settings in the Quartus II software and run a flow to get your desired result, you
can make the same settings and run the same flow in a Tcl script.

Creating Projects and Making Assignments
You can easily create a script that makes all the assignments for an existing project,
and then use the script at any time to restore your project settings to a known state.
From the Project menu, click Generate Tcl File for Project to automatically generate a
.tcl file with all of your assignments. You can source this file to recreate your project,
and you can edit the file to add other commands, such as compiling the design. The
file is a good starting point to learn about project management commands and
assignment commands.
June 2012 Altera Corporation Quartus II Handbook Version 13.1
Volume 2: Design Implementation and Optimization

3–8 Chapter 3: Tcl Scripting
Compiling Designs
f Refer to “Interactive Shell Mode” on page 3–6 for information about sourcing a script.
Scripting information for all Quartus II project settings and assignments is located in
the QSF Reference Manual. Refer to the Constraining Designs chapter in volume 2 of the
Quartus II Handbook for more information on making assignments.

Example 3–2 shows how to create a project, make assignments, and compile the
project. It uses the fir_filter tutorial design files in the qdesigns installation directory.
Run this script in the fir_filter directory, with the quartus_sh executable.

1 The assignments created or modified while a project is open are not committed to the
Quartus II Settings File (.qsf) unless you explicitly call export_assignments or
project_close (unless -dont_export_assignments is specified). In some cases, such
as when running execute_flow, the Quartus II software automatically commits the
changes.

Compiling Designs
You can run the Quartus II command-line executables from Tcl scripts. Use the
included flow package to run various Quartus II compilation flows, or run each
executable directly.

The flow Package
The flow package includes two commands for running Quartus II command-line
executables, either individually or together in standard compilation sequence. The
execute_module command allows you to run an individual Quartus II command-line
executable. The execute_flow command allows you to run some or all of the
executables in commonly-used combinations. Use the flow package instead of system
calls to run Quartus II executables from scripts or from the Quartus II Tcl Console.

Compile All Revisions
You can use a simple Tcl script to compile all revisions in your project. Save the script
shown in Example 3–3 in a file called compile_revisions.tcl and type the following to
run it:

Example 3–2. Create and Compile a Project

load_package flow

Create the project and overwrite any settings
files that exist
project_new fir_filter -revision filtref -overwrite
Set the device, the name of the top-level BDF,
and the name of the top level entity
set_global_assignment -name FAMILY Cyclone
set_global_assignment -name DEVICE EP1C6F256C6
set_global_assignment -name BDF_FILE filtref.bdf
set_global_assignment -name TOP_LEVEL_ENTITY filtref
Add other pin assignments here
set_location_assignment -to clk Pin_G1
compile the project
execute_flow -compile
project_close
Quartus II Handbook Version 13.1 June 2012 Altera Corporation
Volume 2: Design Implementation and Optimization

http://www.altera.com/literature/manual/mnl_qsf_reference.pdf
http://www.altera.com/literature/hb/qts/qts_qii52001.pdf

Chapter 3: Tcl Scripting 3–9
Reporting
quartus_sh -t compile_revisions.tcl <project name> r

Reporting
It is sometimes necessary to extract information from the Compilation Report to
evaluate results. The Quartus II Tcl API provides easy access to report data so you do
not have to write scripts to parse the text report files.

If you know the exact cell or cells you want to access, use the get_report_panel_data
command and specify the row and column names (or x and y coordinates) and the
name of the appropriate report panel. You can often search for data in a report panel.
To do this, use a loop that reads the report one row at a time with the
get_report_panel_row command.

Column headings in report panels are in row 0. If you use a loop that reads the report
one row at a time, you can start with row 1 to skip the row with column headings. The
get_number_of_rows command returns the number of rows in the report panel,
including the column heading row. Because the number of rows includes the column
heading row, continue your loop as long as the loop index is less than the number of
rows.

Report panels are hierarchically arranged and each level of hierarchy is denoted by
the string “||“ in the panel name. For example, the name of the Fitter Settings report
panel is Fitter||Fitter Settings because it is in the Fitter folder. Panels at the
highest hierarchy level do not use the “||” string. For example, the Flow Settings
report panel is named Flow Settings.

The code in Example 3–4 prints a list of all report panel names in your project. You can
run this code with any executable that includes support for the report package.

Example 3–3. Compile All Revisions

load_package flow
project_open [lindex $quartus(args) 0]
set original_revision [get_current_revision]
foreach revision [get_project_revisions] {

set_current_revision $revision
execute flow -compile

}
set_current_revision $original_revision
project_close

Example 3–4. Print All Report Panel Names

load_package report
project_open myproject
load_report
set panel_names [get_report_panel_names]
foreach panel_name $panel_names {
post_message "$panel_name"
}

June 2012 Altera Corporation Quartus II Handbook Version 13.1
Volume 2: Design Implementation and Optimization

3–10 Chapter 3: Tcl Scripting
Timing Analysis
Viewing Report Data in Excel
The Microsoft Excel software is sometimes used to view or manipulate timing
analysis results. You can create a Comma Separated Value (.csv) file from any
Quartus II report to open with Excel. Example 3–5 shows a simple way to create a .csv
file with data from the Fitter panel in a report. You could modify the script to use
command-line arguments to pass in the name of the project, report panel, and output
file to use. You can run this script example with any executable that supports the
report package.

Timing Analysis
The Quartus II TimeQuest Timing Analyzer includes support for industry-standard
SDC commands in the sdc package. The Quartus II software also includes
comprehensive Tcl APIs and SDC extensions for the TimeQuest Timing Analyzer in
the sta, and sdc_ext packages.

f Refer to the Quartus II TimeQuest Timing Analyzer chapter in volume 3 of the Quartus II
Handbook for detailed information about how to perform timing analysis with the
Quartus II TimeQuest Timing Analyzer.

Automating Script Execution
You can configure scripts to run automatically at various points during compilation.
Use this capability to automatically run scripts that perform custom reporting, make
specific assignments, and perform many other tasks.

The following three global assignments control when a script is run automatically:

■ PRE_FLOW_SCRIPT_FILE —before a flow starts

■ POST_MODULE_SCRIPT_FILE —after a module finishes

Example 3–5. Create .csv Files from Reports

load_package report
project_open my-project

load_report

This is the name of the report panel to save as a CSV file
set panel_name "Fitter||Fitter Settings"
set csv_file "output.csv"

set fh [open $csv_file w]
set num_rows [get_number_of_rows -name $panel_name]

Go through all the rows in the report file, including the
row with headings, and write out the comma-separated data
for { set i 0 } { $i < $num_rows } { incr i } {

set row_data [get_report_panel_row -name $panel_name \
-row $i]

puts $fh [join $row_data ","]
}

close $fh
unload_report
Quartus II Handbook Version 13.1 June 2012 Altera Corporation
Volume 2: Design Implementation and Optimization

http://www.altera.com/literature/hb/qts/qts_qii53018.pdf

Chapter 3: Tcl Scripting 3–11
Automating Script Execution
■ POST_FLOW_SCRIPT_FILE —after a flow finishes

A module is another term for a Quartus II executable that performs one step in a flow.
For example, two modules are Analysis and Synthesis (quartus_map), and timing
analysis (quartus_sta).

A flow is a series of modules that the Quartus II software runs with predefined
options. For example, compiling a design is a flow that typically consists of the
following steps (performed by the indicated module):

1. Analysis and synthesis (quartus_map)

2. Fitter (quartus_fit)

3. Assembler (quartus_asm)

4. Timing Analyzer (quartus_sta)

Other flows are described in the help for the execute_flow Tcl command. In addition,
many commands in the Processing menu of the Quartus II GUI correspond to this
design flow.

To make an assignment automatically run a script, add an assignment with the
following form to the .qsf for your project:

set_global_assignment -name <assignment name> <executable>:<script
name>

The Quartus II software runs the scripts as shown in Example 3–6.

The first argument passed in the argv variable (or quartus(args) variable) is the
name of the flow or module being executed, depending on the assignment you use.
The second argument is the name of the project and the third argument is the name of
the revision.

When you use the POST_MODULE_SCRIPT_FILE assignment, the specified script is
automatically run after every executable in a flow. You can use a string comparison
with the module name (the first argument passed in to the script) to isolate script
processing to certain modules.

Execution Example
Example 3–7 illustrates how automatic script execution works in a complete flow,
assuming you have a project called top with a current revision called rev_1, and you
have the following assignments in the .qsf for your project.

When you compile your project, the PRE_FLOW_SCRIPT_FILE assignment causes the
following command to be run before compilation begins:

Example 3–6.

<executable> -t <script name> <flow or module name> <project name> <revision name>

Example 3–7.

set_global_assignment -name PRE_FLOW_SCRIPT_FILE quartus_sh:first.tcl
set_global_assignment -name POST_MODULE_SCRIPT_FILE quartus_sh:next.tcl
set_global_assignment -name POST_FLOW_SCRIPT_FILE quartus_sh:last.tcl
June 2012 Altera Corporation Quartus II Handbook Version 13.1
Volume 2: Design Implementation and Optimization

3–12 Chapter 3: Tcl Scripting
Automating Script Execution
quartus_sh -t first.tcl compile top rev_1

Next, the Quartus II software starts compilation with analysis and synthesis,
performed by the quartus_map executable. After the analysis and synthesis finishes,
the POST_MODULE_SCRIPT_FILE assignment causes the following command to run:

quartus_sh -t next.tcl quartus_map top rev_1

Then, the Quartus II software continues compilation with the Fitter, performed by the
quartus_fit executable. After the Fitter finishes, the POST_MODULE_SCRIPT_FILE
assignment runs the following command:

quartus_sh -t next.tcl quartus_fit top rev_1

Corresponding commands are run after the other stages of the compilation. When the
compilation is over, the POST_FLOW_SCRIPT_FILE assignment runs the following
command:

quartus_sh -t last.tcl compile top rev_1

Controlling Processing
The POST_MODULE_SCRIPT_FILE assignment causes a script to run after every module.
Because the same script is run after every module, you might have to include some
conditional statements that restrict processing in your script to certain modules.

For example, if you want a script to run only after timing analysis, use a conditional
test like the one shown in Example 3–8. It checks the flow or module name passed as
the first argument to the script and executes code when the module is quartus_sta.

Displaying Messages
Because of the way the Quartus II software runs the scripts automatically, you must
use the post_message command to display messages, instead of the puts command.
This requirement applies only to scripts that are run by the three assignments listed in
“Automating Script Execution” on page 3–10.

1 Refer to “The post_message Command” on page 3–14 for more information about this
command.

Example 3–8. Restrict Processing to a Single Module

set module [lindex $quartus(args) 0]

if [string match "quartus_sta" $module] {

Include commands here that are run
after timing analysis
Use the post-message command to display
messages
post_message "Running after timing analysis"

}

Quartus II Handbook Version 13.1 June 2012 Altera Corporation
Volume 2: Design Implementation and Optimization

Chapter 3: Tcl Scripting 3–13
Other Scripting Features
Other Scripting Features
The Quartus II Tcl API includes other general-purpose commands and features
described in this section.

Natural Bus Naming
The Quartus II software supports natural bus naming. Natural bus naming allows
you to use square brackets to specify bus indexes in HDL without including escape
characters to prevent Tcl from interpreting the square brackets as containing
commands. For example, one signal in a bus named address can be identified as
address[0] instead of address\[0\]. You can take advantage of natural bus naming
when making assignments, as in Example 3–9.

The Quartus II software defaults to natural bus naming. You can turn off natural bus
naming with the disable_natural_bus_naming command. For more information
about natural bus naming, type the following at a Quartus II Tcl prompt:

enable_natural_bus_naming -h r

Short Option Names
You can use short versions of command options, as long as they are unambiguous. For
example, the project_open command supports two options: -current_revision and
-revision. You can use any of the following abbreviations of the -revision option:
-r, -re, -rev, -revi, -revis, and -revisio. You can use an option as short as -r
because in the case of the project_open command no other option starts with the
letter r. However, the report_timing command includes the options -recovery and
-removal. You cannot use -r or -re to shorten either of those options, because the
abbreviation would not be unique to only one option.

Collection Commands
Some Quartus II Tcl functions return very large sets of data that would be inefficient
as Tcl lists. These data structures are referred to as collections. The Quartus II Tcl API
uses a collection ID to access the collection. There are two Quartus II Tcl commands
for working with collections, foreach_in_collection and get_collection_size. Use
the set command to assign a collection ID to a variable.

h For information about which Quartus II Tcl commands return collection IDs, refer to
foreach_in_collection in Quartus II Help.

Example 3–9. Natural Bus Naming

set_location_assignment -to address[10] Pin_M20
June 2012 Altera Corporation Quartus II Handbook Version 13.1
Volume 2: Design Implementation and Optimization

http://quartushelp.altera.com/current/master.htm#mergedProjects/tafs/tafs/tcl_pkg_misc_ver_1.0_cmd_foreach_in_collection.htm

3–14 Chapter 3: Tcl Scripting
Other Scripting Features
The foreach_in_collection Command
The foreach_in_collection command is similar to the foreach Tcl command. Use it
to iterate through all elements in a collection. Example 3–10 prints all instance
assignments in an open project.

The get_collection_size Command
Use the get_collection_size command to get the number of elements in a collection.
Example 3–11 prints the number of global assignments in an open project.

The post_message Command
To print messages that are formatted like Quartus II software messages, use the
post_message command. Messages printed by the post_message command appear in
the System tab of the Messages window in the Quartus II GUI, and are written to
standard at when scripts are run. Arguments for the post_message command include
an optional message type and a required message string.

The message type can be one of the following:

■ info (default)

■ extra_info

■ warning

■ critical_warning

■ error

If you do not specify a type, Quartus II software defaults to info.

With the Quartus II software in Windows, you can color code messages displayed at
the system command prompt with the post_message command. Add the following
line to your quartus2.ini file:

DISPLAY_COMMAND_LINE_MESSAGES_IN_COLOR = on

Example 3–10. Collection Commands

set all_instance_assignments [get_all_instance_assignments -name *]
foreach_in_collection asgn $all_instance_assignments {

Information about each assignment is
returned in a list. For information
about the list elements, refer to Help
for the get-all-instance-assignments command.
set to [lindex $asgn 2]
set name [lindex $asgn 3]
set value [lindex $asgn 4]
puts "Assignment to $to: $name = $value"

}

Example 3–11. get_collection_size Command

set all_global_assignments [get_all_global_assignments -name *]
set num_global_assignments [get_collection_size $all_global_assignments]
puts "There are $num_global_assignments global assignments in your project"
Quartus II Handbook Version 13.1 June 2012 Altera Corporation
Volume 2: Design Implementation and Optimization

Chapter 3: Tcl Scripting 3–15
Other Scripting Features
Example 3–12 shows how to use the post_message command.

Accessing Command-Line Arguments
Many Tcl scripts are designed to accept command-line arguments, such as the name of
a project or revision. The global variable quartus(args) is a list of the arguments
typed on the command-line following the name of the Tcl script. Example 3–13 shows
code that prints all of the arguments in the quartus(args) variable.

If you copy the script in the previous example to a file named print_args.tcl, it
displays the following output when you type the command shown in Example 3–14
at a command prompt.

The cmdline Package
You can use the cmdline package included with the Quartus II software for more
robust and self-documenting command-line argument passing. The cmdline package
supports command-line arguments with the form -<option> <value>.

Example 3–15 uses the cmdline package.

Example 3–12. post_message command

post_message -type warning "Design has gated clocks"

Example 3–13. Simple Command-Line Argument Access

set i 0
foreach arg $quartus(args) {

puts "The value at index $i is $arg"
incr i

}

Example 3–14. Passing Command-Line Arguments to Scripts

quartus_sh -t print_args.tcl my_project 100MHz r
The value at index 0 is my_project
The value at index 1 is 100MHz

Example 3–15. cmdline Package

package require cmdline
variable ::argv0 $::quartus(args)
set options {

{ "project.arg" "" "Project name" }
{ "frequency.arg" "" "Frequency" }

}
set usage "You need to specify options and values"

array set optshash [::cmdline::getoptions ::argv $options $usage]
puts "The project name is $optshash(project)"
puts "The frequency is $optshash(frequency)"
June 2012 Altera Corporation Quartus II Handbook Version 13.1
Volume 2: Design Implementation and Optimization

3–16 Chapter 3: Tcl Scripting
Other Scripting Features
If you save those commands in a Tcl script called print_cmd_args.tcl you see the
following output when you type the command shown in Example 3–16 at a command
prompt.

Virtually all Quartus II Tcl scripts must open a project. Example 3–17 opens a project,
and you can optionally specify a revision name. The example checks whether the
specified project exists. If it does, the example opens the current revision, or the
revision you specify.

If you do not require this flexibility or error checking, you can use just the
project_open command, as shown in Example 3–18.

Example 3–16. Passing Command-Line Arguments for Scripts

quartus_sh -t print_cmd_args.tcl -project my_project -frequency 100MHz r
The project name is my_project
The frequency is 100MHz

Example 3–17. Full-Featured Method to Open Projects

package require cmdline
variable ::argv0 $::quartus(args)
set options { \
{ "project.arg" "" "Project Name" } \
{ "revision.arg" "" "Revision Name" } \
}
array set optshash [::cmdline::getoptions ::argv0 $options]

Ensure the project exists before trying to open it
if {[project_exists $optshash(project)]} {

if {[string equal "" $optshash(revision)]} {

There is no revision name specified, so default
to the current revision
project_open $optshash(project) -current_revision

} else {

There is a revision name specified, so open the
project with that revision
project_open $optshash(project) -revision \

$optshash(revision)
}

} else {
puts "Project $optshash(project) does not exist"
exit 1

}
The rest of your script goes here

Example 3–18. Simple Method to Open Projects

set proj_name [lindex $argv 0]
project_open $proj_name
Quartus II Handbook Version 13.1 June 2012 Altera Corporation
Volume 2: Design Implementation and Optimization

Chapter 3: Tcl Scripting 3–17
The Quartus II Tcl Shell in Interactive Mode
The quartus() Array
The scripts in the preceding examples parsed command line arguments found in
quartus(args). The global quartus() Tcl array includes other information about your
project and the current Quartus II executable that might be useful to your scripts. For
information on the other elements of the quartus() array, type the following command
at a Tcl prompt:

help -quartus r

The Quartus II Tcl Shell in Interactive Mode
This section presents how to make project assignments and then compile the finite
impulse response (FIR) filter tutorial project with the quartus_sh interactive shell.
This example assumes that you already have the fir_filter tutorial design files in a
project directory.

To begin, type the following at the system command prompt to run the interactive Tcl
shell:

quartus_sh -s r
Create a new project called fir_filter, with a revision called filtref by typing the
following command at a Tcl prompt:

project_new -revision filtref fir_filter r

1 If the project file and project name are the same, the Quartus II software gives the
revision the same name as the project.

Because the revision named filtref matches the top-level file, all design files are
automatically picked up from the hierarchy tree.

Next, set a global assignment for the device with the following command:

set_global_assignment -name family Cyclone r

h To learn more about assignment names that you can use with the -name option, refer
to Quartus II Help.

1 For assignment values that contain spaces, enclose the value in quotation marks.

To quickly compile a design, use the ::quartus::flow package, which properly
exports the new project assignments and compiles the design with the proper
sequence of the command-line executables. First, load the package:

load_package flow r
It returns the following:

1.0

To perform a full compilation of the FIR filter design, use the execute_flow command
with the -compile option:

exectue_flow -compile r
June 2012 Altera Corporation Quartus II Handbook Version 13.1
Volume 2: Design Implementation and Optimization

3–18 Chapter 3: Tcl Scripting
The tclsh Shell
This command compiles the FIR filter tutorial project, exporting the project
assignments and running quartus_map, quartus_fit, quartus_asm, and quartus_sta.
This sequence of events is the same as selecting Start Compilation from the
Processing menu in the Quartus II GUI.

When you are finished with a project, close it with the project_close command as
shown in Example 3–19.

To exit the interactive Tcl shell, type exit r at a Tcl prompt.

The tclsh Shell
On the UNIX and Linux operating systems, the tclsh shell included with the
Quartus II software is initialized with a minimal PATH environment variable. As a
result, system commands might not be available within the tclsh shell because certain
directories are not in the PATH environment variable. To include other directories in
the path searched by the tclsh shell, set the QUARTUS_INIT_PATH environment variable
before running the tclsh shell. Directories in the QUARTUS_INIT_PATH environment
variable are searched by the tclsh shell when you execute a system command.

Tcl Scripting Basics
The core Tcl commands support variables, control structures, and procedures.
Additionally, there are commands for accessing the file system and network sockets,
and running other programs. You can create platform-independent graphical
interfaces with the Tk widget set.

Tcl commands are executed immediately as they are typed in an interactive Tcl shell.
You can also create scripts (including the examples in this chapter) in files and run
them with the Quartus II executables or with the tclsh shell.

Hello World Example
The following shows the basic “Hello world” example in Tcl:

puts "Hello world" r
Use double quotation marks to group the words hello and world as one argument.
Double quotation marks allow substitutions to occur in the group. Substitutions can
be simple variable substitutions, or the result of running a nested command,
described in “Substitutions” on page 3–19. Use curly braces {} for grouping when you
want to prevent substitutions.

Example 3–19.

project_close r
Quartus II Handbook Version 13.1 June 2012 Altera Corporation
Volume 2: Design Implementation and Optimization

Chapter 3: Tcl Scripting 3–19
Tcl Scripting Basics
Variables
Assign a value to a variable with the set command. You do not have to declare a
variable before using it. Tcl variable names are case-sensitive. Example 3–20 assigns
the value 1 to the variable named a.

To access the contents of a variable, use a dollar sign (“$”) before the variable name.
Example 3–21 prints "Hello world" in a different way.

Substitutions
Tcl performs three types of substitution:

■ Variable value substitution

■ Nested command substitution

■ Backslash substitution

Variable Value Substitution
Variable value substitution, as shown in Example 3–21, refers to accessing the value
stored in a variable with a dollar sign (“$”) before the variable name.

Nested Command Substitution
Nested command substitution refers to how the Tcl interpreter evaluates Tcl code in
square brackets. The Tcl interpreter evaluates nested commands, starting with the
innermost nested command, and commands nested at the same level from left to
right. Each nested command result is substituted in the outer command.
Example 3–22 sets a to the length of the string foo.

Example 3–20. Assigning Variables

set a 1

Example 3–21. Accessing Variables

set a Hello
set b world
puts "$a $b"

Example 3–22. Command Substitution

set a [string length foo]
June 2012 Altera Corporation Quartus II Handbook Version 13.1
Volume 2: Design Implementation and Optimization

3–20 Chapter 3: Tcl Scripting
Tcl Scripting Basics
Backlash Substitution
Backslash substitution allows you to quote reserved characters in Tcl, such as dollar
signs (“$”) and braces (“[]”). You can also specify other special ASCII characters like
tabs and new lines with backslash substitutions. The backslash character is the Tcl line
continuation character, used when a Tcl command wraps to more than one line.
Example 3–23 shows how to use the backslash character for line continuation.

Arithmetic
Use the expr command to perform arithmetic calculations. Use curly braces (“{ }”) to
group the arguments of this command for greater efficiency and numeric precision.
Example 3–24 sets b to the sum of the value in the variable a and the square root of 2.

Tcl also supports boolean operators such as && (AND), || (OR), ! (NOT), and
comparison operators such as < (less than), > (greater than), and == (equal to).

Lists
A Tcl list is a series of values. Supported list operations include creating lists,
appending lists, extracting list elements, computing the length of a list, sorting a list,
and more. Example 3–25 sets a to a list with three numbers in it.

You can use the lindex command to extract information at a specific index in a list.
Indexes are zero-based. You can use the index end to specify the last element in the
list, or the index end-<n> to count from the end of the list. Example 3–26 prints the
second element (at index 1) in the list stored in a.

The llength command returns the length of a list. Example 3–27 prints the length of
the list stored in a.

Example 3–23. Backslash Substitution

set this_is_a_long_variable_name [string length "Hello \
world."]

Example 3–24. Arithmetic with the expr Command

set a 5
set b [expr { $a + sqrt(2) }]

Example 3–25. Creating Simple Lists

set a { 1 2 3 }

Example 3–26. Accessing List Elements

puts [lindex $a 1]

Example 3–27. List Length

puts [llength $a]
Quartus II Handbook Version 13.1 June 2012 Altera Corporation
Volume 2: Design Implementation and Optimization

Chapter 3: Tcl Scripting 3–21
Tcl Scripting Basics
The lappend command appends elements to a list. If a list does not already exist, the
list you specify is created. The list variable name is not specified with a dollar sign
(“$”). Example 3–28 appends some elements to the list stored in a.

Arrays
Arrays are similar to lists except that they use a string-based index. Tcl arrays are
implemented as hash tables. You can create arrays by setting each element
individually or with the array set command. To set an element with an index of Mon
to a value of Monday in an array called days, use the following command:

set days(Mon) Monday

The array set command requires a list of index/value pairs. This example sets the
array called days:

array set days { Sun Sunday Mon Monday Tue Tuesday \
Wed Wednesday Thu Thursday Fri Friday Sat Saturday }

Example 3–29 shows how to access the value for a particular index.

Use the array names command to get a list of all the indexes in a particular array. The
index values are not returned in any specified order. Example 3–30 shows one way to
iterate over all the values in an array.

Arrays are a very flexible way of storing information in a Tcl script and are a good
way to build complex data structures.

Example 3–28. Appending to a List

lappend a 4 5 6

Example 3–29. Accessing Array Elements

set day_abbreviation Mon
puts $days($day_abbreviation)

Example 3–30. Iterating Over Arrays

foreach day [array names days] {
puts "The abbreviation $day corresponds to the day \

name $days($day)"
}

June 2012 Altera Corporation Quartus II Handbook Version 13.1
Volume 2: Design Implementation and Optimization

3–22 Chapter 3: Tcl Scripting
Tcl Scripting Basics
Control Structures
Tcl supports common control structures, including if-then-else conditions and for,
foreach, and while loops. The position of the curly braces as shown in the following
examples ensures the control structure commands are executed efficiently and
correctly. Example 3–31 prints whether the value of variable a positive, negative, or
zero.

Example 3–32 uses a for loop to print each element in a list.

Example 3–33 uses a foreach loop to print each element in a list.

Example 3–34 uses a while loop to print each element in a list.

You do not have to use the expr command in boolean expressions in control structure
commands because they invoke the expr command automatically.

Example 3–31. If-Then-Else Structure

if { $a > 0 } {
puts "The value is positive"

} elseif { $a < 0 } {
puts "The value is negative"

} else {
puts "The value is zero"

}

Example 3–32. For Loop

set a { 1 2 3 }
for { set i 0 } { $i < [llength $a] } { incr i } {

puts "The list element at index $i is [lindex $a $i]"
}

Example 3–33. foreach Loop

set a { 1 2 3 }
foreach element $a {

puts "The list element is $element"
}

Example 3–34. while Loop

set a { 1 2 3 }
set i 0
while { $i < [llength $a] } {

puts "The list element at index $i is [lindex $a $i]"
incr i

}

Quartus II Handbook Version 13.1 June 2012 Altera Corporation
Volume 2: Design Implementation and Optimization

Chapter 3: Tcl Scripting 3–23
Tcl Scripting Basics
Procedures
Use the proc command to define a Tcl procedure (known as a subroutine or function
in other scripting and programming languages). The scope of variables in a procedure
is local to the procedure. If the procedure returns a value, use the return command to
return the value from the procedure. Example 3–35 defines a procedure that
multiplies two numbers and returns the result.

Example 3–36 shows how to use the multiply procedure in your code. You must
define a procedure before your script calls it.

Define procedures near the beginning of a script. If you want to access global
variables in a procedure, use the global command in each procedure that uses a
global variable. Example 3–37 defines a procedure that prints an element in a global
list of numbers, then calls the procedure.

File I/O
Tcl includes commands to read from and write to files. You must open a file before
you can read from or write to it, and close it when the read and write operations are
done. To open a file, use the open command; to close a file, use the close command.
When you open a file, specify its name and the mode in which to open it. If you do not
specify a mode, Tcl defaults to read mode. To write to a file, specify w for write mode
as shown in Example 3–38.

Example 3–35. Simple Procedure

proc multiply { x y } {
set product [expr { $x * $y }]
return $product

}

Example 3–36. Using a Procedure

proc multiply { x y } {
set product [expr { $x * $y }]
return $product

}
set a 1
set b 2
puts [multiply $a $b]

Example 3–37. Accessing Global Variables

proc print_global_list_element { i } {
global my_data
puts "The list element at index $i is [lindex $my_data $i]"

}
set my_data { 1 2 3}
print_global_list_element 0

Example 3–38. Open a File for Writing

set output [open myfile.txt w]
June 2012 Altera Corporation Quartus II Handbook Version 13.1
Volume 2: Design Implementation and Optimization

3–24 Chapter 3: Tcl Scripting
Tcl Scripting Basics
Tcl supports other modes, including appending to existing files and reading from and
writing to the same file.

The open command returns a file handle to use for read or write access. You can use
the puts command to write to a file by specifying a filehandle, as shown in
Example 3–39.

You can read a file one line at a time with the gets command. Example 3–40 uses the
gets command to read each line of the file and then prints it out with its line number.

Syntax and Comments
Arguments to Tcl commands are separated by white space, and Tcl commands are
terminated by a newline character or a semicolon. As shown in “Substitutions” on
page 3–19, you must use backslashes when a Tcl command extends more than one
line.

Tcl uses the hash or pound character (#) to begin comments. The # character must
begin a comment. If you prefer to include comments on the same line as a command,
be sure to terminate the command with a semicolon before the # character.
Example 3–41 is a valid line of code that includes a set command and a comment.

Without the semicolon, it would be an invalid command because the set command
would not terminate until the new line after the comment.

The Tcl interpreter counts curly braces inside comments, which can lead to errors that
are difficult to track down. Example 3–42 causes an error because of unbalanced curly
braces.

Example 3–39. Write to a File

set output [open myfile.txt w]
puts $output "This text is written to the file."
close $output

Example 3–40. Read from a File

set input [open myfile.txt]
set line_num 1
while { [gets $input line] >= 0 } {

Process the line of text here
puts "$line_num: $line"
incr line_num

}
close $input

Example 3–41. Comments

set a 1;# Initializes a

Example 3–42. Unbalanced Braces in Comments

if { $x > 0 } {
if { $y > 0 } {

code here
}
Quartus II Handbook Version 13.1 June 2012 Altera Corporation
Volume 2: Design Implementation and Optimization

Chapter 3: Tcl Scripting 3–25
Document Revision History
External References

f For more information about Tcl, refer to the following sources:

■ Practical Programming in Tcl and Tk, Brent B. Welch

■ Tcl and the TK Toolkit, John Ousterhout

■ Effective Tcl/TK Programming, Michael McLennan and Mark Harrison

■ Quartus II Tcl example scripts at www.altera.com/support/examples/tcl/tcl.html

■ Tcl Developer Xchange at tcl.activestate.com

Document Revision History
Table 3–4 shows the revision history for this chapter.

f For previous versions of the Quartus II Handbook, refer to the Quartus II Handbook
Archive.

Table 3–4. Document Revision History

Date Version Changes

June 2012 12.0.0 ■ Removed survey link.

November 2011 11.0.1

■ Template update

■ Updated supported version of Tcl in the section “Tool Command Language” on page 3–2

■ minor editoral changes

May 2011 11.0.0 Minor updates throughout document.

December 2010 10.1.0
Template update

Updated to remove tcl packages used by the Classic Timing Analyzer

July 2010 10.0.0 Minor updates throughout document.

November 2009 9.1.0

■ Removed LogicLock example.

■ Added the incremental_compilation, insystem_source_probe, and rtl packages to Table 3-
1 and Table 3-2.

■ Added quartus_map to table 3-2.

March 2009 9.0.0

■ Removed the “EDA Tool Assignments” section

■ Added the section “Compile All Revisions” on page 3–9

■ Added the section “Using the tclsh Shell” on page 3–20

November 2008 8.1.0 Changed to 8½” × 11” page size. No change to content.

May 2008 8.0.0 Updated references.
June 2012 Altera Corporation Quartus II Handbook Version 13.1
Volume 2: Design Implementation and Optimization

http://tcl.activestate.com/
http://www.altera.com/literature/lit-qts_archive.jsp
http://www.altera.com/literature/lit-qts_archive.jsp
http://www.altera.com/support/examples/tcl/tcl.html

© 2013 Altera Corporation. All rights reserved. ALTERA, ARRI
are trademarks of Altera Corporation and registered in the U.S
trademarks or service marks are the property of their respectiv
semiconductor products to current specifications in accordance
services at any time without notice. Altera assumes no respons
described herein except as expressly agreed to in writing by Al
on any published information and before placing orders for pr

Quartus II Handbook Version 13.1
Volume 2: Design Implementation and Optimization
November 2013
Section II. I/O and PCB Tools
This section provides an overview of the I/O planning process, Altera FPGA pin
terminology, as well as the various methods for importing, exporting, creating, and
validating pin-related assignments using the Quartus® II software. This section also
describes ways to use the Quartus II software to analyze signal integrity, including
simultaneous switching noise, as well as interfaces with third-party PCB design tools.

This section includes the following chapters:

■ Chapter 4, Managing Device I/O Pins

This chapter provides an overview of the I/O planning process, Altera FPGA pin
terminology, and the various methods for importing, exporting, creating, and
validating pin-related assignments.

■ Chapter 5, Simultaneous Switching Noise (SSN) Analysis and Optimizations

This chapter describes the tools in the Quartus II software that allow you to
estimate the SSN performance of your design both early in the design cycle and
when your PCB is complete.

■ Chapter 6, Signal Integrity Analysis with Third-Party Tools

This chapter is intended for logic designers and board designers, and describes
simulation and how to adjust designs to improve board-level timing and signal
integrity. Also included is information about how to create accurate models of
your design with the Quartus II software for use in simulation software.

■ Chapter 7, Mentor Graphics PCB Design Tools Support

This chapter discusses how the Quartus II software interacts with the Mentor
Graphics I/O Designer software and the DxDesigner software to provide a
completely cyclical FPGA-to-board integration design workflow.

■ Chapter 8, Cadence PCB Design Tools Support

This chapter addresses how the Quartus II software interacts with the Cadence
Allegro Design Entry HDL software and the Allegro Design Entry CIS
(Component Information System) software (also known as OrCAD Capture CIS)
to provide a complete FPGA-to-board integration design workflow.
A, CYCLONE, HARDCOPY, MAX, MEGACORE, NIOS, QUARTUS and STRATIX words and logos
. Patent and Trademark Office and in other countries. All other words and logos identified as
e holders as described at www.altera.com/common/legal.html. Altera warrants performance of its
 with Altera's standard warranty, but reserves the right to make changes to any products and
ibility or liability arising out of the application or use of any information, product, or service
tera. Altera customers are advised to obtain the latest version of device specifications before relying
oducts or services.

ISO
9001:2008
Registered

http://www.altera.com/common/legal.html
http://www.altera.com/support/devices/reliability/certifications/rel-certifications.html
http://www.altera.com/support/devices/reliability/certifications/rel-certifications.html

4Managing Device I/O Pins

2013.11.04

QII52013 Subscribe Send Feedback

This document describes efficient planning and assignment of the I/O pins in your target device. You should
consider I/O standards, pin placement rules, and your PCB characteristics early in the design phase.

Figure 4-1: Pin Planner GUI

Task and Report
Windows

All Pins
List

Device Package
View

Table 4-1: Quartus II I/O Pin Planning Tools

Click to AccessI/O Planning Task

Assignments > Pin PlannerEdit, validate, or export pin assignments

Tools > Advisors > Pin AdvisorView tailored pin planning advice

Processing > Start I/O Assignment AnalysisValidate pin assignments against design rules

ISO
9001:2008
Registered

© 2013 Altera Corporation. All rights reserved. ALTERA, ARRIA, CYCLONE, HARDCOPY, MAX, MEGACORE, NIOS, QUARTUS and STRATIX words
and logos are trademarks of Altera Corporation and registered in the U.S. Patent and Trademark Office and in other countries. All other
words and logos identified as trademarks or service marks are the property of their respective holders as described at
www.altera.com/common/legal.html. Altera warrants performance of its semiconductor products to current specifications in accordance with
Altera's standard warranty, but reserves the right to make changes to any products and services at any time without notice. Altera assumes
no responsibility or liability arising out of the application or use of any information, product, or service described herein except as expressly
agreed to in writing by Altera. Altera customers are advised to obtain the latest version of device specifications before relying on any published
information and before placing orders for products or services.

www.altera.com

101 Innovation Drive, San Jose, CA 95134

https://www.altera.com/servlets/subscriptions/alert?id=QII52013
mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20(QII52013%202013.11.04)%20Managing%20Device%20I/O%20Pins&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.
http://www.altera.com/support/devices/reliability/certifications/rel-certifications.html
http://www.altera.com/support/devices/reliability/certifications/rel-certifications.html
http://www.altera.com/support/devices/reliability/certifications/rel-certifications.html

I/O Planning Overview
You should plan and assign I/O pins in your design for compatibility with your target device and PCB
characteristics. Plan I/O pins early to reduce design iterations and develop an accurate PCB layout sooner.
You can assign expected nodes not yet defined in design files, including interface IP core signals, and then
generate a top-level file. Specify interfaces formemory, high-speed I/O, device configuration, and debugging
tools in your top-level file. The top-level file instantiates the next level of design hierarchy and includes
interface port information.

Use the Pin Planner to view, assign, and validate device I/O pin logic and properties. Alternatively, you can
enter I/O assignments in a Tcl script, or directly in HDL code. The Pin Planner Task window provides one-
click access to I/O planning steps. You can filter and search the nodes in the design. You can define custom
groups of pins for assignment. Instantly locate and highlight specific pin types for assignment or evaluation,
such as I/O banks, VREF groups, edges, DQ/DQS pins, hard memory interface pins, PCIe hard IP interface
pins, hard processor systempins, and clock region input pins. Assign design elements, I/O standards, interface
IP, and other properties to the device I/O pins by name or by drag and drop. You can then generate a top-
level design file for I/O validation.

Use live I/O check to verify the legality of pin assignments in real time. Use I/O assignment analysis to run
a full I/O analysis against VCCIO,VREF, electromigration (current density), Simultaneous SwitchingOutput
(SSO), drive strength, I/O standard, PCI_IO clamp diode, and I/O pin direction compatibility rules.

Basic I/O Planning Flow
The following steps describe the basic flow for assigning and verifying I/O pin assignments:

1. Click Assignments > Device and select a target device that meets your logic, performance, and I/O
requirements. Consider and specify /O standards, voltage and power supply requirements, and available
I/O pins.

2. Click Assignments > Pin Planner.
3. To setup a top-level HDL wrapper file that defines early port and interface information for your design,

click Early Pin Planning in the Tasks pane.

a. Click Create/Import IP Core and define the parameters of any expected interface IP core, and then
assign signals to the interface IP nodes.

b. Click Set Up Top-Level File and assign user nodes to device pins. User nodes become virtual pins in
the top-level file and are not assigned to device pins.

c. Click Generate Top-Level File. Use this file to validate I/O assignments.

4. Click Run I/O Assignment Analysis in the Tasks pane to validate any early assignments and generate a
synthesized design netlist.

5. Assign I/O properties to match your device and PCB characteristics, including assigning logic, I/O
standards, output loading, slew rate, and current strength.

6. ClickRun I/OAssignmentAnalysis in the Tasks pane to validate assignments and generate a synthesized
design netlist. Correct any problems reported.

7. ClickProcessing>StartCompilation. During compilation, theQuartus II software runs I/O assignment
analysis and advanced I/O timing analysis.

Managing Device I/O PinsAltera Corporation

Send Feedback

QII52013
I/O Planning Overview4-2 2013.11.04

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Managing%20Device%20I/O%20Pins%20(QII52013%202013.11.04)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Integrating PCB Design Tools
You can integrate PCB design tools into your work flow to help correctlymap pin assignments to the symbols
your system circuit schematics and board layout. The Quartus II software integrates with board layout tools
by allowing import and export of pin assignment information in Quartus II Settings Files (.qsf), Pin-Out
File (.pin), and FPGAXchange-Format File (.fx) files. You can integrate PCB tools in the the followingways:

Table 4-2: Integrating PCB Design Tools

Supported PCB ToolPCB Tool Integration

Mentor Graphics® I/O DesignerCadence
Allegro

Define and validate I/O assignments in the Pin Planner, and
then export the assignments to the PCB tool for validation

Mentor Graphics® I/O DesignerCadence
Allegro

Define I/O assignments in your PCB tool, and then import
the assignments into the Pin Planner for validation

Figure 4-2: PCB Tool Integration

Create and
Modify Pin
Assignments

PCB Tool

I/O Assignment Analysis

Validate?

Altera
Quartus II Software

Import Pin Assignments
Design Files
(if available)

Yes

No

Analysis & Synthesis

Pins have been Validated

FPGA Xchange
File

.fx

Formore information about incorporating PCB design tools, refer to theCadence PCB Design Tools Support
and Mentor Graphics PCB Design Tools Support chapters in volume 2 of the Quartus II Handbook.

Related Information
Mentor Graphics PCB Design Tools Support

Altera CorporationManaging Device I/O Pins

Send Feedback

4-3Integrating PCB Design Tools
QII52013
2013.11.04

http://www.altera.com/literature/hb/qts/qts_qii52015.pdf
mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Managing%20Device%20I/O%20Pins%20(QII52013%202013.11.04)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Altera Device Terms
The following terms describe Altera device and I/O structures:

Assigning I/O Pins
Use the Pin Planner to visualize, modify, and validate I/O assignments in a graphical representation of the
target device. To assign I/O pins, locate the device I/O pin(s) for assignment, enter properties for the pin(s),
and validate the legality of the assignment. You can increase the accuracy of I/O assignment analysis by
reserving specific device pins to accommodate undefined but expected I/O.

Managing Device I/O PinsAltera Corporation

Send Feedback

QII52013
Altera Device Terms4-4 2013.11.04

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Managing%20Device%20I/O%20Pins%20(QII52013%202013.11.04)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

To assign I/O pins in the Pin Planner, follow these steps:

1. Open a Quartus II project, and then click Assignments > Pin Planner.
2. (Optional) To validate I/O pin assignments in real time, click Processing > Enable Live I/O Check.
3. Click Processing > Start Analysis & Elaboration to elaborate the design and display All Pins in the

device view.
4. To locate or highlight pins for assignment, click Pin Finder or a pin type under Highlight Pins in the

Tasks pane.
5. (Optional) To define a custom group of nodes for assignment, select one or more nodes in the Groups

or All Pins list, and then click Create Group.
6. Enter assignments of logic, I/O standards, interface IP, and properties for device I/O pins in the All Pins

spreadsheet, or by drag and drop into the package view.
7. To assign properties to differential pin pairs, click Show Differential Pin Pair Connections. A red

connection line appears between positive (p) and negative (n) differential pins.
8. (Optional) To create board trace model assignments, right-click an output or bidirectional pin, and then

click Board Trace Model. For differential I/O standards, the board trace model uses a differential pin
pair with two symmetrical board trace models. Specify board trace parameters on the positive end of the
differential pin pair. The assignment applies to the corresponding value on the negative end of the
differential pin pair.

9. To run a full I/O assignment analysis, click Run I/O Assignment Analysis. The Fitter reports analysis
results. Only reserved pins are analyzed prior to design synthesis.

Assigning to Exclusive Pin Groups
You can designate groups of pins for exclusive assignment.When you assign pins to anExclusive I/OGroup,
the Fitter does not place the signals in the same I/O bank with any other exclusive I/O group. For example,
if you have a set of signals assigned exclusively togroup_a, and another set of signals assigned togroup_b,
the Fitter ensures placement of each group in different I/O banks.

Assigning Slew Rate and Drive Strength
You can designate the device pin slew rate and drive strength. These properties affect the pin’s outgoing
signal integrity. Use either the Slew Rate or Slow Slew Rate assignment to adjust the drive strength of a pin
with the Current Strength assignment. The slew rate and drive strength apply during live I/O check and
I/O assignment analysis.

Assigning Differential Pins
When you use the Pin Planner to assign a differential I/O standard to a single-ended top-level pin in your
design, it automatically recognizes the negative pin as part of the differential pin pair assignment and creates
the negative pin for you. The Quartus II software writes the location assignment for the negative pin to the
.qsf; however, the I/O standard assignment is not added to the .qsf for the negative pin of the differential
pair.

The following example shows a design with lvds_in top-level pin, to which you assign a differential I/O
standard. The Pin Planner automatically creates the differential pin, lvds_in(n) to complete the
differential pin pair.

Altera CorporationManaging Device I/O Pins

Send Feedback

4-5Assigning to Exclusive Pin Groups
QII52013
2013.11.04

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Managing%20Device%20I/O%20Pins%20(QII52013%202013.11.04)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

If you have a single-ended clock that feeds a PLL, assign the pin only to the positive clock pin of a
differential pair in the target device. Single-ended pins that feed a PLL and are assigned to the negative
clock pin device cause the design to not fit.

Note:

Figure 4-3: Creating a Differential Pin Pair in the Pin Planner

If your design contains a large bus that exceeds the pins available in a particular I/O bank, you can use edge
location assignments to place the bus. Edge location assignments improve the circuit board routing ability
of large buses, because they are close together near an edge. The following shows Altera device package
edges.

Figure 4-4: Die View and Package View of the Four Edges on an Altera Device

Top Edge

Silicon Die View

Bottom Edge

Left Edge Right Edge Right Edge

Top Edge

Package View (Top)

Bottom Edge

Left Edge

Overriding I/O Placement Rules on Differential Pins

Each device family has predefined I/O placement rules. The I/O placement rules ensure that noisy signals
do not corrupt neighboring signals. For example, I/O placement rules define the allowed placement of single-
ended I/O with respect to differential pins, or how many output and bidirectional pins can be placed within

Managing Device I/O PinsAltera Corporation

Send Feedback

QII52013
Overriding I/O Placement Rules on Differential Pins4-6 2013.11.04

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Managing%20Device%20I/O%20Pins%20(QII52013%202013.11.04)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

a VREF group when using voltage referenced input standards. You can use the
IO_MAXIMUM_TOGGLE_RATE assignment to override I/O placement rules on pins, such as for system
reset pins that do not switch during normal design activity. Setting a value of 0 MHz for this assignment
causes the Fitter to recognize the pin at a DC state throughout device operation. The Fitter excludes the
assigned pin from placement rule analysis. Do not assign an IO_MAXIMUM_TOGGLE_RATE of 0 MHz
to any actively switching pin or your design may not function as intended.

Entering Pin Assignments with Tcl Commands
You can use Tcl scripts to apply pin assignments rather than using the GUI. Enter individual Tcl commands
in the Tcl Console, or type the following to apply the assignments contained in a Tcl script:

Example 4-1: Applying Tcl Script Assignments

quartus_sh -t <my_tcl_script>.tcl

The following example shows use of the set_location_assignment and
set_instance_assignmentTcl commands to assign a pin to a specific location, I/O standard,
and drive strength.

Example 4-2: Scripted Pin Assignment

set_location_assignment PIN M20 -to address[10]
set_instance_assignment -name IO_STANDARD "2.5 V" -to address[10]
set_instance_assignment -name
 CURRENT_STRENGTH_NEW "MAXIMUM CURRENT" -to address[10]

Related Information

• Tcl Scripting

• API Functions

• Entering Pin Assignments with Tcl Commands on page 4-7

• Scripting API on page 4-25

• Entering Pin Assignments with Tcl Commands on page 4-7

• Scripting API on page 4-25

Entering Pin Assignments in HDL Code
You can use synthesis attributes or low-level I/O primitives to embed I/O pin assignments directly in your
HDL code.When you analyze and synthesize theHDL code, the information is converted into the appropriate

Altera CorporationManaging Device I/O Pins

Send Feedback

4-7Entering Pin Assignments with Tcl Commands
QII52013
2013.11.04

http://www.altera.com/literature/hb/qts/qts_qii52003.pdf
http://quartushelp.altera.com/current/master.htm
mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Managing%20Device%20I/O%20Pins%20(QII52013%202013.11.04)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

I/O pin assignments. You can use either of the following methods to specify pin-related assignments with
HDL code:

• Assigning synthesis attributes for signal names that are top-level pins
• Using low-level I/O primitives, such as ALT_BUF_IN, to specify input, output, and differential buffers,

and for setting parameters or attributes

Using Synthesis Attributes

The Quartus II software translates synthesis attributes into standard assignments during compilation. The
assignments appear in the Pin Planner. If you modify or delete these assignments in the Pin Planner and
then recompile your design, the Pin Planner changes override the synthesis attributes. Quartus II synthesis
supports the chip_pin, useioff, and altera_attribute synthesis attributes.

Use the chip_pin and useioff synthesis attributes to create pin location assignments and to assign
Fast Input Register, Fast Output Register, and Fast Output Enable Register logic options. The following
examples use the chip_pin and useioff attributes to embed location and Fast Input Register logic
option assignments in Verilog HDL and VHDL design files.

Example 4-3: Verilog HDL Synthesis Attribute

input my_pin1 /* synthesis altera_attribute = "-name
FAST_INPUT_REGISTER ON; -name IO_STANDARD \"2.5 V\" " */ ;

Example 4-4: VHDL Synthesis Attribute

VHDL Example
entity my_entity is
 port(
 my_pin1: in std_logic
);
end my_entity;

architecture rtl of my_entity is
attribute useioff : boolean;
attribute useioff of my_pin1 : signal is true;
attribute chip_pin : string;
attribute chip_pin of my_pin1 : signal is "C1";
begin -- The architecture body
end rtl;

Use the altera_attribute synthesis attribute to create other pin-related assignments in your
HDL code. The altera_attribute attribute is understood only by Quartus II integrated
synthesis and supports all types of instance assignments. The following examples use the
altera_attribute attribute to embed Fast Input Register logic option assignments and I/O
standard assignments in both a Verilog HDL and a VHDL design file.

Managing Device I/O PinsAltera Corporation

Send Feedback

QII52013
Using Synthesis Attributes4-8 2013.11.04

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Managing%20Device%20I/O%20Pins%20(QII52013%202013.11.04)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Example 4-5: Verilog HDL Synthesis Attribute

input my_pin1 /* synthesis chip_pin = "C1" useioff = 1 */;

Example 4-6: VHDL Synthesis Attribute

entity my_entity is
 port(
 my_pin1: in std_logic
);
end my_entity;
architecture rtl of my_entity is
begin

attribute altera_attribute : string;
attribute altera_attribute of my_pin1: signal is "-name
FAST_INPUT_REGISTER ON;
-- The architecture body
end rtl;

Using Low-Level I/O Primitives

You can alternatively enter I/O pin assignments using low-level I/O primitives. You can assign pin locations,
I/O standards, drive strengths, slew rates, and on-chip termination (OCT) value assignments. You can also
use low-level differential I/O primitives to define both positive and negative pins of a differential pair in the
HDL code for your design.

Primitive-based assignments do not appear in the Pin Planner until after you perform a full compilation
and back-annotate pin assignments (Assignments > Back Annotate Assignments).

Related Information
Designing with Low Level Primitives User Guide

Altera CorporationManaging Device I/O Pins

Send Feedback

4-9Using Low-Level I/O Primitives
QII52013
2013.11.04

http://www.altera.com/literature/ug/ug_low_level.pdf
mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Managing%20Device%20I/O%20Pins%20(QII52013%202013.11.04)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Importing and Exporting I/O Pin Assignments
The Quartus II software supports transfer of I/O pin assignments across projects, or for analysis in third-
party PCB tools. You can import or export I/O pin assignments in the following ways:

Table 4-3: Importing and Exporting I/O Pin Assignments

Export AssignmentsImport Assignments

• From Quartus II project for optimization
in a PCB design tool

• From Quartus II project for spreadsheet
analysis or use in scripting assignments

• From Quartus II project for import into
another Quartus II project with similar
constraints

• From your PCB design tool or
spreadsheet into Pin Planner during
early pin planning or after optimization
in PCB tool

• From another Quartus II project with
common constraints

Scenario

Assignments > Export AssignmentsAssignments > Import AssignmentsCommand

.pin, .fx, .csv, .tcl, .qsf.qsf, .esf, .acf, .csv, .txt, .sdcFile formats

Exported .csv files retain column and row
order and format. Do not modify the row of
column headings if importing the .csv file

N/ANotes

Importing and Exporting for PCB Tools
The Pin Planner supports import and export of assignmentswith PCB tools. You can export valid assignments
as a .pin file for analysis in other supported PCB tools. You can also import optimized assignment from
supported PCB tools. The .pin file contains pin name, number, and detailed properties.

Mentor Graphics I/O Designer requires you to generate and import both an .fx and a .pin file to transfer
assignments. However, the Quartus II software requires only the .fx to import pin assignments from I/O
Designer.

Table 4-4: Contents of .pin File

DescriptionFile Column Name

The name of the design pin, or whether the pin is GND or VCC pinPin Name/Usage

The pin number of the location on the device packageLocation

The direction of the pinDir

The name of the I/O standard to which the pin is configuredI/O Standard

The voltage level that is required to be connected to the pinVoltage

The I/O bank to which the pin belongsI/O Bank

Managing Device I/O PinsAltera Corporation

Send Feedback

QII52013
Importing and Exporting I/O Pin Assignments4-10 2013.11.04

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Managing%20Device%20I/O%20Pins%20(QII52013%202013.11.04)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

DescriptionFile Column Name

Y or N indicating if the location assignment for the design pin was user
assigned (Y) or assigned by the Fitter (N)

User Assignment

Related Information

• Pin-Out Files for Altera Devices

• Mentor Graphics PCB Tools Support

Migrating Assignments to Another Target Device
You canmigrate compatible pin assignments fromone target device to another. You canmigrate to a different
density and the same device package. You can also migrate between device packages with different densities
and pin counts. ClickView>PinMigrationWindow to verify whether your pin assignments are compatible
with migration to a different Altera device.

The Quartus II software ignores invalid assignments and generates an error message during compilation.
After evaluating migration compatibility, modify any incompatible assignments, and then click Export to
export the assignments to another project.

Altera CorporationManaging Device I/O Pins

Send Feedback

4-11Migrating Assignments to Another Target Device
QII52013
2013.11.04

http://www.altera.com/literature/lit-dp.jsp
http://www.altera.com/literature/hb/qts/qts_qii52015.pdf
mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Managing%20Device%20I/O%20Pins%20(QII52013%202013.11.04)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Figure 4-5: Device Migration Compatibility (AC24 does not exist in migration device)

The migration result for the pin function of highlighted PIN_AC23 is not an NC but a voltage reference
VREFB1N2 even though the pin is an NC in the migration device. VREF standards have a higher priority
than an NC, thus the migration result display the voltage reference. Even if you do not use that pin for a
port connection in your design, you must use the VREF standard for I/O standards that require it on the
actual board for the migration device.

If one of the migration devices has pins intended for connection to VCC or GND and these same pins are
I/O pins on a different device in the migration path, the Quartus II software ensures these pins are not used
for I/O. Ensure that these pins are connected to the correct PCB plane.

When migrating between two devices in the same package, pins that are not connected to the smaller die
may be intended to connect to VCC or GND on the larger die. To facilitate migration, you can connect these
pins to VCC or GND in your original design because the pins are not physically connected to the smaller
die.

Related Information
AN90: SameFrame PinOut Design for FineLine BGA Packages

Managing Device I/O PinsAltera Corporation

Send Feedback

QII52013
Migrating Assignments to Another Target Device4-12 2013.11.04

http://www.altera.com/literature/an/an090.pdf
mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Managing%20Device%20I/O%20Pins%20(QII52013%202013.11.04)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Validating Pin Assignments
The Quartus II software validates I/O pin assignments against predefined I/O rules for your target device.
You can use the following tools to validate your I/O pin assignments throughout the pin planning process:

Table 4-5: I/O Validation Tools

Click to RunDescriptionI/O Validation Tool

Processing > Enable Live I/O CheckVerifies preliminary, basic I/O legality as you
enter assignments

Live I/O
Check

Processing > Start I/O Assignment
Analysis

Verifies I/O assignment legality of synthesized
design against full set of I/O rules for the target
device

I/O
Assignment
Analysis

Processing > Start CompilationFully validates I/O assignments against all I/O
and timing checks during compilation

Advanced I/O
Timing

I/O Assignment Validation Rules
I/O Assignment Analysis validates your assignments against the following rules:

Table 4-6: Examples of I/O Rule Checks

HDL Required?DescriptionRule

NoChecks the number of pins assigned to an I/O bank
against the number of pins allowed in the I/O bank.

I/O bank capacity

NoChecks that no more than one VCCIO is required for
the pins assigned to the I/O bank.

I/O bank VCCIO voltage compati-
bility

NoChecks that no more than one VREF is required for the
pins assigned to the I/O bank.

I/O bank VREF voltage compati-
bility

NoChecks whether the pin location supports the assigned
I/O standard.

I/O standard and location conflicts

NoChecks whether the pin location supports the assigned
I/O standard and direction. For example, certain I/O
standards on a particular pin location can only support
output pins.

I/O standard and signal direction
conflicts

NoChecks that open drain is turned off for all pins with a
differential I/O standard.

Differential I/O standards cannot
have open drain turned on

NoChecks whether the drive strength assignments are
within the specifications of the I/O standard.

I/O standard and drive strength
conflicts

Altera CorporationManaging Device I/O Pins

Send Feedback

4-13Validating Pin Assignments
QII52013
2013.11.04

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Managing%20Device%20I/O%20Pins%20(QII52013%202013.11.04)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

HDL Required?DescriptionRule

NoChecks whether the pin location supports the assigned
drive strength.

Drive strength and location conflicts

NoChecks whether the pin location supports BUSHOLD.
For example, dedicated clock pins do not support
BUSHOLD.

BUSHOLD and location conflicts

NoChecks whether the pin location supports WEAK_
PULLUP (for example, dedicated clock pins do not
support WEAK_PULLUP).

WEAK_PULLUP and location
conflicts

NoChecks whether combined drive strength of consecutive
pads exceeds a certain limit. For example, the total
current drive for 10 consecutive pads on a Stratix II
device cannot exceed 200 mA.

Electromigration check

NoChecks whether the pin location along with the I/O
standard assigned supports PCI_IO clamp diode.

PCI_IO clamp diode, location, and
I/O standard conflicts

YesChecks that all pins connected to a SERDES in your
design are assigned to dedicated SERDES pin locations.

SERDES and I/O pin location
compatibility check

YesChecks whether pins connected to a PLL are assigned
to the dedicated PLL pin locations.

PLL and I/O pin location compati-
bility check

Table 4-7: Signal Switching Noise Rules

HDL Required?DescriptionRule

NoChecks that no single-ended I/O pin exists in the same
I/O bank as a DPA.

I/O bank can not have single-ended
I/O when DPA exists

NoChecks that there are no single-ended I/O pins present
in the PLL I/O Bank when a differential signal exists.

A PLL I/O bank does not support
both a single-ended I/O and a
differential signal simultaneously

NoChecks whether single-ended output pins are a certain
distance away from a differential I/O pin.

Single-ended output is required to
be a certain distance away from a
differential I/O pin

NoChecks whether single-ended output pins are a certain
distance away from a VREF pad.

Single-ended output has to be a
certain distance away from a VREF
pad

NoChecks whether single-ended input pins are a certain
distance away from a differential I/O pin.

Single-ended input is required to be
a certain distance away from a
differential I/O pin

Managing Device I/O PinsAltera Corporation

Send Feedback

QII52013
I/O Assignment Validation Rules4-14 2013.11.04

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Managing%20Device%20I/O%20Pins%20(QII52013%202013.11.04)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

HDL Required?DescriptionRule

NoChecks that there are no more than a certain number of
outputs or bidirectional pins in a VREFGROUP when
a VREF is used.

Too many outputs or bidirectional
pins in a VREFGROUP when a
VREF is used

NoChecks whether too many outputs are in a
VREFGROUP.

Too many outputs in a
VREFGROUP

Checking I/O Pin Assignments In Real-Time
Live I/O check validates I/O assignments against basic I/O buffer rules in real time. The Pin Planner
immediately reports warnings or errors about assignments as you enter them. The Live I/O Check Status
window displays the total number of errors and warnings. Use this analysis to quickly correct basic errors
before proceeding. Run full I/O assignment analysis when you are ready to validate pin assignments against
the complete set of I/O system rules.

Live I/O check validates against the following basic I/O buffer rules:

• VCCIO and VREF voltage compatibility rules
• Electromigration (current density) rules
• Simultaneous Switching Output (SSO) rules
• I/Oproperty compatibility rules, such as drive strength compatibility, I/O standard compatibility,PCI_IO

clamp diode compatibility, and I/O direction compatibility
• Illegal location assignments:

• An I/O bank or VREF group with no available pins
• The negative pin of a differential pair if the positive pin of the differential pair is assigned with a node

name with a differential I/O standard
• Pin locations that do not support the I/O standard assigned to the selected node name
• For HSTL- and SSTL-type I/O standards, VREF groups of a different VREF voltage than the selected

node name.

Live I/O check is supported only for .28nm and larger device families.Note:

Related Information
Assigning Device I/O Pins in Pin Planner

Running I/O Assignment Analysis
I/O assignment analysis validates I/O assignments against the complete set of I/O system and board layout
rules. Full I/O assignment analysis validates blocks that directly feed or are fed by resources such as a PLL,
LVDS, or gigabit transceiver blocks. In addition, the checker validates the legality of proper VREF pin use,
pin locations, and acceptable mixed I/O standards

Run I/O assignment analysis during early pin planning to validate initial reserved pin assignments before
compilation. Once you define design files, run I/O assignment analysis to perform more thorough legality
checks with respect to the synthesized netlist. Run I/O assignment analysis whenever you modify I/O
assignments.

Altera CorporationManaging Device I/O Pins

Send Feedback

4-15Checking I/O Pin Assignments In Real-Time
QII52013
2013.11.04

http://quartushelp.altera.com/current/master.htm
mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Managing%20Device%20I/O%20Pins%20(QII52013%202013.11.04)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

The Fitter assigns pins to accommodate your constraints. For example, if you assign an edge location to a
group of LVDS pins, the Fitter assigns pin locations for each LVDS pin in the specified edge location and
then performs legality checks. To display the Fitter-placed pins, click Show Fitter Placements in the Pin
Planner. To accept these suggested pin locations, you must back-annotate your pin assignments.

View the I/O Assignment Warnings report to view and resolve all assignment warnings. For example, a
warning that some design pins have undefined drive strength or slew rate. The Fitter recognizes undefined,
single-ended output and bidirectional pins as non-calibratedOCT. To resolve thewarning, assign theCurrent
Strength, SlewRate or SlowSlewRate for the reported pin. Alternatively, you could assign theTermination
to the pin. You cannot assign drive strength or slew rate settings when a pin has an OCT assignment.

Related Information
Back-Annotating Assignments for A Project

Running Early I/O Assignment Analysis (without Design Files)

You can perform basic I/O legality checks before defining HDL design files. This technique produces a
preliminary board layout. For example, you can specify a target device and enter pin assignments that
correspond to PCB characteristics. You can reserve and assign an I/O standards to each pin, and then run
I/O assignment analysis to ensure that there are no I/O standard conflicts in each I/O bank.

Figure 4-6: Assigning and Analyzing Pin-Outs without Design Files

Modify and Correct Illegal
Assignments Found in Report File

Create Pin-Related Assignments
(Stored in the .qsf file)

Start I/O Assignment Analysis

Create a Quartus II Project

Pin-Related Assignments Complete

Yes

NoAssignments
Correct?

You must reserve all pins you intend to use as I/O pins, so that the Fitter can determine each pin type. After
performing I/O assignment analysis, correct any errors reported by the Fitter and rerun I/O assignment
analysis until all errors are corrected. A complete I/O assignment analysis requires all design files.

Managing Device I/O PinsAltera Corporation

Send Feedback

QII52013
Running Early I/O Assignment Analysis (without Design Files)4-16 2013.11.04

http://quartushelp.altera.com/current/master.htm
mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Managing%20Device%20I/O%20Pins%20(QII52013%202013.11.04)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Running I/O Assignment Analysis (with Design Files)

Use I/O assignment analysis to perform full I/O legality checks after fully defining HDL design files. When
you run I/O assignment analysis on a complete design, the tool verifies all I/O pin assignments against all
I/O rules. When you run I/O assignment analysis on a partial designs, the tool checks legality only for defined
portions of the design. The following figure shows the work flow for analyzing pin-outs with design files.

Figure 4-7: I/O Assignment Analysis Flow

Modify and Correct Illegal
Assignments Found in Report File

Create Pin-Related Assignments
(Stored in the .qsf file)

Start I/O Assignment Analysis

Back-Annotate I/O Assignment
Analysis Pin Placements

Perform Analysis & Synthesis
to Create a Mapped Netlist

Open a Quartus II Project or Design File

Pin-Related Assignments Complete

Yes

NoAssignments
Correct?

Quartus II Project & Design Files

.qpf .edf .vqm .v .vhd .bdf .tdf

Even if I/O assignment analysis passes on incomplete design files, you may still encounter errors during full
compilation. For example, you can assign a clock to a user I/O pin instead of assigning it to a dedicated clock
pin, or design the clock to drive a PLL that you have not yet instantiated in the design. This occurs because

Altera CorporationManaging Device I/O Pins

Send Feedback

4-17Running I/O Assignment Analysis (with Design Files)
QII52013
2013.11.04

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Managing%20Device%20I/O%20Pins%20(QII52013%202013.11.04)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

I/O assignment analysis does not account for the logic that the pin drives, and does not verify that only
dedicated clock inputs can drive the a PLL clock port.

To obtain better coverage, analyze as much of the design as possible over time, especially logic that connects
to pins. For example, if your design includes PLLs or LVDS blocks, define these files prior to full analysis.
After performing I/O assignment analysis, correct any errors reported by the Fitter and rerun I/O assignment
analysis until all errors are corrected.

The following figure shows the compilation time benefit of performing I/O assignment analysis before
running a full compilation.

Figure 4-8: I/O Assignment Analysis Reduces Compilation Time

Errors
Reported
and Fixed

I/O
Assignment
Analysis

First Full Compilation

First Full Compilation

Second Full Compilation

Errors Reported and Fixed

Without
Start I/O Assignment Analysis

Command

With
Start I/O Assignment Analysis

Command

Compilation Time

Overriding Default I/O Pin Analysis

You can override the default I/O analysis of various pins to accommodate I/O rule exceptions, such as for
analyzing VREF or inactive pins.

Each device contains a number of VREF pins, each supporting a number of I/O pins. A VREF pin and its
I/O pins comprise a VREF bank. The VREF pins are typically assigned inputs with VREF I/O standards,
such asHSTL- and SSTL-type I/O standards. Conversely, VREF outputs do not require theVREF pin.When
a voltage-referenced input is present in a VREF bank, only a certain number of outputs can be present in
that VREF bank. I/O assignment analysis treats bidirectional signals controlled by different output enables
as independent output enables.

To assign the Output Enable Group option to bidirectional signals to analyze the signals as a single output
enable group, follow these steps:

1. To access this assignment in the Pin Planner, right-click the All pins list and click Customize Columns.
2. UnderAvailable columns, addOutputEnableGroup to Show these columns in this order. The column

appears in the All Pins list.
3. Enter the same integer value for the Output Enable Group assignment for all sets of signals that are

driving in the same direction.

Managing Device I/O PinsAltera Corporation

Send Feedback

QII52013
Overriding Default I/O Pin Analysis4-18 2013.11.04

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Managing%20Device%20I/O%20Pins%20(QII52013%202013.11.04)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

This assignment is especially important for external memory interfaces. For example, consider a DDR2
interface in a Stratix II device. The device allows 30 pins in a VREF group. Each byte lane for a ×8 DDR2
interface includes one DQS pin and eight DQ pins, for a total of nine pins per byte lane. The DDR2 interface
uses the SSTL 18 Class I VREF I/O standard. In typical interfaces, each byte lane has its own output enable.
In this example, the DDR2 interface has four byte lanes. Using 30 I/O pins in a VREF group, there are three
byte lanes and an extra byte lane that supports the three remaining pins. Without theOutput EnableGroup
assignment, the Fitter analyzes each byte lane as an independent group driven by a unique output enable.
In this worst-case scenario the three pins are inputs, and the other 27 pins are outputs violating the 20 output
pin limit.

Because DDR2 DQS and DQ pins are always driven in the same direction, the analysis reports an error that
is not applicable to your design. The Output Enable Group assignment designates the DQS and DQ pins
as a single group driven by a common output enable for I/O assignment analysis. When you use the Output
Enable Group logic option assignment, the DQS and DQ pins are checked as all input pins or all output
pins and are not in violation of the I/O rules.

You can also use the Output Enable Group assignment to designate pins that are driven only at certain
times. For example, the data mask signal in DDR2 interfaces is an output signal, but it is driven only when
the DDR2 is writing (bidirectional signals are outputs). To avoid I/O assignment analysis errors, use the
Output Enable Group logic option assignment to assign the data mask to the same value as the DQ and
DQS signals.

You can also use the Output Enable Group to designate VREF input pins that are inactive during the time
the outputs are driving. This assignment removes theVREF input pins from theVREF analysis. For example,
the QVLD signal for an RLDRAM II interface is active only during a read. During a write, the QVLD pin is
not active and does not count as an active VREF input pin in the VREF group. Place the QVLD pins in the
same output enable group as the RLDRAM II data pins.

Related Information
The TimeQuest Timing Analyzer

Understanding I/O Analysis Reports
The detailed I/O assignment analysis reports include the affected pin name and a problem description. The
Fitter section of the Compilation report contains information generated during I/O assignment analysis,
including the following reports:

• I/O Assignment Warnings—lists warnings generated for each pin
• Resource Section—quantifies use of various pin types and I/O banks
• I/O Rules Section—lists summary, details, and matrix information about the I/O rules tested

The Status column indicates whether rules passed, failed, or could not be checked. A severity rating indicates
the rule’s importance for effective analysis. “Inapplicable” rules do not apply to the target device family.

Altera CorporationManaging Device I/O Pins

Send Feedback

4-19Understanding I/O Analysis Reports
QII52013
2013.11.04

http://www.altera.com/literature/hb/qts/qts_qii53018.pdf
mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Managing%20Device%20I/O%20Pins%20(QII52013%202013.11.04)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Figure 4-9: I/O Rules Matrix

Verifying I/O Timing
You must verify board-level signal integrity and I/O timing when assigning I/O pins. High-speed interface
operation requires a quality signal and low propagation delay at the far end of the board route. Click Tools
> TimeQuest Timing Analyzer to confirm timing after making I/O pin assignments. For example, if you
change the slew rates or drive strengths of some I/O pins with ECOs, you can verify timing without
recompiling the design. You must understand I/O timing and what factors affect I/O timing paths in your
design. The accuracy of the output load specification of the output and bidirectional pins affects the I/O
timing results.

The Quartus II software supports three different methods of I/O timing analysis:

Table 4-8: I/O Timing Analysis Methods

DescriptionI/O Timing Analysis

Analyze I/O timing with your board trace model to report accurate, “board-aware”
simulation models. Configures a complete board trace model for each I/O standard
or pin. TimeQuest applies simulation results of the I/O buffer, package, and board
trace model to generate accurate I/O delays and system level signal information. Use
this information to improve timing and signal integrity.

Advanced I/O timing
analysis

Analyze I/O timing with default or specified capacitive load without signal integrity
analysis. TimeQuest reports tCO to an I/O pin using a default or user-specified value
for a capacitive load.

I/O timing analysis

Managing Device I/O PinsAltera Corporation

Send Feedback

QII52013
Verifying I/O Timing4-20 2013.11.04

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Managing%20Device%20I/O%20Pins%20(QII52013%202013.11.04)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

DescriptionI/O Timing Analysis

Use Altera-provided or Quartus II software-generated IBIS or HSPICE I/O models
for simulation in Mentor Graphics HyperLynx and Synopsys HSPICE.

Full board routing
simulation

Advanced I/O timing analysis is supported only for .28nm and larger device families. For devices
that support advanced I/O timing, it is the defaultmethod of I/O timing analysis. For all other devices,

Note:

you must use a default or user-specified capacitive load assignment to determine tCO and power
measurements.

For more information about advanced I/O timing support, refer to the appropriate device handbook for
your target device. For more information about board-level signal integrity and tips on how to improve
signal integrity in your high-speed designs, refer to the Altera Signal Integrity Center page of the Altera
website.

For information about creating IBIS and HSPICE models with the Quartus II software and integrating those
models into HyperLynx and HSPICE simulations, refer to theSignal Integrity Analysis with Third Party Tools
chapter in volume 2 of the Quartus II Handbook.

Related Information

• Literature and Technical Documentation

• Altera Signal Integrity Center

• Signal Integrity Analysis with Third-Party Tools

Running Advanced I/O Timing
Advanced I/O timing analysis uses your board trace model and termination network specification to report
accurate output buffer-to-pin timing estimates, FPGA pin and board trace signal integrity and delay values.
Advanced I/O timing runs automatically for supported devices during compilation.

Understanding the Board Trace Models

The Quartus II software provides board trace model templates for various I/O standards. The following
figure shows the template for a 2.5 V I/O standard. This model consists of near-end and far-end board
component parameters.

Near-end board trace modeling includes the elements which are close to the device. Far-end modeling
includes the elements which are at the receiver end of the link, closer to the receiving device. Board trace
model topology is conceptual and does not necessarily match the actual board trace for every component.
For example, near-endmodel parameters can represent device-end discrete termination and breakout traces.
Far-end modeling can represent the bulk of the board trace to discrete external memory components, and
the far end termination network. You can analyze the same circuit with near-end modeling of the entire
board, including memory component termination, and far-end modeling of the actual memory component.

Altera CorporationManaging Device I/O Pins

Send Feedback

4-21Running Advanced I/O Timing
QII52013
2013.11.04

http://www.altera.com/literature/lit-index.html
http://www.altera.com/technology/signal/sgl-index.html
http://www.altera.com/literature/hb/qts/qts_qii53020.pdf
mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Managing%20Device%20I/O%20Pins%20(QII52013%202013.11.04)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Figure 4-10: 2.5-V I/O Standard Board Trace Model

The following figure shows the template for the LVDS I/O standard. The far-end capacitance (Cf) represents
the external-device or multiple-device capacitive load. If you have multiple devices on the far-end, you must
find the equivalent capacitance at the far-end, taking into account all receiver capacitances. The far-end
capacitance can be the sum of all the receiver capacitances.

TheQuartus II softwaremodels lossless transmission lines, and does not require a transmission-line resistance
value. Only distributed inductance (L) and capacitance (C) values are needed. The distributed L andC values
of transmission lines must be entered on a per-inch basis, and can be obtained from the PCB vendor or
manufacturer, the CAD Design tool, or a signal integrity tool, such as the Mentor Graphics Hyperlynx
software.

Managing Device I/O PinsAltera Corporation

Send Feedback

QII52013
Understanding the Board Trace Models4-22 2013.11.04

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Managing%20Device%20I/O%20Pins%20(QII52013%202013.11.04)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Figure 4-11: LVDS Differential Board Trace Model

Defining the Board Trace Model

The board trace model describes a board trace and termination network as a set of capacitive, resistive, and
inductive parameters. Advanced I/O Timing and the SSN Analyzer use the model to simulate the output
signal from the output buffer to the far end of the board trace. You can define the capacitive load, any
termination components, and trace impedances in the board routing for any output pin or bidirectional pin
in output mode. You can configure an overall board trace model for each I/O standard or for specific pins.
Define an overall board trace model for each I/O standard in your design. Use that model for all pins that
use the I/O standard. You can customize the model for specific pins using the Board Trace Model window
in the Pin Planner.

1. Click Assignments > Device and then click Device and Pin Options.
2. Click Board Trace Model and define board trace model values for each I/O standard.
3. Click I/O Timing and define default I/O timing options at board trace near and far ends.
4. Click Assignments > Pin Planner and assign board trace model values to individual pins.

Example 4-7: Specifying Board Trace Model

setting the near end series resistance model of sel_p output
pin to 25 ohms
set_instance_assignment -name BOARD_MODEL_NEAR_SERIES_R 25 -to
se1_p

Altera CorporationManaging Device I/O Pins

Send Feedback

4-23Defining the Board Trace Model
QII52013
2013.11.04

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Managing%20Device%20I/O%20Pins%20(QII52013%202013.11.04)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Setting the far end capacitance model for sel_p output signal
 to 6 picofarads
set_instance_assignment -name BOARD_MODEL_FAR_C 6P -to se1_p

Related Information

• Using Advanced I/O Timing

• Board Trace Models

Modifying the Board Trace Model

To modify the board trace model, click View > Board TraceModel in the Pin Planner. You can modify any
of the board trace model parameters within a graphical representation of the board trace model.

The Board Trace Model window displays the routing and components for positive and negative signals in
a differential signal pair. Only modify the positive signal of the pair, as the setting automatically applies to
the negative signal. Use standard unit prefixes such as p, n, and k to represent pico, nano, and kilo, respectively.
Use the short or open value to designate a short or open circuit for a parallel component.

Specifying Near-End vs Far-End I/O Timing Analysis

You can select a near-end or far-end point for I/O timing analysis. Near-end timing analysis extends to the
device pin. You can apply the set_output_delay constraint during near end analysis to account for
the delay across the board.

Far-end I/O timing analysis, then advanced I/O timing analysis extends to the external device input, at the
far end of the board trace. Whether you choose a near-end or far-end timing endpoint, the board trace
models are taken into account during timing analysis.

Understanding Advanced I/O Timing Analysis Reports

View I/O timing analysis information in the following reports:

Table 4-9: Advanced I/O Timing Reports

DescriptionI/O Timing Report

Reports signal integrity and board delay data.TimeQuest Report

Summarizes the board trace model component settings for each output and
bidirectional signal.

Board Trace Model
Assignments report

Contains all the signal integrity metrics calculated during advanced I/O timing
analysis based on the board tracemodel settings for each output or bidirectional
pin. Includes measurements at both the FPGA pin and at the far-end load of
board delay, steady state voltages, and rise and fall times.

Signal Integrity Metrics
report

By default, the TimeQuest analyzer generates the Slow-Corner Signal Integrity Metrics report. To
generate a Fast-Corner Signal Integrity Metrics report you must change the delay model by clicking
Tools > TimeQuest Timing Analyzer.

Note:

Managing Device I/O PinsAltera Corporation

Send Feedback

QII52013
Modifying the Board Trace Model4-24 2013.11.04

http://quartushelp.altera.com/current/master.htm
http://quartushelp.altera.com/current/master.htm
mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Managing%20Device%20I/O%20Pins%20(QII52013%202013.11.04)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Related Information
The TimeQuest Timing Analyzer

Adjusting I/O Timing and Power with Capacitive Loading
When calculating tCO and power for output and bidirectional pins, the TimeQuest analyzer and the PowerPlay
Power Analyzer use a bulk capacitive load. You can adjust the value of the capacitive load per I/O standard
to obtain more precise tCO and power measurements, reflecting the behavior of the output or bidirectional
net on your PCB. The Quartus II software ignores capacitive load settings on input pins. You can adjust the
capacitive load settings per I/O standard, in picofarads (pF), for your entire design. During compilation, the
Compiler measures power and tCO measurements based on your settings. You can also adjust the capacitive
load on an individual pin with the Output Pin Load logic option.

Viewing Routing and Timing Delays
Right-click any node and click Locate > Locate in Chip Planner to visualize and adjust I/O timing delays
and routing between user I/O pads and VCC, GND, and VREF pads. The Chip Planner graphically displays
logic placement, LogicLock regions, relative resource usage, detailed routing information, fan-in and fan-
out, register paths, and high-speed transceiver channels. You can view physical timing estimates, routing
congestion, and clock regions. Use the Chip Planner to change connections between resources and make
post-compilation changes to logic cell and I/O atom placement. When you select items in the Pin Planner,
the corresponding item is highlighted in Chip Planner.

Analyzing Simultaneous Switching Noise
Click Processing > Start > Start SSN Analyzer to estimate the voltage noise for each pin in the design. The
simultaneous switching noise (SSN) analysis accounts for the pin placement, I/O standard, board trace,
output enable group, timing constraint, and PCB characteristics that you specify. The analysis produces a
voltage noise estimate for each pin in the design. View the SSN results in the Pin Planner and adjust your
I/O assignments to optimize signal integrity.

Related Information
Simultaneous Switching Noise (SSN) Analysis and Optimization

Scripting API
You can alternatively use Tcl commands to access I/O management functions, rather than using the GUI.
For detailed information about specific scripting command options and Tcl API packages, type the following
command at a system command prompt to view the Tcl API Help browser:

quartus_sh --qhelp

Related Information

• Tcl Scripting

• Command Line Scripting

Altera CorporationManaging Device I/O Pins

Send Feedback

4-25Adjusting I/O Timing and Power with Capacitive Loading
QII52013
2013.11.04

http://www.altera.com/literature/hb/qts/qts_qii53018.pdf
http://www.altera.com/literature/hb/qts/qts_qii52003.pdf
http://www.altera.com/literature/hb/qts/qts_qii52002.pdf
mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Managing%20Device%20I/O%20Pins%20(QII52013%202013.11.04)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Run I/O Assignment Analysis
Enter the following in the Tcl console or a Tcl script:

execute_flow -check_ios

Type the following at a system command prompt:

quartus_fit <project name> --check_ios

Generate Mapped Netlist
Enter the following in the Tcl console or in a Tcl script:

execute_module -tool map

The execute_module command is in the flow package.

Type the following at a system command prompt:

quartus_map <project name>

Reserve Pins
Use the following Tcl command to reserve a pin:

set_instance_assignment -name RESERVE_PIN <value> -to <signal name>

Use one of the following valid reserved pin values:

• "AS BIDIRECTIONAL"

• "AS INPUT TRI STATED"

• "AS OUTPUT DRIVING AN UNSPECIFIED SIGNAL"

• "AS OUTPUT DRIVING GROUND"

• "AS SIGNALPROBE OUTPUT"

You must include the quotation marks when specifying the reserved pin value.Note:

Set Location
Use the following Tcl command to assign a signal to a pin or device location:

set_location_assignment <location> -to <signal name>

Valid locations are pin locations, I/O bank locations, or edge locations. Pin locations include pin names,
such as PIN_A3. I/O bank locations include IOBANK_1 up to IOBANK_ n, where n is the number of I/O
banks in the device.

Managing Device I/O PinsAltera Corporation

Send Feedback

QII52013
Run I/O Assignment Analysis4-26 2013.11.04

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Managing%20Device%20I/O%20Pins%20(QII52013%202013.11.04)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Use one of the following valid edge location values:

• EDGE_BOTTOM

• EDGE_LEFT

• EDGE_TOP

• EDGE_RIGHT

Exclusive I/O Group
Use the following Tcl command to create an exclusive I/O group assignments:

set_instance_assignment -name "EXCLUSIVE_IO_GROUP" -to pin

Slew Rate and Current Strength
Use the following Tcl commands to create an slew rate and drive strength assignments:

set_instance_assignment -name CURRENT_STRENGTH_NEW 8MA -to e[0]
set_instance_assignment -name SLEW_RATE 2 -to e[0]

Related Information
Altera Device Package Information Data Sheet

Document Revision History
The following table shows the revision history for this chapter.

Table 4-10: Document Revision History

ChangesVersionDate

• Reorganization and conversion to DITA.13.1.0November 2013

• Added information about overriding I/O placement rules.13.0.0May 2013

• Updated Pin Planner description for new task and report windows.12.1.0November 2012

• Removed survey link.12.0.0June 2012

• Minor updates and corrections.
• Updated the document template.

11.1.0November 2011

Template update10.0.1December 2010

Altera CorporationManaging Device I/O Pins

Send Feedback

4-27Exclusive I/O Group
QII52013
2013.11.04

http://www.altera.com/literature/ds/dspkg.pdf
mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Managing%20Device%20I/O%20Pins%20(QII52013%202013.11.04)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

ChangesVersionDate

• Reorganized and edited the chapter
• Added links to Quartus II Help for procedural information previously

included in the chapter
• Added information on rulesmarked Inapplicable in the I/ORulesMatrix

Report
• Added information on assigning slew rate and drive strength settings to

pins to fix I/O assignment warnings

10.0.0July 2010

• Reorganized entire chapter to include links to Quartus II help for
procedural information previously included in the chapter

• Added documentation on near-end and far-end advanced I/O timing

9.1.0November 2009

• Updated “Pad View Window” on page 5–20
• Added new figures:
• Figure 5–15
• Figure 5–16
• Added new section “Viewing Simultaneous Switching Noise (SSN)

Results” on page 5–17
• Added new section “Creating Exclusive I/O Group Assignments” on

page 5–18

9.0.0March 2009

Related Information
Quartus II Handbook Archive

Managing Device I/O PinsAltera Corporation

Send Feedback

QII52013
Document Revision History4-28 2013.11.04

http://www.altera.com/literature/lit-qts_archive.jsp
mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Managing%20Device%20I/O%20Pins%20(QII52013%202013.11.04)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

QII52018-12.0.0

© 2012 Altera Corporation. All rights reserved. ALTERA, ARRI
are trademarks of Altera Corporation and registered in the U.S
trademarks or service marks are the property of their respectiv
semiconductor products to current specifications in accordance
services at any time without notice. Altera assumes no respons
described herein except as expressly agreed to in writing by Al
on any published information and before placing orders for pr

Quartus II Handbook Version 13.1
Volume 2: Design Implementation and Optimization
June 2012

June 2012
QII52018-12.0.0
5. Simultaneous Switching Noise (SSN)
Analysis and Optimizations
FPGA design has evolved from small programmable circuits to designs that compete
with multimillion-gate ASICs. At the same time, the I/O counts on FPGAs and logic
density requirements of designs have increased exponentially. The higher-speed
interfaces in FPGAs, including high-speed serial interfaces and memory interfaces,
require careful interface design on the PCB. Designers must address the timing and
signal integrity requirements of these interfaces early in the design cycle.
Simultaneous switching noise (SSN) often leads to the degradation of signal integrity
by causing signal distortion, thereby reducing the noise margin of a system.

Today’s complex FPGA system design is incomplete without addressing the integrity
of signals coming in to and out of the FPGA. Altera recommends that you perform
SSN analysis early in your FPGA design and prior to the layout of your PCB with
complete SSN analysis of your FPGA in the Quartus® II software. This chapter
describes the Quartus II SSN Analyzer tool and covers the following topics:

■ “Definitions”

■ “Understanding SSN” on page 5–2

■ “SSN Estimation Tools” on page 5–5

■ “SSN Analysis Overview” on page 5–5

■ “Optimizing Your Design for SSN Analysis” on page 5–8

■ “Performing SSN Analysis and Viewing Results” on page 5–15

■ “Decreasing Processing Time for SSN Analysis” on page 5–17

Definitions
The terminology used in this chapter includes the following terms:

Aggressor: An output or bidirectional signal that contributes to the noise for a victim
I/O pin

PDN: Power distribution network

QH: Quiet high signal level on a pin

QHN: Quiet high noise on a pin, measured in volts

QL: Quiet low signal level on a pin

QLN: Quiet low noise on a pin, measured in volts

SI: Signal integrity (a superset of SSN, covering all noise sources)

SSN: Simultaneous switching noise
A, CYCLONE, HARDCOPY, MAX, MEGACORE, NIOS, QUARTUS and STRATIX words and logos
. Patent and Trademark Office and in other countries. All other words and logos identified as
e holders as described at www.altera.com/common/legal.html. Altera warrants performance of its
 with Altera's standard warranty, but reserves the right to make changes to any products and
ibility or liability arising out of the application or use of any information, product, or service
tera. Altera customers are advised to obtain the latest version of device specifications before relying
oducts or services.

Feedback SubscribeTwitter

ISO
9001:2008
Registered

https://www.altera.com/servlets/subscriptions/alert?id=QII52018
http://www.altera.com/common/legal.html
http://www.altera.com/support/reliability/certifications/rel-certifications.html
http://www.altera.com/support/reliability/certifications/rel-certifications.html
http://twitter.com/home/?status=Simultaneous+Switching+Noise+(SSN)+Analysis+and+Optimizations+http://www.altera.com/literature/hb/qts/qts_qii52018.pdf?WT.mc_id=gc_so_tw_st_tx_a_011+(via @alteracorp)+%23Altera
mailto:TechDocFeedback@altera.com?subject=Feedback on qts_qii52018-12.0 (QII HB, Vol2, Ch5: SSN Analysis and Optmizations)

5–2 Chapter 5: Simultaneous Switching Noise (SSN) Analysis and Optimizations
Understanding SSN
SSO: Simultaneous switching output (which are either the output or bidirectional
pins)

Victim: An input, output, or bidirectional pin that is analyzed during SSN analysis.
During SSN analysis, each pin is analyzed as a victim. If a pin is an output or
bidirectional pin, the same pin acts as an aggressor signal for other pins.

Understanding SSN
SSN is defined as a noise voltage induced onto a single victim I/O pin on a device due
to the switching behavior of other aggressor I/O pins on the device. SSN can be
divided into two types of noise: voltage noise and timing noise.

Figure 5–1 shows a system with three pins. Two of the pins (A and C) are switching,
while one pin (B) is quiet. If the pins are driven in isolation, the voltage waveforms at
the output of the buffers appear without noise interference, as shown by the solid
curves at the left of the figure. However, when the pins are switched simultaneously,
the noise generated by pins A and C switching is injected onto the other pins,
manifesting itself as a voltage noise on pin B and timing noise on pins A and C, as
shown by the dotted curves in the figure.

Voltage noise is measured as the worst-case change in voltage of a signal due to SSN.
When a signal is QH, it is measured as the change in voltage toward 0 V. When a
signal is QL, it is measured as the change in voltage toward VCC.

In the Quartus II software, only voltage noise is analyzed. Voltage noise can be caused
by SSOs under two worst-case conditions:

■ The victim pin is high and the aggressor pins (SSOs) are switching from low to
high

■ The victim pin is low and the aggressor pins (SSOs) are switching from high to low

Figure 5–1. System with Three Pins
Quartus II Handbook Version 13.1 June 2012 Altera Corporation
Volume 2: Design Implementation and Optimization

Chapter 5: Simultaneous Switching Noise (SSN) Analysis and Optimizations 5–3
Understanding SSN
For outputs, the noise is computed at the far-end receiver for pin B (refer to
Figure 5–2).

For inputs, the noise is computed at the FPGA bumps as shown in for pin D (refer to
Figure 5–3).

SSN can occur in any system, but the induced noise does not always result in failures.
Voltage functional errors are caused by SSN on quiet victim pins only when the
voltage values on the quiet pins change by a large enough voltage that the logic
listening to that signal reads a change in the logic value. For QH signals, a voltage
functional error occurs when noise events cause the voltage to fall below VIH.
Similarly, for QL signals, a voltage functional error occurs when noise events cause
the voltage to rise above VIL (refer to Figure 5–4). Because VIH and VIL are different for

Figure 5–2. Quiet High Output Noise Estimation

Figure 5–3. Quiet Low Input Noise Estimation
June 2012 Altera Corporation Quartus II Handbook Version 13.1
Volume 2: Design Implementation and Optimization

5–4 Chapter 5: Simultaneous Switching Noise (SSN) Analysis and Optimizations
Understanding SSN
different I/O standards, and because signals have different quiet voltage values, the
absolute amount of SSN, measured in volts, cannot be used to determine if a voltage
failure occurs. Instead, to quantify whether an SSN event will cause a voltage error,
the Quartus II software uses the amount of noise as a percent of signal margin when
reporting noise margins in SSN analysis (refer to Figure 5–4).

Figure 5–4 shows four noise events, two on QH signals and two on QL signals. The
two noise events on the right-side of the figure consume 50 percent of the signal
margin and do not cause voltage functional errors. However, the two noise events on
the left side of the figure consume 100 percent of the signal margin and can cause a
voltage functional error.

Figure 5–5 illustrates a synchronous voltage noise event that does not result in a
voltage functional error. Noise or glitches caused by aggressor signals are
synchronously related to the victim pin outside of the sampling window of a receiver.
The noise or glitches affect the switching time of a victim pin, but are not considered
an input threshold violation failure.

For more information about the design factors that affect the noise margins during
SSN analysis in the Quartus II software, refer to “SSN Analysis Overview”.

Figure 5–4. Reporting Noise Margins

Figure 5–5. Synchronous Voltage Noise
Quartus II Handbook Version 13.1 June 2012 Altera Corporation
Volume 2: Design Implementation and Optimization

Chapter 5: Simultaneous Switching Noise (SSN) Analysis and Optimizations 5–5
SSN Estimation Tools
SSN Estimation Tools
Addressing SSN early in your FPGA design and PCB layout can help you avoid costly
board respins and lost time, both of which can impact your time-to-market. Altera
provides many tools for SSN analysis and estimation, including the following tools:

■ SSN characterization reports

■ An early SSN estimation (ESE) tool

■ The SSN Analyzer in the Quartus II software

f For more information about the SSN characterization reports and the ESE tool,
including device support information, refer to the Signal Integrity Center page of the
Altera website.

h For more information about the devices for which you can run the SSN Analyzer, refer
to About the SSN Analyzer in Quartus II Help.

The ESE tool is useful for preliminary SSN analysis of your FPGA design; for more
accurate results, however, you must use the SSN Analyzer in the Quartus II software.
Table 5–1 compares some of the differences between the ESE tool and the SSN
Analyzer.

SSN Analysis Overview
You can run the SSN Analyzer at different stages in your design cycle to obtain SSN
results. The accuracy of the results depends on the completeness of your design
information. Altera recommends that you start SSN analysis early in the design cycle
to obtain preliminary results and make adjustments to your I/O assignments, and
iterate through the design cycle to finally perform a fully constrained SSN analysis
with complete information about your board.

Figure 5–6 shows the flows for both early pin-out and final pin-out SSN analysis. The
early pin-out flow assumes conservative design rules initially, and then lets you
analyze the design and iteratively apply tighter design rules until SSN analysis
indicates your design meets SSN constraints. You must define pass criteria for SSN
analysis as a percentage of signal margin in both the early pin-out flow and the final

Table 5–1. Comparison of ESE Tool and SSN Analyzer Tool

ESE Tool SSN Analyzer

Is not integrated with the Quartus II software.
Integrated with the Quartus II software, allowing you to
perform preliminary SSN analysis while making I/O
assignment changes in the Quartus II software.

QL and QH levels are computed assuming a worst-case
pattern of I/O placements.

QL and QH levels are computed based on the I/O placements
in your design.

No support for entering board information. Supports board trace models and board layer information,
resulting in a more accurate SSN analysis.

No graphical representation. Integrated with the Quartus II Pin Planner, in which an SSN
map shows the QL and QH levels on victim pins.

Good for doing an early SSN estimate. Does not require you
to use the Quartus II software.

Requires you to create a Quartus II software project and
provide the top-level port information.
June 2012 Altera Corporation Quartus II Handbook Version 13.1
Volume 2: Design Implementation and Optimization

http://quartushelp.altera.com/current/master.htm#mergedProjects/optimize/ssn/ssn_about_si_analyzer.htm
http://www.altera.com/technology/signal/sgl-index.html?GSA_pos=1&WT.oss_r=1&WT.oss=signal%20integrity%20resource%20center

5–6 Chapter 5: Simultaneous Switching Noise (SSN) Analysis and Optimizations
SSN Analysis Overview
pin-out flow. The pass criteria you define is specific to your design requirements. For
example, a pass criterion you might define is a condition that verifies you have
sufficient SSN margins in your design. You may require that the acceptable voltage
noise on a pin must be below 70% of the voltage level for that pin. The pass criteria for
the early-pin out flow may be higher than the final pin-out flow criteria, so that you
do not spend too much time optimizing the on-FPGA portions of your design when
the SSN metrics for the design may improve after the design is fully specified.

Performing Early Pin-Out SSN Analysis
In the early stages of your design cycle, before you create pin location for your design,
use the early pin-out flow (refer to Figure 5–6) to obtain preliminary SSN analysis
results. In order to obtain useful SSN results, you must define the top-level ports of
your design, but your design files do not have to be complete.

Performing Early Pin-Out SSN Analysis with the ESE Tool
If you know the I/O standards and signaling standards for your design, you can use
the ESE tool to perform an initial SSN evaluation.

f For more information about the ESE tool, refer to the Signal Integrity Center page of
the Altera website.

Figure 5–6. Pin-Out Analysis (1)

Note to Figure 5–6:

(1) Pass criteria determined by customer requirements.

Create Quartus Project
Add # of I/Os & settings

Define avg breakout depth

Constrain signal via
breakout layers

Constrain pin placement
Define pass criteria

Early < 80%; Final < 50% (1)

Adjust I/O settings
(Drive strength, slew rate

Run Quartus II &
SSN Analyzer

Run Quartus II &
SSN Analyzer

Design PCB & Extract
board parameters

Run Quartus II &
SSN Analyzer

Start

Done

Design is unlikely to
pass final SSN Analysis

No

Yes

No

No

Can we further
constrain PCB?

Yes

Yes

No
Noise < early pass?

Noise < final pass?

Decrease early pass
criteria

Yes

Timing margin available?

Done

No

Yes
Noise < final pass?

Manual optimization

Early pin-out flow Final pin-out flow
Quartus II Handbook Version 13.1 June 2012 Altera Corporation
Volume 2: Design Implementation and Optimization

http://www.altera.com/technology/signal/sgl-index.html?GSA_pos=1&WT.oss_r=1&WT.oss=signal%20integrity%20resource%20center

Chapter 5: Simultaneous Switching Noise (SSN) Analysis and Optimizations 5–7
SSN Analysis Overview
Performing Early Pin-Out SSN Analysis with the SSN Analyzer
If you have complete information for the top-level ports of your design, you can use
the SSN Analyzer to perform an initial SSN evaluation. Use the following steps to
perform early pin-out SSN analysis:

1. Create a project in the Quartus II software.

2. Specify your top-level design information either in schematic form or in HDL
code.

3. Perform Analysis and Synthesis.

4. Create I/O assignments, such as I/O standard assignments, for the top-level ports
in your design.

1 Do not create pin location assignments. The Fitter automatically creates
optimized pin location assignments.

5. If you do not have completed design files and timing constraints, run I/O
assignment analysis.

1 During I/O assignment analysis, the Fitter places all the unplaced pins on
the device, and checks all the I/O placement rules.

6. Run the SSN Analyzer.

f For more information about creating and managing projects, refer to the Managing
Quartus II Projects chapter in volume 2 of the Quartus II Handbook. For more about
generating a top-level design file in the Quartus II software and I/O assignment
analysis, refer to the I/O Management chapter in volume 2 of the Quartus II Handbook.

In the early stages of your design cycle, you may not have complete board
information, such as board trace parameters, layer information, and the signal
breakout layers. If you run the SSN Analyzer without this specific information, it uses
default board trace models and board layer information for SSN analysis, and as a
result the SSN Analyzer confidence level is low. If the noise amounts are larger than
the pass criteria for early pin-out SSN analysis, verify whether the SSN noise
violations are true failures or false failures. For example, sometimes the SSN Analyzer
can determine whether pins are switching synchronously and use that information to
filter false positives; however, it may not be able to determine all the synchronous
groups. You can improve the SSN analysis results by adjusting your I/O assignments
and other design settings. After you optimize your design such that it meets the pass
criteria for the early pin-out flow, you can then begin to design your PCB.

For more information, refer to “Optimizing Your Design for SSN Analysis”.
June 2012 Altera Corporation Quartus II Handbook Version 13.1
Volume 2: Design Implementation and Optimization

http://www.altera.com/literature/hb/qts/qts_qii52013.pdf
http://www.altera.com/literature/hb/qts/qts_qii52012.pdf
http://www.altera.com/literature/hb/qts/qts_qii52012.pdf

5–8 Chapter 5: Simultaneous Switching Noise (SSN) Analysis and Optimizations
Design Factors Affecting SSN Results
Performing Final Pin-Out SSN Analysis
You perform final pin-out SSN analysis after you place all the pins in your design, or
the Fitter places them for you, and you have complete information about the board
trace models and PCB layers. Even if your design achieves sufficient SSN results
during early pin-out SSN analysis, you should run SSN analysis with the complete
PCB information to ensure that SSN does not cause failures in your final design.You
must specify the board parameters in the Quartus II software, including the PCB layer
thicknesses, the signal breakout layers, and the board trace models, before you can
run SSN analysis on your final assignments.

For more information, refer to “Optimizing Your Design for SSN Analysis”.

If the SSN analysis results meet the pass criteria for final pin-out SSN analysis, SSN
analysis is complete. If the SSN analysis results do not meet the pass criteria, you must
further optimize your design by changing the board and design parameters and then
rerun the SSN Analyzer. If the design still does not meet the pass criteria, reduce the
pass criteria for early pin-out SSN analysis, and restart the process. By reducing the
pass criteria for early pin-out SSN analysis, you place a greater emphasis on reducing
SSN through I/O settings and I/O placement. Changing the drive strength and slew
rate of output and bidirectional pins, as well as adjusting the placement of different
SSOs, can affect SSN results. Adjusting I/O settings and placement allows the design
to meet the pass criteria for final pin-out SSN analysis after you specify the actual PCB
board parameters.

Design Factors Affecting SSN Results
There are many factors that affect the SSN levels in your design. The two main factors
are the drive strength and slew rate settings of the output and bidirectional pins in
your design.

f For more information about the factors that contribute to SSN voltage noise in your
FPGA design and managing SSN in your system, refer to AN 472: Stratix II GX SSN
Design Guidelines, AN 508: Cyclone III Simultaneous Switching Noise (SSN) Design
Guidelines, and the Signal Integrity Center page of the Altera website.

Optimizing Your Design for SSN Analysis
The SSN Analyzer gives you flexibility to precisely define your system to obtain
accurate SSN results. The SSN Analyzer produces a voltage noise estimate for each
input, output, and bidirectional pin in the design. It allows you to estimate the SSN
levels, comprised of QLN and QHN levels, for your FPGA pins. Performing SSN
analysis helps you optimize your design for SSN during compilation.

Because the SSN Analyzer is integrated into the Quartus II software, it can
automatically set up a system topology that matches your design. The SSN Analyzer
accounts for different I/O standards and slew rate settings for each buffer in the
design and models different board traces for each signal. Also, it correctly models the
state of the unused pins in the design. The SSN Analyzer leverages any custom board
trace assignments you set up for use by the advanced I/O timing feature.
Quartus II Handbook Version 13.1 June 2012 Altera Corporation
Volume 2: Design Implementation and Optimization

http://www.altera.com/literature/an/AN472.pdf
http://www.altera.com/literature/an/AN472.pdf
http://www.altera.com/literature/an/AN508.pdf
http://www.altera.com/literature/an/AN508.pdf
http://www.altera.com/technology/signal/sgl-index.html?GSA_pos=1&WT.oss_r=1&WT.oss=signal%20integrity%20resource%20center

Chapter 5: Simultaneous Switching Noise (SSN) Analysis and Optimizations 5–9
Optimizing Your Design for SSN Analysis
The SSN Analyzer also models the package and vias in the design. Models for the
different packages that Altera devices support are integrated into the Quartus II
software. In the Quartus II software, you can specify different layers on which signals
break out, each with its own thickness, and then specify which signal breaks out on
which layer.

Figure 5–7 shows the circuit topology the SSN Analyzer automatically constructs.
After constructing the circuit topology, the SSN Analyzer uses a simulation-based
methodology to determine the SSN for each victim pin in the design.

Optimizing Pin Placements for Signal Integrity
You can take advantage of a built-in SSN optimization feature in the Quartus II
software with the SSN Optimization logic option.

The I/O placements in your design may be affected when you use this option. Setting
this option to Normal compilation does not affect the fMAX of your design during
compilation, however setting this option to Extra effort level may impact your design
fMAX.

1 In order to use the SSN Optimization logic option, Altera recommends that you do
not create location assignments for your pins; instead, let the Fitter place the pins
during compilation so that it places the pins to meet the timing performance of your
design. To display the Fitter-placed pins use the Show Fitter Placements feature in the
Pin Planner. To accept these suggested pin locations, you must back-annotate your pin
assignments.

Figure 5–7. Circuit Topology for SSN Analysis
June 2012 Altera Corporation Quartus II Handbook Version 13.1
Volume 2: Design Implementation and Optimization

5–10 Chapter 5: Simultaneous Switching Noise (SSN) Analysis and Optimizations
Optimizing Your Design for SSN Analysis
Figure 5–8 shows the results of turning on the SSN Optimization logic option for a
design. The image on the left shows the placement of the pins without the SSN
Optimization logic option, and the image on the right shows the adjustments the
Fitter made to pin placements to reduce the amount of SSN in the design when the
SSN Optimization logic option is turned on.

h For more information about creating project-wide logic option assignments, refer to
Setting Up and Running the Fitter in Quartus II Help. For more information about the
Show Fitter Placements feature, refer to Show Commands in Quartus II Help. For more
information about back-annotating assignments, refer to Back-Annotating Assignments
for A Project in Quartus II Help.

f For more information about design optimization features, refer to the Area, Timing,
and Compilation Time Optimization section in volume 2 of the Quartus II Handbook.

Specifying Board Trace Model Settings
The SSN Analyzer uses circuit models to determine voltage noise during SSN
analysis. The circuit topology (refer to Figure 5–7) is incomplete without board trace
information and PCB layer information. You must describe the board trace and PCB
layer parameters in your design to accurately compute the SSN in your FPGA device.
However, if you do not specify some or all of the board trace parameters and PCB
layer information, the SSN Analyzer uses default parameters during SSN analysis.
When you use the default parameters, the SSN confidence level is low.

For more information about the default parameters used by the SSN Analyzer and
SSN confidence levels, refer to “Confidence Metric Details Report” on page 5–16.

The board trace models required for the SSN Analyzer include the board trace
termination resistors, pin loads (capacitance), and transmission line parameters. You
can define the board circuit models, which are also known as board trace models, in
the Quartus II software. The board trace model settings are shared with the models
used during advanced I/O timing.

f For more information about defining board trace models and advanced I/O timing,
refer to the I/O Management chapter in volume 2 of the Quartus II Handbook.

Figure 5–8. SSN Analysis Results Before and After Using the SSN Optimization Logic Option
Quartus II Handbook Version 13.1 June 2012 Altera Corporation
Volume 2: Design Implementation and Optimization

http://www.altera.com/literature/hb/qts/qts_qii52013.pdf
http://quartushelp.altera.com/current/master.htm#mergedProjects/comp/comp/comp_pro_set_fitting.htm
http://quartushelp.altera.com/current/master.htm#mergedProjects/assign/asd/asd_com_show.htm
http://quartushelp.altera.com/current/master.htm#mergedProjects/assign/asd/asd_pro_back_annotate.htm
http://quartushelp.altera.com/current/master.htm#mergedProjects/assign/asd/asd_pro_back_annotate.htm
http://www.altera.com/literature/hb/qts/qts_qii5v2_03.pdf
http://www.altera.com/literature/hb/qts/qts_qii5v2_03.pdf

Chapter 5: Simultaneous Switching Noise (SSN) Analysis and Optimizations 5–11
Optimizing Your Design for SSN Analysis
You can define an overall board trace model for each I/O standard in your design; this
overall board trace model is the default model for all pins that use a particular I/O
standard. After configuring the overall board trace model, you can customize the
model for specific pins. The parameters you specify for the board trace model are also
used in during advanced I/O timing analysis with the TimeQuest Timing Analyzer. If
you already specified the board trace models as part of your advanced I/O timing
assignments, the same parameters are used during SSN analysis.

h For more information about defining a board trace model for your entire design, refer
to Using Advanced I/O Timing in Quartus II Help. For more information about
configuring component values for a board trace model, including a complete list of
the supported unit prefixes and setting the values with Tcl scripts, refer to Board Trace
Model in Quartus II Help.

All the assignments for board trace models you specify are saved to the .qsf. You can
also use Tcl commands to create board trace model assignments. Example 5–1 shows
Tcl commands for specifying transmission line parameters.

The best way to calculate transmission line parameters is to use a two-dimensional
solver to estimate the inductance per inch and capacitance per inch for the
transmission line. The termination resistor topology information can be obtained from
the PCB schematics. The near-end and far-end pin load (capacitance) values can be
obtained from the PCB schematic and other device data sheets. For example, if you
know that an FPGA pin is driving a DIMM, you can obtain the far-end loading
information in the data sheet for your target device.

f For more information, refer to the Device Family Data Sheet in the appropriate device
handbook available on the Literature and Technical Documentation page of the Altera
website.

Defining PCB Layers and PCB Layer Thickness
Every PCB is fabricated using a number of layers. To remove some of the pessimism
from your SSN results, Altera recommends that you create assignments describing
your PCB layers in the Quartus II software. You can specify the number of layers on
you PCB, and their thickness. The PCB layer information is used only during SSN
analysis and is not used in other processes run by the Quartus II software. If a custom
PCB breakout region is not described you can select the default thickness, which
directs the SSN Analyzer to use a single-layer PCB breakout region during SSN
analysis.

h For more information about specifying PCB layer information, refer to Running the
SSN Analyzer in Quartus II Help.

Example 5–1. Specifying Board Trace Models

set_instance_assignment -name BOARD_MODEL_TLINE_L_PER_LENGTH "3.041E-7" -to e[0]
set_instance_assignment -name BOARD_MODEL_TLINE_LENGTH 0.1391 -to e[0]
set_instance_assignment -name BOARD_MODEL_TLINE_C_PER_LENGTH "1.463E-10" -to e[0]
June 2012 Altera Corporation Quartus II Handbook Version 13.1
Volume 2: Design Implementation and Optimization

http://quartushelp.altera.com/current/master.htm#mergedProjects/optimize/ssn/ssn_proc_running_sia.htm
http://quartushelp.altera.com/current/master.htm#mergedProjects/optimize/ssn/ssn_proc_running_sia.htm
http://www.altera.com/literature/lit-index.html
http://quartushelp.altera.com/current/master.htm#mergedProjects/optimize/ssn/ssn_pro_using_adv_io_analysis.htm
http://quartushelp.altera.com/current/master.htm#mergedProjects/optimize/ssn/ssn_ref_board_trace_model.htm
http://quartushelp.altera.com/current/master.htm#mergedProjects/optimize/ssn/ssn_ref_board_trace_model.htm

5–12 Chapter 5: Simultaneous Switching Noise (SSN) Analysis and Optimizations
Optimizing Your Design for SSN Analysis
All the assignments you create for the PCB layers are saved to the .qsf. You can also
use Tcl commands to create PCB layer assignments. You can create any number of
PCB layers, however, the layers must be consecutive. Example 5–2 shows Tcl
commands for specifying PCB layer assignments.

Figure 5–9 shows the layout cross-section of a PCB in the Cadence Allegro PCB tool.
The cross-section shows the stackup information of a PCB, which tells you the
number of layers used in your PCB. The PCB shown in this example consists of
various signal and circuit layers on which FPGA pins are routed, as well as the power
and ground layers.

In this example, each of the four signal layers are a different thickness, with the depths
shown in the Thickness (MIL) column. The layer thickness for each signal layer is
computed as follows:

■ Signal Layer 1 is the L4-SIGNAL, at thickness (1.9+3.6+1.2+3+1.2+4=) 14.9 mils

■ Signal Layer 2 is the L5-SIGNAL, at thickness (0.6+6=) 6.6 mils

■ Signal Layer 3 is the L8-SIGNAL, at thickness (0.6+4+1.2+3+1.2+4=) 14 mils

■ Signal Layer 4 is the L9-SIGNAL, at thickness (0.6+6=) 6.6 mils

Example 5–2. Specifying PCB Layer Assignments

set_global_assignment -name PCB_LAYER_THICKNESS 0.00099822M -section_id 1
set_global_assignment -name PCB_LAYER_THICKNESS 0.00034036M -section_id 2
set_global_assignment -name PCB_LAYER_THICKNESS 0.00034036M -section_id 3

Figure 5–9. Snapshot of Stackup of a PCB Shown in the Allegro Board Design Environment
Quartus II Handbook Version 13.1 June 2012 Altera Corporation
Volume 2: Design Implementation and Optimization

Chapter 5: Simultaneous Switching Noise (SSN) Analysis and Optimizations 5–13
Optimizing Your Design for SSN Analysis
Figure 5–10 shows the results in the Quartus II software after you enter these PCB
signal layers and thickness assignments.

Specifying Signal Breakout Layers
Each user I/O pin in your FPGA device can break out at different layers on your PCB.
In the Pin Planner, you can specify on which layers the I/O pins in your design break
out. The breakout layer information is used only during SSN analysis and is not used
in other processes run by the Quartus II software. To assign a pin to PCB layer, follow
these steps:

1. On the Assignments menu, click Pin Planner.

2. If necessary, perform Analysis & Elaboration, Analysis & Synthesis, or fully
compile the design to populate the Pin Planner with the node names in the design.

3. Right-click anywhere in the All Pins or Groups list, and then click Customize
Columns.

4. Select the PCB layer column and move it from the Available columns list to the
Show these columns in this order list.

5. Click OK.

6. In the PCB layer column, specify the PCB layer to which you want to connect the
signal.

7. On the File menu, click Save Project to save the changes.

1 When you create PCB breakout layer assignments in the Pin Planner, you can assign
the pin to any layer, even if you did not yet define the PCB layer.

Figure 5–10. PCB Layers Specified in the Quartus II Software
June 2012 Altera Corporation Quartus II Handbook Version 13.1
Volume 2: Design Implementation and Optimization

5–14 Chapter 5: Simultaneous Switching Noise (SSN) Analysis and Optimizations
Optimizing Your Design for SSN Analysis
Creating I/O Assignments
I/O assignments are required in FPGA design and are also used during SSN analysis
to estimate voltage noise. Each input, output, or bidirectional signal in your design is
assigned a physical pin location on the device using pin location assignments. Each
signal has a physical I/O buffer that has a specific I/O standard, pin location, drive
strength, and slew rate. The SSN Analyzer supports most I/O standards in a device
family, such as the LVTTL and LVCMOS I/O standards.

1 The SSN Analyzer does not support differential I/O standards, such as the LVDS I/O
standard and its variations, because differential I/O standards contribute a small
amount of SSN.

f For more information about supported I/O standards, refer to the appropriate device
handbook available on the Literature and Technical Documentation page of the Altera
website.

f For more information about creating and managing I/O assignments, refer to the I/O
Management chapter in volume 2 of the Quartus II Handbook.

Decreasing Pessimism in SSN Analysis
In the absence of specific timing information, the SSN Analyzer analyzes your design
under worst-case conditions. Worst-case conditions include all pins acting as
aggressor signals on all possible victim pins and all aggressor pins switching with the
worst possible timing relationship. The results of SSN analysis under worst-case
conditions are very pessimistic. You can improve the results of SSN Analysis by
creating group assignments for specific types of pins. Use the following group
assignments to decrease the pessimism in SSN analysis results:

■ Assign pins to an output enable group—All pins in an output enable group must
be either all input pins or all output pins. If all the pins in a group are always either
all inputs or all outputs, it is impossible for an output pin in the group to cause
SSN noise on an input pin in the group. You can assign pins to an output enable
group with the Output Enable Group logic option.

■ Assign pins to a synchronous group—I/O pins that are part of a synchronous
group (signals that switch at the same time) may cause SSN, but do not result in
any failures because the noise glitch occurs during the switching period of the
signal. The noise, therefore, does not occur in the sampling window of that signal.
You can assign pins to an output enable group with the Synchronous Group logic
option. For example, in your design you have a bus with 32 pins that all belong to
the same group. In a real operation, the bus switches at the same time, so any
voltage noise induced by a pin on its groupmates does not matter, because it does
not fall in the sampling window. If you do not assign the bus to a synchronous
group, the other 31 pins can act as aggressors for the first pin in that group, leading
to higher QL and QH noise levels during SSN analysis.

In some cases, the SSN Analyzer can detect the grouping for bidirectional pins by
looking at the output enable signal of the bidirectional pins. However, Altera
recommends that you explicitly specify the bidirectional groups and output groups in
your design.
Quartus II Handbook Version 13.1 June 2012 Altera Corporation
Volume 2: Design Implementation and Optimization

http://www.altera.com/literature/lit-index.html
http://www.altera.com/literature/hb/qts/qts_qii52013.pdf
http://www.altera.com/literature/hb/qts/qts_qii52013.pdf

Chapter 5: Simultaneous Switching Noise (SSN) Analysis and Optimizations 5–15
Performing SSN Analysis and Viewing Results
h For more information about creating logic option assignments, refer to Assigning
Device I/O Pins in Quartus II Help.

Excluding Pins as Aggressor Signals
The SSN Analyzer uses the following conditions to exclude pins as aggressor signals
for a specific victim pin:

■ A pin that is a complement of the victim pin. For example, any pin that is assigned
a differential I/O standard cannot be an aggressor pin.

■ A programming pin or JTAG pin because these pins are not active in user mode.

■ Pins that have the same output enable signal as a bidirectional victim pin that the
SSN Analyzer analyzes as an input pin. Pins with the same output enable signal
also act as input pins and therefore cannot be aggressor pins at the same time. For
information about grouping bidirectional pins, refer to “Performing SSN Analysis
and Viewing Results”.

■ Pins in the same synchronous group as a victim output pin. For information about
grouping output pins, refer to “Performing SSN Analysis and Viewing Results”.

■ A pin assigned the I/O Maximum Toggle Rate logic option with a frequency
setting of zero. The SSN Analyzer does not consider pins with this setting as
aggressor pins.

h For more information about creating pin assignments with the Pin Planner, refer to
Assigning Device I/O Pins in Quartus II Help.

Performing SSN Analysis and Viewing Results
You can perform SSN analysis either on your entire design, or you can limit the
analysis to specific I/O banks.

If you know the problem area for SSN is within one I/O bank and you are changing
pin assignments only in that bank, you can run SSN analysis for just that one I/O
bank to reduce analysis time.

h For more information, refer to Running the SSN Analyzer in Quartus II Help.

f For more information about I/O bank numbering, refer to the appropriate device
handbook available on the Literature and Technical Documentation page of the Altera
website.

Understanding the SSN Reports
When SSN analysis is complete, you can view detailed analysis reports. The detailed
messages in the reports help you understand and resolve SSN problems.

The SSN Analyzer section of the Compilation report contains information generated
during SSN analysis, including the following reports:

■ Summary

■ Output Pins
June 2012 Altera Corporation Quartus II Handbook Version 13.1
Volume 2: Design Implementation and Optimization

http://quartushelp.altera.com/current/master.htm#mergedProjects/optimize/ssn/ssn_proc_running_sia.htm
http://www.altera.com/literature/lit-index.html
http://quartushelp.altera.com/current/master.htm#mergedProjects/assign/ase/ase_pro_assigning_pins.htm
http://quartushelp.altera.com/current/master.htm#mergedProjects/assign/ase/ase_pro_assigning_pins.htm
http://quartushelp.altera.com/current/master.htm#mergedProjects/assign/ase/ase_pro_assigning_pins.htm

5–16 Chapter 5: Simultaneous Switching Noise (SSN) Analysis and Optimizations
Performing SSN Analysis and Viewing Results
■ Input Pins

■ Unanalyzed Pins

■ Confidence Metric Details

Summary Report
The Summary report summarizes the SSN Analyzer status and rates the SSN
Analyzer confidence level as low, medium, or high. The confidence level depends on
the completeness of your board trace model assignments. The more assignments you
complete, the higher the confidence level. However, the confidence level does not
always contribute to the accuracy of the QL and QH noise levels on a victim pin. The
accuracy of QH and QL noise levels depends the accuracy of your board trace model
assignments.

Output Pins and Input Pins Reports
The Output Pins report lists all of the output pins and bidirectional pins that are
treated as output pins during SSN analysis. The Input Pins report lists all of the input
pins and bidirectional pins that are treated as inputs during SSN analysis. Both
reports list the location assignments for the pins treated as SSN outputs or inputs
during SSN analysis, the QL and QH noise in volts, and what percentage the QL and
QH margins are for the I/O standard used for that signal. The QH and QL noise
margins that fall in the critical range (> 90%) are shown in red. The QH and QL noise
margins that fall in the range of 70% to 90% are shown in gray.

Unanalyzed Pins Report
Not all pins are analyzed for SSN analysis. The following pins are not analyzed and
are reported in the Unanalyzed Pins report:

■ Pins assigned the LVDS I/O standard or any LVDS variations, such as the
mini-LVDS I/O standard

■ Pins created in the migration flow that cover power and supply pins in other
packages

■ The negative terminals of pseudo-differential I/O standards; the noise on
differential standards is reported as the differential noise and is reported on the
positive terminal

Confidence Metric Details Report
The Confidence Metric Details Report lists the values used during SSN Analysis for
unspecified I/O, board, and PCB assignments.

Viewing SSN Analysis Results in the Pin Planner
After SSN analysis completes, you can analyze the results in the Pin Planner. In the
Pin Planner you can identify the SSN hotspots in your device, as well as the QL and
QH noise levels. The QL and QH results for each pin are displayed with a different
color that represents whether the pin is below the warning threshold, below the
critical threshold, or above the critical threshold. This color representation is also
referred to as the SSN map of your FPGA device.
Quartus II Handbook Version 13.1 June 2012 Altera Corporation
Volume 2: Design Implementation and Optimization

Chapter 5: Simultaneous Switching Noise (SSN) Analysis and Optimizations 5–17
Decreasing Processing Time for SSN Analysis
When you view the SSN map, you can customize which details to display, including
input pins, output pins, QH signals, QL signals, and noise levels. You can also adjust
the threshold levels for QH and QL noise voltages. Adjusting the threshold levels in
the Pin Planner does not change the threshold levels reported during SSN analysis
and does not change the data in any of the SSN reports.

You can also you change I/O assignments and board trace information and rerun the
SSN Analyzer to view the SSN analysis results based on those modified settings.

h For more information, refer to Show SSN Analyzer Results and Running the SSN
Analyzer in Quartus II Help.

Decreasing Processing Time for SSN Analysis
FPGA designs are getting larger in density, logic, and I/O count. The time it takes to
complete SSN analysis and other Quartus II software processes affects your
development time. Faster processing times can reduce your design cycle time. Use the
following guidelines to reduce processing time:

■ Direct the Quartus II software to use more than one processor for parallel
executables, including the SSN Analyzer

■ Perform SSN analysis after I/O assignment analysis if your design files and
constraints are complete, and you are interested in generating the SSN results
early in the design process and want to adjust I/O placements to see if you can
obtain better results

■ Perform SSN analysis after fitting if you want to view preliminary SSN results that
do not take into account complete I/O assignment and I/O timing results

■ Perform engineering change orders (ECOs) on your design, rather than
recompiling the entire design, if you want to rerun SSN analysis after changing
I/O assignments

h For more information about using parallel processors, refer to Setting Up and Running
Analysis and Synthesis and Compilation Process Settings Page in Quartus II Help. For
more information about performing I/O assignment analysis, refer to Assigning
Device I/O Pins in Quartus II Help. For more information about running the Fitter,
refer to Setting Up and Running the Fitter in Quartus II Help.

f For more information about performing ECOs on your design, refer to the Engineering
Change Management with the Chip Planner chapter in volume 2 of the Quartus II
Handbook.

Scripting Support
A Tcl script allows you to run procedures and determine settings described in this
chapter. You can also run some of these procedures at a command prompt. The
Quartus II software provides several packages to compile your design and create I/O
assignments for analysis and fitting. You can create a custom Tcl script that maps the
design and runs SSN analysis on your design.
June 2012 Altera Corporation Quartus II Handbook Version 13.1
Volume 2: Design Implementation and Optimization

http://quartushelp.altera.com/current/master.htm#mergedProjects/optimize/ssn/ssn_proc_running_sia.htm
http://quartushelp.altera.com/current/master.htm#mergedProjects/optimize/ssn/ssn_proc_running_sia.htm
http://quartushelp.altera.com/current/master.htm#mergedProjects/assign/asd/asd_com_show_ssn_results.htm
http://quartushelp.altera.com/current/master.htm#mergedProjects/comp/comp/comp_pro_set_synthesis.htm
http://quartushelp.altera.com/current/master.htm#mergedProjects/comp/comp/comp_pro_set_synthesis.htm
http://quartushelp.altera.com/current/master.htm#mergedProjects/comp/comp/comp_tab_mode.htm
http://quartushelp.altera.com/current/master.htm#mergedProjects/assign/ase/ase_pro_assigning_pins.htm
http://quartushelp.altera.com/current/master.htm#mergedProjects/assign/ase/ase_pro_assigning_pins.htm
http://quartushelp.altera.com/current/master.htm#mergedProjects/comp/comp/comp_pro_set_fitting.htm
http://www.altera.com/literature/hb/qts/qts_qii52017.pdf
http://www.altera.com/literature/hb/qts/qts_qii52017.pdf

5–18 Chapter 5: Simultaneous Switching Noise (SSN) Analysis and Optimizations
Scripting Support
For detailed information about specific scripting command options and Tcl API
packages, type the following command at a system command prompt to run the
Quartus II Command-Line and Tcl API Help browser:

quartus_sh --qhelp r

f For more information about Quartus II scripting support, including examples, refer to
the Tcl Scripting and Command-Line Scripting chapters in volume 2 of the Quartus II
Handbook and API Functions for Tcl in Quartus II Help.

Optimizing Pin Placements for Signal Integrity
You can create an assignment that directs the Fitter to optimize pin placements for
signal integrity with a Tcl command.

The following Tcl command directs the Fitter to optimize pin placement for signal
integrity without affecting design fMAX:

set_global_assignment -name OPTIMIZE_SIGNAL_INTEGRITY "Normal
Compilation"

For more information, refer to “Optimizing Pin Placements for Signal Integrity” on
page 5–9.

Defining PCB Layers and PCB Layer Thickness
You can create PCB layer and thickness assignments with a Tcl command. shows Tcl
commands for specifying PCB layer assignments.

These Tcl commands specify that there are seven PCB layers in the design, each with a
different thickness. In each assignment, the letter M indicates the unit of measurement
is millimeters. When you specify PCB layer assignments with Tcl commands, you
must list the layers in consecutive order. For example, you would receive an error
during SSN Analysis if your Tcl commands created the following assignments:

set_global_assignment -name PCB_LAYER_THICKNESS 0.00099822M -section_id 1
set_global_assignment -name PCB_LAYER_THICKNESS 0.00082042M -section_id 7

To create assignments with the unit of measurement in mils, refer to the syntax in the
following Tcl commands. These Tcl commands specify the same settings as shown in
Figure 5–10 on page 5–13.

set_global_assignment -name PCB_LAYER_THICKNESS 14.9MIL -section_id 1
set_global_assignment -name PCB_LAYER_THICKNESS 6.6MIL -section_id 2
set_global_assignment -name PCB_LAYER_THICKNESS 14MIL -section_id 3
set_global_assignment -name PCB_LAYER_THICKNESS 6.6MIL -section_id 4

Example 5–3. Specifying PCB Layer Assignments

set_global_assignment -name PCB_LAYER_THICKNESS 0.00099822M -section_id 1
set_global_assignment -name PCB_LAYER_THICKNESS 0.00034036M -section_id 2
set_global_assignment -name PCB_LAYER_THICKNESS 0.00034036M -section_id 3
set_global_assignment -name PCB_LAYER_THICKNESS 0.00055372M -section_id 4
set_global_assignment -name PCB_LAYER_THICKNESS 0.00034036M -section_id 5
set_global_assignment -name PCB_LAYER_THICKNESS 0.00034036M -section_id 6
set_global_assignment -name PCB_LAYER_THICKNESS 0.00082042M -section_id 7
Quartus II Handbook Version 13.1 June 2012 Altera Corporation
Volume 2: Design Implementation and Optimization

http://www.altera.com/literature/hb/qts/qts_qii52003.pdf
http://www.altera.com/literature/hb/qts/qts_qii52002.pdf
http://quartushelp.altera.com/current/master.htm#mergedProjects/tafs/tafs/tcl_list_of_packages.htm

Chapter 5: Simultaneous Switching Noise (SSN) Analysis and Optimizations 5–19
Scripting Support
For more information, refer to “Defining PCB Layers and PCB Layer Thickness” on
page 5–11.

Specifying Signal Breakout Layers
You can create signal breakout layer assignments with a Tcl command. Example 5–4
shows Tcl commands for specifying signal breakout layer assignments:

When you create PCB breakout layer assignments with Tcl commands, if you do not
specify a PCB layer, or if you specify a PCB layer that does not exist, the SSN Analyzer
breaks out the signal at the bottommost PCB layer.

1 If you create a PCB layer breakout assignment to a layer that does not exist, the SSN
Analyzer will generate a warning message.

For more information, refer to “Specifying Signal Breakout Layers” on page 5–13.

Decreasing Pessimism in SSN Analysis
You can create output enable group and synchronous group assignments to help
decrease pessimism during SSN Analysis with a Tcl command.

The following Tcl command assigns the bidirectional bus DATAINOUT to an output
enable group:

set_instance_assignment -name OUTPUT_ENABLE_GROUP 1 -to DATAINOUT

The following Tcl command assigns the bus PCI_ADD_io to a synchronous group:

set_instance_assignment -name SYNCHRONOUS_GROUP 1 -to PCI_AD_io

For more information, refer to “Decreasing Pessimism in SSN Analysis” on page 5–14.

Performing SSN Analysis
You can perform SSN analysis with a command-line command. Use the quartus_si
package that is provided with the Quartus II software.

Type the following command at a system command prompt to start the SSN
Analyzer:

quartus_si <project name> r
To analyze just one I/O bank, type the following command at a system command
prompt:

quartus_si <project revision> <--bank = bank id> r

For example, to run analyze the I/O bank 2A type the following command:

quartus_si counter --bank=2A r

Example 5–4. Specifying Signal Breakout Layer Assignments

set_instance_assignment -name PCB_LAYER 10 -to e[2]
set_instance_assignment -name PCB_LAYER 3 -to e[3]
June 2012 Altera Corporation Quartus II Handbook Version 13.1
Volume 2: Design Implementation and Optimization

5–20 Chapter 5: Simultaneous Switching Noise (SSN) Analysis and Optimizations
Conclusion
For more information, refer to “Performing SSN Analysis and Viewing Results” on
page 5–15.

f For more information about the quartus_si package, type quartus_si -h at a system
command prompt.

Conclusion
To assist you with SSN Analysis, you can use the fast and accurate SSN Analyzer to
help you estimate the SSN performance of your FPGA both early in the design cycle
and when your PCB is complete. The SSN methodology discussed in this chapter
gives you the tools you need to ensure your FPGA design meets your SSN
requirements.

Document Revision History
Table 5–2 shows the revision history for this chapter.

f For previous versions of the Quartus II Handbook, refer to the Quartus II Handbook
Archive.

Table 5–2. Document Revision History

Date Version Changes

June 2012 12.0.0 Removed survey link.

November 2011 10.0.2 Template update

December 2010 10.0.1 Template update

July 2010 10.0.0
■ Reorganized and edited the chapter

■ Added links to Quartus II Help for procedural information previously included in the
chapter

November 2009 9.1.0

■ Added “Figure 6–9 shows the layout cross-section of a PCB in the Cadence Allegro PCB
tool. The cross-section shows the stackup information of a PCB, which tells you the
number of layers used in your PCB. The PCB shown in this example consists of various
signal and circuit layers on which FPGA pins are routed, as well as the power and ground
layers.” on page 6–12

■ Updated for the Quartus II software 9.1 release

March 2009 9.0.0 Initial release
Quartus II Handbook Version 13.1 June 2012 Altera Corporation
Volume 2: Design Implementation and Optimization

http://www.altera.com/literature/lit-qts_archive.jsp
http://www.altera.com/literature/lit-qts_archive.jsp

QII53020-13.1.0

© 2013 Altera Corporation. All rights reserved. ALTERA, ARRI
are trademarks of Altera Corporation and registered in the U.S
trademarks or service marks are the property of their respectiv
semiconductor products to current specifications in accordance
services at any time without notice. Altera assumes no respons
described herein except as expressly agreed to in writing by Al
on any published information and before placing orders for pr

Quartus II Handbook Version 13.1
Volume 2: Design Implementation and Optimization
November 2013

November 2013
QII53020-13.1.0
6. Signal Integrity Analysis with
Third-Party Tools
Introduction
With the ever-increasing operating speed of interfaces in traditional FPGA design, the
timing and signal integrity margins between the FPGA and other devices on the
board must be within specification and tolerance before a single PCB is built. If the
board trace is designed poorly or the route is too heavily loaded, noise in the signal
can cause data corruption, while overshoot and undershoot can potentially damage
input buffers over time.

As FPGA devices are used in high-speed applications, signal integrity and timing
margin between the FPGA and other devices on the printed circuit board (PCB) are
important aspects to consider to ensure proper system operation. To avoid
time-consuming redesigns and expensive board respins, the topology and routing of
critical signals must be simulated. The high-speed interfaces available on current
FPGA devices must be modeled accurately and integrated into timing models and
board-level signal integrity simulations. The tools used in the design of an FPGA and
its integration into a PCB must be “board-aware”—able to take into account
properties of the board routing and the connected devices on the board.

This chapter contains the following topics:

■ “I/O Model Selection: IBIS or HSPICE” on page 6–3

■ “FPGA to Board Signal Integrity Analysis Flow” on page 6–4

■ “Simulation with IBIS Models” on page 6–7

■ “Simulation with HSPICE Models” on page 6–16

The Quartus® II software provides methodologies, resources, and tools to ensure
good signal integrity and timing margin between Altera® FPGA devices and other
components on the board. Three types of analysis are possible with the Quartus II
software:

■ I/O timing with a default or user-specified capacitive load and no signal integrity
analysis (default)

■ The Quartus II Enable Advanced I/O Timing option utilizing a user-defined
board trace model to produce enhanced timing reports from accurate
“board-aware” simulation models

■ Full board routing simulation in third-party tools using Altera-provided or
generated Input/Output Buffer Information Specification (IBIS) or HSPICE I/O
models
A, CYCLONE, HARDCOPY, MAX, MEGACORE, NIOS, QUARTUS and STRATIX words and logos
. Patent and Trademark Office and in other countries. All other words and logos identified as
e holders as described at www.altera.com/common/legal.html. Altera warrants performance of its
 with Altera's standard warranty, but reserves the right to make changes to any products and
ibility or liability arising out of the application or use of any information, product, or service
tera. Altera customers are advised to obtain the latest version of device specifications before relying
oducts or services.

Feedback SubscribeTwitter

ISO
9001:2008
Registered

mailto:TechDocFeedback@altera.com?subject=Feedback on qts_qii53020-13.1
https://www.altera.com/servlets/subscriptions/alert?id=QII53020
http://www.altera.com/common/legal.html
http://www.altera.com/support/reliability/certifications/rel-certifications.html
http://www.altera.com/support/reliability/certifications/rel-certifications.html
http://twitter.com/home/?status=Signal+Integrity+Analysis+with+Third-Party+Tools++http://www.altera.com/literature/hb/qts/qts_qii53020.pdf?WT.mc_id=gc_so_tw_st_tx_a_011+(via @alteracorp)+%23Altera

6–2 Chapter 6: Signal Integrity Analysis with Third-Party Tools
Introduction
I/O timing using a specified capacitive test load requires no special configuration
other than setting the size of the load. I/O timing reports from the Quartus II
TimeQuest or the Quartus II Classic Timing Analyzer are generated based only on
point-to-point delays within the I/O buffer and assume the presence of the capacitive
test load with no other details about the board specified. The default size of the load is
based on the I/O standard selected for the pin. Timing is measured to the FPGA pin
with no signal integrity analysis details.

The Enable Advanced I/O Timing option expands the details in I/O timing reports
by taking board topology and termination components into account. A complete
point-to-point board trace model is defined and accounted for in the timing analysis.
This ability to define a board trace model is an example of how the Quartus II
software is “board-aware.”

In this case, timing and signal integrity metrics between the I/O buffer and the
defined far end load are analyzed and reported in enhanced reports generated by the
Quartus II TimeQuest Timing Analyzer.

f For more information about defining capacitive test loads or how to use the Enable
Advanced I/O Timing option to configure a board trace model, refer to the I/O
Management chapter in volume 2 of the Quartus II Handbook.

This chapter focuses on the third type of analysis. The Quartus II software can export
accurate HSPICE models with the built-in HSPICE Writer. You can run signal integrity
simulations with these complete HSPICE models in Synopsys HSPICE. IBIS models of
the FPGA I/O buffers are also created easily with the Quartus II IBIS Writer. You can
integrate IBIS models into any third-party simulation tool that supports them, such as
the Mentor Graphics® Hyperlynx software. With the ability to create
industry-standard model definition files quickly, you can build accurate simulations
that can provide data to help improve board-level signal integrity.

The I/O’s IBIS and HSPICE model creation available in the Quartus II software can
help prevent problems before a costly board respin is required. In general, creating
and running accurate simulations is difficult and time consuming. The tools in the
Quartus II software automate the I/O model setup and creation process by
configuring the models specifically for your design. With these tools, you can set up
and run accurate simulations quickly and acquire data that helps guide your FPGA
and board design.

The information about signal integrity in this chapter refers to board-level signal
integrity based on I/O buffer configuration and board parameters, not simultaneous
switching noise (SSN), also known as ground bounce or VCC sag. SSN is a product of
multiple output drivers switching at the same time, causing an overall drop in the
voltage of the chip’s power supply. This can cause temporary glitches in the specified
level of ground or VCC for the device.

f For a more information about SSN and ways to prevent it, refer to AN 315: Guidelines
for Designing High-Speed FPGA PCBs.
Quartus II Handbook Version 13.1 November 2013 Altera Corporation
Volume 2: Design Implementation and Optimization

http://www.altera.com/literature/hb/qts/qts_qii52013.pdf
http://www.altera.com/literature/hb/qts/qts_qii52013.pdf
http://www.altera.com/literature/an/an315.pdf
http://www.altera.com/literature/an/an315.pdf

Chapter 6: Signal Integrity Analysis with Third-Party Tools 6–3
I/O Model Selection: IBIS or HSPICE
This chapter is intended for FPGA and board designers and includes details about the
concepts and steps involved in getting designs simulated and how to adjust designs
to improve board-level timing and signal integrity. Also included is information about
how to create accurate models from the Quartus II software and how to use those
models in simulation software.

The information in this chapter is meant for those who are familiar with the
Quartus II software and basic concepts of signal integrity and the design techniques
and components in good PCB design. Finally, you should know how to set up
simulations and use your selected third-party simulation tool.

f For information about basic signal integrity concepts and signal integrity details
pertaining to Altera FPGA devices, refer to the Altera Signal Integrity Center.

I/O Model Selection: IBIS or HSPICE
The Quartus II software can export two different types of I/O models that are useful
for different simulation situations. IBIS models define the behavior of input or output
buffers through the use of voltage-current (V-I) and voltage-time (V-t) data tables.
HSPICE models, often referred to as HSPICE decks, include complete physical
descriptions of the transistors and parasitic capacitances that make up an I/O buffer
along with all the parameter settings required to run a simulation. The HSPICE decks
generated by the Quartus II software are preconfigured with the I/O standard,
voltage, and pin loading settings for each pin in your design.

The choice of I/O model type is based on many factors. Table 6–1 shows a detailed
comparison of the two I/O model types and information and examples of situations
in which they might be used.

Table 6–1. IBIS and HSPICE Model Comparison

Feature IBIS Model HSPICE Model

I/O Buffer
Description

Behavioral—I/O buffers are described by
voltage-current and voltage-time tables in
typical, minimum, and maximum supply
voltage cases.

Physical—I/O buffers and all components in a circuit are
described by their physical properties, such as transistor
characteristics and parasitic capacitances, as well as their
connections to one another.

Model
Customization

Simple and limited—The model
completely describes the I/O buffer and
does not usually have to be customized.

Fully customizable—Unless connected to an arbitrary
board description, the description of the board trace
model must be customized in the model file. All
parameters of the simulation are also adjustable.

Simulation Set Up
and Run Time

Fast—Simulations run quickly after set up
correctly.

Slow—Simulations take time to set up and take longer to
run and complete.

Simulation
Accuracy

Good—For most simulations, accuracy is
sufficient to make useful adjustments to
the FPGA and/or board design to improve
signal integrity.

Excellent—Simulations are highly accurate, making
HSPICE simulation almost a requirement for any
high-speed design where signal integrity and timing
margins are tight.

Third-Party Tool
Support

Excellent—Almost all third-party board
simulation tools support IBIS.

Good—Most third-party tools that support SPICE
support HSPICE. However, Synopsys HSPICE is required
for simulations of Altera’s encrypted HSPICE models.
November 2013 Altera Corporation Quartus II Handbook Version 13.1
Volume 2: Design Implementation and Optimization

http://www.altera.com/technology/signal/sgl-index.html
http://www.altera.com/technology/signal/sgl-index.html

6–4 Chapter 6: Signal Integrity Analysis with Third-Party Tools
FPGA to Board Signal Integrity Analysis Flow
f For more information about IBIS files created by the Quartus II IBIS Writer and IBIS
files in general, as well as links to websites with detailed information, refer to AN 283:
Simulating Altera Devices with IBIS Models.

FPGA to Board Signal Integrity Analysis Flow
Board signal integrity analysis can take place at any point in the FPGA design process
and is often performed before and after board layout. If it is performed early in the
process as part of a pre-PCB layout analysis, the models used for simulations can be
more generic and can be changed as much as required to see how adjustments
improve timing or signal integrity and help with the design and routing of the PCB.
Simulations and the resulting changes made at this stage allow you to analyze “what
if” scenarios to plan and implement your design better. To assist with early board
signal integrity analysis, you can download generic IBIS model files for each device
family and obtain HSPICE buffer simulation kits from the “Board Level Tools” section
of the EDA Tool Support Resource Center.

Typically, if board signal integrity analysis is performed late in the design, it is used
for a post-layout verification. The inputs and outputs of the FPGA are defined, and
required board routing topologies and constraints are known. Simulations can help
you find problems that might still exist in the FPGA or board design before fabrication
and assembly. In either case, a simple process flow illustrates how to create accurate
IBIS and HSPICE models from a design in the Quartus II software and transfer them
to third-party simulation tools. Figure 6–1 shows this flow.
Quartus II Handbook Version 13.1 November 2013 Altera Corporation
Volume 2: Design Implementation and Optimization

http://www.altera.com/literature/an/an283.pdf
http://www.altera.com/literature/an/an283.pdf
http://www.altera.com/support/software/eda-tool-support/sof-eda-tool-support.html

Chapter 6: Signal Integrity Analysis with Third-Party Tools 6–5
FPGA to Board Signal Integrity Analysis Flow
1 This chapter is organized around the type of model, IBIS or HSPICE, that you use for
your simulations. When you understand the steps in the analysis flow, refer to the
section of this chapter that corresponds to the model type you are using.

Create I/O and Board Trace Model Assignments
If your design uses a Stratix® III, Stratix II, or Cyclone® III device, you can configure a
board trace model for output signals or for bidirectional signals in output mode and
automatically transfer its description to HSPICE decks generated by the HSPICE
Writer. This helps improve simulation accuracy.

Figure 6–1. Third-Party Board Signal Integrity Analysis Flow

Make I/O Assignments

Create a Quartus II Project

Continue Design with
Existing I/O Assignments

Enable IBIS or HSPICE
File Generation

Customize Files

Configure Board Trace Models
in supported devices

(Optional)

Compile and Generate
Files (EDA Netlist Writer)

IBIS or
HSPICE?

Apply Models to Buffers
in Board Model Simulations

Run Simulations as
Defined in HSPICE Deck

Run Simulation

Results
OK?

No
Make Adjustments to

Models or Simulation Parameters
and Simulate Again

Yes

IBIS HSPICE

Changes
to FPGA I/O

required?

Yes

No
November 2013 Altera Corporation Quartus II Handbook Version 13.1
Volume 2: Design Implementation and Optimization

6–6 Chapter 6: Signal Integrity Analysis with Third-Party Tools
FPGA to Board Signal Integrity Analysis Flow
To configure a board trace model, in the Settings dialog box, in the TimeQuest
Timing Analyzer page, turn on the Enable Advanced I/O Timing option and
configure the board trace model assignment settings for each I/O standard used in
your design. You can add series or parallel termination, specify the transmission line
length, and set the value of the far-end capacitive load. You can configure these
parameters either in the Board Trace Model view of the Pin Planner, or click Device
and Pin Options in the Device page of the Settings dialog box.

f For information about how to use the Enable Advanced I/O Timing option and
configure board trace models for the I/O standards used in your design, refer to the
I/O Management chapter in volume 2 of the Quartus II Handbook.

The Quartus II software can generate IBIS models and HSPICE decks without having
to configure a board trace model with the Enable Advanced I/O Timing option. In
fact, IBIS models ignore any board trace model settings other than the far-end
capacitive load. If any load value is set other than the default, the delay given by IBIS
models generated by the IBIS Writer cannot be used to account correctly for the
double counting problem. The load value mismatch between the IBIS delay and the
tCO measurement of the Quartus II software prevents the delays from being safely
added together. Warning messages displayed when the EDA Netlist Writer runs
indicate when this mismatch occurs.

Output File Generation
IBIS and HSPICE model files are not generated by the Quartus II software by default.
To generate or update the files automatically during each project compilation, select
the type of file to generate and a location where to save the file in the project settings.
These settings can also be specified with commands in a Tcl script.

The IBIS and HSPICE Writers in the Quartus II software are run as part of the EDA
Netlist Writer during normal project compilation. If either writer is turned on in the
project settings, IBIS or HSPICE files are created and stored in the specified location.
For IBIS, a single file is generated containing information about all assigned pins.
HSPICE file generation creates separate files for each assigned pin. You can run the
EDA Netlist Writer separately from a full compilation in the Quartus II software or at
the command line. However, you must fully compile the project or perform I/O
Assignment Analysis at least once for the IBIS and HSPICE Writers to have
information about the I/O assignments and settings in the design.

Customize the Output Files
The files generated by either the IBIS or HSPICE Writer are text files that you can edit
and customize easily for design or experimentation purposes. IBIS files downloaded
from the Altera website must be customized with the correct RLC values for the
specific device package you have selected for your design. IBIS files generated by the
IBIS Writer do not require this customization because they are configured
automatically with the RLC values for your selected device. HSPICE decks require
modification to include a detailed description of your board. With Enable Advanced
I/O Timing turned on and a board trace model defined in the Quartus II software,
generated HSPICE decks automatically include that model’s parameters. However,
Altera recommends that you replace that model with a more detailed model that
Quartus II Handbook Version 13.1 November 2013 Altera Corporation
Volume 2: Design Implementation and Optimization

http://www.altera.com/literature/hb/qts/qts_qii52013.pdf

Chapter 6: Signal Integrity Analysis with Third-Party Tools 6–7
Simulation with IBIS Models
describes your board design more accurately. A default simulation included in the
generated HSPICE decks measures delay between the FPGA and the far-end device.
You can make additions or adjustments to the default simulation in the generated files
to change the parameters of the default simulation or to perform additional
measurements.

Set Up and Run Simulations in Third-Party Tools
When you have generated the files, you can use them to perform simulations in your
selected simulation tool. With IBIS models, you can apply them to input, output, or
bidirectional buffer entities and quickly set up and run simulations. For HSPICE
decks, the simulation parameters are included in the files. Open the files in Synopsys
HSPICE and run simulations for each pin as required.

With HSPICE decks generated from the HSPICE Writer, the double counting problem
is accounted for, which ensures that your simulations are accurate. Simulations that
involve IBIS models created with anything other than the default loading settings in
the Quartus II software must take the change in the size of the load between the IBIS
delay and the Quartus II tCO measurement into account. Warning messages during
compilation alert you to this change.

Interpret Simulation Results
If you encounter timing or signal integrity issues with your high-speed signals after
running simulations, you can make adjustments to I/O assignment settings in the
Quartus II software. These could include such things as drive strength or I/O
standard, or making changes to your board routing or topology. After regenerating
models in the Quartus II software based on the changes you have made, rerun the
simulations to check whether your changes corrected the problem.

Simulation with IBIS Models
IBIS models provide a way to run accurate signal integrity simulations quickly. IBIS
models describe the behavior of I/O buffers with voltage-current and voltage-time
data curves. Because of their behavioral nature, IBIS models do not have to include
any information about the internal circuit design of the I/O buffer. Most component
manufacturers, including Altera, provide IBIS models for free download and use in
signal integrity analysis simulation tools. You can download generic device family
IBIS models from the Altera website for early design simulation or use the IBIS Writer
to create custom IBIS models for your existing design.
November 2013 Altera Corporation Quartus II Handbook Version 13.1
Volume 2: Design Implementation and Optimization

6–8 Chapter 6: Signal Integrity Analysis with Third-Party Tools
Simulation with IBIS Models
Elements of an IBIS Model
An IBIS model file (.ibs) is a text file that describes the behavior of an I/O buffer
across minimum, typical, and maximum temperature and voltage ranges with a
specified test load. The tables and values specified in the IBIS file describe five basic
elements of the I/O buffer. Figure 6–2 highlights each of these elements in the I/O
buffer model.

The following elements correspond to each numbered block in Figure 6–2.

1. Pulldown—A voltage-current table describes the current when the buffer is
driven low based on a pull-down voltage range of –VCC to 2 VCC.

2. Pullup—A voltage-current table describes the current when the buffer is driven
high based on a pull-up voltage range of –VCC to VCC.

3. Ground and Power Clamps—Voltage-current tables describe the current when
clamping diodes for electrostatic discharge (ESD) are present. The ground clamp
voltage range is –VCC to VCC, and the power clamp voltage range is –VCC to
ground.

4. Ramp and Rising/Falling Waveform—A voltage-time (dv/dt) ratio describes the
rise and fall time of the buffer during a logic transition. Optional rising and falling
waveform tables can be added to more accurately describe the characteristics of
the rising and falling transitions.

5. Total Output Capacitance and Package RLC—The total output capacitance
includes the parasitic capacitances of the output pad, clamp diodes (if present),
and input transistors. The package RLC is device package-specific and defines the
resistance, inductance, and capacitance of the bond wire and pin of the I/O.

f For more information about IBIS models and Altera-specific features, including links
to the official IBIS specification, refer to AN 283: Simulating Altera Devices with IBIS
Models.

Creating Accurate IBIS Models
There are two methods to obtain Altera device IBIS files for your board-level signal
integrity simulations. You can download generic IBIS models from the Altera website
or you can use the IBIS writer in the Quartus II software to create design-specific
models.

Figure 6–2. Five Basic Elements in IBIS Models

Rise
Fall L_pkg R_pkg

C_comp C_pkg

1

2

4

3

5

Quartus II Handbook Version 13.1 November 2013 Altera Corporation
Volume 2: Design Implementation and Optimization

http://www.altera.com/literature/an/an283.pdf
http://www.altera.com/literature/an/an283.pdf

Chapter 6: Signal Integrity Analysis with Third-Party Tools 6–9
Simulation with IBIS Models
Download IBIS Models
Altera provides IBIS models for almost all FPGA and FPGA configuration devices.
Check the Altera IBIS Models page for information about whether models for your
selected device are available. You can use the IBIS models from the website to perform
early simulations of the I/O buffers you expect to use in your design as part of a pre-
layout analysis.

Downloaded IBIS models have the RLC package values set to one particular device in
each device family. To simulate your design with the model accurately, you must
adjust the RLC values in the IBIS model file to match the values for your particular
device package by performing the following steps:

1. Download and expand the ZIP file (.zip) of the IBIS model for the device family
you are using for your design. The .zip file contains the .ibs file along with an IBIS
model user guide and a model data correlation report.

2. Download the Package RLC Values spreadsheet for the same device family.

3. Open the spreadsheet and locate the row that describes the device package used in
your design.

4. From the package’s I/O row, copy the minimum, maximum, and typical values of
resistance, inductance, and capacitance for your device package.

5. Open the .ibs file in a text editor and locate the [Package] section of the file.

6. Overwrite the listed values copied with the values from the spreadsheet and save
the file.

The .ibs file is now customized for your device package and can be used for any
simulation. IBIS models downloaded and used for simulations in this manner are
generic. They describe only a certain set of models listed for each device on the Altera
IBIS Models page of the Altera website. To create customized models for your design,
use the IBIS Writer as described in the next section.

Generate Custom IBIS Models with the IBIS Writer
If you have started your FPGA design and have created custom I/O assignments,
such as drive strength settings or the enabling of clamping diodes for ESD protection,
you can use the Quartus II IBIS Writer to create custom IBIS models to accurately
reflect your assignments. IBIS models created with the IBIS Writer take I/O
assignment settings into account.

If the Enable Advanced I/O Timing option is turned off, the generated .ibs files are
based on the load value setting for each I/O standard on the Capacitive Loading page
of the Device and Pin Options dialog box in the Device dialog box. With the Enable
Advanced I/O Timing option turned on, IBIS models use an effective capacitive load
based on settings found in the board trace model on the Board Trace Model page in
the Device and Pin Options dialog box or the Board Trace Model view in the Pin
Planner. The effective capacitive load is based on the sum of the Near capacitance,
Transmission line distributed capacitance, and the Far capacitance settings in the
board trace model. Resistances and transmission line inductance values are ignored.
November 2013 Altera Corporation Quartus II Handbook Version 13.1
Volume 2: Design Implementation and Optimization

http://www.altera.com/download/board-layout-test/ibis/ibs-ibis_index.jsp
http://www.altera.com/download/board-layout-test/ibis/ibs-ibis_index.jsp
http://www.altera.com/download/board-layout-test/ibis/ibs-ibis_index.jsp

6–10 Chapter 6: Signal Integrity Analysis with Third-Party Tools
Simulation with IBIS Models
1 If you made any changes from the default load settings, the delay in the generated
IBIS model cannot safely be added to the Quartus II tCO measurement to account for
the double counting problem. This is because the load values between the two delay
measurements do not match. When this happens, the Quartus II software displays
warning messages when the EDA Netlist Writer runs to remind you about the load
value mismatch.

h For step-by-step instructions on how to generate IBIS models with the Quartus II
software, refer to Generating IBIS Output Files with the Quartus II Software in Quartus II
Help.

f For more information about IBIS model generation, refer to the AN 283: Simulating
Altera Devices with IBIS Models or to the Quartus II Help.

Design Simulation Using the Mentor Graphics HyperLynx Software
You must integrate IBIS models downloaded from the Altera website
(www.altera.com) or created with the Quartus II IBIS Writer into board design
simulations to accurately model timing and signal integrity. The HyperLynx software
from Mentor Graphics is one of the most popular tools for design simulation. The
HyperLynx software makes it easy to integrate IBIS models into simulations.

The HyperLynx software is a PCB analysis and simulation tool for high-speed
designs, consisting of two products, LineSim and BoardSim. LineSim is an early
simulation tool. Before any board routing takes place, LineSim is used to simulate
“what if” scenarios to assist in creating routing rules and defining board parameters.
BoardSim is a post-layout tool used to analyze existing board routing. Specific nets are
selected from a board layout file and simulated in a manner similar to LineSim. With
board and routing parameters, and surrounding signal routing known, highly
accurate simulations of the final fabricated PCB are possible. This section focuses on
LineSim. Because the process of creating and running simulations is very similar for
both LineSim and BoardSim, the details of IBIS model use in LineSim applies to
simulations in BoardSim.

Simulations in LineSim are configured using a schematic GUI to create connections
and topologies between I/O buffers, route trace segments, and termination
components. LineSim provides two methods for creating routing schematics:
cell-based and free-form. Cell-based schematics are based on fixed cells consisting of
typical placements of buffers, trace impedances, and components. Parts of the
grid-based cells are filled with the desired objects to create the topology. A topology in
a cell-based schematic is limited by the available connections within and between the
cells.
Quartus II Handbook Version 13.1 November 2013 Altera Corporation
Volume 2: Design Implementation and Optimization

http://quartushelp.altera.com/current/master.htm#mergedProjects/eda/boardlevel/ibis/eda_pro_ibis_out.htm
http://www.altera.com/literature/an/an283.pdf
http://www.altera.com/literature/an/an283.pdf
http://www.altera.com/

Chapter 6: Signal Integrity Analysis with Third-Party Tools 6–11
Simulation with IBIS Models
A more robust and expandable way to create a circuit schematic for simulation is to
use the free-form schematic format in LineSim as shown in Figure 6–3. The free-form
schematic format makes it easy to place parts into any configuration and edit them as
required. This section describes the use of IBIS models with free-form schematics, but
the process is nearly identical for cell-based schematics.

When you use HyperLynx software to perform simulations, you typically perform the
following steps:

1. Create a new LineSim free-form schematic document and set up the board stackup
for your PCB using the Stackup Editor. In this editor, specify board layer
properties including layer thickness, dielectric constant, and trace width.

2. Create a circuit schematic for the net you want to simulate. The schematic
represents all the parts of the routed net including source and destination I/O
buffers, termination components, transmission line segments, and representations
of impedance discontinuities such as vias or connectors.

3. Assign IBIS models to the source and destination I/O buffers to represent their
behavior during operation.

4. Attach probes from the digital oscilloscope that is built in to LineSim to points in
the circuit that you want to monitor during simulation. Typically, at least one
probe is attached to the pin of a destination I/O buffer. For differential signals, you
can attach a differential probe to both the positive and negative pins at the
destination.

5. Configure and run the simulation. You can simulate a rising or falling edge and
test the circuit under different drive strength conditions.

Figure 6–3. HyperLynx LineSim Free-Form Schematic Editor
November 2013 Altera Corporation Quartus II Handbook Version 13.1
Volume 2: Design Implementation and Optimization

6–12 Chapter 6: Signal Integrity Analysis with Third-Party Tools
Simulation with IBIS Models
6. Interpret the results and make adjustments. Based on the waveforms captured in
the digital oscilloscope, you can adjust anything in the circuit schematic to correct
any signal integrity issues, such as overshoot or ringing. If necessary, you can
make I/O assignment changes in the Quartus II software, regenerate the IBIS file
with the IBIS Writer, and apply the updated IBIS model to the buffers in your
HyperLynx software schematic.

7. Repeat the simulations and circuit adjustments until you are satisfied with the
results. When the operation of the net meets your design requirements, implement
changes to your I/O assignments in the Quartus II software and/or adjust your
board routing constraints, component values, and placement to match the
simulation.

f For more information about HyperLynx software, including schematic creation,
simulation setup, model usage, product support, licensing, and training, refer to
HyperLynx Help or the Mentor Graphics website at www.mentor.com.

Configuring LineSim to Use Altera IBIS Models
You must configure LineSim to find and use the downloaded or generated IBIS
models for your design. To do this, add the location of your .ibs file or files to the
LineSim Model Library search path. Then you apply a selected model to a buffer in
your schematic.

To add the Quartus II software’s default IBIS model location, <project
directory>/board/ibis, to the HyperLynx LineSim model library search path, perform
the following steps in LineSim:

1. From the Options menu, click Directories. The Set Directories dialog box appears
(Figure 6–4). The Model-library file path(s) list displays the order in which
LineSim searches file directories for model files.

Figure 6–4. LineSim Set Directories Dialog Box
Quartus II Handbook Version 13.1 November 2013 Altera Corporation
Volume 2: Design Implementation and Optimization

http://www.mentor.com/

Chapter 6: Signal Integrity Analysis with Third-Party Tools 6–13
Simulation with IBIS Models
2. Click Edit. A dialog box appears where you can add directories and adjust the
order in which LineSim searches them (Figure 6–5).

3. Click Add

4. Browse to the default IBIS model location, <project directory>/board/ibis. Click OK.

5. Click Up to move the IBIS model directory to the top of the list. Click Generate
Model Index to update LineSim’s model database with the models found in the
added directory.

6. Click OK. The IBIS model directory for your project is added to the top of the
Model-library file path(s) list.

7. To close the Set Directories dialog box, click OK.

Integrating Altera IBIS Models into LineSim Simulations
When the location for IBIS files has been set, you can assign the downloaded or
generated IBIS models to the buffers in your schematic. To do this, perform the
following steps:

Figure 6–5. LineSim Select Directories Dialog Box
November 2013 Altera Corporation Quartus II Handbook Version 13.1
Volume 2: Design Implementation and Optimization

6–14 Chapter 6: Signal Integrity Analysis with Third-Party Tools
Simulation with IBIS Models
1. Double-click a buffer symbol in your schematic to open the Assign Models dialog
box (Figure 6–6). You can also click Assign Models from the buffer symbol’s
right-click menu.

2. The pin of the buffer symbol you selected should be highlighted in the Pins list. If
you want to assign a model to a different symbol or pin, select it from the list.

3. Click Select. The Select IC Model dialog box appears (Figure 6–7).

Figure 6–6. LineSim Assign Model Dialog Box

Figure 6–7. LineSim Select IC Model Dialog Box
Quartus II Handbook Version 13.1 November 2013 Altera Corporation
Volume 2: Design Implementation and Optimization

Chapter 6: Signal Integrity Analysis with Third-Party Tools 6–15
Simulation with IBIS Models
4. To filter the list of available libraries to display only IBIS models, select .IBS. Scroll
through the Libraries list, and click the name of the library for your design. By
default, this is <project name>.ibs.

5. The device for your design should be selected as the only item in the Devices list.
If not, select your device from the list.

6. From the Signal list, select the name of the signal you want to simulate. You can
also choose to select by device pin number.

7. Click OK. The Assign Models dialog box displays the selected .ibs file and signal.

8. If applicable to the signal you chose, adjust the buffer settings as required for the
simulation.

9. Select and configure other buffer pins from the Pins list in the same manner.

10. Click OK when all I/O models are assigned.

Running and Interpreting LineSim Simulations
You can now run any desired simulations and make adjustments to the I/O
assignments or simulation parameters as required. For example, if you see too much
overshoot in the simulated signal at the destination buffer after running a simulation
(as shown in Figure 6–8), you could adjust the drive strength I/O assignment setting
to a lower value. Regenerate the .ibs file, and run the simulation again to verify
whether the change fixed the problem.

Figure 6–8. Example of Overshoot in HyperLynx with IBIS Models
November 2013 Altera Corporation Quartus II Handbook Version 13.1
Volume 2: Design Implementation and Optimization

6–16 Chapter 6: Signal Integrity Analysis with Third-Party Tools
Simulation with HSPICE Models
If you see a discontinuity or other anomalies at the destination, such as slow rise and
fall times (as shown in Figure 6–9), adjust the termination scheme or termination
component values. After making these changes, rerun the simulation to check
whether your adjustments solved the problem. In this case, it is not necessary to
regenerate the .ibs file.

f For more information about board-level signal integrity and to learn about ways to
improve it with simple changes to your design, visit the Altera Signal Integrity Center.

Simulation with HSPICE Models
HSPICE decks are used to perform highly accurate simulations by describing the
physical properties of all aspects of a circuit precisely. HSPICE decks describe I/O
buffers, board components, and all of the connections between them, as well as
defining the parameters of the simulation to be run. By their nature, to be effective,
HSPICE decks are highly customizable and require a detailed description of the
circuit under simulation. For devices that support advanced I/O timing, when Enable
Advanced I/O Timing is turned on, the HSPICE decks generated by the Quartus II
HSPICE Writer automatically include board components and topology defined in the
Board Trace Model. Configure the board components and topology in the Pin Planner
or in the Board Trace Model tab of the Device and Pin Options dialog box. All
HSPICE decks generated by the Quartus II software include compensation for the
double count problem. For more information about the double count problem, refer to
“The Double Counting Problem in HSPICE Simulations” on page 6–17. You can
simulate with the default simulation parameters built in to the generated HSPICE
decks or make adjustments to customize your simulation.

Figure 6–9. Example of Signal Integrity Anomaly in HyperLynx with IBIS Models
Quartus II Handbook Version 13.1 November 2013 Altera Corporation
Volume 2: Design Implementation and Optimization

http://www.altera.com/technology/signal/sgl-index.html?GSA_pos=1&WT.oss_r=1&WT.oss=signal%20integrity%20center

Chapter 6: Signal Integrity Analysis with Third-Party Tools 6–17
Simulation with HSPICE Models
Supported Devices and Signaling
Beginning with Quartus II software version 6.1 and later, the HSPICE Writer supports
the devices and signaling defined in Table 6–2. Only Stratix III, Stratix II, and
Cyclone III devices support the creation of a board trace model in the Quartus II
software for automatic inclusion in an HSPICE deck. Other devices require the board
description to be manually added to the HSPICE file.

If you are using a Stratix II device for your design, you can turn on Enable Advanced
I/O Timing and configure the board trace model for each I/O standard used in your
design. Newer families have this feature turned on by default and it cannot be turned
off. The HSPICE files include the board trace description you create in the Board Trace
Model view in the Pin Planner or the Board Trace Model tab in the Device and Pin
Options dialog box.

f For more information about the Enable Advanced I/O Timing option and
configuring board trace models for the I/O standards in your design, refer to the
I/O Management chapter in volume 2 of the Quartus II Handbook.

Accessing HSPICE Simulation Kits
You can access the available HSPICE models at the SPICE Models for Altera Devices
web page and also with the Quartus II software’s HSPICE Writer tool. The Quartus II
software HSPICE Writer tool removes many common sources of user error from the
I/O simulation process. The HSPICE Writer tool automatically creates preconfigured
I/O simulation spice decks that only require the addition of a user board model. All
the difficult tasks required to configure the I/O modes and interpret the timing results
are handled automatically by the HSPICE Writer tool.

The Double Counting Problem in HSPICE Simulations
Simulating I/Os using accurate models is extremely helpful for finding and fixing
FPGA I/O timing and board signal integrity issues before any boards are built.
However, the usefulness of such simulations is directly related to the accuracy of the
models used and whether the simulations are set up and performed correctly. To
ensure accuracy in models and simulations created for FPGA output signals, the
timing hand-off between tCO timing in the Quartus II software and simulation-based
board delay must be taken into account. If this hand-off is not handled correctly, the
calculated delay could either count some of the delay twice or even miss counting
some of the delay entirely.

Table 6–2. HSPICE Writer Device and Signaling Support

Device Input Output Single-Ended Differential Automatic Board Trace
Model Description

Stratix III v v v v v
Stratix II GX
(non-HSSI pins) v v v v —

Stratix II v v v v v
Cyclone III v v v v v
November 2013 Altera Corporation Quartus II Handbook Version 13.1
Volume 2: Design Implementation and Optimization

http://www.altera.com/literature/hb/qts/qts_qii52013.pdf
http://www.altera.com/support/software/download/hspice/hsp-index.html

6–18 Chapter 6: Signal Integrity Analysis with Third-Party Tools
Simulation with HSPICE Models
Defining the Double Counting Problem
The double counting problem is inherent to the method output timing is analyzed
versus the method used for HSPICE models. The timing analyzer tools in the
Quartus II software measure delay timing for an output signal from the core logic of
the FPGA design through the output buffer ending at the FPGA pin with a default
capacitive load or a specified value for the selected I/O standard. This measurement
is the tCO timing variable as shown in Figure 6–10.

HSPICE models for board simulation measure tPD (propagation delay) from an
arbitrary reference point in the output buffer, through the device pin, out along the
board routing, and ending at the signal destination.

It is apparent immediately that if these two delays were simply added together, the
delay between the output buffer and the device pin would be counted twice in the
calculation. A model or simulation that does not account for this double count would
create overly pessimistic simulation results, because the double-counted delay can
limit I/O performance artificially. To fix the problem, it might seem that simply
subtracting the overlap between tCO and tPD would account for the double count.
However, this adjustment would not be accurate because each measurement is based
on a different load.

1 Input signals do not exhibit this problem because the HSPICE models for inputs stop
at the FPGA pin instead of at the input buffer. In this case, simply adding the delays
together produces an accurate measurement of delay timing.

Figure 6–10. Double Counting Problem

FPGA Core
Logic

FPGA Output
Buffer

FPGA Pin

HSPICE Reported Delay

Quartus II tCO

HSPICE tPD with
User Board Trace Model

Overlap (Double Counting)

Termination Network/
Trace Model

Signal
Destination
Quartus II Handbook Version 13.1 November 2013 Altera Corporation
Volume 2: Design Implementation and Optimization

Chapter 6: Signal Integrity Analysis with Third-Party Tools 6–19
Simulation with HSPICE Models
The Solution to Double Counting
To adjust the measurements to account for the double-counting, the delay between the
arbitrary point in the output buffer selected by the HSPICE model and the FPGA pin
must be subtracted from either tCO or tPD before adding the results together. The
subtracted delay must also be based on a common load between the two
measurements. This is done by repeating the HSPICE model measurement, but with
the same load used by the Quartus II software for the tCO measurement. This second
measurement, called tTESTLOAD, is illustrated with the top circuit in Figure 6–11.

With tTESTLOAD known, the total delay for the output signal from the FPGA logic to the
signal destination on the board, accounting for the double count, is calculated as
shown in Equation 6–1.

The preconfigured simulation files generated by the HSPICE Writer in the Quartus II
software are designed to account for the double-counting problem based on this
calculation automatically. Performing accurate timing simulations is easy without
having to make adjustments for double counting manually.

Figure 6–11. Common Test Loads Used for Output Timing

FPGA Core
Logic

FPGA Output
Buffer

FPGA Pin Quartus
Test Load

HSPICE Netlist with
Quartus Test Load

HSPICE tPD
 with User

Specified Board Trace Model

Quartus II tCO

HSPICE Netlist with
User Board Trace Model

Overlap (HSPICE Delay
with Test Load)

Total Delay

HSPICE tPD Adjusted by tTESTLOAD

Termination Network/
Trace Model

Signal
Destination

Equation 6–1.

tdelay tCO tPD tTESTLOAD–()+=
November 2013 Altera Corporation Quartus II Handbook Version 13.1
Volume 2: Design Implementation and Optimization

6–20 Chapter 6: Signal Integrity Analysis with Third-Party Tools
Simulation with HSPICE Models
HSPICE Writer Tool Flow
This section includes information to help you get started using the Quartus II
software HSPICE Writer tool. The information in this section assumes you have a
basic knowledge of the standard Quartus II software design flow, such as project and
assignment creation, compilation, and timing analysis.

f For additional information about standard design flows, refer to the appropriate
sections of the Quartus II Handbook.

Applying I/O Assignments
The first step in the HSPICE Writer tool flow is to configure the I/O standards and
modes for each of the pins in your design properly. In the Quartus II software, these
settings are represented by assignments that map I/O settings, such as pin selection,
and I/O standard and drive strength, to corresponding signals in your design.

The Quartus II software provides multiple methods for creating these assignments:

■ Using the Pin Planner

■ Using the assignment editor

■ Manually editing the .qsf file

■ By making assignments in a scripted Quartus II flow using Tcl

Enabling HSPICE Writer
You must enable the HSPICE Writer in the Settings dialog box of the Quartus II
software (Figure 6–12) to generate the HSPICE decks from the Quartus II software.

Figure 6–12. EDA Tool Settings: Board Level Options Dialog Box
Quartus II Handbook Version 13.1 November 2013 Altera Corporation
Volume 2: Design Implementation and Optimization

http://www.altera.com/literature/hb/qts/quartusii_handbook.pdf

Chapter 6: Signal Integrity Analysis with Third-Party Tools 6–21
Simulation with HSPICE Models
Enabling HSPICE Writer Using Assignments
You can also use HSPICE Writer in conjunction with a scripted Tcl flow. To enable
HSPICE Writer during a full compile, include the lines shown in Example 6–1 in your
Tcl script.

As with command-line invocation, specifying the output directory is optional. If not
specified, the output directory defaults to board/hspice.

Naming Conventions for HSPICE Files
HSPICE Writer automatically generates simulation files and names them using the
following naming convention:

<device>_<pin #>_<pin_name>_<in/out>.sp

For bidirectional pins, two spice decks are produced; one with the I/O buffer
configured as an input, and the other with the I/O buffer configured as an output.

The Quartus II software supports alphanumeric pin names that contain the
underscore (_) and dash (-) characters. Any illegal characters used in file names are
converted automatically to underscores.

The contents of the HSPICE files are described in detail in “Sample Output for I/O
HSPICE Simulation Deck” on page 6–33 and “Sample Input for I/O HSPICE
Simulation Deck” on page 6–28.

Invoking HSPICE Writer
After HSPICE Writer is enabled, the HSPICE simulation files are generated
automatically each time the project is completely compiled. The Quartus II software
also provides an option to generate a new set of simulation files without having to
recompile manually. In the Processing menu, click Start EDA Netlist Writer to
generate new simulation files automatically.

1 You must perform both Analysis & Synthesis and Fitting on a design before invoking
the HSPICE Writer tool.

Example 6–1. Enable HSPICE Writer

set_global_assignment -name EDA_BOARD_DESIGN_SIGNAL_INTEGRITY_TOOL \
"HSPICE (Signal Integrity)"

set_global_assignment -name EDA_OUTPUT_DATA_FORMAT HSPICE \
-section_id eda_board_design_signal_integrity

set_global_assignment -name EDA_NETLIST_WRITER_OUTPUT_DIR <output_directory> \
-section_id eda_board_design_signal_integrity
November 2013 Altera Corporation Quartus II Handbook Version 13.1
Volume 2: Design Implementation and Optimization

6–22 Chapter 6: Signal Integrity Analysis with Third-Party Tools
Simulation with HSPICE Models
Invoking HSPICE Writer from the Command Line
If you use a script-based flow to compile your project, you can create HSPICE model
files by including the commands shown in Example 6–2 in your Tcl script (.tcl file).

The <output_directory> option specifies the location where HSPICE model files are
saved. By default, the <project directory>/board/hspice directory is used.

To invoke the HSPICE Writer tool through the command line, type the syntax shown
in Example 6–3.

<output_directory> specifies the location where the generated spice decks will be
written (relative to the design directory). This is an optional parameter and defaults to
board/hspice.

Customizing Automatically Generated HSPICE Decks
HSPICE models generated by the HSPICE Writer can be used for simulation as
generated. A default board description is included, and a default simulation is set up
to measure rise and fall delays for both input and output simulations, which
compensates for the double counting problem. However, Altera recommends that you
customize the board description to more accurately represent your routing and
termination scheme.

The sample board trace loading in the generated HSPICE model files must be
replaced by your actual trace model before you can run a correct simulation. To do
this, open the generated HSPICE model files for all pins you want to simulate and
locate the section shown in Example 6–4.

You must replace the example load with a load that matches the design of your PCB
board. This includes a trace model, termination resistors, and, for output simulations,
a receiver model. The spice circuit node that represents the pin of the FPGA package is
called pin. The node that represents the far pin of the external device is called load-in
(for output SPICE decks) and source-in (for input SPICE decks).

Example 6–2. Create HSPICE Model Files

set_global_assignment -name EDA_BOARD_DESIGN_SIGNAL_INTEGRITY_TOOL \
"HSPICE (Signal Integrity)"

set_global_assignment -name EDA_OUTPUT_DATA_FORMAT HSPICE \
-section_ideda_board_design_signal_integrity

set_global_assignment -name EDA_NETLIST_WRITER_OUTPUT_DIR <output_directory> \
-section_id eda_board_design_signal_integrity

Example 6–3. Invoke HSPICE Writer

quartus_eda.exe <project_name> --board_signal_integrity=on --format=HSPICE \
--output_directory=<output_directory>

Example 6–4. Sample Board Trace Section

* I/O Board Trace and Termination Description
* - Replace this with your board trace and termination description
Quartus II Handbook Version 13.1 November 2013 Altera Corporation
Volume 2: Design Implementation and Optimization

Chapter 6: Signal Integrity Analysis with Third-Party Tools 6–23
Simulation with HSPICE Models
For an input simulation, you must also modify the stimulus portion of the spice file.
The section of the file that must be modified is indicated in the comment block shown
in Example 6–5.

Replace the sample stimulus model with a model for the device that will drive the
FPGA.

Running an HSPICE Simulation
Because simulation parameters are configured directly in the HSPICE model files,
running a simulation requires only that you open an HSPICE file in the HSPICE user
interface and start the simulation. The HSPICE user interface window is shown in
Figure 6–13.

Click Open and browse to the location of the HSPICE model files generated by the
Quartus II HSPICE Writer. The default location for HSPICE model files is <project
directory>/board/hspice. Select the .sp file generated by the HSPICE Writer for the
signal you want to simulate. Click OK.

To run the simulation, click Simulate. The status of the simulation is displayed in the
window and saved in an .lis file with the same name as the .sp file when the
simulation is complete. Check the .lis file if an error occurs during the simulation
requiring a change in the .sp file to fix.

Interpreting the Results of an Output Simulation
By default, the automatically generated output simulation spice decks are set up to
measure three delays for both rising and falling transitions. Two of the measurements,
tpd_rise and tpd_fall, measure the double-counting corrected delay from the FPGA
pin to the load pin. To determine the complete clock-edge to load-pin delay, add these
numbers to the Quartus II software reported default loading tCO delay.

Example 6–5. Sample Source Stimulus Section

* Sample source stimulus placeholder
* - Replace this with your I/O driver model

Figure 6–13. HSPICE User Interface Window
November 2013 Altera Corporation Quartus II Handbook Version 13.1
Volume 2: Design Implementation and Optimization

6–24 Chapter 6: Signal Integrity Analysis with Third-Party Tools
Simulation with HSPICE Models
The remaining four measurements, tpd_uncomp_rise, tpd_uncomp_fall,
t_dblcnt_rise, and t_dblcnt_fall, are required for the double-counting compensation
process and are not required for further timing usage. Refer to “Simulation Analysis”
on page 6–33 for a description of these measurements.

Interpreting the Results of an Input Simulation
By default, the automatically generated input simulation SPICE decks are set up to
measure delays from the source’s driver pin to the FPGA’s input pin for both rising
and falling transitions. The propagation delay is reported by HSPICE measure
statements as tpd_rise and tpd_fall. To determine the complete source driver pin-
to-FPGA register delay, add these numbers to the Quartus II software reported TH and
TSU input timing numbers.

Viewing and Interpreting Tabular Simulation Results
The .lis file stores the collected simulation data in tabular form. The default
simulation configured by the HSPICE Writer produces delay measurements for rising
and falling transitions on both input and output simulations. These measurements are
found in the .lis file and named tpd_rise and tpd_fall. For output simulations, these
values are already adjusted for the double count. To determine the complete delay
from the FPGA logic to the load pin, add either of these measurements to the
Quartus II tCO delay. For input simulations, add either of these measurements to the
Quartus II tSU and tH delay values to calculate the complete delay from the far end
stimulus to the FPGA logic. Other values found in the .lis file, such as
tpd_uncomp_rise, tpd_uncomp_fall, t_dblcnt_rise, and t_dblcnt_fall, are parts of
the double count compensation calculation. These values are not necessary for further
analysis.

Viewing Graphical Simulation Results
You can view the results of the simulation quickly as a graphical waveform display
using the AvanWaves viewer included with HSPICE. With the default simulation
configured by the HSPICE Writer, you can view the simulated waveforms at both the
source and destination in input and output simulations.
Quartus II Handbook Version 13.1 November 2013 Altera Corporation
Volume 2: Design Implementation and Optimization

Chapter 6: Signal Integrity Analysis with Third-Party Tools 6–25
Simulation with HSPICE Models
To see the waveforms for the simulation, in the HSPICE user interface window, click
AvanWaves. The AvanWaves viewer opens and displays the Results Browser as
shown in Figure 6–14.

The Results Browser lets you select which waveform to view quickly in the main
viewing window. If multiple simulations are run on the same signal, the list at the top
of the Results Browser displays the results of each simulation. Click the simulation
description to select which simulation to view. By default, the descriptions are
derived from the first line of the HSPICE file, so the description might appear as a line
of asterisks.

Select the type of waveform to view, by performing the following steps:

1. To see the source and destination waveforms with the default simulation, from the
Types list, select Voltages.

2. On the Curves list, double-click the waveform you want to view. The waveform
appears in the main viewing window.

Figure 6–14. HSPICE AvanWaves Results Browser
November 2013 Altera Corporation Quartus II Handbook Version 13.1
Volume 2: Design Implementation and Optimization

6–26 Chapter 6: Signal Integrity Analysis with Third-Party Tools
Simulation with HSPICE Models
You can zoom in and out and adjust the view as desired (Figure 6–15).

Figure 6–15. AvanWaves Waveform Viewer
Quartus II Handbook Version 13.1 November 2013 Altera Corporation
Volume 2: Design Implementation and Optimization

Chapter 6: Signal Integrity Analysis with Third-Party Tools 6–27
Simulation with HSPICE Models
Making Design Adjustments Based on HSPICE Simulations
Based on the results of your simulations, you can make adjustments to the I/O
assignments or simulation parameters if required. For example, after you run a
simulation and see overshoot or ringing in the simulated signal at the destination
buffer as shown in the example in Figure 6–16, you can adjust the drive strength I/O
assignment setting to a lower value. Regenerate the HSPICE deck, and run the
simulation again to verify that the change fixed the problem.

Figure 6–16. Example of Overshoot in the AvanWaves Waveform Viewer
November 2013 Altera Corporation Quartus II Handbook Version 13.1
Volume 2: Design Implementation and Optimization

6–28 Chapter 6: Signal Integrity Analysis with Third-Party Tools
Simulation with HSPICE Models
If there is a discontinuity or any other anomalies at the destination as shown in the
example in Figure 6–17, adjust the board description in the Quartus II Board Trace
Model (for Stratix II, Stratix III, or Cyclone III devices) or in the generated HSPICE
model files to change the termination scheme or adjust termination component
values. After making these changes, regenerate the HSPICE files if necessary, and
rerun the simulation to verify whether your adjustments solved the problem.

f For more information about board-level signal integrity and to learn about ways to
improve it with simple changes to your FPGA design, refer to the Altera Signal
Integrity Center.

Sample Input for I/O HSPICE Simulation Deck
The following sections examine a typical HSPICE simulation spice deck for an I/O of
type input. Each section presents the simulation file one block at a time.

Header Comment
The first block of an input simulation spice deck is the header comment. The purpose
of this block is to provide an easily readable summary of how the simulation file has
been automatically configured by the Quartus II software.

This block has two main components: The first component summarizes the I/O
configuration relevant information such as device, speed grade, and so on. The
second component specifies the exact test condition that the Quartus II software
assumes for the given I/O standard. Example 6–6 shows a header comment block.

Figure 6–17. Example of Signal Integrity Anomaly in the AvanWaves Waveform Viewer
Quartus II Handbook Version 13.1 November 2013 Altera Corporation
Volume 2: Design Implementation and Optimization

http://www.altera.com/technology/signal/sgl-index.html
http://www.altera.com/technology/signal/sgl-index.html

Chapter 6: Signal Integrity Analysis with Third-Party Tools 6–29
Simulation with HSPICE Models
Simulation Conditions
The simulation conditions block loads the appropriate process corner models for the
transistors. This condition is automatically set up for the slow timing corner and is
modified only if other simulation corners are desired. Example 6–7 shows a
simulation conditions block.

Simulation Options
The simulation options block configures the simulation temperature and configures
HSPICE with typical simulation options. Example 6–8 shows a simulation options
block.

Example 6–6. Header Comment Block

* Quartus II HSPICE Writer I/O Simulation Deck*

* This spice simulation deck was automatically generated by
* Quartus for the following IO settings:
*
* Device: EP2S60F1020C3
* Speed Grade: C3
* Pin: AA4 (out96)
* Bank: IO Bank 6 (Row I/O)
* I/O Standard: LVTTL, 12mA
* OCT: Off
*
* Quartus II’s default I/O timing delays assume the following slow
* corner simulation conditions.
*
* Specified Test Conditions For Quartus II Tco
* Temperature: 85C (Slowest Temperature Corner)
* Transistor Model: TT (Typical Transistor Corner)
* Vccn: 3.135V (Vccn_min = Nominal - 5%)
* Vccpd: 2.97V (Vccpd_min = Nominal - 10%)
* Load: No Load
* Vtt: 1.5675V (Voltage reference is Vccn/2)
*
* Note: The I/O transistors are specified to operate at least as
* fast as the TT transistor corner, actual production
* devices can be as fast as the FF corner. Any simulations
* for hold times should be conducted using the fast process
* corner with the following simulation conditions.
* Temperature: 0C (Fastest Commercial Temperature Corner **)
* Transistor Model: FF (Fastest Transistor Corner)
* Vccn: 1.98V (Vccn_hold = Nominal + 10%)
* Vccpd: 3.63V (Vccpd_hold = Nominal + 10%)
* Vtt: 0.95V (Vtt_hold = Vccn/2 - 40mV)
* Vcc: 1.25V (Vcc_hold = Maximum Recommended)
* Package Model: Short-circuit from pad to pin (no parasitics)
*
* Warnings:

Example 6–7. Simulation Conditions Block

* Process Settings

.options brief

.inc ‘sii_tt.inc’ * TT process corner
November 2013 Altera Corporation Quartus II Handbook Version 13.1
Volume 2: Design Implementation and Optimization

6–30 Chapter 6: Signal Integrity Analysis with Third-Party Tools
Simulation with HSPICE Models
f For a detailed description of these options, consult your HSPICE manual.

Constant Definition
The constant definition block of the simulation file instantiates the voltage sources
that controls the configuration modes of the I/O buffer. Example 6–9 shows a constant
definition block.

Example 6–8. Simulation Options Block

* Simulation Options

.options brief=0

.options badchr co=132 scale=1e-6 acct ingold=2 nomod dv=1.0
+ dcstep=1 absv=1e-3 absi=1e-8 probe csdf=2 accurate=1
+ converge=1
.temp 85

Example 6–9. Constant Definition Block

* Constant Definition

voeb oeb 0 vc * Set to 0 to enable buffer output
vopdrain opdrain 0 0 * Set to vc to enable open drain
vrambh rambh 0 0 * Set to vc to enable bus hold
vrpullup rpullup 0 0 * Set to vc to enable weak pullup
vpcdp5 rpcdp5 0 rp5 * Set the IO standard
vpcdp4 rpcdp4 0 rp4
vpcdp3 rpcdp3 0 rp3
vpcdp2 rpcdp2 0 rp2
vpcdp1 rpcdp1 0 rp1
vpcdp0 rpcdp0 0 rp0
vpcdn4 rpcdn4 0 rn4
vpcdn3 rpcdn3 0 rn3
vpcdn2 rpcdn2 0 rn2
vpcdn1 rpcdn1 0 rn1
vpcdn0 rpcdn0 0 rn0
vdin din 0 0

Where:

■ Voltage source voeb controls the output enable of the buffer and is set to disabled
for inputs.

■ vopdrain controls the open drain mode for the I/O.

■ vrambh controls the bus hold circuitry in the I/O.

■ vrpullup controls the weak pullup.

■ The next 11 voltages sources control the I/O standard of the buffer and are
configured through a later library call.

■ vdin is not used on input pins because it is the data pin for the output buffer.
Quartus II Handbook Version 13.1 November 2013 Altera Corporation
Volume 2: Design Implementation and Optimization

Chapter 6: Signal Integrity Analysis with Third-Party Tools 6–31
Simulation with HSPICE Models
Buffer Netlist
The buffer netlist block (Example 6–10) of the simulation spice deck loads all the load
models required for the corresponding input pin.

Drive Strength
The drive strength block (Example 6–11) of the simulation SPICE deck loads the
configuration bits necessary to configure the I/O into the proper I/O standard and
drive strengths. Although these settings are not relevant to an input buffer, they are
provided to allow the SPICE deck to be modifiable to support bidirectional
simulations.

I/O Buffer Instantiation
The I/O buffer instantiation block of the simulation SPICE deck instantiates the
necessary power supplies and I/O model components that are necessary to simulate
the given I/O.

Example 6–10. Buffer Netlist Block

* IO Buffer Netlist

.include ‘vio_buffer.inc’

Example 6–11. Drive Strength Block

* Drive Strength Settings

.lib ‘drive_select_hio.lib’ 3p3ttl_12ma
November 2013 Altera Corporation Quartus II Handbook Version 13.1
Volume 2: Design Implementation and Optimization

6–32 Chapter 6: Signal Integrity Analysis with Third-Party Tools
Simulation with HSPICE Models
Example 6–12 shows I/O buffer instantiation.

Board Trace and Termination
The board trace and termination block of the simulation SPICE deck is provided only
as an example (shown in Example 6–13). Replace this block with your own board
trace and termination models.

Stimulus Model
The stimulus model block of the simulation spice deck is provided only as a place
holder example (shown in Example 6–14). Replace this block with your own stimulus
model. Options for this include an IBIS or HSPICE model, among others.

Example 6–12. I/O Buffer Instantiation

I/O Buffer Instantiation

* Supply Voltages Settings
.param vcn=3.135
.param vpd=2.97
.param vc=1.15

* Instantiate Power Supplies|
vvcc vcc 0 vc * FPGA core voltage
vvss vss 0 0 * FPGA core ground
vvccn vccn 0 vcn * IO supply voltage
vvssn vssn 0 0 * IO ground
vvccpd vccpd 0 vpd * Pre-drive supply voltage

* Instantiate I/O Buffer
xvio_buf din oeb opdrain die rambh
+ rpcdn4 rpcdn3 rpcdn2 rpcdn1 rpcdn0
+ rpcdp5 rpcdp4 rpcdp3 rpcdp2 rpcdp1 rpcdp0
+ rpullup vccn vccpd vcpad0 vio_buf

* Internal Loading on Pad
* - No loading on this pad due to differential buffer/support
* circuitry

* I/O Buffer Package Model
* - Single-ended I/O standard on a Row I/O
.lib ‘lib/package.lib’ hio
xpkg die pin hio_pkg

Example 6–13. Board Trace and Termination Block

* I/O Board Trace and Termination Description
* - Replace this with your board trace and termination description

wtline pin vssn load vssn N=1 L=1 RLGCMODEL=tlinemodel
.MODEL tlinemodel W MODELTYPE=RLGC N=1 Lo=7.13n Co=2.85p
Rterm2 load vssn 1x

Example 6–14. Stimulus Model Block

* Sample source stimulus placeholder
* - Replace this with your I/O driver model

Vsource source 0 pulse(0 vcn 0s 0.4ns 0.4ns 8.5ns 17.4ns)
Quartus II Handbook Version 13.1 November 2013 Altera Corporation
Volume 2: Design Implementation and Optimization

Chapter 6: Signal Integrity Analysis with Third-Party Tools 6–33
Simulation with HSPICE Models
Simulation Analysis
The simulation analysis block (Example 6–15) of the simulation file is configured to
measure the propagation delay from the source to the FPGA pin. Both the source and
end point of the delay are referenced against the 50% VCCN crossing point of the
waveform.

Sample Output for I/O HSPICE Simulation Deck
The following sections examine a typical HSPICE simulation SPICE deck for an
I/O-type output. Each section presents the simulation file one block at a time.

Header Comment
The first block of an output simulation SPICE deck is the header comment, as shown
in Example 6–16. The purpose of this block is to provide a readable summary of how
the simulation file has been automatically configured by the Quartus II software.

This block has two main components:

■ The first component summarizes the I/O configuration relevant information such
as device, speed grade, and so on.

■ The second component specifies the exact test condition that the Quartus II
software assumes when generating tCO delay numbers. This information is used as
part of the double-counting correction circuitry contained in the simulation file.

The SPICE decks are preconfigured to calculate the slow process corner delay but can
also be used to simulate the fast process corner as well. The fast corner conditions are
listed in the header under the notes section.

Example 6–15. Simulation Analysis Block

* Simulation Analysis Setup

* Print out the voltage waveform at both the source and the pin
.print tran v(source) v(pin)
.tran 0.020ns 17ns

* Measure the propagation delay from the source pin to the pin
* referenced against the 50% voltage threshold crossing point

.measure TRAN tpd_rise TRIG v(source) val=’vcn*0.5’ rise=1
+ TARG v(pin) val =’vcn*0.5’ rise=1
.measure TRAN tpd_fall TRIG v(source) val=’vcn*0.5’ fall=1
+ TARG v(pin) val =’vcn*0.5’ fall=1
November 2013 Altera Corporation Quartus II Handbook Version 13.1
Volume 2: Design Implementation and Optimization

6–34 Chapter 6: Signal Integrity Analysis with Third-Party Tools
Simulation with HSPICE Models
The final section of the header comment lists any warning messages that you must
consider when you use the SPICE decks.

Simulation Conditions
The simulation conditions block (Example 6–17) loads the appropriate process corner
models for the transistors. This condition is automatically set up for the slow timing
corner and must be modified only if other simulation corners are desired.

Example 6–16. Header Comment Block

* Quartus II HSPICE Writer I/O Simulation Deck
*
* This spice simulation deck was automatically generated by
* Quartus II for the following IO settings:
*
* Device: EP2S60F1020C3
* Speed Grade: C3
* Pin: AA4 (out96)
* Bank: IO Bank 6 (Row I/O)
* I/O Standard: LVTTL, 12mA
* OCT: Off
*
* Quartus’ default I/O timing delays assume the following slow
* corner simulation conditions.
* Specified Test Conditions For Quartus II Tco
* Temperature: 85C (Slowest Temperature Corner)
* Transistor Model: TT (Typical Transistor Corner)
* Vccn: 3.135V (Vccn_min = Nominal - 5%)
* Vccpd: 2.97V (Vccpd_min = Nominal - 10%)
* Load: No Load
* Vtt: 1.5675V (Voltage reference is Vccn/2)
* For C3 devices, the TT transistor corner provides an
* approximation for worst case timing. However, for functionality
* simulations, it is recommended that the SS corner be simulated
* as well.
*
* Note: The I/O transistors are specified to operate at least as
* fast as the TT transistor corner, actual production
* devices can be as fast as the FF corner. Any simulations
* for hold times should be conducted using the fast process
* corner with the following simulation conditions.
* Temperature: 0C (Fastest Commercial Temperature Corner
**)
* Transistor Model: FF (Fastest Transistor Corner)
* Vccn: 1.98V (Vccn_hold = Nominal + 10%)
* Vccpd: 3.63V (Vccpd_hold = Nominal + 10%)
* Vtt: 0.95V (Vtt_hold = Vccn/2 - 40mV)
* Vcc: 1.25V (Vcc_hold = Maximum Recommended)
* Package Model: Short-circuit from pad to pin
* Warnings:
Quartus II Handbook Version 13.1 November 2013 Altera Corporation
Volume 2: Design Implementation and Optimization

Chapter 6: Signal Integrity Analysis with Third-Party Tools 6–35
Simulation with HSPICE Models
1 Two separate corners cannot be simulated at the same time. Instead, simulate the base
case using the Quartus corner as one simulation and then perform a second
simulation using the desired customer corner. The results of the two simulations can
be manually added together.

Simulation Options
The simulation options block (Example 6–18) configures the simulation temperature
and configures HSPICE with typical simulation options.

f For a detailed description of these options, consult your HSPICE manual.

Example 6–17. Simulation Conditions Block

* Process Settings

.options brief

.inc ‘sii_tt.inc’ * typical-typical process corner

Example 6–18. Simulation Options Block

* Simulation Options
.options brief=0
.options badchr co=132 scale=1e-6 acct ingold=2 nomod dv=1.0
+ dcstep=1 absv=1e-3 absi=1e-8 probe csdf=2 accurate=1
+ converge=1
.temp 85
November 2013 Altera Corporation Quartus II Handbook Version 13.1
Volume 2: Design Implementation and Optimization

6–36 Chapter 6: Signal Integrity Analysis with Third-Party Tools
Simulation with HSPICE Models
Constraint Definition
The constant definition block (Example 6–19) of the output simulation SPICE deck
instantiates the voltage sources that controls the configuration modes of the I/O
buffer.

I/O Buffer Netlist
The I/O buffer netlist block (Example 6–20) loads all of the models required for the
corresponding pin. These include a model for the I/O output buffer, as well as any
loads that might be present on the pin.

Example 6–19. Constant Definition Block

* Constant Definition

voeb oeb 0 0 * Set to 0 to enable buffer output
vopdrain opdrain 0 0 * Set to vc to enable open drain
vrambh rambh 0 0 * Set to vc to enable bus hold
vrpullup rpullup 0 0 * Set to vc to enable weak pullup
vpci rpci 0 0 * Set to vc to enable pci mode
vpcdp4 rpcdp4 0 rp4 * These control bits set the IO standard
vpcdp3 rpcdp3 0 rp3
vpcdp2 rpcdp2 0 rp2
vpcdp1 rpcdp1 0 rp1
vpcdp0 rpcdp0 0 rp0
vpcdn4 rpcdn4 0 rn4
vpcdn3 rpcdn3 0 rn3
vpcdn2 rpcdn2 0 rn2
vpcdn1 rpcdn1 0 rn1
vpcdn0 rpcdn0 0 rn0
vdin din 0 pulse(0 vc 0s 0.2ns 0.2ns 8.5ns 17.4ns)

Where:

■ Voltage source voeb controls the output enable of the buffer.

■ vopdrain controls the open drain mode for the I/O.

■ vrambh controls the bus hold circuitry in the I/O.

■ vrpullup controls the weak pullup.

■ vpci controls the PCI clamp.

■ The next ten voltage sources control the I/O standard of the buffer and are configured through a later
library call. Stratix III and Cyclone III devices have more bits and so might have more voltage sources
listed in the constant definition block. They also have slew rate and delay chain settings.

■ vdin is connected to the data input of the I/O buffer.

■ The edge rate of the input stimulus is automatically set to the correct value by the Quartus II software.

Example 6–20. I/O Buffer Netlist Block

*IO Buffer Netlist

.include ‘hio_buffer.inc’

.include ‘lvds_input_load.inc’

.include ‘lvds_oct_load.inc’
Quartus II Handbook Version 13.1 November 2013 Altera Corporation
Volume 2: Design Implementation and Optimization

Chapter 6: Signal Integrity Analysis with Third-Party Tools 6–37
Simulation with HSPICE Models
Drive Strength
The drive strength block (Example 6–21) of the simulation spice deck loads the
configuration bits for configuring the I/O to the proper I/O standard and drive
strength. These options are set by the HSPICE Writer tool and are not changed for
expected use.

Slew Rate and Delay Chain
Stratix III and Cyclone III devices have sections for configuring the slew rate and
delay chain settings (Example 6–22).

Example 6–21. Drive Strength Block

* Drive Strength Settings

.lib ‘drive_select_hio.lib’ 3p3ttl_12ma

Example 6–22. Slew Rate and Delay Chain Settings

* Programmable Output Delay Control Settings

.lib ‘lib/output_delay_control.lib’ no_delay

* Programmable Slew Rate Control Settings

.lib ‘lib/slew_rate_control.lib’ slow_slow
November 2013 Altera Corporation Quartus II Handbook Version 13.1
Volume 2: Design Implementation and Optimization

6–38 Chapter 6: Signal Integrity Analysis with Third-Party Tools
Simulation with HSPICE Models
I/O Buffer Instantiation
The I/O buffer instantiation block (Example 6–23) of the output simulation spice deck
instantiates the necessary power supplies and I/O model components that are
necessary to simulate the given I/O.

Board and Trace Termination
The board trace and termination block (Example 6–24) of the simulation SPICE deck is
provided only as an example. Replace this block with your specific board loading
models.

Example 6–23. I/O Buffer Instantiation Block

* I/O Buffer Instantiation

* Supply Voltages Settings
.param vcn=3.135
.param vpd=2.97
.param vc=1.15

* Instantiate Power Supplies
vvcc vcc 0 vc * FPGA core voltage
vvss vss 0 0 * FPGA core ground
vvccn vccn 0 vcn * IO supply voltage
vvssn vssn 0 0 * IO ground
vvccpd vccpd 0 vpd * Pre-drive supply voltage

* Instantiate I/O Buffer
xhio_buf din oeb opdrain die rambh
+ rpcdn4 rpcdn3 rpcdn2 rpcdn1 rpcdn0
+ rpcdp4 rpcdp3 rpcdp2 rpcdp1 rpcdp0
+ rpullup vccn vccpd vcpad0 hio_buf

* Internal Loading on Pad
* - This pad has an LVDS input buffer connected to it, along
* with differential OCT circuitry. Both are disabled but
* introduce loading on the pad that is modeled below.
xlvds_input_load die vss vccn lvds_input_load
xlvds_oct_load die vss vccpd vccn vcpad0 vccn lvds_oct_load

* I/O Buffer Package Model
* - Single-ended I/O standard on a Row I/O
.lib ‘lib/package.lib’ hio
xpkg die pin hio_pkg

Example 6–24. Board Trace and Termination Block

* I/O Board Trace And Termination Description
* - Replace this with your board trace and termination description

wtline pin vssn load vssn N=1 L=1 RLGCMODEL=tlinemodel
.MODEL tlinemodel W MODELTYPE=RLGC N=1 Lo=7.13n Co=2.85p
Rterm2 load vssn 1x
Quartus II Handbook Version 13.1 November 2013 Altera Corporation
Volume 2: Design Implementation and Optimization

Chapter 6: Signal Integrity Analysis with Third-Party Tools 6–39
Simulation with HSPICE Models
Double-Counting Compensation Circuitry
The double-counting compensation circuitry block (Example 6–25) of the simulation
SPICE deck instantiates a second I/O buffer that is used to measure double-counting.
The buffer is configured identically to the user I/O buffer but is connected to the
Quartus II software test load. The simulated delay of this second buffer can be
interpreted as the amount of double-counting between the Quartus II software and
HSPICE Writer simulated results.

As the amount of double-counting is constant for a given I/O standard on a given pin,
consider separating the double-counting circuitry from the simulation file. In doing
so, you can perform any number of I/O simulations while referencing the delay only
once. For more information about the double-counting problem, refer to “The Double
Counting Problem in HSPICE Simulations” on page 6–17.

Example 6–25. (Part 1 of 2)Double-Counting Compensation Circuitry Block

* Double Counting Compensation Circuitry
*
* The following circuit is designed to calculate the amount of
* double counting between Quartus II and the HSPICE models. If
* you have not changed the default simulation temperature or
* transistor corner the double counting will be automatically
* compensated by this spice deck. In the event you wish to
* simulate an IO at a different temperature or transistor corner
* you will need to remove this section of code and manually
* account for double counting. A description of Altera’s
* recommended procedure for this process can be found in the
* Quartus II HSPICE Writer AppNote.
*

* Supply Voltages Settings
.param vcn_tl=3.135
.param vpd_tl=2.97

* Test Load Constant Definition
vopdrain_tl opdrain_tl 0 0
vrambh_tl rambh_tl 0 0
vrpullup_tl rpullup_tl 0 0

* Instantiate Power Supplies
vvccn_tl vccn_tl 0 vcn_tl
vvssn_tl vssn_tl 0 0
vvccpd_tl vccpd_tl 0 vpd_tl

* Instantiate I/O Buffer
xhio_testload din oeb opdrain_tl die_tl rambh_tl
+ rpcdn4 rpcdn3 rpcdn2 rpcdn1 rpcdn0
+ rpcdp4 rpcdp3 rpcdp2 rpcdp1 rpcdp0
+ rpullup_tl vccn_tl vccpd_tl vcpad0_tl hio_buf

* Internal Loading on Pad
xlvds_input_testload die_tl vss vccn_tl lvds_input_load
xlvds_oct_testload die_tl vss vccpd_tl vccn_tl vcpad0_tl vccn_tl
lvds_oct_load
November 2013 Altera Corporation Quartus II Handbook Version 13.1
Volume 2: Design Implementation and Optimization

6–40 Chapter 6: Signal Integrity Analysis with Third-Party Tools
Simulation with HSPICE Models
Simulation Analysis
The simulation analysis block (Example 6–26) is set up to measure double-counting
corrected delays. This is accomplished by measuring the uncompensated delay of the
I/O buffer when connected to the user load, and when subtracting the simulated
amount of double-counting from the test load I/O buffer.

Advanced Topics
The information in this section describes some of the more advanced topics and
methods employed when setting up and running HSPICE simulation files.

PVT Simulations
The automatically generated HSPICE simulation files are set up to simulate the slow
process corner using low voltage, high temperature, and slow transistors. To ensure a
fully robust link, Altera recommends that you run simulations over all process
corners.

To perform process, voltage, and temperature (PVT) simulations, manually modify
the spice decks in a two step process:

* I/O Buffer Package Model
* - Single-ended I/O standard on a Row I/O
.lib ‘lib/package.lib’ hio
xpkg die pin hio_pkg

* Default Altera Test Load
* - 3.3V LVTTL default test condition is an open load

Example 6–26. Simulation Analysis Block

*Simulation Analysis Setup

* Print out the voltage waveform at both the pin and far end load
.print tran v(pin) v(load)
.tran 0.020ns 17ns

* Measure the propagation delay to the load pin. This value will
* include some double counting with Quartus II’s Tco
.measure TRAN tpd_uncomp_rise TRIG v(din) val=’vc*0.5’ rise=1
+ TARG v(load) val=’vcn*0.5’ rise=1
.measure TRAN tpd_uncomp_fall TRIG v(din) val=’vc*0.5’ fall=1
+ TARG v(load) val=’vcn*0.5’ fall=1

* The test load buffer can calculate the amount of double counting
.measure TRAN t_dblcnt_rise TRIG v(din) val=’vc*0.5’ rise=1
+ TARG v(pin_tl) val=’vcn_tl*0.5’ rise=1
.measure TRAN t_dblcnt_fall TRIG v(din) val=’vc*0.5’ fall=1
+ TARG v(pin_tl) val=’vcn_tl*0.5’ fall=1

* Calculate the true propagation delay by subtraction
.measure TRAN tpd_rise PARAM=’tpd_uncomp_rise-t_dblcnt_rise’
.measure TRAN tpd_fall PARAM=’tpd_uncomp_fall-t_dblcnt_fall’

Example 6–25. (Part 2 of 2)Double-Counting Compensation Circuitry Block
Quartus II Handbook Version 13.1 November 2013 Altera Corporation
Volume 2: Design Implementation and Optimization

Chapter 6: Signal Integrity Analysis with Third-Party Tools 6–41
Simulation with HSPICE Models
1. Remove the double-counting compensation circuitry from the simulation file. This
is required as the amount of double-counting is dependant upon how the
Quartus II software calculates delays and is not based on which PVT corner is
being simulated. By default, the Quartus II software provides timing numbers
using the slow process corner.

2. Select the proper corner for the PVT simulation by setting the correct HSPICE
temperature, changing the supply voltage sources, and loading the correct
transistor models.

A more detailed description of HSPICE process corners can be found in the
family-specific HSPICE model documentation. This document is available online with
the HSPICE models as described in “Accessing HSPICE Simulation Kits” on
page 6–17.

Hold Time Analysis
Altera recommends performing worst-case hold time analysis using the fast corner
models, which use fast transistors, high voltage, and low temperature. This involves
modifying the SPICE decks to select the correct temperature option, change the
supply voltage sources, and load the correct fast transistor models. The values of
these parameters are located in the header comment section of the corresponding
simulation deck files.

For a truly worst-case analysis, combine the HSPICE Writer hold time analysis results
with the Quartus II software fast timing model. This requires that you change the
double-counting compensation circuitry in the simulations files to also simulate the
fast process corners, as this is what the Quartus II software uses for the fast timing
model.

1 This method of hold time analysis is recommended only for globally synchronous
buses. Do not apply this method of hold-time analysis to source synchronous buses.
This is because the source synchronous clocking scheme is designed to cancel out
some of the PVT timing effects. If this is not taken into account, the timing results will
not be accurate. Proper source synchronous timing analysis is beyond the scope of this
document.

I/O Voltage Variations
Use each of the FPGA family datasheets to verify the recommended operating
conditions for supply voltages. For current FPGA families, the maximum
recommended voltage corresponds to the fast corner, while the minimum
recommended voltage corresponds to the slow corner. These voltage
recommendations are specified at the power pins of the FPGA and are not necessarily
the same voltage that are seen by the I/O buffers due to package IR drops.

The automatically generated HSPICE simulation files model this IR effect
pessimistically by including a 50-mV IR drop on the VCCPD supply when a high drive
strength standard is being used.

Correlation Report
Correlation reports for the HSPICE I/O models are located in the family-specific
HSPICE I/O buffer simulation kits. Refer to “Accessing HSPICE Simulation Kits” on
page 6–17 for additional information.
November 2013 Altera Corporation Quartus II Handbook Version 13.1
Volume 2: Design Implementation and Optimization

6–42 Chapter 6: Signal Integrity Analysis with Third-Party Tools
Conclusion
Conclusion
As FPGA devices are used in more high-speed applications, it becomes increasingly
necessary to perform board-level signal integrity analysis simulations. You must run
such simulations to ensure good signal integrity between the FPGA and any
connected devices. The Quartus II software helps to simplify this process with the
ability to automatically generate I/O buffer description models easily with the IBIS
and HSPICE Writers. IBIS models can be integrated into a third-party signal integrity
analysis workflow using a tool such as Mentor Graphics HyperLynx software,
generating quick and accurate simulation results. HSPICE decks include
preconfigured simulations and only require descriptions of board routing and
stimulus models to create highly accurate simulation results using Synopsys HSPICE.
Either type of simulation helps prevent unnecessary board spins, increasing your
productivity and decreasing your costs.

Document Revision History
Table 6–3 shows the revision history for this chapter.

Table 6–3. Document Revision History

Date Version Changes

November 2013 13.1.0 Removed HardCopy device information.

June 2012 12.0.0 Removed survey link.

November 2011 10.0.2 Template update.

December 2010 10.0.1 Template update.

July 2010 10.0.0 Updated device support.

November 2009 9.1.0 No change to content.

March 2009 9.0.0
■ Was volume 3, chapter 12 in the 8.1.0 release.

■ No change to content.

November 2008 8.1.0

■ Changed to 8-1/2 x 11 page size.

■ Added information for Stratix III devices.

■ Input signals for Cyclone III devices are supported.

May 2008 8.0.0

■ Updated “Introduction” on page 12–1.

■ Updated Figure 12–1.

■ Updated Figure 12–3.

■ Updated Figure 12–13.

■ Updated “Output File Generation” on page 12–6.

■ Updated “Simulation with HSPICE Models” on page 12–17.

■ Updated “Invoking HSPICE Writer from the Command Line” on page 12–22.

■ Added “Sample Input for I/O HSPICE Simulation Deck” on page 12–29.

■ Added “Sample Output for I/O HSPICE Simulation Deck” on page 12–33.

■ Updated “Correlation Report” on page 12–41.

■ Added hyperlinks to referenced documents and websites throughout the chapter.

■ Made minor editorial updates.
Quartus II Handbook Version 13.1 November 2013 Altera Corporation
Volume 2: Design Implementation and Optimization

Chapter 6: Signal Integrity Analysis with Third-Party Tools 6–43
Document Revision History
f For previous versions of the Quartus II Handbook, refer to the Quartus II Handbook
Archive.
November 2013 Altera Corporation Quartus II Handbook Version 13.1
Volume 2: Design Implementation and Optimization

http://www.altera.com/literature/lit-qts_archive.jsp
http://www.altera.com/literature/lit-qts_archive.jsp

QII52015-12.0.0

© 2012 Altera Corporation. All rights reserved. ALTERA, ARRI
are trademarks of Altera Corporation and registered in the U.S
trademarks or service marks are the property of their respectiv
semiconductor products to current specifications in accordance
services at any time without notice. Altera assumes no respons
described herein except as expressly agreed to in writing by Al
on any published information and before placing orders for pr

Quartus II Handbook Version 13.1
Volume 2: Design Implementation and Optimization
June 2012

June 2012
QII52015-12.0.0
7. Mentor Graphics PCB Design Tools
Support
This chapter discusses how the Quartus® II software interacts with the Mentor
Graphics® I/O Designer software and the DxDesigner software to provide a complete
FPGA-to-board design workflow.

With today’s large, high-pin-count and high-speed FPGA devices, good and correct
PCB design practices are essential to ensure correct system operation. The PCB design
takes place concurrently with the design and programming of the FPGA. The FPGA
or ASIC designer initially creates signal and pin assignments, and the board designer
must correctly transfer these assignments to the symbols in their system circuit
schematics and board layout. As the board design progresses, Altera recommends
reassigning pins to optimize the PCB layout. Ensure that you inform the FPGA
designer of the pin reassignments so that the new assignments are included in an
updated placement and routing of the design.

The Mentor Graphics I/O Designer software allows you to take advantage of the full
FPGA symbol design, creation, editing, and back-annotation flow supported by the
Mentor Graphics tools.

This chapter covers the following topics:

■ Performing design flow between the Quartus II software, the Mentor Graphics
I/O Designer software, and the DxDesigner software

■ Setting up the Quartus II software to create the design flow files

■ Creating an I/O Designer database project to incorporate the Quartus II software
signal and pin assignment data

■ Updating signal and pin assignment changes between the I/O Designer software
and the Quartus II software

■ Generating symbols in the I/O Designer software

■ Creating symbols in the DxDesigner software from the Quartus II software output
files without the use of the I/O Designer software

This chapter is intended for board design and layout engineers who want to start the
FPGA board integration while the FPGA is still in the design phase. Alternatively, the
board designer can plan the FPGA pin-out and routing requirements in the Mentor
Graphics tools and pass the information back to the Quartus II software for placement
and routing. Part librarians can also benefit from this chapter by learning how to use
output from the Quartus II software to create new library parts and symbols.

The procedures in this chapter require the following software:

■ The Quartus II software version 5.1 or later

■ DxDesigner software version 2004 or later
A, CYCLONE, HARDCOPY, MAX, MEGACORE, NIOS, QUARTUS and STRATIX words and logos
. Patent and Trademark Office and in other countries. All other words and logos identified as
e holders as described at www.altera.com/common/legal.html. Altera warrants performance of its
 with Altera's standard warranty, but reserves the right to make changes to any products and
ibility or liability arising out of the application or use of any information, product, or service
tera. Altera customers are advised to obtain the latest version of device specifications before relying
oducts or services.

Feedback SubscribeTwitter

ISO
9001:2008
Registered

https://www.altera.com/servlets/subscriptions/alert?id=QII52015
http://www.altera.com/common/legal.html
http://www.altera.com/support/reliability/certifications/rel-certifications.html
http://www.altera.com/support/reliability/certifications/rel-certifications.html
http://twitter.com/home/?status=Mentor+Graphics+PCB+Design+Tools+Support+http://www.altera.com/literature/hb/qts/qts_qii52015.pdf?WT.mc_id=gc_so_tw_st_tx_a_011+(via @alteracorp)+%23Altera
mailto:TechDocFeedback@altera.com?subject=Feedback on qts_qii52015-12.0 (QII HB, Vol2, Ch7: Mentor Graphics PCB Design Tools Support)

7–2 Chapter 7: Mentor Graphics PCB Design Tools Support
FPGA-to-PCB Design Flow
■ Mentor Graphics I/O Designer software (optional)

f To obtain and license the Mentor Graphics tools and for product information, support,
and training, refer to the Mentor Graphics website (www.mentor.com).

FPGA-to-PCB Design Flow
You can create a design flow integrating an Altera® FPGA design from the Quartus II
software, and a circuit schematic in the DxDesigner software. Figure 7–1 shows the
design flow with and without the I/O Designer software.

To perform the design flow shown in Figure 7–1, follow these steps:

1. In the Quartus II software, set up the board-level assignment settings to generate
an .fx for symbol generation.

2. Compile your design to generate the .fx and Pin-Out File (.pin). You can locate the
generated .fx and .pin files in the Quartus II project directory.

Figure 7–1. Design Flow with and Without the I/O Designer Software

Note to Figure 7–1:

(1) The Quartus II software generates the .fx in the output directory you specify in the Board-Level page of the Settings dialog box. However, the
Quartus II software and the I/O Designer software can import pin assignments from an .fx located in any directory. Altera recommends working
with a backup .fx to prevent overwriting existing assignments or importing invalid assignments.

No

I/O Designer

Regenerate .fx

Create or Change
Pin Assignments

Create or Update
I/O Designer

Database (.fpc)

Generate Symbol

Create or Change
Pin Assignments

Run I/O Assignment
Analysis

Set Up to Generate
FPGA Xchange File (.fx)

Compile and Run
EDA Netlist Writer

Start FPGA Design Start PCB Design

End

Quartus II Software

Using I/O
Designer?

Import Pin
Assignments

DxDesigner

Instantiate Symbol
in Schematic

Generate Symbol

Create New or Open
Existing Project

Forward to Board
Layout Tool

Board Layout Tool

Back-Annotate
Changes

.fx

.pin

Yes

(1)

Layout & Route
FPGA

Changes?

Yes

No
Quartus II Handbook Version 13.1 June 2012 Altera Corporation
Volume 2: Design Implementation and Optimization

http://www.mentor.com/

Chapter 7: Mentor Graphics PCB Design Tools Support 7–3
FPGA-to-PCB Design Flow
3. Create a board design with the DxDesigner software and the I/O Designer
software by performing the following steps:

a. Create a new I/O Designer database based on the .fx and the .pin files.

b. In the I/O Designer software, make adjustments to signal and pin assignments.

c. Regenerate the .fx in the I/O Designer software to export the I/O Designer
software changes to the Quartus II software.

d. Generate a single or fractured symbol for use in the DxDesigner software.

e. Add the symbol to the sym directory of a DxDesigner project, or specify a new
DxDesigner project with the new symbol.

f. Instantiate the symbol in your DxDesigner schematic and export the design to
the board layout tool.

g. Back-annotate pin changes created in the board layout tool to the DxDesigner
software and back to the I/O Designer software and the Quartus II software.

4. Create a board design with the DxDesigner software without the I/O Designer
software by performing the following steps:

a. Create a new DxBoardLink symbol with the Symbol wizard and reference the
.pin from the Quartus II software in an existing DxDesigner project.

b. Instantiate the symbol in your DxDesigner schematic and export the design to
a board layout tool.

1 You can update these symbols with design changes with or without the I/O Designer
software. If you use the Mentor Graphics I/O Designer software and you change
symbols with the DxDesigner software, you must reimport the symbols into
I/O Designer to avoid overwriting your symbol changes.

Performing Simultaneous Switching Noise (SSN) Analysis of Your FPGA
With the Quartus II software, you can extract pin assignment data and perform SSN
analysis of your design for designs targeting the Stratix III device family. You can
perform SSN analysis early in the board layout stage as part of your overall pin
planning process; however, you do not have to perform SSN analysis to generate pin
assignment data from the Quartus II software. You can use the SSN Analyzer tool in
the Quartus II software to optimize the pin assignments for better SSN performance.

f For more information about the SSN Analyzer, refer to the Simultaneous Switching
Noise (SSN) Analysis and Optimizations chapter in volume 2 of the Quartus II Handbook
and About the SSN Analyzer in Quartus II Help.
June 2012 Altera Corporation Quartus II Handbook Version 13.1
Volume 2: Design Implementation and Optimization

www.altera.com/literature/hb/qts/qts_qii52018.pdf
www.altera.com/literature/hb/qts/qts_qii52018.pdf
http://quartushelp.altera.com/current/master.htm#mergedProjects/optimize/ssn/ssn_about_si_analyzer.htm

7–4 Chapter 7: Mentor Graphics PCB Design Tools Support
Setting Up the Quartus II Software
Setting Up the Quartus II Software
You can transfer pin and signal assignments from the Quartus II software to the
Mentor Graphics tools by generating .pin and .fx files (refer to Figure 7–2). The .pin is
an output file generated by the Quartus II Fitter that contains pin assignment
information. You can use the Quartus II Pin Planner to set and change the
assignments contained in the .pin and then transfer the assignments to the Mentor
Graphics tools. You cannot, however, import pin assignment changes from the Mentor
Graphics tools into the Quartus II software with the .pin.

The .pin lists all used and unused pins on your selected Altera device. It also provides
the following basic information fields for each assigned pin on the device:

■ Pin signal name and usage

■ Pin number

■ Signal direction

■ I/O standard

■ Voltage

■ I/O bank

■ User or Fitter-assigned

The .fx is an input/output file generated by the Quartus II software and the I/O
Designer software that can be imported and exported from both programs. The .fx
generated by the Quartus II software lists only assigned pins and provides the
following advanced information fields for each pin on a device:

■ Pin number

■ I/O bank

■ Signal name

■ Signal direction

■ I/O standard

■ Drive strength (mA)

■ Termination enabling

■ Slew rate

■ IOB delay

■ Swap group

■ Differential pair type

The .fx generated by the I/O Designer software lists all pins, including unused pins.
In addition to the advanced information fields listed above, the .fx generated by the
Mentor Graphics I/O Designer software also includes the following information
fields:

■ Device pin name

■ Pin set

■ Pin set position
Quartus II Handbook Version 13.1 June 2012 Altera Corporation
Volume 2: Design Implementation and Optimization

Chapter 7: Mentor Graphics PCB Design Tools Support 7–5
Setting Up the Quartus II Software
■ Pin set group

■ Super pin set group

■ Super pin set position

f For more information about .fx files and the information fields added by the Mentor
Graphics software, refer to FPGA Xchange-Format File (.fx) Definition in Quartus II
Help and Mentor Graphics website (www.mentor.com) respectively.

The I/O Designer software can also read from or update a Quartus II Settings File
(.qsf). The design flow uses the .qsf in a similar manner to the .fx, but does not
transfer pin swap group information between the I/O Designer software and the
Quartus II software.

1 Because the .qsf contains additional information about your project that the Mentor
Graphics I/O Designer software does not use, Altera recommends using the .fx
instead of the .qsf.

h For more information about the .qsf, refer to Quartus II Settings File (.qsf) Definition in
Quartus II Help.

Generating a .pin File
The Quartus II software automatically generates the .pin after compiling your FPGA
design or during I/O assignment analysis.

To start I/O assignment analysis, on the Processing menu, point to Start and then
click Start I/O Assignment Analysis. The Quartus II Fitter generates the .pin and
places the file in your Quartus II design directory with the name <project name>.pin.
The Quartus II software cannot import assignments from an existing .pin.

Figure 7–2 shows how to generate .pin and .fx files.

Figure 7–2. Generating .pin and .fx Files (1)

Note to Figure 7–2:

(1) For more information about the full design flow, which includes the I/O Designer software, the DxDesigner software,
and the board layout tool flowchart details, refer to Figure 7–1.

Create or Change
Pin Assignments

Run I/O Assignment
Analysis

Set Up to Generate
.fx

Compile and Run
EDA Netlist Writer

Start FPGA Design
Quartus II Software

Import Pin
Assignments

.fx

.pin
June 2012 Altera Corporation Quartus II Handbook Version 13.1
Volume 2: Design Implementation and Optimization

http://quartushelp.altera.com/current/master.htm#mergedProjects/reference/glossary/def_qsf.htm
www.mentor.com
http://quartushelp.altera.com/current/master.htm#mergedProjects/reference/glossary/def_fpga_xchange.htm

7–6 Chapter 7: Mentor Graphics PCB Design Tools Support
FPGA-to-Board Integration with the I/O Designer Software
f For more information about pin and signal assignment transfer and the files that the
Quartus II software can import and export, refer to the I/O Management chapter in
volume 2 of the Quartus II Handbook.

Generating an .fx File
You can generate an .fx in the Quartus II software for symbol generation in the
Mentor Graphics I/O Designer software.

h For more information about generating an .fx, refer to Generating FPGA
Xchange-Format Files for Use with Other EDA Tools in Quartus II Help.

Creating a Backup .qsf
To create a backup .qsf of your current pin assignments, follow these steps:

1. On the Assignments menu, click Import Assignments. The Import Assignments
dialog box appears.

2. In the Import Assignments dialog box, browse to your project and turn on Copy
existing assignments into <project name>.qsf.bak.

3. Click OK.

f For more information about pin and signal assignment transfer, and files the
Quartus II software can import and export, refer to the I/O Management chapter in
volume 2 of the Quartus II Handbook.

FPGA-to-Board Integration with the I/O Designer Software
The Mentor Graphics I/O Designer software allows you to integrate your FPGA and
PCB designs. Pin and signal assignment changes can be made anywhere in the design
flow with either the Quartus II Pin Planner or the I/O Designer software. The
I/O Designer software facilitates moving these changes, as well as synthesis,
placement, and routing changes, between the Quartus II software, an external
synthesis tool (if used), and a schematic capture tool such as the DxDesigner software.

This section describes how to use the I/O Designer software to transfer pin and signal
assignment information to and from the Quartus II software with an .fx, and how to
create symbols for the DxDesigner software.
Quartus II Handbook Version 13.1 June 2012 Altera Corporation
Volume 2: Design Implementation and Optimization

www.altera.com/literature/hb/qts/qts_qii52013.pdf
http://quartushelp.altera.com/current/master.htm#mergedProjects/eda/boardlevel/fpgaxchange/eda_pro_gen_fpga_xchange.htm
http://quartushelp.altera.com/current/master.htm#mergedProjects/eda/boardlevel/fpgaxchange/eda_pro_gen_fpga_xchange.htm
http://www.altera.com/literature/hb/qts/qts_qii52013.pdf

Chapter 7: Mentor Graphics PCB Design Tools Support 7–7
FPGA-to-Board Integration with the I/O Designer Software
Figure 7–3 shows the design flow using the I/O Designer software.

f For more information about the I/O Designer software, and to obtain usage, support,
and product updates, use the Help menu in the I/O Designer software or refer to the
Mentor Graphics website (www.mentor.com).

I/O Designer Database Wizard
An .fpc file stores all I/O Designer project information. You can create a new database
incorporating information for the .fx and .pin files generated by the Quartus II
software using the I/O Designer Database Wizard. You can also create a new, empty
database and manually add the assignment information. If there is no signal or pin
assignment information currently available, you can create an empty database
containing only a selection of the target device. This action is useful if you know the
signals in your design and the pins you want to assign. You can transfer this
information at a later time to the Quartus II software for placement and routing.

Figure 7–3. Design Flow Using the I/O Designer Software (1)

Notes to Figure 7–3:

(1) For more information about the full design flow including the Quartus II software flowchart details, refer to Figure 7–1
on page 7–2.

(2) These are DxDesigner software-specific steps in the design flow and are not part of the I/O Designer flow.

I/O Designer

Regenerate .fx

Create or Change
Pin Assignments

Create or Update
 .fpc

Generate Symbol

DxDesigner

Instantiate Symbol
in Schematic

Generate Symbol

Create New or Open
Existing Project

Forward to Board
Layout Tool

.fx

.pin

(2)

(2)

End

Board Layout Tool

Back-Annotate
Changes

Layout and Route
FPGA

Changes?

Yes

No
June 2012 Altera Corporation Quartus II Handbook Version 13.1
Volume 2: Design Implementation and Optimization

http://www.mentor.com/

7–8 Chapter 7: Mentor Graphics PCB Design Tools Support
FPGA-to-Board Integration with the I/O Designer Software
You can create an I/O Designer database with only a .pin or an .fx. However, if you
are only using a .pin, you cannot import any I/O assignment changes made in the
I/O Designer software back into the Quartus II software without first generating an
.fx. If an .fx creates the I/O Designer database, the database may not contain all the
available I/O assignment information. The .fx generated by the Quartus II software
only lists pins with assigned signals. Because the .pin lists all device pins—whether
signals are assigned to them or not—its use, along with the .fx, produces the most
complete set of information for creating the I/O Designer database.

If you skip a step in the following process, you can complete the skipped step later. To
return to a skipped step, on the Properties menu, click File. To create a new
I/O Designer database using the Database wizard, follow these steps:

1. Start the I/O Designer software. The Welcome to I/O Designer dialog box
appears. Select Wizard to create new database and click OK.

1 If the Welcome to I/O Designer dialog box does not appear, you can access
the wizard through the menu. To access the wizard, on the File menu, click
Database Wizard.

2. Click Next. The Define HDL source file page appears.

1 If no HDL files are available, or if the .fx contains your signal and pin
assignments, you can skip Step 3 and proceed to Step 4.

f For more information about creating and using HDL files in the Quartus II
software, refer to the Recommended HDL Coding Styles chapter in volume 1
of the Quartus II Handbook, or refer to the I/O Designer Help.

3. If you have created a Verilog HDL or VHDL file in your Quartus II software
design, you can add a top-level Verilog HDL or VHDL file in the I/O Designer
software. Adding a file allows you to create functional blocks or get signal names
from your design. You must create all physical pin assignments in I/O Designer if
you are not using an .fx or a .pin. Click Next. The Database Name page appears.

4. In the Database Name page, type your database file name. Click Next. The
Database Location window appears.

5. Add a path to the new or an existing database in the Location field, or browse to a
database location. Click Next. The FPGA flow page appears.

6. In the Vendor menu, click Altera.

7. In the Tool/Library menu, click Quartus II 5.0, or a later version of the Quartus II
software.

8. Select the appropriate device family, device, package, and speed (if applicable),
from the corresponding menus. Click Next. The Place and route page appears.

1 The Quartus II software version selections in the Tool/Library menu may
not reflect the version of the Quartus II software currently installed in your
system even if you are using the latest version of the I/O Designer
software. The I/O Designer software uses the version number selection in
this window to identify available or obsolete devices in that particular
version of the Quartus II software. If you are unsure of the version to select,
Quartus II Handbook Version 13.1 June 2012 Altera Corporation
Volume 2: Design Implementation and Optimization

http://www.altera.com/literature/hb/qts/qts_qii51007.pdf

Chapter 7: Mentor Graphics PCB Design Tools Support 7–9
FPGA-to-Board Integration with the I/O Designer Software
use the latest version listed in the menu. If the device you are targeting does
not appear in the device menu after making this selection, the device may
be new and not yet added to the I/O Designer software. For I/O Designer
software updates, contact Mentor Graphics or refer to their website
(www.mentor.com).

9. In the FPGAX file name field, type or browse to the backup copy of the .fx
generated by the Quartus II software.

10. In the Pin report file name field, type or browse to the .pin generated by the
Quartus II software. Click Next.

You can also select a .qsf for update. The I/O Designer software can update the
pin assignment information in the .qsf without affecting any other information in
the file.

1 You can select a .pin without selecting an .fx for import. The I/O Designer
software does not generate a .pin. To transfer assignment information to the
Quartus II software, select an additional file and file type. Altera
recommends selecting an .fx in addition to a .pin for transferring all the
assignment information in the .fx and .pin files.

1 In some versions of the I/O Designer software, the standard file picker may
incorrectly look for a .pin instead of an .fx. In this case, select All Files (*.*)
from the Save as type list and select the file from the list.

11. The Synthesis page appears. On the Synthesis page, you can specify an external
synthesis tool and a synthesis constraints file for use with the tool. If you do not
use an external synthesis tool, click Next.

f For more information about third-party synthesis tools, refer to Volume 3:
Verification of the Quartus II Handbook.

12. On the PCB Flow page, you can select an existing schematic project or create a
new project as a symbol information destination.

■ To select an existing project, select Choose existing project and click Browse
after the Project Path field. The Select project dialog box appears. Select the
project.

■ To create a new project, in the Select project dialog box, select Create new
empty project. Type the project file name in the Name field and browse to the
location where you want to save the file. Click OK.

If you have not specified a design tool to which you can send symbol information in
the I/O Designer software, click Advanced in the PCB Flow page and select your
design tool. If you select the DxDesigner software, you have the option to specify a
Hierarchical Occurrence Attributes (.oat) file to import into the I/O Designer
software. Click Next and then click Finish to create the database.

1 In I/O Designer version 2005 or later, the Update Wizard dialog box (refer to
Figure 7–7 on page 7–13) appears if you are creating the database with the Database
wizard. Use the Update Wizard dialog box to confirm creation of the I/O Designer
database using the selected .fx and .pin files.
June 2012 Altera Corporation Quartus II Handbook Version 13.1
Volume 2: Design Implementation and Optimization

http://www.mentor.com/
http://www.altera.com/literature/hb/qts/qts_qii5v3.pdf
http://www.altera.com/literature/hb/qts/qts_qii5v3.pdf

7–10 Chapter 7: Mentor Graphics PCB Design Tools Support
FPGA-to-Board Integration with the I/O Designer Software
Use the I/O Designer software and your newly created database to make pin
assignment changes, create pin swap groups, or adjust signal and pin properties in the
I/O Designer GUI (Figure 7–4).

f For more information about using the I/O Designer software and the DxDesigner
software, refer to the Mentor Graphics website (www.mentor.com) or refer to the
I/O Designer software or the DxDesigner Help.

Figure 7–4. Mentor Graphics I/O Designer Main Window
Quartus II Handbook Version 13.1 June 2012 Altera Corporation
Volume 2: Design Implementation and Optimization

http://www.mentor.com/

Chapter 7: Mentor Graphics PCB Design Tools Support 7–11
FPGA-to-Board Integration with the I/O Designer Software
Updating Pin Assignments from the Quartus II Software
As the design process continues, the FPGA designer must make changes to the logic
design in the Quartus II software that places signals on different pins after
recompiling the design, or manually with the Quartus II Pin Planner. These types of
changes must be carried forward to the circuit schematic and board layout tools to
ensure that signals connect to the correct pins on the FPGA. Updating the .fx and the
.pin files in the Quartus II software facilitates this flow (Figure 7–5).

To update the .fx in your selected output directory and the .pin in your project
directory after making changes to the design, perform one of the following tasks:

■ compile, or

■ start EDA Netlist Writer.

You must rerun the I/O Assignment Analyzer whenever you make I/O changes in
the Quartus II software. To rerun the I/O Assignment Analyzer, perform one of the
following tasks:

■ on the Processing menu, click Start Compilation, or

■ on the Processing menu, click Start I/O Assignment Analysis.

f For more information about setting up the .fx and running the I/O Assignment
Analyzer, refer to the I/O Management chapter in volume 2 of the Quartus II Handbook.

c If your I/O Designer database points to the .fx generated by the Quartus II software
instead of a backup copy of the file, updating the file in the Quartus II software
overwrites any changes made to the file by the I/O Designer software. If there are
I/O Designer assignments in the .fx that you want to preserve, create a backup copy
of the file before updating it in the Quartus II software, and verify that your
I/O Designer database points to the backup copy. To point to the backup copy,
perform the steps in the following section.

Figure 7–5. Updating the I/O Designer Pin Assignments in the Design Flow (1)

Note to Figure 7–5:

(1) For more information about the full design flow, which includes the Quartus II software, the DxDesigner software,
and the board layout tool flowchart details, refer to Figure 7–1 on page 7–2.

I/O Designer

Regenerate .fx

Create or Change
Pin Assignments

Create or Update
 .fpc

Generate Symbol

.fx

.pin
June 2012 Altera Corporation Quartus II Handbook Version 13.1
Volume 2: Design Implementation and Optimization

http://www.altera.com/literature/hb/qts/qts_qii52013.pdf

7–12 Chapter 7: Mentor Graphics PCB Design Tools Support
FPGA-to-Board Integration with the I/O Designer Software
Whenever you update the .fx or the .pin in the Quartus II software, the I/O Designer
database imports the changes. You must set up the locations for the files in the
I/O Designer software.

1. To set up the file locations, on the File menu, click Properties. The project
Properties dialog box appears (Figure 7–6).

2. Under FPGA Xchange, click Browse to select the .fx file name and location.

3. To specify a Pin report file, under Place and Route, click Browse to select the .pin
file name and location.

After you have set up these file locations, the I/O Designer software monitors these
files for changes. If the .fx or .pin changes during the design flow, three indicators
flash red in the lower right corner of the I/O Designer GUI (refer to Figure 7–4 on
page 7–10). You can continue working or click on the indicators to open the
I/O Designer Update Wizard dialog box. If you have made changes to your design in
the Quartus II software that result in an updated .fx or .pin and the update indicators
do not flash or you have previously canceled an indicated update, manually open the
Update Wizard dialog box. To open the Update Wizard dialog box, on the File menu,
click Update.

Figure 7–6. Project Properties Dialog Box
Quartus II Handbook Version 13.1 June 2012 Altera Corporation
Volume 2: Design Implementation and Optimization

Chapter 7: Mentor Graphics PCB Design Tools Support 7–13
FPGA-to-Board Integration with the I/O Designer Software
The I/O Designer Update Wizard dialog box lists the updated files associated with
the database (Figure 7–7).

The paths to the updated files have yellow exclamation points and the Status column
shows Not updated, indicating that the database has not yet been updated with the
newer information contained in the files. A checkmark to the left of any updated file
indicates that the file updates the database. Turn on any files you want to use to
update the I/O Designer database, and click Next. If you are not satisfied with the
database update, on the Edit menu, click Undo.

1 You can update the I/O Designer database using the .fx and the .pin files
simultaneously. Turning on the .fx and the .pin files for update causes the Update
Wizard dialog box to provide options for using assignments from one file or the other
exclusively or merging the assignments contained in both files into the I/O Designer
database. Versions of the I/O Designer software older than version 2005 merge
assignments contained in multiple files.

Figure 7–7. Update Wizard Dialog Box
June 2012 Altera Corporation Quartus II Handbook Version 13.1
Volume 2: Design Implementation and Optimization

7–14 Chapter 7: Mentor Graphics PCB Design Tools Support
FPGA-to-Board Integration with the I/O Designer Software
Sending Pin Assignment Changes to the Quartus II Software
In the same way that the FPGA designer can make adjustments that affect the PCB
design, the board designer can make changes to optimize signal routing and layout
that must be applied to the FPGA. The FPGA designer can take these required
changes back into the Quartus II software to refit the logic to match the adjustments to
the pin-out. The I/O Designer software accommodates this reverse flow as shown in
Figure 7–8.

You can make pin assignment changes directly in the I/O Designer software, or the
software can automatically update changes made in a board layout tool that are
back-annotated to a schematic entry program such as the DxDesigner software. You
must update the .fx to reflect these updates in the Quartus II software. To perform this
update in the I/O Designer software, on the Generate menu, click FPGA Xchange
File.

c If your I/O Designer database points to the .fx generated by the Quartus II software
instead of a backup copy, updating the file from the I/O Designer software overwrites
any changes made to the file by the Quartus II software. If there are assignments from
the Quartus II software in the file that you want to preserve, create a backup copy of
the file before updating it in the I/O Designer software, and verify that your
I/O Designer database points to the backup copy. To point to the backup copy,
perform the steps in “Updating Pin Assignments from the Quartus II Software” on
page 7–11.

Figure 7–8. Updating the Quartus II Pin Assignments in the Reverse Design Flow

Notes to Figure 7–8:

(1) These are software-specific steps in the design flow and are not necessary for the reverse flow steps of the design.
(2) For more information about the full design flow, which includes the complete I/O Designer software, the DxDesigner

software, and the board layout tool flowchart details, refer to Figure 7–1 on page 7–2.

(2)

I/O Designer

Regenerate .fx

Create or Change
Pin Assignments

Create or Update
.fpc

Generate Symbolrr

Create or Change
Pin Assignments

Run I/O Assignment
Analysis

Set Up to Generate
.fx

Compile and Run
EDA Netlist DD Writerrr

Start FPGA Design
Quartus II Software

Import Pin
Assignments

.fx

(1) (1)
Quartus II Handbook Version 13.1 June 2012 Altera Corporation
Volume 2: Design Implementation and Optimization

Chapter 7: Mentor Graphics PCB Design Tools Support 7–15
FPGA-to-Board Integration with the I/O Designer Software
You must import the updated .fx into the Quartus II software. To import the file,
follow these steps:

1. Start the Quartus II software and open your project.

2. On the Assignments menu, click Import Assignments.

3. In the File name box, click Browse and from the Files of type list, select FPGA
Xchange Files (*.fx).

4. Select the .fx and click Open.

5. Click OK.

Protecting Assignments in the Quartus II Software
To protect assignments in the Quartus II software, follow these steps:

1. Start the Quartus II software.

2. On the Assignments menu, click Import Assignments. The Import Assignments
dialog box appears.

3. Turn on Copy existing assignments into <project name>.qsf.bak before importing
before importing the .fx. This action automatically creates a backup copy of the
Quartus II constraints file that contains all your current pin assignments.

Generating Symbols for the DxDesigner Software
Along with circuit simulation, circuit board schematic creation is one of the first tasks
required in the design of a new PCB. Schematics must understand how the PCB
works, and to generate a netlist for a board layout tool for board design and routing.
The I/O Designer software allows you to create schematic symbols based on the
FPGA design exported from the Quartus II software.

Most FPGA devices contain hundreds of pins, requiring large schematic symbols that
may not fit on a single schematic page. Symbol designs in the I/O Designer software
can be split or fractured into various functional blocks, allowing multiple part
fractures on the same schematic page or across multiple pages. In the DxDesigner
software, these part fractures join together with the use of the HETERO attribute.

The I/O Designer software can generate symbols for use in various Mentor Graphics
schematic entry tools, and can import changes back-annotated by board layout tools
to update the database and feed updates back to the Quartus II software with the .fx.
This section discusses symbol creation specifically for the DxDesigner software.

You can create schematic symbols with the I/O Designer software in the following
ways:

■ Manually

■ Using the I/O Designer Symbol wizard

■ Importing previously created symbols from the DxDesigner software

The I/O Designer Symbol wizard can be used as a design base that allows you to
quickly create a symbol for manual editing at a later time. If you have created symbols
in a DxDesigner project and want to apply a different FPGA design to them, you can
manually import these symbols from the DxDesigner project. To import the symbols,
start the I/O Designer software, and on the File menu, click Import Symbol.
June 2012 Altera Corporation Quartus II Handbook Version 13.1
Volume 2: Design Implementation and Optimization

7–16 Chapter 7: Mentor Graphics PCB Design Tools Support
FPGA-to-Board Integration with the I/O Designer Software
f For more information about importing symbols from the DxDesigner software into an
I/O Designer database, refer to the I/O Designer Help.

Symbols created in the I/O Designer software are either functional, physical (PCB), or
both. Signals imported into the database, usually from Verilog HDL or VHDL files,
are the basis of a functional symbol. No physical device pins must be associated with
the signals to generate a functional symbol. This section focuses on board-level PCB
symbols with signals directly mapped to physical device pins through assignments in
either the Quartus II Pin Planner or in the I/O Designer database.

f For more information about manually creating, importing, and editing symbols in the
I/O Designer software, as well as the different types of symbols the software can
generate, refer to the I/O Designer Help.

Setting Up the I/O Designer Software to Work with the DxDesigner Software
To verify if you are set up to export symbols to a DxDesigner project, or to manually
set up the I/O Designer software to work with the DxDesigner software, you must set
the path to the DxDesigner executable, set the export type to DxDesigner, and set the
path to a DxDesigner project directory.

To set these options, follow these steps:

1. Start the I/O Designer software.

2. On the Tools menu, click Preferences. The Preferences dialog box appears.

3. Click Paths, double-click on the DxDesigner executable file path field, and click
Browse to select the location of the DxDesigner application (Figure 7–9).

4. Click Apply.

5. Click Symbol Editor and click Export. In the Export type menu, under General,
select DxDesigner/PADS-Designer (Figure 7–10).

Figure 7–9. Path Preferences Dialog Box
Quartus II Handbook Version 13.1 June 2012 Altera Corporation
Volume 2: Design Implementation and Optimization

Chapter 7: Mentor Graphics PCB Design Tools Support 7–17
FPGA-to-Board Integration with the I/O Designer Software
6. Click Apply and click OK.

7. On the File menu, click Properties. The Properties dialog box appears.

8. Click the PCB Flow tab and click Path to a DxDesigner project directory.

9. Click OK.

If you do not have a new DxDesigner project in the Database wizard and a
DxDesigner project, you must create a new database with the DxDesigner software,
and point the I/O Designer software to this new project.

f For more information about creating and working with DxDesigner projects, refer to
the DxDesigner Help.

Creating Symbols with the Symbol Wizard
You can create, fracture, and edit FPGA symbols based on Altera devices with the
I/O Designer Symbol wizard. To create a symbol based on a selected Altera FPGA
device, follow these steps:

1. Start the I/O Designer software.

Figure 7–10. Symbol Editor Export Preferences
June 2012 Altera Corporation Quartus II Handbook Version 13.1
Volume 2: Design Implementation and Optimization

7–18 Chapter 7: Mentor Graphics PCB Design Tools Support
FPGA-to-Board Integration with the I/O Designer Software
2. Click Symbol Wizard in the toolbar, or on the Symbol menu, click Symbol
Wizard. The Symbol Wizard (1 of 6) page appears (Figure 7–11).

3. On page 1 of the Symbol Wizard page, in the Symbol name field, type the symbol
name. The DEVICE and PKG_TYPE fields are automatically populated with the
device and package information. Under Symbol type, click PCB. Under Use
signals, click All.

4. Click Next. The Symbol Wizard (2 of 6) page appears.

1 If the DEVICE and PKG_TYPE fields are blank or incorrect, cancel the
Symbol wizard and select the correct device information. On the File menu,
click Properties. In the Properties window, click the FPGA Flow tab and
enter the correct device information.

5. On page 2 of the Symbol Wizard page, select fracturing options for your symbol.
If you are using the Symbol wizard to edit a previously created fractured symbol,
you must turn on Reuse existing fractures to preserve your current fractures.
Select other options on this page as appropriate for your symbol.

6. Click Next. The Symbol Wizard (3 of 6) page appears.

7. Additional fracturing options are available on page 3 of the Symbol Wizard page.
After selecting the necessary options, click Next. The Symbol Wizard (4 of 6) page
appears.

8. On page 4 of the Symbol Wizard page, select the options for the appearance of the
symbols. Select the necessary options and click Next. The Symbol Wizard (5 of 6)
page appears.

Figure 7–11. Symbol Wizard
Quartus II Handbook Version 13.1 June 2012 Altera Corporation
Volume 2: Design Implementation and Optimization

Chapter 7: Mentor Graphics PCB Design Tools Support 7–19
FPGA-to-Board Integration with the I/O Designer Software
9. On page 5 of the Symbol Wizard page, define what information you want to label
for the entire symbol and for individual pins. Select the necessary options and
click Next. The Symbol Wizard (6 of 6) page appears.

10. On the final page of the Symbol Wizard page, add additional signals and pins that
have not been placed in the symbol. Click Finish when you complete your
selections.

You can view your symbol and any fractures you created with the Symbol Editor
(Figure 7–12). You can edit parts of the symbol, delete fractures, or rerun the Symbol
wizard.

If assignments in the I/O Designer database are updated, the symbols created in the
I/O Designer software automatically reflect these changes. Assignment changes can
be made in the I/O Designer software, with an updated .fx from the Quartus II
software, or from a back-annotated change in your board layout tool.

Exporting Symbols to the DxDesigner Software
After you have completed your symbols, export the symbols to your DxDesigner
project. To generate all the fractures of a symbol, on the Generate menu, click All
Symbols. To generate a symbol for the currently displayed symbol in Symbol Editor,
click Current Symbol Only. The /sym directory in your DxDesigner project saves
each symbol in the database as a separate file. The symbols can be instantiated in your
DxDesigner schematics.

f For more information about working with DxDesigner projects, refer to the
DxDesigner Help.

Scripting Support
The I/O Designer software features a command line Tcl interpreter. All commands
issued through the GUI in the I/O Designer software translate into Tcl commands run
by the tool. You can view the generated Tcl commands and run scripts, or type
individual commands in the I/O Designer Console window.

Figure 7–12. The I/O Designer Symbol Editor
June 2012 Altera Corporation Quartus II Handbook Version 13.1
Volume 2: Design Implementation and Optimization

7–20 Chapter 7: Mentor Graphics PCB Design Tools Support
FPGA-to-Board Integration with the DxDesigner Software
This scripting support section includes commands that perform some of the
operations described in this chapter.

If you want to change the .fx from which the I/O Designer software updates
assignments, type the following command at an I/O Designer Tcl prompt:

set_fpga_xchange_file <file name>

You can type the following command to update the I/O Designer database with
assignment updates made in the Quartus II software after specifying the .fx:

update_from_fpga_xchange_file

You can type the following command to update the .fx with changes made to the
assignments in the I/O Designer software for transfer back into the Quartus II
software:

generate_fpga_xchange_file

You can type the following command if you want to import assignment data from a
.pin created by the Quartus II software:

set_pin_report_file -quartus_pin <file name>

You can run the I/O Designer Symbol wizard with the following command:

symbolwizard

You can set the DxDesigner project directory path where symbols are saved with the
following command:

set_dx_designer_project -path <path>

f For more information about Tcl scripting and Tcl scripting with the Quartus II
software, refer to the Tcl Scripting chapter in volume 2 of the Quartus II Handbook. For
more information about the Tcl scripting capabilities of the I/O Designer software as
well as a list of available commands, refer to the I/O Designer Help.

FPGA-to-Board Integration with the DxDesigner Software
The Mentor Graphics DxDesigner software is a design entry tool for schematic
capture. You can use it to create flat circuit schematics for all the PCB design types.
You can also use the DxDesigner software to create hierarchical schematics that
facilitate design reuse and a team-based design. You can use the DxDesigner software
in the design flow alone or in conjunction with the I/O Designer software. However,
if you use the DxDesigner software without the I/O Designer software, the design
flow is one-way, using only the .pin generated by the Quartus II software.
Quartus II Handbook Version 13.1 June 2012 Altera Corporation
Volume 2: Design Implementation and Optimization

http://www.altera.com/literature/hb/qts/qts_qii52003.pdf

Chapter 7: Mentor Graphics PCB Design Tools Support 7–21
FPGA-to-Board Integration with the DxDesigner Software
You can only make signal and pin assignment changes in the Quartus II software and
these changes reflect as updated symbols in a DxDesigner schematic. You cannot
back-annotate changes made in a board layout tool or in a DxDesigner symbol to the
Quartus II software. Figure 7–13 shows the design flow without the I/O Designer
software.

f For more information about the DxDesigner software, including usage, support,
training, and product updates, refer to the Mentor Graphics website
(www.mentor.com), or choose Schematic Design Help Topics in the DxDesigner Help.

DxDesigner Project Settings
New projects in the DxDesigner software are set up to create FPGA symbols by
default. However, if you are using the I/O Designer software with the DxDesigner
software, you must enable the DxBoardLink Flow options for complete support and
compatibility with the I/O Designer software.

You can enable the DxBoardLink flow design configuration during or after creating a
new DxDesigner project.

To enable the DxBoardLink flow design configuration when creating a new
DxDesigner project, follow these steps:

1. Start the DxDesigner software.

Figure 7–13. Design Flow Without the I/O Designer Software (1)

Note to Figure 7–13:

(1) For more information about the full design flow, which includes the Quartus II software, the I/O Designer software,
and the board layout tool flowchart details, refer to Figure 7–1 on page 7–2.

DxDesigner

Instantiate in
Schematic

Generate Symbol

Create New or Open
Existing Project

Forward to Board
Layout Tool

.pin
June 2012 Altera Corporation Quartus II Handbook Version 13.1
Volume 2: Design Implementation and Optimization

http://www.mentor.com/

7–22 Chapter 7: Mentor Graphics PCB Design Tools Support
FPGA-to-Board Integration with the DxDesigner Software
2. On the File menu, click New and click the Project tab. The New dialog box
appears (Figure 7–14).

3. Click More. Turn on DxBoardLink (Figure 7–14).

1 To enable the DxBoardLink Flow design configuration in an existing
project, click Design Configurations in the Design Configuration toolbar
and turn on DxBoardLink (Figure 7–15).

Figure 7–14. New Project Dialog Box

Figure 7–15. DxBoardLink Design Configuration
Quartus II Handbook Version 13.1 June 2012 Altera Corporation
Volume 2: Design Implementation and Optimization

Chapter 7: Mentor Graphics PCB Design Tools Support 7–23
FPGA-to-Board Integration with the DxDesigner Software
DxDesigner Symbol Wizard
You can create schematic symbols in the DxDesigner software manually or with the
Symbol wizard. The DxDesigner Symbol wizard is similar to the I/O Designer
Symbol wizard, but with fewer fracturing options.

FPGA symbols based on Altera devices can be created, fractured, and edited with the
DxDesigner Symbol wizard. To start the Symbol wizard, follow these steps:

1. Start the DxDesigner software.

2. Click Symbol Wizard in the toolbar, or on the File menu, click New. The New
window appears. Click the File tab and create a new file of type Symbol Wizard.

3. Type the new symbol name in the name field and click OK. The Symbol Wizard
page appears (Figure 7–16).

4. On the Wizard Task Selection page, choose to create a new symbol or modify an
existing symbol. If you are modifying an existing symbol, specify the library path
or alias, and select the existing symbol. If you are creating a new symbol, select
DxBoardLink for the symbol source. The DxDesigner block type defaults to
Module because the FPGA design does not have an underlying DxDesigner
schematic. Choose whether or not to fracture the symbol. After making your
selections, click Next. The New Symbol and Library Name page appears.

5. On the New Symbol and Library Name page, type a name for the symbol, an
overall part name for all the symbol fractures, and a library name for the new
library created for this symbol. By default, the part and library names are the same
as the symbol name. Click Next. The Symbol Parameters page appears.

Figure 7–16. Wizard Task Selection
June 2012 Altera Corporation Quartus II Handbook Version 13.1
Volume 2: Design Implementation and Optimization

7–24 Chapter 7: Mentor Graphics PCB Design Tools Support
FPGA-to-Board Integration with the DxDesigner Software
6. On the Symbol Parameters page, specify the appearance of the generated symbol
and how it matches up with the grid you have set in your DxDesigner project
schematic. After making your selections, click Next. The DxBoardLink Pin List
Import page appears (Figure 7–17).

7. On the DxBoardLink Pin List Import page, in the FPGA vendor list, select Altera
Quartus. In the Pin-Out file to import field, browse to and select the .pin from
your Quartus II design project directory. You can also select choices from the
Fracturing Scheme, Bus pin, and Power pin options. After making your selections,
click Next. The Symbol Attributes page appears.

8. On the Symbol Attributes page, select to create or modify symbol attributes for
use in the DxDesigner software. After making your selections, click Next. The Pin
Settings page appears.

9. On the Pin Settings page, make any final adjustments to pin and label location
and information. Each tabbed spreadsheet represents a fracture of your symbol.
After making your selections, click Save Symbol.

After creating the symbol, you can examine and place any fracture of the symbol in
your schematic. You can locate separate files of all the fractures you created in the
library you specified or created in the /sym directory in your DxDesigner project. You
can add the symbols to your schematics or you can manually edit the symbols or with
the Symbol wizard.

Figure 7–17. DxBoardLink Pin List Import
Quartus II Handbook Version 13.1 June 2012 Altera Corporation
Volume 2: Design Implementation and Optimization

Chapter 7: Mentor Graphics PCB Design Tools Support 7–25
Conclusion
1 Symbols created in the DxDesigner software can be edited and updated with newer
versions of the .pin generated by the Quartus II software. However, you cannot
fracture a symbol again because symbol fracturing is permanent. To create new
fractures for your design, create a new symbol in the Symbol wizard, and perform the
steps in “DxDesigner Symbol Wizard” on page 7–23.

f For more information about creating, editing, and instantiating component symbols
in DxDesigner, choose Schematic Design Help Topics from the Help menu in the
DxDesigner software.

Conclusion
Transferring a complex, high-pin-count FPGA design to a PCB for prototyping or
manufacturing is a daunting process that can lead to errors in the PCB netlist or
design, especially when multiple engineers are working on different parts of the
project. The design workflow available when using the Quartus II software with the
Mentor Graphics toolset assists the FPGA designer and the board designer in
preventing errors and focusing their attention on the design.

Document Revision History
Table 7–1 shows the revision history for this chapter.

f For previous versions of the Quartus II Handbook, refer to the Quartus II Handbook
Archive.

Table 7–1. Document Revision History

Date Version Changes

June 2012 12.0.0 Removed survey link.

November 2011 10.0.2 Template update.

December 2010 10.0.1 Template update.

July 2010 10.0.0

■ Removed Reference Document section.

■ General style editing.

■ Added a link to Help in “Performing Simultaneous Switching Noise (SSN) Analysis of
Your FPGA.”

■ Removed Figure 8–4 on page 8–9 and Figure 8–5 on page 8–11.

■ Updated “Generating an .fx File.”

November 2009 9.1.0
■ Added minor information about simultaneous switching noise (SSN) analysis on

“Performing Simultaneous Switching Noise (SSN) Analysis of Your FPGA.”

■ General style editing.

March 2009 9.0.0
■ Was chapter 6 in the 8.1.0 release.

■ Removed Figures that were numbered 6-4, 6-6, 6-7, and 6-8 in v8.1.0.

November 2008 8.1.0 Changed to 8½” × 11” page size. No change to content.

May 2008 8.0.0 Updated references.
June 2012 Altera Corporation Quartus II Handbook Version 13.1
Volume 2: Design Implementation and Optimization

http://www.altera.com/literature/lit-qts_archive.jsp
http://www.altera.com/literature/lit-qts_archive.jsp

QII52014-12.0.0

© 2012 Altera Corporation. All rights reserved. ALTERA, ARRI
are trademarks of Altera Corporation and registered in the U.S
trademarks or service marks are the property of their respectiv
semiconductor products to current specifications in accordance
services at any time without notice. Altera assumes no respons
described herein except as expressly agreed to in writing by Al
on any published information and before placing orders for pr

Quartus II Handbook Version 13.1
Volume 2: Design Implementation and Optimization
June 2012

June 2012
QII52014-12.0.0
8. Cadence PCB Design Tools Support
This chapter addresses how the Quartus® II software interacts with the Cadence
Allegro Design Entry HDL software and the Cadence Allegro Design Entry CIS
(Component Information System) software (also known as OrCAD Capture CIS) to
provide a complete FPGA-to-board integration design workflow.

With today’s large, high-pin-count and high-speed FPGA devices, good PCB design
practices are important to ensure the correct operation of your system. The PCB
design takes place concurrently with the design and programming of the FPGA. An
FPGA or ASIC designer initially creates the signal and pin assignments and the board
designer must transfer these assignments to the symbols used in their system circuit
schematics and board layout correctly. As the board design progresses, you must
perform pin reassignments to optimize the layout. You must communicate pin
reassignments to the FPGA designer to ensure the new assignments are processed
through the FPGA with updated placement and routing.

This chapter is intended for board design and layout engineers who want to begin the
FPGA board integration process while the FPGA is still in the design phase. Part
librarians can also benefit from this chapter by learning the method to use output
from the Quartus II software to create new library parts and symbols.

This chapter discusses the following topics:

■ Cadence tool description, history, and comparison.

■ The general design flow between the Quartus II software and the Cadence Allegro
Design Entry HDL software and the Cadence Allegro Design Entry CIS software.

■ Generating schematic symbols from your FPGA design for use in the Cadence
Allegro Design Entry HDL software.

■ Updating Design Entry HDL symbols when making signal and pin assignment
changes in the Quartus II software.

■ Creating schematic symbols in the Cadence Allegro Design Entry CIS software
from your FPGA design.

■ Updating symbols in the Cadence Allegro Design Entry CIS software when
making signal and pin assignment changes in the Quartus II software.

■ Using Altera-provided device libraries in the Cadence Allegro Design Entry CIS
software.

The procedures in this chapter require the following software:

■ The Quartus II software version 5.1 or later

■ The Cadence Allegro Design Entry HDL software or the Cadence Allegro Design
Entry CIS software version 15.2 or later
A, CYCLONE, HARDCOPY, MAX, MEGACORE, NIOS, QUARTUS and STRATIX words and logos
. Patent and Trademark Office and in other countries. All other words and logos identified as
e holders as described at www.altera.com/common/legal.html. Altera warrants performance of its
 with Altera's standard warranty, but reserves the right to make changes to any products and
ibility or liability arising out of the application or use of any information, product, or service
tera. Altera customers are advised to obtain the latest version of device specifications before relying
oducts or services.

Feedback SubscribeTwitter

ISO
9001:2008
Registered

https://www.altera.com/servlets/subscriptions/alert?id=QII52014
http://www.altera.com/common/legal.html
http://www.altera.com/support/reliability/certifications/rel-certifications.html
http://www.altera.com/support/reliability/certifications/rel-certifications.html
http://twitter.com/home/?status=Cadence+PCB+Design+Tools+Support+http://www.altera.com/literature/hb/qts/qts_qii52014.pdf?WT.mc_id=gc_so_tw_st_tx_a_011+(via @alteracorp)+%23Altera
mailto:TechDocFeedback@altera.com?subject=Feedback on qts_qii52014-12.0 (QII HB, Vol2, Ch8: Cadence PCB Design Tools Support)

8–2 Chapter 8: Cadence PCB Design Tools Support
Product Comparison
■ The OrCAD Capture software with the optional CIS option version 10.3 or later
(optional)

1 These programs are very similar because the Cadence Allegro Design Entry CIS
software is based on the OrCAD Capture software. This chapter refers to the Cadence
Allegro Design Entry CIS software; however, any procedural information can also
apply to the OrCAD Capture software unless otherwise noted.

f For more information about obtaining and licensing the Cadence tools and for
product information, support, and training, refer to the Cadence website
(www.cadence.com). For more information about the OrCAD Capture software and
the CIS option, refer to the Cadence website (www.cadence.com). For more
information about Cadence and OrCAD support and training, refer to the EMA
Design Automation website (www.ema-eda.com).

Product Comparison
The Cadence and OrCAD design tools are different in their function and location of
product information. Table 8–1 lists the Cadence and OrCAD products described in
this chapter and provides information about changes, product information, and
support.

Table 8–1. Cadence and OrCAD Product Comparison

Description Cadence Allegro
Design Entry HDL

Cadence Allegro
Design Entry CIS OrCAD Capture CIS

Former Name Concept HDL Expert Capture CIS Studio —

History

More commonly known by its
former name, Cadence renamed all
board design tools in 2004 under
the Allegro name.

Based directly on OrCAD Capture
CIS, the Cadence Allegro Design
Entry CIS software is still developed
by OrCAD but sold and marketed by
Cadence. EMA provides support and
training.

The basis for Design Entry
CIS is still developed by
OrCAD for continued use by
existing OrCAD customers.
EMA provides support and
training for all OrCAD
products.

Vendor Design
Flow

Cadence Allegro 600 series,
formerly known as the Expert
Series, for high-end, high-speed
design.

Cadence Allegro 200 series,
formerly known as the Studio
Series, for small- to medium-level
design.

—

Information
and Support

www.cadence.com

www.ema-eda.com

www.cadence.com

www.ema-eda.com

www.cadence.com

www.ema-eda.com
Quartus II Handbook Version 13.1 June 2012 Altera Corporation
Volume 2: Design Implementation and Optimization

www.cadence.com
http://www.cadence.com/us/pages/default.aspx
http://www.cadence.com/us/pages/default.aspx
http://www.ema-eda.com/
http://www.cadence.com/us/pages/default.aspx
http://www.ema-eda.com/
http://www.cadence.com/us/pages/default.aspx
http://www.ema-eda.com/

Chapter 8: Cadence PCB Design Tools Support 8–3
FPGA-to-PCB Design Flow
FPGA-to-PCB Design Flow
You can create a design flow integrating an Altera FPGA design from the Quartus II
software through a circuit schematic in the Cadence Allegro Design Entry HDL
software or the Cadence Allegro Design Entry CIS software. Figure 8–1 shows the
design flow with the Cadence Allegro Design Entry HDL software. Figure 8–2 shows
the design flow with the Cadence Allegro Design Entry CIS software.

Figure 8–1. Design Flow with the Cadence Allegro Design Entry HDL Software

Project Manager

Create or Open a Project

Run Full
Compilation

Run I/O Assignment
Analysis

Create or Change
Pin Assignments

Part Developer

Start FPGA Design
Start PCB Design

(Allegro Design Entry HDL)

End

Quartus II Software

.pin

Import or Update Pin
Assignments

Create or Update FPGA Symbol

Edit or Fracture Symbol

Design Entry HDL

Instantiate Symbol in Schematic

Forward to Board Layout Tool

Board Layout Tool

Layout and Route FPGA
June 2012 Altera Corporation Quartus II Handbook Version 13.1
Volume 2: Design Implementation and Optimization

8–4 Chapter 8: Cadence PCB Design Tools Support
FPGA-to-PCB Design Flow
Figure 8–1 and Figure 8–2 show the possible design flows, depending on your tool
choice. To create FPGA symbols using the Cadence Allegro PCB Librarian Part
Developer tool, you must obtain the Cadence PCB Librarian Expert license. You can
update symbols with changes made to the FPGA design using any of these tools.

To integrate an Altera FPGA design starting in the Quartus II software through to a
circuit schematic in the Cadence Allegro Design Entry HDL software or the Cadence
Allegro Design Entry CIS software, follow these steps:

1. In the Quartus II software, compile your design to generate a Pin-Out File (.pin) to
transfer the assignments to the Cadence software.

2. If you are using the Cadence Allegro Design Entry HDL software for your
schematic design, follow these steps:

a. Open an existing project or create a new project in the Cadence Allegro Project
Manager tool.

b. Construct a new symbol or update an existing symbol using the Cadence
Allegro PCB Librarian Part Developer tool.

c. With the Cadence Allegro PCB Librarian Part Developer tool, edit your symbol
or fracture it into smaller parts (optional).

d. Instantiate the symbol in your Cadence Allegro Design Entry HDL software
schematic and transfer the design to your board layout tool.

or

If you are using the Cadence Allegro Design Entry CIS software for your
schematic design, follow these steps:

a. Generate a new part in a new or existing Cadence Allegro Design Entry CIS
project, referencing the .pin output file from the Quartus II software. You can
also update an existing symbol with a new .pin.

Figure 8–2. Design Flow with the Cadence Allegro Design Entry CIS Software

Run Full
Compilation

Run I/O Assignment
Analysis

Create or Change
Pin Assignments

Design Entry CISQuartus II Software

End

.pin

Instantiate Symbol in Schematic

Generate or Update Part

Create or Open Project

Forward to Board Layout Tool

Edit or Fracture Symbol

Board Layout Tool

Layout and Route FPGA

Start FPGA Design
Start PCB Design

(Allegro Design Entry CIS)
Quartus II Handbook Version 13.1 June 2012 Altera Corporation
Volume 2: Design Implementation and Optimization

Chapter 8: Cadence PCB Design Tools Support 8–5
Setting Up the Quartus II Software
b. Split the symbol into smaller parts as necessary.

c. Instantiate the symbol in your Cadence Allegro Design Entry CIS schematic
and transfer the design to your board layout tool.

Performing Simultaneous Switching Noise (SSN) Analysis of Your FPGA
With the Quartus II software, you can extract pin assignment data and perform SSN
analysis of your FPGA design for designs targeting the Stratix III device family. You
can analyze SSN in your device early in the board layout stage as part of your overall
pin planning process; however, you do not have to perform SSN analysis to generate
pin assignment data from the Quartus II software. You can use the SSN Analyzer tool
to optimize the pin assignments for better SSN performance of your device.

f For more information about the SSN Analyzer, refer to About the SSN Analyzer in
Quartus II Help and the Simultaneous Switching Noise (SSN) Analysis and Optimizations
chapter in volume 2 of the Quartus II Handbook.

Setting Up the Quartus II Software
You can transfer pin and signal assignments from the Quartus II software to the
Cadence design tools by generating the Quartus II project .pin. The .pin is an output
file generated by the Quartus II Fitter containing pin assignment information. You can
use the Quartus II Pin Planner to set and change the assignments in the .pin and then
transfer the assignments to the Cadence design tools. You cannot, however, import
pin assignment changes from the Cadence design tools into the Quartus II software
with the .pin.

The .pin lists all used and unused pins on your selected Altera device. The .pin also
provides the following basic information fields for each assigned pin on the device:

■ Pin signal name and usage

■ Pin number

■ Signal direction

■ I/O standard

■ Voltage

■ I/O bank

■ User or Fitter-assigned

f For more information about using the Quartus II Pin Planner to create or change pin
assignment details, refer to the I/O Management chapter in volume 2 of the Quartus II
Handbook.

Generating a .pin File
The Quartus II Fitter generates a .pin during a full compilation of your FPGA design,
or when performing I/O assignment analysis on your design. You can locate the .pin
in your Quartus II project directory with the name <project name>.pin.
June 2012 Altera Corporation Quartus II Handbook Version 13.1
Volume 2: Design Implementation and Optimization

http://quartushelp.altera.com/current/master.htm#mergedProjects/optimize/ssn/ssn_about_si_analyzer.htm
http://www.altera.com/literature/hb/qts/qts_qii52013.pdf
www.altera.com/literature/hb/qts/qts_qii52018.pdf

8–6 Chapter 8: Cadence PCB Design Tools Support
FPGA-to-Board Integration with the Cadence Allegro Design Entry HDL Software
f For more information about pin and signal assignment transfer and the files that the
Quartus II software can import and export, refer to the I/O Management chapter in
volume 2 of the Quartus II Handbook.

FPGA-to-Board Integration with the Cadence Allegro Design Entry HDL
Software

The Cadence Allegro Design Entry HDL software is a schematic capture tool and is
part of the Cadence 600 series design flow. Use the Cadence Allegro Design Entry
HDL software to create flat circuit schematics for all types of PCB design. The
Cadence Allegro Design Entry HDL software can also create hierarchical schematics
to facilitate design reuse and team-based design. With the Cadence Allegro Design
Entry HDL software, the design flow from FPGA-to-board is one-way, using only the
.pin generated by the Quartus II software. You can only make signal and pin
assignment changes in the Quartus II software and these changes reflect as updated
symbols in a Cadence Allegro Design Entry HDL project. For more information about
the design flow with the Cadence Allegro Design Entry HDL software, refer to
Figure 8–1 on page 8–3.

1 Routing or pin assignment changes made in a board layout tool or a Cadence Allegro
Design Entry HDL software symbol cannot be back-annotated to the Quartus II
software.

f For more information about the Cadence Allegro Design Entry HDL software and the
Cadence Allegro PCB Librarian Part Developer tool, including licensing, support,
usage, training, and product updates, refer to the Help in the software or to the
Cadence website (www.cadence.com).

Creating Symbols
In addition to circuit simulation, circuit board schematic creation is one of the first
tasks required when designing a new PCB. Schematics must understand how the PCB
works, and to generate a netlist for a board layout tool for board design and routing.
The Cadence Allegro PCB Librarian Part Developer tool allows you to create
schematic symbols based on FPGA designs exported from the Quartus II software.

You can create symbols for the Cadence Allegro Design Entry HDL project with the
Cadence Allegro PCB Librarian Part Developer tool, which is available in the Cadence
Allegro Project Manager tool. Altera recommends using the Cadence Allegro PCB
Librarian Part Developer tool to import FPGA designs into the Cadence Allegro
Design Entry HDL software.

You must obtain a PCB Librarian Expert license from Cadence to run the Cadence
Allegro PCB Librarian Part Developer tool. The Cadence Allegro PCB Librarian Part
Developer tool provides a GUI with many options for creating, editing, fracturing,
and updating symbols. If you do not use the Cadence Allegro PCB Librarian Part
Developer tool, you must create and edit symbols manually in the Symbol Schematic
View in the Cadence Allegro Design Entry HDL software.
Quartus II Handbook Version 13.1 June 2012 Altera Corporation
Volume 2: Design Implementation and Optimization

http://www.cadence.com/us/pages/default.aspx
http://www.altera.com/literature/hb/qts/qts_qii52013.pdf

Chapter 8: Cadence PCB Design Tools Support 8–7
FPGA-to-Board Integration with the Cadence Allegro Design Entry HDL Software
1 If you do not have a PCB Librarian Expert license, you can automatically create FPGA
symbols using the programmable IC (PIC) design flow found in the Cadence Allegro
Project Manager tool. For more information about using the PIC design flow, refer to
the Help in the Cadence design tools, or go to the Cadence website
(www.cadence.com).

Before creating a symbol from an FPGA design, you must open a Cadence Allegro
Design Entry HDL project with the Cadence Allegro Project Manager tool. If you do
not have an existing Cadence Allegro Design Entry HDL project, you can create one
with the Cadence Allegro Design Entry HDL software. The Cadence Allegro Design
Entry HDL project directory with the name <project name>.cpm contains your
Cadence Allegro Design Entry HDL projects.

While the Cadence Allegro PCB Librarian Part Developer tool refers to symbol
fractures as slots, the other tools described in this chapter use different names to refer
to symbol fractures. Table 8–2 lists the symbol fracture naming conventions for each
of the tools addressed in this chapter.

Table 8–2. Symbol Fracture Naming

Cadence Allegro PCB
Librarian

Part Developer Tool

Cadence Allegro
Design Entry HDL

Software

Cadence Allegro
Design Entry
CIS Software

During symbol generation Slots — Sections

During symbol schematic instantiation — Versions Parts
June 2012 Altera Corporation Quartus II Handbook Version 13.1
Volume 2: Design Implementation and Optimization

http://www.cadence.com/us/pages/default.aspx

8–8 Chapter 8: Cadence PCB Design Tools Support
FPGA-to-Board Integration with the Cadence Allegro Design Entry HDL Software
Cadence Allegro PCB Librarian Part Developer Tool
You can create, fracture, and edit schematic symbols for your designs using the
Cadence Allegro PCB Librarian Part Developer tool. Symbols designed in the
Cadence Allegro PCB Librarian Part Developer tool can be split or fractured into
several functional blocks called slots, allowing multiple smaller part fractures to exist
on the same schematic page or across multiple pages. Figure 8–3 shows how the
Cadence Allegro PCB Librarian Part Developer tool fits into the design flow.

To run the Cadence Allegro PCB Librarian Part Developer tool, you must open a
Cadence Allegro Design Entry HDL project in the Cadence Allegro Project Manager
tool. To open the Cadence Allegro PCB Librarian Part Developer tool, on the Flows
menu, click Library Management, and then click Part Developer.

Import and Export Wizard

After starting the Cadence Allegro PCB Librarian Part Developer tool, use the Import
and Export wizard to import your pin assignments from the Quartus II software.

1 Altera recommends using your PCB Librarian Expert license file. To point to your
PCB Librarian Expert license file, on the File menu, click Change Product and then
select the correct product license.

To access the Import and Export wizard, follow these steps:

1. On the File menu, click Import and Export.

2. Select Import ECO-FPGA, and then click Next.

Figure 8–3. Cadence Allegro PCB Librarian Part Developer Tool in the Design Flow

Notes to Figure 8–3:

(1) For more information about the full design flow flowchart, refer to Figure 8–1 on page 8–3.
(2) Grayed out steps are not part of the FPGA symbol creation or update process.

Part Developer

End

.pin
Import or Update Pin

Assignments

Create or Update FPGA Symbol

Edit or Fracture Symbol

Design Entry HDL

Instantiate Synbol in Schematic

ForwFF ard to Board Laww ya out yy ToolTT

Board Layout Tool

Layout and Route FPGA

(1)

(2)
Quartus II Handbook Version 13.1 June 2012 Altera Corporation
Volume 2: Design Implementation and Optimization

Chapter 8: Cadence PCB Design Tools Support 8–9
FPGA-to-Board Integration with the Cadence Allegro Design Entry HDL Software
3. In the Select Source page of the Import and Export wizard, specify the following
settings:

a. In the Vendor list, select Altera.

b. In the PnR Tool list, select quartusII.

c. In the PR File box, browse to select the .pin in your Quartus II project directory.

d. Click Simulation Options to select simulation input files.

e. Click Next.

4. In the Select Destination dialog box, specify the following settings:

a. Under Select Component, click Generate Custom Component to create a new
component in a library,

or

Click Use standard component to base your symbol on an existing component.

1 Altera recommends creating a new component if you previously created a
generic component for an FPGA device. Generic components can cause
some problems with your design. When you create a new component, you
can place your pin and signal assignments from the Quartus II software on
this component and reuse the component as a base when you have a new
FPGA design.

b. In the Library list, select an existing library. You can select from the cells in the
selected library. Each cell represents all the symbol versions and part fractures
for a particular part. In the Cell list, select the existing cell to use as a base for
your part.

c. In the Destination Library list, select a destination library for the component.
Click Next.

d. Review and edit the assignments you import into the Cadence Allegro PCB
Librarian Part Developer tool based on the data in the .pin and then click
Finish. The location of each pin is not included in the Preview of Import Data
page of the Import and Export wizard, but input pins are on the left side of the
created symbol, output pins on the right, power pins on the top, and ground
pins on the bottom.

Editing and Fracturing Symbol

After creating your new symbol in the Cadence Allegro PCB Librarian Part Developer
tool, you can edit the symbol graphics, fracture the symbol into multiple slots, and
add or change package or symbol properties.

The Part Developer Symbol Editor contains many graphical tools to edit the graphics
of a particular symbol. To edit the symbol graphics, select the symbol in the cell
hierarchy. The Symbol Pins tab appears. You can edit the preview graphic of the
symbol in the Symbol Pins tab.
June 2012 Altera Corporation Quartus II Handbook Version 13.1
Volume 2: Design Implementation and Optimization

8–10 Chapter 8: Cadence PCB Design Tools Support
FPGA-to-Board Integration with the Cadence Allegro Design Entry HDL Software
Fracturing a Cadence Allegro PCB Librarian Part Developer package into separate
symbol slots is useful for FPGA designs. A single symbol for most FPGA packages
might be too large for a single schematic page. Splitting the part into separate slots
allows you to organize parts of the symbol by function, creating cleaner circuit
schematics. For example, you can create one slot for an I/O symbol, a second slot for a
JTAG symbol, and a third slot for a power/ground symbol.

Figure 8–4 shows a part fractured into separate slots.

To fracture a part into separate slots, or to modify the slot locations of pins on parts
fractured in the Cadence Allegro PCB Librarian Part Developer tool, follow these
steps:

1. Start the Cadence Allegro Design Project Manager.

2. On the Flows menu, click Library Management.

3. Click Part Developer.

4. Click the name of the package you want to change in the cell hierarchy.

5. Click Functions/Slots. If you are not creating new slots but want to change the slot
location of some pins, proceed to Step 6. If you are creating new slots, click Add. A
dialog box appears, allowing you to add extra symbol slots. Set the number of
extra slots you want to add to the existing symbol, not the total number of desired
slots for the part. Click OK.

6. Click Distribute Pins. Specify the slot location for each pin. Use the checkboxes in
each column to move pins from one slot to another. Click OK.

7. After distributing the pins, click the Package Pin tab and click Generate
Symbol(s).

Figure 8–4. Splitting a Symbol into Multiple Slots (Notes 1), (2)

Notes to Figure 8–4:

(1) Figure 8–4 represents a Cyclone device with JTAG or passive serial (PS) mode configuration option settings. Symbols created for other devices
or other configuration modes may have different sets of configuration pins, but can be fractured in a similar manner.

(2) The power/ground slot shows only a representation of power and ground pins because the device contains a large number of power and ground
pins.

newt

reset

d[7..0] yn_out[7..0]

Slot 1

filtref

filtref

filtref

Slot 2 Slot 3

clk

clkx2

yvalid

follow

V
C

C
IN

T

VCCA_PLL1
VCCA_PLL2

GNDA_PLL1
GNDA_PLL2
GNDG_PLL1
GNDG_PLL2

G
N

D
G

N
D

G
N

D
G

N
D

G
N

D
G

N
D

G
N

D
G

N
D

G
N

D
G

N
D

TDI
TMS

TDO

NCEO

TCK

MSEL0
MSEL1

NCONFIG
NCE

DCLK
DATA0

NCSO

NSTATUS
ASDO

CONF_DONE

V
C

C
IO

1

V
C

C
IO

2

V
C

C
IO

3

V
C

C
IO

4

Quartus II Handbook Version 13.1 June 2012 Altera Corporation
Volume 2: Design Implementation and Optimization

Chapter 8: Cadence PCB Design Tools Support 8–11
FPGA-to-Board Integration with the Cadence Allegro Design Entry HDL Software
8. Select whether to create a new symbol or modify an existing symbol in each slot.
Click OK.

The newly generated or modified slot symbols appear as separate symbols in the cell
hierarchy. Each of these symbols can be edited individually.

c The Cadence Allegro PCB Librarian Part Developer tool allows you to remap pin
assignments in the Package Pin tab of the main Cadence Allegro PCB Librarian Part
Developer window. If signals remap to different pins in the Cadence Allegro PCB
Librarian Part Developer tool, the changes reflect only in regenerated symbols for use
in your schematics. You cannot transfer pin assignment changes to the Quartus II
software from the Cadence Allegro PCB Librarian Part Developer tool, which creates
a potential mismatch of the schematic symbols and assignments in the FPGA design.
If pin assignment changes are necessary, make the changes in the Quartus II Pin
Planner instead of the Cadence Allegro PCB Librarian Part Developer tool, and
update the symbol as described in the following sections.

f For more information about creating, editing, and organizing component symbols
with the Cadence Allegro PCB Librarian Part Developer tool, refer to the Part
Developer Help.

Updating FPGA Symbols

As the design process continues, you must make logic changes in the Quartus II
software, placing signals on different pins after recompiling the design, or use the
Quartus II Pin Planner to make changes manually. The board designer can request
such changes to improve the board routing and layout. To ensure signals connect to
the correct pins on the FPGA, you must carry forward these types of changes to the
circuit schematic and board layout tools. Updating the .pin in the Quartus II software
facilitates this flow. Figure 8–5 shows this part of the design flow.

Figure 8–5. Updating the FPGA Symbol in the Design Flow

Notes to Figure 8–5:

(1) For more information about the full design flow flowchart, refer to Figure 8–1 on page 8–3.
(2) Grayed out steps are not part of the FPGA symbol update process.

Part Developer

End

.pin
Import or Update Pin

Assignments

Create or Update FPGA Symbol

Edit or Fracture Symbol

Design Entry HDL

Instantiate Symbol in Schematic

Forward to Board Layout Tool

Board Layout Tool

Layout & Route FPGA

(1)

(2)
June 2012 Altera Corporation Quartus II Handbook Version 13.1
Volume 2: Design Implementation and Optimization

8–12 Chapter 8: Cadence PCB Design Tools Support
FPGA-to-Board Integration with the Cadence Allegro Design Entry HDL Software
To update the symbol using the Cadence Allegro PCB Librarian Part Developer tool
after updating the .pin, follow these steps:

1. On the File menu, click Import and Export. The Import and Export wizard
appears.

2. In the list of actions to perform, select Import ECO - FPGA. Click Next. The Select
Source dialog box appears.

3. Select the updated source of the FPGA assignment information. In the Vendor list,
select Altera. In the PnR Tool list, select quartusII. In the PR File field, click
browse to specify the updated .pin in your Quartus II project directory. Click
Next. The Select Destination window appears.

4. Select the source component and a destination cell for the updated symbol. To
create a new component based on the updated pin assignment data, select
Generate Custom Component. Selecting Generate Custom Component replaces
the cell listed under the Specify Library and Cell name header with a new,
nonfractured cell. You can preserve these edits by selecting Use standard
component and select the existing library and cell. Select the destination library
for the component and click Next. The Preview of Import Data dialog box
appears.

5. Make any additional changes to your symbol. Click Next. A list of ECO messages
appears summarizing the changes made to the cell. To accept the changes and
update the cell, click Finish.

6. The main Cadence Allegro PCB Librarian Part Developer window appears. You
can edit, fracture, and generate the updated symbols as usual from the main
Cadence Allegro PCB Librarian Part Developer window.

1 If the Cadence Allegro PCB Librarian Part Developer tool is not set up to point to your
PCB Librarian Expert license file, an error message appears in red at the bottom of the
message text window of the Part Developer when you select the Import and Export
command. To point to your PCB Librarian Expert license, on the File menu, click
Change Product, and select the correct product license.

Instantiating the Symbol in the Cadence Allegro Design Entry HDL Software
To instantiate the symbol in your Cadence Allegro Design Entry HDL schematic after
saving the new symbol in the Cadence Allegro PCB Librarian Part Developer tool,
follow these steps:

1. In the Cadence Allegro Project Manager tool, switch to the board design flow.

2. On the Flows menu, click Board Design.

3. To start the Cadence Allegro Design Entry HDL software, click Design Entry.

4. To add the newly created symbol to your schematic, on the Component menu,
click Add. The Add Component dialog box appears.

5. Select the new symbol library location, and select the name of the cell you created
from the list of cells.

The symbol attaches to your cursor for placement in the schematic. To fracture the
symbol into slots, right-click the symbol and choose Version to select one of the slots
for placement in the schematic.
Quartus II Handbook Version 13.1 June 2012 Altera Corporation
Volume 2: Design Implementation and Optimization

Chapter 8: Cadence PCB Design Tools Support 8–13
FPGA-to-Board Integration with Cadence Allegro Design Entry CIS Software
f For more information about the Cadence Allegro Design Entry HDL software,
including licensing, support, usage, training, and product updates, refer to the Help
in the software or go to the Cadence website (www.cadence.com).

FPGA-to-Board Integration with Cadence Allegro Design Entry CIS
Software

The Cadence Allegro Design Entry CIS software is a schematic capture tool (part of
the Cadence 200 series design flow based on OrCAD Capture CIS). Use the Cadence
Allegro Design Entry CIS software to create flat circuit schematics for all types of PCB
design. You can also create hierarchical schematics to facilitate design reuse and team-
based design using the Cadence Allegro Design Entry CIS software. With the Cadence
Allegro Design Entry CIS software, the design flow from FPGA-to-board is
unidirectional using only the .pin generated by the Quartus II software. You can only
make signal and pin assignment changes in the Quartus II software. These changes
reflect as updated symbols in a Cadence Allegro Design Entry CIS schematic project.
Figure 8–2 on page 8–4 shows the design flow with the Cadence Allegro Design Entry
CIS software.

1 Routing or pin assignment changes made in a board layout tool or a Cadence Allegro
Design Entry CIS symbol cannot be back-annotated to the Quartus II software.

f For more information about the Cadence Allegro Design Entry CIS software,
including licensing, support, usage, training, and product updates, refer to the Help
in the software, go to the Cadence (www.cadence.com) or go to the EMA Design
Automation website (www.ema-eda.com).

Creating a Cadence Allegro Design Entry CIS Project
The Cadence Allegro Design Entry CIS software has built-in support for creating
schematic symbols using pin assignment information imported from the Quartus II
software.

To create a new project in the Cadence Allegro Design Entry CIS software, follow
these steps:

1. On the File menu, point to New and click Project. The New Project wizard starts.

When you create a new project, you can select the PC Board wizard, the
Programmable Logic wizard, or a blank schematic.

2. Select the PC Board wizard to create a project where you can select which part
libraries to use, or select a blank schematic.

The Programmable Logic wizard only builds an FPGA logic design in the Cadence
Allegro Design Entry CIS software.

Your new project is in the specified location and consists of the following files:

■ OrCAD Capture Project File (.opj)

■ Schematic Design File (.dsn)
June 2012 Altera Corporation Quartus II Handbook Version 13.1
Volume 2: Design Implementation and Optimization

http://www.cadence.com/us/pages/default.aspx
http://www.ema-eda.com/

8–14 Chapter 8: Cadence PCB Design Tools Support
FPGA-to-Board Integration with Cadence Allegro Design Entry CIS Software
Generating a Part
After you create a new project or open an existing project in the Cadence Allegro
Design Entry CIS software, you can generate a new schematic symbol based on your
Quartus II FPGA design. You can also update an existing symbol. The Cadence
Allegro Design Entry CIS software stores component symbols in OrCAD Library File
(.olb). When you place a symbol in a library attached to a project, it is immediately
available for instantiation in the project schematic.

You can add symbols to an existing library or you can create a new library specifically
for the symbols generated from your FPGA designs. To create a new library, follow
these steps:

1. On the File menu, point to New and click Library in the Cadence Allegro Design
Entry CIS software to create a default library named library1.olb. This library
appears in the Library folder in the Project Manager window of the Cadence
Allegro Design Entry CIS software.

2. To specify a desired name and location for the library, right-click the new library
and select Save As. Saving the new library creates the library file.

You can now create a new symbol to represent your FPGA design in your schematic.
To generate a schematic symbol, follow these steps:

1. Start the Cadence Allegro Design Entry CIS software.

2. On the Tools menu, click Generate Part. The Generate Part dialog box appears
(Figure 8–6).

3. To specify the .pin from your Quartus II design, in the Netlist/source file type
field, click Browse.

4. In the Netlist/source file type list, select Altera Pin File.

Figure 8–6. Generate Part Dialog Box
Quartus II Handbook Version 13.1 June 2012 Altera Corporation
Volume 2: Design Implementation and Optimization

Chapter 8: Cadence PCB Design Tools Support 8–15
FPGA-to-Board Integration with Cadence Allegro Design Entry CIS Software
5. Type the new part name.

6. Specify the Destination part library for the symbol. Failing to select an existing
library for the part creates a new library with a default name that matches the
name of your Cadence Allegro Design Entry CIS project.

7. To create a new symbol for this design, select Create new part. If you updated
your .pin in the Quartus II software and want to transfer any assignment changes
to an existing symbol, select Update pins on existing part in library.

8. Select any other desired options and set Implementation type to <none>. The
symbol is for a primitive library part based only on the .pin and does not require
special implementation. Click OK.

9. Review the Undo warning and click Yes to complete the symbol generation.

You can locate the generated symbol in the selected library or in a new library found
in the Outputs folder of the design in the Project Manager window (Figure 8–7).
Double-click the name of the new symbol to see its graphical representation and edit
it manually using the tools available in the Cadence Allegro Design Entry CIS
software.

f For more information about creating and editing symbols in the Cadence Allegro
Design Entry CIS software, refer to the Help in the software.

Figure 8–7. Project Manager Window
June 2012 Altera Corporation Quartus II Handbook Version 13.1
Volume 2: Design Implementation and Optimization

8–16 Chapter 8: Cadence PCB Design Tools Support
FPGA-to-Board Integration with Cadence Allegro Design Entry CIS Software
Splitting a Part
After saving a new symbol in a project library, you can fracture the symbol into
multiple parts called sections. Fracturing a part into separate sections is useful for
FPGA designs. A single symbol for most FPGA packages might be too large for a
single schematic page. Splitting the part into separate sections allows you to organize
parts of the symbol by function, creating cleaner circuit schematics. For example, you
can create one slot for an I/O symbol, a second slot for a JTAG symbol, and a third slot
for a power/ground symbol. Figure 8–8 shows a part fractured into separate sections.

1 Although symbol generation in the Design Entry CIS software refers to symbol
fractures as sections, the other tools described in this chapter use different names to
refer to symbol fractures.

Figure 8–8. Splitting a Symbol into Multiple Sections (Notes 1), (2)

Notes to Figure 8–8:

(1) Figure 8–8 represents a Cyclone device with JTAG or passive serial (PS) mode configuration option settings. Symbols created for other devices
or other configuration modes might have different sets of configuration pins, but can be fractured in a similar manner.

(2) The power/ground section shows only a representation of power and ground pins because the device contains a high number of power and ground
pins.

newt

reset

d[7..0] yn_out[7..0]

Section 1

filtref

filtref

filtref

Section 2 Section 3

clk

clkx2

yvalid

follow

V
C

C
IN

T

VCCA_PLL1
VCCA_PLL2

GNDA_PLL1
GNDA_PLL2
GNDG_PLL1
GNDG_PLL2

G
N

D
G

N
D

G
N

D
G

N
D

G
N

D
G

N
D

G
N

D
G

N
D

G
N

D
G

N
D

TDI
TMS

TDO

NCEO

TCK

MSEL0
MSEL1

NCONFIG
NCE

DCLK
DATA0

NCSO

NSTATUS
ASDO

CONF_DONE

V
C

C
IO

1

V
C

C
IO

2

V
C

C
IO

3

V
C

C
IO

4

Quartus II Handbook Version 13.1 June 2012 Altera Corporation
Volume 2: Design Implementation and Optimization

Chapter 8: Cadence PCB Design Tools Support 8–17
FPGA-to-Board Integration with Cadence Allegro Design Entry CIS Software
To split a part into sections, select the part in its library in the Project Manager
window of the Cadence Allegro Design Entry CIS software. On the Tools menu, click
Split Part or right-click the part and choose Split Part. The Split Part Section Input
Spreadsheet appears (Figure 8–9).

Each row in the spreadsheet represents a pin in the symbol. The Section column
indicates the section of the symbol to which each pin is assigned. You can locate all
pins in a new symbol in section 1. You can change the values in the Section column to
assign pins to various sections of the symbol. You can also specify the side of a section
on the location of the pin by changing the values in the Location column. When you
are ready, click Split. A new symbol appears in the same library as the original with
the name <original part name>_Split1.

View and edit each section individually. To view the new sections of the part,
double-click the part. The Part Symbol Editor window appears and the first section of
the part displays for editing. On the View menu, click Package to view thumbnails of
all the part sections. To edit the section of the symbol, double-click the thumbnail.

f For more information about splitting parts into sections and editing symbol sections
in the Cadence Allegro Design Entry CIS software, refer to the Help in the software.

Figure 8–9. Split Part Section Input Spreadsheet
June 2012 Altera Corporation Quartus II Handbook Version 13.1
Volume 2: Design Implementation and Optimization

8–18 Chapter 8: Cadence PCB Design Tools Support
FPGA-to-Board Integration with Cadence Allegro Design Entry CIS Software
Instantiating a Symbol in a Design Entry CIS Schematic
After saving a new symbol in a library in your Cadence Allegro Design Entry CIS
project, you can instantiate the new symbol on a page in your schematic. Open a
schematic page in the Project Manager window of the Cadence Allegro Design Entry
CIS software. To add the newly created symbol to your schematic on the schematic
page, on the Place menu, click Part. The Place Part dialog box appears (Figure 8–10).

Select the new symbol library location and the newly created part name. If you select
a part that is split into sections, you can select the section to place from the Part
pop-up menu. Click OK. The symbol attaches to your cursor for placement in the
schematic. To place the symbol, click on the schematic page.

f For more information about using the Cadence Allegro Design Entry CIS software,
refer to the Help in the software.

Altera Libraries for the Cadence Allegro Design Entry CIS Software
Altera provides downloadable .olb for many of its device packages. You can add
these libraries to your Cadence Allegro Design Entry CIS project and update the
symbols with the pin assignments contained in the .pin generated by the Quartus II
software. You can use the downloaded library symbols as a base for creating custom
schematic symbols with your pin assignments that you can edit or fracture. This
method increases productivity by reducing the amount of time it takes to create and
edit a new symbol.

To use the Altera-provided libraries with your Cadence Allegro Design Entry CIS
project, follow these steps:

1. Download the library of your target device from the Download Center page found
through the Support page on the Altera website (www.altera.com).

Figure 8–10. Place Part Dialog Box
Quartus II Handbook Version 13.1 June 2012 Altera Corporation
Volume 2: Design Implementation and Optimization

http://www.altera.com/

Chapter 8: Cadence PCB Design Tools Support 8–19
FPGA-to-Board Integration with Cadence Allegro Design Entry CIS Software
2. Create a copy of the appropriate .olb to maintain the original symbols. Place the
copy in a convenient location, such as your Cadence Allegro Design Entry CIS
project directory.

3. In the Project Manager window of the Cadence Allegro Design Entry CIS software,
click once on the Library folder to select it. On the Edit menu, click Project or
right-click the Library folder and choose Add File to select the copy of the
downloaded .olb and add it to your project. You can locate the new library in the
list of part libraries for your project.

4. On the Tools menu, click Generate Part. The Generate Part dialog box appears
(Figure 8–11).

5. In the Netlist/source file field, click Browse to specify the .pin in your Quartus II
design.

6. From the Netlist/source file type list, select Altera Pin File.

7. For Part name, type the name of the target device the same as it appears in the
downloaded library file. For example, if you are using a device from the
CYCLONE06.OLB library, type the part name to match one of the devices in this
library such as ep1c6f256. You can rename the symbol in the Project Manager
window after updating the part.

8. Set the Destination part library to the copy of the downloaded library you added
to the project.

9. Select Update pins on existing part in library. Click OK.

10. Click Yes.

Figure 8–11. Generate Part Dialog Box
June 2012 Altera Corporation Quartus II Handbook Version 13.1
Volume 2: Design Implementation and Optimization

8–20 Chapter 8: Cadence PCB Design Tools Support
Conclusion
The symbol is updated with your pin assignments. Double-click the symbol in the
Project Manager window to view and edit the symbol. On the View menu, click
Package if you want to view and edit other sections of the symbol. If the symbol in the
downloaded library is fractured into sections, you can edit each section but you
cannot further fracture the part. You can generate a new part without using the
downloaded part library if you require additional sections.

f For more information about creating, editing, and fracturing symbols in the Cadence
Allegro Design Entry CIS software, refer to the Help in the software.

Conclusion
Transferring a complex, high-pin-count FPGA design to a PCB for prototyping or
manufacturing is a daunting process and can lead to errors in the PCB netlist or
design, especially when different engineers are working on different parts of the
project. The design workflow available when the Quartus II software is used with
tools from Cadence assists the FPGA designer and the board designer in preventing
such errors and focusing all attention on the design.

Document Revision History
Table 8–3 shows the revision history for this chapter.

f For previous versions of the Quartus II Handbook, refer to the Quartus II Handbook
Archive.

Table 8–3. Document Revision History

Date Version Changes

June 2012 12.0.0 Removed survey link.

November 2011 10.0.2 Template update.

December 2010 10.0.1 Template update.

July 2010 10.0.0

■ General style editing.

■ Removed Referenced Document Section.

■ Added a link to Help in “Performing Simultaneous Switching Noise (SSN) Analysis of
Your FPGA” on page 9–5.

November 2009 9.1.0

■ Added “Performing Simultaneous Switching Noise (SSN) Analysis of Your FPGA” on
page 9–5.

■ General style editing.

■ Edited Figure 9–4 on page 9–10 and Figure 9–8 on page 9–16.

March 2009 9.0.0
■ Chapter 9 was previously Chapter 7 in the 8.1 software release.

■ No change to content.

November 2008 8.1.0 Changed to 8-1/2 x 11 page size.

May 2008 8.0.0 Updated references.
Quartus II Handbook Version 13.1 June 2012 Altera Corporation
Volume 2: Design Implementation and Optimization

http://www.altera.com/literature/lit-qts_archive.jsp
http://www.altera.com/literature/lit-qts_archive.jsp

QII52019-12.1.0

© 2012 Altera Corporation. All rights reserved. ALTERA, ARRI
are trademarks of Altera Corporation and registered in the U.S
trademarks or service marks are the property of their respectiv
semiconductor products to current specifications in accordance
services at any time without notice. Altera assumes no respons
described herein except as expressly agreed to in writing by Al
on any published information and before placing orders for pr

Quartus II Handbook Version 13.1
Volume 2: Design Implementation and Optimization
November 2012

November 2012
QII52019-12.1.0
9. Reviewing Printed Circuit Board
Schematics with the Quartus II Software
This chapter provides guidelines for reviewing printed circuit board (PCB) schematics
with the Quartus® II software. Altera FPGAs and CPLDs offer a multitude of
configurable options to allow you to implement a custom application-specific circuit
on your PCB.

Your Quartus II project provides important information specific to your
programmable logic design, which you can use in conjunction with the device
literature available on Altera's website to ensure that you implement the correct
board-level connections in your schematic.

This chapter highlights the important options in the Quartus II software, including
Settings dialog box options, the Fitter report, and Messages window to which you
should refer when creating and reviewing your PCB schematic. The Quartus II
software also provides useful tools, such as the Pin Planner and the SSN Analyzer, to
assist you during your PCB schematic review process.

The “Reviewing Quartus II Software Settings”section provides information about the
settings you can make in the Quartus II software to help you review your PCB
schematic. After verifying options in the Quartus II software, you can compile your
design and use the data generated in the Fitter report, which is described in
“Reviewing Device Pin-Out Information in the Fitter Report” on page 9–4 to verify
settings in your PCB schematic. You should also ensure that you carefully review
error and warning messages, as described in “Reviewing Compilation Error and
Warning Messages” on page 9–6.

In addition to verifying your settings in the Settings dialog box and Fitter report, and
checking messages, you can turn on additional settings, as described in “Using
Additional Quartus II Software Features” on page 9–6 and “Using Additional
Quartus II Software Features” on page 9–6.

Finally, Quartus II software tools, such as the Pin Planner and the SSN Analyzer,
described in “Using Additional Quartus II Software Tools” on page 9–7, help you to
verify proper I/O placement.

You should use this chapter in conjunction with Altera's device family-specific
literature.

f For more information, refer to the Schematic Review Worksheets and the Pin
Connection Guidelines pages of the Altera.com website.
A, CYCLONE, HARDCOPY, MAX, MEGACORE, NIOS, QUARTUS and STRATIX words and logos
. Patent and Trademark Office and in other countries. All other words and logos identified as
e holders as described at www.altera.com/common/legal.html. Altera warrants performance of its
 with Altera's standard warranty, but reserves the right to make changes to any products and
ibility or liability arising out of the application or use of any information, product, or service
tera. Altera customers are advised to obtain the latest version of device specifications before relying
oducts or services.

Feedback SubscribeTwitter

ISO
9001:2008
Registered

http://www.altera.com/support/devices/schematic-review-ws/srw-index.jsp
http://www.altera.com/literature/lit-dpcg.jsp
http://www.altera.com/literature/lit-dpcg.jsp
https://www.altera.com/servlets/subscriptions/alert?id=QII52019
http://www.altera.com/common/legal.html
http://www.altera.com/support/reliability/certifications/rel-certifications.html
http://www.altera.com/support/reliability/certifications/rel-certifications.html
http://twitter.com/home/?status=Reviewing+Printed+Circuit+Board+Schematics+with+the+Quartus+II+Software+http://www.altera.com/literature/hb/qts/qts_qii52019.pdf?WT.mc_id=gc_so_tw_st_tx_a_011+(via @alteracorp)+%23Altera
mailto:TechDocFeedback@altera.com?subject=Feedback on qts_qii52019-12.1 (QII HB, Vol2, Ch9: Reviewing PCB Schematics)

9–2 Chapter 9: Reviewing Printed Circuit Board Schematics with the Quartus II Software
Reviewing Quartus II Software Settings
Reviewing Quartus II Software Settings
The Device dialog box in the Quartus II software allows you to specify device-specific
assignments and settings. You can use the Device dialog box to specify general
project-wide options, including specific device and pin options, which help you to
implement correct board-level connections in your PCB schematic.

The Device dialog box provides project-specific device information, including the
target device and any migration devices you specify. Using migration devices can
impact the number of available user I/O pins and internal resources, as well as
require connection of some user I/O pins to power/ground pins to support
migration.

If you want to use vertical migration, which allows you to use different devices with
the same package, you can specify your list of migration devices in the Migration
Devices dialog box. The Fitter places the pins in your design based on your targeted
migration devices, and allows you to use only I/O pins that are common to all of the
migration devices.

h For more information about the Migration Devices dialog box in the Quartus II
software, refer to Migration Devices Dialog Box in Quartus II Help.

If a migration device has pins that are power or ground, but the pins are also user I/O
pins on a different device in the migration path, the Fitter ensures that these pins are
not used as user I/O pins. You must ensure that these pins are connected to the
appropriate plane on the PCB.

If you are migrating from a smaller device with NC (no-connect) pins to a larger
device with power or ground pins in the same package, you can safely connect the
NC pins to power or ground pins to facilitate successful migration.

Device and Pins Options Dialog Box Settings
You can verify important design-specific data in the Device and Pin Options dialog
box when reviewing your PCB schematic, including options found on the
Configuration, Unused Pin, Dual-Purpose Pins, and Voltage pages.

Configuration Page Settings
The Configuration page of the Device and Pin Options dialog box specifies the
configuration scheme and configuration device for the target device. Use the
Configuration page settings to verify the configuration scheme with the MSEL pin
settings used on your PCB schematic and the I/O voltage of the configuration
scheme.

Your specific configuration settings may impact the availability of some dual-purpose
I/O pins in user mode. Refer to “Dual-Purpose Pins Page Settings” on page 9–3 for
more information.
Quartus II Handbook Version 13.1 November 2012 Altera Corporation
Volume 2: Design Implementation and Optimization

http://quartushelp.altera.com/current/master.htm#mergedProjects/comp/migrate/comp_db_migration.htm

Chapter 9: Reviewing Printed Circuit Board Schematics with the Quartus II Software 9–3
Reviewing Quartus II Software Settings
Unused Pin Page Settings
The Unused Pin page specifies the behavior of all unused pins in your design. Use the
Unused Pin page to ensure that unused pin settings are compatible with your PCB.
For example, if you reserve all unused pins as outputs driving ground, you must
ensure that you do not connect unused I/O pins to VCC pins on your PCB.
Connecting unused I/O pins to VCC pins may result in contention that could lead to
higher than expected current draw and possible device overstress.

The Reserve all unused pins list shows available unused pin state options for the
target device. The default state for each pin is the recommended setting for each
device family.

When you reserve a pin as output driving ground, the Fitter connects a ground signal
to the output pin internally. You should connect the output pin to the ground plane on
your PCB, although you are not required to do so. Connecting the output driving
ground to the ground plane is known as creating a virtual ground pin, which helps to
minimize simultaneous switching noise (SSN) and ground bounce effects.

Dual-Purpose Pins Page Settings
The Dual-Purpose Pins page specifies how configuration pins should be used after
device configuration completes. You can set the function of the dual-purpose pins by
selecting a value for a specific pin in the Dual-purpose pins list. Pin functions should
match your PCB schematic. The available options on the Dual-Purpose Pins page
may differ depending on the selected configuration mode.

Voltage Page Settings
The Voltage page specifies the default VCCIO I/O bank voltage and the default I/O
bank voltage for the pins on the target device. VCCIO I/O bank voltage settings made
in the Voltage page are overridden by I/O standard assignments made on I/O pins in
their respective banks. Refer to the “Reviewing Device Pin-Out Information in the
Fitter Report” on page 9–4 for more details about the I/O bank voltages for your
design.

Error Detection CRC Page Settings
The Error Detection CRC page specifies error detection cyclic redundancy check
(CRC) use for the target device. When Enable error detection CRC is turned on, the
device checks the validity of the programming data in the devices. Any changes made
in the data while the device is in operation generates an error.

Turning on the Enable open drain on CRC error pin option allows the CRC ERROR
pin to be set as an open-drain pin in some devices, which decouples the voltage level
of the CRC ERROR pin from VCCIO voltage. You must connect a pull-up resistor to
the CRC ERROR pin on your PCB if you turn on this option.

In addition to settings in the Device dialog box, you should verify settings in the
Voltage page of the Settings dialog box.

h For more information about the Device and Pins Options dialog box in the Quartus II
software, refer to Device and Pin Options Dialog Box in Quartus II Help.
November 2012 Altera Corporation Quartus II Handbook Version 13.1
Volume 2: Design Implementation and Optimization

http://quartushelp.altera.com/current/master.htm#mergedProjects/comp/comp/comp_db_device_pin_options.htm

9–4 Chapter 9: Reviewing Printed Circuit Board Schematics with the Quartus II Software
Reviewing Device Pin-Out Information in the Fitter Report
Voltage Page Settings
The Voltage page, under Operating Settings and Conditions in the Settings dialog
box, allows you to specify voltage operating conditions for timing and power
analyses. Ensure that the settings in the Voltage page match the settings in your PCB
schematic, especially if the target device includes transceivers.

The Voltage page settings requirements differ depending on the settings of the
transceiver instances in the design. Refer to the Fitter report for the required settings,
and verify that the voltage settings are correctly set up for your PCB schematic.

f For more information about voltage settings, refer to the Pin Connection Guidelines
page of the Altera.com website.

Once you verify your settings in the Device and Settings dialog boxes, you can verify
your device pin-out with the Fitter report.

Reviewing Device Pin-Out Information in the Fitter Report
After you compile your design, you can use the reports in the Resource section of the
Fitter report to check your device pin-out in detail.

The Input Pins, Output Pins, and Bidirectional Pins reports identify all the user I/O
pins in your design and the features enabled for each I/O pin. For example, you can
find use of weak internal pull-ups, PCI clamp diodes, and on-chip termination (OCT)
pin assignments in these sections of the Fitter report. You can check the pin
assignments reported in the Input Pins, Output Pins, and Bidirectional Pins reports
against your PCB schematic to determine whether your PCB requires external
components.

These reports also identify whether you made pin assignments or if the Fitter
automatically placed the pins. If the Fitter changed your pin assignments, you should
make these changes user assignments because the location of pin assignments made
by the Fitter may change with subsequent compilations.
Quartus II Handbook Version 13.1 November 2012 Altera Corporation
Volume 2: Design Implementation and Optimization

http://www.altera.com/literature/lit-dpcg.jsp

Chapter 9: Reviewing Printed Circuit Board Schematics with the Quartus II Software 9–5
Reviewing Device Pin-Out Information in the Fitter Report
Figure 9–1 shows the pins the Fitter chose for the OCT external calibration resistor
connections (RUP/RDN) and the name of the associated termination block in the
Input Pins report. You should make these types of assignments user assignments.

The I/O Bank Usage report provides a high-level overview of the VCCIO and VREF
requirements for your design, based on your I/O assignments. Verify that the
requirements in this report match the settings in your PCB schematic. All unused I/O
banks, and all banks with I/O pins with undefined I/O standards, default the VCCIO
voltage to the voltage defined in the Voltage page of the Device and Pin Options
dialog box.

The All Package Pins report lists all the pins on your device, including unused pins,
dedicated pins and power/ground pins. You can use this report to verify pin
characteristics, such as the location, name, usage, direction, I/O standard and voltage
for each pin with the pin information in your PCB schematic. In particular, you should
verify the recommended voltage levels at which you connect unused dedicated inputs
and I/O and power pins, especially if you selected a migration device. Use the All
Package Pins report to verify that you connected all the device voltage rails to the
voltages reported.

Errors commonly reported include connecting the incorrect voltage to the predriver
supply (VCCPD) pin in a specific bank, or leaving dedicated clock input pins floating.
Unused input pins that should be connected to ground are designated as GND+ in
the Pin Name/Usage column in the All Package Pins report.

You can also use the All Package Pins report to check transceiver-specific pin
connections and verify that they match the PCB schematic. Unused transceiver pins
have the following requirements, based on the pin designation in the Fitter report:

■ GXB_GND*—Unused GXB receiver or dedicated reference clock pin. This pin
must be connected to GXB_GND through a 10k Ohm resistor.

■ GXB_NC—Unused GXB transmitter or dedicated clock output pin. This pin must
be disconnected.

Figure 9–1. Resource Section Report
November 2012 Altera Corporation Quartus II Handbook Version 13.1
Volume 2: Design Implementation and Optimization

9–6 Chapter 9: Reviewing Printed Circuit Board Schematics with the Quartus II Software
Reviewing Compilation Error and Warning Messages
Some transceiver power supply rails have dual voltage capabilities, such as
VCCA_L/R and VCCH_L/R, that depend on the settings you created for the ALTGX
MegaWizard Plug-In Manager. Because these user-defined settings overwrite the
default settings, you should use the All Package Pins report to verify that these power
pins on the device symbol in the PCB schematics are connected to the voltage required
by the transceiver. An incorrect connection may cause the transceiver to function not
as expected.

If your design includes a memory interface, the DQS Summary report provides an
overview of each DQ pin group. You can use this report to quickly confirm that the
correct DQ/DQS pins are grouped together. This section also provides information on
DLL usage.

Finally, the Fitter Device Options report summarizes some of the settings made in the
Device and Pin Options dialog box. Verify that these settings match your PCB
schematics.

Reviewing Compilation Error and Warning Messages
If your project does not compile without error or warning messages, you should
resolve the issues identified by the Compiler before signing off on your pin-out or
PCB schematic. Error messages often indicate illegal or unsupported use of the device
resources and IP.

Additionally, you should cross-reference fitting and timing analysis warnings with
the design implementation. Timing may be constrained due to nonideal pin
placement. You should investigate if you can reassign pins to different locations to
prevent fitting and timing analysis warnings. Ensure that you review each warning
and consider its potential impact on the design.

Using Additional Quartus II Software Features
You can generate IBIS files, which contain models specific to your design and selected
I/O standards and options, with the Quartus II software.

Because board-level simulation is important to verify, you should check for potential
signal integrity issues. You can turn on the Board-Level Signal Integrity feature in the
EDA Tool Settings page of the Settings dialog box.

f For more information about signal integrity analysis in the Quartus II software, refer
to the Signal Integrity Analysis with Third-Party Tools chapter in volume 3 of the
Quartus II Handbook.

Additionally, using advanced I/O timing allows you to enter physical PCB
information to accurately model the load seen by an output pin. This feature
facilitates accurate I/O timing analysis.

f For more information about advanced I/O timing, refer to the I/O Management
chapter in volume 2 of the Quartus II Handbook.
Quartus II Handbook Version 13.1 November 2012 Altera Corporation
Volume 2: Design Implementation and Optimization

http://www.altera.com/literature/hb/qts/qts_qii53020.pdf
http://www.altera.com/literature/hb/qts/qts_qii52013.pdf

Chapter 9: Reviewing Printed Circuit Board Schematics with the Quartus II Software 9–7
Using Additional Quartus II Software Tools
Using Additional Quartus II Software Tools
This section describes additional tools found in the Quartus II software, specifically
the Pin Planner and the SSN Analyzer, and how you can use these tools to assist you
with reviewing your PCB schematics.

Pin Planner
The Quartus II Pin Planner helps you visualize, plan, and assign device I/O pins in a
graphical view of the target device package. You can quickly locate various I/O pins
and assign them design elements or other properties to ensure compatibility with
your PCB layout.

You can use the Pin Planner to verify the location of clock inputs, and whether they
have been placed on dedicated clock input pins, which is recommended when your
design uses PLLs.

You can also use the Pin Planner to verify the placement of dedicated SERDES pins.
SERDES receiver inputs can be placed only on DIFFIO_RX pins, while SERDES
transmitter outputs can be placed only on DIFFIO_TX pins.

The Pin Planner gives a visual indication of signal-to-signal proximity in the Pad View
window, and also provides information about differential pin pair placement, such as
the placement of pseudo-differential signals.

f For more information about the Pin Planner, refer to the I/O Management chapter in
volume 2 of the Quartus II Handbook.

SSN Analyzer
The SSN Analyzer supports pin planning by estimating the voltage noise caused by
the simultaneous switching of output pins on the device. Because of the importance of
the potential SSN performance for a specific I/O placement, you can use the SSN
Analyzer to analyze the effects of aggressor I/O signals on a victim I/O pin.

f For more information about the SSN Analyzer, refer to the Simultaneous Switching
Noise (SSN) Analysis and Optimizations chapter in volume 2 of the Quartus II Handbook.

Conclusion
This chapter describes guidelines and descriptions of settings to verify when
reviewing your PCB schematic with the Quartus II software. You can use settings in
the Settings dialog box; information in the Fitter report and Messages window; and
the Pin Planner and SSN Analyzer during the PCB schematic review process.
November 2012 Altera Corporation Quartus II Handbook Version 13.1
Volume 2: Design Implementation and Optimization

http://www.altera.com/literature/hb/qts/qts_qii52013.pdf
http://www.altera.com/literature/hb/qts/qts_qii52018.pdf
http://www.altera.com/literature/hb/qts/qts_qii52018.pdf

9–8 Chapter 9: Reviewing Printed Circuit Board Schematics with the Quartus II Software
Document Revision History
Document Revision History
Table 9–1 shows the revision history for this chapter.

f For previous versions of the Quartus II Handbook, refer to the Quartus II Handbook
Archive.

Table 9–1. Document Revision History

Date Version Changes

November 2012 12.1.0 Minor update of Pin Planner description for task and report windows.

June 2012 12.0.0 Removed survey link.

November 2011 10.0.2 Template update.

December 2010 10.0.1 Changed to new document template. No change to content.

July 2010 10.0.0 Initial release.
Quartus II Handbook Version 13.1 November 2012 Altera Corporation
Volume 2: Design Implementation and Optimization

http://www.altera.com/literature/lit-qts_archive.jsp
http://www.altera.com/literature/lit-qts_archive.jsp

© 2013 Altera Corporation. All rights reserved. ALTERA, ARRI
are trademarks of Altera Corporation and registered in the U.S
trademarks or service marks are the property of their respectiv
semiconductor products to current specifications in accordance
services at any time without notice. Altera assumes no respons
described herein except as expressly agreed to in writing by Al
on any published information and before placing orders for pr

Quartus II Handbook Version 13.1
Volume 2: Design Implementation and Optimization
November 2013
Section III. Area, Timing, Power, and
Compilation Time Optimization
This section introduces features in the Quartus® II software that you can use to
optimize area, timing, power, and compilation time when you design for
programmable logic devices (PLDs).

This section includes the following chapters:

■ Chapter 10, Design Optimization Overview

This chapter summarizes features in the Quartus II software that you can use to
achieve the highest design performance when you design for PLDs, especially
high density FPGAs.

■ Chapter 11, Reducing Compilation Time

This chapter describes techniques for reducing the amount of time it takes to
compile and recompile your design, accelerating your design process.

■ Chapter 12, Timing Closure and Optimization

This chapter describes a broad spectrum of Quartus II software features and
design techniques to improve timing performance when designing for Altera®
devices. This chapter also explains how and when to use some of the features
described in other chapters of the Quartus II Handbook.

■ Chapter 13, Power Optimization

This chapter describes the power-driven compilation feature and flow in detail, as
well as low power design techniques that can further reduce power consumption
in your design.

■ Chapter 14, Area Optimization

This chapter describes design techniques to reduce resource usage.

■ Chapter 15, Analyzing and Optimizing the Design Floorplan with the Chip
Planner

You can use the Chip Planner to perform design analysis and create a design
floorplan. This chapter discusses how to analyze and optimize the design
floorplan with the Chip Planner.

■ Chapter 16, Netlist Optimizations and Physical Synthesis

This chapter explains how the physical synthesis optimizations in the Quartus II
software can improve your quality of results. This chapter also provides
information about preserving and writing out a new netlist, and provides
guidelines for applying the various options.
A, CYCLONE, HARDCOPY, MAX, MEGACORE, NIOS, QUARTUS and STRATIX words and logos
. Patent and Trademark Office and in other countries. All other words and logos identified as
e holders as described at www.altera.com/common/legal.html. Altera warrants performance of its
 with Altera's standard warranty, but reserves the right to make changes to any products and
ibility or liability arising out of the application or use of any information, product, or service
tera. Altera customers are advised to obtain the latest version of device specifications before relying
oducts or services.

ISO
9001:2008
Registered

http://www.altera.com/common/legal.html
http://www.altera.com/support/devices/reliability/certifications/rel-certifications.html
http://www.altera.com/support/devices/reliability/certifications/rel-certifications.html
http://www.altera.com/literature/hb/qts/quartusii_handbook.pdf

QII52021-13.1.0

© 2013 Altera Corporation. All rights reserved. ALTERA, ARRI
are trademarks of Altera Corporation and registered in the U.S
trademarks or service marks are the property of their respectiv
semiconductor products to current specifications in accordance
services at any time without notice. Altera assumes no respons
described herein except as expressly agreed to in writing by Al
on any published information and before placing orders for pr

Quartus II Handbook Version 13.1
Volume 2: Design Implementation and Optimization
November 2013

November 2013
QII52021-13.1.0
10. Design Optimization Overview
This chapter introduces features in Altera’s Quartus® II software that you can use to
achieve the highest design performance when you design for programmable logic
devices (PLDs), especially high density FPGAs.

Introduction
Physical implementation can be an intimidating and challenging phase of the design
process. The Quartus II software provides a comprehensive environment for FPGA
designs, delivering unmatched performance, efficiency, and ease-of-use.

In a typical design flow, you must synthesize your design with Quartus II integrated
synthesis or a third-party tool, place and route your design with the Fitter, and use the
TimeQuest timing analyzer to ensure your design meets the timing requirements.
With the PowerPlay Power Analyzer, you ensure the design’s power consumption is
within limits.

Initial Compilation: Required Settings
This section describes the basic assignments and settings for your initial compilation.
Check the following settings before compiling your design in the Quartus II software.
Significantly varied compilation results can occur depending on the assignments that
you set.

Device Settings
Device assignments determine the timing model that the Quartus II software uses
during compilation. Choose the correct speed grade to obtain accurate results and the
best optimization. The device size and the package determine the device pin-out and
the available resources in the device.

Device Migration Settings
If you anticipate a change to the target device later in the design cycle, either because
of changes in your design or other considerations, plan for the change at the
beginning of your design cycle. Whenever you select a target device, you can also list
any other compatible devices you can migrate by clicking on the Migration Devices
button in the Device dialog box.

Selecting the migration device and companion device early in the design cycle helps
to minimize changes to your design at a later stage.
A, CYCLONE, HARDCOPY, MAX, MEGACORE, NIOS, QUARTUS and STRATIX words and logos
. Patent and Trademark Office and in other countries. All other words and logos identified as
e holders as described at www.altera.com/common/legal.html. Altera warrants performance of its
 with Altera's standard warranty, but reserves the right to make changes to any products and
ibility or liability arising out of the application or use of any information, product, or service
tera. Altera customers are advised to obtain the latest version of device specifications before relying
oducts or services.

Feedback SubscribeTwitter

ISO
9001:2008
Registered

https://www.altera.com/servlets/subscriptions/alert?id=QII52021
http://twitter.com/home/?status=Design+Optimization+Overview+http://www.altera.com/literature/hb/qts/qts_qii52021.pdf?WT.mc_id=gc_so_tw_st_tx_a_011+(via @alteracorp)+%23Altera
http://www.altera.com/common/legal.html
http://www.altera.com/support/reliability/certifications/rel-certifications.html
http://www.altera.com/support/reliability/certifications/rel-certifications.html
mailto:TechDocFeedback@altera.com?subject=Feedback on qts_qii52021-13.1 (QII HB, Vol2, Ch10: Design Optimization Overview)

10–2 Chapter 10: Design Optimization Overview
Initial Compilation: Required Settings
I/O Assignments
The I/O standards and drive strengths specified for a design affect I/O timing.
Specify I/O assignments so that the Quartus II software uses accurate I/O timing
delays in timing analysis and Fitter optimizations.

If there is no PCB layout requirement, then you do not need to specify pin locations. If
your pin locations are not fixed due to PCB layout requirements, then leave the pin
locations unconstrained. If your pin locations are already fixed, then make pin
assignments to constrain the compilation appropriately.

f For more information about recommendations for making pin assignments that can
have a large effect on your results in smaller macrocell-based architectures, refer to
Optimizing Resource Utilization (Macrocell-Based CPLDs) in the Timing Closure and
Optimization chapter in volume 2 of the Quartus II Handbook.

Use the Assignment Editor and Pin Planner to assign I/O standards and pin locations.

f For more information about I/O standards and pin constraints, refer to the
appropriate device handbook. For more information about planning and checking
I/O assignments, refer to the I/O Management chapter in volume 2 of the Quartus II
Handbook.

h For information about using the Assignment Editor, refer to About the Assignment
Editor in Quartus II Help.

Timing Requirement Settings
You must use comprehensive timing requirement settings to achieve the best results
for the following reasons:

■ Correct timing assignments enable the software to work hardest to optimize the
performance of the timing-critical parts of your design and make trade-offs for
performance. This optimization can also save area or power utilization in
non-critical parts of your design.

■ If enabled, the Quartus II software performs physical synthesis optimizations
based on timing requirements.

■ Depending on the Fitter Effort setting, the Fitter can reduce runtime if your design
meets the timing requirements.

f For more information about optimization with physical synthesis, refer to Physical
Synthesis Optimization in the Timing Closure and Optimization chapter in volume 2 of
the Quartus II Handbook.

h For more information about reducing runtime by changing Fitter effort, refer to Fitter
Settings Page in the Quartus II Help.

Use your real requirements to get the best results. If you apply more demanding
timing requirements than you need, then increased resource usage, higher power
utilization, increased compilation time, or all of these may result.
Quartus II Handbook Version 13.1 November 2013 Altera Corporation
Volume 2: Design Implementation and Optimization

http://quartushelp.altera.com/current/master.htm#mergedProjects/comp/comp/comp_tab_fitting.htm
http://quartushelp.altera.com/current/master.htm#mergedProjects/comp/comp/comp_tab_fitting.htm
http://www.altera.com/literature/hb/qts/qts_qii52013.pdf
http://quartushelp.altera.com/current/master.htm#mergedProjects/assign/ase/ase_intro.htm
http://quartushelp.altera.com/current/master.htm#mergedProjects/assign/ase/ase_intro.htm
http://www.altera.com/literature/hb/qts/qts_qii52005.pdf
http://www.altera.com/literature/hb/qts/qts_qii52005.pdf
http://www.altera.com/literature/hb/qts/qts_qii52005.pdf

Chapter 10: Design Optimization Overview 10–3
Initial Compilation: Required Settings
The Quartus II TimeQuest Timing Analyzer determines if the design implementation
meets the timing requirement. The Compilation Report shows whether your design
meets the timing requirements, while the timing analysis reporting commands
provide detailed information about the timing paths.

To create timing constraints for the TimeQuest analyzer, create a Synopsys Design
Constraints File (.sdc). You can also enter constraints in the TimeQuest GUI. Use the
write_sdc command, or the Constraints menu in the TimeQuest analyzer. Click Write
SDC File to write your constraints to an .sdc. You can add an .sdc to your project on
the Quartus II Settings page under Timing Analysis Settings.

1 If you already have an .sdc in your project, using the write_sdc command from the
command line or using the Write SDC File option from the TimeQuest GUI allows
you to create a new .sdc that combines the constraints from your current .sdc and any
new constraints added through the GUI or command window, or overwrites the
existing .sdc with your newly applied constraints.

Ensure that every clock signal has an accurate clock setting constraint. If clocks arrive
from a common oscillator, then they are related. Ensure that you set up all related or
derived clocks in the constraints correctly. You must constrain all I/O pins that require
I/O timing optimization. Specify both minimum and maximum timing constraints as
applicable. If your design contains more than one clock or contains pins with different
I/O requirements, make multiple clock settings and individual I/O assignments
instead of using a global constraint. 1

Make any complex timing assignments required in your design, including false path
and multicycle path assignments. Common situations for these types of assignments
include reset or static control signals (when the time required for a signal to reach a
destination is not important) or paths that have more than one clock cycle available
for operation in a design. These assignments enable the Quartus II software to make
appropriate trade-offs between timing paths and can enable the Compiler to improve
timing performance in other parts of your design.

f For more information about timing assignments and timing analysis, refer to The
Quartus II TimeQuest Timing Analyzer chapter in volume 3 of the Quartus II Handbook
and the Quartus II TimeQuest Timing Analyzer Cookbook.

1 To ensure that you apply constraints or assignments to all design nodes, you can
report all unconstrained paths in your design with the Report Unconstrained Paths
command in the Task pane of the Quartus II TimeQuest Timing Analyzer or the
report_ucp Tcl command.

Partitions and Floorplan Assignments for Incremental Compilation
The Quartus II incremental compilation feature enables hierarchical and team-based
design flows in which you can compile parts of your design while other parts of your
design remain unchanged and import parts of your design from separate Quartus II
projects.
November 2013 Altera Corporation Quartus II Handbook Version 13.1
Volume 2: Design Implementation and Optimization

http://www.altera.com/literature/hb/qts/qts_qii53018.pdf
http://www.altera.com/literature/hb/qts/qts_qii53018.pdf
http://www.altera.com/literature/manual/mnl_timequest_cookbook.pdf

10–4 Chapter 10: Design Optimization Overview
Physical Implementation
Using incremental compilation for your design with good design partitioning
methodology helps to achieve timing closure. Creating design partitions on some of
the major blocks in your design and assigning them to LogicLock™ regions, reduces
Fitter time and improves the quality and repeatability of the results. LogicLock
regions are flexible, reusable floorplan location constraints that help you place logic
on the target device. When you assign entity instances or nodes to a LogicLock region,
you direct the Fitter to place those entity instances or nodes inside the region during
fitting.

h For more information about LogicLock regions, refer to About LogicLock Regions in
Quartus II Help.

Using incremental compilation helps you achieve timing closure block by block and
preserve the timing performance between iterations, which aid in achieving timing
closure for the entire design. Incremental compilation may also help reduce
compilation times.

f For more information, refer to the “Incremental Compilation” section in the Reducing
Compilation Time chapter in volume 2 of the Quartus II Handbook.

1 If you plan to use incremental compilation, you must create a floorplan for your
design. If you are not using incremental compilation, creating a floorplan is optional.

f For more information about guidelines to create partition and floorplan assignments
for your design, refer to the Best Practices for Incremental Compilation Partitions and
Floorplan Assignments chapter in volume 1 of the Quartus II Handbook.

Physical Implementation
Most optimization issues involve preserving previous results, reducing area, reducing
critical path delay, reducing power consumption, and reducing runtime. The
Quartus II software includes advisors to address each of these issues and helps you
optimize your design. Run these advisors during physical implementation for advice
about your specific design.

You can reduce the time spent on design iterations by following the recommended
design practices for designing with Altera® devices. Design planning is critical for
successful design timing implementation and closure.

f For more information, refer to the Design Planning with the Quartus II Software chapter
in volume 1 of the Quartus II Handbook.

Trade-Offs and Limitations
Many optimization goals can conflict with one another, so you might need to resolve
conflicting goals. For example, one major trade-off during physical implementation is
between resource usage and critical path timing, because certain techniques (such as
logic duplication) can improve timing performance at the cost of increased area.
Similarly, a change in power requirements can result in area and timing trade-offs,
such as if you reduce the number of available high-speed tiles, or if you attempt to
shorten high-power nets at the expense of critical path nets.
Quartus II Handbook Version 13.1 November 2013 Altera Corporation
Volume 2: Design Implementation and Optimization

http://www.altera.com/literature/hb/qts/qts_qii51016.pdf
http://quartushelp.altera.com/current/mergedProjects/optimize/lock/flp_view_logiclock_reg.htm
http://www.altera.com/literature/hb/qts/qts_qii52022.pdf
http://www.altera.com/literature/hb/qts/qts_qii52022.pdf
http://www.altera.com/literature/hb/qts/qts_qii51017.pdf
http://www.altera.com/literature/hb/qts/qts_qii51017.pdf

Chapter 10: Design Optimization Overview 10–5
Physical Implementation
In addition, system cost and time-to-market considerations can affect the choice of
device. For example, a device with a higher speed grade or more clock networks can
facilitate timing closure at the expense of higher power consumption and system cost.

Finally, not all designs can be realized in a hardware circuit with limited resources and
given constraints. If you encounter resource limitations, timing constraints, or power
constraints that cannot be resolved by the Fitter, consider rewriting parts of the HDL
code.

f For more information, refer to the Timing Closure and Optimization and Area
Optimization chapters in volume 2 of the Quartus II Handbook.

Preserving Results and Enabling Teamwork
For some Quartus II Fitter algorithms, small changes to the design can have a large
impact on the final result. For example, a critical path delay can change by 10% or
more because of seemingly insignificant changes. If you are close to meeting your
timing objectives, you can use the Fitter algorithm to your advantage by changing the
fitter seed, which changes the pseudo-random result of the Fitter.

Conversely, if you cannot meet timing on a portion of your design, you can partition
that portion and prevent it from recompiling if an unrelated part of the design is
changed. This feature, known as incremental compilation, can reduce the Fitter
runtimes by up to 70% if the design is partitioned, such that only small portions
require recompilation at any one time.

When you use incremental compilation, you can apply design optimization options to
individual design partitions and preserve performance in other partitions by leaving
them untouched. Many optimization techniques often result in longer compilation
times, but by applying them only on specific partitions, you can reduce this impact
and complete iterations more quickly.

In addition, by physically floorplanning your partitions with LogicLock regions, you
can enable team-based flows and allow multiple people to work on different portions
of the design.

f For more information, refer to Quartus II Incremental Compilation for Hierarchical and
Team-Based Designs in volume 1 of the Quartus II Handbook and About Incremental
Compilation in Quartus II Help.

Reducing Area
By default, the Quartus II Fitter might physically spread a design over the entire
device to meet the set timing constraints. If you prefer to optimize your design to use
the smallest area, you can change this behavior. If you require reduced area, you can
enable certain physical synthesis options to modify your netlist to create a more
area-efficient implementation, but at the cost of increased runtime and decreased
performance.

f For more information, refer to the Netlist Optimizations and Physical Synthesis, Timing
Closure and Optimization, and Area Optimization chapters in volume 2 and
the Recommended HDL Coding Styles chapter in volume 1 of the Quartus II Handbook.
November 2013 Altera Corporation Quartus II Handbook Version 13.1
Volume 2: Design Implementation and Optimization

http://www.altera.com/literature/hb/qts/qts_qii52007.pdf
http://www.altera.com/literature/hb/qts/qts_qii51015.pdf
http://www.altera.com/literature/hb/qts/qts_qii51015.pdf
http://quartushelp.altera.com/current/master.htm#mergedProjects/comp/increment/comp_view_qid.htm
http://quartushelp.altera.com/current/master.htm#mergedProjects/comp/increment/comp_view_qid.htm
http://www.altera.com/literature/hb/qts/qts_qii51007.pdf
http://www.altera.com/literature/hb/qts/qts_qii52005.pdf
http://www.altera.com/literature/hb/qts/qts_qii52005.pdf
http://www.altera.com/literature/hb/qts/qts_qii52005.pdf
http://www.altera.com/literature/hb/qts/qts_qii52023.pdf
http://www.altera.com/literature/hb/qts/qts_qii52023.pdf
http://www.altera.com/literature/hb/qts/qts_qii52023.pdf

10–6 Chapter 10: Design Optimization Overview
Physical Implementation
Reducing Critical Path Delay
To meet complex timing requirements involving multiple clocks, routing resources,
and area constraints, the Quartus II software offers a close interaction between
synthesis, timing analysis, floorplan editing, and place-and-route processes.

By default, the Quartus II Fitter tries to meet the specified timing requirements and
stops trying when the requirements are met. Therefore, using realistic constraints is
important to successfully close timing. If you under-constrain your design, you may
get sub-optimal results. By contrast, if you over-constrain your design, the Fitter
might over-optimize non-critical paths at the expense of true critical paths. In
addition, you might incur an increased area penalty. Compilation time may also
increase because of excessively tight constraints.

If your resource usage is very high, the Quartus II Fitter might have trouble finding a
legal placement. In such circumstances, the Fitter automatically modifies some of its
settings to try to trade off performance for area.

The Quartus II Fitter offers a number of advanced options that can help you improve
the performance of your design when you properly set constraints. Use the Timing
Optimization Advisor to determine which options are best suited for your design.

If you use incremental compilation, you can help resolve inter-partition timing
requirements by locking down results, one partition at a time, or by guiding the
placement of the partitions with LogicLock regions. You might be able to improve the
timing on such paths by placing the partitions optimally to reduce the length of
critical paths. Once your inter-partition timing requirements are met, use incremental
compilation to preserve the results and work on partitions that have not met timing
requirements.

In high-density FPGAs, routing accounts for a major part of critical path timing.
Because of this, duplicating or retiming logic can allow the Fitter to reduce delay on
critical paths. The Quartus II software offers push-button netlist optimizations and
physical synthesis options that can improve design performance at the expense of
considerable increases of compilation time and area. Turn on only those options that
help you keep reasonable compilation times and resource usage. Alternately, you can
modify your HDL to manually duplicate or adjust the timing logic.

Reducing Power Consumption
The Quartus II software has features that help reduce design power consumption. The
PowerPlay power optimization options control the power-driven compilation settings
for Synthesis and the Fitter.

f For more information, refer to the Power Optimization chapter in volume 2 of the
Quartus II Handbook.

Reducing Runtime
Many Fitter settings influence compilation time. Most of the default settings in the
Quartus II software are set for reduced compilation time. You can modify these
settings based on your project requirements.
Quartus II Handbook Version 13.1 November 2013 Altera Corporation
Volume 2: Design Implementation and Optimization

http://www.altera.com/literature/hb/qts/qts_qii52016.pdf

Chapter 10: Design Optimization Overview 10–7
Using Quartus II Tools
The Quartus II software supports parallel compilation in computers with multiple
processors. This can reduce compilation times by up to 15% while giving the identical
result as serial compilation.

You can also reduce compilation time with your iterations by using incremental
compilation. Use incremental compilation when you want to change parts of your
design, while keeping most of the remaining logic unchanged.

Using Quartus II Tools
The following sections describe several Quartus II tools that you can use to help
optimize your design.

Design Analysis
The Quartus II software provides tools that help with a visual representation of your
design. You can use the RTL Viewer to see a schematic representation of your design
before synthesis and place-and-route. The Technology Map Viewer provides a
schematic representation of the design implementation in the selected device
architecture after synthesis and place-and-route. It can also include timing
information.

With incremental compilation, the Design Partition Planner and the Chip Planner
allow you to partition and layout your design at a higher level. In addition, you can
perform many different tasks with the Chip Planner, including: making floorplan
assignments, implementing engineering change orders (ECOs), and performing
power analysis. Also, you can analyze your design and achieve a faster timing closure
with the Chip Planner. The Chip Planner provides physical timing estimates, critical
path display, and a routing congestion view to help guide placement for optimal
performance.

f For more information, refer to the Quartus II Incremental Compilation for Hierarchical
and Team-Based Designs and Best Practices for Incremental Compilation Partitions and
Floorplan Assignments chapters in volume 1 and the Engineering Change Management
with the Chip Planner chapter in volume 2 of the Quartus II Handbook.

Advisors
The Quartus II software includes several advisors to help you optimize your design
and reduce compilation time. You can complete your design faster by following the
recommendations in the Compilation Time Advisor, Incremental Compilation
Advisor, Timing Optimization Advisor, Area Optimization Advisor, Resource
Optimization Advisor, and Power Optimization Advisor. These advisors give
recommendations based on your project settings and your design constraints.

h For more information about advisors, refer to Running Advisors in the Quartus II
Software in Quartus II Help.
November 2013 Altera Corporation Quartus II Handbook Version 13.1
Volume 2: Design Implementation and Optimization

http://quartushelp.altera.com/current/mergedProjects/report/oaw/oaw_pro_run.htm
http://quartushelp.altera.com/current/mergedProjects/report/oaw/oaw_pro_run.htm
http://www.altera.com/literature/hb/qts/qts_qii52017.pdf
http://www.altera.com/literature/hb/qts/qts_qii52017.pdf
http://www.altera.com/literature/hb/qts/qts_qii51015.pdf
http://www.altera.com/literature/hb/qts/qts_qii51015.pdf
http://www.altera.com/literature/hb/qts/qts_qii51017.pdf
http://www.altera.com/literature/hb/qts/qts_qii51017.pdf

10–8 Chapter 10: Design Optimization Overview
Conclusion
Design Space Explorer
Use the Design Space Explorer (DSE) to find optimal settings in the Quartus II
software. DSE automatically tries different combinations of netlist optimizations and
advanced Quartus II software compiler settings, and reports the best settings for your
design, based on your chosen primary optimization goal. You can try different seeds
with the DSE if you are fairly close to meeting your timing or area requirements and
find one seed that meets timing or area requirements. Finally, the DSE can run the
different compilations on multiple computers in parallel, which shortens the timing
closure process.

h For more information, refer to About Design Space Explorer in Quartus II Help.

Conclusion
The Quartus II software includes a number of features and tools that you can use to
optimize area, timing, power, and compilation time when you design for
programmable logic devices (PLDs).

Document Revision History
Table 10–1 shows the revision history for this chapter.

f For previous versions of the Quartus II Handbook, refer to the Quartus II Handbook
Archive.

Table 10–1. Document Revision History

Date Version Changes

November 2013 13.1.0 Minor changes for HardCopy.

May 2013 13.0.0
Added the information about initial compilation requirements. This section was moved
from the Area Optimization chapter of the Quartus II Handbook. Minor updates to
delineate division of Timing and Area optimization chapters.

June 2012 12.0.0 Removed survey link.

November 2011 10.0.3 Template update.

December 2010 10.0.2 Changed to new document template. No change to content.

August 2010 10.0.1 Corrected link

July 2010 10.0.0 Initial release. Chapter based on topics and text in Section III of volume 2.
Quartus II Handbook Version 13.1 November 2013 Altera Corporation
Volume 2: Design Implementation and Optimization

http://quartushelp.altera.com/current/master.htm#mergedProjects/optimize/dse/dse_about_dse.htm
http://www.altera.com/literature/lit-qts_archive.jsp
http://www.altera.com/literature/lit-qts_archive.jsp

QII52022-13.0.0

© 2013 Altera Corporation. All rights reserved. ALTERA, ARRI
are trademarks of Altera Corporation and registered in the U.S
trademarks or service marks are the property of their respectiv
semiconductor products to current specifications in accordance
services at any time without notice. Altera assumes no respons
described herein except as expressly agreed to in writing by Al
on any published information and before placing orders for pr

Quartus II Handbook Version 13.1
Volume 2: Design Implementation and Optimization
May 2013

May 2013
QII52022-13.0.0
11. Reducing Compilation Time
The Quartus® II software offers several features and techniques to help reduce
compilation time.

This chapter describes techniques to reduce compilation time when designing for
Altera® devices, and includes the following topics:

■ “Compilation Time Optimization Techniques”

■ “Compilation Time Advisor” on page 11–2

■ “Strategies to Reduce the Overall Compilation Time” on page 11–2

■ “Reducing Synthesis Time and Synthesis Netlist Optimization Time” on page 11–5

■ “Reducing Placement Time” on page 11–5

■ “Reducing Routing Time” on page 11–7

■ “Reducing Static Timing Analysis Time” on page 11–8

■ “Setting Process Priority” on page 11–8

Compilation Time Optimization Techniques
The Analysis and Synthesis and Fitter modules consume the majority of time in a
compilation. The Analysis and Synthesis module includes physical synthesis
optimizations performed during synthesis, if you have turned on physical synthesis
optimizations. The Fitter includes two steps, placement and routing, and also includes
physical synthesis if you turned on the physical synthesis option with Normal or
Extra effort levels. The Flow Elapsed Time section of the Compilation Report shows
the duration of the Analysis and Synthesis and Fitter modules. The Fitter Messages
report in the Fitter section of the Compilation Report displays the elapsed time for
placement and routing processes.

Placement is the process of finding optimum locations for the logic in your design.
Placement includes Quartus II pre-Fitter operations, which place dedicated logic such
as clocks, PLLs, and transceiver blocks. Routing is the process of connecting the nets
between the logic in your design. Finding better placement for the logic in your
design requires more compilation time. Good logic placement allows you to more
easily meet your timing requirements and makes your design easier to route.
A, CYCLONE, HARDCOPY, MAX, MEGACORE, NIOS, QUARTUS and STRATIX words and logos
. Patent and Trademark Office and in other countries. All other words and logos identified as
e holders as described at www.altera.com/common/legal.html. Altera warrants performance of its
 with Altera's standard warranty, but reserves the right to make changes to any products and
ibility or liability arising out of the application or use of any information, product, or service
tera. Altera customers are advised to obtain the latest version of device specifications before relying
oducts or services.

Feedback SubscribeTwitter

ISO
9001:2008
Registered

https://www.altera.com/servlets/subscriptions/alert?id=QII52022
http://www.altera.com/common/legal.html
http://www.altera.com/support/reliability/certifications/rel-certifications.html
http://www.altera.com/support/reliability/certifications/rel-certifications.html
http://twitter.com/home/?status=Reducing+Compilation+Time+http://www.altera.com/literature/hb/qts/qts_qii52022.pdf?WT.mc_id=gc_so_tw_st_tx_a_011+(via @alteracorp)+%23Altera
mailto:TechDocFeedback@altera.com?subject=Feedback on qts_qii52022-13.1

11–2 Chapter 11: Reducing Compilation Time
Compilation Time Optimization Techniques
Example 11–1 shows examples of messages with each time component in two-digit
format, and days shown only if applicable:

Example 11–2 shows an info message displayed while the Fitter is running (including
Placement and Routing). The Message window displays this message every hour to
indicate Fitter operations are progressing normally.

Compilation Time Advisor
A Compilation Time Advisor is available to help you to reduce compilation time. Run
the Compilation Time Advisor on the Tools menu by pointing to Advisors and
clicking Compilation Time Advisor. You can find all the compilation time optimizing
techniques described in this section in the Compilation Time Advisor as well.

Strategies to Reduce the Overall Compilation Time
This section discusses strategies to reduce overall compilation time, including the
following topics:

■ “Using Parallel Compilation with Multiple Processors”

■ “Using Incremental Compilation” on page 11–4

■ “Using the Smart Compilation Setting” on page 11–4

Using Parallel Compilation with Multiple Processors
The Quartus II software can detect the number of processors available on a computer
and use multiple processors to reduce compilation time. You can also control the
number of processors used during a compilation on a per user basis. The Quartus II
software can use up to 16 processors to run algorithms in parallel and reduce
compilation time. The Quartus II software turns on parallel compilation by default to
enable the software to detect available multiple processors. You can specify the
maximum number of processors that the software can use if you want to reserve some
of the available processors for other tasks.

1 Do not consider processors with Intel Hyper-Threading as more than one processor. If
you have a single processor with Intel Hyper-Threading enabled, you should set the
number of processors to one. Altera recommends that you do not use the Intel
Hyper-Threading feature for Quartus II compilations, because it can increase
runtimes.

Example 11–1.

Info: Fitter placement operations ending: elapsed time =
<days:hours:minutes:seconds>
Info: Fitter routing operations ending: elapsed time =
<days:hours:minutes:seconds>

Example 11–2.

Info: Placement optimizations have been running for 4 hour(s)
Quartus II Handbook Version 13.1 May 2013 Altera Corporation
Volume 2: Design Implementation and Optimization

Chapter 11: Reducing Compilation Time 11–3
Compilation Time Optimization Techniques
The software does not necessarily use all the processors that you specify during a
given compilation. Additionally, the software never uses more than the specified
number of processors, enabling you to work on other tasks on your computer without
it becoming slow or less responsive.

If you have partitioned your design and enabled parallel compilation, the Quartus II
software can use different processors to compile those partitions simultaneously
during Analysis and Synthesis. This can cause higher peak memory usage during
Analysis and Synthesis.

You can reduce the compilation time by up to 10% on systems with two processing
cores and by up to 20% on systems with four cores. With certain design flows in which
timing analysis runs alone, multiple processors can reduce the time required for
timing analysis by an average of 10% when using two processors. This reduction can
reach an average of 15% when using four processors.

The actual reduction in compilation time when using incremental compilation
partitions depends on your design and on the specific compilation settings. For
example, compilations with multi-corner optimization turned on benefit more from
using multiple processors than do compilations without multi-corner optimization.
The runtime requirement is not reduced for some other compilation goals, such as
Analysis and Synthesis. The Fitter (quartus_fit) and the Quartus II TimeQuest
Timing Analyzer (quartus_sta) stages in the compilation can, in certain cases, benefit
from the use of multiple processors. The Flow Elapsed Time panel of the Compilation
Report shows the average number of processors for these stages. The Parallel
Compilation panel of the appropriate report, such as the Fitter report, shows a more
detailed breakdown of processor usage. This panel is displayed only if parallel
compilation is enabled.

Parallel compilation is available for Arria® series, Cyclone®, MAX® II, MAX V
(limited support), and Stratix® series devices.

h For more information, refer to Processing Page (Options Dialog Box) in Quartus II Help.

h For more information about how to control the number of processors used during
compilation for a specific project, refer to Compilation Process Settings Page (Settings
Dialog Box) in Quartus II Help.

You can also set the number of processors available for Quartus II compilation using
the following Tcl command in your script:

set_global_assignment -name NUM_PARALLEL_PROCESSORS <value> r
In this case, <value> is an integer from 1 to 16.

If you want the Quartus II software to detect the number of processors and use all the
processors for the compilation, include the following Tcl command in your script:

set_global_assignment -name NUM_PARALLEL_PROCESSORS ALL r
The use of multiple processors does not affect the quality of the fit. For a given Fitter
seed on a specific design, the fit is exactly the same, regardless of whether the
Quartus II software uses one processor or multiple processors. The only difference
between compilations using a different number of processors is the compilation time.
May 2013 Altera Corporation Quartus II Handbook Version 13.1
Volume 2: Design Implementation and Optimization

http://quartushelp.altera.com/current/master.htm#mergedProjects/comp/comp/comp_tab_mode.htm
http://quartushelp.altera.com/current/master.htm#mergedProjects/comp/comp/comp_tab_mode.htm
http://quartushelp.altera.com/current/master.htm#mergedProjects/global/global/gl_tab_processing.htm

11–4 Chapter 11: Reducing Compilation Time
Compilation Time Optimization Techniques
Using Incremental Compilation
The incremental compilation feature can accelerate design iteration time by up to 70%
for small design changes, and helps you reach design timing closure more efficiently.
You can speed up design iterations by recompiling only a particular design partition
and merging results with previous compilation results from other partitions. You can
also use physical synthesis optimization techniques for specific design partitions
while leaving other parts of your design untouched to preserve performance.

If you are using a third-party synthesis tool, you can create separate atom netlist files
for the parts of your design that you already have synthesized and optimized so that
you update only the parts of your design that change.

In the standard incremental compilation design flow, you can divide the top-level
design into partitions, which the software can compile and optimize in the top-level
Quartus II project. You can preserve fitting results and performance for completed
partitions while other parts of your design are changing. Incremental compilation
reduces the compilation time for each design iteration because the software does not
recompile the unchanged partitions in your design.

The incremental compilation feature facilitates team-based design flows by enabling
designers to create and optimize design blocks independently, when necessary, and
supports third-party IP integration.

f For more information about the full incremental compilation flow in the Quartus II
software, refer to the Quartus II Incremental Compilation for Hierarchical and Team-Based
Design chapter in volume 1 of the Quartus II Handbook. For more information about
creating multiple netlist files in third-party tools for use with incremental
compilation, refer to the appropriate chapter in Section IV. Synthesis in volume 1 of the
Quartus II Handbook.

h For more information about incremental compilation, refer to About Incremental
Compilation in Quartus II Help.

Using the Smart Compilation Setting
Not all compilation processes are required for when recompiling your design. Smart
compilation skips unnecessary Compiler stages, such as Analysis and Synthesis. This
feature is different from incremental compilation, which can compile parts of your
design while preserving results for unchanged parts.

This setting is especially useful when you perform multiple compilations during the
optimization phase of your design process. Smart compilation requires more disk
space than regular compilation. To turn on smart compilation, on the Assignments
menu, click Settings. In the Category list, select Compilation Process Settings and
turn on Use smart compilation.

h For more information on how to use smart compilation, refer to Compilation Process
Settings Page (Settings Dialog Box) in Quartus II Help.
Quartus II Handbook Version 13.1 May 2013 Altera Corporation
Volume 2: Design Implementation and Optimization

http://www.altera.com/literature/hb/qts/qts_qii51015.pdf
http://www.altera.com/literature/hb/qts/qts_qii51015.pdf
http://www.altera.com/literature/hb/qts/qts_qii5v1_03.pdf
http://quartushelp.altera.com/current/master.htm#mergedProjects/comp/increment/comp_view_qid.htm
http://quartushelp.altera.com/current/master.htm#mergedProjects/comp/increment/comp_view_qid.htm
http://quartushelp.altera.com/current/master.htm#mergedProjects/global/global/gl_com_settings.htm
http://quartushelp.altera.com/current/master.htm#mergedProjects/global/global/gl_com_settings.htm

Chapter 11: Reducing Compilation Time 11–5
Compilation Time Optimization Techniques
Reducing Synthesis Time and Synthesis Netlist Optimization Time
You can reduce synthesis time without affecting the Fitter time by reducing your use
of netlist optimizations and by using incremental compilation (with Netlist Type set
to Post-Synthesis). For tips on reducing synthesis time when using third-party EDA
synthesis tools, refer to your synthesis software’s documentation.

Settings to Reduce Synthesis Time and Synthesis Netlist Optimization Time
You can use Quartus II integrated synthesis to synthesize and optimize HDL designs,
and you can use synthesis netlist optimizations to optimize netlists that were
synthesized by third-party EDA software. When using Quartus II Integrated
Synthesis, you can also enable specific options in the Physical Synthesis
Optimizations window before performing Analysis and Synthesis. Netlist
optimizations can cause the Analysis and Synthesis module to take much longer to
run. Read the Analysis and Synthesis messages to determine how much time these
optimizations take. The compilation time spent in Analysis and Synthesis is usually
short compared to the compilation time spent in the Fitter.

If your design meets your performance requirements without synthesis netlist
optimizations, turn off the optimizations to save time. If you require synthesis netlist
optimizations to meet performance, you can optimize parts of your design hierarchy
separately to reduce the overall time spent in Analysis and Synthesis.

Turn off settings that are not useful. In general, if you carry over compilation settings
from a previous project, evaluate all settings and keep only those that you need.

Use Appropriate Coding Style to Reduce Synthesis Time
Your HDL coding style can also affect the synthesis time. For example, if you want to
infer RAM blocks from your code, you must follow the guidelines for inferring RAMs.
If RAM blocks are not inferred properly, the software implements those blocks as
registers.

If you are trying to infer a large memory block, the software consumes more resources
in the FPGA. This can cause routing congestion and increasing compilation time
significantly. If you see high routing utilizations in certain blocks, it is a good idea to
review the code for such blocks.

f For more information about coding guidelines, refer to the Recommended HDL Coding
Styles chapter in volume 1 of the Quartus II Handbook.

Reducing Placement Time
The time required to place a design depends on two factors: the number of ways the
logic in your design can be placed in the device and the settings that control how hard
the Placer works to find a good placement. You can reduce the placement time in two
ways:

■ Change the settings for the placement algorithm.

■ Use incremental compilation to preserve the placement for the unchanged parts of
your design.
May 2013 Altera Corporation Quartus II Handbook Version 13.1
Volume 2: Design Implementation and Optimization

http://www.altera.com/literature/hb/qts/qts_qii51007.pdf
http://www.altera.com/literature/hb/qts/qts_qii51007.pdf

11–6 Chapter 11: Reducing Compilation Time
Compilation Time Optimization Techniques
Sometimes there is a trade-off between placement time and routing time. Routing
time can increase if the placer does not run long enough to find a good placement.
When you reduce placement time, ensure that it does not increase routing time and
negate the overall time reduction.

Fitter Effort Setting
The highest Fitter effort setting, Standard Fit, requires the most runtime, but does not
always yield a better result than using the default Auto Fit. For designs with very
tight timing requirements, both Auto Fit and Standard Fit use the maximum effort
during optimization. Altera recommends using Auto Fit for reducing compilation
time. If you are certain that your design has only easy-to-meet timing constraints, you
can select Fast Fit for an even greater runtime savings.

Placement Effort Multiplier Settings
You can control the amount of time the Fitter spends in placement by reducing with
the Placement Effort Multiplier option. On the Assignments menu, click Settings.
Select Fitter Settings, and click More Settings. Under Existing Option Settings,
select Placement Effort Multiplier. The default is 1.0. Legal values must be greater
than 0 and can be non-integer values. Numbers between 0 and 1 can reduce fitting
time, but also can reduce placement quality and design performance.

Physical Synthesis Effort Settings
Physical synthesis options enable you to optimize your post-synthesis netlist and
improve your timing performance. These options, which affect placement, can
significantly increase compilation time.

If your design meets your performance requirements without physical synthesis
options, turn them off to reduce compilation time. For example, if some or all of the
physical synthesis algorithm information messages display an improvement of 0 ps,
turning off physical synthesis can reduce compilation time.

You also can use the Physical synthesis effort setting on the Physical Synthesis
Optimizations page to reduce the amount of extra compilation time used by these
optimizations.

The Fast setting directs the Quartus II software to use a lower level of physical
synthesis optimization. Compared to the Normal physical synthesis effort level, using
the Fast setting can cause a smaller increase in compilation time. However, the lower
level of optimization can result in a smaller increase in design performance.

Preserving Placement with Incremental Compilation
Preserving information about previous placements can make future placements faster.
The incremental compilation feature provides an easy-to-use method for preserving
placement results. For more information, refer to “Using Incremental Compilation”
on page 11–4.
Quartus II Handbook Version 13.1 May 2013 Altera Corporation
Volume 2: Design Implementation and Optimization

Chapter 11: Reducing Compilation Time 11–7
Compilation Time Optimization Techniques
Reducing Routing Time
The time required to route a design depends on three factors: the device architecture,
the placement of your design in the device, and the connectivity between different
parts of your design. The routing time is usually not a significant amount of the
compilation time. If your design requires a long time to route, perform one or more of
the following actions:

■ Check for routing congestion.

■ Turn off Fitter Aggressive Routability Optimization.

■ Use incremental compilation to preserve routing information for parts of your
design.

Identifying Routing Congestion in the Chip Planner
To identify areas of routing congestion in your design, open the Chip Planner from the
Tools menu. To view the routing congestion in the Chip Planner, double-click the
Report Routing Utilization command in the Tasks list. Click Preview in the Report
Routing Utilization dialog box to preview the default congestion display. Change the
Routing utilization type to display congestion for specific resources. The default
display uses dark blue for 0% congestion and red for 100%. Adjust the slider for
Threshold percentage to change the congestion threshold level.

Even if average congestion is not very high, your design may have areas where
congestion is very high in a specific type of routing. You can use the Chip Planner to
identify areas of high congestion for specific interconnect types. You can change the
connections in your design to reduce routing congestion. If the area with routing
congestion is in a LogicLock region or between LogicLock regions, change or remove
the LogicLock regions and recompile your design. If the routing time remains the
same, the time is a characteristic of your design and the placement. If the routing time
decreases, consider changing the size, location, or contents of LogicLock regions to
reduce congestion and decrease routing time.

Sometimes, routing congestion may be a result of the HDL coding style used in your
design. After you identity congested areas using the Chip Planner, review the HDL
code for the blocks placed in those areas to determine whether you can reduce
interconnect usage by code changes.

The Quartus II compilation messages contain information about average and peak
interconnect usage. Peak interconnect usage over 75%, or average interconnect usage
over 60%, could be an indication that it might be difficult to fit your design. Similarly,
peak interconnect usage over 90%, or average interconnect usage over 75%, are likely
to have increased chances of not getting a valid fit.

f For more information about identifying areas of congested routing using the Chip
Planner, refer to the “Viewing Routing Congestion” subsection in the Analyzing and
Optimizing the Design Floorplan chapter in volume 2 of the Quartus II Handbook.

Preserving Routing with Incremental Compilation
Preserving the previous routing results for part of your design can reduce future
routing time. Incremental compilation provides an easy-to-use methodology that
preserves placement and routing results. For more information, refer to “Using
Incremental Compilation” on page 11–4 and the references listed in the section.
May 2013 Altera Corporation Quartus II Handbook Version 13.1
Volume 2: Design Implementation and Optimization

http://www.altera.com/literature/hb/qts/qts_qii52006.pdf
http://www.altera.com/literature/hb/qts/qts_qii52006.pdf

11–8 Chapter 11: Reducing Compilation Time
Document Revision History
Reducing Static Timing Analysis Time
If you are performing timing-driven synthesis, the Quartus II software runs the
TimeQuest analyzer during Analysis and Synthesis. The Quartus II Fitter also runs
the TimeQuest analyzer during placement and routing. If there are incorrect
constraints in the Synopsys Design Constraints File (.sdc), the Quartus II software
may spend unnecessary time processing constraints several times.

■ If you do not specify false paths and multicycle paths in your design, the
TimeQuest analyzer may analyze paths that are not relevant to your design.

■ If you redefine constraints in the .sdc files, the TimeQuest analyzer may spend
additional time processing them. To avoid this situation, look for indications that
Synopsis design constraints are being redefined in the compilation messages, and
update the .sdc file.

■ Ensure that you provide the correct timing constraints to your design, because the
software cannot assume design intent, such as which paths to consider as false
paths or multicycle paths. When you specify these assignments correctly, the
TimeQuest analyzer skips analysis for those paths, and the Fitter does not spend
additional time optimizing those paths.

Setting Process Priority
It might be necessary to reduce the computing resources allocated to the compilation
at the expense of increased compilation time. It can be convenient to reduce the
resource allocation to the compilation with single processor machines if you must run
other tasks at the same time.

h For more information about setting process priority, refer to Processing Page (Options
Dialog Box) in Quartus II Help.

Document Revision History
Table 11–1 shows the revision history for this chapter.

Table 11–1. Document Revision History (Part 1 of 2)

Date Version Changes

May 2013 13.0.0

■ Removed the “Limit to One Fitting Attempt”, “Using Early Timing Estimation”,
“Final Placement Optimizations”, and “Using Rapid Recompile” sections.

■ Updated “Placement Effort Multiplier Settings” section.

■ Updated “Identifying Routing Congestion in the Chip Planner” section.

■ General editorial changes throughout the chapter.

June 2012 12.0.0 Removed survey link.

November 2011 11.0.1 Template update.

May 2011 11.0.0

■ Updated “Using Parallel Compilation with Multiple Processors”.

■ Updated “Identifying Routing Congestion in the Chip Planner”.

■ General editorial changes throughout the chapter.
Quartus II Handbook Version 13.1 May 2013 Altera Corporation
Volume 2: Design Implementation and Optimization

http://quartushelp.altera.com/current/master.htm#mergedProjects/global/global/gl_tab_processing.htm
http://quartushelp.altera.com/current/master.htm#mergedProjects/global/global/gl_tab_processing.htm

Chapter 11: Reducing Compilation Time 11–9
Document Revision History
f For previous versions of the Quartus II Handbook, refer to the Quartus II Handbook
Archive.

December 2010 10.1.0

■ Template update.

■ Added details about peak and average interconnect usage.

■ Added new section “Reducing Static Timing Analysis Time”.

■ Minor changes throughout chapter.

July 2010 10.0.0 Initial release.

Table 11–1. Document Revision History (Part 2 of 2)

Date Version Changes
May 2013 Altera Corporation Quartus II Handbook Version 13.1
Volume 2: Design Implementation and Optimization

http://www.altera.com/literature/lit-qts_archive.jsp
http://www.altera.com/literature/lit-qts_archive.jsp

QII52005-13.1.0

© 2013 Altera Corporation. All rights reserved. ALTERA, ARRI
are trademarks of Altera Corporation and registered in the U.S
trademarks or service marks are the property of their respectiv
semiconductor products to current specifications in accordance
services at any time without notice. Altera assumes no respons
described herein except as expressly agreed to in writing by Al
on any published information and before placing orders for pr

Quartus II Handbook Version 13.1
Volume 2: Design Implementation and Optimization
November 2013

November 2013
QII52005-13.1.0
12. Timing Closure and Optimization
This chapter describes techniques to improve timing performance when designing for
Altera® devices.

The application techniques vary between designs. Applying each technique does not
always improve results. Settings and options in the Quartus® II software have default
values that provide the best trade-off between compilation time, resource utilization,
and timing performance. You can adjust these settings to determine whether other
settings provide better results for your design.

Initial Compilation: Optional Fitter Settings
The Fitter offers many optional settings; however, this section discusses important
optional timing-optimization related Fitter settings only, which are the Optimize
Hold Timing, Optimize Multi-Corner Timing, and Fitter Aggressive Routability
Optimization settings.

h For scripting and device family support information of the Optimize Hold Timing
and Optimize Multi-Corner Timing settings, refer to the Fitter Settings Page (Settings
Dialog Box) in Quartus II Help.

c The settings required to optimize different designs could be different. The group of
settings that work best for one design may not produce the best result for another
design.

Optimize Hold Timing
The Optimize Hold Timing option directs the Quartus II software to optimize
minimum delay timing constraints. By default, the Quartus II software optimizes hold
timing for all paths for designs using devices newer than Arria® GX, Stratix® III, and
Cyclone® III. By default, the Quartus II software optimizes hold timing only for I/O
paths and minimum tPD paths for older devices.

When you turn on Optimize Hold Timing, the Quartus II software adds delay to
paths to ensure that your design meets the minimum delay requirements. In the Fitter
Settings pane, if you select I/O Paths and Minimum TPD Paths (the default choice
for older devices such as Cyclone II and Stratix II devices if you turn on Optimize
Hold Timing), the Fitter works to meet the following criteria:

■ Hold times (tH) from the device input pins to the registers

■ Minimum delays from I/O pins to I/O registers or from I/O registers to I/O pins

■ Minimum clock-to-out time (tCO) from registers to output pins
A, CYCLONE, HARDCOPY, MAX, MEGACORE, NIOS, QUARTUS and STRATIX words and logos
. Patent and Trademark Office and in other countries. All other words and logos identified as
e holders as described at www.altera.com/common/legal.html. Altera warrants performance of its
 with Altera's standard warranty, but reserves the right to make changes to any products and
ibility or liability arising out of the application or use of any information, product, or service
tera. Altera customers are advised to obtain the latest version of device specifications before relying
oducts or services.

Feedback SubscribeTwitter

ISO
9001:2008
Registered

https://www.altera.com/servlets/subscriptions/alert?id=QII52005
http://quartushelp.altera.com/current/#mergedProjects/comp/comp/comp_tab_fitting.htm
http://quartushelp.altera.com/current/#mergedProjects/comp/comp/comp_tab_fitting.htm
http://www.altera.com/common/legal.html
mailto:TechDocFeedback@altera.com?subject=Feedback on QII52005-13.1.0 (QII HB, Vol 2, Ch12: Area and Timing Optimization)
http://www.altera.com/support/reliability/certifications/rel-certifications.html
http://www.altera.com/support/reliability/certifications/rel-certifications.html
http://twitter.com/home/?status=Area+and+Timing+Optimization+http://www.altera.com/literature/hb/qts/qts_qii52005.pdf?WT.mc_id=gc_so_tw_st_tx_a_011+(via @alteracorp)+%23Altera

12–2 Chapter 12: Timing Closure and Optimization
Initial Compilation: Optional Fitter Settings
If you select All Paths, the Fitter also works to meet hold requirements from registers
to registers, as highlighted in blue in Figure 12–1, in which a derived clock generated
with logic causes a hold time problem on another register.

However, if your design still has internal hold time violations between registers,
correct the problems by manually adding some delays by instantiating LCELL
primitives, or by making changes to your design, such as using a clock enable signal
instead of a derived or gated clock.

f For design practices that helps eliminate internal hold time violations, refer to the
Recommended Design Practices chapter of the Quartus II Handbook.

Optimize Multi-Corner Timing
Due to process variations and changes in operating conditions, delays on some paths
can be significantly smaller than those in the slow corner timing model. This can
result in hold time violations on those paths, and in rare cases, additional setup time
violations.

Also, because of the small process geometries of the Arria GX, Cyclone III, Stratix III,
and newer device families, the slowest circuit performance of designs targeting these
devices does not necessarily occur at the highest operating temperature. The
temperature at which the circuit is slowest depends on the selected device, the design,
and the compilation results. Therefore, the Quartus II software provides the Arria GX,
Cyclone III series, Stratix III, and newer device families with three different timing
corners—Slow 85°C corner, Slow 0°C corner, and Fast 0°C corner. For other device
families, two timing corners are available—Fast 0° C and Slow 85° C corner.

The Optimize multi-corner timing option directs the Fitter to consider all corner
timing delays, including both fast-corner timing and slow-corner timing, during
optimization to meet timing requirements at all process corners and operating
conditions. By default, this option is on, and the Fitter optimizes designs considering
multi-corner delays in addition to slow-corner delays, for example, from the fast-
corner timing model, which is based on the fastest manufactured device, operating
under high-voltage conditions

The Optimize multi-corner timing option helps to create a design implementation
that is more robust across process, temperature, and voltage variations. Turning on
this option increases compilation time by approximately 10%.

Figure 12–1. Optimize Hold Timing Option Fixing an Internal Hold Time Violation

clk

Logic

D Q

D Q

Derived Clock Hold-Time Violation

Fitter Adds Routing Delay Here
Quartus II Handbook Version 13.1 November 2013 Altera Corporation
Volume 2: Design Implementation and Optimization

http://www.altera.com/literature/hb/qts/qts_qii51006.pdf

Chapter 12: Timing Closure and Optimization 12–3
Design Analysis
When this option is off, the Fitter optimizes designs considering only slow-corner
delays from the slow-corner timing model (slowest manufactured device for a given
speed grade, operating in low-voltage conditions).

Fitter Aggressive Routability Optimization
The Fitter Aggressive Routability Optimizations logic option allows you to specify
whether the Fitter aggressively optimizes for routability. Performing aggressive
routability optimizations may decrease design speed, but may also reduce routing
wire usage and routing time.

This option is useful if routing resources are resulting in no-fit errors, and you want to
reduce routing wire use.

Table 12–1 lists the settings for the Fitter Aggressive Routability Optimizations logic
option.

Design Analysis
The initial compilation establishes whether the design achieves a successful fit and
meets the specified timing requirements. This section describes how to analyze your
design results in the Quartus II software.

Ignored Timing Constraints
The Quartus II software ignores illegal, obsolete, and conflicting constraints.

You can view a list of ignored constraints by clicking Report Ignored Constraints in
the Reports menu in the TimeQuest GUI or by typing the following command to
generate a list of ignored timing constraints:

report_sdc -ignored -panel_name "Ignored Constraints" r
You should analyze any constraints that the Quartus II software ignores. If necessary,
correct the constraints and recompile your design before proceeding with design
optimization.

f For more information about the report_sdc command and its options, refer to The
Quartus II TimeQuest Timing Analyzer chapter of the Quartus II Handbook.

Table 12–1. Fitter Aggressive Routability Optimizations Logic Option Settings

Settings Description

Always
The Fitter always performs aggressive routability optimizations. If you set the Fitter Aggressive
Routability Optimizations logic option to Always, reducing wire utilization may affect the
performance of your design.

Never The Fitter never performs aggressive routability optimizations. If improving timing is more
important than reducing wire usage, then set this option to Automatically or Never.

Automatically
The Fitter performs aggressive routability optimizations automatically, based on the routability and
timing requirements of the design. If improving timing is more important than reducing wire usage,
then set this option to Automatically or Never.
November 2013 Altera Corporation Quartus II Handbook Version 13.1
Volume 2: Design Implementation and Optimization

http://www.altera.com/literature/hb/qts/qts_qii53018.pdf
http://www.altera.com/literature/hb/qts/qts_qii53018.pdf

12–4 Chapter 12: Timing Closure and Optimization
Design Analysis
h You can view a list of ignored assignment in the Ignored Assignment Report
generated by the Fitter. For more information, refer to the Fitter Summary Reports in
the Quartus II Help.

I/O Timing (Including tPD)
TimeQuest analyzer supports the Synopsys Design Constraints (SDC) format for
constraining your design. When using the TimeQuest analyzer for timing analysis,
use the set_input_delay constraint to specify the data arrival time at an input port
with respect to a given clock. For output ports, use the set_output_delay command
to specify the data arrival time at an output port’s receiver with respect to a given
clock. You can use the report_timing Tcl command to generate the I/O timing
reports.

The I/O paths that do not meet the required timing performance are reported as
having negative slack and are highlighted in red in the TimeQuest analyzer Report
pane. In cases where you do not apply an explicit I/O timing constraint to an I/O pin,
the Quartus II timing analysis software still reports the Actual number, which is the
timing number that must be met for that timing parameter when the device runs in
your system.

f For more information about how timing numbers are calculated, refer to The
Quartus II TimeQuest Timing Analyzer chapter of the Quartus II Handbook.

Register-to-Register Timing
This section contains the following sections:

■ “Timing Analysis with the TimeQuest Timing Analyzer”

■ “Tips for Analyzing Failing Paths” on page 12–6

■ “Tips for Analyzing Failing Clock Paths that Cross Clock Domains” on page 12–6

■ “Tips for Analyzing Paths from/to the Source and Destination of Critical Path” on
page 12–7

■ “Tips for Locating Multiple Paths to the Chip Planner” on page 12–8

■ “Tips for Creating a .tcl Script to Monitor Critical Paths Across Compiles” on
page 12–9

■ “Global Routing Resources” on page 12–9

Timing Analysis with the TimeQuest Timing Analyzer
Analyze all valid register-to-register paths by using the appropriate constraints in the
TimeQuest analyzer. To view all timing summaries, run the Report All Summaries
command by double-clicking Report All Summaries in the Tasks pane in the
TimeQuest analyzer.

If any clock domains have failing paths (highlighted in red in the Report panel),
right-click the Clock Name listed in the Clocks Summary panel and go to Report
Timing to get more details. Your design meets timing requirements when you do not
have negative slack on any register-to-register path on any of the clock domains.
Quartus II Handbook Version 13.1 November 2013 Altera Corporation
Volume 2: Design Implementation and Optimization

http://quartushelp.altera.com/13.0/master.htm#mergedProjects/report/rpt/rpt_file_fitter_summary.htm
http://www.altera.com/literature/hb/qts/qts_qii53018.pdf
http://www.altera.com/literature/hb/qts/qts_qii53018.pdf

Chapter 12: Timing Closure and Optimization 12–5
Design Analysis
When timing requirements are not met, a report on the failure paths (highlighted in
red) can uncover more detail.

When you select a path listed in the TimeQuest Report Timing pane, the tabs in the
corresponding path detail pane show a path summary of source and destination
registers and their timing, statistics about the path delay, detailed information about
the complete data path with all nodes in the path, and the waveforms of the relevant
signals. The Extra Fitter Information tab will show a Graphical Data Path of where
the offending path lies on the physical device. This can reveal whether the timing
failure may be distance related, due to the source and destination node being too close
or too far. The Chip Planner can also be used to investigate the physical layout of a
failing path in more detail. To locate a selected path in the Chip Planner, right-click a
node, point to Locate, and select Locate in Chip Planner. The Chip Planner appears
with the path highlighted. Use this to show fanout, fanin, routing congestion, and
region assignments information, and to determine whether those factors might be
contributing to the timing critical path. Additionally, if you know that a path is not a
valid path, you can set it to be a false path using the shortcut menu.

The Data Path tab can also be useful for determining contributions to timing critical
paths. The Data Path tab shows details of the paths that the clock and data took to get
from source to destination nodes, and the time it took on an incremental and
cumulative basis. It also provides information about the routing types and elements
used, and their locations.

To view the path details of any selected path, click the Data Path tab in the path
details pane. The Data Path tab displays the details of the Data Arrival Path, as well as
the Data Required Path.

The Waveform tab will show the slack relationship between arrival data and required
data. This could be useful for determining how close or far off the path is from
meeting timing.

f For more information about how timing analysis results are calculated, refer to The
Quartus II TimeQuest Timing Analyzer chapter of the Quartus II Handbook.

To aid in timing debug, the RTL Viewer or Technology Map Viewer allow you to see
schematic representations of your design. These viewers allow you to view a
gate-level or technology-mapped representation of your design netlist. By providing a
view of the path from source and destination nodes, the viewers can help identify
areas in a design that may benefit from reducing the number of logic levels between
the nodes. To locate a timing path in one of the viewers, right-click a path in the
report, point to Locate, and click Locate in RTL Viewer or Locate in Technology Map
Viewer.

f For more information about netlist viewers, refer to the Analyzing Designs with
Quartus II Netlist Viewers chapter of the Quartus II Handbook.
November 2013 Altera Corporation Quartus II Handbook Version 13.1
Volume 2: Design Implementation and Optimization

http://www.altera.com/literature/hb/qts/qts_qii53018.pdf
http://www.altera.com/literature/hb/qts/qts_qii53018.pdf
http://www.altera.com/literature/hb/qts/qts_qii51013.pdf
http://www.altera.com/literature/hb/qts/qts_qii51013.pdf

12–6 Chapter 12: Timing Closure and Optimization
Design Analysis
Tips for Analyzing Failing Paths
When you are analyzing failing paths, examine the reports and waveforms to
determine if the correct constraints are being applied, and add timing exceptions as
appropriate. A multicycle constraint relaxes setup or hold relationships by the
specified number of clock cycles. A false path constraint specifies paths that can be
ignored during timing analysis. Both constraints allow the Fitter to work harder on
affected paths.

Focus on improving the paths that show the worst slack. The Fitter works hardest on
paths with the worst slack. If you fix these paths, the Fitter might be able to improve
the other failing timing paths in the design. For more information, refer to “Design
Evaluation for Timing Closure” on page 12–27.

Check for particular nodes that appear in many failing paths. These nodes will appear
in a timing report panel at the top of the list, along with their minimum slacks. Look
for paths that have common source registers, destination registers, or common
intermediate combinational nodes. In some cases, the registers might not be identical,
but are part of the same bus.

In the timing analysis report panels, clicking on the From or To column headings can
help to sort the paths by the source or destination registers. Clicking first on From,
then on To, uses the registers in the To column as the primary sort and the registers in
the From column as the secondary sort. If you see common nodes, these nodes
indicate areas of your design that might be improved through source code changes or
Quartus II optimization settings. Constraining the placement for just one of the paths
might decrease the timing performance for other paths by moving the common node
further away in the device.

Tips for Analyzing Failing Clock Paths that Cross Clock Domains
When analyzing clock path failures, check whether these paths cross two clock
domains. This is the case if the From Clock and To Clock in the timing analysis report
are different (Figure 12–2).

There can also be paths that involve a different clock in the middle of the path, even if
the source and destination register clock are the same.

When you run Report Timing on your design, the report shows the launch clock and
latch clock for each failing path. Check whether these failing paths between these
clock domains should be analyzed synchronously. If the failing paths are not to be
analyzed synchronously, they must be set as false paths. Also check the relationship
between the launch clock and latch clock to make sure it is realistic and what you
expect from your knowledge of the design. For example, the path can start at a rising
edge and end at a falling edge, which reduces the setup relationship by one half clock
cycle.

Figure 12–2. Different Value in From Clock and To Clock Field
Quartus II Handbook Version 13.1 November 2013 Altera Corporation
Volume 2: Design Implementation and Optimization

Chapter 12: Timing Closure and Optimization 12–7
Design Analysis
Review the clock skew reported in the Timing Report. A large skew may indicate a
problem in your design, such as a gated clock or a problem in the physical layout (for
example, a clock using local routing instead of dedicated clock routing). When you
have made sure the paths are analyzed synchronously and that there is no large skew
on the path, and that the constraints are correct, you can analyze the data path.These
steps help you fine tune your constraints for paths across clock domains to ensure you
get an accurate timing report.

Check if the PLL phase shift is reducing the setup requirement. You might be able to
adjust this using PLL parameters and settings.

Paths that cross clock domains are generally protected with synchronization logic (for
example, FIFOs or double-data synchronization registers) to allow asynchronous
interaction between the two clock domains. In such cases, you can ignore the timing
paths between registers in the two clock domains while running timing analysis, even
if the clocks are related.

The Fitter attempts to optimize all failing timing paths. If there are paths that can be
ignored for optimization and timing analysis, but the paths do not have constraints
that instruct the Fitter to ignore them, the Fitter tries to optimize those paths as well.
In some cases, optimizing unnecessary paths can prevent the Fitter from meeting the
timing requirements on timing paths that are critical to the design. It is beneficial to
specify all paths that can be ignored by setting false path constraints on them, so that
the Fitter can put more effort into the paths that must meet their timing requirements
instead of optimizing paths that can be ignored.

f For more details about how to ignore timing paths that cross clock domains, refer to
The Quartus II TimeQuest Timing Analyzer chapter of the Quartus II Handbook.

Tips for Analyzing Paths from/to the Source and Destination of Critical Path
When analyzing the failing paths in a design, it is often helpful to get a fuller picture
of the many interactions the fitter may be working on around the paths. To
understand what may be pulling on a critical path, the following report_timing
command can be useful.

In the project directory, run the Tcl command shown in Example 12–1 in a .tcl file to
analyze the nodes in a critical path.

Copy the node names from the From Node and To Node columns of the worst path
into the first two variables, and then in the TimeQuest timing analyzer, in the Script
menu, source the .tcl script.

Example 12–1. report_timing Command

set wrst_src <insert_source_of_worst_path_here>
set wrst_dst <insert_destination_of_worst_path_here>
report_timing -setup -npaths 50 -detail path_only -from $wrst_src -panel_name "Worst
Path||wrst_src -> *"
report_timing -setup -npaths 50 -detail path_only -to $wrst_dst -panel_name "Worst
Path||* -> wrst_dst"
report_timing -setup -npaths 50 -detail path_only -to $wrst_src -panel_name "Worst
Path||* -> wrst_src"
report_timing -setup -npaths 50 -detail path_only -from $wrst_dst -panel_name "Worst
Path||wrst_dst -> *"
November 2013 Altera Corporation Quartus II Handbook Version 13.1
Volume 2: Design Implementation and Optimization

http://www.altera.com/literature/hb/qts/qts_qii53018.pdf

12–8 Chapter 12: Timing Closure and Optimization
Design Analysis
In the resulting timing panel, timing failed paths (highlighted in red) can be located in
the Chip Planner, where information such as distance between the nodes and large
fanouts can be viewed.

Figure 12–3 shows a simplified example of what these reports analyzed.

The critical path of the design is in red. The script analyzes the path between the worst
source and destination registers. The first report_timing command analyzes other
path that the source is driving, as shown in green. The second report_timing
command analyzes the critical path and other path going to the destination, shown in

yellow. These commands report everything inside these two endpoints that are
pulling them in different directions. The last two report_timing commands show
everything outside of the endpoints pulling them in other directions. If any of these
reports have slacks near the critical path, then the Fitter is balancing these paths with
the critical path, trying to achieve the best slack. Figure 12–3 is quite simple compared
to the critical path in most designs, but it is easy to see how this can get very
complicated quickly.

Tips for Locating Multiple Paths to the Chip Planner
The Chip Planner can be used as a visual aid in locating timing critical paths. To view
these paths from timing reports, do the following:

1. Run report_timing to show multiple paths. (Example 12–1)

2. Select multiple rows of timing report.

3. Right-click, select Locate Path, and then click Chip Planner.

4. The Locate History window in the Chip Planner displays the selected paths and
the worst path.

5. Double-click Locate Paths to show all paths at once, or select individual paths to
view the path in the Chip Planner.

Figure 12–3. Timing Report

LUT

LUT

LUT
LUT

LUT LUT

LUTLUT

LUT

LUT

wrst_src -> *
* -> wrst_dst
* -> wrst_src
wrst_dst -> *
Critical Path

Legend

Source Register
of Worst Path

Destination
Register of
Worst Path
Quartus II Handbook Version 13.1 November 2013 Altera Corporation
Volume 2: Design Implementation and Optimization

Chapter 12: Timing Closure and Optimization 12–9
Design Analysis
This will show whether timing failures may be due to large distances between the
nodes or large fanouts.

Tips for Creating a .tcl Script to Monitor Critical Paths Across Compiles
Many designs have the same critical paths show up after each compile, but some
suffer from having critical paths bounce around between different hierarchies,
changing with each compile.

This could happen in high speed designs where many register to register paths have
very little slack. Different placements can then result in timing failures in the marginal
paths. In designs like this, create a TQ_critical_paths.tcl script in the project directory.
For a given compile, view the critical paths and then write a generic report_timing
command to capture those paths. For example, if several paths fail in a low-level
hierarchy, you can add the following command as shown in Example 12–2:

If there is a specific path, such as a bit of a state-machine going to other *count_sync*
registers, you can add a command as shown in Example 12–3:

This file can be sourced in the TimeQuest timing analyzer after every compilation,
and new report_timing commands can be added as new critical paths appear. This
helps you monitor paths that consistently fail and paths that are only marginal, so you
can prioritize effectively.

Global Routing Resources
Global routing resources are designed to distribute high fan-out, low-skew signals
(such as clocks) without consuming regular routing resources. Depending on the
device, these resources can span the entire chip, or some smaller portion, such as a
quadrant. The Quartus II software attempts to assign signals to global routing
resources automatically, but you might be able to make more suitable assignments
manually.

f For details about the number and types of global routing resources available, refer to
the relevant device handbook.

Check the global signal utilization in your design to ensure that the appropriate
signals have been placed on the global routing resources. In the Compilation Report,
open the Fitter report and click Resource Section. Analyze the Global & Other Fast
Signals and Non-Global High Fan-out Signals reports to determine whether any
changes are required.

Example 12–2. report_timing Command

report_timing –setup –npaths 50 –detail path_only –to “main_system:
main_system_inst|app_cpu:cpu|*”
–panel_name “Critical Paths||s: * -> app_cpu”

Example 12–3. report_timing Command

report_timing –setup –npaths 50 –detail path_only –from “main_system:
main_system_inst|egress_count_sm:egress_inst|update” –to “*count_sync*”
–panel_name “Critical Paths||s: egress_sm|update -> count_sync”
November 2013 Altera Corporation Quartus II Handbook Version 13.1
Volume 2: Design Implementation and Optimization

12–10 Chapter 12: Timing Closure and Optimization
Optimizing Timing (LUT-Based Devices)
You might be able to reduce skew for high fan-out signals by placing them on global
routing resources. Conversely, you can reduce the insertion delay of low fan-out
signals by removing them from global routing resources. Doing so can improve clock
enable timing and control signal recovery/removal timing, but increases clock skew.
Use the Global Signal setting in the Assignment Editor to control global routing
resources.

Optimizing Timing (LUT-Based Devices)
This section contains guidelines that might help you if your design does not meet its
timing requirements.

Debugging Timing Failures in the TimeQuest Analyzer
A Report Timing Closure Recommendations task is available in the Custom Reports
section of the Tasks pane of the TimeQuest analyzer. Use this report to get more
information and help on the failing paths in your design. This feature is available for
the Arria II, Cyclone III, Stratix III, and newer devices.

When you run the Report Timing Closure Recommendations task, you get specific
recommendations about failing paths in your design and changes that you can make
to potentially fix the failing paths.

Selecting the Report Timing Closure Recommendations task opens the Report
Timing Closure Recommendations dialog box.

From the Report Timing Closure Recommendations dialog box, you can select paths
based on the clock domain, filter by nodes on path, and choose the number of paths to
analyze.

After running the Report Timing Closure Recommendations task in the TimeQuest
analyzer, examine the reports in the Report Timing Closure Recommendations
folder in the Report pane of the TimeQuest analyzer GUI. Each recommendation has
star symbols (*) associated with it. Recommendations with more stars are more likely
to help you close timing on your design.

The reports give you the most probable causes of failure for each path being analyzed.
The reports are organized into sections, depending on the type of issues found in the
design, such as large clock skew, restricted optimizations, unbalanced logic, skipped
optimizations, coding style that has too many levels of logic between registers, or
region or partition constraints specific to your project.

You will see recommendations that may help you fix the failing paths. For detailed
analysis of the critical paths, run the report_timing command on specified paths. In
the Extra Fitter Information tab of the Path report panel, you will also see detailed
Fitter-related information that may help you visualize the issue and take the
appropriate action if your constraints cause a specific placement.

h For more information about the Report Timing Closure Recommendations dialog
box, refer to Report Timing Closure Recommendations Dialog Box in Quartus II Help.
Quartus II Handbook Version 13.1 November 2013 Altera Corporation
Volume 2: Design Implementation and Optimization

http://quartushelp.altera.com/current/mergedProjects/analyze/sta/sta_com_report_timing_closure_recommendations.htm

Chapter 12: Timing Closure and Optimization 12–11
Optimizing Timing (LUT-Based Devices)
Timing Optimization Advisor
While the TimeQuest Report Timing Closure Recommendations task gives specific
recommendations to fix failing paths, the Timing Optimization Advisor gives more
general recommendations to improve timing performance for a design.

The Timing Optimization Advisor guides you in making settings that optimize your
design to meet your timing requirements. To run the Timing Optimization Advisor,
on the Tools menu, point to Advisors and click Timing Optimization Advisor. This
advisor describes many of the suggestions made in this section.

When you open the Timing Optimization Advisor after compilation, you can find
recommendations to improve the timing performance of your design. Some of the
recommendations in these advisors can contradict each other. Altera recommends
evaluating these options and choosing the settings that best suit the given
requirements.

Figure 12–4 shows the Timing Optimization Advisor after compiling a design that
meets its frequency requirements, but requires setting changes to improve the timing.

When you expand one of the categories in the Timing Optimization Advisor, such as
Maximum Frequency (fmax) or I/O Timing (tsu, tco, tpd), the recommendations are
divided into stages. The stages show the order in which to apply the recommended
settings. The first stage contains the options that are easiest to change, make the least
drastic changes to your design optimization, and have the least effect on compilation
time. Icons indicate whether each recommended setting has been made in the current
project. In Figure 12–4, the checkmark icons in the list of recommendations for Stage 1
indicate recommendations that are already implemented. The warning icons indicate

Figure 12–4. Timing Optimization Advisor

These options open the Settings dialog box or Assignment
Editor so you can manually change the settings.

This button makes the recommended
changes automatically.
November 2013 Altera Corporation Quartus II Handbook Version 13.1
Volume 2: Design Implementation and Optimization

12–12 Chapter 12: Timing Closure and Optimization
Optimizing Timing (LUT-Based Devices)
recommendations that are not followed for this compilation. The information icons
indicate general suggestions. For these entries, the advisor does not report whether
these recommendations were followed, but instead explains how you can achieve
better performance. For a legend that provides more information for each icon, refer
to the “How to use” page in the Timing Optimization Advisor.

There is a link from each recommendation to the appropriate location in the
Quartus II GUI where you can change the settings. For example, consider the
Synthesis Netlist Optimizations page of the Settings dialog box or the Global
Signals category in the Assignment Editor. This approach provides the most control
over which settings are made and helps you learn about the settings in the software.
In some cases, you can also use the Correct the Settings button to automatically make
the suggested change to global settings.

For some entries in the Timing Optimization Advisor, a button appears that allows
you to further analyze your design and gives you more information. The advisor
provides a table with the clocks in the design and indicates whether they have been
assigned a timing constraint.

I/O Timing Optimization
This stage of design optimization focuses on I/O timing. Ensure that you have made
the appropriate assignments described in the “Initial Compilation: Required Settings”
section in the Design Optimization Overview chapter of the Quartus II Handbook. You
must also ensure that resource utilization is satisfactory before proceeding with I/O
timing optimization. The suggestions provided in this section are applicable to all
Altera FPGA families and to the MAX II family of CPLDs.

Because changes to the I/O paths affect the internal register-to-register timing,
complete this stage before proceeding to the register-to-register timing optimization
stage as described in “Register-to-Register Timing Optimization Techniques
(LUT-Based Devices)” on page 12–17.

The options presented in this section address how to improve I/O timing, including
the setup delay (tSU), hold time (tH), and clock-to-output (tCO) parameters.

Improving Setup and Clock-to-Output Times Summary
Table 12–2 lists the recommended order in which to use techniques to reduce tSU and
tCO times. Checkmarks indicate which timing parameters are affected by each
technique. Reducing tSU times increases hold (tH) times.

Table 12–2. Improving Setup and Clock-to-Output Times (1) (Part 1 of 2)

Technique Affects tSU Affects tCO

Ensure that the appropriate constraints are set for the failing I/Os (refer to the “Initial
Compilation: Required Settings” section in the Design Optimization Overview chapter of the
Quartus II Handbook.)

v v

Use timing-driven compilation for I/O (page 12–13) v v
Use fast input register (page 12–14) v —

Use fast output register, fast output enable register, and fast OCT register (page 12–14) — v
Decrease the value of Input Delay from Pin to Input Register or set Decrease Input Delay to
Input Register = ON v —
Quartus II Handbook Version 13.1 November 2013 Altera Corporation
Volume 2: Design Implementation and Optimization

http://www.altera.com/literature/hb/qts/qts_qii52021.pdf
http://www.altera.com/literature/hb/qts/qts_qii52021.pdf

Chapter 12: Timing Closure and Optimization 12–13
Optimizing Timing (LUT-Based Devices)
Timing-Driven Compilation
This option moves registers into I/O elements if required to meet tSU or tCO
assignments, duplicating the register if necessary (as in the case in which a register
fans out to multiple output locations). This option is turned on by default and is a
global setting. The option does not apply to MAX II series devices because they do not
contain I/O registers.

The Optimize IOC Register Placement for Timing option affects only pins that have
a tSU or tCO requirement. Using the I/O register is possible only if the register directly
feeds a pin or is fed directly by a pin. This setting does not affect registers with any of
the following characteristics:

■ Have combinational logic between the register and the pin

■ Are part of a carry or cascade chain

■ Have an overriding location assignment

■ Use the asynchronous load port and the value is not 1 (in device families where the
port is available)

Registers with the characteristics listed are optimized using the regular Quartus II
Fitter optimizations.

h For more information, refer to Optimize IOC Register Placement for Timing logic option in
Quartus II Help.

Fast Input, Output, and Output Enable Registers
Normally, with correct timing assignments, the Fitter already places the I/O registers
in the correct I/O cell or in the core, to meet the performance requirement. However,
you can place individual registers in I/O cells manually by making fast I/O
assignments with the Assignment Editor.

Decrease the value of Input Delay from Pin to Internal Cells or set Decrease Input Delay to
Internal Cells = ON v —

Decrease the value of Delay from Output Register to Output Pin or set Increase Delay to
Output Pin = OFF (page 12–13) — v
Increase the value of Input Delay from Dual-Purpose Clock Pin to Fan-Out Destinations
(page 12–13) v —

Use PLLs to shift clock edges (page 12–15) v v
Use the Fast Regional Clock (page 12–16) — v
For MAX II or MAX V family devices, set Guarantee I/O Paths Have Zero Hold Time at Fast
Corner to OFF, or When TSU and TPD Constraints Permit (page 12–16) v —

Increase the value of Delay to output enable pin or set Increase delay to output enable pin
(page 12–15) — v
Note to Table 12–2:

(1) These options may not apply to all device families.

Table 12–2. Improving Setup and Clock-to-Output Times (1) (Part 2 of 2)

Technique Affects tSU Affects tCO
November 2013 Altera Corporation Quartus II Handbook Version 13.1
Volume 2: Design Implementation and Optimization

http://quartushelp.altera.com/current/master.htm#mergedProjects/logicops/logicops/def_optimize_io_timing.htm

12–14 Chapter 12: Timing Closure and Optimization
Optimizing Timing (LUT-Based Devices)
h For more information about the Fast Input Register option, Fast Output Register
option, Fast Output Enable Register option, and Fast OCT (on-chip termination)
Register option, refer to Quartus II Help.

In MAX II series devices, which have no I/O registers, these assignments lock the
register into the LAB adjacent to the I/O pin if there is a pin location assignment for
that I/O pin.

If the fast I/O setting is on, the register is always placed in the I/O element. If the fast
I/O setting is off, the register is never placed in the I/O element. This is true even if
the Optimize IOC Register Placement for Timing option is turned on. If there is no
fast I/O assignment, the Quartus II software determines whether to place registers in
I/O elements if the Optimize IOC Register Placement for Timing option is turned
on.

You can also use the four fast I/O options (Fast Input Register, Fast Output Register,
Fast Output Enable Register, and Fast OCT Register) to override the location of a
register that is in a LogicLock region and force it into an I/O cell. If you apply this
assignment to a register that feeds multiple pins, the register is duplicated and placed
in all relevant I/O elements. In MAX II series devices, the register is duplicated and
placed in each distinct LAB location that is next to an I/O pin with a pin location
assignment.

Programmable Delays
You can use various programmable delay options to minimize the tSU and tCO times.
For Arria, Cyclone, MAX II, MAX V, and Stratix series devices, the Quartus II
software automatically adjusts the applicable programmable delays to help meet
timing requirements. Programmable delays are advanced options to use only after
you compile a project, check the I/O timing, and determine that the timing is
unsatisfactory. For detailed information about the effect of these options, refer to the
device family handbook or data sheet.

After you have made a programmable delay assignment and compiled the design,
you can view the implemented delay values for every delay chain for every I/O pin in
the Delay Chain Summary section of the Compilation Report.

You can assign programmable delay options to supported nodes with the Assignment
Editor. You can also view and modify the delay chain setting for the target device with
the Chip Planner and Resource Property Editor. When you use the Resource Property
Editor to make changes after performing a full compilation, recompiling the entire
design is not necessary; you can save changes directly to the netlist. Because these
changes are made directly to the netlist, the changes are not made again automatically
when you recompile the design. The change management features allow you to
reapply the changes on subsequent compilations.

Although the programmable delays in newer devices are user-controllable, Altera
recommends their use for advanced users only. However, the Quartus II software
might use the programmable delays internally during the Fitter phase.

f For more information about Stratix III programmable delays, refer to the Stratix III
Device Handbook and AN 474: Implementing Stratix III Programmable I/O Delay Settings
in the Quartus II Software. For more information about using the Chip Planner and
Resource Property Editor, refer to the Engineering Change Management with the Chip
Planner chapter of the Quartus II Handbook.
Quartus II Handbook Version 13.1 November 2013 Altera Corporation
Volume 2: Design Implementation and Optimization

http://www.altera.com/literature/hb/stx3/stx3_siii5v1.pdf
http://www.altera.com/literature/hb/stx3/stx3_siii5v1.pdf
http://www.altera.com/literature/an/an474.pdf
http://www.altera.com/literature/an/an474.pdf
http://www.altera.com/literature/hb/qts/qts_qii52017.pdf
http://www.altera.com/literature/hb/qts/qts_qii52017.pdf

Chapter 12: Timing Closure and Optimization 12–15
Optimizing Timing (LUT-Based Devices)
h For details about the programmable delay logic options available for Altera devices,
refer to the following Quartus II Help topics:

■ Decrease Input Delay to Input Register logic option

■ Input Delay from Pin to Input Register logic option

■ Decrease Input Delay to Internal Cells logic option

■ Input Delay from Pin to Internal Cells logic option

■ Decrease Input Delay to Output Register logic option

■ Increase Delay to Output Enable Pin logic option

■ Output Enable Pin Delay logic option

■ Increase Delay to Output Pin logic option

■ Delay from Output Register to Output Pin logic option

■ Increase Input Clock Enable Delay logic option

■ Input Delay from Dual-Purpose Clock Pin to Fan-Out Destinations logic option

■ Increase Output Clock Enable Delay logic option

■ Increase Output Enable Clock Enable Delay logic option

■ Increase tzx Delay to Output Pin logic option

Use PLLs to Shift Clock Edges
Using a PLL typically improves I/O timing automatically. If the timing requirements
are still not met, most devices allow the PLL output to be phase shifted to change the
I/O timing. Shifting the clock backwards gives a better tH at the expense of tSU, while
shifting it forward gives a better tSU at the expense of tH (refer to Figure 12–5). You can
use this technique only in devices that offer PLLs with the phase shift option.

You can achieve the same type of effect in certain devices by using the programmable
delay called Input Delay from Dual Purpose Clock Pin to Fan-Out Destinations.

h For more information, refer to Input Delay from Dual-Purpose Clock Pin to Fan-Out
Destinations logic option in Quartus II Help.

Use Fast Regional Clock Networks and Regional Clocks Networks
Altera devices have a variety of hierarchical clock structures. These include dedicated
global clock networks, regional clock networks, fast regional clock networks, and
periphery clock networks. The available resources differ between the various Altera
device families.

Figure 12–5. Shift Clock Edges Forward to Improve tSU at the Expense of tH
November 2013 Altera Corporation Quartus II Handbook Version 13.1
Volume 2: Design Implementation and Optimization

http://quartushelp.altera.com/current/master.htm#mergedProjects/logicops/logicops/def_pad_to_input_register_delay.htm
http://quartushelp.altera.com/current/master.htm#mergedProjects/logicops/logicops/def_output_enable_delay.htm
http://quartushelp.altera.com/current/master.htm#mergedProjects/logicops/logicops/def_delay_setting_to_input_register.htm
http://quartushelp.altera.com/current/master.htm#mergedProjects/logicops/logicops/def_delay_setting_to_core.htm
http://quartushelp.altera.com/current/master.htm#mergedProjects/logicops/logicops/def_delay_setting_from_core_to_ce_output_register.htm
http://quartushelp.altera.com/current/master.htm#mergedProjects/logicops/logicops/def_pad_to_core_delay.htm
http://quartushelp.altera.com/current/master.htm#mergedProjects/logicops/logicops/def_delay_setting_from_core_to_output_register.htm
http://quartushelp.altera.com/current/master.htm#mergedProjects/logicops/logicops/def_delay_setting_to_output_enable.htm
http://quartushelp.altera.com/current/master.htm#mergedProjects/logicops/logicops/def_dual_purpose_clock_pin_delay.htm
http://quartushelp.altera.com/current/master.htm#mergedProjects/logicops/logicops/def_dual_purpose_clock_pin_delay.htm
http://quartushelp.altera.com/current/master.htm#mergedProjects/logicops/logicops/def_delay_setting_from_core_to_ce_oe_register.htm
http://quartushelp.altera.com/current/master.htm#mergedProjects/logicops/logicops/def_delay_setting_to_zbt.htm
http://quartushelp.altera.com/current/master.htm#mergedProjects/logicops/logicops/def_delay_setting_to_output.htm
http://quartushelp.altera.com/current/master.htm#mergedProjects/logicops/logicops/def_clock_to_output_delay.htm
http://quartushelp.altera.com/current/master.htm#mergedProjects/logicops/logicops/def_delay_setting_from_core_to_ce_input_register.htm
http://quartushelp.altera.com/current/master.htm#mergedProjects/logicops/logicops/def_dual_purpose_clock_pin_delay.htm
http://quartushelp.altera.com/current/master.htm#mergedProjects/logicops/logicops/def_delay_setting_to_zbt.htm
http://quartushelp.altera.com/current/master.htm#mergedProjects/logicops/logicops/def_delay_setting_to_zbt.htm

12–16 Chapter 12: Timing Closure and Optimization
Optimizing Timing (LUT-Based Devices)
f For the number of clocking resources available in your target device, refer to the
appropriate device handbook.

In general, fast regional clocks have less delay to I/O elements than regional and
global clocks, and are used for high fan-out control signals. Regional clocks provide
the lowest clock delay and skew for logic contained in a single quadrant. Placing
clocks on these low-skew and low-delay clock nets provides better tCO performance.

Spine Clock Limitations
Global clock networks, regional clock networks, and periphery clock networks have
an additional level of clock hierarchy known as spine clocks. Spine clocks drive the
final row and column clocks to their registers; thus, the clock to every register in the
chip is reached through spine clocks. Spine clocks are not directly user controllable.

If your project has high clock routing demands, due to limitations in the Quartus II
software, you may see spine clock errors. These errors are often seen with designs
using multiple memory interfaces and high-speed serial interface (HSSI) channels
(especially PMA Direct mode).

To reduce these spine clock errors, you can constrain your design to better use your
regional clock resources using the following techniques:

■ If your design does not use LogicLock regions, or if the LogicLock regions are not
aligned to your clock region boundaries, create additional LogicLock regions and
further constrain your logic.

1 Register packing, a Fitter optimization option, may ignore LogicLock
regions. If this occurs, disable register packing for specific instances
through the Quartus II Assignment Editor.

■ Some periphery features may ignore LogicLock region assignments. When this
happens, the global promotion process may not function properly. To ensure that
the global promotion process uses the correct locations, assign specific pins to the
I/Os using these periphery features.

■ By default, some IP MegaCore functions apply a global signal assignment with a
value of dual-regional clock. If you constrain your logic to a regional clock region
and set the global signal assignment to Regional instead of Dual-Regional, you
can reduce clock resource contention.

Change How Hold Times are Optimized for MAX II Devices
For MAX II devices, you can use the Guarantee I/O Paths Have Zero Hold Time at
Fast Corner option to control how hold time is optimized by the Quartus II software.

h For details, refer to Guarantee I/O Paths Have Zero Hold Time at Fast Corner logic option in
Quartus II Help.
Quartus II Handbook Version 13.1 November 2013 Altera Corporation
Volume 2: Design Implementation and Optimization

http://quartushelp.altera.com/current/master.htm#mergedProjects/logicops/logicops/def_guarantee_min_delay_corner_io_zero_hold_time.htm

Chapter 12: Timing Closure and Optimization 12–17
Optimizing Timing (LUT-Based Devices)
Register-to-Register Timing Optimization Techniques (LUT-Based Devices)
The next stage of design optimization is to improve register-to-register (fMAX) timing.
The following sections provide available options if the performance requirements are
not achieved after compilation.

Coding style affects the performance of your design to a greater extent than other
changes in settings. Always evaluate your code and make sure to use synchronous
design practices.

f For more details about synchronous design practices and coding styles, refer to the
Recommended Design Practices chapter of the Quartus II Handbook.

1 When using the TimeQuest analyzer, register-to-register timing optimization is the
same as maximizing the slack on the clock domains in your design. You can use the
techniques described in this section to improve the slack on different timing paths in
your design.

Before optimizing your design, understand the structure of your design as well as the
type of logic affected by each optimization. An optimization can decrease
performance if the optimization does not benefit your logic structure.

Optimize Source Code
In many cases, optimizing the design’s source code can have a very significant effect
on your design performance. In fact, optimizing your source code is typically the most
effective technique for improving the quality of your results and is often a better
choice than using LogicLock or location assignments.

Be aware of the number of logic levels needed to implement your logic while you are
coding. Too many levels of logic between registers could result in critical paths failing
timing. Try restructuring the design to use pipelining or more efficient coding
techniques. Also, try limiting high fan-out signals in the source code. When possible,
duplicate and pipeline control signals. Make sure the duplicate registers are protected
by a preserve attribute, to avoid merging during synthesis.

If the critical path in your design involves memory or DSP functions, check whether
you have code blocks in your design that describe memory or functions that are not
being inferred and placed in dedicated logic. You might be able to modify your source
code to cause these functions to be placed into high-performance dedicated memory
or resources in the target device. When using RAM/DSP blocks, enable the optional
input and output registers.

Ensure that your state machines are recognized as state machine logic and optimized
appropriately in your synthesis tool. State machines that are recognized are generally
optimized better than if the synthesis tool treats them as generic logic. In the
Quartus II software, you can check the State Machine report under Analysis &
Synthesis in the Compilation Report. This report provides details, including state
encoding for each state machine that was recognized during compilation. If your state
machine is not recognized, you might have to change your source code to enable it to
be recognized.
November 2013 Altera Corporation Quartus II Handbook Version 13.1
Volume 2: Design Implementation and Optimization

http://www.altera.com/literature/hb/qts/qts_qii51006.pdf

12–18 Chapter 12: Timing Closure and Optimization
Optimizing Timing (LUT-Based Devices)
f For coding style guidelines including examples of HDL code for inferring memory,
functions, guidelines, and sample HDL code for state machines, refer to the
Recommended HDL Coding Styles chapter of the Quartus II Handbook.

f For additional HDL coding examples, refer to AN 584: Timing Closure Methodology for
Advanced FPGA Designs.

Improving Register-to-Register Timing Summary
The choice of options and settings to improve the timing margin (slack) or to improve
register-to-register timing depends on the failing paths in the design. To achieve the
results that best approximate your performance requirements, apply the following
techniques and compile the design after each step:

1. Ensure that your timing assignments are complete and correct. For details, refer to
the “Initial Compilation: Required Settings” section in the Design Optimization
Overview chapter of the Quartus II Handbook.

2. Ensure that you have reviewed all warning messages from your initial
compilation and check for ignored timing assignments.

1 For details and to fix any of these problems before proceeding with
optimization, refer to the Design Optimization Overview chapter of the
Quartus II Handbook.

3. Apply netlist synthesis optimization options.

4. To optimize for speed, apply the following synthesis options:

■ “Optimize Synthesis for Speed, Not Area” on page 12–20

■ “Flatten the Hierarchy During Synthesis” on page 12–21

■ “Set the Synthesis Effort to High” on page 12–21

■ “Change State Machine Encoding” on page 12–22

■ “Prevent Shift Register Inference” on page 12–23

■ “Use Other Synthesis Options Available in Your Synthesis Tool” on page 12–23

5. To optimize for performance using physical synthesis, apply the following
options:

■ Perform physical synthesis for combinational logic

■ Perform automatic asynchronous signal pipelining

■ Perform register duplication

■ Perform register retiming

■ Perform logic to memory mapping

1 For more information about physical synthesis optimization, refer to
“Physical Synthesis Optimizations” on page 12–19.

6. Try different Fitter seeds (page 12–23). If there are very few paths that are failing
by small negative slack, then you can try with a different seed to see if there is a fit
that meets constraints in the Fitter seed noise.
Quartus II Handbook Version 13.1 November 2013 Altera Corporation
Volume 2: Design Implementation and Optimization

http://www.altera.com/literature/hb/qts/qts_qii52021.pdf
http://www.altera.com/literature/hb/qts/qts_qii52021.pdf
http://www.altera.com/literature/hb/qts/qts_qii52021.pdf
http://www.altera.com/literature/hb/qts/qts_qii51007.pdf
http://www.altera.com/literature/an/an584.pdf
http://www.altera.com/literature/an/an584.pdf

Chapter 12: Timing Closure and Optimization 12–19
Optimizing Timing (LUT-Based Devices)
1 Omit this step if a large number of critical paths are failing or if the paths
are failing badly.

7. To control placement, make LogicLock assignments (page 12–24).

8. Make design source code modifications to fix areas of the design that are still
failing timing requirements by significant amounts (page 12–17).

9. Make location assignments, or as a last resort, perform manual placement by
back-annotating the design (page 12–26).

You can use the Design Space Explorer (DSE) to automate the process of running
several different compilations with different settings.

h For more information, refer to About Design Space Explorer in Quartus II Help.

If these techniques do not achieve performance requirements, additional design
source code modifications might be required (page 12–17).

Physical Synthesis Optimizations
The Quartus II software offers physical synthesis optimizations that can help improve
the performance of many designs regardless of the synthesis tool used. Physical
synthesis optimizations can be applied both during synthesis and during fitting.

Physical synthesis optimizations that occur during the synthesis stage of the
Quartus II compilation operate either on the output from another EDA synthesis tool
or as an intermediate step in Quartus II integrated synthesis. These optimizations
make changes to the synthesis netlist to improve either area or speed, depending on
your selected optimization technique and effort level.

To view and modify the synthesis netlist optimization options, on the Assignments
menu, click Settings. In the Category list, expand Compilation Process Settings and
select Physical Synthesis Optimizations.

If you use a third-party EDA synthesis tool and want to determine if the Quartus II
software can remap the circuit to improve performance, you can use the Perform
WYSIWYG Primitive Resynthesis option. This option directs the Quartus II software
to unmap the LEs in an atom netlist to logic gates and then map the gates back to
Altera-specific primitives. Using Altera-specific primitives enables the Fitter to remap
the circuits using architecture-specific techniques.

h For more information, refer to Perform WYSIWYG Primitive Resynthesis logic option in
Quartus II Help.

The Quartus II technology mapper optimizes the design to achieve maximum speed
performance, minimum area usage, or balances high performance and minimal logic
usage, according to the setting of the Optimization Technique option. Set this option
to Speed or Balanced.

h For more information, refer to Optimization Technique logic option in Quartus II Help.

The physical synthesis optimizations occur during the Fitter stage of the Quartus II
compilation. Physical synthesis optimizations make placement-specific changes to the
netlist that improve speed performance results for a specific Altera device.
November 2013 Altera Corporation Quartus II Handbook Version 13.1
Volume 2: Design Implementation and Optimization

http://quartushelp.altera.com/current/master.htm#mergedProjects/logicops/logicops/def_adv_netlist_opt_synth_wysiwyg_remap.htm
http://quartushelp.altera.com/current/master.htm#mergedProjects/optimize/dse/dse_about_dse.htm
http://quartushelp.altera.com/current/master.htm#mergedProjects/logicops/logicops/def_optimization_technique.htm

12–20 Chapter 12: Timing Closure and Optimization
Optimizing Timing (LUT-Based Devices)
The following physical synthesis optimizations are available during the Fitter stage
for improving performance:

■ Physical synthesis for combinational logic

■ Automatic asynchronous signal pipelining

■ Physical synthesis for registers

■ Register duplication

■ Register retiming

1 If you want the performance gain from physical synthesis only on parts of your
design, you can apply the physical synthesis options on specific instances.

h For more information, refer to Physical Synthesis Optimizations Page (Settings Dialog
Box) in Quartus II Help.

To apply physical synthesis assignments for fitting on a per-instance basis, use the
Quartus II Assignment Editor. The following assignments are available as instance
assignments:

■ Perform physical synthesis for combinational logic

■ Perform register duplication for performance

■ Perform register retiming for performance

■ Perform automatic asynchronous signal pipelining

h For information about making assignments, refer to Working With Assignments in the
Assignment Editor in Quartus II Help.

Turn Off Extra-Effort Power Optimization Settings
If PowerPlay power optimization settings are set to Extra Effort, your design
performance can be affected. If improving timing performance is more important than
reducing power use, set the PowerPlay power optimization setting to Normal.

h For more information, refer to PowerPlay Power Optimization logic option in Quartus II
Help.

f For more information about reducing power use, refer to the Power Optimization
chapter of the Quartus II Handbook.

Optimize Synthesis for Speed, Not Area
The manner in which the design is synthesized has a large impact on design
performance. Design performance varies depending on the way the design is coded,
the synthesis tool used, and the options specified when synthesizing. Change your
synthesis options if a large number of paths are failing or if specific paths are failing
badly and have many levels of logic.

Set your device and timing constraints in your synthesis tool. Synthesis tools are
timing-driven and optimized to meet specified timing requirements. If you do not
specify a target frequency, some synthesis tools optimize for area.
Quartus II Handbook Version 13.1 November 2013 Altera Corporation
Volume 2: Design Implementation and Optimization

http://quartushelp.altera.com/current/master.htm#mergedProjects/assign/ase/ase_pro_create_assign.htm
http://quartushelp.altera.com/current/master.htm#mergedProjects/assign/ase/ase_pro_create_assign.htm
http://quartushelp.altera.com/current/master.htm#mergedProjects/logicops/logicops/def_optimize_power_during_synth.htm
http://quartushelp.altera.com/current/master.htm#mergedProjects/comp/comp/comp_tab_physical.htm
http://quartushelp.altera.com/current/master.htm#mergedProjects/comp/comp/comp_tab_physical.htm
http://www.altera.com/literature/hb/qts/qts_qii52016.pdf

Chapter 12: Timing Closure and Optimization 12–21
Optimizing Timing (LUT-Based Devices)
Some synthesis tools offer an easy way to instruct the tool to focus on speed instead of
area.

h For more information, refer to Optimization Technique logic option in Quartus II Help

You can also specify this logic option for specific modules in your design with the
Assignment Editor while leaving the default Optimization Technique setting at
Balanced (for the best trade-off between area and speed for certain device families) or
Area (if area is an important concern). You can also use the Speed Optimization
Technique for Clock Domains option in the Assignment Editor to specify that all
combinational logic in or between the specified clock domain(s) is optimized for
speed.

To achieve best performance with push-button compilation, follow the
recommendations in the following sections for other synthesis settings. You can use
the DSE to experiment with different Quartus II synthesis options to optimize your
design for the best performance.

f For information about setting timing requirements and synthesis options in
Quartus II integrated synthesis and third-party synthesis tools, refer to the
appropriate chapter in Synthesis of the Quartus II Handbook, or refer to your synthesis
software documentation.

h For more information about the Design Space Explorer, refer to About Design Space
Explorer in Quartus II Help.

Flatten the Hierarchy During Synthesis
Synthesis tools typically let you preserve hierarchical boundaries, which can be useful
for verification or other purposes. However, the best optimization results generally
occur when the synthesis tool optimizes across hierarchical boundaries, because
doing so often allows the synthesis tool to perform the most logic minimization,
which can improve performance. Whenever possible, flatten your design hierarchy to
achieve the best results. If you are using Quartus II incremental compilation, you
cannot flatten your design across design partitions. Incremental compilation always
preserves the hierarchical boundaries between design partitions. Follow Altera’s
recommendations for design partitioning, such as registering partition boundaries to
reduce the effect of cross-boundary optimizations.

f For more information about using incremental compilation and recommendations for
design partitioning, refer to the Quartus II Incremental Compilation for Hierarchical and
Team-Based Design chapter of the Quartus II Handbook.

Set the Synthesis Effort to High
Some synthesis tools offer varying synthesis effort levels to trade off compilation time
with synthesis results. Set the synthesis effort to high to achieve best results when
applicable.
November 2013 Altera Corporation Quartus II Handbook Version 13.1
Volume 2: Design Implementation and Optimization

http://www.altera.com/literature/hb/qts/qts_qii5v1_03.pdf
http://www.altera.com/literature/hb/qts/qts_qii51015.pdf
http://www.altera.com/literature/hb/qts/qts_qii51015.pdf
http://quartushelp.altera.com/current/master.htm#mergedProjects/optimize/dse/dse_about_dse.htm
http://quartushelp.altera.com/current/master.htm#mergedProjects/optimize/dse/dse_about_dse.htm
http://quartushelp.altera.com/current/master.htm#mergedProjects/logicops/logicops/def_optimization_technique.htm

12–22 Chapter 12: Timing Closure and Optimization
Optimizing Timing (LUT-Based Devices)
Change State Machine Encoding
State machines can be encoded using various techniques. One-hot encoding, which
uses one register for every state bit, usually provides the best performance. If your
design contains state machines, changing the state machine encoding to one-hot can
improve performance at the cost of area.

h For more information, refer to State Machine Processing logic option in Quartus II Help.

Duplicate Logic for Fan-Out Control
Duplicating logic or registers can help improve timing in cases where moving a
register in a failing timing path to reduce routing delay creates other failing paths or
where there are timing problems due to the fan-out of the registers. Most often, timing
failures occur not because of the high fan-out registers, but because of the location of
those registers. Duplicating registers, where source and destination registers are
physically close, can help improve slack on critical paths.

Many synthesis tools support options or attributes that specify the maximum fan-out
of a register. When using Quartus II integrated synthesis, you can set the Maximum
Fan-Out logic option in the Assignment Editor to control the number of destinations
for a node so that the fan-out count does not exceed a specified value. You can also use
the maxfan attribute in your HDL code. The software duplicates the node as required
to achieve the specified maximum fan-out.

Logic duplication using Maximum Fan-Out assignments normally increases resource
utilization and can potentially increase compilation time, depending on the placement
and the total resource usage within the selected device. The improvement in timing
performance that results because of Maximum Fan-Out assignments is very
design-specific. This is because when you use the Maximum Fan-Out assignment,
although the Fitter duplicates the source logic to limit the fan-out, it may not be able
to control the destinations that each of the duplicated sources drive. Since the
Maximum Fan-Out destination does not specify which of the destinations the
duplicated source should drive, it is possible that it might still be driving logic located
all around the device. To avoid this situation, you could use the Manual Logic
Duplication logic option.

If you are using Maximum Fan-Out assignments, Altera recommends benchmarking
your design with and without these assignments to evaluate whether they give the
expected improvement in timing performance. Use the assignments only when you
get improved results.

You can manually duplicate registers in the Quartus II software regardless of the
synthesis tool used. To duplicate a register, apply the Manual Logic Duplication logic
option to the register with the Assignment Editor.

1 Various Fitter optimizations may cause a small violation to the Maximum Fan-Out
assignments to improve timing.

h For more information, refer to Manual Logic Duplication logic option in Quartus II Help.
Quartus II Handbook Version 13.1 November 2013 Altera Corporation
Volume 2: Design Implementation and Optimization

http://quartushelp.altera.com/current/master.htm#mergedProjects/logicops/logicops/def_smp_process_type.htm
http://quartushelp.altera.com/current/master.htm#mergedProjects/logicops/logicops/def_duplicate_atom.htm

Chapter 12: Timing Closure and Optimization 12–23
Optimizing Timing (LUT-Based Devices)
Prevent Shift Register Inference
In some cases, turning off the inference of shift registers increases performance. Doing
so forces the software to use logic cells to implement the shift register instead of
implementing the registers in memory blocks using the ALTSHIFT_TAPS
megafunction. If you implement shift registers in logic cells instead of memory, logic
utilization is increased.

Use Other Synthesis Options Available in Your Synthesis Tool
With your synthesis tool, experiment with the following options if they are available:

■ Turn on register balancing or retiming

■ Turn on register pipelining

■ Turn off resource sharing

These options can increase performance, but typically increase the resource utilization
of your design.

Fitter Seed
The Fitter seed affects the initial placement configuration of the design. Changing the
seed value changes the Fitter results because the fitting results change whenever there
is a change in the initial conditions. Each seed value results in a somewhat different
fit, and you can experiment with several different seeds to attempt to obtain better
fitting results and timing performance.

When there are changes in your design, there is some random variation in
performance between compilations. This variation is inherent in placement and
routing algorithms—there are too many possibilities to try them all and get the
absolute best result, so the initial conditions change the compilation result.

1 Any design change that directly or indirectly affects the Fitter has the same type of
random effect as changing the seed value. This includes any change in source files,
Analysis & Synthesis Settings, Fitter Settings, or Timing Analyzer Settings. The
same effect can appear if you use a different computer processor type or different
operating system, because different systems can change the way floating point
numbers are calculated in the Fitter.

If a change in optimization settings slightly affects the register-to-register timing or
number of failing paths, you cannot always be certain that your change caused the
improvement or degradation, or whether it could be due to random effects in the
Fitter. If your design is still changing, running a seed sweep (compiling your design
with multiple seeds) determines whether the average result has improved after an
optimization change and whether a setting that increases compilation time has
benefits worth the increased time (such as setting the Physical Synthesis Effort to
Extra). The sweep also shows the amount of random variation to expect for your
design.

If your design is finalized, you can compile your design with different seeds to obtain
one optimal result. However, if you subsequently make any changes to your design,
you might need to perform seed sweep again.

On the Assignments menu, select Fitter Settings to control the initial placement with
the seed. You can use the DSE to perform a seed sweep easily.
November 2013 Altera Corporation Quartus II Handbook Version 13.1
Volume 2: Design Implementation and Optimization

12–24 Chapter 12: Timing Closure and Optimization
Optimizing Timing (LUT-Based Devices)
You can use the following Tcl command from a script to specify a Fitter seed:

set_global_assignment -name SEED <value> r

h For more information about compiling your design with different seeds using the
Design Space Explorer (DSE seed sweep), refer to About Design Space Explorer in
Quartus II Help.

Set Maximum Router Timing Optimization Level
To improve routability in designs where the router did not pick up the optimal
routing lines, set the Router Timing Optimization Level to Maximum. This setting
determines how aggressively the router tries to meet the timing requirements. Setting
this option to Maximum can increase design speed slightly at the cost of increased
compilation time. Setting this option to Minimum can reduce compilation time at the
cost of slightly reduced design speed. The default value is Normal.

h For more information, refer to Router Timing Optimization Level logic option in
Quartus II Help.

LogicLock Assignments
Using LogicLock assignments to improve timing performance is only recommended
for older Altera devices, such as the MAX II family. For other device families,
especially for larger devices such as Arria and Stratix series devices, Altera does not
recommend using LogicLock assignments to improve timing performance. For these
devices, use the LogicLock feature for performance preservation and to floorplan
your design.

LogicLock assignments do not always improve the performance of the design. In
many cases, you cannot improve upon results from the Fitter by making location
assignments. If there are existing LogicLock assignments in your design, remove the
assignments if your design methodology permits it. Recompile the design, and then
check if the assignments are making the performance worse.

When making LogicLock assignments, it is important to consider how much
flexibility to give the Fitter. LogicLock assignments provide more flexibility than hard
location assignments. Assignments that are more flexible require higher Fitter effort,
but reduce the chance of design overconstraint. The following types of LogicLock
assignments are available, listed in the order of decreasing flexibility:

■ Auto size, floating location regions

■ Fixed size, floating location regions

■ Fixed size, locked location regions

f For more information about using LogicLock regions, refer to the Analyzing and
Optimizing the Design Floorplan with the Chip Planner chapter of the Quartus II
Handbook.
Quartus II Handbook Version 13.1 November 2013 Altera Corporation
Volume 2: Design Implementation and Optimization

http://quartushelp.altera.com/current/master.htm#mergedProjects/logicops/logicops/def_router_timing_optimization_level.htm
http://quartushelp.altera.com/current/master.htm#mergedProjects/optimize/dse/dse_about_dse.htm
http://www.altera.com/literature/hb/qts/qts_qii52006.pdf
http://www.altera.com/literature/hb/qts/qts_qii52006.pdf

Chapter 12: Timing Closure and Optimization 12–25
Optimizing Timing (LUT-Based Devices)
If you are unsure of how big or where a LogicLock region should go, the
Auto/Floating options are useful for your first pass. After you determine where a
LogicLock region must go, modify the Fixed/Locked regions, as Auto/Floating
LogicLock regions can hurt your overall performance. To determine what to put into a
LogicLock region, refer to the timing analysis results and analyze the critical paths in
the Chip Planner. The register-to-register timing paths in the Timing Analyzer section
of the Compilation Report help you recognize patterns.

The following sections describe cases in which LogicLock regions can help to
optimize a design.

Hierarchy Assignments
For a design with the hierarchy shown in Figure 12–6, which has failing paths in the
timing analysis results similar to those shown in Table 12–3, mod_A is probably a
problem module. In this case, a good strategy to fix the failing paths is to place the
mod_A hierarchy block in a LogicLock region so that all the nodes are closer together in
the floorplan.

Hierarchical LogicLock regions are also important if you are using an incremental
compilation flow. Place each design partition for incremental compilation in a
separate LogicLock region to reduce conflicts and ensure good results as the design
develops. You can use the auto size and floating location regions to find a good design
floorplan, but fix the size and placement to achieve the best results in future
compilations.

Figure 12–6. Design Hierarchy

Table 12–3. Failing Paths in a Module Listed in Timing Analysis

From To

|mod_A|reg1 |mod_A|reg9

|mod_A|reg3 |mod_A|reg5

|mod_A|reg4 |mod_A|reg6

|mod_A|reg7 |mod_A|reg10

|mod_A|reg0 |mod_A|reg2

Top

mod_A mod_B
November 2013 Altera Corporation Quartus II Handbook Version 13.1
Volume 2: Design Implementation and Optimization

12–26 Chapter 12: Timing Closure and Optimization
Optimizing Timing (LUT-Based Devices)
f For more information about using incremental compilation and recommendations for
creating a design floorplan using LogicLock regions, refer to the Quartus II Incremental
Compilation for Hierarchical and Team-Based Design and Best Practices for Incremental
Compilation and Floorplan Assignments chapters of the Quartus II Handbook, and
Analyzing and Optimizing the Design Floorplan with the Chip Planner chapter of the
Quartus II Handbook.

Location Assignments
If a small number of paths are failing to meet their timing requirements, you can use
hard location assignments to optimize placement. Location assignments are less
flexible for the Quartus II Fitter than LogicLock assignments. In some cases, when you
are familiar with your design, you can enter location constraints in a way that
produces better results.

1 Improving fitting results, especially for larger devices, such as Arria and Stratix series
devices, can be difficult. Location assignments do not always improve the
performance of the design. In many cases, you cannot improve upon the results from
the Fitter by making location assignments.

Metastability Analysis and Optimization Techniques
Metastability problems can occur when a signal is transferred between circuitry in
unrelated or asynchronous clock domains, because the designer cannot guarantee that
the signal will meet its setup and hold time requirements. The mean time between
failures (MTBF) is an estimate of the average time between instances when
metastability could cause a design failure.

f For more information about metastability and MTBF, refer to the Understanding
Metastability in FPGAs white paper.

You can use the Quartus II software to analyze the average MTBF due to metastability
when a design synchronizes asynchronous signals and to optimize the design to
improve the MTBF. These metastability features are supported only for designs
constrained with the TimeQuest analyzer, and for select device families.

If the MTBF of your design is low, refer to the Metastability Optimization section in
the Timing Optimization Advisor, which suggests various settings that can help
optimize your design in terms of metastability.

f For details about the metastability features in the Quartus II software, refer to the
Managing Metastability with the Quartus II Software chapter of the Quartus II Handbook.
This chapter describes how to enable metastability analysis and identify the register
synchronization chains in your design, provides details about metastability reports,
and provides additional guidelines for managing metastability.
Quartus II Handbook Version 13.1 November 2013 Altera Corporation
Volume 2: Design Implementation and Optimization

http://www.altera.com/literature/wp/wp-01082-quartus-ii-metastability.pdf
http://www.altera.com/literature/wp/wp-01082-quartus-ii-metastability.pdf
http://www.altera.com/literature/hb/qts/qts_qii51017.pdf
http://www.altera.com/literature/hb/qts/qts_qii51017.pdf
http://www.altera.com/literature/hb/qts/qts_qii51018.pdf
http://www.altera.com/literature/hb/qts/qts_qii51015.pdf
http://www.altera.com/literature/hb/qts/qts_qii51015.pdf
http://www.altera.com/literature/hb/qts/qts_qii52006.pdf

Chapter 12: Timing Closure and Optimization 12–27
Design Evaluation for Timing Closure
Design Evaluation for Timing Closure
Follow the guidelines in this section when you encounter timing failures in a design.
The guidelines show you how to evaluate compilation results of a design and how to
address some of the problems. While the guideline does not cover specific examples
of restructuring RTL to improve design speed, the analysis techniques help you to
evaluate changes that may have to be made to RTL to close timing.

Review Compilation Results

Review Messages
After compiling your design, review the messages in each section of the compilation
report. Most designs that fail timing start out with other problems that are reported as
warning messages during compilation. Determine what causes a warning message,
and whether the warning should be fixed or ignored. After reviewing the warning
messages, review the informational messages. Take note of anything unexpected, for
example, unconnected ports, ignored constraints, missing files, and assumptions or
optimizations that the software made.

Evaluate Physical Synthesis Results
If physical synthesis is enabled, the software can duplicate and retime registers, and
modify combinatorial logic during synthesis. After compilation, review the
Optimization Results reports in the Analysis & Synthesis section. The reports list the
optimizations performed by the physical synthesis optimizations, such as register
duplication, retiming, and removal. These reports can be found in the Compilation
Report panel (Figure 12–7).

Figure 12–7. Optimization Results reports
November 2013 Altera Corporation Quartus II Handbook Version 13.1
Volume 2: Design Implementation and Optimization

12–28 Chapter 12: Timing Closure and Optimization
Design Evaluation for Timing Closure
When physical synthesis is enabled, compilation messages include a a summary of
the physical synthesis algorithms that were run, the performance improvement each
algorithm achieved, and the elapsed time. The reported improvement is the sum of
the largest improvement estimated to be achievable in each timing-critical clock
domain. The values for the slack improvements can vary between compiles because of
the random starting point of the compilation algorithms, but the values should be
similar. Figure 12–8 shows an example of the messages.

Evaluate Fitter Netlist Optimizations
The Fitter can also perform netlist optimizations to the design netlist. Major changes
include register packing, duplicating or deleting logic cells, retiming registers,
inverting signals, or modifying nodes in a general way such as moving an input from
one logic cell to another. These reports can be found in the Netlist Optimizations
results of the Fitter section, and they should also be reviewed.

Evaluate optimization results
After checking what optimizations were done and how they improved performance,
evaluate the runtime it took to get the extra performance. To reduce compilation time,
review the physical synthesis and netlist optimizations over a couple of compilations,
and edit the RTL to reflect the changes that physical synthesis performed. If a
particular set of registers consistently get retimed, edit the RTL to retime the registers
the same way. If the changes are made to match what the physical synthesis
algorithms did, the physical synthesis options can be turned off to save compile time
while getting the same type of performance improvement.

Evaluate resource usage
Evaluate a variety of resources used in the design, including global and non-global
signal usage, routing utilization, and clustering difficulty.

Figure 12–8. Compilation Messages
Quartus II Handbook Version 13.1 November 2013 Altera Corporation
Volume 2: Design Implementation and Optimization

Chapter 12: Timing Closure and Optimization 12–29
Design Evaluation for Timing Closure
Global and non-global usage

If your design contains a lot of clocks, evaluate global and non-global signals.
Determine whether global resources are being used effectively, and if not, consider
making changes. These reports can be found in the Resource Section under Fitter in
the Compilation Report panel. Figure 12–9 shows an example of inefficient use of a
global clock. The highlighted line has a single fan-out from a global clock. Assigning it
to a Regional Clock would make the Global Clock available for another signal. You
can ignore signals with an empty value in the Global Line Name column as the signal
uses dedicated routing, and not a clock buffer.

The Non-Global High Fan-Out Signals report lists the highest fan-out nodes that are
not routed on global signals. Reset and enable signals are at the top of the list. If there
is routing congestion in the design, and there are high fan-out non-global nodes in the
congested area, consider using global or regional signals to fan-out the nodes, or
duplicate the high fan-out registers so that each of the duplicates can have fewer fan-
outs. Use the Chip Planner to locate high fan-out nodes, to report routing congestion,
and to determine whether the alternatives are viable.

Routing usage

Review routing usage reported in the Fitter Resource Usage Summary report.
Figure 12–10 shows an example of the report.

The average interconnect usage reports the average amount of interconnect that is
used, out of what is available on the device. The peak interconnect usage reports the
largest amount of interconnect used in the most congested areas. Designs with an
average value below 50% typically do not have any problems with routing. Designs
with an average between 50-65% may be some difficulty routing. Designs with an

Figure 12–9. Inefficient Use of a Global Clock

Figure 12–10. Fitter Resource Usage Summary Report
November 2013 Altera Corporation Quartus II Handbook Version 13.1
Volume 2: Design Implementation and Optimization

12–30 Chapter 12: Timing Closure and Optimization
Design Evaluation for Timing Closure
average over 65% typically have difficulty meeting timing unless the RTL is well
designed to tolerate a highly utilized chip. Peak values at or above 90% are likely to
have problems with timing closure; a 100% peak value indicates that all routing in an
area of the device has been used, so there is a high possibility of degradation in timing
performance. Figure 12–11 shows the Report Routing Utilization report.

Figure 12–11. Report Routing Utilization Report
Quartus II Handbook Version 13.1 November 2013 Altera Corporation
Volume 2: Design Implementation and Optimization

Chapter 12: Timing Closure and Optimization 12–31
Design Evaluation for Timing Closure
Wires Added for Hold

As part of the fitting process, the router can add wire between register paths to
increase delay to meet hold time requirements. During the routing process, the router
reports how much extra wire was used to meet hold time requirements. Excessive
amounts of added wire can indicate problems with the constraint. Typically it would
be caused by incorrect multicycle transfers, particularly between different rate clocks,
and between different clock networks. The Fitter reports how much routing delay was
added in the Estimated Delay Added for Hold Timing report (Figure 12–12). Specific
register paths can be reviewed to view whether a delay was added to meet hold
requirements.

An example of an incorrect constraint which can cause the router to add wire for hold
requirements is when there is data transfer from 1x to 2x clocks. Assume the design
intent is to allow two cycles per transfer. Data can arrive any time in the two
destination clock cycles by adding a multicycle setup constraint as shown in
Example 12–4:

Figure 12–12. Estimated Delay Added for Hold Timing Report

Example 12–4. Multicycle Setup Constraint

set_multicycle_path -from 1x -to 2x -setup -end 2
November 2013 Altera Corporation Quartus II Handbook Version 13.1
Volume 2: Design Implementation and Optimization

12–32 Chapter 12: Timing Closure and Optimization
Design Evaluation for Timing Closure
The timing requirement is relaxed by one 2x clock cycle, as shown in the black line in
the waveform in Figure 12–13.

However, the default hold requirement, shown with the dashed blue line, may cause
the router to add wire to guarantee that data is delayed by one cycle. To correct the
hold requirement, add a multicycle constraint with a hold option (Example 12–5).

The orange dashed line in Figure 12–13 represents the hold relationship, and no extra
wire is required to delay the data.

The router can also add wire for hold timing requirements when data is transferred in
the same clock domain, but between clock branches that use different buffering.
Transferring between clock network types happens more often between the periphery
and the core. Figure 12–14 shows a case where data is coming into a device, and uses a
periphery clock to drive the source register, and a global clock to drive the destination
register. A global clock buffer has larger insertion delay than a periphery clock buffer.
The clock delay to the destination register is much larger than to the source register,
hence extra delay is necessary on the data path to ensure that it meets its hold
requirement.

Figure 12–13.

Example 12–5. Multicycle Constraint with a Hold Option

set_multicycle_path -from 1x -to 2x -setup -end 2
set_multicycle_path -from 1x -to 2x -hold -end 1

Figure 12–14.

Fitter may add routing delay to meet
hold requirement

Periphery clock buffer with
small insertion delay

Global clock buffer with large insertion delay
Quartus II Handbook Version 13.1 November 2013 Altera Corporation
Volume 2: Design Implementation and Optimization

Chapter 12: Timing Closure and Optimization 12–33
Design Evaluation for Timing Closure
To identify cases where a path has different clock network types, review the path in
the TimeQuest timing analyzer, and check nodes along the source and destination
clock paths. Also, check the source and destination clock frequencies to see whether
they are the same, or multiples, and whether there are multicycle exceptions on the
paths. In some cases, cross-domain paths may also be false by intent, so make sure
there are false path exceptions on those.

If you suspect that routing is added to fix real hold problems, then disable the
Optimize hold timing option (Figure 12–15). Recompile the design and rerun timing
analysis to uncover paths that fail hold time.

Disabling the Optimize hold timing option is a debug step, and should be left
enabled (default state) during normal compiles. Wire added for hold is a normal part
of timing optimization during routing and is not always a problem.

Evaluate Other Reports and Adjust Settings Accordingly

Difficulty Packing Design

In the Fitter Resource Section, under the Resource Usage Summary, review the
Difficulty Packing Design report. The Difficulty Packing Design report reports the
effort level (low, medium, or high) of the Fitter to fit the design into the device,
partition and LogicLock region. As the effort level of Difficulty Packing Design
increases, timing closure gets harder. Going from medium to high can result in
significant drop in performance or increase in compile time. Consider reducing logic
to reduce packing difficulty.

Review Ignored Assignments

The Compilation Report includes details of any assignments ignored by the Fitter.
Assignments typically get ignored if design names change, but assignments are not
updated. Make sure any intended assignments are not being ignored.

Review Non-Default Settings

The reports from Synthesis and Fitter show non-default settings used in a
compilation. Review the non-default settings to ensure the design benefits from the
change.

Figure 12–15. Optimize Hold Timing Option
November 2013 Altera Corporation Quartus II Handbook Version 13.1
Volume 2: Design Implementation and Optimization

12–34 Chapter 12: Timing Closure and Optimization
Design Evaluation for Timing Closure
Review Floorplan

Use the Chip Planner for reviewing placement. The Chip Planner can be used to locate
hierarchical entities, and colors each located entity in the floorplan. Look for logic that
seems out of place, based on where you would expect it to be. For example, logic that
interfaces with I/Os should be close to the I/Os, and logic that interfaces with an IP or
memory must be close to the IP or memory. Figure 12–16 shows an example of a
floorplan with color-coded entities. In the floorplan, the green block is spread apart.
Check to see if those paths are failing timing, and if so, what connects to that module
that could affect placement. The blue and aqua blocks are spread out and mixed
together. Check and see if there are many connections between the two modules that
may contribute to this. The pink logic at the bottom should interface with I/Os at the
bottom edge.

Check fan-in and fan-out of a highlighted module by using the buttons on the task bar
shown in Figure 12–17:

Look for signals that go a long way across the chip and see if they are contributing to
timing failures.

Figure 12–16. Floorplan with Color-Coded Entities

Figure 12–17. Fan-in and Fan-Out Buttons
Quartus II Handbook Version 13.1 November 2013 Altera Corporation
Volume 2: Design Implementation and Optimization

Chapter 12: Timing Closure and Optimization 12–35
Design Evaluation for Timing Closure
Check global signal usage for signals that may affect logic placement. Logic feeding a
global buffer may be pulled close to the buffer, away from related logic. High fan-out
on non-global resource may pull logic together.

Check for routing congestion. Highly congested areas may cause logic to be spread
out, and the design may be difficult to route.

Evaluate Placement and Routing

Review duration of parts of compile time in Fitter messages. If routing takes much
more time than placement, then meeting timing may be more difficult than the placer
predicted.

Adjust Placement Effort

Increasing the Placement Effort Multiplier to improve placement quality may be a
good tradeoff at the cost of higher compile time, but the benefit is design dependent.
The value should be adjusted after reviewing and optimizing other settings and RTL.
Try an increased value, up to 4, and reset to default if performance or compile time
does not improve.

Figure 12–18. Placement Effort Multiplier
November 2013 Altera Corporation Quartus II Handbook Version 13.1
Volume 2: Design Implementation and Optimization

12–36 Chapter 12: Timing Closure and Optimization
Design Evaluation for Timing Closure
Adjust Fitter Effort

To increase effort, enable the Standard Fit (highest effort) option. The default Auto
Fit option reduces Fitter effort when it estimates timing requirements are met.

Review Timing Constraints

Ensure that clocks are constrained with the correct frequency requirements. Using
derive_pll_clocks assignment keeps generated clock settings updated. TimeQuest
can be useful in reviewing SDC constraints. For example, under Diagnostic in the
Task panel, the Report Ignored Constraints report reports any incorrect names in the
design, most commonly caused by changes in the design hierarchy. Use the Report
Unconstrained Paths report to locate unconstrained paths. Add constraints as
necessary so that the design can be optimized.

Figure 12–19.

o

Quartus II Handbook Version 13.1 November 2013 Altera Corporation
Volume 2: Design Implementation and Optimization

Chapter 12: Timing Closure and Optimization 12–37
Design Evaluation for Timing Closure
Review Details of Timing Paths

Show Timing Path Routing

Showing routing for a path can help uncover unusual routing delays. In the
TimeQuest Tasks panel, enable the Report panel name option, and then select Report
Timing. Then, turn on the Show routing option to show routing wires in the path
(Figure 12–20).

The Extra Fitter Information tab shows a miniature floorplan with the path
highlighted. The path can also be located in the Chip Planner for viewing routing
congestion, and to view whether nodes in a path are placed close together or far apart.

Global Network Buffers

A routing path can be used to identify global network buffers that fail timing. Buffer
locations are named according to the network they drive:

■ CLK_CTRL_Gn—for Global driver

■ CLk_CTRL_Rn—for Regional driver

Buffers to access the global networks are located in the center of each side of the
device. The buffering to route a core logic signal on a global signal network will cause
insertion delay. Some trade offs to consider for global and non-global routing are
source location, insertion delay, fan-out, distance a signal travels, and possible
congestion if the signal is demoted to local routing.

Source Location

If the register feeding the global buffer cannot be moved closer, then consider
changing either the design logic or the routing type.

Figure 12–20.

November 2013 Altera Corporation Quartus II Handbook Version 13.1
Volume 2: Design Implementation and Optimization

12–38 Chapter 12: Timing Closure and Optimization
Design Evaluation for Timing Closure
Insertion delay

If a global signal is required, consider adding half a cycle to timing by using a
negative-edge triggered register to generate the signal (Figure 12–21) and use a
multicycle setup constraint (Figure 12–22).

Fan-Out

Nodes with very high fan-out that use local routing tend to pull logic that they
drive close to the source node. This can make other paths fail timing. Duplicating
registers can help reduce the impact of high fan-out paths. Consider manually
duplicating and preserving these registers. Using a MAX_FANOUT assignment may
make arbitrary groups of fan-out nodes, whereas a designer can make more
intelligent fan-out groups.

Global Networks

If a signal should use a different type of global signal than it has automatically
been assigned, use the Global Signal assignment to control the global signal usage
on a per-signal basis. For example, if local routing is desired, set the Global Signal
assignment to OFF (Figure 12–23).

Figure 12–21. Negative-Edge Triggered Register

Figure 12–22. Multicycle Setup Constraint

set_multicycle_path –from <generating register> -setup –end 2

Figure 12–23. Global Signal Assignment
Quartus II Handbook Version 13.1 November 2013 Altera Corporation
Volume 2: Design Implementation and Optimization

Chapter 12: Timing Closure and Optimization 12–39
Design Evaluation for Timing Closure
Resets and Global Networks

Reset signals are often routed on global networks. Sometimes, the use of a global
network causes recovery failures. Consider reviewing the placement of the register
that generates the reset and the routing path of the signal.

Suspicious Setup

Suspicious setup failures include paths with very small or very large requirements.
One typical cause is math precision error. For example, 10Mhz/3 = 33.33 ns per
period. In three cycles, the time would be 99.999 ns vs 100.000 ns. Setting a maximum
delay could provide an appropriate setup relationship.

Another cause of failure would be paths that should be false by design intent, such as:

■ asynchronous paths that are handled through FIFOs, or

■ slow asynchronous paths that rely on handshaking for data that remain available
for multiple clock cycles.

To prevent the Fitter from having to meet unnecessarily restrictive timing
requirements, consider adding false or multicycle path statements.

Logic Depth

The Statistics tab in the TimeQuest path report shows the levels of logic in a path. If
the path fails timing and the number of logic levels is high, consider adding
pipelining in that part of the design.

Auto Shift Register Replacement

Shift registers or register chains can be converted to RAM during synthesis to save
area. However, conversion to RAM often reduces speed. The names of the converted
registers will include "altshift_taps".

If paths that fail timing begin or end in shift registers, consider disabling the Auto
Shift Register Replacement option. Registers that are intended for pipelining should
not be converted. For shift registers that are converted to a chain, evaluate area/speed
trade off of implementing in RAM or logic cells. If a design is close to full, shift
register conversion to RAM may benefit non-critical clock domains by saving area.
The settings can be changed globally or on a register or hierarchy basis from the
default of AUTO to OFF.
November 2013 Altera Corporation Quartus II Handbook Version 13.1
Volume 2: Design Implementation and Optimization

12–40 Chapter 12: Timing Closure and Optimization
Design Evaluation for Timing Closure
Clocking Architecture

Review the clock region boundaries in the Chip Planner. You must place registers
driven by a regional clock in one quadrant of the chip.

Timing failure can occur when the I/O interface at the top of the device connects to
logic driven by a regional clock which is in one quadrant of the device, and placement
restrictions force long paths to and from some of the I/Os to logic across quadrants.

Use a different type of clock source to drive the logic - global, which covers the whole
device, or dual-regional which covers half the device. Alternatively, you can reduce
the frequency of the I/O interface to accommodate the long path delays. You can also
redesign the pinout of the device to place all the specified I/Os adjacent to the
regional clock quadrant. This issue can happen when register locations are restricted,
such as with LogicLock regions, clocking resources, or hard blocks (memories, DSPs,
IPs). The Extra Fitter Information tab in the TimeQuest report informs you when
placement is restricted for nodes in a path.

Timing Closure Recommendations

The Report Timing Closure Recommendations task in the TimeQuest analyzer
analyzes paths and provides specific recommendations based on path characteristics.

Figure 12–24.
Quartus II Handbook Version 13.1 November 2013 Altera Corporation
Volume 2: Design Implementation and Optimization

Chapter 12: Timing Closure and Optimization 12–41
Scripting Support
Making Adjustments and Recompiling
Look for obvious problems that you can fix with minimal effort. To identify where the
Compiler had trouble meeting timing, perform seed sweeping with about five
compiles. Doing so shows consistently failing paths. Consider recoding or
redesigning that part of the design.

To reach timing closure, a well written RTL can be more effective than changing your
compilation settings. Seed sweeping can also be useful if the timing failure is very
small, and the design has already been optimized for performance improvements and
is close to final release. Additionally, seed sweeping can be used for evaluating
changes to compilation settings. Compilation results vary due to the random nature of
fitter algorithms. If a compilation setting change produces lower average
performance, undo the change.

Sometimes, settings or constraints can cause more problems than they fix. When
significant changes to the RTL or design architecture have been made, compile
periodically with default settings and without LogicLock regions, and re-evaluate
paths that fail timing.

Partitioning often does not help timing closure, and should be done at the beginning
of the design process. Adding partitions can increase logic utilization if it prevents
cross-boundary optimizations, making timing closure harder and increasing compile
times.

Adding LogicLock regions can be an effective part of timing closure, but must be done
at the beginning of a design. Adding new LogicLock regions at the end of the design
cycle can restrict placement, hence lowering the performance.

Scripting Support
You can run procedures and make settings described in this chapter in a Tcl script.
You can also run some procedures at a command prompt. For detailed information
about scripting command options, refer to the Quartus II command-line and Tcl API
Help browser. To run the Help browser, type the following command at the command
prompt:

quartus_sh --qhelp r

f For more information about Tcl scripting, refer to the Tcl Scripting chapter of the
Quartus II Handbook. For more information about all settings and constraints in the
Quartus II software, refer to the Quartus II Settings File Manual. For more information
about command-line scripting, refer to the Command-Line Scripting chapter of the
Quartus II Handbook.

You can specify many of the options described in this section either in an instance, or
at a global level, or both.

Use the following Tcl command to make a global assignment:

set_global_assignment -name <.qsf variable name> <value> r
Use the following Tcl command to make an instance assignment:

set_instance_assignment -name <.qsf variable name> <value> \
-to <instance name> r
November 2013 Altera Corporation Quartus II Handbook Version 13.1
Volume 2: Design Implementation and Optimization

http://www.altera.com/literature/hb/qts/qts_qii52003.pdf
http://www.altera.com/literature/manual/mnl_qsf_reference.pdf
http://www.altera.com/literature/hb/qts/qts_qii52002.pdf

12–42 Chapter 12: Timing Closure and Optimization
Scripting Support
1 If the <value> field includes spaces (for example, ‘Standard Fit’), you must enclose the
value in straight double quotation marks.

Initial Compilation Settings
Use the Quartus II Settings File (.qsf) variable name in the Tcl assignment to make the
setting along with the appropriate value. The Type column indicates whether the
setting is supported as a global setting, an instance setting, or both.

Table 12–4 lists the .qsf variable name and applicable values for the settings described
in the “Initial Compilation: Required Settings” section in the Design Optimization
Overview chapter of the Quartus II Handbook. Table 12–5 lists the advanced compilation
settings.

Resource Utilization Optimization Techniques (LUT-Based Devices)
Table 12–6 lists the .qsf file variable name and applicable values for the settings
described in “Optimizing Timing (LUT-Based Devices)” on page 12–10.

Table 12–4. Initial Compilation Settings

Setting Name .qsf File Variable Name Values Type

Optimize IOC Register
Placement For Timing

OPTIMIZE_IOC_REGISTER_
PLACEMENT_FOR_TIMING

ON, OFF Global

Optimize Hold Timing OPTIMIZE_HOLD_TIMING
OFF, IO PATHS AND MINIMUM TPD PATHS,
ALL PATHS

Global

Table 12–5. Advanced Compilation Settings

Setting Name .qsf File Variable Name Values Type

Router Timing
Optimization level ROUTER_TIMING_OPTIMIZATION_LEVEL NORMAL, MINIMUM, MAXIMUM Global

Table 12–6. Resource Utilization Optimization Settings (Part 1 of 2)

Setting Name .qsf File Variable Name Values Type

Auto Packed
Registers (1) AUTO_PACKED_REGISTERS_<device family name>

OFF, NORMAL, MINIMIZE
AREA, MINIMIZE AREA
WITH CHAINS, AUTO

Global,
Instance

Perform WYSIWYG
Primitive
Resynthesis

ADV_NETLIST_OPT_SYNTH_WYSIWYG_REMAP ON, OFF Global,
Instance

Physical Synthesis
for Combinational
Logic for Reducing
Area

PHYSICAL_SYNTHESIS_COMBO_LOGIC_FOR_AREA ON, OFF
Global,
Instance

Physical Synthesis
for Mapping Logic
to Memory

PHYSICAL_SYNTHESIS_MAP_LOGIC_TO_MEMORY_FOR AREA ON, OFF
Global,
Instance

Optimization
Technique <device family name>_OPTIMIZATION_TECHNIQUE AREA, SPEED, BALANCED Global,

Instance
Quartus II Handbook Version 13.1 November 2013 Altera Corporation
Volume 2: Design Implementation and Optimization

http://www.altera.com/literature/hb/qts/qts_qii52021.pdf
http://www.altera.com/literature/hb/qts/qts_qii52021.pdf

Chapter 12: Timing Closure and Optimization 12–43
Scripting Support
I/O Timing Optimization Techniques (LUT-Based Devices)
Table 12–7 lists the .qsf file variable name and applicable values for the I/O timing
optimization settings.

Speed Optimization
Technique for Clock
Domains

SYNTH_CRITICAL_CLOCK ON, OFF Instance

State Machine
Encoding STATE_MACHINE_PROCESSING

AUTO, ONE-HOT, GRAY,
JOHNSON, MINIMAL
BITS, ONE-HOT,
SEQUENTIAL,
USER-ENCODE

Global,
Instance

Auto RAM
Replacement AUTO_RAM_RECOGNITION ON, OFF Global,

Instance

Auto ROM
Replacement AUTO_ROM_RECOGNITION ON, OFF Global,

Instance

Auto Shift Register
Replacement AUTO_SHIFT_REGISTER_RECOGNITION ON, OFF Global,

Instance

Auto Block
Replacement AUTO_DSP_RECOGNITION ON, OFF Global,

Instance

Number of
Processors for
Parallel Compilation

NUM_PARALLEL_PROCESSORS
Integer between 1 and 16
inclusive, or ALL Global

Note to Table 12–6:

(1) Allowed values for this setting depend on the device family that you select.

Table 12–6. Resource Utilization Optimization Settings (Part 2 of 2)

Setting Name .qsf File Variable Name Values Type

Table 12–7. I/O Timing Optimization Settings

Setting Name .qsf File Variable Name Values Type

Optimize IOC Register Placement
For Timing OPTIMIZE_IOC_REGISTER_PLACEMENT_FOR_TIMING ON, OFF Global

Fast Input Register FAST_INPUT_REGISTER ON, OFF Instance

Fast Output Register FAST_OUTPUT_REGISTER ON, OFF Instance

Fast Output Enable Register FAST_OUTPUT_ENABLE_REGISTER ON, OFF Instance

Fast OCT Register FAST_OCT_REGISTER ON, OFF Instance
November 2013 Altera Corporation Quartus II Handbook Version 13.1
Volume 2: Design Implementation and Optimization

12–44 Chapter 12: Timing Closure and Optimization
Scripting Support
Register-to-Register Timing Optimization Techniques (LUT-Based Devices)
Table 12–8 lists the .qsf file variable name and applicable values for the settings
described in “Register-to-Register Timing Optimization Techniques (LUT-Based
Devices)” on page 12–17.

Table 12–8. Register-to-Register Timing Optimization Settings

Setting Name .qsf File Variable Name Values Type

Perform WYSIWYG
Primitive Resynthesis ADV_NETLIST_OPT_SYNTH_WYSIWYG_REMAP ON, OFF Global,

Instance

Perform Physical Synthesis
for Combinational Logic PHYSICAL_SYNTHESIS_COMBO_LOGIC ON, OFF Global,

Instance

Perform Register
Duplication PHYSICAL_SYNTHESIS_REGISTER_DUPLICATION ON, OFF Global,

Instance

Perform Register Retiming PHYSICAL_SYNTHESIS_REGISTER_RETIMING ON, OFF Global,
Instance

Perform Automatic
Asynchronous Signal
Pipelining

PHYSICAL_SYNTHESIS_ASYNCHRONOUS_SIGNAL_PIPELINING ON, OFF Global,
Instance

Physical Synthesis Effort PHYSICAL_SYNTHESIS_EFFORT
NORMAL, EXTRA,
FAST

Global

Fitter Seed SEED <integer> Global

Maximum Fan-Out MAX_FANOUT <integer> Instance

Manual Logic Duplication DUPLICATE_ATOM <node name> Instance

Optimize Power during
Synthesis OPTIMIZE_POWER_DURING_SYNTHESIS

NORMAL, OFF
EXTRA_EFFORT

Global

Optimize Power during
Fitting OPTIMIZE_POWER_DURING_FITTING

NORMAL, OFF
EXTRA_EFFORT

Global
Quartus II Handbook Version 13.1 November 2013 Altera Corporation
Volume 2: Design Implementation and Optimization

Chapter 12: Timing Closure and Optimization 12–45
Document Revision History
Document Revision History
Table 12–9 lists the revision history for this chapter.

Table 12–9. Document Revision History (Part 1 of 2)

Date Version Changes

November 2013 13.1.0

■ Added “Design Evaluation for Timing Closure” on page 12–27 section.

■ Removed Optimizing Timing (Macrocell-Based CPLDs) section.

■ Updated “Optimize Multi-Corner Timing” on page 12–2, and “Fitter Aggressive
Routability Optimization” on page 12–3.

■ Updated “Timing Analysis with the TimeQuest Timing Analyzer” on page 12–4 to show
how to access the Report All Summaries command.

■ Updated “Ignored Timing Constraints” on page 12–3 to include a help link to Fitter
Summary Reports with the Ignored Assignment Report information.

May 2013 13.0.0

■ Renamed chapter title from Area and Timing Optimization to “Timing Closure and
Optimization”

■ Removed design and area/resources optimization information.

■ Added the following sections:

■ “Fitter Aggressive Routability Optimization” on page 12–3

■ “Tips for Analyzing Paths from/to the Source and Destination of Critical Path” on
page 12–7,

■ “Tips for Locating Multiple Paths to the Chip Planner” on page 12–8,

■ “Tips for Creating a .tcl Script to Monitor Critical Paths Across Compiles” on
page 12–9

November 2012 12.1.0

■ Updated “Initial Compilation: Optional Fitter Settings” on page 13–2, “I/O Assignments”
on page 13–2, “Initial Compilation: Optional Fitter Settings” on page 13–2, “Resource
Utilization” on page 13–9, “Routing” on page 13–21, and “Resolving Resource
Utilization Problems” on page 13–43.

June 2012 12.0.0

■ Updated “Optimize Multi-Corner Timing” on page 13–6, “Resource Utilization” on
page 13–10, “Timing Analysis with the TimeQuest Timing Analyzer” on page 13–12,
“Using the Resource Optimization Advisor” on page 13–15, “Increase Placement Effort
Multiplier” on page 13–22, “Increase Router Effort Multiplier” on page 13–22 and
“Debugging Timing Failures in the TimeQuest Analyzer” on page 13–24.

■ Minor text edits throughout the chapter.

November 2011 11.1.0

■ Updated the “Timing Requirement Settings”, “Standard Fit”, “Fast Fit”, “Optimize Multi-
Corner Timing”, “Timing Analysis with the TimeQuest Timing Analyzer”, “Debugging
Timing Failures in the TimeQuest Analyzer”, “LogicLock Assignments”, “Tips for
Analyzing Failing Clock Paths that Cross Clock Domains”, “Flatten the Hierarchy During
Synthesis”, “Fast Input, Output, and Output Enable Registers”, and “Hierarchy
Assignments” sections

■ Updated Table 13–6

■ Added the “Spine Clock Limitations” section

■ Removed the Change State Machine Encoding section from page 19

■ Removed Figure 13-5

■ Minor text edits throughout the chapter
November 2013 Altera Corporation Quartus II Handbook Version 13.1
Volume 2: Design Implementation and Optimization

12–46 Chapter 12: Timing Closure and Optimization
Document Revision History
f For previous versions of the Quartus II Handbook, refer to the Quartus II Handbook
Archive.

May 2011 11.0.0

■ Reorganized sections in “Initial Compilation: Optional Fitter Settings” section

■ Added new information to “Resource Utilization” section

■ Added new information to “Duplicate Logic for Fan-Out Control” section

■ Added links to Help

■ Additional edits and updates throughout chapter

December 2010 10.1.0

■ Added links to Help

■ Updated device support

■ Added “Debugging Timing Failures in the TimeQuest Analyzer” section

■ Removed Classic Timing Analyzer references

■ Other updates throughout chapter

August 2010 10.0.1 Corrected link

July 2010 10.0.0

■ Moved Compilation Time Optimization Techniques section to new Reducing Compilation
Time chapter

■ Removed references to Timing Closure Floorplan

■ Moved Smart Compilation Setting and Early Timing Estimation sections to new
Reducing Compilation Time chapter

■ Added Other Optimization Resources section

■ Removed outdated information

■ Changed references to DSE chapter to Help links

■ Linked to Help where appropriate

■ Removed Referenced Documents section

Table 12–9. Document Revision History (Part 2 of 2)

Date Version Changes
Quartus II Handbook Version 13.1 November 2013 Altera Corporation
Volume 2: Design Implementation and Optimization

http://www.altera.com/literature/lit-qts_archive.jsp
http://www.altera.com/literature/lit-qts_archive.jsp

QII52016-13.0.0

© 2013 Altera Corporation. All rights reserved. ALTERA, ARRI
are trademarks of Altera Corporation and registered in the U.S
trademarks or service marks are the property of their respectiv
semiconductor products to current specifications in accordance
services at any time without notice. Altera assumes no respons
described herein except as expressly agreed to in writing by Al
on any published information and before placing orders for pr

Quartus II Handbook Version 13.1
Volume 2: Design Implementation and Optimization
May 2013

May 2013
QII52016-13.0.0
13. Power Optimization
The Quartus® II software offers power-driven compilation to fully optimize device
power consumption. Power-driven compilation focuses on reducing your design’s
total power consumption using power-driven synthesis and power-driven
place-and-route. This chapter describes the power-driven compilation feature and
flow in detail, as well as low power design techniques that can further reduce power
consumption in your design. The techniques primarily target Arria® GX, Stratix® and
Cyclone® series of devices. These devices utilize a low-k dielectric material that
dramatically reduces dynamic power and improves performance. Arria series,
Stratix II, Stratix III, Stratix IV, and Stratix V device families include efficient logic
structures called adaptive logic modules (ALMs) that obtain maximum performance
while minimizing power consumption. Cyclone device families offer the optimal
blend of high performance and low power in a low-cost FPGA.

f For more information about a device-specific architecture, refer to the device
handbook, available from the Literature and Technical Documentation page on the
Altera website.

Altera provides the Quartus II PowerPlay Power Analyzer to aid you during the
design process by delivering fast and accurate estimations of power consumption.
You can minimize power consumption, while taking advantage of the industry’s
leading FPGA performance, by using the tools and techniques described in this
chapter.

f For more information about the PowerPlay Power Analyzer, refer to the PowerPlay
Power Analysis chapter in volume 3 of the Quartus II Handbook.

Total FPGA power consumption is comprised of I/O power, core static power, and
core dynamic power. This chapter focuses on design optimization options and
techniques that help reduce core dynamic power and I/O power. In addition to these
techniques, there are additional power optimization techniques available for
Stratix III and Stratix IV devices. These techniques include:

■ Selectable Core Voltage (available only for Stratix III devices)

■ Programmable Power Technology

■ Device Speed Grade Selection

f For more information about power optimization techniques available for Stratix III
devices, refer to AN 437: Power Optimization in Stratix III FPGAs. For more information
about power optimization techniques available for Stratix IV devices, refer to AN 514:
Power Optimization in Stratix IV FPGAs.
A, CYCLONE, HARDCOPY, MAX, MEGACORE, NIOS, QUARTUS and STRATIX words and logos
. Patent and Trademark Office and in other countries. All other words and logos identified as
e holders as described at www.altera.com/common/legal.html. Altera warrants performance of its
with Altera's standard warranty, but reserves the right to make changes to any products and

ibility or liability arising out of the application or use of any information, product, or service
tera. Altera customers are advised to obtain the latest version of device specifications before relying
oducts or services.

Feedback SubscribeTwitter

ISO
9001:2008
Registered

Twitter Subscribe

https://www.altera.com/servlets/subscriptions/alert?id=QII52016
http://www.altera.com/literature/lit-index.html
http://www.altera.com/
http://www.altera.com/common/legal.html
http://www.altera.com/support/reliability/certifications/rel-certifications.html
http://www.altera.com/support/reliability/certifications/rel-certifications.html
http://twitter.com/home/?status=Power+Optimization+http://www.altera.com/literature/hb/qts/qts_qii52016.pdf?WT.mc_id=gc_so_tw_st_tx_a_011+(via @alteracorp)+%23Altera
http://www.altera.com/literature/an/an514.pdf
http://www.altera.com/literature/an/an514.pdf
http://www.altera.com/literature/an/AN437.pdf
http://www.altera.com/literature/hb/qts/qts_qii53013.pdf
http://www.altera.com/literature/hb/qts/qts_qii53013.pdf
mailto:TechDocFeedback@altera.com?subject=Feedback on qts_qii52016-13.0 (QII HB, Vol2, Ch14: Power Optimization)

13–2 Chapter 13: Power Optimization
Power Dissipation
Power Dissipation
This section describes the sources of power dissipation in Stratix III and Cyclone III
devices. You can refine techniques that reduce power consumption in your design by
understanding the sources of power dissipation.

Figure 13–1 shows the power dissipation of Stratix III and Cyclone III devices in
different designs. All designs were analyzed at a fixed clock rate of 100 MHz and
exhibited varied logic resource utilization across available resources.

As shown in Figure 13–1, a significant amount of the total power is dissipated in
routing for both Stratix III and Cyclone III devices, with the remaining power
dissipated in logic, clock, and RAM blocks.

In Stratix and Cyclone device families, a series of column and row interconnect wires
of varying lengths provide signal interconnections between logic array blocks (LABs),
memory block structures, and digital signal processing (DSP) blocks or multiplier
blocks. These interconnects dissipate the largest component of device power.

FPGA combinational logic is another source of power consumption. The basic
building block of logic in the latest Stratix series devices is the ALM, and in
Cyclone II, Cyclone III and Cyclone IV GX devices, it is the logic element (LE).

f For more information about ALMs and LEs in Cyclone II, Cyclone III, Cyclone IV GX,
Stratix II, Stratix III, Stratix IV, and Stratix V, devices, refer to the respective device
handbook.

Figure 13–1. Average Core Dynamic Power Dissipation

Notes to Figure 13–1:

(1) 103 different designs were used to obtain these results.
(2) 96 different designs were used to obtain these results.
(3) In designs using DSP blocks, DSPs consumed 5% of core dynamic power.

Average Core Dynamic Power Dissipation by Block
 Type in Stratix III Devices at a 12.5% Toggle Rate (1)

Average Core Dynamic Power Dissipation by Block
 Type in Cyclone III Devices at a 12.5% Toggle Rate (2)

Routing
30%

Combinational Logic
16%

Registered Logic
18%

Memory
21%

Global Clock Routing
14%

DSP Blocks
1% (3)

Multipliers
1% (3)

Routing
29%

Combinational Logic
11%

Registered Logic
23%

Memory
20%

Global Clock Routing
16%
Quartus II Handbook Version 13.1 May 2013 Altera Corporation
Volume 2: Design Implementation and Optimization

Chapter 13: Power Optimization 13–3
Design Space Explorer
Memory and clock resources are other major consumers of power in FPGAs. Stratix II
devices feature the TriMatrix memory architecture. TriMatrix memory includes
512-bit M512 blocks, 4-Kbit M4K blocks, and 512-Kbit M-RAM blocks, which are
configurable to support many features. Stratix IV and Stratix III TriMatrix on-chip
memory is an enhancement based upon the Stratix II FPGA TriMatrix memory and
includes three sizes of memory blocks: MLAB blocks, M9K blocks, and M144K blocks.
Stratix III, Stratix IV, and Stratix V devices feature Programmable Power Technology,
an advanced architecture that enables a smooth trade-off between speed and power.
The core of each Stratix III, Stratix IV, and Stratix V device is divided into tiles, each of
which may be put into a high-speed or low-power mode. The primary benefit of
Programmable Power Technology is to reduce static power, with a secondary benefit
being a small reduction in dynamic power. Cyclone II devices have 4-Kbit M4K
memory blocks, and Cyclone III and Cyclone IV GX devices have 9-Kbit M9K
memory blocks.

Design Space Explorer
Design Space Explorer (DSE) is a simple, easy-to-use, design optimization utility that
is included in the Quartus II software. DSE explores and reports optimal Quartus II
software options for your design, targeting either power optimization, design
performance, or area utilization improvements. You can use DSE to implement the
techniques described in this chapter.

Figure 13–2 shows the DSE user interface. The Settings tab is divided into Project
Settings and Exploration Settings.

Figure 13–2. Design Space Explorer User Interface
May 2013 Altera Corporation Quartus II Handbook Version 13.1
Volume 2: Design Implementation and Optimization

13–4 Chapter 13: Power Optimization
Power-Driven Compilation
The Search for Lowest Power option, under Exploration Settings, uses a predefined
exploration space that targets overall design power improvements. This setting
focuses on applying different options that specifically reduce total design thermal
power.

By default, the Quartus II PowerPlay Power Analyzer is run for every exploration
performed by the DSE when the Search for Lowest Power option is selected. This
helps you debug your design and determine trade-offs between power requirements
and performance optimization.

h For more information about the DSE, refer to About Design Space Explorer in Quartus II
Help.

Power-Driven Compilation
The standard Quartus II compilation flow consists of Analysis and Synthesis,
placement and routing, Assembly, and Timing Analysis. Power-driven compilation
takes place at the Analysis and Synthesis and Place-and-Route stages.
Quartus II software settings that control power-driven compilation are located in the
PowerPlay power optimization list on the Analysis & Synthesis Settings page, and
the PowerPlay power optimization list on the Fitter Settings page. The following
sections describes these power optimization options at the Analysis and Synthesis
and Fitter levels.

Power-Driven Synthesis
Synthesis netlist optimization occurs during the synthesis stage of the compilation
flow. The optimization technique makes changes to the synthesis netlist to optimize
your design according to the selection of area, speed, or power optimization. This
section describes power optimization techniques at the synthesis level.
Quartus II Handbook Version 13.1 May 2013 Altera Corporation
Volume 2: Design Implementation and Optimization

http://quartushelp.altera.com/current/master.htm#mergedProjects/optimize/dse/dse_about_dse.htm

Chapter 13: Power Optimization 13–5
Power-Driven Compilation
The Analysis & Synthesis Settings page allows you to specify logic synthesis
options. The PowerPlay power optimization option is available for all devices
supported by the Quartus II software except MAX® 3000 and MAX 7000 devices.
(Figure 13–3).

Table 13–1 shows the settings in the PowerPlay power optimization list. You can
apply these settings on a project or entity level.

The Normal compilation setting is turned on by default. This setting performs
memory optimization and power-aware logic mapping during synthesis.

Figure 13–3. Analysis & Synthesis Settings Page

Table 13–1. Optimize Power During Synthesis Options

Settings Description

Off No netlist, placement, or routing optimizations are performed to minimize
power.

Normal compilation
(Default)

Low compute effort algorithms are applied to minimize power through netlist
optimizations as long as they are not expected to reduce design performance.

Extra effort High compute effort algorithms are applied to minimize power through netlist
optimizations. Max performance might be impacted.
May 2013 Altera Corporation Quartus II Handbook Version 13.1
Volume 2: Design Implementation and Optimization

13–6 Chapter 13: Power Optimization
Power-Driven Compilation
Memory blocks can represent a large fraction of total design dynamic power as
described in “Reducing Memory Power Consumption” on page 13–14. Minimizing
the number of memory blocks accessed during each clock cycle can significantly
reduce memory power. Memory optimization involves effective movement of
user-defined read/write enable signals to associated read-and-write clock enable
signals for all memory types (Figure 13–4).

Figure 13–4 shows a default implementation of a simple dual-port memory block in
which write-clock enable signals and read-clock enable signals are connected to VCC,
making both read and write memory ports active during each clock cycle. Memory
transformation effectively moves the read-enable and write-enable signals to the
respective read-clock enable and write-clock enable signals. By using this technique,
memory ports are shut down when they are not accessed. This significantly reduces
your design’s memory power consumption. For more information about clock enable
signals, refer to “Reducing Memory Power Consumption” on page 13–14. For
Stratix III, Stratix IV, and Stratix V devices, the memory transformation takes place at
the Fitter level by selecting the Normal compilation settings for the power
optimization option.

In Stratix III, Cyclone III, Cyclone IV GX, and Stratix III devices, the specified
read-during-write behavior can significantly impact the power of single-port and
bidirectional dual-port RAMs. It is best to set the read-during-write parameter to
“Don’t care” (at the HDL level), as it allows an optimization whereby the read-enable
signal can be set to the inversion of the existing write-enable signal (if one exists).
This allows the core of the RAM to shut down (that is, not toggle), which saves a
significant amount of power.

The other type of power optimization that takes place with the Normal compilation
setting is power-aware logic mapping. The power-aware logic mapping reduces
power by rearranging the logic during synthesis to eliminate nets with high toggle
rates.

The Extra effort setting performs the functions of the Normal compilation setting and
other memory optimizations to further reduce memory power by shutting down
memory blocks that are not accessed. This level of memory optimization can require
extra logic, which can reduce design performance.

Figure 13–4. Memory Transformation

Data Q

Wr Clk
Enable

Write
Address

Rd Clk
Enable

Read
Address

Clock

Write
Enable

Read
Enable

VCC

Wren

Write
Address

Data Q

Rden

VCC

Read
Address

Data Q

Wr Clk
Enable

Write
Address

Rd Clk
Enable

Read
Address

Clock

Write
Enable

Read
Enable

VCC

Wren

Write
Address

Data Q

Rden

VCC

Read
Address

Switch

Switch
Quartus II Handbook Version 13.1 May 2013 Altera Corporation
Volume 2: Design Implementation and Optimization

Chapter 13: Power Optimization 13–7
Power-Driven Compilation
The Extra effort setting also performs power-aware memory balancing. Power-aware
memory balancing automatically chooses the best memory configuration for your
memory implementation and provides optimal power saving by determining the
number of memory blocks, decoder, and multiplexer circuits required. If you have not
previously specified target-embedded memory blocks for your design’s memory
functions, the power-aware balancer automatically selects them during memory
implementation.

Figure 13–5 shows an example of a 4k × 4 (4k deep and 4 bits wide) memory
implementation in two different configurations using M4K memory blocks available
in Stratix II devices. The minimum logic area implementation uses M4K blocks
configured as 4k × 1. This implementation is the default in the Quartus II software
because it has the minimum logic area (0 logic cells) and the highest speed. However,
all four M4K blocks are active on each memory access in this implementation, which
increases RAM power. The minimum RAM power implementation is created by
selecting Extra effort in the PowerPlay power optimization list. This implementation
automatically uses four M4K blocks configured as 1k × 4 for optimal power saving.
An address decoder is implemented by the RAM megafunction to select which of the
four M4K blocks should be activated on a given cycle, based on the state of the top
two user address bits. The RAM megafunction automatically implements a
multiplexer to feed the downstream logic by choosing the appropriate M4K output.
This implementation reduces RAM power because only one M4K block is active on
any cycle, but it requires extra logic cells, costing logic area and potentially impacting
design performance.

There is a trade-off between power saved by accessing fewer memories and power
consumed by the extra decoder and multiplexor logic. The Quartus II software
automatically balances the power savings against the costs to choose the lowest
power configuration for each logical RAM. The benchmark data shows that the
power-driven synthesis can reduce memory power consumption by as much as 60%
in Stratix devices.

Figure 13–5. 4K × 4 Memory Implementation Using Multiple M4K Blocks

Addr
Decoder

4

1K Deep × 4 Wide
M4K RAM

Addr[0:9]

Addr[10:11]

Data[0:3]

Addr[10:11]

4K Words Deep &
4 Bits Wide

Addr[0:11]

4K Deep × 1 Wide
M4K RAM

Data[0:3]

Minimum RAM Power
(Power Efficient)

Minimum Logic Area
(Power Inefficient)
May 2013 Altera Corporation Quartus II Handbook Version 13.1
Volume 2: Design Implementation and Optimization

13–8 Chapter 13: Power Optimization
Power-Driven Compilation
Memory optimization options can also be controlled by the Low_Power_Mode
parameter in the Default Parameters page of the Settings dialog box. The settings for
this parameter are None, Auto, and ALL. None corresponds to the Off setting in the
PowerPlay power optimization list. Auto corresponds to the Normal compilation
setting and ALL corresponds to the Extra effort setting, respectively. You can apply
PowerPlay power optimization either on a compiler basis or on individual entities.
The Low_Power_Mode parameter always takes precedence over the Optimize Power
for Synthesis option for power optimization on memory.

You can also set the MAXIMUM_DEPTH parameter manually to configure the memory for
low power optimization. This technique is the same as the power-aware memory
balancer, but it is manual rather than automatic like the Extra effort setting in the
PowerPlay power optimization list. You can set the MAXIMUM_DEPTH parameter for
memory modules manually in the megafunction instantiation or in the MegaWizard™
Plug-In Manager for power optimization as described in “Reducing Memory Power
Consumption” on page 13–14. The MAXIMUM_DEPTH parameter always takes
precedence over the Optimize Power for Synthesis options for power optimization
on memory optimization.

h For step-by-step instructions on how to perform power-driven synthesis, refer to
Running a Power-Optimized Compilation in Quartus II Help.
Quartus II Handbook Version 13.1 May 2013 Altera Corporation
Volume 2: Design Implementation and Optimization

http://quartushelp.altera.com/current/master.htm#mergedProjects/optimize/pwr/pwr_pro_power_opt_compilation.htm

Chapter 13: Power Optimization 13–9
Power-Driven Compilation
Power-Driven Fitter
The Fitter Settings page enables you to specify options for fitting (Figure 13–6). The
PowerPlay power optimization option is available for Arria GX, Arria II GX,
Cyclone II, Cyclone III, Cyclone IV, Stratix II, Stratix II GX, Stratix III, Stratix IV, and
Stratix V devices.

Table 13–2 lists the settings in the PowerPlay power optimization list. These settings
can only be applied on a project-wide basis. The Extra effort setting for the Fitter
requires extensive effort to optimize the design for power and can increase the
compilation time.

Figure 13–6. Fitter Settings Page

Table 13–2. Power-Driven Fitter Option

Settings Description

Off No netlist, placement, or routing optimizations are performed to minimize power.

Normal compilation
(Default)

Low compute effort algorithms are applied to minimize power through placement and routing
optimizations as long as they are not expected to reduce design performance.

Extra effort High compute effort algorithms are applied to minimize power through placement and routing
optimizations. Max performance might be impacted.
May 2013 Altera Corporation Quartus II Handbook Version 13.1
Volume 2: Design Implementation and Optimization

13–10 Chapter 13: Power Optimization
Power-Driven Compilation
The Normal compilation setting is selected by default and performs DSP
optimization by creating power-efficient DSP block configurations for your DSP
functions. For Stratix III, Stratix IV, and Stratix V devices, this setting, which is based
on timing constraints entered for the design, enables the Programmable Power
Technology to configure tiles as high-speed mode or low-power mode. Programmable
Power Technology is always turned ON even when the OFF setting is selected for the
Fitter PowerPlay power optimization option. Tiles are the combination of LAB and
MLAB pairs (including the adjacent routing associated with LAB and MLAB), which
can be configured to operate in high-speed or low-power mode. This level of power
optimization does not have any affect on the fitting, timing results, or compile time.
Also, for Stratix III devices, this setting enables the memory transformation as
described in “Power-Driven Synthesis” on page 13–4.

f For more information about Stratix III power optimization, refer to AN 437: Power
Optimization in Stratix III FPGAs. For more information about Stratix IV power
optimization, refer to AN 514: Power Optimization in Stratix IV FPGAs.

The Extra effort setting performs the functions of the Normal compilation setting and
other place-and-route optimizations during fitting to fully optimize the design for
power. The Fitter applies an extra effort to minimize power even after timing
requirements have been met by effectively moving the logic closer during placement
to localize high-toggling nets, and using routes with low capacitance. However, this
effort can increase the compilation time.

The Extra effort setting uses a Value Change Dump File (.vcd) that guides the Fitter to
fully optimize the design for power, based on the signal activity of the design. The
best power optimization during fitting results from using the most accurate signal
activity information. Signal activities from full post-fit netlist (timing) simulation
provide the highest accuracy because all node activities reflect the actual design
behavior, provided that supplied input vectors are representative of typical design
operation. If you do not have a .vcd file, the Quartus II software uses assignments,
clock assignments, and vectorless estimation values (PowerPlay Power Analyzer Tool
settings) to estimate the signal activities. This information is used to optimize your
design for power during fitting. The benchmark data shows that the power-driven
Fitter technique can reduce power consumption by as much as 19% in Stratix devices.
On average, you can reduce core dynamic power by 16% with the Extra effort
synthesis and Extra effort fitting settings, as compared to the Off settings in both
synthesis and Fitter options for power-driven compilation.

1 Only the Extra effort setting in the PowerPlay power optimization list for the Fitter
option uses the signal activities (from .vcd files) during fitting. The settings made in
the PowerPlay Power Analyzer Settings page in the Settings dialog box are used to
calculate the signal activity of your design.

f For more information about .vcd files and how to create them, refer to the PowerPlay
Power Analysis chapter in volume 3 of the Quartus II Handbook.

h For step-by-step instructions on how to perform power-driven fitting, refer to
Running a Power-Optimized Compilation in Quartus II Help.
Quartus II Handbook Version 13.1 May 2013 Altera Corporation
Volume 2: Design Implementation and Optimization

http://quartushelp.altera.com/current/master.htm#mergedProjects/optimize/pwr/pwr_pro_power_opt_compilation.htm
http://www.altera.com/literature/an/an514.pdf
http://www.altera.com/literature/an/AN437.pdf
http://www.altera.com/literature/an/AN437.pdf
http://www.altera.com/literature/hb/qts/qts_qii53013.pdf
http://www.altera.com/literature/hb/qts/qts_qii53013.pdf

Chapter 13: Power Optimization 13–11
Power-Driven Compilation
Area-Driven Synthesis
Using area optimization rather than timing or delay optimization during synthesis
saves power because you use fewer logic blocks. Using less logic usually means less
switching activity. The Quartus II integrated synthesis tool provides Speed, Balanced,
or Area for the Optimization Technique option. You can also specify this logic option
for specific modules in your design with the Assignment Editor in cases where you
want to reduce area using the Area setting (potentially at the expense of register-to-
register timing performance) while leaving the default Optimization Technique
setting at Balanced (for the best trade-off between area and speed for certain device
families). The Speed Optimization Technique can increase the resource usage of your
design if the constraints are too aggressive, and can also result in increased power
consumption.

The benchmark data shows that the area-driven technique can reduce power
consumption by as much as 31% in Stratix devices and as much as 15% in Cyclone
devices.

Gate-Level Register Retiming
You can also use gate-level register retiming to reduce circuit switching activity.
Retiming shuffles registers across combinational blocks without changing design
functionality. The Perform gate-level register retiming option in the Quartus II
software enables the movement of registers across combinational logic to balance
timing, allowing the software to trade off the delay between timing critical and
noncritical timing paths.

Retiming uses fewer registers than pipelining. Figure 13–7 shows an example of
gate-level register retiming, where the 10 ns critical delay is reduced by moving the
register relative to the combinational logic, resulting in the reduction of data depth
and switching activity.

Figure 13–7. Gate-Level Register Retiming

D Q D Q

D Q D Q

D Q

D Q

10 ns 5 ns

7 ns 8 ns

Before

After
May 2013 Altera Corporation Quartus II Handbook Version 13.1
Volume 2: Design Implementation and Optimization

13–12 Chapter 13: Power Optimization
Design Guidelines
1 Gate-level register retiming makes changes at the gate level. If you are using an atom
netlist from a third-party synthesis tool, you must also select the Perform WYSIWYG
primitive resynthesis option to undo the atom primitives to gates mapping (so that
register retiming can be performed), and then to remap gates to Altera primitives.
When using Quartus II integrated synthesis, retiming occurs during synthesis before
the design is mapped to Altera primitives. The benchmark data shows that the
combination of WYSIWYG remapping and gate-level register retiming techniques can
reduce power consumption by as much as 6% in Stratix devices and as much as 21%
in Cyclone devices.

f For more information about register retiming, refer to the Netlist Optimizations and
Physical Synthesis chapter in volume 2 of the Quartus II Handbook.

Design Guidelines
Several low-power design techniques can reduce power consumption when applied
during FPGA design implementation. This section provides detailed design
techniques for Cyclone II, Cyclone III, Cyclone IV GX, Stratix II, and Stratix III devices
that affect overall design power. The results of these techniques might be different
from design to design.

Clock Power Management
Clocks represent a significant portion of dynamic power consumption due to their
high switching activity and long paths. Figure 13–1 on page 13–2 shows a 14%
average contribution to power consumption for global clock routing in Stratix III
devices and 16% in Cyclone III devices. Actual clock-related power consumption is
higher than this because the power consumed by local clock distribution within logic,
memory, and DSP or multiplier blocks is included in the power consumption for the
respective blocks.

Clock routing power is automatically optimized by the Quartus II software, which
enables only those portions of the clock network that are required to feed downstream
registers. Power can be further reduced by gating clocks when they are not required.
It is possible to build clock-gating logic, but this approach is not recommended
because it is difficult to generate a glitch free clock in FPGAs using ALMs or LEs.

Arria GX, Arria II GX, Cyclone III, Cyclone IV, Stratix II, Stratix III, Stratix IV, and
Stratix V devices use clock control blocks that include an enable signal. A clock
control block is a clock buffer that lets you dynamically enable or disable the clock
network and dynamically switch between multiple sources to drive the clock
network. You can use the Quartus II MegaWizard Plug-In Manager to create this clock
control block with the ALTCLKCTRL megafunction. Arria GX, Arria II GX,
Cyclone III, Cyclone IV, Stratix II, Stratix III, Stratix IV, and Stratix V devices provide
clock control blocks for global clock networks. In addition, Stratix II, Stratix III,
Quartus II Handbook Version 13.1 May 2013 Altera Corporation
Volume 2: Design Implementation and Optimization

http://www.altera.com/literature/hb/qts/qts_qii52007.pdf
http://www.altera.com/literature/hb/qts/qts_qii52007.pdf

Chapter 13: Power Optimization 13–13
Design Guidelines
Stratix IV, and Stratix V devices have clock control blocks for regional clock networks.
The dynamic clock enable feature lets internal logic control the clock network. When a
clock network is powered down, all the logic fed by that clock network does not
toggle, thereby reducing the overall power consumption of the device. Figure 13–8
shows a 4-input clock control block diagram.

The enable signal is applied to the clock signal before being distributed to global
routing. Therefore, the enable signal can either have a significant timing slack (at least
as large as the global routing delay) or it can reduce the fMAX of the clock signal.

f For more information about using clock control blocks, refer to the Clock Control Block
Megafunction User Guide (ALTCLKCTRL).

Another contributor to clock power consumption is the LAB clock that distributes a
clock to the registers within a LAB. LAB clock power can be the dominant contributor
to overall clock power. For example, in Cyclone III devices, each LAB can use two
clocks and two clock enable signals, as shown in Figure 13–9. Each LAB’s clock signal
and clock enable signal are linked. For example, an LE in a particular LAB using the
labclk1 signal also uses the labclkena1 signal.

Figure 13–8. Clock Control Block Diagram

inclk 3×
inclk 2×
inclk 1×
inclk 0×

clkselect[1..0]

outclk

ena

Figure 13–9. LAB-Wide Control Signals

6

labclk1 labclk2 labclr2syncload

labclkena1 labclkena2 labclr1 synclr

Local
Interconnect

Local
Interconnect

Local
Interconnect

Local
Interconnect

Dedicated
LAB Row
Clocks
May 2013 Altera Corporation Quartus II Handbook Version 13.1
Volume 2: Design Implementation and Optimization

http://www.altera.com/literature/ug/ug_altclock.pdf
http://www.altera.com/literature/ug/ug_altclock.pdf

13–14 Chapter 13: Power Optimization
Design Guidelines
To reduce LAB-wide clock power consumption without disabling the entire clock tree,
use the LAB-wide clock enable to gate the LAB-wide clock. The Quartus II software
automatically promotes register-level clock enable signals to the LAB-level. All
registers within an LAB that share a common clock and clock enable are controlled by
a shared gated clock. To take advantage of these clock enables, use a clock enable
construct in the relevant HDL code for the registered logic.

LAB-Wide Clock Enable Example
The VHDL code in Example 13–1 makes use of a LAB-wide clock enable. This
clock-gating logic is automatically turned into an LAB-level clock enable signal.

f For more information about LAB-wide control signals, refer to the Stratix II
Architecture, Cyclone III Device Family Overview, or Cyclone II Architecture chapters in
the respective device handbook.

Reducing Memory Power Consumption
The memory blocks in FPGA devices can represent a large fraction of typical core
dynamic power. Memory consumes approximately 20% of the core dynamic power in
typical Cyclone III and Stratix III device designs. Memory blocks are unlike most
other blocks in the device because most of their power is tied to the clock rate, and is
insensitive to the toggle rate on the data and address lines.

When a memory block is clocked, there is a sequence of timed events that occur
within the block to execute a read or write. The circuitry controlled by the clock
consumes the same amount of power regardless of whether or not the address or data
has changed from one cycle to the next. Thus, the toggle rate of input data and the
address bus have no impact on memory power consumption.

The key to reducing memory power consumption is to reduce the number of memory
clocking events. You can achieve this through clock network-wide gating described in
“Clock Power Management” on page 13–12, or on a per-memory basis through use of
the clock enable signals on the memory ports. Figure 13–10 shows the logical view of
the internal clock of the memory block. Use the appropriate enable signals on the
memory to make use of the clock enable signal instead of gating the clock.

Example 13–1.

IF clk'event AND clock = '1' THEN
 IF logic_is_enabled = '1' THEN
 reg <= value;
 ELSE
 reg <= reg;
 END IF;
END IF;

Figure 13–10. Memory Clock Enable Signal

Enable Internal Memory Clk

Clk

0

1

Quartus II Handbook Version 13.1 May 2013 Altera Corporation
Volume 2: Design Implementation and Optimization

http://www.altera.com/literature/hb/stx2/stx2_sii51002.pdf
http://www.altera.com/literature/hb/stx2/stx2_sii51002.pdf
http://www.altera.com/literature/hb/cyc2/cyc2_cii51002.pdf
http://www.altera.com/literature/hb/cyc3/cyc3_ciii51001.pdf

Chapter 13: Power Optimization 13–15
Design Guidelines
Using the clock enable signal enables the memory only when necessary and shuts it
down for the rest of the time, reducing the overall memory power consumption. You
can use the MegaWizard Plug-In Manager to create these enable signals by selecting
the Clock enable signal option for the appropriate port when generating the memory
block function (Figure 13–11).

For example, consider a design that contains a 32-bit-wide M4K memory block in
ROM mode that is running at 200 MHz. Assuming that the output of this block is only
required approximately every four cycles, this memory block will consume 8.45 mW
of dynamic power according to the demands of the downstream logic. By adding a
small amount of control logic to generate a read clock enable signal for the memory
block only on the relevant cycles, the power can be cut 75% to 2.15 mW.

You can also use the MAXIMUM_DEPTH parameter in your memory megafunction to save
power in Cyclone II, Cyclone III, Cyclone IV GX, Stratix II, Stratix III, Stratix IV, and
Stratix V devices; however, this approach might increase the number of LEs required
to implement the memory and affect design performance.

You can set the MAXIMUM_DEPTH parameter for memory modules manually in the
megafunction instantiation or in the MegaWizard Plug-In Manager (Figure 13–12).
The Quartus II software automatically chooses the best design memory configuration
for optimal power, as described in “Power-Driven Compilation” on page 13–4.

Figure 13–11. MegaWizard Plug-In Manager RAM 2-Port Clock Enable Signal Selectable Option
May 2013 Altera Corporation Quartus II Handbook Version 13.1
Volume 2: Design Implementation and Optimization

13–16 Chapter 13: Power Optimization
Design Guidelines
Memory Power Reduction Example
Table 13–3 shows power usage measurements for a 4K × 36 simple dual-port memory
implemented using multiple M4K blocks in a Stratix II EP2S15 device. For each
implementation, the M4K blocks are configured with a different memory depth.

Figure 13–12. MegaWizard Plug-In Manager RAM 2-Port Maximum Depth Selectable Option

Table 13–3. 4K × 36 Simple Dual-Port Memory Implemented Using Multiple M4K Blocks

M4K Configuration Number of M4K Blocks ALUTs

4K × 1 (Default setting) 36 0

2K × 2 36 40

1K × 4 36 62

512 × 9 32 143

256 × 18 32 302

128 × 36 32 633
Quartus II Handbook Version 13.1 May 2013 Altera Corporation
Volume 2: Design Implementation and Optimization

Chapter 13: Power Optimization 13–17
Design Guidelines
Figure 13–13 shows the amount of power saved using the MAXIMUM_DEPTH parameter.
For all implementations, a user-provided read enable signal is present to indicate
when read data is required. Using this power-saving technique can reduce power
consumption by as much as 60%.

As the memory depth becomes more shallow, memory dynamic power decreases
because unaddressed M4K blocks can be shut off using a decoded combination of
address bits and the read enable signal. For a 128-deep memory block, power used by
the extra LEs starts to outweigh the power gain achieved by using a more shallow
memory block depth. The power consumption of the memory blocks and associated
LEs depends on the memory configuration.

1 The SOPC Builder and Qsys system do not offer specific power savings control for
on-chip memory block. There is no read enable, write enable, or clock enable that you
can enable in the on-chip RAM megafunction to shut down the RAM block in the
SOPC Builder and Qsys system.

Pipelining and Retiming
Designs with many glitches consume more power because of faster switching activity.
Glitches cause unnecessary and unpredictable temporary logic switches at the output
of combinational logic. A glitch usually occurs when there is a mismatch in input
signal timing leading to unequal propagation delay.

For example, consider an input change on one input of a 2-input XOR gate from 1 to 0,
followed a few moments later by an input change from 0 to 1 on the other input. For a
moment, both inputs become 1 (high) during the state transition, resulting in 0 (low)
at the output of the XOR gate. Subsequently, when the second input transition takes
place, the XOR gate output becomes 1 (high). During signal transition, a glitch is

Figure 13–13. Power Savings Using the MAXIMUM_DEPTH Parameter

0%
10%
20%
30%
40%
50%
60%
70%

4K × 1 2K × 2 256 × 18 128 × 361K × 4 512 × 9
M4K Configuration

Po
w

er
 S

av
in

gs
May 2013 Altera Corporation Quartus II Handbook Version 13.1
Volume 2: Design Implementation and Optimization

13–18 Chapter 13: Power Optimization
Design Guidelines
produced before the output becomes stable, as shown in Figure 13–14. This glitch can
propagate to subsequent logic and create unnecessary switching activity, increasing
power consumption. Circuits with many XOR functions, such as arithmetic circuits or
cyclic redundancy check (CRC) circuits, tend to have many glitches if there are several
levels of combinational logic between registers.

Pipelining can reduce design glitches by inserting flipflops into long combinational
paths. Flipflops do not allow glitches to propagate through combinational paths.
Therefore, a pipelined circuit tends to have less glitching. Pipelining has the
additional benefit of generally allowing higher clock speed operations, although it
does increase the latency of a circuit (in terms of the number of clock cycles to a first
result). Figure 13–15 shows an example where pipelining is applied to break up a long
combinational path.

Pipelining is very effective for glitch-prone arithmetic systems because it reduces
switching activity, resulting in reduced power dissipation in combinational logic.
Additionally, pipelining allows higher-speed operation by reducing logic-level
numbers between registers. The disadvantage of this technique is that if there are not
many glitches in your design, pipelining can increase power consumption by adding
unnecessary registers. Pipelining can also increase resource utilization. The
benchmark data shows that pipelining can reduce dynamic power consumption by as
much as 30% in Cyclone and Stratix devices.

Figure 13–14. XOR Gate Showing Glitch at the Output

Figure 13–15. Pipelining Example

XOR (Exclusive OR) Gate

A

B Q

A

B

Q

Timing Diagram for the 2-Input XOR Gate

Glitch

t

Combinational
Logic

Combinational
Logic

Combinational
Logic

Short Logic
Depth

Short Logic
Depth

Long Logic
DepthD Q D Q

D Q D Q D Q

Non-Pipelined

Pipelined
Quartus II Handbook Version 13.1 May 2013 Altera Corporation
Volume 2: Design Implementation and Optimization

Chapter 13: Power Optimization 13–19
Design Guidelines
Architectural Optimization
You can use design-level architectural optimization by taking advantage of specific
device architecture features. These features include dedicated memory and DSP or
multiplier blocks available in FPGA devices to perform memory or arithmetic-related
functions. You can use these blocks in place of LUTs to reduce power consumption.
For example, you can build large shift registers from RAM-based FIFO buffers instead
of building the shift registers from the LE registers.

The Stratix device family allows you to efficiently target small, medium, and large
memories with the TriMatrix memory architecture. Each TriMatrix memory block is
optimized for a specific function. The M512 memory blocks available in Stratix II
devices are useful for implementing small FIFO buffers, DSP, and clock domain
transfer applications. M512 memory blocks are more power-efficient than the
distributed memory structures in some competing FPGAs. The M4K memory blocks
are used to implement buffers for a wide variety of applications, including processor
code storage, large look-up table implementation, and large memory applications.
The M-RAM blocks are useful in applications where a large volume of data must be
stored on-chip. Effective utilization of these memory blocks can have a significant
impact on power reduction in your design.

The latest Stratix and Cyclone device families have configurable M9K memory blocks
that provide various memory functions such as RAM, FIFO buffers, and ROM.

f For more information about using DSP and memory blocks efficiently, refer to the
Area and Timing Optimization chapter in volume 2 of the Quartus II Handbook.

I/O Power Guidelines
Nonterminated I/O standards such as LVTTL and LVCMOS have a rail-to-rail output
swing. The voltage difference between logic-high and logic-low signals at the output
pin is equal to the VCCIO supply voltage. If the capacitive loading at the output pin is
known, the dynamic power consumed in the I/O buffer can be calculated as shown in
Equation 13–1:

In this equation, F is the output transition frequency and C is the total load
capacitance being switched. V is equal to VCCIO supply voltage. Because of the
quadratic dependence on VCCIO, lower voltage standards consume significantly less
dynamic power.

Transistor-to-transistor logic (TTL) I/O buffers consume very little static power. As a
result, the total power consumed by a LVTTL or LVCMOS output is highly dependent
on load and switching frequency.

When using resistively terminated I/O standards like SSTL and HSTL, the output
load voltage swings by a small amount around some bias point. The same dynamic
power equation is used, where V is the actual load voltage swing. Because this is
much smaller than VCCIO, dynamic power is lower than for nonterminated I/O under
similar conditions. These resistively terminated I/O standards dissipate significant
static (frequency-independent) power, because the I/O buffer is constantly driving

Equation 13–1. Capacitive loading at the output pin

P 0.5 F C V2×××=
May 2013 Altera Corporation Quartus II Handbook Version 13.1
Volume 2: Design Implementation and Optimization

http://www.altera.com/literature/hb/qts/qts_qii52005.pdf

13–20 Chapter 13: Power Optimization
Design Guidelines
current into the resistive termination network. However, the lower dynamic power of
these I/O standards means they often have lower total power than LVCMOS or
LVTTL for high-frequency applications. Use the lowest drive strength I/O setting that
meets your speed and waveform requirements to minimize I/O power when using
resistively terminated standards.

You can save a small amount of static power by connecting unused I/O banks to the
lowest possible VCCIO voltage of 1.2 V.

Table 13–4 shows the total supply and thermal power consumed by outputs using
different I/O standards for Stratix II devices. The numbers are for an I/O pin
transmitting random data clocked at 200 MHz with a 10 pF capacitive load.

For this configuration, nonterminated standards generally use less power, but this is
not always the case. If the frequency or the capacitive load is increased, the power
consumed by nonterminated outputs increases faster than the power of terminated
outputs.

f For more information about I/O standards, refer to the Selectable I/O Standards in
Stratix II Devices and Stratix II GX Devices chapter in volume 2 of the Stratix II Device
Handbook, the Stratix III Device I/O Features chapter in volume 1 of the Stratix III Device
Handbook, the I/O Features in Stratix IV Devices in volume 1 of the Stratix IV Device
Handbook, or the Selectable I/O Standards in Cyclone II Devices chapter in the Cyclone II
Device Handbook, the Cyclone III Device Handbook, or the Cyclone IV GX Handbook.

Table 13–4. I/O Power for Different I/O Standards in Stratix II Devices

Standard Total Supply Current Drawn from
VCCIO Supply (mA)

Total On-Chip Thermal Power
Dissipation (mW)

3.3-V LVTTL 2.42 9.87

2.5-V LVCMOS 1.9 6.69

1.8-V LVCMOS 1.34 4.18

1.5-V LVCMOS 1.18 3.58

3.3-V PCI 2.47 10.23

SSTL-2 class I 6.07 4.42

SSTL-2 class II 10.72 5.1

SSTL-18 class I 5.33 3.28

SSTL-18 class II 8.56 4.06

HSTL-15 class I 6.06 3.49

HSTL-15 class II 11.08 4.87

HSTL-18 class I 6.87 4.09

HSTL-18 class II 12.33 5.82
Quartus II Handbook Version 13.1 May 2013 Altera Corporation
Volume 2: Design Implementation and Optimization

http://www.altera.com/literature/hb/stx3/stx3_siii51007.pdf
http://www.altera.com/literature/hb/stratix-iv/stx4_siv51006.pdf
http://www.altera.com/literature/hb/stx2/stx2_sii52004.pdf
http://www.altera.com/literature/hb/stx2/stx2_sii52004.pdf
http://www.altera.com/literature/hb/cyc2/cyc2_cii51010.pdf

Chapter 13: Power Optimization 13–21
Design Guidelines
When calculating I/O power, the PowerPlay Power Analyzer uses the default
capacitive load set for the I/O standard in the Capacitive Loading page of the Device
and Pin Options dialog box. For Stratix II devices, if Enable Advanced I/O Timing is
turned on, I/O power is measured using an equivalent load calculated as the sum of
the near capacitance, the transmission line distributed capacitance, and the far-end
capacitance as defined in the Board Trace Model page of the Device and Pin Options
dialog box or the Board Trace Model view in the Pin Planner. Any other components
defined in the board trace model are not taken into account for the power
measurement.

For Cyclone III, Cyclone IV GX, Stratix III, Stratix IV, and Stratix V, devices, Advanced
I/O Timing, which uses the full board trace model, is always used.

f For information about using Advanced I/O Timing and configuring a board trace
model, refer to the I/O Management chapter in volume 2 of the Quartus II Handbook.

Dynamically Controlled On-Chip Terminations
Stratix V, Stratix IV and Stratix III FPGAs offer dynamic on-chip termination (OCT).
Dynamic OCT enables series termination (RS) and parallel termination (RT) to
dynamically turn on/off during the data transfer. This feature is especially useful
when Stratix V, Stratix IV and Stratix III FPGAs are used with external memory
interfaces, such as interfacing with DDR memories.

Compared to conventional termination, dynamic OCT reduces power consumption
significantly as it eliminates the constant DC power consumed by parallel termination
when transmitting data. Parallel termination is extremely useful for applications that
interface with external memories where I/O standards, such as HSTL and SSTL, are
used. Parallel termination supports dynamic OCT, which is useful for bidirectional
interfaces (see Figure 13–16).

The following is an example of power saving for a DDR3 interface using on-chip
parallel termination.

Figure 13–16. Stratix III On-Chip Parallel Termination

VCCIO

GND

VREF

Zo = 50W

100W

Stratix III OCT

Transmitter Receiver

100W
May 2013 Altera Corporation Quartus II Handbook Version 13.1
Volume 2: Design Implementation and Optimization

http://www.altera.com/literature/hb/qts/qts_qii52013.pdf

13–22 Chapter 13: Power Optimization
Design Guidelines
The static current consumed by parallel OCT is equal to the VCCIO voltage divided by
100 Ω. For DDR3 interfaces that use SSTL-15, the static current is 1.5 V/100 Ω = 15 mA
per pin. Therefore, the static power is 1.5 V ×15 mA = 22.5 mW. For an interface with
72 DQ and 18 DQS pins, the static power is 90 pins × 22.5 mW = 2.025 W. Dynamic
parallel OCT disables parallel termination during write operations, so if writing
occurs 50% of the time, the power saved by dynamic parallel OCT is 50% × 2.025 W =
1.0125 W.

f For more information about dynamic OCT in Stratix IV and Stratix III devices, refer to
the Stratix III Device I/O Features chapter in the Stratix III Device Handbook and the
Stratix IV Device I/O Features chapter in the Stratix IV Device Handbook, respectively.

Power Optimization Advisor
The Quartus II software includes the Power Optimization Advisor, which provides
specific power optimization advice and recommendations based on the current
design project settings and assignments. The advisor covers many of the suggestions
listed in this chapter. The following example shows how to reduce your design power
with the Power Optimization Advisor.

Power Optimization Advisor Example
After compiling your design, run the PowerPlay Power Analyzer to determine your
design power and to see where power is dissipated in your design. Based on this
information, you can run the Power Optimization Advisor to implement
recommendations that can reduce design power. Figure 13–17 shows the Power
Optimization Advisor after compiling a design that is not fully optimized for power.

The Power Optimization Advisor shows the recommendations that can reduce power
in your design. The recommendations are split into stages to show the order in which
you should apply the recommended settings. The first stage shows mostly CAD
setting options that are easy to implement and highly effective in reducing design
power. An icon indicates whether each recommended setting is made in the current

Figure 13–17. Power Optimization Advisor
Quartus II Handbook Version 13.1 May 2013 Altera Corporation
Volume 2: Design Implementation and Optimization

http://www.altera.com/literature/hb/stx3/stx3_siii51007.pdf
http://www.altera.com/literature/hb/stratix-iv/stx4_siv51006.pdf

Chapter 13: Power Optimization 13–23
Design Guidelines
project. In Figure 13–17, the checkmark icons for Stage 1 shows the recommendations
that are already implemented. The warning icons indicate recommendations that are
not followed for this compilation. The information icon shows the general
suggestions. Each recommendation includes the description, summary of the effect of
the recommendation, and the action required to make the appropriate setting.

There is a link from each recommendation to the appropriate location in the
Quartus II user interface where you can change the setting. You can change the
Power-Driven Synthesis setting by clicking Open Settings dialog box - Analysis &
Synthesis Settings page. The Settings dialog box is shown with the Analysis &
Synthesis Settings page selected, where you can change the PowerPlay power
optimization settings.

After making the recommended changes, recompile your design. The Power
Optimization Advisor indicates with green check marks that the recommendations
were implemented successfully (Figure 13–18). You can use the PowerPlay Power
Analyzer to verify your design power results.

The recommendations listed in Stage 2 generally involve design changes, rather than
CAD settings changes as in Stage 1. You can use these recommendations to further
reduce your design power consumption. Altera recommends that you implement
Stage 1 recommendations first, then the Stage 2 recommendations.

Conclusion
The combination of a smaller process technology, the use of low-k dielectric material,
and reduced supply voltage significantly reduces dynamic power consumption in the
latest FPGAs. To further reduce your dynamic power, use the design
recommendations presented in this chapter to optimize resource utilization and
minimize power consumption.

Figure 13–18. Implementation of Power Optimization Advisor Recommendations
May 2013 Altera Corporation Quartus II Handbook Version 13.1
Volume 2: Design Implementation and Optimization

13–24 Chapter 13: Power Optimization
Document Revision History
Document Revision History
Table 13–5 shows the revision history for this chapter.

f For previous versions of the Quartus II Handbook, refer to the Quartus II Handbook
Archive.

Table 13–5. Document Revision History

Date Version Changes

May 2013 13.0.0 Added a note to “Memory Power Reduction Example” on page 13–16 on Qsys and SOPC
Builder power savings limitation for on-chip memory block.

June 2012 12.0.0 Removed survey link.

November 2011 10.0.2 Template update.

December 2010 10.0.1 Template update.

July 2010 10.0.0

■ Was chapter 11 in the 9.1.0 release

■ Updated Figures 14-2, 14-3, 14-6, 14-18, 14-19, and 14-20

■ Updated device support

■ Minor editorial updates

November 2009 9.1.0

■ Updated Figure 11-1 and associated references

■ Updated device support

■ Minor editorial update

March 2009 9.0.0

■ Was chapter 9 in the 8.1.0 release

■ Updated for the Quartus II software release

■ Added benchmark results

■ Removed several sections

■ Updated Figure 13–1, Figure 13–17, and Figure 13–18

November 2008 8.1.0

■ Changed to 8½” × 11” page size

■ Changed references to altsyncram to RAM

■ Minor editorial updates

May 2008 8.0.0

■ Added support for Stratix IV devices

■ Updated Table 9–1 and 9–9

■ Updated “Architectural Optimization” on page 9–22

■ Added “Dynamically-Controlled On-Chip Terminations” on page 9–26

■ Updated “Referenced Documents” on page 9–29

■ Updated references
Quartus II Handbook Version 13.1 May 2013 Altera Corporation
Volume 2: Design Implementation and Optimization

http://www.altera.com/literature/lit-qts_archive.jsp
http://www.altera.com/literature/lit-qts_archive.jsp

QII52023-13.0.0

© 2013 Altera Corporation. All rights reserved. ALTERA, ARRI
are trademarks of Altera Corporation and registered in the U.S
trademarks or service marks are the property of their respectiv
semiconductor products to current specifications in accordance
services at any time without notice. Altera assumes no respons
described herein except as expressly agreed to in writing by Al
on any published information and before placing orders for pr

Quartus II Handbook Version 13.1
Volume 2: Design Implementation and Optimization
May 2013

May 2013
QII52023-13.0.0
14. Area Optimization
This chapter describes techniques to reduce resource usage when designing for
Altera® devices.

This chapter includes the following topics:

■ “Resource Utilization” on page 14–1

■ “Optimizing Resource Utilization (LUT-Based Devices)” on page 14–2

■ “Optimizing Resource Utilization (Macrocell-Based CPLDs)” on page 14–12

■ “Scripting Support” on page 14–17

Resource Utilization
Determining device utilization is important regardless of whether your design
achieved a successful fit. If your compilation results in a no-fit error, resource
utilization information is important for analyzing the fitting problems in your design.
If your fitting is successful, review the resource utilization information to determine
whether the future addition of extra logic or other design changes might introduce
fitting difficulties. Also, review the resource utilization information to determine if it
is impacting timing performance.

To determine resource usage, refer to the Flow Summary section of the Compilation
Report. This section reports resource utilization, including pins, memory bits, digital
signal processing (DSP) blocks, and phase-locked loops (PLLs). Flow Summary
indicates whether your design exceeds the available device resources. More detailed
information is available by viewing the reports under Resource Section in the Fitter
section of the Compilation Report.

Flow Summary shows the overall logic utilization. The Fitter can spread logic
throughout the device, which may lead to higher overall utilization.

As the device fills up, the Fitter automatically searches for logic functions with
common inputs to place in one ALM. The number of packed registers also increases.
Therefore, a design that has high overall utilization might still have space for extra
logic if the logic and registers can be packed together more tightly.

The reports under the Resource Section in the Fitter section of the Compilation
Report provide more detailed resource information. The Fitter Resource Usage
Summary report breaks down the logic utilization information and provides other
resource information, including the number of bits in each type of memory block. This
panel also contains a summary of the usage of global clocks, PLLs, DSP blocks, and
other device-specific resources.
A, CYCLONE, HARDCOPY, MAX, MEGACORE, NIOS, QUARTUS and STRATIX words and logos
. Patent and Trademark Office and in other countries. All other words and logos identified as
e holders as described at www.altera.com/common/legal.html. Altera warrants performance of its
 with Altera's standard warranty, but reserves the right to make changes to any products and
ibility or liability arising out of the application or use of any information, product, or service
tera. Altera customers are advised to obtain the latest version of device specifications before relying
oducts or services.

Feedback SubscribeTwitter

ISO
9001:2008
Registered

https://www.altera.com/servlets/subscriptions/alert?id=QII52023
mailto:TechDocFeedback@altera.com?subject=Feedback on QII52023-13.0.0 (QII HB, Vol 2, Ch14: Area Optimization)
http://www.altera.com/common/legal.html
<enter your linkedin URL>
http://www.altera.com/support/reliability/certifications/rel-certifications.html
http://www.altera.com/support/reliability/certifications/rel-certifications.html
http://twitter.com/home/?status=Area+Optimization+http://www.altera.com/literature/hb/qts/qts_qii52023.pdf?WT.mc_id=gc_so_tw_st_tx_a_011+(via @alteracorp)+%23Altera

14–2 Chapter 14: Area Optimization
Optimizing Resource Utilization (LUT-Based Devices)
You can also view reports describing some of the optimizations that occurred during
compilation. For example, if you use Quartus® II integrated synthesis, the reports in
the Optimization Results folder in the Analysis & Synthesis section include
information about registers that integrated synthesis removed during synthesis. Use
this report to estimate device resource utilization for a partial design to ensure that
registers were not removed due to missing connections with other parts of the design.

If a specific resource usage is reported as less than 100% and a successful fit cannot be
achieved, either there are not enough routing resources or some assignments are
illegal. In either case, a message appears in the Processing tab of the Messages
window describing the problem.

If the Fitter finishes unsuccessfully and runs much faster than on similar designs, a
resource might be over-utilized or there might be an illegal assignment. If the
Quartus II software seems to run for an excessively long time compared to runs on
similar designs, a legal placement or route probably cannot be found. In the
Compilation Report, look for errors and warnings that indicate these types of
problems.

You can use the Chip Planner to find areas of the device that have routing congestion
on specific types of routing resources. If you find areas with very high congestion,
analyze the cause of the congestion. Issues such as high fan-out nets not using global
resources, an improperly chosen optimization goal (speed versus area), very
restrictive floorplan assignments, or the coding style can cause routing congestion.
After you identify the cause, modify the source or settings to reduce routing
congestion.

h For more information about Fitter Resources Report, refer to Fitter Resources Report in
Quartus II Help. For information about how to view routing congestion, refer to
Displaying Resources and Information in Quartus II Help. For information about using
the Chip Planner tool, refer to About the Chip Planner in Quartus II Help. For details
about using the Chip Planner tool, refer to the Analyzing and Optimizing the Design
Floorplan with the Chip Planner chapter of the Quartus II Handbook.

Optimizing Resource Utilization (LUT-Based Devices)
After design analysis, the next stage of design optimization is to improve resource
utilization. Complete this stage before proceeding to I/O timing optimization or
register-to-register timing optimization. Ensure that you have already set the basic
constraints “Initial Compilation: Required Settings” section in the Design Optimization
Overview chapter of the Quartus II Handbook before proceeding with the resource
utilization optimizations described in this section. If a design does not fit into a
specified device, use the techniques in this section to achieve a successful fit.

f After you optimize resource utilization and your design fits in the desired target
device, optimize I/O timing as described in the I/O Timing Optimization Techniques
(LUT-Based Devices) section in the Timing Closure and Optimization chapter of the
Quartus II Handbook. These tips are valid for all FPGA families and the MAX® II
family of CPLDs.
Quartus II Handbook Version 13.1 May 2013 Altera Corporation
Volume 2: Design Implementation and Optimization

http://www.altera.com/literature/hb/qts/qts_qii52005.pdf
http://www.altera.com/literature/hb/qts/qts_qii52021.pdf
http://www.altera.com/literature/hb/qts/qts_qii52021.pdf
http://quartushelp.altera.com/current/master.htm#mergedProjects/report/rpt/rpt_file_resource_usage.htm
http://quartushelp.altera.com/current/master.htm#mergedProjects/optimize/ace/acv_pro_displaying_connectivity.htm
http://quartushelp.altera.com/current/master.htm#mergedProjects/optimize/ace/acv_pro_displaying_connectivity.htm
http://quartushelp.altera.com/current/master.htm#mergedProjects/optimize/ace/acv_view_acv_overview.htm
http://www.altera.com/literature/hb/qts/qts_qii52006.pdf
http://www.altera.com/literature/hb/qts/qts_qii52006.pdf

Chapter 14: Area Optimization 14–3
Optimizing Resource Utilization (LUT-Based Devices)
Using the Resource Optimization Advisor
The Resource Optimization Advisor provides guidance in determining settings that
optimize resource usage. To run the Resource Optimization Advisor, on the Tools
menu, point to Advisors, and click Resource Optimization Advisor.

The Resource Optimization Advisor provides step-by-step advice about how to
optimize resource usage (logic element, memory block, DSP block, I/O, and routing)
of your design. Some of the recommendations in these categories might conflict with
each other. Altera recommends evaluating the options and choosing the settings that
best suit your requirements.

h For more information about the Resource Optimization Advisor, refer to Resource
Optimization Advisor Command (Tools Menu) in Quartus II Help.

Resolving Resource Utilization Issues Summary
Resource utilization issues can be divided into the following three categories:

■ Issues relating to I/O pin utilization or placement, including dedicated I/O blocks
such as PLLs or LVDS transceivers (refer to “I/O Pin Utilization or Placement”).

■ Issues relating to logic utilization or placement, including logic cells containing
registers and LUTs as well as dedicated logic, such as memory blocks and DSP
blocks (refer to “Logic Utilization or Placement” on page 14–4).

■ Issues relating to routing (refer to “Routing” on page 14–9).

I/O Pin Utilization or Placement
Use the suggestions in the following sections to help you resolve I/O resource
problems.

Use I/O Assignment Analysis
To help with pin placement, on the Processing menu, point to Start and click Start I/O
Assignment Analysis. The Start I/O Assignment Analysis command allows you to
check your I/O assignments early in the design process. You can use this command to
check the legality of pin assignments before, during, or after compilation of your
design. If design files are available, you can use this command to accomplish more
thorough legality checks on your design’s I/O pins and surrounding logic. These
checks include proper reference voltage pin usage, valid pin location assignments,
and acceptable mixed I/O standards.

Common issues with I/O placement relate to the fact that differential standards have
specific pin pairings and certain I/O standards might be supported only on certain
I/O banks.

If your compilation or I/O assignment analysis results in specific errors relating to
I/O pins, follow the recommendations in the error message. Right-click the message
in the Messages window and click Help to open the Quartus II Help topic for this
message.
May 2013 Altera Corporation Quartus II Handbook Version 13.1
Volume 2: Design Implementation and Optimization

http://quartushelp.altera.com/current/mergedProjects/report/oaw/oaw_com_roa_command.htm
http://quartushelp.altera.com/current/mergedProjects/report/oaw/oaw_com_roa_command.htm

14–4 Chapter 14: Area Optimization
Optimizing Resource Utilization (LUT-Based Devices)
Modify Pin Assignments or Choose a Larger Package
If a design that has pin assignments fails to fit, compile the design without the pin
assignments to determine whether a fit is possible for the design in the specified
device and package. You can use this approach if a Quartus II error message indicates
fitting problems due to pin assignments.

If the design fits when all pin assignments are ignored or when several pin
assignments are ignored or moved, you might have to modify the pin assignments for
the design or select a larger package.

If the design fails to fit because insufficient I/Os pins are available, a successful fit can
often be obtained by using a larger device package (which can be the same device
density) that has more available user I/O pins.

f For more information about I/O assignment analysis, refer to the I/O Management
chapter in volume 2 of the Quartus II Handbook.

Logic Utilization or Placement
Use the suggestions in the following sections to help you resolve logic resource
problems, including logic cells containing registers and LUTs, as well as dedicated
logic such as memory blocks and DSP blocks.

Optimize Source Code
If your design does not fit because of logic utilization, evaluate and modify the design
at the source to achieve the desired results. You can often improve logic significantly
by making design-specific changes to your source code. This is typically the most
effective technique for improving the quality of your results.

If your design does not fit into available logic elements (LEs) or ALMs, but you have
unused memory or DSP blocks, check if you have code blocks in your design that
describe memory or DSP functions that are not being inferred and placed in dedicated
logic. You might be able to modify your source code to allow these functions to be
placed into dedicated memory or DSP resources in the target device.

Ensure that your state machines are recognized as state machine logic and optimized
appropriately in your synthesis tool. State machines that are recognized are generally
optimized better than if the synthesis tool treats them as generic logic. In the
Quartus II software, you can check for the State Machine report under Analysis &
Synthesis in the Compilation Report. This report provides details, including the state
encoding for each state machine that was recognized during compilation. If your state
machine is not being recognized, you might have to change your source code to
enable it to be recognized.

f For coding style guidelines, including examples of HDL code for inferring memory
and DSP functions, refer to the “Instantiating Altera Megafunctions” and the
“Inferring Multiplier and DSP Functions from HDL Code” sections of the
Recommended HDL Coding Styles chapter in volume 1 of the Quartus II Handbook. For
guidelines and sample HDL code for state machines, refer to the “General Coding
Guidelines” section of the Recommended HDL Coding Styles chapter in volume 1 of the
Quartus II Handbook.
Quartus II Handbook Version 13.1 May 2013 Altera Corporation
Volume 2: Design Implementation and Optimization

http://www.altera.com/literature/hb/qts/qts_qii52013.pdf
http://www.altera.com/literature/hb/qts/qts_qii51007.pdf
http://www.altera.com/literature/hb/qts/qts_qii51007.pdf

Chapter 14: Area Optimization 14–5
Optimizing Resource Utilization (LUT-Based Devices)
f For additional HDL coding examples, refer to AN 584: Timing Closure Methodology for
Advanced FPGA Designs.

Optimize Synthesis for Area, Not Speed
If your design fails to fit because it uses too much logic, resynthesize the design to
improve the area utilization. First, ensure that you have set your device and timing
constraints correctly in your synthesis tool. Particularly when area utilization of the
design is a concern, ensure that you do not over-constrain the timing requirements for
the design. Synthesis tools generally try to meet the specified requirements, which can
result in higher device resource usage if the constraints are too aggressive.

If resource utilization is an important concern, some synthesis tools offer an easy way
to optimize for area instead of speed. If you are using Quartus II integrated synthesis,
select Balanced or Area for the Optimization Technique. You can also specify an
Optimization Technique logic option for specific modules in your design with the
Assignment Editor in cases where you want to reduce area using the Area setting
(potentially at the expense of register-to-register timing performance) while leaving
the default Optimization Technique setting at Balanced (for the best trade-off
between area and speed for certain device families) or Speed. You can also use the
Speed Optimization Technique for Clock Domains logic option to specify that all
combinational logic in or between the specified clock domain(s) is optimized for
speed.

In some synthesis tools, not specifying an fMAX requirement can result in less resource
utilization.

1 In the Quartus II software, the Balanced setting typically produces utilization results
that are very similar to those produced by the Area setting, with better performance
results. The Area setting can give better results in some cases.

f For information about setting the timing requirements and synthesis options in
Quartus II integrated synthesis and other synthesis tools, refer to the appropriate
chapter in Synthesis in volume 1 of the Quartus II Handbook, or your synthesis
software’s documentation.

The Quartus II software provides additional attributes and options that can help
improve the quality of your synthesis results.

Restructure Multiplexers
Multiplexers form a large portion of the logic utilization in many FPGA designs. By
optimizing your multiplexed logic, you can achieve a more efficient implementation
in your Altera device.

h For more information about this option, refer to Restructure Multiplexers logic option in
Quartus II Help.

f For design guidelines to achieve optimal resource utilization for multiplexer designs,
refer to the Recommended HDL Coding Styles chapter in volume 1 of the Quartus II
Handbook.
May 2013 Altera Corporation Quartus II Handbook Version 13.1
Volume 2: Design Implementation and Optimization

http://www.altera.com/literature/an/an584.pdf
http://www.altera.com/literature/an/an584.pdf
http://www.altera.com/literature/hb/qts/qts_qii5v1_03.pdf
http://quartushelp.altera.com/current/master.htm#mergedProjects/logicops/logicops/def_mux_restructure.htm
http://www.altera.com/literature/hb/qts/qts_qii51007.pdf

14–6 Chapter 14: Area Optimization
Optimizing Resource Utilization (LUT-Based Devices)
Perform WYSIWYG Primitive Resynthesis with Balanced or Area Setting
The Perform WYSIWYG Primitive Resynthesis logic option specifies whether to
perform WYSIWYG primitive resynthesis during synthesis. This option uses the
setting specified in the Optimization Technique logic option. The Perform
WYSIWYG Primitive Resynthesis logic option is useful for resynthesizing some or
all of the WYSIWYG primitives in your design for better area or performance.
However, WYSIWYG primitive resynthesis can be done only when you use
third-party synthesis tools.

1 The Balanced setting typically produces utilization results that are very similar to the
Area setting with better performance results. The Area setting can give better results
in some cases. Performing WYSIWYG resynthesis for area in this way typically
reduces register-to-register timing performance.

h For information about this logic option, refer to Perform WYSIWYG Primitive
Resynthesis logic option in Quartus II Help.

Use Register Packing
The Auto Packed Registers option implements the functions of two cells into one
logic cell by combining the register of one cell in which only the register is used with
the LUT of another cell in which only the LUT is used.

h For more information, refer to Auto Packed Registers logic option in Quartus Help.

Remove Fitter Constraints
A design with conflicting constraints or constraints that are difficult to meet may not
fit in the targeted device. For example, a design might fail to fit if the location or
LogicLock assignments are too strict and not enough routing resources are available
on the device.

To resolve routing congestion caused by restrictive location constraints or LogicLock
region assignments, use the Routing Congestion task in the Chip Planner to locate
routing problems in the floorplan, then remove any internal location or LogicLock
region assignments in that area. If your design still does not fit, the design is
over-constrained. To correct the problem, remove all location and LogicLock
assignments and run successive compilations, incrementally constraining the design
before each compilation. You can delete specific location assignments in the
Assignment Editor or the Chip Planner. To remove LogicLock assignments in the
Chip Planner, in the LogicLock Regions Window, or on the Assignments menu, click
Remove Assignments. Turn on the assignment categories you want to remove from
the design in the Available assignment categories list.

f For more information about the Routing Congestion task in the Chip Planner, refer to
Analyzing and Optimizing the Design Floorplan with the Chip Planner of the Quartus II
Handbook.
Quartus II Handbook Version 13.1 May 2013 Altera Corporation
Volume 2: Design Implementation and Optimization

http://quartushelp.altera.com/current/master.htm#mergedProjects/logicops/logicops/def_adv_netlist_opt_synth_wysiwyg_remap.htm
http://quartushelp.altera.com/current/master.htm#mergedProjects/logicops/logicops/def_adv_netlist_opt_synth_wysiwyg_remap.htm
http://quartushelp.altera.com/current/master.htm#mergedProjects/logicops/logicops/def_register_packing.htm
http://www.altera.com/literature/hb/qts/qts_qii52006.pdf

Chapter 14: Area Optimization 14–7
Optimizing Resource Utilization (LUT-Based Devices)
Flatten the Hierarchy During Synthesis
Synthesis tools typically provide the option of preserving hierarchical boundaries,
which can be useful for verification or other purposes. However, the Quartus II
software optimizes across hierarchical boundaries so as to perform the most logic
minimization, which can reduce area in a design with no design partitions.

If you are using Quartus II incremental compilation, you cannot flatten your design
across design partitions. Incremental compilation always preserves the hierarchical
boundaries between design partitions, and the synthesis does not flatten it across
partitions. Follow Altera’s recommendations for design partitioning, such as
registering partition boundaries to reduce the effect of cross-boundary optimizations.

f For more information about using incremental compilation and recommendations for
design partitioning, refer to the Quartus II Incremental Compilation for Hierarchical and
Team-Based Design and Best Practices for Incremental Compilation Partitions and Floorplan
Assignments chapters in volume 1 of the Quartus II Handbook.

Retarget Memory Blocks
If your design fails to fit because it runs out of device memory resources, your design
may require a certain type of memory that the device does not have. For example, a
design that requires two M-RAM blocks cannot be targeted to a Stratix® EP1S10
device, which has only one M-RAM block. You might be able to obtain a fit by
building one of the memories with a different size memory block, such as an M4K
memory block.

If the memory block was created with the MegaWizard™ Plug-In Manager, open the
MegaWizard Plug-In Manager and edit the RAM block type so it targets a new
memory block size.

ROM and RAM memory blocks can also be inferred from your HDL code, and your
synthesis software can place large shift registers into memory blocks by inferring the
ALTSHIFT_TAPS megafunction. This inference can be turned off in your synthesis
tool to cause the memory or shift registers to be placed in logic instead of in memory
blocks. Also, for improved timing performance, you can turn this inference off to
prevent registers from being moved into RAM.

h For more information, refer to Auto RAM Replacement logic option, Auto ROM
Replacement logic option, and Auto Shift Register Replacement logic option in Quartus II
Help.

Depending on your synthesis tool, you can also set the RAM block type for inferred
memory blocks. In Quartus II integrated synthesis, set the ramstyle attribute to the
desired memory type for the inferred RAM blocks, or set the option to logic, to
implement the memory block in standard logic instead of a memory block.
May 2013 Altera Corporation Quartus II Handbook Version 13.1
Volume 2: Design Implementation and Optimization

http://www.altera.com/literature/hb/qts/qts_qii51015.pdf
http://www.altera.com/literature/hb/qts/qts_qii51015.pdf
www.altera.com/literature/hb/qts/qts_qii51017.pdf
www.altera.com/literature/hb/qts/qts_qii51017.pdf
http://quartushelp.altera.com/current/master.htm#mergedProjects/logicops/logicops/def_auto_ram_recognition.htm
http://quartushelp.altera.com/current/master.htm#mergedProjects/logicops/logicops/def_auto_rom_recognition.htm
http://quartushelp.altera.com/current/master.htm#mergedProjects/logicops/logicops/def_auto_rom_recognition.htm
http://quartushelp.altera.com/current/master.htm#mergedProjects/logicops/logicops/def_auto_shift_register_recognition.htm

14–8 Chapter 14: Area Optimization
Optimizing Resource Utilization (LUT-Based Devices)
Consider the Resource Utilization by Entity report in the report file and determine
whether there is an unusually high register count in any of the modules. Some coding
styles can prevent the Quartus II software from inferring RAM blocks from the source
code because of the blocks’ architectural implementation, and force the software to
implement the logic in flipflops. As an example, a function such as an asynchronous
reset on a register bank might make the resistor bank incompatible with the RAM
blocks in the device architecture, so that the register bank is implemented in flipflops.
It is often possible to move a large register bank into RAM by slight modification of
associated logic.

f For more information about memory inference control in other synthesis tools, refer to
the appropriate chapter in Synthesis in volume 1 of the Quartus II Handbook, or your
synthesis software’s documentation. For more information about coding styles and
HDL examples that ensure memory inference, refer to the Recommended HDL Coding
Styles chapter in volume 1 of the Quartus II Handbook.

Use Physical Synthesis Options to Reduce Area
The physical synthesis options for fitting help you decrease resource usage. When you
enable these options, the Quartus II software makes placement-specific changes to the
netlist that reduce resource utilization for a specific Altera device.

1 The compilation time might increase considerably when you use physical synthesis
options.

With the Quartus II software, you can apply physical synthesis options to specific
instances, which can reduce the impact on compilation time. Physical synthesis
instance assignments allow you to enable physical synthesis algorithms for specific
portions of your design.

The following physical synthesis optimizations for fitting are available:

■ Physical synthesis for combinational logic

■ Map logic into memory

h For more information, refer to Physical Synthesis Optimizations Page (Settings Dialog
Box) in Quartus II Help.

Retarget or Balance DSP Blocks
A design might not fit because it requires too many DSP blocks. You can implement
all DSP block functions with logic cells, so you can retarget some of the DSP blocks to
logic to obtain a fit.

If the DSP function was created with the MegaWizard Plug-In Manager, open the
MegaWizard Plug-In Manager and edit the function so it targets logic cells instead of
DSP blocks. The Quartus II software uses the DEDICATED_MULTIPLIER_CIRCUITRY
megafunction parameter to control the implementation.
Quartus II Handbook Version 13.1 May 2013 Altera Corporation
Volume 2: Design Implementation and Optimization

http://www.altera.com/literature/hb/qts/qts_qii5v1_03.pdf
http://www.altera.com/literature/hb/qts/qts_qii51007.pdf
http://www.altera.com/literature/hb/qts/qts_qii51007.pdf
http://quartushelp.altera.com/current/master.htm#mergedProjects/comp/comp/comp_tab_physical.htm
http://quartushelp.altera.com/current/master.htm#mergedProjects/comp/comp/comp_tab_physical.htm

Chapter 14: Area Optimization 14–9
Optimizing Resource Utilization (LUT-Based Devices)
DSP blocks also can be inferred from your HDL code for multipliers, multiply-adders,
and multiply-accumulators. You can turn off this inference in your synthesis tool.
When you are using Quartus II integrated synthesis, you can disable inference by
turning off the Auto DSP Block Replacement logic option for your entire project. On
the Assignments menu, click Settings. In the Category list, select Analysis &
Synthesis Settings, click More Settings, and turn off Auto DSP Block Replacement.
Alternatively, you can disable the option for a specific block with the Assignment
Editor.

f For more information about disabling DSP block inference in other synthesis tools,
refer to the appropriate chapter in Synthesis in volume 1 of the Quartus II Handbook, or
your synthesis software’s documentation.

The Quartus II software also offers the DSP Block Balancing logic option, which
implements DSP block elements in logic cells or in different DSP block modes. The
default Auto setting allows DSP block balancing to convert the DSP block slices
automatically as appropriate to minimize the area and maximize the speed of the
design. You can use other settings for a specific node or entity, or on a project-wide
basis, to control how the Quartus II software converts DSP functions into logic cells
and DSP blocks. Using any value other than Auto or Off overrides the
DEDICATED_MULTIPLIER_CIRCUITRY parameter used in megafunction variations.

h For more details about the Quartus II logic options described in this section, refer to
Auto DSP Block Replacement logic option and DSP Block Balancing logic option in
Quartus II Help.

Use a Larger Device
If a successful fit cannot be achieved because of a shortage of LEs, ALMs, memory, or
DSP blocks, you might require a larger device.

Routing
Use the suggestions in the following sections to help you resolve routing resource
problems.

Set Auto Packed Registers to Sparse or Sparse Auto
The Auto Packed Registers option reduces LE or ALM count in a design.You can set
this option in the Assignment Editor or by clicking More Settings on the Fitter
Settings page in the Settings dialog box.

h For more information, refer to Auto Packed Registers logic option in Quartus II Help.
May 2013 Altera Corporation Quartus II Handbook Version 13.1
Volume 2: Design Implementation and Optimization

http://www.altera.com/literature/hb/qts/qts_qii5v1_03.pdf
http://quartushelp.altera.com/current/master.htm#mergedProjects/logicops/logicops/def_auto_dsp_recognition.htm
http://quartushelp.altera.com/current/master.htm#mergedProjects/logicops/logicops/def_dsp_block_balancing_implementation.htm
http://quartushelp.altera.com/current/master.htm#mergedProjects/logicops/logicops/def_register_packing.htm

14–10 Chapter 14: Area Optimization
Optimizing Resource Utilization (LUT-Based Devices)
Set Fitter Aggressive Routability Optimizations to Always
The Fitter Aggressive Routability Optimization option is useful if your design does
not fit due to excessive routing wire utilization.

If there is a significant imbalance between placement and routing time (during the
first fitting attempt), it might be because of high wire utilization. Turning on the Fitter
Aggressive Routability Optimizations option can reduce your compilation time.

On average, this option can save up to 6% wire utilization, but can also reduce
performance by up to 4%, depending on the device.

h For more information, refer to Fitter Aggressive Routability Optimizations logic option in
Quartus II Help.

Increase Router Effort Multiplier
The Router Effort Multiplier controls how quickly the router tries to find a valid
solution. The default value is 1.0 and legal values must be greater than 0. Numbers
higher than 1 help designs that are difficult to route by increasing the routing effort.
Numbers closer to 0 (for example, 0.1) can reduce router runtime, but usually reduce
routing quality slightly. Experimental evidence shows that a multiplier of 3.0 reduces
overall wire usage by approximately 2%. Using a Router Effort Multiplier higher than
the default value could be beneficial for designs with complex datapaths with more
than five levels of logic. However, congestion in a design is primarily due to
placement, and increasing the Router Effort Multiplier does not necessarily reduce
congestion.

1 Any Router Effort Multiplier value greater than 4 only increases by 10% for every
additional 1. For example, a value of 10 is actually 4.6.

h For more information, refer to Router Effort Multiplier logic option in Quartus II Help.

Remove Fitter Constraints
A design with conflicting constraints or constraints that are difficult to achieve may
not fit the targeted device. Conflicting or difficult-to-achieve constraints can occur
when location or LogicLock assignments are too strict and there are not enough
routing resources.

In this case, use the Routing Congestion task in the Chip Planner to locate routing
problems in the floorplan, then remove all location and LogicLock region assignments
from that area. If the local constraints are removed, and the design still does not fit,
the design is over-constrained. To correct the problem, remove all location and
LogicLock assignments and run successive compilations, incrementally constraining
the design before each compilation. You can delete specific location assignments in
the Assignment Editor or the Chip Planner. To remove LogicLock assignments in the
Chip Planner, in the LogicLock Regions Window, or on the Assignments menu, click
Remove Assignments. Turn on the assignment categories you want to remove from
the design in the Available assignment categories list.
Quartus II Handbook Version 13.1 May 2013 Altera Corporation
Volume 2: Design Implementation and Optimization

http://quartushelp.altera.com/current/master.htm#mergedProjects/logicops/logicops/def_fitter_aggressive_routability_optimization.htm
http://quartushelp.altera.com/current/master.htm#mergedProjects/logicops/logicops/def_router_effort_multiplier.htm

Chapter 14: Area Optimization 14–11
Optimizing Resource Utilization (LUT-Based Devices)
f For more information about the Routing Congestion task in the Chip Planner, refer to
the Analyzing and Optimizing the Design Floorplan with the Chip Planner chapter in
volume 2 of the Quartus II Handbook. You can also refer to About the Chip Planner in
Quartus II Help.

Optimize Synthesis for Area, Not Speed
In some cases, resynthesizing the design to improve the area utilization can also
improve the routability of the design. First, ensure that you have set your device and
timing constraints correctly in your synthesis tool. Ensure that you do not
overconstrain the timing requirements for the design, particularly when the area
utilization of the design is a concern. Synthesis tools generally try to meet the
specified requirements, which can result in higher device resource usage if the
constraints are too aggressive.

If resource utilization is important to improve the routing results in your design, some
synthesis tools offer an easy way to optimize for area instead of speed. If you are
using Quartus II integrated synthesis, on the Assignments menu, click Settings. In the
Category list, select Analysis & Synthesis Settings and select Balanced or Area
under Optimization Technique.

You can also specify this logic option for specific modules in your design with the
Assignment Editor in cases where you want to reduce area using the Area setting
(potentially at the expense of register-to-register timing performance). You can apply
the setting to specific modules while leaving the default Optimization Technique
setting at Balanced (for the best trade-off between area and speed for certain device
families) or Speed. You can also use the Speed Optimization Technique for Clock
Domains logic option to specify that all combinational logic in or between the
specified clock domain(s) is optimized for speed.

1 In the Quartus II software, the Balanced setting typically produces utilization results
that are very similar to those obtained with the Area setting, with better performance
results. The Area setting can yield better results in some unusual cases.

In some synthesis tools, not specifying an fMAX requirement can result in less resource
utilization, which can improve routability.

f For information about setting the timing requirements and synthesis options in
Quartus II integrated synthesis and other synthesis tools, refer to the appropriate
chapter in Synthesis in volume 1 of the Quartus II Handbook, or your synthesis
software’s documentation.
May 2013 Altera Corporation Quartus II Handbook Version 13.1
Volume 2: Design Implementation and Optimization

http://www.altera.com/literature/hb/qts/qts_qii52006.pdf
http://quartushelp.altera.com/current/master.htm#mergedProjects/optimize/ace/acv_view_acv_overview.htm
http://www.altera.com/literature/hb/qts/qts_qii5v1_03.pdf

14–12 Chapter 14: Area Optimization
Optimizing Resource Utilization (Macrocell-Based CPLDs)
Optimize Source Code
If your design does not fit because of routing problems and the methods described in
the preceding sections do not sufficiently improve the routability of the design,
modify the design at the source to achieve the desired results. You can often improve
results significantly by making design-specific changes to your source code, such as
duplicating logic or changing the connections between blocks that require significant
routing resources.

Use a Larger Device
If a successful fit cannot be achieved because of a shortage of routing resources, you
might require a larger device.

Optimizing Resource Utilization (Macrocell-Based CPLDs)
The following recommendations help you take advantage of the macrocell-based
architecture in the MAX 7000 and MAX 3000 devices to yield maximum speed,
reliability, and device resource utilization while minimizing fitting difficulties.

After design analysis, the first stage of design optimization is to improve resource
utilization. Complete this stage before proceeding to timing optimization. First,
ensure that you have set the basic constraints described in “Initial Compilation:
Required Settings” section in the Design Optimization Overview chapter of the
Quartus II Handbook. If your design is not fitting into a specified device, use the
techniques in this section to achieve a successful fit.

Use Dedicated Inputs for Global Control Signals
MAX 7000 and MAX 3000 devices have four dedicated inputs that you can use for
global register control. Because the global register control signals can bypass the logic
cell array and directly feed registers, product terms can be preserved for primary
logic. Also, because each signal has a dedicated path into the LAB, global signals also
can bypass logic and data path interconnect resources.

Because the dedicated input pins are designed for high fan-out control signals and
provide low skew, always assign global signals (such as clock, clear, and output
enable) to the dedicated input pins.

You can use logic-generated control signals for global control signals instead of
dedicated inputs. However, the following list shows the disadvantages of using
logic-generated control signals:

■ More resources are required (logic cells, interconnect).

■ More data skew is introduced.

■ If the logic-generated control signals have high fan-out, the design can be more
difficult to fit.

By default, the Quartus II software uses dedicated inputs for global control signals
automatically. You can assign control signals to dedicated input pins in one of the
following ways:
Quartus II Handbook Version 13.1 May 2013 Altera Corporation
Volume 2: Design Implementation and Optimization

http://www.altera.com/literature/hb/qts/qts_qii52021.pdf

Chapter 14: Area Optimization 14–13
Optimizing Resource Utilization (Macrocell-Based CPLDs)
■ In the Assignment Editor, select one of the two following methods:

■ Assign pins to dedicated pin locations.

■ Assign a Global Signal setting to the pins.

■ On the Assignments menu, click Settings. On the Analysis & Synthesis Settings
page, click More Settings, and in the Existing Option settings section, select Auto
Global Register Control Signals.

■ Insert a GLOBAL primitive after the pins.

Reserve Device Resources
Because pin and logic option assignments can be necessary for board layout and
performance requirements, and because full utilization of the device resources can
increase the difficulty of fitting the design, Altera recommends leaving 10% of the
logic cells and 5% of the I/O pins unused to accommodate future design
modifications. Following the Altera-recommended device resource reservation
guidelines for macrocell-based CPLDs increases the chance that the Quartus II
software can fit the design during recompilation after changes or assignments have
been made.

Pin Assignment Guidelines and Procedures
Sometimes user-specified pin assignments are necessary for board layout. This section
describes pin assignment guidelines and procedures.

To minimize fitting issues with pin assignments, follow these guidelines:

■ Assign speed-critical control signals to dedicated inputs.

■ Assign output enables (OE) pin to appropriate locations.

■ Estimate fan-in to assign output pins to the appropriate LAB.

■ Assign output pins that require parallel expanders to macrocells numbered 4 to 16.

1 Altera recommends allowing the Quartus II software to select pin assignments
automatically when possible. You can use the Quartus II Pin Advisor feature
(accessible from the Tools menu) for pin connection guidelines.

h For more information about the Pin Advisor, refer to Pin Advisor Command (Tools
Menu) in Quartus II Help.

Control Signal Pin Assignments
Assign speed-critical control signals to dedicated input pins. Every MAX 7000 and
MAX 3000 device has four dedicated input pins (GCLK1, OE2/GCLK2, OE1, and GCLRn).
You can assign clocks to global clock dedicated inputs (GCLK1 and OE2/GCLK2), assign
clear signals to the global clear dedicated input (GCLRn), and speed-critical OE signals
to global OE dedicated inputs (OE1 and OE2/GCLK2).

Output Enable Pin Assignments
Occasionally, because the total number of required output enable pins is more than
the dedicated input pins, output enable signals must be assigned to I/O pins.
May 2013 Altera Corporation Quartus II Handbook Version 13.1
Volume 2: Design Implementation and Optimization

http://quartushelp.altera.com/current/master.htm#mergedProjects/report/oaw/oaw_com_pin_advisor.htm
http://quartushelp.altera.com/current/master.htm#mergedProjects/report/oaw/oaw_com_pin_advisor.htm

14–14 Chapter 14: Area Optimization
Optimizing Resource Utilization (Macrocell-Based CPLDs)
f To minimize possible fitting errors when assigning the output enable pins for
MAX 7000 and MAX 3000 devices, refer to Pin-Out Files for Altera Devices on the
Altera website (www.altera.com).

Estimate Fan-In When Assigning Output Pins
Macrocells with high fan-in can cause more placement problems for the Quartus II
Fitter than those with low fan-in. The maximum fan-in per LAB should not exceed 36
in MAX 7000 and MAX 3000 devices. Therefore, estimate the fan-in of logic (such as
an x-input AND gate) that feeds each output pin. If the total fan-in of logic that feeds
each output pin in the same LAB exceeds 36, compilation can fail. To save resources
and prevent compilation errors, avoid assigning pins that have high fan-in.

Outputs Using Parallel Expander Pin Assignments
Figure 14–1 shows how parallel expanders are used within a LAB. MAX 7000 and
MAX 3000 devices contain chains that can lend or borrow parallel expanders. The
Quartus II Fitter places macrocells in a location that allows them to lend and borrow
parallel expanders appropriately.

As shown in Figure 14–1, only macrocells 2 through 16 can borrow parallel expanders.
Therefore, assign output pins that might require parallel expanders to pins adjacent to
macrocells 4 through 16. Altera recommends using macrocells 4 through 16 because
they can borrow the largest number of parallel expanders.

Figure 14–1. LAB Macrocells and Parallel Expander Associations

Macrocell 1

Macrocell 2

Macrocell 3

Macrocell 4

Macrocell 5

Macrocell 6

Macrocell 7

Macrocell 8

Macrocell 9

Macrocell 10

Macrocell 11

Macrocell 12

Macrocell 13

Macrocell 14

Macrocell 15

Macrocell 16

Macrocells 4 through 16 borrow
up to 15 parallel expanders from the
three immediately preceding macrocells.

Macrocell 2 borrows up to five parallel
expanders from Macrocell 1.

Macrocell 1 cannot borrow
any parallel expanders.

Macrocell 3 borrows up to ten
parallel expanders from

Macrocells 1 and 2.

LAB A
Quartus II Handbook Version 13.1 May 2013 Altera Corporation
Volume 2: Design Implementation and Optimization

http://www.altera.com/literature/lit-dp.jsp
http://www.altera.com

Chapter 14: Area Optimization 14–15
Optimizing Resource Utilization (Macrocell-Based CPLDs)
Resolving Resource Utilization Problems
Excessive macrocell usage and lack of routing resources can cause resource utilization
problems. Macrocell usage errors occur when the total number of macrocells in the
design exceed the available macrocells in the device. Routing errors occur when the
available routing resources are insufficient to implement the design. Check the
Message window for the compilation results.

1 Messages in the Messages window are also copied in the Report Files. For more
information about the message, right-click a message and click Help.

Resolving Macrocell Usage Issues
Occasionally, a design requires more macrocell resources than are available in the
selected device, which results in the design not fitting. The following list provides tips
for resolving macrocell usage issues as well as tips to minimize the number of
macrocells used:

■ On the Assignments menu, click Settings. In the Category list, select Analysis &
Synthesis Settings, click More Settings, and turn off Auto Parallel Expanders. If
the design’s clock frequency (fMAX) is not an important design requirement, turn
off parallel expanders for all or part of the project. The design usually requires
more macrocells if parallel expanders are turned on.

■ Change Optimization Technique from Speed to Area. Selecting Area instructs the
compiler to give preference to area utilization rather than speed (fMAX). On the
Assignments menu, click Settings. In the Category list, change the Optimization
Technique option in the Analysis & Synthesis Settings page.

■ Use D-type flipflops instead of latches. Altera recommends always using D-type
flipflops instead of latches in your design because D-type flipflops can reduce the
macrocell fan-in, and thus reduce macrocell usage. The Quartus II software uses
extra logic to implement latches in MAX 7000 and MAX 3000 designs because
MAX 7000 and MAX 3000 macrocells contain D-type flipflops instead of latches.

■ Use asynchronous clear and preset instead of synchronous clear and preset. To
reduce product term usage, use asynchronous clear and preset in your design
whenever possible. Using other control signals such as synchronous clear
produces macrocells and pins with higher fan-out.

1 After following the suggestions in this section, if your project still does not fit the
targeted device, consider using a larger device. When upgrading to a different
density, the vertical package-migration feature of the MAX 7000 and MAX 3000
device families allows pin assignments to be maintained.
May 2013 Altera Corporation Quartus II Handbook Version 13.1
Volume 2: Design Implementation and Optimization

14–16 Chapter 14: Area Optimization
Optimizing Resource Utilization (Macrocell-Based CPLDs)
Resolving Routing Issues
Routing is another resource that can cause design fitting issues. For example, if the
total fan-in into a LAB exceeds the maximum allowed, a no-fit error can occur during
compilation. If your design does not fit the targeted device because of routing issues,
consider the following suggestions:

■ Use dedicated inputs/global signals for high fan-out signals. The dedicated inputs
in MAX 7000 and MAX 3000 devices are designed for speed-critical and high
fan-out signals. Always assign high fan-out signals to dedicated inputs/global
signals.

■ Change the Optimization Technique option from Speed to Area. This option can
resolve routing resource and macrocell usage issues. Refer to “Resolving Macrocell
Usage Issues” on page 14–15.

■ Reduce the fan-in per cell. If you are not limited by the number of macrocells used
in the design, you can use the Fan-in per cell (%) option to reduce the fan-in per
cell. The allowable values are 20–100%; the default value is 100%. Reducing fan-in
can reduce localized routing congestion but increase the macrocell count. You can
set this logic option in the Assignment Editor or under More Settings in the
Analysis & Synthesis Settings page of the Settings dialog box.

■ On the Assignments menu, click Settings. In the Category list, select Analysis &
Synthesis Settings, click More Options, and turn off Auto Parallel Expanders. By
turning off the parallel expanders, you give the Quartus II software more fitting
flexibility for each macrocell, allowing macrocells to be relocated. For example,
you can move each macrocell (previously grouped together in the same LAB) to a
different LAB to reduce routing constraints.

■ Insert logic cells. Inserting logic cells reduces fan-in and shared expanders used
per macrocell, increasing routability. By default, the Quartus II software
automatically inserts logic cells when necessary. Otherwise, you can disable Auto
Logic Cell as follows:

1. On the Assignments menu, click Settings.

2. In the Category list, select Analysis & Synthesis Settings.

3. Under More Settings, turn off Auto Logic Cell Insertion. For more information,
refer to “Using LCELL Buffers to Reduce Required Resources”.

■ Change pin assignments. If you want to discard your pin assignments, you can let
the Quartus II Fitter ignore some or all of the assignments.

1 If you prefer reassigning pins to increase routing efficiency, refer to “Pin
Assignment Guidelines and Procedures” on page 14–13.

Using LCELL Buffers to Reduce Required Resources
Complex logic, such as multilevel XOR gates, are often implemented with more than
one macrocell. When this occurs, the Quartus II software automatically allocates
shareable expanders—or additional macrocells (called synthesized logic cells)—to
supplement the logic resources that are available in a single macrocell. You can also
break down complex logic by inserting logic cells in the project to reduce the average
fan-in and the total number of shareable expanders required. Manually inserting logic
cells can provide greater control over speed-critical paths.
Quartus II Handbook Version 13.1 May 2013 Altera Corporation
Volume 2: Design Implementation and Optimization

Chapter 14: Area Optimization 14–17
Scripting Support
Instead of using the Auto Logic Cell Insertion option, you can manually insert logic
cells. However, Altera recommends using the Auto Logic Cell Insertion option unless
you know which part of the design is causing the congestion.

A good location to manually insert LCELL buffers is where a single complex logic
expression feeds multiple destinations in your design. You can insert an LCELL buffer
just after the complex expression; the Fitter extracts this complex expression and
places it in a separate logic cell. Rather than duplicate all the logic for each
destination, the Quartus II software feeds the single output from the logic cell to all
destinations.

To reduce fan-in and prevent no-fit compilations caused by routing resource issues,
insert an LCELL buffer after a NOR gate (Figure 14–2). The design in Figure 14–2 was
compiled for a MAX 7000AE device. Without the LCELL buffer, the design requires
two macrocells and eight shareable expanders, and the average fan-in is 14.5
macrocells. However, with the LCELL buffer, the design requires three macrocells and
eight shareable expanders, and the average fan-in is just 6.33 macrocells.

Scripting Support
You can run procedures and make settings described in this chapter in a Tcl script.
You can also run some procedures at a command prompt. For detailed information
about scripting command options, refer to the Quartus II command-line and Tcl API
Help browser. To run the Help browser, type the following command at the command
prompt:

quartus_sh --qhelp r

Figure 14–2. Reducing the Average Fan-In by Inserting LCELL Buffers
May 2013 Altera Corporation Quartus II Handbook Version 13.1
Volume 2: Design Implementation and Optimization

14–18 Chapter 14: Area Optimization
Scripting Support
f For more information about Tcl scripting, refer to the Tcl Scripting chapter in volume 2
of the Quartus II Handbook. For more information about all settings and constraints in
the Quartus II software, refer to the Quartus II Settings File Manual. For more
information about command-line scripting, refer to the Command-Line Scripting
chapter in volume 2 of the Quartus II Handbook.

You can specify many of the options described in this section either in an instance, or
at a global level, or both.

Use the following Tcl command to make a global assignment:

set_global_assignment -name <.qsf variable name> <value> r
Use the following Tcl command to make an instance assignment:

set_instance_assignment -name <.qsf variable name> <value> \
-to <instance name> r

1 If the <value> field includes spaces (for example, ‘Standard Fit’), you must enclose the
value in straight double quotation marks.

Initial Compilation Settings
Use the Quartus II Settings File (.qsf) variable name in the Tcl assignment to make the
setting along with the appropriate value. The Type column indicates whether the
setting is supported as a global setting, an instance setting, or both.

Table 14–1 lists the advanced compilation settings.

Resource Utilization Optimization Techniques (LUT-Based Devices)
Table 14–2 lists the .qsf file variable name and applicable values for the settings
described in “Optimizing Resource Utilization (LUT-Based Devices)” on page 14–2.

Table 14–1. Advanced Compilation Settings

Setting Name .qsf File Variable Name Values Type

Placement Effort
Multiplier PLACEMENT_EFFORT_MULTIPLIER Any positive, non-zero value Global

Router Effort
Multiplier ROUTER_EFFORT_MULTIPLIER Any positive, non-zero value Global

Router Timing
Optimization level ROUTER_TIMING_OPTIMIZATION_LEVEL NORMAL, MINIMUM, MAXIMUM Global

Final Placement
Optimization FINAL_PLACEMENT_OPTIMIZATION ALWAYS, AUTOMATICALLY, NEVER Global

Table 14–2. Resource Utilization Optimization Settings (Part 1 of 2)

Setting Name .qsf File Variable Name Values Type

Auto Packed
Registers (1) AUTO_PACKED_REGISTERS_<device family name>

OFF, NORMAL, MINIMIZE
AREA, MINIMIZE AREA
WITH CHAINS, AUTO

Global,
Instance

Perform WYSIWYG
Primitive
Resynthesis

ADV_NETLIST_OPT_SYNTH_WYSIWYG_REMAP ON, OFF Global,
Instance
Quartus II Handbook Version 13.1 May 2013 Altera Corporation
Volume 2: Design Implementation and Optimization

http://www.altera.com/literature/hb/qts/qts_qii52003.pdf
http://www.altera.com/literature/manual/mnl_qsf_reference.pdf
http://www.altera.com/literature/hb/qts/qts_qii52002.pdf

Chapter 14: Area Optimization 14–19
Document Revision History
Document Revision History
Table 14–3 lists the revision history for this document.

Physical Synthesis
for Combinational
Logic for Reducing
Area

PHYSICAL_SYNTHESIS_COMBO_LOGIC_FOR_AREA ON, OFF
Global,
Instance

Physical Synthesis
for Mapping Logic
to Memory

PHYSICAL_SYNTHESIS_MAP_LOGIC_TO_MEMORY_FOR AREA ON, OFF
Global,
Instance

Optimization
Technique <device family name>_OPTIMIZATION_TECHNIQUE AREA, SPEED, BALANCED Global,

Instance

Speed Optimization
Technique for Clock
Domains

SYNTH_CRITICAL_CLOCK ON, OFF Instance

State Machine
Encoding STATE_MACHINE_PROCESSING

AUTO, ONE-HOT, GRAY,
JOHNSON, MINIMAL
BITS, ONE-HOT,
SEQUENTIAL,
USER-ENCODE

Global,
Instance

Auto RAM
Replacement AUTO_RAM_RECOGNITION ON, OFF Global,

Instance

Auto ROM
Replacement AUTO_ROM_RECOGNITION ON, OFF Global,

Instance

Auto Shift Register
Replacement AUTO_SHIFT_REGISTER_RECOGNITION ON, OFF Global,

Instance

Auto Block
Replacement AUTO_DSP_RECOGNITION ON, OFF Global,

Instance

Number of
Processors for
Parallel Compilation

NUM_PARALLEL_PROCESSORS
Integer between 1 and 16
inclusive, or ALL Global

Note to Table 14–2:

(1) Allowed values for this setting depend on the device family that you select.

Table 14–2. Resource Utilization Optimization Settings (Part 2 of 2)

Setting Name .qsf File Variable Name Values Type

Table 14–3. Document Revision History

Date Version Changes

May 2013 13.0.0 Initial release.
May 2013 Altera Corporation Quartus II Handbook Version 13.1
Volume 2: Design Implementation and Optimization

QII52006-13.1.0

© 2013 Altera Corporation. All rights reserved. ALTERA, ARRI
are trademarks of Altera Corporation and registered in the U.S
trademarks or service marks are the property of their respectiv
semiconductor products to current specifications in accordance
services at any time without notice. Altera assumes no respons
described herein except as expressly agreed to in writing by Al
on any published information and before placing orders for pr

Quartus II Handbook Version 13.1
Volume 2: Design Implementation and Optimization
November 2013

November 2013
QII52006-13.1.0
15. Analyzing and Optimizing the Design
Floorplan with the Chip Planner
As FPGA designs grow larger in density, the ability to analyze the design for
performance, routing congestion, and logic placement to meet the design
requirements becomes critical. This chapter discusses how to analyze the design
floorplan with the Chip Planner.

Design floorplan analysis is a valuable method for achieving timing closure and
optimal performance in highly complex designs. With analysis capability, the
Quartus II Chip Planner helps you close timing quickly on your designs. Using the
Chip Planner together with LogicLock and Incremental Compilation enables you to
compile your designs hierarchically, preserving the timing results from individual
compilation runs. You can use LogicLock regions as part of an incremental
compilation methodology to improve your productivity.

You can perform design analysis, as well as creating and optimizing the design
floorplan with the Chip Planner. To make I/O assignments, use the Pin Planner.

f For information about the Pin Planner, refer to the I/O Management chapter in
volume 2 of the Quartus II Handbook.

f You can use the Design Partition Planner with the Chip Planner to customize the
floorplan of your design. For more information, refer to the Quartus II Incremental
Compilation for Hierarchical and Team-Based Design and the Best Practices for Incremental
Compilation Partitions and Floorplan Assignments chapters in volume 1 of the Quartus II
Handbook.

This chapter includes the following topics:

■ “Chip Planner Overview”

■ “LogicLock Regions” on page 15–3

■ “Using LogicLock Regions in the Chip Planner” on page 15–11

■ “Design Floorplan Analysis Using the Chip Planner” on page 15–12

■ “Scripting Support” on page 15–21

h For a list of devices supported by the Chip Planner, refer to About the Chip Planner in
Quartus II Help.

f For more information about the Chip Planner, refer to the Altera Training page of the
Altera website.
A, CYCLONE, HARDCOPY, MAX, MEGACORE, NIOS, QUARTUS and STRATIX words and logos
. Patent and Trademark Office and in other countries. All other words and logos identified as
e holders as described at www.altera.com/common/legal.html. Altera warrants performance of its
 with Altera's standard warranty, but reserves the right to make changes to any products and
ibility or liability arising out of the application or use of any information, product, or service
tera. Altera customers are advised to obtain the latest version of device specifications before relying
oducts or services.

Feedback SubscribeTwitter

ISO
9001:2008
Registered

http://www.altera.com/education/training/trn-index.jsp
https://www.altera.com/servlets/subscriptions/alert?id=QII52006
http://quartushelp.altera.com/current/master.htm#mergedProjects/optimize/ace/acv_view_acv_overview.htm
http://www.altera.com/literature/hb/qts/qts_qii52013.pdf
mailto:TechDocFeedback@altera.com?subject=Feedback on qts_qii52006-13.1
http://www.altera.com/common/legal.html
http://twitter.com/home/?status=Analyzing+and+Optimizing+the+Design+Floorplan+http://www.altera.com/literature/hb/qts/qts_qii52006.pdf?WT.mc_id=gc_so_tw_st_tx_a_011+(via @alteracorp)+%23Altera
http://www.altera.com/support/reliability/certifications/rel-certifications.html
http://www.altera.com/support/reliability/certifications/rel-certifications.html
http://www.altera.com/literature/hb/qts/qts_qii51017.pdf
http://www.altera.com/literature/hb/qts/qts_qii51017.pdf
http://www.altera.com/literature/hb/qts/qts_qii51015.pdf
http://www.altera.com/literature/hb/qts/qts_qii51015.pdf

15–2 Chapter 15: Analyzing and Optimizing the Design Floorplan with the Chip Planner
Chip Planner Overview
Chip Planner Overview
The Chip Planner provides a visual display of chip resources. The Chip Planner can
show logic placement, LogicLock regions, relative resource usage, detailed routing
information, fan-in and fan-out connections between nodes, timing paths between
registers, delay estimates for paths, and routing congestion information.

You can also make assignment changes with the Chip Planner, such as creating and
deleting resource assignments, and you can perform post-compilation changes such
as creating, moving, and deleting logic cells and I/O atoms. With the Chip Planner,
you can view and create assignments for a design floorplan, perform power and
design analyses, and implement ECOs. With the Chip Planner and Resource Property
Editor, you can change connections between resources and make post-compilation
changes to the properties of logic cells, I/O elements, PLLs, and RAM and digital
signal processing (DSP) blocks.

f For details about how to implement ECOs in your design using the Chip Planner in
the Quartus II software, refer to the Engineering Change Management with the Chip
Planner chapter in volume 2 of the Quartus II Handbook.

Starting the Chip Planner
To start the Chip Planner, on the Tools menu, click Chip Planner (Floorplan & Chip
Editor). You can also start the Chip Planner by the following methods:

■ Click the Chip Planner icon on the Quartus II software toolbar

■ On the Shortcut menu in the following tools, click Locate and then click Locate in
Chip Planner (Floorplan and Chip Editor):

■ Design Partition Planner

■ Compilation Report

■ LogicLock Regions window

■ Technology Map Viewer

■ Project Navigator window

■ RTL source code

■ Node Finder

■ Simulation Report

■ RTL Viewer

■ Report Timing panel of the TimeQuest Timing Analyzer

Chip Planner Toolbar
The Chip Planner provides powerful tools for design analysis with a GUI. You can
access Chip Planner commands from the View menu and the Shortcut menu, or by
clicking the icons on the toolbar.
Quartus II Handbook Version 13.1 November 2013 Altera Corporation
Volume 2: Design Implementation and Optimization

http://www.altera.com/literature/hb/qts/qts_qii52017.pdf
http://www.altera.com/literature/hb/qts/qts_qii52017.pdf

Chapter 15: Analyzing and Optimizing the Design Floorplan with the Chip Planner 15–3
LogicLock Regions
Chip Planner Presets, Layers, and Editing Modes
The Chip Planner models types of resource objects as unique display layers, and uses
presets— which are predefined sets of layer settings—to control the display of
resources. The Chip Planner provides a set of default presets, and you can create
custom presets to customize the display for your particular needs. The Basic, Detailed,
and Floorplan Editing presets provided with the Chip Planner are useful for general
ECO and assignment-related activities, while the Design Partition Planner preset is
optimized for specific activities.

The Chip Planner has two editing modes, which determine the types of operations
that you can perform. The Assignment editing mode allows you to make assignment
changes that are applied by the Fitter during the next place and route operation. The
ECO editing mode allows you to make post-compilation changes, commonly referred
to as engineering change orders (ECOs).

You should choose the editing mode appropriate for the work that you want to
perform, and a preset that displays the resources that you want to view, in a level of
detail appropriate for your design.

Locate History Window
As you optimize your design floorplan, you might have to locate a path or node in the
Chip Planner many times. The Locate History window lists all the nodes and paths
you have displayed using a Locate in Chip Planner (Floorplan and Chip Editor)
command, providing easy access to the nodes and paths of interest to you. If you
locate a required path from the TimeQuest Timing Analyzer Report Timing pane, the
Locate History window displays the required clock path. If you locate an arrival path
from the TimeQuest Timing Analyzer Report Timing pane, the Locate History
window displays the path from the arrival clock to the arrival data. Double-clicking a
node or path in the Locate History window displays the selected node or path in the
Chip Planner.

f For more information about the Chip Planner, refer to About the Chip Planner and
Layers Settings Dialog Box in Quartus II Help. For more information about the ECO
editing mode, refer to the Engineering Change Management with the Chip Planner
chapter in volume 2 of the Quartus II Handbook.

LogicLock Regions
LogicLock regions are floorplan location constraints that help you place logic on the
target device. When you assign entity instances or nodes to a LogicLock region, you
direct the Fitter to place those entity instances or nodes within the region during
fitting. Your floorplan can contain several LogicLock regions.
November 2013 Altera Corporation Quartus II Handbook Version 13.1
Volume 2: Design Implementation and Optimization

http://quartushelp.altera.com/current/master.htm#mergedProjects/optimize/ace/acv_view_acv_overview.htm
http://quartushelp.altera.com/current/master.htm#mergedProjects/optimize/ace/acv_db_layers_settings.htm
http://www.altera.com/literature/hb/qts/qts_qii52017.pdf

15–4 Chapter 15: Analyzing and Optimizing the Design Floorplan with the Chip Planner
LogicLock Regions
A LogicLock region is defined by its height, width, and location; you can specify the
size or location of a region, or both, or the Quartus II software can generate these
properties automatically. The Quartus II software bases the size and location of a
region on the contents of the region and the timing requirements of the module.
Table 15–1 describes the options for creating LogicLock regions.

1 The Quartus II software cannot automatically define the size of a region if the location
is locked. Therefore, if you want to specify the exact location of the region, you must
also specify the size.

f You can use the Design Partition Planner in conjunction with LogicLock regions to
create a floorplan for your design. For more information about using the Design
Partition Planner, refer to the Quartus II Incremental Compilation for Hierarchical and
Team-Based Designs and the Best Practices for Incremental Compilation Partition and
Floorplan Assignments chapters in volume 1 of the Quartus II Handbook.

Creating LogicLock Regions
You can create LogicLock Regions with the Project Navigator, the LogicLock Regions
window, the Design Partition Planner, the Chip Planner, and with Tcl commands.

Creating LogicLock Regions with the Project Navigator
After you perform either a full compilation or analysis and elaboration on the design,
the Quartus II software displays the hierarchy of the design. On the View menu,
Utility Windows, then Project Navigator. With the hierarchy of the design fully
expanded, right-click on any design entity in the design, and click Create New
LogicLock Region to create a LogicLock region and assign the entity to the new
region.

Table 15–1. Types of LogicLock Regions

Property Value Behavior

State Floating (1),
Locked

Floating allows the Quartus II software to determine the location of the region on the device.
Floating regions are shown with a dashed boundary in the floorplan. Locked allows you to
specify the location of the region. Locked regions are shown with a solid boundary in the
floorplan. A locked region must have a fixed size.

Size Auto (1),
Fixed

Auto allows the Quartus II software to determine the appropriate size of a region given its
contents. Fixed regions have a shape and size that you define.

Reserved Off (1),
On

Allows you to define whether the Fitter can use the resources within a region for entities that are
not assigned to the region. If the reserved property is turned on, only items assigned to the
region can be placed within its boundaries.

Origin
Any
Floorplan
Location

Specifies the location of the LogicLock region on the floorplan. For Arria series, Stratix series,
Cyclone series, MAX II, and MAX V devices, the origin is located at the lower left corner of the
LogicLock region. For other Altera® device families, the origin is located at the upper left corner
of the LogicLock region.

Note to Table 15–1:

(1) Default value.
Quartus II Handbook Version 13.1 November 2013 Altera Corporation
Volume 2: Design Implementation and Optimization

http://www.altera.com/literature/hb/qts/qts_qii51015.pdf
http://www.altera.com/literature/hb/qts/qts_qii51015.pdf
http://www.altera.com/literature/hb/qts/qts_qii51017.pdf
http://www.altera.com/literature/hb/qts/qts_qii51017.pdf

Chapter 15: Analyzing and Optimizing the Design Floorplan with the Chip Planner 15–5
LogicLock Regions
Creating LogicLock Regions with the LogicLock Regions window
To create a LogicLock region with the LogicLock Regions window, on the
Assignments menu, click LogicLock Regions Window. In the LogicLock Regions
window, click <<new>>.

Creating LogicLock Regions with the Design Partition Planner
To create a LogicLock region and assign a partition to it with the Design Partition
Planner, right-click the partition and then click Create LogicLock Region.

Creating LogicLock Regions with the Chip Planner
To create a LogicLock region in the Chip Planner, click LogicLock Regions then
Create LogicLock Region command on the View menu, then click and drag on the
Chip Planner floorplan to create a region of your preferred location and size.

Creating Nonrectangular LogicLock Regions
When you create a floorplan for your design, you may want to create nonrectangular
LogicLock regions to exclude certain resources from the LogicLock region. You might
also create a nonrectangular LogicLock region to place certain parts of your design
around specific device resources to improve performance.

To create a nonrectangular region with the Merge LogicLock Region command,
follow these steps:

1. In the Chip Planner, create two or more contiguous or non-contiguous rectangular
regions as described in “Creating LogicLock Regions” on page 15–4.

2. Arrange the regions that you have created into the locations where you want the
nonrectangular region to be.

3. Select all the individual regions that you want to merge by clicking each of them
while pressing the Shift key.

4. Right-click the title bar of any of the LogicLock regions that you want to merge,
point to LogicLock Regions, and then click Merge LogicLock Region. The
individual regions that you select merge to create a single new region.

By default, the new LogicLock region has the same name as the component region
containing the greatest number of resources; however, you can rename the new
region. In the LogicLock Regions Window, the new region is shown as having a
Custom Shape.
November 2013 Altera Corporation Quartus II Handbook Version 13.1
Volume 2: Design Implementation and Optimization

15–6 Chapter 15: Analyzing and Optimizing the Design Floorplan with the Chip Planner
LogicLock Regions
Figure 15–1 illustrates using the Merge LogicLock Region command to form a
nonrectangular LogicLock region by merging two rectangular LogicLock regions.

Hierarchical (Parent and Child) LogicLock Regions
To further constrain module locations, you can define a hierarchy for a group of
regions by declaring parent and child regions. The Quartus II software places a child
region completely within the boundaries of its parent region; a child region must be
placed entirely within the boundary of its parent. Additionally, parent and child
regions allow you to further improve the performance of a module by constraining
nodes in the critical path of a module.

To make one LogicLock region a child of another LogicLock region, in the LogicLock
Regions window, select the new child region and drag and drop the new child region
into its new parent region.

1 The LogicLock region hierarchy does not have to be the same as the design hierarchy.

You can create both auto-sized and fixed-sized LogicLock regions within a parent
LogicLock region; however, the parent of a fixed-sized child region must also be
fixed-sized. The location of a locked parent region is locked relative to the device; the
location of a locked child region is locked relative to its parent region. If you change
the parent’s location, the locked child’s origin changes, but maintains the same
placement relative to the origin of its parent. The location of a floating child region can
float within its parent. Complex region hierarchies might result in some LABs not
being used, effectively increasing the resource utilization in the device. Do not create
more levels of hierarchy than you need.

Figure 15–1. Using the Merge LogicLock Region command to create a nonrectangular region
Quartus II Handbook Version 13.1 November 2013 Altera Corporation
Volume 2: Design Implementation and Optimization

Chapter 15: Analyzing and Optimizing the Design Floorplan with the Chip Planner 15–7
LogicLock Regions
Placing LogicLock Regions
A fixed region must contain all resources required by the design block assigned to the
region. Although the Quartus II software can automatically place and size LogicLock
regions to meet resource and timing requirements, you can manually place and size
regions to meet your design requirements. You should consider the following if you
manually place or size a LogicLock region:

■ LogicLock regions with pin assignments must be placed on the periphery of the
device, adjacent to the pins. For the Arria series, Cyclone series, MAX II, MAX V,
and Stratix series of devices, you must also include the I/O block within the
LogicLock Region.

■ Floating LogicLock regions can overlap with their ancestors or descendants, but
not with other floating LogicLock regions.

Placing Device Resources into LogicLock Regions
A LogicLock region includes all device resources within its boundaries, including
memory and pins. The Quartus II software does not include pins automatically when
you assign an entity to a region—you can manually assign pins to LogicLock regions;
however, this placement puts location constraints on the region. The software only
obeys pin assignments to locked regions that border the periphery of the device. For
the Arria series, Cyclone series, MAX II, MAX V, and Stratix series of devices, the
locked regions must include the I/O pins as resources.

1 Pin assignments to LogicLock regions are effective only in fixed and locked regions.
Pin assignments to floating regions do not influence the placement of the region.

Only one LogicLock region can claim a device resource. If a LogicLock region
boundary includes part of a device resource, the Quartus II software allocates the
entire resource to that LogicLock region. When the Quartus II software places a
floating auto-sized region, it places the region in an area that meets the requirements
of the contents of the LogicLock region.

1 If you want to import multiple instances of a module into a top-level design, you must
ensure that the device has two or more locations with exactly the same device
resources. (You can determine this from the applicable device handbook.) If the device
does not have another area with exactly the same resources, the Quartus II software
generates a fitting error during compilation of the top-level design.
November 2013 Altera Corporation Quartus II Handbook Version 13.1
Volume 2: Design Implementation and Optimization

15–8 Chapter 15: Analyzing and Optimizing the Design Floorplan with the Chip Planner
LogicLock Regions
LogicLock Regions Window
You can use the LogicLock Regions window to create LogicLock regions, assign nodes
and entities to them, and modify the properties of a LogicLock region such as size,
state, width, height, origin, and whether the region is a reserved region. The
LogicLock Regions window also has a recommendations toolbar; select a LogicLock
region from the drop-down list in the recommendations toolbar to display the
relevant suggestions to optimize that LogicLock region. You can customize the
LogicLock Regions window by dragging and dropping the columns to change their
order; you can also show and hide optional columns by right-clicking any column
heading and then selecting the appropriate columns in the shortcut menu.

The LogicLock Region Properties dialog box provides a summary of all LogicLock
regions in your design. Use the LogicLock Region Properties dialog box to obtain
detailed information about your LogicLock region, such as which entities and nodes
are assigned to your region and which resources are required. The LogicLock Region
Properties dialog box shows the properties of the current selected regions and allows
you to modify them. To open the LogicLock Region Properties dialog box,
double-click any region in the LogicLock Regions window, or right-click the region
and click Properties.

1 For designs that target Arria series, Cyclone series, Stratix series, MAX II, and MAX V
devices, the Quartus II software automatically creates a LogicLock region that
encompasses the entire device. This default region is labelled Root_Region, and is
locked and fixed.

1 For Arria series, Cyclone series, Stratix series, MAX II, and MAX V devices, the origin
of the LogicLock region is located at the lower-left corner of the region. For all other
supported devices, the origin is located at the upper-left corner of the region.

Figure 15–2. LogicLock Regions Window
Quartus II Handbook Version 13.1 November 2013 Altera Corporation
Volume 2: Design Implementation and Optimization

Chapter 15: Analyzing and Optimizing the Design Floorplan with the Chip Planner 15–9
LogicLock Regions
Reserved LogicLock Region
The Quartus II software honors all entity and node assignments to LogicLock regions.
Occasionally, entities and nodes do not occupy an entire region, which leaves some of
the region’s resources unoccupied. To increase the region’s resource utilization and
performance, the Quartus II software’s default behavior fills the unoccupied resources
with other nodes and entities that have not been assigned to another region. You can
prevent this behavior by turning on Reserved on the General tab of the LogicLock
Region Properties dialog box. When you turn on this option, your LogicLock region
contains only the entities and nodes that you specifically assigned to your LogicLock
region.

Excluded Resources
The Excluded Resources feature allows you to easily exclude specific device resources
such as DSP blocks or M4K memory blocks from a LogicLock region. For example,
you can assign a specific entity to a LogicLock region but allow the DSP blocks of that
entity to be placed anywhere on the device. Use the Excluded Resources feature on a
per-LogicLock region member basis.

To exclude certain device resources from an entity, in the LogicLock Region
Properties dialog box, highlight the entity in the Design Element column, and click
Edit. In the Edit Node dialog box, under Excluded Element Types, click the Browse
button. In the Excluded Resources Element Types dialog box, you can select the
device resources you want to exclude from the entity. When you have selected the
resources to exclude, the Excluded Resources column is updated in the LogicLock
Region Properties dialog box to reflect the excluded resources.

1 The Excluded Resources feature prevents certain resource types from being included
in a region, but it does not prevent the resources from being placed inside the region
unless you set the region’s Reserved property to On. To indicate to the Fitter that
certain resources are not required inside a LogicLock region, define a resource filter.
For more information about resource filters, refer to “LogicLock Resource Exclusions”
in the Best Practices for Incremental Compilation Partitions and Floorplan Assignments
chapter in volume 1 of the Quartus II Handbook.

Additional Quartus II LogicLock Design Features
To complement the LogicLock Regions window, the Quartus II software has
additional features to help you design with LogicLock regions.

Analysis and Synthesis Resource Utilization by Entity
The Compilation Report contains an Analysis and Synthesis Resource Utilization by
Entity section, which reports resource usage statistics, including entity-level
information. You can use this feature to verify that any LogicLock region you
manually create contains enough resources to accommodate all the entities you assign
to it.
November 2013 Altera Corporation Quartus II Handbook Version 13.1
Volume 2: Design Implementation and Optimization

http://www.altera.com/literature/hb/qts/qts_qii51017.pdf

15–10 Chapter 15: Analyzing and Optimizing the Design Floorplan with the Chip Planner
LogicLock Regions
Quartus II Revisions Feature
When you evaluate different LogicLock regions in your design, you might want to
experiment with different configurations to achieve your desired results. The
Quartus II Revisions feature allows you to organize the same project with different
settings until you find an optimum configuration.

To use the Revisions feature, on the Project menu, click Revisions. In the Revisions
dialog box, you can create and specify revisions. You can create a revision from the
current design or any previously created revisions. Each revision can have an
associated description. You can use revisions to organize the placement constraints
created for your LogicLock regions.

LogicLock Assignment Precedence
You can encounter conflicts during the assignment of entities and nodes to LogicLock
regions. For example, an entire top-level entity might be assigned to one region and a
node within this top-level entity assigned to another region. To resolve conflicting
assignments, the Quartus II software maintains an order of precedence for LogicLock
assignments. The following order of precedence, from highest to lowest, applies:

1. Exact node-level assignments

2. Path-based and wildcard assignments

3. Hierarchical assignments

h For more information about LogicLock assignment precedence, refer to Understanding
Assignment Priority in Quartus II Help.

1 Open the Priority dialog box by selecting Priority on the General tab of the
LogicLock Regions Properties dialog box. You can change the priority of path-based
and wildcard assignments with the Up and Down buttons in the Priority dialog box.
To prioritize assignments between regions, you must select multiple LogicLock
regions and then open the Priority dialog box from the LogicLock Regions Properties
dialog box.

Virtual Pins
A virtual pin is an I/O element that is temporarily mapped to a logic element and not
to a pin during compilation, and is then implemented as a LUT. Virtual pins should be
used only for I/O elements in lower-level design entities that become nodes when
imported to the top-level design. You can create virtual pins by assigning the Virtual
Pin logic option to an I/O element.

You might use virtual pin assignments when you compile a partial design, because
not all the I/Os from a partial design drive chip pins at the top level.

The virtual pin assignment identifies the I/O ports of a design module that are
internal nodes in the top-level design. These assignments prevent the number of I/O
ports in the lower-level modules from exceeding the total number of available device
pins. Every I/O port that you designate as a virtual pin becomes mapped to either a
logic cell or an adaptive logic module (ALM), depending on the target device.
Quartus II Handbook Version 13.1 November 2013 Altera Corporation
Volume 2: Design Implementation and Optimization

http://quartushelp.altera.com/current/master.htm#mergedProjects/optimize/lock/lock_ref_assignment_precedence.htm
http://quartushelp.altera.com/current/master.htm#mergedProjects/optimize/lock/lock_ref_assignment_precedence.htm

Chapter 15: Analyzing and Optimizing the Design Floorplan with the Chip Planner 15–11
Using LogicLock Regions in the Chip Planner
1 The Virtual Pin logic option must be assigned to an input or output pin. If you assign
this option to a bidirectional pin, tri-state pin, or registered I/O element, Analysis and
Synthesis ignores the assignment. If you assign this option to a tri-state pin, the Fitter
inserts an I/O buffer to account for the tri-state logic; therefore, the pin cannot be a
virtual pin. You can use multiplexer logic instead of a tri-state pin if you want to
continue to use the assigned pin as a virtual pin. Do not use tri-state logic except for
signals that connect directly to device I/O pins.

In the top-level design, you connect these virtual pins to an internal node of another
module. By making assignments to virtual pins, you can place those pins in the same
location or region on the device as that of the corresponding internal nodes in the
top-level module. You can use the Virtual Pin option when compiling a LogicLock
module with more pins than the target device allows. The Virtual Pin option can
enable timing analysis of a design module that more closely matches the performance
of the module after you integrate it into the top-level design.

1 In the Node Finder, you can set Filter Type to Pins: Virtual to display all assigned
virtual pins in the design. Alternatively, to access the Node Finder from the
Assignment Editor, double-click the To field; when the arrow appears on the right
side of the field, click the arrow and select Node Finder.

Using LogicLock Regions in the Chip Planner
You can easily create LogicLock regions in the Chip Planner and assign resources to
them.

Viewing Connections Between LogicLock Regions in the Chip Planner
You can view and edit LogicLock regions using the Chip Planner. To view and edit
LogicLock regions, select the Floorplan Editing mode in Layers Settings, or any
Layers setting mode that has the User-assigned LogicLock regions setting enabled.

The Chip Planner shows the connections between LogicLock regions. By default, you
can view each connection as an individual line. You can choose to display connections
between two LogicLock regions as a single bundled connection rather than as
individual connection lines. To use this option, open the Chip Planner and on the
View menu, click Inter-region Bundles.

h For more information about the Inter-region Bundles dialog box, refer to Inter-region
Bundles Dialog Box in Quartus II Help.

Using LogicLock Regions with the Design Partition Planner
You can optimize timing in a design by placing entities that share significant logical
connectivity close to each other on the device. By default, the Fitter usually places
closely connected entities in the same area of the device; however, you can use
LogicLock regions, together with the Design Partition Planner and the Chip Planner,
to help ensure that logically connected entities retain optimal placement from one
compilation to the next.
November 2013 Altera Corporation Quartus II Handbook Version 13.1
Volume 2: Design Implementation and Optimization

http://quartushelp.altera.com/current/master.htm#mergedProjects/optimize/ace/acv_db_generate_interregion_bundles.htm
http://quartushelp.altera.com/current/master.htm#mergedProjects/optimize/ace/acv_db_generate_interregion_bundles.htm

15–12 Chapter 15: Analyzing and Optimizing the Design Floorplan with the Chip Planner
Design Floorplan Analysis Using the Chip Planner
You can view the logical connectivity between entities with the Design Partition
Planner, and the physical placement of those entities with the Chip Planner. In the
Design Partition Planner, you can identify entities that are highly interconnected, and
place those entities in a partition. In the Chip Planner, you can create LogicLock
regions and assign each partition to a LogicLock region, thereby preserving the
placement of the entities.

f For more information about using LogicLock regions with design partitions, refer to
the Quartus II Incremental Compilation for Hierarchical and Team-Based Design and the
Best Practices for Incremental Compilation Partition and Floorplan Assignments chapters in
volume 1 of the Quartus II Handbook. For more information about using the Design
Partition Planner with the Chip Planner, refer to About the Design Partition Planner and
Using the Design Partition Planner in Quartus II Help.

Design Floorplan Analysis Using the Chip Planner
The Chip Planner helps you visually analyze the floorplan of your design at any stage
of your design cycle. With the Chip Planner, you can view post-compilation
placement, connections, and routing paths. You can also create LogicLock regions and
location assignments. The Chip Planner allows you to create new logic cells and I/O
atoms and to move existing logic cells and I/O atoms in your design. You can also see
global and regional clock regions within the device, and the connections between I/O
atoms, PLLs and the different clock regions.

From the Chip Planner, you can launch the Resource Property Editor, which you can
use to change the properties and parameters of device resources, and modify
connectivity between certain types of device resources. The Change Manager records
any changes that you make to your design floorplan so that you can selectively undo
changes if necessary.

f For more information about the Resource Property Editor and the Change Manager,
refer to the Engineering Change Management with the Chip Planner chapter in volume 2
of the Quartus II Handbook, and to About the Resource Property Editor and About the
Change Manager in Quartus II Help.

The following sections present Chip Planner floorplan views and design analysis
procedures which you can use with any Chip Planner preset, unless a procedure
requires a specific preset or editing mode.

Chip Planner Floorplan Views
The Chip Planner uses a hierarchical zoom viewer that shows various abstraction
levels of the targeted Altera device. As you zoom in, the level of abstraction decreases,
revealing more details about your design.

f For more information about Chip Planner floorplan views, refer to the Engineering
Change Management with the Chip Planner chapter in volume 2 of the Quartus II
Handbook.
Quartus II Handbook Version 13.1 November 2013 Altera Corporation
Volume 2: Design Implementation and Optimization

http://www.altera.com/literature/hb/qts/qts_qii52017.pdf
http://quartushelp.altera.com/current/master.htm#mergedProjects/optimize/ace/ape_view_property_editor.htm
http://www.altera.com/literature/hb/qts/qts_qii51015.pdf
http://www.altera.com/literature/hb/qts/qts_qii51017.pdf
http://quartushelp.altera.com/current/master.htm#mergedProjects/optimize/dpp/dpp_about_dpp.htm
http://quartushelp.altera.com/current/master.htm#mergedProjects/optimize/dpp/dpp_pro_using_dpp.htm
http://quartushelp.altera.com/current/master.htm#mergedProjects/optimize/ace/eco_view_eco_overview.htm
http://quartushelp.altera.com/current/master.htm#mergedProjects/optimize/ace/eco_view_eco_overview.htm
http://www.altera.com/literature/hb/qts/qts_qii52017.pdf
http://www.altera.com/literature/hb/qts/qts_qii52017.pdf

Chapter 15: Analyzing and Optimizing the Design Floorplan with the Chip Planner 15–13
Design Floorplan Analysis Using the Chip Planner
Bird’s Eye View
The Bird’s Eye View displays a high-level picture of resource usage for the entire chip
and provides a fast and efficient way to navigate between areas of interest in the Chip
Planner.

The Bird’s Eye View is particularly useful when the parts of your design that you
want to view are at opposite ends of the chip and you want to quickly navigate
between resource elements without losing your frame of reference.

h For more information about the Bird’s Eye View, refer to Bird’s Eye View and
Displaying Resources and Information in Quartus II Help.

Properties Window
The Properties Window displays detailed properties of the objects (such as atoms,
paths, LogicLock regions, or routing elements) currently selected in the Chip Planner.
To display the Properties Window, click Properties on the View menu in the Chip
Planner.

Viewing Architecture-Specific Design Information
By adjusting the Layers Settings in the Chip Planner, you can view the following
architecture-specific information related to your design:

■ Device routing resources used by your design—View how blocks are connected,
as well as the signal routing that connects the blocks.

■ LE configuration—View logic element (LE) configuration in your design. For
example, you can view which LE inputs are used; if the LE utilizes the register, the
look-up table (LUT), or both; as well as the signal flow through the LE.

■ ALM configuration—View ALM configuration in your design. For example, you
can view which ALM inputs are used, if the ALM utilizes the registers, the upper
LUT, the lower LUT, or all of them. You can also view the signal flow through the
ALM.

■ I/O configuration—View device I/O resource usage. For example, you can view
which components of the I/O resources are used, if the delay chain settings are
enabled, which I/O standards are set, and the signal flow through the I/O.

■ PLL configuration—View phase-locked loop (PLL) configuration in your design.
For example, you can view which control signals of the PLL are used with the
settings for your PLL.

■ Timing—View the delay between the inputs and outputs of FPGA elements. For
example, you can analyze the timing of the DATAB input to the COMBOUT output.

In addition, you can modify the following device properties with the Chip Planner:

■ LEs and ALMs

■ I/O cells

■ PLLs

■ Registers in RAM and DSP blocks

■ Connections between elements
November 2013 Altera Corporation Quartus II Handbook Version 13.1
Volume 2: Design Implementation and Optimization

http://quartushelp.altera.com/current/master.htm#mergedProjects/optimize/ace/acv_com_birds_eye.htm
http://quartushelp.altera.com/current/master.htm#mergedProjects/optimize/ace/acv_pro_displaying_connectivity.htm

15–14 Chapter 15: Analyzing and Optimizing the Design Floorplan with the Chip Planner
Design Floorplan Analysis Using the Chip Planner
■ Placement of elements

f For more information about LEs, ALMs, and other resources of an FPGA device, refer
to the relevant device handbook.

Viewing Available Clock Networks in the Device
When you select a task with clock region layer preset enabled, you can display the
areas of the chip that are driven by global and regional clock networks. This global
clock display feature is available for Arria GX, Arria II, Arria V, Cyclone II,
Cyclone III, Cyclone V, Stratix II, Stratix II GX, Stratix III, Stratix IV, and Stratix V
device families.

Depending on the clock layers activated in the selected preset, the Chip Planner
displays regional and global clock regions in the device, and the connectivity between
clock regions, pins, and PLLs. Clock regions appear as rectangular overlay boxes with
labels indicating the clock type and index.You can select each clock network region by
clicking on the clock region. The clock-shaped icon at the top-left corner indicates that
the region represents a clock network region. You can change the color in which the
Chip Planner displays clock regions on the Options dialog box of the Tools menu.

The Layers Settings dialog box lists layers for different clock region types; when the
selected device does not contain a given clock region, the option for that category is
unavailable in the dialog box. You can customize the Chip Planner’s display of clock
regions by creating a custom preset with selected clock layers enabled in the Layers
Settings dialog box.

h For more information about displaying clock regions, refer to Displaying Resources and
Information in Quartus II Help.

Viewing Critical Paths
Critical paths are timing paths in your design that have a negative slack. These timing
paths can span from device I/Os to internal registers, registers to registers, or from
registers to device I/Os. The slack of a path determines its criticality; slack appears in
the timing analysis report. Design analysis for timing closure is a fundamental
requirement for optimal performance in highly complex designs. The analytical
capability of the Chip Planner helps you close timing on complex designs.

Viewing critical paths in the Chip Planner helps you understand why a specific path
is failing. You can see if any modification in the placement can reduce the negative
slack. You can display details of a path (to expand/collapse the path to/from the
connections in the path) by clicking Expand Connections in the toolbar, or by clicking
on the “+/-” on the label.

You can locate failing paths from the timing report in the TimeQuest Timing Analyzer.
To locate the critical paths, run the Report Timing task from the Custom Reports
group in the Tasks pane of the TimeQuest Timing Analyzer. From the View pane,
which lists the failing paths, right-click on any failing path or node, and select Locate
Path. From the Locate dialog box, select Chip Planner to see the failing path in the
Chip Planner.
Quartus II Handbook Version 13.1 November 2013 Altera Corporation
Volume 2: Design Implementation and Optimization

http://quartushelp.altera.com/current/master.htm#mergedProjects/optimize/ace/acv_pro_displaying_connectivity.htm
http://quartushelp.altera.com/current/master.htm#mergedProjects/optimize/ace/acv_pro_displaying_connectivity.htm

Chapter 15: Analyzing and Optimizing the Design Floorplan with the Chip Planner 15–15
Design Floorplan Analysis Using the Chip Planner
1 To display paths in the floorplan, you must first make timing settings and perform a
timing analysis.

f For more information about performing static timing analysis with the Quartus II
TimeQuest Timing Analyzer, refer to The Quartus II TimeQuest Timing Analyzer chapter
in volume 3 of the Quartus II Handbook.

Viewing Routing Congestion
The Report Routing Utilization task allows you to determine the percentage of
routing resources in use following a compilation. This feature can identify where
there is a lack of routing resources, helping you to make design changes to meet
routing congestion design requirements.

Open the Chip Planner from the Tools menu. To view the routing congestion in the
Chip Planner, double-click the Report Routing Utilization command in the Tasks list.
Click Preview in the Report Routing Utilization dialog box to preview the default
congestion display. Change the Routing utilization type to display congestion for
specific resources. The default display uses dark blue for 0% congestion (blue
indicates zero utilization) and red for 100%. You can adjust the slider for Threshold
percentage to change the congestion threshold level.

The routing congestion map uses the color and shading of logic resources to indicate
relative resource utilization; darker shading represents a greater utilization of routing
resources. Areas where routing utilization exceeds the threshold value specified in the
Report Routing Utilization dialog box appear in red. The congestion map can help
you determine whether you can modify the floorplan, or make changes to the RTL to
reduce routing congestion.

To identify a lack of routing resources, it is necessary to investigate each routing
interconnect type separately by selecting each interconnect type in turn in the
Routing Utilization Settings dialog box.

The Quartus II compilation messages contain information about average and peak
interconnect usage. Peak interconnect usage over 75%, or average interconnect usage
over 60%, could be an indication that it might be difficult to fit your design. Similarly,
peak interconnect usage over 90%, or average interconnect usage over 75%, are likely
to have increased chances of not getting a valid fit.

h For more information about displaying routing congestion, refer to Displaying
Resources and Information in Quartus II Help.

Viewing I/O Banks
The Chip Planner can show all of the I/O banks of the device. To see the I/O bank
map of the device, select Report All I/O Banks in the Tasks pane.
November 2013 Altera Corporation Quartus II Handbook Version 13.1
Volume 2: Design Implementation and Optimization

http://quartushelp.altera.com/current/master.htm#mergedProjects/optimize/ace/acv_pro_displaying_connectivity.htm
http://quartushelp.altera.com/current/master.htm#mergedProjects/optimize/ace/acv_pro_displaying_connectivity.htm
http://www.altera.com/literature/hb/qts/qts_qii53018.pdf

15–16 Chapter 15: Analyzing and Optimizing the Design Floorplan with the Chip Planner
Design Floorplan Analysis Using the Chip Planner
Viewing High-Speed Serial Interfaces (HSSI)
For the Stratix V device family, the Chip Planner displays a detailed block view of the
receiver and transmitter channels of the high-speed serial interfaces. To display the
HSSI block view, select Report HSSI Block Connectivity. Figure 15–3 shows the
blocks of a Stratix V HSSI receiver channel.

Generating Fan-In and Fan-Out Connections
The ability to display fan-in and fan-out connections enables you to view the atoms
that fan-in to or fan-out from the selected atom. To remove the connections displayed,
use the Clear Unselected Connections icon in the Chip Planner toolbar.

Generating Immediate Fan-In and Fan-Out Connections
The ability to display immediate fan-in and fan-out connections enables you to view
the resource that is the immediate fan-in or fan-out connection for the selected atom.
For example, if you select a logic resource and choose to view the immediate fan-in for
that resource, you can see the routing resource that drives the logic resource. You can
generate immediate fan-ins and fan-outs for all logic resources and routing resources.
To remove the displayed connections from the screen, click the Clear Unselected
Connections icon in the toolbar.

Figure 15–3. Stratix V HSSI receiver channel
Quartus II Handbook Version 13.1 November 2013 Altera Corporation
Volume 2: Design Implementation and Optimization

Chapter 15: Analyzing and Optimizing the Design Floorplan with the Chip Planner 15–17
Design Floorplan Analysis Using the Chip Planner
Highlight Routing
The Show Physical Routing command in the Locate History pane enables you to
highlight the routing resources used by a selected path or connection. Figure 15–4
shows the routing resources in use between two logic elements.

f You can view and edit resources in the FPGA using the Resource Property Editor. For
more information, refer to the Engineering Change Management with the Chip Planner
chapter in volume 2 of the Quartus II Handbook.

Figure 15–4. Highlight Routing
November 2013 Altera Corporation Quartus II Handbook Version 13.1
Volume 2: Design Implementation and Optimization

http://www.altera.com/literature/hb/qts/qts_qii52017.pdf

15–18 Chapter 15: Analyzing and Optimizing the Design Floorplan with the Chip Planner
Design Floorplan Analysis Using the Chip Planner
Show Delays
With the Show Delays command, you can view timing delays for paths located from
TimeQuest Timing Analyzer reports. For example, you can view the delay between
two logic resources or between a logic resource and a routing resource. Figure 15–5
shows the delay associated with a path located from a TimeQuest Timing Analyzer
report.

Exploring Paths in the Chip Planner
You can use the Chip Planner to explore paths between logic elements. The following
example uses the Chip Planner to traverse paths from the Timing Analysis report.

Locate Path from the Timing Analysis Report to the Chip Planner
To locate a path from the Timing Analysis report to the Chip Planner, perform the
following steps:

1. Select the path you want to locate.

Figure 15–5. Show Delays
Quartus II Handbook Version 13.1 November 2013 Altera Corporation
Volume 2: Design Implementation and Optimization

Chapter 15: Analyzing and Optimizing the Design Floorplan with the Chip Planner 15–19
Design Floorplan Analysis Using the Chip Planner
2. Right-click the path in the Timing Analysis report, point to Locate Path, and click
Locate in Chip Planner. The path is displayed with its timing data in the Chip
Planner main window and is listed in the Locate History window.

3. To view the routing resources taken for a path you have located in the Chip
Planner, select the path and then click the Highlight Routing icon in the Chip
Planner toolbar, or from the View menu, click Highlight Routing.

Analyzing Connections for a Path
To determine the connections between items in the Chip Planner, click the Expand
Connections icon on the toolbar. To add the timing delays for paths located from the
TimeQuest Timing Analyzer, click the Show Delays icon on the toolbar. Figure 15–6
shows the connections for a path located from the TimeQuest Timing Analyzer that
are displayed in the Chip Planner. To see the constituent delays on the selected path,
click on the “+” sign next to the path delay displayed in the Chip Planner.

Viewing Assignments in the Chip Planner
You can view location assignments by selecting the appropriate layer set in the Chip
Planner. To view location assignments, select the Floorplan Editing preset or any
custom preset that displays block utilization, and the Assignment editing mode. See
Figure 15–7.

Figure 15–6. Path Analysis
November 2013 Altera Corporation Quartus II Handbook Version 13.1
Volume 2: Design Implementation and Optimization

15–20 Chapter 15: Analyzing and Optimizing the Design Floorplan with the Chip Planner
Design Floorplan Analysis Using the Chip Planner
The Chip Planner shows location assignments graphically, by displaying assigned
resources in a particular color (gray, by default). You can create or move an
assignment by dragging the selected resource to a new location.

You can make node and pin location assignments to LogicLock regions and custom
regions using the drag-and-drop method in the Chip Planner. The Fitter applies the
assignments that you create during the next place-and-route operation.

h For more information about managing assignments in the Chip Planner, refer to
Working With Assignments in the Chip Planner in Quartus II Help.

Viewing High-Speed and Low-Power Tiles in the Chip Planner
To view a power map of designs that specify Stratix III, Stratix IV, or Stratix V devices,
select the Report High-Speed/Low-Power Tiles command in the Tasks menu after
running the Fitter. Stratix III, Stratix IV, or Stratix V devices have ALMs that can
operate in either high-speed mode or low-power mode. The power mode is set during
the fitting process in the Quartus II software. These ALMs are grouped together to
form larger blocks, called “tiles.”

f To learn more about power analyses and optimizations in Stratix III devices, refer to
AN 437: Power Optimization in Stratix III FPGAs. To learn more about power analyses
and optimizations in Stratix IV devices, refer to AN 514: Power Optimization in
Stratix IV FPGAs.

Figure 15–7. Viewing Assignments in the Chip Planner
Quartus II Handbook Version 13.1 November 2013 Altera Corporation
Volume 2: Design Implementation and Optimization

http://quartushelp.altera.com/current/master.htm#mergedProjects/optimize/ace/acv_pro_assignments.htm
http://www.altera.com/literature/an/an514.pdf
http://www.altera.com/literature/an/an514.pdf
http://www.altera.com/literature/an/AN437.pdf

Chapter 15: Analyzing and Optimizing the Design Floorplan with the Chip Planner 15–21
Scripting Support
When you select the Report High-Speed/Low-Power Tiles command for Stratix III,
Stratix IV, or Stratix V devices, the Chip Planner displays low-power and high-speed
tiles in contrasting colors; yellow tiles operate in a high-speed mode, while blue tiles
operate in a low-power mode (see Figure 15–8). When you select the Power task, you
can perform all floorplanner-related functions for this task; however, you cannot edit
tiles to change the power mode.

Scripting Support
You can run procedures and specify the settings described in this chapter in a Tcl
script. You can also run some procedures at a command prompt. For detailed
information about scripting command options, refer to the Quartus II command-line
and Tcl API Help browser. To run the Help browser, type the following command at
the command prompt:

quartus_sh --qhelp r

h Information about scripting command options is also available in API Functions for Tcl
in Quartus II Help.

f For more information about Tcl scripting, refer to the Tcl Scripting chapter in volume 2
of the Quartus II Handbook. For more information about command-line scripting, refer
to the Command-Line Scripting chapter in volume 2 of the Quartus II Handbook. For
information about all settings and constraints in the Quartus II software, refer to the
Quartus II Settings File Manual.

Figure 15–8. Viewing High-Speed and Low Power Tiles in a Stratix III Device

Yellow Tiles Operate in
High Speed Mode
November 2013 Altera Corporation Quartus II Handbook Version 13.1
Volume 2: Design Implementation and Optimization

http://www.altera.com/literature/hb/qts/qts_qii52003.pdf
http://www.altera.com/literature/hb/qts/qts_qii52002.pdf
http://www.altera.com/literature/manual/mnl_qsf_reference.pdf
http://quartushelp.altera.com/current/master.htm#mergedProjects/tafs/tafs/tcl_list_of_packages.htm

15–22 Chapter 15: Analyzing and Optimizing the Design Floorplan with the Chip Planner
Scripting Support
Initializing and Uninitializing a LogicLock Region
You must initialize the LogicLock data structures before creating or modifying any
LogicLock regions and before executing any of the Tcl commands listed below.

Use the following Tcl command to initialize the LogicLock data structures:

initialize_logiclock

Use the following Tcl command to uninitialize the LogicLock data structures before
closing your project:

uninitialize_logiclock

Creating or Modifying LogicLock Regions
Use the following Tcl command to create or modify a LogicLock region:

set_logiclock -auto_size true -floating true -region <my_region-name>

1 The command in the above example sets the size of the region to auto and the state to
floating.

If you specify a region name that does not exist in the design, the command creates
the region with the specified properties. If you specify the name of an existing region,
the command changes all properties you specify and leaves unspecified properties
unchanged.

For more information about creating LogicLock regions, refer to “Creating LogicLock
Regions” on page 15–4.

Obtaining LogicLock Region Properties
Use the following Tcl command to obtain LogicLock region properties. This example
returns the height of the region named my_region:

get_logiclock -region my_region -height

Assigning LogicLock Region Content
Use the following Tcl commands to assign or change nodes and entities in a
LogicLock region. This example assigns all nodes with names matching fifo* to the
region named my_region.

set_logiclock_contents -region my_region -to fifo*

You can also make path-based assignments with the following Tcl command:

set_logiclock_contents -region my_region -from fifo -to ram*

Save a Node-Level Netlist for the Entire Design into a Persistent Source
File

Make the following assignments to cause the Quartus II Fitter to save a node-level
netlist for the entire design into a .vqm file:

set_global_assignment-name LOGICLOCK_INCREMENTAL_COMPILE_ASSIGNMENT ON
set_global_assignment-name LOGICLOCK_INCREMENTAL_COMPILE_FILE <file
name>
Quartus II Handbook Version 13.1 November 2013 Altera Corporation
Volume 2: Design Implementation and Optimization

Chapter 15: Analyzing and Optimizing the Design Floorplan with the Chip Planner 15–23
Document Revision History
Any path specified in the file name is relative to the project directory. For example,
specifying atom_netlists/top.vqm places top.vqm in the atom_netlists subdirectory
of your project directory.

A .vqm file is saved in the directory specified at the completion of a full compilation.

1 The saving of a node-level netlist to a persistent source file is not supported for
designs targeting newer devices such as Arria GX, Arria II, Cyclone III, MAX V,
Stratix III, Stratix IV, or Stratix V.

Setting LogicLock Assignment Priority
Use the following Tcl code to set the priority for a LogicLock region’s members. This
example reverses the priorities of the LogicLock region in your design.

set reverse [list]
for each member [get_logiclock_member_priority] {

set reverse [insert $reverse 0 $member]
{
set_logiclock_member_priority $reverse

Assigning Virtual Pins
Use the following Tcl command to turn on the virtual pin setting for a pin called
my_pin:

set_instance_assignment -name VIRTUAL_PIN ON -to my_pin

For more information about assigning virtual pins, refer to “Virtual Pins” on
page 15–10.

f For more information about Tcl scripting, refer to the Tcl Scripting chapter in volume 2
of the Quartus II Handbook.

Document Revision History
Table 15–2 shows the revision history for this chapter.

Table 15–2. Document Revision History (Part 1 of 2)

Date Version Changes

November 2013 13.1.0 Removed HardCopy device information.

May 2013 13.0.0
Updated “Viewing Routing Congestion” section

Updated references to Quartus UI controls for the Chip Planner

June 2012 12.0.0 Removed survey link.

November 2011 11.0.1 Template update.

May 2011 11.0.0

■ Updated for the 11.0 release.

■ Edited “LogicLock Regions”

■ Updated “Viewing Routing Congestion”

■ Updated “Locate History”

■ Updated Figures 15-4, 15-9, 15-10, and 15-13

■ Added Figure 15-6
November 2013 Altera Corporation Quartus II Handbook Version 13.1
Volume 2: Design Implementation and Optimization

http://www.altera.com/literature/hb/qts/qts_qii52003.pdf

15–24 Chapter 15: Analyzing and Optimizing the Design Floorplan with the Chip Planner
Document Revision History
f For previous versions of the Quartus II Handbook, refer to the Quartus II Handbook
Archive.

December 2010 10.1.0 ■ Updated for the 10.1 release.

July 2010 10.0.0

■ Updated device support information

■ Removed references to Timing Closure Floorplan; removed “Design Analysis Using the
Timing Closure Floorplan” section

■ Added links to online Help topics

■ Added “Using LogicLock Regions with the Design Partition Planner” section

■ Updated “Viewing Critical Paths” section

■ Updated several graphics

■ Updated format of Document revision History table

November 2009 9.1.0

■ Updated supported device information throughout

■ Removed deprecated sections related to the Timing Closure Floorplan for older device
families. (For information on using the Timing Closure Floorplan with older device
families, refer to previous versions of the Quartus II Handbook, available in the Quartus II
Handbook Archive.)

■ Updated “Creating Nonrectangular LogicLock Regions” section

■ Added “Selected Elements Window” section

■ Updated table 12-1

May 2008 8.0.0

■ Updated the following sections:

■ “Chip Planner Tasks and Layers”

■ “LogicLock Regions”

■ “Back-Annotating LogicLock Regions”

■ “LogicLock Regions in the Timing Closure Floorplan”

■ Added the following sections:

■ “Reserve LogicLock Region”

■ “Creating Nonrectangular LogicLock Regions”

■ “Viewing Available Clock Networks in the Device”

■ Updated Table 10–1

■ Removed the following sections:

■ Reserve LogicLock Region Design Analysis Using the Timing Closure Floorplan

Table 15–2. Document Revision History (Part 2 of 2)

Date Version Changes
Quartus II Handbook Version 13.1 November 2013 Altera Corporation
Volume 2: Design Implementation and Optimization

http://www.altera.com/literature/lit-qts_archive.jsp
http://www.altera.com/literature/lit-qts_archive.jsp
http://www.altera.com/literature/lit-qts_archive.jsp
http://www.altera.com/literature/lit-qts_archive.jsp

QII52007-13.1.0

© 2013 Altera Corporation. All rights reserved. ALTERA, ARRI
are trademarks of Altera Corporation and registered in the U.S
trademarks or service marks are the property of their respectiv
semiconductor products to current specifications in accordance
services at any time without notice. Altera assumes no respons
described herein except as expressly agreed to in writing by Al
on any published information and before placing orders for pr

Quartus II Handbook Version 13.1
Volume 2: Design Implementation and Optimization
November 2013

November 2013
QII52007-13.1.0
16. Netlist Optimizations and Physical
Synthesis
The Quartus® II software offers physical synthesis optimizations to improve your
design beyond the optimization performed in the normal course of the Quartus II
compilation flow.

Physical synthesis optimizations can help improve the performance of your design
regardless of the synthesis tool used, although the effect of physical synthesis
optimizations depends on the structure of your design.

Netlist optimization options work with the atom netlist of your design, which
describes a design in terms of Altera®-specific primitives. An atom netlist file can be
an Electronic Design Interchange Format (.edf) file or a Verilog Quartus Mapping
(.vqm) file generated by a third-party synthesis tool, or a netlist used internally by the
Quartus II software. Physical synthesis optimizations are applied at different stages of
the Quartus II compilation flow, either during synthesis, fitting, or both.

This chapter explains how the physical synthesis optimizations in the Quartus II
software can modify your design’s netlist to improve the quality of results. This
chapter also provides information about preserving compilation results through
back-annotation and writing out a new netlist, and provides guidelines for applying
the various options.

1 Because the node names for primitives in the design can change when you use
physical synthesis optimizations, you should evaluate whether your design flow
requires fixed node names. If you use a verification flow that might require fixed node
names, such as the SignalTap® II Logic Analyzer, formal verification, or the LogicLock
based optimization flow (for legacy devices), you must turn off physical synthesis
options.

WYSIWYG Primitive Resynthesis
If you use a third-party tool to synthesize your design, use the Perform WYSIWYG
primitive resynthesis option to apply optimizations to the synthesized netlist.

The Perform WYSIWYG primitive resynthesis option directs the Quartus II software
to un-map the logic elements (LEs) in an atom netlist to logic gates, and then re-map
the gates back to Altera-specific primitives. Third-party synthesis tools generate either
an .edf or .vqm atom netlist file using Altera-specific primitives. When you turn on
the Perform WYSIWYG primitive resynthesis option, the Quartus II software can
work on different techniques specific to the device architecture during the re-mapping
process. This feature re-maps the design using the Optimization Technique specified
for your project (Speed, Area, or Balanced).

1 The Perform WYSIWYG primitive resynthesis option has no effect if you are using
Quartus II integrated synthesis to synthesize your design.
A, CYCLONE, HARDCOPY, MAX, MEGACORE, NIOS, QUARTUS and STRATIX words and logos
. Patent and Trademark Office and in other countries. All other words and logos identified as
e holders as described at www.altera.com/common/legal.html. Altera warrants performance of its
 with Altera's standard warranty, but reserves the right to make changes to any products and
ibility or liability arising out of the application or use of any information, product, or service
tera. Altera customers are advised to obtain the latest version of device specifications before relying
oducts or services.

Feedback SubscribeTwitter

ISO
9001:2008
Registered

https://www.altera.com/servlets/subscriptions/alert?id=QII52007
http://www.altera.com/common/legal.html
http://www.altera.com/support/reliability/certifications/rel-certifications.html
http://www.altera.com/support/reliability/certifications/rel-certifications.html
http://twitter.com/home/?status=Netlist+Optimizations+and+Physical+Synthesis+http://www.altera.com/literature/hb/qts/qts_qii52007.pdf?WT.mc_id=gc_so_tw_st_tx_a_011+(via @alteracorp)+%23Altera
mailto:TechDocFeedback@altera.com?subject=Feedback on qts_qii52007-13.1

16–2 Chapter 16: Netlist Optimizations and Physical Synthesis
WYSIWYG Primitive Resynthesis
To turn on the Perform WYSIWYG primitive resynthesis option, perform the
following steps:

1. On the Assignments menu, click Settings. The Settings dialog box appears.

2. In the Category list, select Analysis and Synthesis Settings. The Analysis &
Synthesis Settings page appears.

3. Turn on Perform WYSIWYG Primitive Resynthesis, and click OK.

If you want to perform WYSIWYG resynthesis on only a portion of your design, you
can use the Assignment Editor to assign the Perform WYSIWYG primitive
resynthesis logic option to a lower-level entity in your design. This logic option is
available for all Altera devices supported by the Quartus II software except MAX 3000
and MAX 7000 devices.

The results of the remapping depend on the Optimization Technique you choose. To
select an Optimization Technique, perform the following steps:

1. In the Category list, select Analysis & Synthesis Settings. The Analysis &
Synthesis Settings page appears.

2. Under Optimization Technique, select Speed, Area, or Balanced to specify how
the Quartus II technology mapper optimizes the design. The Balanced setting is
the default for many Altera device families; this setting optimizes the timing
critical parts of the design for speed and the rest of the design for area.

3. Click OK.

f Refer to the Quartus II Integrated Synthesis chapter in volume 1 of the Quartus II
Handbook for details on the Optimization Technique option.

Figure 16–1 shows the Quartus II software flow for the WYSIWYG primitive
resynthesis feature.

Figure 16–1. WYSIWYG Primitive Resynthesis
Quartus II Handbook Version 13.1 November 2013 Altera Corporation
Volume 2: Design Implementation and Optimization

http://www.altera.com/literature/hb/qts/qts_qii51008.pdf

Chapter 16: Netlist Optimizations and Physical Synthesis 16–3
Performing Physical Synthesis Optimizations
The Perform WYSIWYG primitive resynthesis option unmaps and remaps only logic
cells, also referred to as LCELL or LE primitives, and regular I/O primitives (which
may contain registers). Double data rate (DDR) I/O primitives, memory primitives,
digital signal processing (DSP) primitives, and logic cells in carry/cascade chains are
not remapped. Logic specified in an encrypted .vqm file or an .edf file, such as
third-party intellectual property (IP), is not touched.

The Perform WYSIWYG primitive resynthesis option can change node names in the
.vqm file or .edf file from your third-party synthesis tool, because the primitives in the
atom netlist are broken apart and then remapped by the Quartus II software. The
remapping process removes duplicate registers, but registers that are not removed
retain the same name after remapping.

Any nodes or entities that have the Netlist Optimizations logic option set to Never
Allow are not affected during WYSIWYG primitive resynthesis. You can use the
Assignment Editor to apply the Netlist Optimizations logic option. This option
disables WYSIWYG resynthesis for parts of your design.

1 Primitive node names are specified during synthesis. When netlist optimizations are
applied, node names might change because primitives are created and removed. HDL
attributes applied to preserve logic in third-party synthesis tools cannot be
maintained because those attributes are not written into the atom netlist read by the
Quartus II software.

If you use the Quartus II software to synthesize, you can use the Preserve Register
(preserve) and Keep Combinational Logic (keep) attributes to maintain certain
nodes in the design.

f For more information about using these attributes during synthesis in the Quartus II
software, refer to the Quartus II Integrated Synthesis chapter in volume 1 of the
Quartus II Handbook.

Performing Physical Synthesis Optimizations
The Quartus II design flow involves separate steps of synthesis and fitting. The
synthesis step optimizes the logical structure of a circuit for area, speed, or both. The
Fitter then places and routes the logic cells to ensure critical portions of logic are close
together and use the fastest possible routing resources. While you are using this
push-button flow, the synthesis stage is unable to anticipate the routing delays seen in
the Fitter. Because routing delays are a significant part of the typical critical path
delay, the physical synthesis optimizations available in the Quartus II software take
those routing delays into consideration and focus timing-driven optimizations at
those parts of the design. This tight integration of the fitting and synthesis processes is
known as physical synthesis.

The following sections describe the physical synthesis optimizations available in the
Quartus II software, and how they can help improve your performance results.
Physical synthesis optimization options can be used with Arria series, Cyclone, and
Stratix series device families.

1 You cannot target optimizations to both device architectures individually because
doing so results in a different post-fitting netlist for each device.
November 2013 Altera Corporation Quartus II Handbook Version 13.1
Volume 2: Design Implementation and Optimization

http://www.altera.com/literature/hb/qts/qts_qii51008.pdf

16–4 Chapter 16: Netlist Optimizations and Physical Synthesis
Performing Physical Synthesis Optimizations
f For more information about physical synthesis optimizations, refer to Physical
Synthesis Optimizations Page (Settings Dialog Box) in Quartus II Help.

You can choose the physical synthesis optimization options you want for your design
during synthesis and fitting in the Physical Synthesis Optimizations page under the
Compilation Process Settings page in the Settings dialog box. The settings include
optimizations for improving performance and fitting in the selected device.

You can also set the effort level for physical synthesis optimizations. Normally,
physical synthesis optimizations increase the compilation time; however, you can
select the Fast effort level if you want to limit the increase in compilation time. When
you select the Fast effort level, the Quartus II software performs limited register
retiming operations during fitting. The Extra effort level runs additional algorithms to
get the best circuit performance, but results in increased compilation time.

To optimize performance, the following options are available:

■ Perform physical synthesis for combinational logic

■ Perform register retiming

■ Perform automatic asynchronous signal pipelining

■ Perform register duplication

To optimize for better fitting, you can choose from the following options:

■ Perform physical synthesis for combinational logic

■ Perform logic to memory mapping

To view and modify the physical synthesis optimization options, perform the
following steps:

1. On the Assignments menu, click Settings. The Settings dialog box appears.

2. In the Category list, select Physical Synthesis Optimizations under Compilation
Process Settings. The Physical Synthesis Optimizations page appears.

3. Specify the options for performing physical synthesis optimizations.

Some physical synthesis options affect only registered logic and some options affect
only combinational logic. Select options based on whether you want to keep the
registers intact or not. For example, if your verification flow involves formal
verification, you might have to keep the registers intact.

All Physical Synthesis optimizations write results to the Netlist Optimizations report,
which provides a list of atom netlist files that were modified, created, and deleted
during physical synthesis. To access the Netlist Optimizations report, perform the
following steps:

1. On the Processing menu, click Compilation Report.

2. In the Compilation Report list, select Netlist Optimizations under Fitter.

Similarly, physical synthesis optimizations performed during synthesis write results
to the synthesis report. To access this report, perform the following steps:

1. On the Processing menu, click Compilation Report.

2. In the Compilation Report list, select Analysis & Synthesis.
Quartus II Handbook Version 13.1 November 2013 Altera Corporation
Volume 2: Design Implementation and Optimization

http://quartushelp.altera.com/current/master.htm#mergedProjects/comp/comp/comp_tab_physical.htm
http://quartushelp.altera.com/current/master.htm#mergedProjects/comp/comp/comp_tab_physical.htm

Chapter 16: Netlist Optimizations and Physical Synthesis 16–5
Performing Physical Synthesis Optimizations
3. In the Optimization Results folder, select Netlist Optimizations. The Physical
Synthesis Netlist Optimizations table appears, listing the physical synthesis
netlist optimizations performed during synthesis.

Nodes or entities that have the Netlist Optimizations logic option set to Never Allow
are not affected by the physical synthesis algorithms. You can use the Assignment
Editor to apply the Netlist Optimizations logic option. Use this option to disable
physical synthesis optimizations for parts of your design.

Automatic Asynchronous Signal Pipelining
The Perform automatic asynchronous signal pipelining option on the Physical
Synthesis Optimizations page in the Compilation Process Settings section of the
Settings dialog box allows the Quartus II Fitter to perform automatic insertion of
pipeline stages for asynchronous clear and asynchronous load signals during fitting
when these signals negatively affect performance. You can use this option if
asynchronous control signal recovery and removal times are not achieving their
requirements.

The Perform automatic asynchronous signal pipelining option improves
performance for designs in which asynchronous signals in very fast clock domains
cannot be distributed across the chip fast enough due to long global network delays.
This optimization performs automatic pipelining of these signals, while attempting to
minimize the total number of registers inserted.

1 The Perform automatic asynchronous signal pipelining option adds registers to nets
driving the asynchronous clear or asynchronous load ports of registers. These
additional registers add register delays (adds latency) to the reset, adding the same
number of register delays for each destination using the reset. The additional register
delays can change the behavior of the signal in the design; therefore, you should use
this option only if additional latency on the reset signals does not violate any design
requirements. This option also prevents the promotion of signals to global routing
resources.

The Quartus II software performs automatic asynchronous signal pipelining only if
Enable Recovery/Removal analysis is turned on. If you use the TimeQuest Timing
Analyzer, Enable Recovery/Removal analysis is turned on by default. Pipelining is
allowed only on asynchronous signals that have the following properties:

■ The asynchronous signal is synchronized to a clock (a synchronization register
drives the signal)

■ The asynchronous signal fans-out only to asynchronous control ports of registers

The Quartus II software does not perform automatic asynchronous signal pipelining
on asynchronous signals that have the Netlist Optimization logic option set to Never
Allow.

Physical Synthesis for Combinational Logic
To optimize the design and reduce delay along critical paths, you can turn on the
Perform physical synthesis for combinational logic option, which swaps the look-up
table (LUT) ports within LEs so that the critical path has fewer layers through which
to travel. The Perform physical synthesis for combinational logic option also allows
the duplication of LUTs to enable further optimizations on the critical path.
November 2013 Altera Corporation Quartus II Handbook Version 13.1
Volume 2: Design Implementation and Optimization

16–6 Chapter 16: Netlist Optimizations and Physical Synthesis
Performing Physical Synthesis Optimizations
h For more information about using the Perform physical synthesis for combinational
logic option, refer to Physical Synthesis Optimizations Page (Settings Dialog Box) and to
Setting Up and Running the Fitter in Quartus II Help.

The Perform physical synthesis for combinational logic option affects only
combinational logic in the form of LUTs. These transformations might occur during
the synthesis stage or the Fitter stage during compilation. The registers contained in
the affected logic cells are not modified. Inputs into memory blocks, DSP blocks, and
I/O elements (IOEs) are not swapped.

The Quartus II software does not perform combinational optimization on logic cells
that have the following properties:

■ Are part of a chain

■ Drive global signals

■ Are constrained to a single logic array block (LAB) location

■ Have the Netlist Optimizations option set to Never Allow

If you want to consider logic cells with any of these conditions for physical synthesis,
you can override these rules by setting the Netlist Optimizations logic option to
Always Allow on a given set of nodes.

Physical Synthesis for Registers—Register Duplication
The Perform register duplication option on the Physical Synthesis Optimizations
page in the Compilation Process Settings section of the Settings dialog box allows
the Quartus II Fitter to duplicate registers based on Fitter placement information. You
can also duplicate combinational logic when this option is enabled. A logic cell that
fans out to multiple locations can be duplicated to reduce the delay of one path
without degrading the delay of another. The new logic cell can be placed closer to
critical logic without affecting the other fan-out paths of the original logic cell.

h For more information about the Perform register duplication option, refer to Physical
Synthesis Optimizations Page (Settings Dialog Box) and to Setting Up and Running the
Fitter in Quartus II Help.
Quartus II Handbook Version 13.1 November 2013 Altera Corporation
Volume 2: Design Implementation and Optimization

http://quartushelp.altera.com/current/master.htm#mergedProjects/comp/comp/comp_tab_physical.htm
http://quartushelp.altera.com/current/master.htm#mergedProjects/comp/comp/comp_tab_physical.htm
http://quartushelp.altera.com/current/master.htm#mergedProjects/comp/comp/comp_pro_set_fitting.htm
http://quartushelp.altera.com/current/master.htm#mergedProjects/comp/comp/comp_tab_physical.htm
http://quartushelp.altera.com/current/master.htm#mergedProjects/comp/comp/comp_pro_set_fitting.htm
http://quartushelp.altera.com/current/master.htm#mergedProjects/comp/comp/comp_pro_set_fitting.htm

Chapter 16: Netlist Optimizations and Physical Synthesis 16–7
Performing Physical Synthesis Optimizations
The Quartus II software does not perform register duplication on logic cells that have
the following properties:

■ Are part of a chain

■ Contain registers that drive asynchronous control signals on another register

■ Contain registers that drive the clock of another register

■ Contain registers that drive global signals

■ Contain registers that are constrained to a single LAB location

■ Contain registers that are driven by input pins without a tSU constraint

■ Contain registers that are driven by a register in another clock domain

■ Are considered virtual I/O pins

■ Have the Netlist Optimizations option set to Never Allow

f For more information about virtual I/O pins, refer to the Analyzing and Optimizing the
Design Floorplan chapter in volume 2 of the Quartus II Handbook.

If you want to consider logic cells that meet any of these conditions for physical
synthesis, you can override these rules by setting the Netlist Optimizations logic
option to Always Allow on a given set of nodes.

Physical Synthesis for Registers—Register Retiming
The Perform Register Retiming option enables the movement of registers across
combinational logic, allowing the Quartus II software to trade off the delay between
timing-critical paths and non-critical paths. Register retiming can be done during
Quartus II integrated synthesis or during the Fitter stages of design compilation.

Figure 16–2 shows an example of register retiming in which the 10-ns critical delay is
reduced by moving the register relative to the combinational logic.

Retiming can create multiple registers at the input of a combinational block from a
register at the output of a combinational block. In this case, the new registers have the
same clock and clock enable. The asynchronous control signals and power-up level
are derived from previous registers to provide equivalent functionality. Retiming can
also combine multiple registers at the input of a combinational block to a single
register (Figure 16–3).

Figure 16–2. Register Retiming Diagram
November 2013 Altera Corporation Quartus II Handbook Version 13.1
Volume 2: Design Implementation and Optimization

http://www.altera.com/literature/hb/qts/qts_qii52006.pdf
http://www.altera.com/literature/hb/qts/qts_qii52006.pdf

16–8 Chapter 16: Netlist Optimizations and Physical Synthesis
Performing Physical Synthesis Optimizations
To move registers across combinational logic to balance timing, perform the following
steps:

1. On the Assignments menu, click Settings. The Settings dialog box appears.

2. In the Category list, select Physical Synthesis Optimizations under Compilation
Process Settings. The Physical Synthesis Optimizations page appears.

3. Specify your preferred option under Optimize for performance (physical
synthesis) and Effort level.

4. Click OK.

h For more information about the Optimize for performance (physical synthesis)
options and effort levels, refer to Physical Synthesis Optimizations Page (Settings Dialog
Box) in Quartus II Help.

If you want to prevent register movement during register retiming, you can set the
Netlist Optimizations logic option to Never Allow. You can apply this option to
either individual registers or entities in the design using the Assignment Editor.

In digital circuits, synchronization registers are instantiated on cross clock domain
paths to reduce the possibility of metastability. The Quartus II software detects such
synchronization registers and does not move them, even if register retiming is turned
on.

The following sets of registers are not moved during register retiming:

■ Both registers in a direct connection from input pin-to-register-to-register if both
registers have the same clock and the first register does not fan-out to anywhere
else. These registers are considered synchronization registers.

■ Both registers in a direct connection from register-to-register if both registers have
the same clock, the first register does not fan out to anywhere else, and the first
register is fed by another register in a different clock domain (directly or through
combinational logic). These registers are considered synchronization registers.

The Quartus II software assumes that a synchronization register chain consists of two
registers. If your design has synchronization register chains with more than two
registers, you must indicate the number of registers in your synchronization chains so
that they are not affected by register retiming. To do this, perform the following steps:

1. On the Assignments menu, click Settings. The Settings dialog box appears.

2. In the Category list, select Analysis & Synthesis Settings. The Analysis &
Synthesis Setting page appears.

Figure 16–3. Combining Registers with Register Retiming
Quartus II Handbook Version 13.1 November 2013 Altera Corporation
Volume 2: Design Implementation and Optimization

http://quartushelp.altera.com/current/master.htm#mergedProjects/comp/comp/comp_tab_physical.htm
http://quartushelp.altera.com/current/master.htm#mergedProjects/comp/comp/comp_tab_physical.htm

Chapter 16: Netlist Optimizations and Physical Synthesis 16–9
Performing Physical Synthesis Optimizations
3. Click More Settings. The More Analysis & Synthesis Settings dialog box
appears.

4. In the Name list, select Synchronization Register Chain Length and modify the
setting to match the synchronization register length used in your design. If you set
a value of 1 for the Synchronization Register Chain Length, it means that any
registers connected to the first register in a register-to-register connection can be
moved during retiming. A value of n > 1 means that any registers in a sequence of
length 1, 2,… n are not moved during register retiming.

The Quartus II software does not perform register retiming on logic cells that have the
following properties:

■ Are part of a cascade chain

■ Contain registers that drive asynchronous control signals on another register

■ Contain registers that drive the clock of another register

■ Contain registers that drive a register in another clock domain

■ Contain registers that are driven by a register in another clock domain

1 The Quartus II software does not usually retime registers across different
clock domains; however, if you use the Classic Timing Analyzer and specify
a global fMAX requirement, the Quartus II software interprets all clocks as
related. Consequently, the Quartus II software might try to retime register-
to-register paths associated with different clocks.

To avoid this circumstance, provide individual fMAX requirements to each
clock when using Classic Timing Analysis. When you constrain each clock
individually, the Quartus II software assumes no relationship between
different clock domains and considers each clock domain to be asychronous
to other clock domains; hence no register-to-register paths crossing clock
domains are retimed.

When you use the TimeQuest Timing Analyzer, register-to-register paths
across clock domains are never retimed, because the TimeQuest Timing
Analyzer treats all clock domains as asychronous to each other unless they
are intentionally grouped.

■ Contain registers that are constrained to a single LAB location

■ Contain registers that are connected to SERDES

■ Are considered virtual I/O pins

■ Registers that have the Netlist Optimizations logic option set to Never Allow

f For more information about virtual I/O pins, refer to the Analyzing and Optimizing the
Design Floorplan chapter in volume 2 of the Quartus II Handbook.

If you want to consider logic cells that meet any of these conditions for physical
synthesis, you can override these rules by setting the Netlist Optimizations logic
option to Always Allow on a given set of registers.
November 2013 Altera Corporation Quartus II Handbook Version 13.1
Volume 2: Design Implementation and Optimization

http://www.altera.com/literature/hb/qts/qts_qii52006.pdf
http://www.altera.com/literature/hb/qts/qts_qii52006.pdf

16–10 Chapter 16: Netlist Optimizations and Physical Synthesis
Performing Physical Synthesis Optimizations
Preserving Your Physical Synthesis Results
The Quartus II software generates the same results on every compilation for the same
source code and settings on a given system, hence you do not need to preserve your
results from compilation to compilation. When you make changes to the source code
or to the settings, you usually get the best results by allowing the software to compile
without using previous compilation results or location assignments. In some cases, if
you avoid performing analysis and synthesis or quartus_map, and run the Fitter or
another desired Quartus II executable instead, you can skip the synthesis stage of the
compilation.

When you use the Quartus II incremental compilation flow, you can preserve
synthesis results for a particular partition of your design by choosing a netlist type of
post-synthesis. If you want to preserve fitting results between compilation runs,
choose a netlist type of post-fit during incremental compilation.

The rest of this section is relevant only for those designs using older devices that do
not support incremental compilation.

f For information about the incremental compilation design methodology, refer to the
Quartus II Incremental Compilation for Hierarchical and Team-Based Design chapter in
volume 1 of the Quartus II Handbook, and to About Incremental Compilation in
Quartus II Help.

You can preserve the resulting nodes from physical synthesis in older devices that do
not support incremental compilation. You might need to preserve nodes if you use the
LogicLock flow to back-annotate placement, import one design into another, or both.
For all device families that support incremental compilation, use that feature to
preserve results.

To preserve the nodes from Quartus II physical synthesis optimization options for
older devices that do not support incremental compilation (such as Max II devices),
perform the following steps:

1. On the Assignments menu, click Settings. The Settings dialog box appears.

2. In the Category list, select Compilation Process Settings. The Compilation
Process Settings page appears.

3. Turn on Save a node-level netlist of the entire design into a persistent source
file. This setting is not available for Cyclone III, Stratix III, and newer devices.

4. Click OK.

The Save a node-level netlist of the entire design into a persistent source file option
saves your final results as an atom-based netlist in .vqm file format. By default, the
Quartus II software places the .vqm file in the atom_netlists directory under the
current project directory. To create a different .vqm file using different Quartus II
settings, in the Compilation Process Settings page, change the File name setting.
Quartus II Handbook Version 13.1 November 2013 Altera Corporation
Volume 2: Design Implementation and Optimization

http://www.altera.com/literature/hb/qts/qts_qii51015.pdf
http://quartushelp.altera.com/current/master.htm#mergedProjects/comp/increment/comp_view_qid.htm

Chapter 16: Netlist Optimizations and Physical Synthesis 16–11
Performing Physical Synthesis Optimizations
If you use the physical synthesis optimizations and want to lock down the location of
all LEs and other device resources in the design with the Back-Annotate Assignments
command, a .vqm file netlist is required. The .vqm file preserves the changes that you
made to your original netlist. Because the physical synthesis optimizations depend on
the placement of the nodes in the design, back-annotating the placement changes the
results from physical synthesis. Changing the results means that node names are
different, and your back-annotated locations are no longer valid.

You should not use a Quartus II-generated .vqm file or back-annotated location
assignments with physical synthesis optimizations unless you have finalized the
design. Making any changes to the design invalidates your physical synthesis results
and back-annotated location assignments. If you require changes later, use the new
source HDL code as your input files, and remove the back-annotated assignments
corresponding to the Quartus II-generated .vqm file.

To back-annotate logic locations for a design that was compiled with physical
synthesis optimizations, first create a .vqm file. When recompiling the design with the
hard logic location assignments, use the new .vqm file as the input source file and
turn off the physical synthesis optimizations for the new compilation.

If you are importing a .vqm file and back-annotated locations into another project that
has any Netlist Optimizations turned on, you must apply the Never Allow
constraint to make sure node names don’t change; otherwise, the back-annotated
location or LogicLock assignments are invalid.

1 For newer devices, such as the Arria, Cyclone, or Stratix series, use incremental
compilation to preserve compilation results instead of using logic back-annotation.

Physical Synthesis Options for Fitting
The Quartus II software provides physical synthesis optimization options for
improving fitting results. To access these options, perform the following steps:

1. On the Assignments menu, click Settings. The Settings dialog box appears.

2. In the Category list, select Physical Synthesis Optimizations under Compilation
Process Settings. The Physical Synthesis Optimizations page appears.

3. Under Optimize for fitting (physical synthesis for density), there are two physical
synthesis options available to improve fitting your design in the target device:
Physical synthesis for combinational logic and Perform logic to memory
mapping (Table 16–1).

h For more information about physical synthesis optimization options, refer to Physical
Synthesis Optimizations Page (Settings Dialog Box) in Quartus II Help.

Table 16–1. Physical Synthesis Optimizations Options

Option Function

Physical Synthesis for
Combinational Logic

When you select this option, the Fitter detects duplicate combinational logic and optimizes
combinational logic to improve the fit.

Perform Logic to Memory
Mapping

When you select this option, the Fitter can remap registers and combinational logic in your
design into unused memory blocks and achieves a fit.
November 2013 Altera Corporation Quartus II Handbook Version 13.1
Volume 2: Design Implementation and Optimization

http://quartushelp.altera.com/current/master.htm#mergedProjects/comp/comp/comp_tab_physical.htm
http://quartushelp.altera.com/current/master.htm#mergedProjects/comp/comp/comp_tab_physical.htm

16–12 Chapter 16: Netlist Optimizations and Physical Synthesis
Applying Netlist Optimization Options
Applying Netlist Optimization Options
The improvement in performance when using netlist optimizations is design
dependent. If you have restructured your design to balance critical path delays, netlist
optimizations might yield minimal improvement in performance. You may have to
experiment with available options to see which combination of settings works best for
a particular design. Refer to the messages in the compilation report to see the
magnitude of improvement with each option, and to help you decide whether you
should turn on a given option or specific effort level.

Turning on more netlist optimization options can result in more changes to the node
names in the design; bear this in mind if you are using a verification flow, such as the
SignalTap II Logic Analyzer or formal verification that requires fixed or known node
names.

Applying all of the physical synthesis options at the Extra effort level generally
produces the best results for those options, but adds significantly to the compilation
time. You can also use the Physical synthesis effort level options to decrease the
compilation time. The WYSIWYG primitive resynthesis option does not add much
compilation time relative to the overall design compilation time.

To find the best results, you can use the Quartus II Design Space Explorer (DSE) to
apply various sets of netlist optimization options.

h For more information about DSE, refer to About Design Space Explorer in Quartus II
Help.

Scripting Support
You can run procedures and make settings described in this chapter in a Tcl script.
You can also run some procedures at a command prompt. For detailed information
about scripting command options, refer to the Quartus II Command-Line and Tcl API
Help browser. To run the Help browser, type the following command at the command
prompt:

quartus_sh --qhelp r

f For more information about Tcl scripting, refer to the Tcl Scripting chapter in volume 2
of the Quartus II Handbook and API Functions for Tcl in Quartus II Help. Refer to the
Quartus II Settings File Manual for information about all settings and constraints in the
Quartus II software. For more information about command-line scripting, refer to the
Command-Line Scripting chapter in volume 2 of the Quartus II Handbook.

You can specify many of the options described in this section on either an instance or
global level, or both.

Use the following Tcl command to make a global assignment:

set_global_assignment -name <QSF variable name> <value> r
Use the following Tcl command to make an instance assignment:

set_instance_assignment -name <QSF variable name> <value> \
-to <instance name> r
Quartus II Handbook Version 13.1 November 2013 Altera Corporation
Volume 2: Design Implementation and Optimization

http://www.altera.com/literature/hb/qts/qts_qii52003.pdf
http://www.altera.com/literature/manual/mnl_qsf_reference.pdf
http://www.altera.com/literature/hb/qts/qts_qii52002.pdf
http://quartushelp.altera.com/current/master.htm#mergedProjects/tafs/tafs/tcl_list_of_packages.htm
http://quartushelp.altera.com/current/master.htm#mergedProjects/optimize/dse/dse_about_dse.htm

Chapter 16: Netlist Optimizations and Physical Synthesis 16–13
Scripting Support
Synthesis Netlist Optimizations
Table 16–2 lists the Quartus II Settings File (.qsf) variable names and applicable values
for the settings discussed in “WYSIWYG Primitive Resynthesis” on page 16–1. The
.qsf file variable name is used in the Tcl assignment to make the setting along with the
appropriate value. The Type column indicates whether the setting is supported as a
global setting, an instance setting, or both.

Physical Synthesis Optimizations
Table 16–3 lists the .qsf file variable name and applicable values for the settings
discussed in “Performing Physical Synthesis Optimizations” on page 16–3. The .qsf
file variable name is used in the Tcl assignment to make the setting, along with the
appropriate value. The Type column indicates whether the setting is supported as a
global setting, an instance setting, or both.

Table 16–2. Synthesis Netlist Optimizations and Associated Settings

Setting Name Quartus II Settings File Variable Name Values Type

Perform WYSIWYG
Primitive Resynthesis

ADV_NETLIST_OPT_SYNTH_WYSIWYG_
REMAP

ON, OFF Global,
Instance

Optimization
Technique

<Device Family Name>_
OPTIMIZATION_TECHNIQUE

AREA, SPEED,
BALANCED

Global,
Instance

Power-Up Don’t Care ALLOW_POWER_UP_DONT_CARE ON, OFF Global

Save a node-level
netlist into a
persistent source file

LOGICLOCK_INCREMENTAL_COMPILE_ASSIGNMENT ON, OFF
Global

LOGICLOCK_INCREMENTAL_COMPILE_FILE <file name>

Allow Netlist
Optimizations ADV_NETLIST_OPT_ALLOWED

"ALWAYS ALLOW",
DEFAULT, "NEVER
ALLOW"

Instance

Table 16–3. Physical Synthesis Optimizations and Associated Settings (Part 1 of 2)

Setting Name Quartus II Settings File Variable Name Values Type

Physical Synthesis
for Combinational
Logic

PHYSICAL_SYNTHESIS_COMBO_LOGIC ON, OFF Global

Automatic
Asynchronous Signal
Pipelining

PHYSICAL_SYNTHESIS_ASYNCHRONOUS_
SIGNAL_PIPELINING

ON, OFF Global

Perform Register
Duplication PHYSICAL_SYNTHESIS_REGISTER_DUPLICATION ON, OFF Global

Perform Register
Retiming PHYSICAL_SYNTHESIS_REGISTER_RETIMING ON, OFF Global

Power-Up Don’t Care ALLOW_POWER_UP_DONT_CARE ON, OFF Global,
Instance

Power-Up Level POWER_UP_LEVEL HIGH,LOW Instance
November 2013 Altera Corporation Quartus II Handbook Version 13.1
Volume 2: Design Implementation and Optimization

16–14 Chapter 16: Netlist Optimizations and Physical Synthesis
Conclusion
Incremental Compilation
For information about scripting and command line usage for incremental compilation
as mentioned in “Preserving Your Physical Synthesis Results” on page 16–10, refer to
the Quartus II Incremental Compilation for Hierarchical and Team-Based Design chapter in
volume 1 of the Quartus II Handbook.

Back-Annotating Assignments
You can use the logiclock_back_annotate Tcl command to back-annotate resources
in your design. This command can back-annotate resources in LogicLock regions, and
resources in designs without LogicLock regions.

For more information about back-annotating assignments, refer to “Preserving Your
Physical Synthesis Results” on page 16–10.

The following Tcl command back-annotates all registers in your design:

logiclock_back_annotate -resource_filter "REGISTER"

The logiclock_back_annotate command is in the backannotate package.

Conclusion
Physical synthesis optimizations restructure and optimize your design netlist. You
can take advantage of these Quartus II netlist optimizations to help improve your
quality of results.

Document Revision History
Table 16–4 shows the revision history for this chapter.

Allow Netlist
Optimizations ADV_NETLIST_OPT_ALLOWED

"ALWAYS
ALLOW",
DEFAULT,
"NEVER
ALLOW"

Instance

Save a node-level
netlist into a
persistent source file

LOGICLOCK_INCREMENTAL_COMPILE_ASSIGNMENT ON, OFF
Global

LOGICLOCK_INCREMENTAL_COMPILE_FILE <file name>

Table 16–3. Physical Synthesis Optimizations and Associated Settings (Part 2 of 2)

Setting Name Quartus II Settings File Variable Name Values Type

Table 16–4. Document Revision History (Part 1 of 2)

Date Version Changes

November 2013 13.1.0 Removed HardCopy device information.

June 2012 12.0.0 Removed survey link.

November 2011 10.0.2 Template update.

December 2010 10.0.1 Template update.
Quartus II Handbook Version 13.1 November 2013 Altera Corporation
Volume 2: Design Implementation and Optimization

http://www.altera.com/literature/hb/qts/qts_qii51015.pdf

Chapter 16: Netlist Optimizations and Physical Synthesis 16–15
Document Revision History
f For previous versions of the Quartus II Handbook, refer to the Quartus II Handbook
Archive.

July 2010 10.0.0

■ Added links to Quartus II Help in several sections.

■ Removed Referenced Documents section.

■ Reformatted Document Revision History

November 2009 9.1.0

■ Added information to “Physical Synthesis for Registers—Register Retiming”

■ Added information to “Applying Netlist Optimization Options”

■ Made minor editorial updates

March 2009 9.0.0

■ Was chapter 11 in the 8.1.0 release.

■ Updated the “Physical Synthesis for Registers—Register Retiming” and“Physical
Synthesis Options for Fitting”

■ Updated “Performing Physical Synthesis Optimizations”

■ Deleted Gate-Level Register Retiming section.

■ Updated the referenced documents

November 2008 8.1.0 Changed to 8½” × 11” page size. No change to content.

May 2008 8.0.0
■ Updated “Physical Synthesis Optimizations for Performance on page 11-9

■ Added Physical Synthesis Options for Fitting on page 11-16

Table 16–4. Document Revision History (Part 2 of 2)

Date Version Changes
November 2013 Altera Corporation Quartus II Handbook Version 13.1
Volume 2: Design Implementation and Optimization

http://www.altera.com/literature/lit-qts_archive.jsp
http://www.altera.com/literature/lit-qts_archive.jsp

© 2013 Altera Corporation. All rights reserved. ALTERA, ARRI
are trademarks of Altera Corporation and registered in the U.S
trademarks or service marks are the property of their respectiv
semiconductor products to current specifications in accordance
services at any time without notice. Altera assumes no respons
described herein except as expressly agreed to in writing by Al
on any published information and before placing orders for pr

Quartus II Handbook Version 13.1
Volume 2: Design Implementation and Optimization
November 2013
Section IV. Engineering Change
Management
Programmable logic can accommodate changes to a system specification late in the
design cycle. Last-minute design changes, commonly referred to as engineering
change orders (ECOs), are small changes to the functionality of a design after the
design has been fully compiled. This section describes how the Chip Planner feature
in the Quartus® II software supports ECOs by allowing quick and efficient changes to
your logic late in the design cycle.

This section includes the following chapter:

■ Chapter 17, Engineering Change Management with the Chip Planner

This chapter addresses the impact that ECOs have on the design cycle, discusses
the design flow for performing ECOs, and describes how you can use the Chip
Planner to perform ECOs.
A, CYCLONE, HARDCOPY, MAX, MEGACORE, NIOS, QUARTUS and STRATIX words and logos
. Patent and Trademark Office and in other countries. All other words and logos identified as
e holders as described at www.altera.com/common/legal.html. Altera warrants performance of its
 with Altera's standard warranty, but reserves the right to make changes to any products and
ibility or liability arising out of the application or use of any information, product, or service
tera. Altera customers are advised to obtain the latest version of device specifications before relying
oducts or services.

ISO
9001:2008
Registered

http://www.altera.com/common/legal.html
http://www.altera.com/support/devices/reliability/certifications/rel-certifications.html
http://www.altera.com/support/devices/reliability/certifications/rel-certifications.html

QII52017-12.0.0

© 2012 Altera Corporation. All rights reserved. ALTERA, ARRI
are trademarks of Altera Corporation and registered in the U.S
trademarks or service marks are the property of their respectiv
semiconductor products to current specifications in accordance
services at any time without notice. Altera assumes no respons
described herein except as expressly agreed to in writing by Al
on any published information and before placing orders for pr

Quartus II Handbook Version 13.1
Volume 2: Design Implementation and Optimization
June 2012

June 2012
QII52017-12.0.0
17. Engineering Change Management
with the Chip Planner
Programmable logic can accommodate changes to a system specification late in the
design cycle. In a typical engineering project development cycle, the specification of
the programmable logic portion is likely to change after engineering begins or while
integrating all system elements. Last-minute design changes, commonly referred to as
engineering change orders (ECOs), are small targeted changes to the functionality of a
design after the design has been fully compiled. This chapter discusses the design
flow for making ECOs, addresses the impact that ECOs have on the design cycle, and
describes how you can use the Chip Planner to make ECOs.

The Chip Planner supports ECOs by allowing quick and efficient changes to your
logic late in the design cycle. The Chip Planner provides a visual display of your
post-place-and-route design mapped to the device architecture of your chosen FPGA
and allows you to create, move, and delete logic cells and I/O atoms.

h For a list of supported devices, refer to About the Chip Planner in Quartus® II Help.

1 In addition to making ECOs, the Chip Planner allows you to perform detailed
analysis on routing congestion, relative resource usage, logic placement, LogicLock™
regions, fan-ins and fan-outs, paths between registers, and delay estimates for paths.

f For more information about using the Chip Planner for design analysis, refer to the
Analyzing and Optimizing the Design Floorplan chapter in volume 2 of the Quartus II
Handbook.

f ECOs directly apply to atoms in the target device. As such, performing an ECO relies
on your understanding of the device architecture of the target device. For more
information about the architecture of your device, refer to the appropriate device
handbook on the Literature page of the Altera website.

This chapter includes the following topics:

■ “Engineering Change Orders” on page 17–2

■ “ECO Design Flow” on page 17–4

■ “The Chip Planner Overview” on page 17–5

■ “Performing ECOs with the Chip Planner (Floorplan View)” on page 17–6

■ “Performing ECOs in the Resource Property Editor” on page 17–7

■ “Change Manager” on page 17–21

■ “Scripting Support” on page 17–22

■ “Common ECO Applications” on page 17–22
A, CYCLONE, HARDCOPY, MAX, MEGACORE, NIOS, QUARTUS and STRATIX words and logos
. Patent and Trademark Office and in other countries. All other words and logos identified as
e holders as described at www.altera.com/common/legal.html. Altera warrants performance of its
 with Altera's standard warranty, but reserves the right to make changes to any products and
ibility or liability arising out of the application or use of any information, product, or service
tera. Altera customers are advised to obtain the latest version of device specifications before relying
oducts or services.

Feedback SubscribeTwitter

ISO
9001:2008
Registered

https://www.altera.com/servlets/subscriptions/alert?id=QII52017
http://www.altera.com/common/legal.html
http://www.altera.com/literature/lit-index.html
http://www.altera.com/support/reliability/certifications/rel-certifications.html
http://www.altera.com/support/reliability/certifications/rel-certifications.html
http://quartushelp.altera.com/current/master.htm#mergedProjects/optimize/ace/acv_view_acv_overview.htm
http://twitter.com/home/?status=Engineering+Change+Management+with+the+Chip+Planner+http://www.altera.com/literature/hb/qts/qts_qii52017.pdf?WT.mc_id=gc_so_tw_st_tx_a_011+(via @alteracorp)+%23Altera
http://www.altera.com/literature/hb/qts/qts_qii52006.pdf
mailto:TechDocFeedback@altera.com?subject=Feedback on qts_qii52017-12.0 (QII HB, Vol2, Ch17: Engineering Change Management)

17–2 Chapter 17: Engineering Change Management with the Chip Planner
Engineering Change Orders
■ “Post ECO Steps” on page 17–27

Engineering Change Orders
In the context of an FPGA design, you can apply an ECO directly to a physical
resource on the device to modify its behavior. ECOs are typically made during the
verification stage of a design cycle. When a small change is required on a design (such
as modifying a PLL for a different clock frequency or routing a signal out to a pin for
analysis) recompilation of the entire design can be time consuming, especially for
larger designs. Because several iterations of small design changes can occur during
the verification cycle, recompilation times can quickly add up. Furthermore, a full
recompilation due to a small design change can result in the loss of previous design
optimizations. Making ECOs, instead of performing a full recompilation on your
design, limits the change only to the affected portions of logic.

This section discusses the areas in which ECOs have an impact on a system design
and how the Quartus II software can help you optimize the design in these areas. The
following topics are discussed in this section:

■ “Performance Preservation”

■ “Compilation Time”

■ “Verification”

■ “Change Modification Record”

Performance Preservation
You can preserve the results of previous design optimizations when you make
changes to an existing design with one of the following methods:

■ Incremental compilation

■ Rapid recompile

■ ECOs

Choose the method to modify your design based on the scope of the change. The
methods above are arranged from the larger scale change to the smallest targeted
change to a compiled design.

The incremental compilation feature allows you to preserve compilation results at an
RTL component or module level. After the initial compilation of your design, you can
assign modules in your design hierarchy to partitions. Upon subsequent
compilations, incremental compilation recompiles changed partitions based on the
chosen preservation levels.

The rapid recompilation feature leverages results from the latest post-fit netlist to
determine the changes required to honor modifications you have made to the source
code. If you turn on the rapid recompilation feature, the Compiler attempts to refit
only the portion of the netlist that is related to the code modification.

ECOs provide a finer granularity of control compared to the incremental compilation
and the rapid recompilation feature. All modifications are performed directly on the
architectural elements of the device. You should use ECOs for targeted changes to the
post-fit netlist.
Quartus II Handbook Version 13.1 June 2012 Altera Corporation
Volume 2: Design Implementation and Optimization

Chapter 17: Engineering Change Management with the Chip Planner 17–3
Engineering Change Orders
1 In the Quartus II software versions 10.0 and later, the software does not preserve ECO
modifications to the netlist when you recompile a design with the incremental
compilation feature turned on. You can reapply ECO changes made during a previous
compilation with the Change Manager.

f For more information about the incremental compilation feature, refer to the
Quartus II Incremental Compilation for Hierarchical and Team-Based Design chapter in
volume 1 of the Quartus II Handbook.

Compilation Time
In the traditional programmable logic design flow, a small change in the design
requires a complete recompilation of the design. A complete recompilation of the
design consists of synthesis and place-and-route. Making small changes to the design
to reach the final implementation on a board can be a long process. Because the Chip
Planner works only on the post-place-and-route database, you can implement your
design changes in minutes without performing a full compilation.

Verification
After you make a design change, you can verify the impact on your design. To verify
that your changes do not violate timing requirements, perform static timing analysis
with the Quartus II TimeQuest Timing Analyzer after you check and save your netlist
changes in the Chip Planner.

f For more information about the TimeQuest analyzer, refer to the Quartus II TimeQuest
Timing Analyzer chapter in volume 3 of the Quartus II Handbook.

Additionally, you can perform a gate-level or timing simulation of the ECO-modified
design with the post-place-and-route netlist generated by the Quartus II software.

Change Modification Record
All ECOs made with the Chip Planner are logged in the Change Manager to track all
changes. With the Change Manager, you can easily revert to the original post-fit netlist
or you can pick and choose which ECOs to apply.

Additionally, the Quartus II software provides support for multiple compilation
revisions of the same project. You can use ECOs made with the Chip Planner in
conjunction with revision support to compare several different ECO changes and
revert back to previous project revisions when required.
June 2012 Altera Corporation Quartus II Handbook Version 13.1
Volume 2: Design Implementation and Optimization

http://www.altera.com/literature/hb/qts/qts_qii51015.pdf
http://www.altera.com/literature/hb/qts/qts_qii51015.pdf
http://www.altera.com/literature/hb/qts/qts_qii53018.pdf
http://www.altera.com/literature/hb/qts/qts_qii53018.pdf

17–4 Chapter 17: Engineering Change Management with the Chip Planner
ECO Design Flow
ECO Design Flow
Figure 17–1 shows the design flow for making ECOs.

For iterative verification cycles, implementing small design changes at the netlist level
can be faster than making an RTL code change. As such, making ECO changes are
especially helpful when you debug the design on silicon and require a fast
turnaround time to generate a programming file for debugging the design.

Figure 17–1. Design Flow to Support ECOs

Verilog HDL
(.v)

VHDL
(.vhdl)

AHDL
(.tdf)

Block Design
file

(.bdf)

EDIF Netlist
(.edf)

VQM Netlist
(.vqm)

Partition Top

Partition 1

Partition 2

Analysis & Synthesis

Partition Merge
Create complete netlist using

appropriate source netlists for each
partition (post-fit or post-synthesis)

Fitter

Assembler

Timing Analyzer

Program/Configuration Device

System Test and Verify

Requirements
Satisfied?

yes

no

Recreate Programming File

Change Manager
Stores netlist

modification details

Modify
Logic cells, I/O cells,

PLL, Floorplan location
assignments in Chip Planner

Analysis and Synthesis Changes

Analysis and Synthesis Changes

Make design change
in your HDL

Make ECO
at Netlist level

no

Design Partition Assignment

ECO performs
partial refit
Quartus II Handbook Version 13.1 June 2012 Altera Corporation
Volume 2: Design Implementation and Optimization

Chapter 17: Engineering Change Management with the Chip Planner 17–5
The Chip Planner Overview
A typical ECO application occurs when you uncover a problem on the board and
isolate the problem to the appropriate nodes or I/O cells on the device. You must be
able to correct the functionality quickly and generate a new programming file. By
making small changes with the Chip Planner, you can modify the
post-place-and-route netlist directly without having to perform synthesis and logic
mapping, thus decreasing the turnaround time for programming file generation
during the verification cycle. If the change corrects the problem, no modification of
the HDL source code is necessary. You can use the Chip Planner to perform the
following ECO-related changes to your design:

■ Document the changes made with the Change Manager

■ Easily recreate the steps taken to produce design changes

■ Generate EDA simulation netlists for design verification

1 For more complex changes that require HDL source code modifications, the
incremental compilation feature can help reduce recompilation time.

The Chip Planner Overview
The Chip Planner provides a visual display of device resources. It shows the
arrangement and usage of the resource atoms in the device architecture that you are
targeting. Resource atoms are the building blocks for your device, such as ALMs, LEs,
PLLs, DSP blocks, memory blocks, or I/O elements.

The Chip Planner also provides an integrated platform for design analysis and for
making ECOs to your design after place-and-route. The toolset consists of the Chip
Planner (providing a device floorplan view of your mapped design) and two
integrated subtools—the Resource Property Editor and the Change Manager.

For analysis, the Chip Planner can show logic placement, LogicLock regions, relative
resource usage, detailed routing information, routing congestion, fan-ins and
fan-outs, paths between registers, and delay estimates for paths. Additionally, the
Chip Planner allows you to create location constraints or resource assignment
changes, such as moving or deleting logic cells or I/O atoms with the device
floorplan. For ECO changes, the Chip Planner enables you to create, move, or delete
logic cells in the post-place-and-route netlist for fast programming file generation.
Additionally, you can open the Resource Property Editor from the Chip Planner to
edit the properties of resource atoms or to edit the connections between resource
atoms. All changes to resource atoms and connections are logged automatically with
the Change Manager.

Opening the Chip Planner
To open the Chip Planner, on the Tools menu, click Chip Planner. Alternatively, click
the Chip Planner icon on the Quartus II software toolbar.

Optionally, you can open the Chip Planner by cross-probing from the shortcut menu
in the following tools:

■ Design Partition Planner

■ Compilation Report

■ LogicLock Regions window
June 2012 Altera Corporation Quartus II Handbook Version 13.1
Volume 2: Design Implementation and Optimization

17–6 Chapter 17: Engineering Change Management with the Chip Planner
Performing ECOs with the Chip Planner (Floorplan View)
■ Technology Map Viewer

■ Project Navigator window

■ RTL source code

■ Node Finder

■ Simulation Report

■ RTL Viewer

■ Report Timing panel of the TimeQuest Timing Analyzer

The Chip Planner Tasks and Layers
The Chip Planner allows you to set up tasks to quickly implement ECO changes or
manipulate assignments for the floorplan of the device. Each task consists of an
editing mode and a set of customized layer settings.

h For more information about tasks and layers in the Chip Planner, refer to About the
Chip Planner in Quartus II Help.

f For more information about creating assignments and performing analysis with the
Chip Planner, as well as the Chip Planner floorplan views, refer to the Analyzing and
Optimizing the Design Floorplan chapter in volume 2 of the Quartus II Handbook.

For more information about making ECOs with the ECO mode, refer to “Performing
ECOs with the Chip Planner (Floorplan View)” on page 17–6.

Performing ECOs with the Chip Planner (Floorplan View)
You can manipulate resource atoms in the Chip Planner when you select the ECO
editing mode. The following ECO changes can be made with the Chip Planner
Floorplan view:

■ Create atoms

■ Delete atoms

■ Move existing atoms

1 To configure the properties of atoms, such as managing the connections between
different LEs/ALMs, use the Resource Property Editor.

For more information about editing atom resource properties, refer to “Performing
ECOs in the Resource Property Editor” on page 17–7.

To select the ECO editing mode in the Chip Planner, in the Editing Mode list at the
top of the Chip Planner, select the ECO editing mode.
Quartus II Handbook Version 13.1 June 2012 Altera Corporation
Volume 2: Design Implementation and Optimization

http://quartushelp.altera.com/current/master.htm#mergedProjects/optimize/ace/acv_view_acv_overview.htm
http://quartushelp.altera.com/current/master.htm#mergedProjects/optimize/ace/acv_view_acv_overview.htm
http://www.altera.com/literature/hb/qts/qts_qii52006.pdf
http://www.altera.com/literature/hb/qts/qts_qii52006.pdf

Chapter 17: Engineering Change Management with the Chip Planner 17–7
Performing ECOs in the Resource Property Editor
Creating, Deleting, and Moving Atoms
You can use the Chip Planner to create, delete, and move atoms in the
post-compilation design.

h For more information about creating, deleting, and moving atoms, refer to Creating,
Deleting, and Moving Atoms in Quartus II Help.

Check and Save Netlist Changes
After making all the ECOs, you can run the Fitter to incorporate the changes by
clicking the Check and Save Netlist Changes icon in the Chip Planner toolbar. The
Fitter compiles the ECO changes, performs design rule checks on the design, and
generates a programming file.

Performing ECOs in the Resource Property Editor
You can view and edit the following resources with the Resource Property Editor:

■ “Logic Elements” on page 17–7

■ “Adaptive Logic Modules” on page 17–10

■ “FPGA I/O Elements” on page 17–12

■ “PLL Properties” on page 17–24

■ “FPGA RAM Blocks” on page 17–19

■ “FPGA DSP Blocks” on page 17–20

Logic Elements
An Altera® LE contains a four-input LUT, which is a function generator that can
implement any function of four variables. In addition, each LE contains a register fed
by the output of the LUT or by an independent function generated in another LE.

You can use the Resource Property Editor to view and edit any LE in the FPGA. To
open the Resource Property Editor for an LE, on the Project menu, point to Locate,
and then click Locate in Resource Property Editor in one of the following views:

■ RTL Viewer

■ Technology Map Viewer

■ Node Finder

■ Chip Planner

f For more information about LE architecture for a particular device family, refer to the
device family handbook or data sheet.

You can use the Resource Property Editor to change the following LE properties:

■ Data input to the LUT

■ LUT mask or LUT equation
June 2012 Altera Corporation Quartus II Handbook Version 13.1
Volume 2: Design Implementation and Optimization

http://quartushelp.altera.com/current/master.htm#mergedProjects/optimize/ace/acv_pro_create_atom.htm
http://quartushelp.altera.com/current/master.htm#mergedProjects/optimize/ace/acv_pro_create_atom.htm

17–8 Chapter 17: Engineering Change Management with the Chip Planner
Performing ECOs in the Resource Property Editor
Logic Element Schematic View
Figure 17–2 shows how the LE appears in the Resource Property Editor. By default,
the Quartus II software displays the used resources in blue and the unused resources
in gray.

Logic Element Properties
Figure 17–3 shows an example of the properties that can be viewed for a selected LE
in the Resource Property Editor. To view LE properties, on the View menu, click View
Properties.

Figure 17–2. Stratix LE Architecture (1)

Notes to Figure 17–2:

(1) For more information about the Stratix device’s LE architecture, refer to the Stratix Device Handbook.

Figure 17–3. LE Properties
Quartus II Handbook Version 13.1 June 2012 Altera Corporation
Volume 2: Design Implementation and Optimization

http://www.altera.com/literature/hb/stx/stratix_handbook.pdf

Chapter 17: Engineering Change Management with the Chip Planner 17–9
Performing ECOs in the Resource Property Editor
Modes of Operation
LUTs in an LE can operate in either normal or arithmetic mode.

When an LE is configured in normal mode, the LUT in the LE can implement a
function of four inputs.

When the LE is configured in arithmetic mode, the LUT in the LE is divided into two
3-input LUTs. The first LUT generates the signal that drives the output of the LUT,
while the second LUT generates the carry-out signal. The carry-out signal can drive
only a carry-in signal of another LE.

f For more information about LE modes of operation, refer to volume 1 of the
appropriate device handbook.

Sum and Carry Equations
You can change the logic function implemented by the LUT by changing the sum and
carry equations. When the LE is configured in normal mode, you can change only the
sum equation. When the LE is configured in arithmetic mode, you can change both
the sum and the carry equations.

The LUT mask is the hexadecimal representation of the LUT equation output. When
you change the LUT equation, the Quartus II software automatically changes the LUT
mask. Conversely, when you change the LUT mask, the Quartus II software
automatically computes the LUT equation.

sload and sclr Signals
Each LE register contains a synchronous load (sload) signal and a synchronous clear
(sclr) signal. You can invert either the sload or sclr signal feeding into the LE. If the
design uses the sload signal in an LE, the signal and its inversion state must be the
same for all other LEs in the same LAB. For example, if two LEs in a LAB have the
sload signal connected, both LEs must have the sload signal set to the same value.
This is also true for the sclr signal.

Register Cascade Mode
When register cascade mode is enabled, the cascade-in port feeds the input to the
register. The register cascade mode is used most often when the design implements
shift registers. You can change the register cascade mode by connecting (or
disconnecting) the cascade in the port. However, if you create this port, you must
ensure that the source port LE is directly above the destination LE.

Cell Delay Table
The cell delay table describes the propagation delay from all inputs to all outputs for
the selected LE.
June 2012 Altera Corporation Quartus II Handbook Version 13.1
Volume 2: Design Implementation and Optimization

17–10 Chapter 17: Engineering Change Management with the Chip Planner
Performing ECOs in the Resource Property Editor
Logic Element Connections
To view the connections that feed in and out of an LE, on the View menu, click View
Port Connections. Figure 17–4 shows the LE connections in the Connectivity window.

Delete a Logic Element
To delete an LE, follow these steps:

1. Right-click the desired LE in the Chip Planner, point to Locate, and click Locate in
Resource Property Editor.

2. You must remove all fan-out connections from an LE prior to deletion. To delete
fan-out connections, right-click each connected output signal, point to Remove,
and click Fanouts. Select all of the fan-out signals in the Remove Fan-outs dialog
box and click OK.

3. To delete an atom after all fan-out connections are removed, right-click the atom in
the Chip Planner and click Delete Atom.

Adaptive Logic Modules
Each ALM contains LUT-based resources that can be divided between two adaptive
LUTs (ALUTs). With up to eight inputs to the two ALUTs, each ALM can implement
various combinations of two functions. This adaptability allows the ALM to be
completely backward-compatible with four-input LUT architectures. One ALM can
implement any function with up to six inputs and certain seven-input functions. In
addition to the ALUT-based resources, each ALM contains two programmable
registers, two dedicated full adders, a carry chain, a shared arithmetic chain, and a
register chain. The ALM can efficiently implement various arithmetic functions and
shift registers with these dedicated resources.

You can implement the following types of functions in a single ALM:

■ Two independent 4-input functions

■ An independent 5-input function and an independent 3-input function

■ A 5-input function and a 4-input function, if they share one input

■ Two 5-input functions, if they share two inputs

■ An independent 6-input function

■ Two 6-input functions, if they share four inputs and share the same functions

Figure 17–4. View LE Connections
Quartus II Handbook Version 13.1 June 2012 Altera Corporation
Volume 2: Design Implementation and Optimization

Chapter 17: Engineering Change Management with the Chip Planner 17–11
Performing ECOs in the Resource Property Editor
■ Certain 7-input functions

You can use the Resource Property Editor to change the following ALM properties:

■ Data input to the LUT

■ LUT mask or LUT equation

Adaptive Logic Module Schematic
You can view and edit any ALM atom with the Resource Property Editor by
right-clicking the ALM in the RTL Viewer, the Node Finder, or the Chip Planner, and
clicking Locate in Resource Property Editor (Figure 17–5).

f For a detailed description of the ALM, refer to the device handbooks of devices based
on an ALM architecture.

Adaptive Logic Module Properties
The properties that you can display for the ALM include an equations table that
shows the name and location of each of the two combinational nodes and two register
nodes in the ALM, the individual LUT equations for each of the combinational nodes,
and the combout, sumout, carryout, and shareout equations for each combinational
node.

Figure 17–5. ALM Schematic (1)

Note to Figure 17–5:

(1) By default, the Quartus II software displays the used resources in blue and the unused in gray. For Figure 17–5, the used resources are in blue
and the unused resources are in gray.
June 2012 Altera Corporation Quartus II Handbook Version 13.1
Volume 2: Design Implementation and Optimization

17–12 Chapter 17: Engineering Change Management with the Chip Planner
Performing ECOs in the Resource Property Editor
Adaptive Logic Module Connections
On the View menu, click View Connectivity to view the input and output
connections for the ALM.

FPGA I/O Elements
Altera FPGAs that have high-performance I/O elements, including up to six registers,
are equipped with support for a number of I/O standards that allow you to run your
design at peak speeds. Use the Resource Property Editor to view, change connectivity,
and edit the properties of the I/O elements. Use the Chip Planner (Floorplan view) to
change placement, delete, and create new I/O elements.

f For a detailed description of the device I/O elements, refer to the applicable device
handbook.

You can change the following I/O properties:

■ Delay chain

■ Bus hold

■ Weak pull up

■ Slow slew rate

■ I/O standard

■ Current strength

■ Extend OE disable

■ PCI I/O

■ Register reset mode

■ Register synchronous reset mode

■ Register power up

■ Register mode

Stratix V I/O Elements
The I/O elements in Stratix® V devices contain a bidirectional I/O buffer and I/O
registers to support a complete embedded bidirectional single data rate (SDR) or
double data rate (DDR) transfer (shown in Figure 17–6).

I/O registers are composed of the input path for handling data from the pin to the
core, the output path for handling data from the core to the pin, and the output enable
path for handling the output enable signal to the output buffer. These registers allow
faster source-synchronous register-to-register transfers and resynchronization. The
input path consists of the DDR input registers, alignment and synchronization
registers, and half data rate blocks; you can bypass each block in the input path. The
input path uses the deskew delay to adjust the input register clock delay across
process, voltage, and temperature (PVT) variations.
Quartus II Handbook Version 13.1 June 2012 Altera Corporation
Volume 2: Design Implementation and Optimization

Chapter 17: Engineering Change Management with the Chip Planner 17–13
Performing ECOs in the Resource Property Editor
By default, the Quartus II software displays the used resources in blue and the unused
resources in gray.

f For more information about I/O elements in Stratix V devices, refer to the Stratix V
Device Handbook.

Figure 17–6. Stratix V Device I/O Element Structure
June 2012 Altera Corporation Quartus II Handbook Version 13.1
Volume 2: Design Implementation and Optimization

http://www.altera.com/literature/hb/stratix-v/stx5_5v1.pdf
http://www.altera.com/literature/hb/stratix-v/stx5_5v1.pdf

17–14 Chapter 17: Engineering Change Management with the Chip Planner
Performing ECOs in the Resource Property Editor
Arria GX, Stratix, Stratix II, and Stratix GX I/O Elements
The I/O elements in Arria® GX, Stratix, Stratix II, and Stratix GX devices contain a
bidirectional I/O buffer, six registers, and a latch for a complete bidirectional SDR or
DDR transfer.

Figure 17–7 shows the Stratix and Stratix GX I/O element structure. The I/O element
structure contains two input registers (plus a latch), two output registers, and two
output enable registers. By default, the Quartus II software displays the used
resources in blue and the unused resources in gray.

f For more information about I/O elements in Stratix and Stratix GX devices, refer to
the Stratix Device Handbook and the Stratix GX Device Handbook.

Figure 17–7. Stratix and Stratix GX Device I/O Element and Structure
Quartus II Handbook Version 13.1 June 2012 Altera Corporation
Volume 2: Design Implementation and Optimization

http://www.altera.com/literature/hb/stx/stratix_handbook.pdf
http://www.altera.com/literature/hb/sgx/sgx_handbook.pdf

Chapter 17: Engineering Change Management with the Chip Planner 17–15
Performing ECOs in the Resource Property Editor
Arria II GX, Stratix III, and Stratix IV I/O Elements
The I/O elements in Arria II GX, Stratix III, and Stratix IV devices contain a
bidirectional I/O buffer and I/O registers to support a complete embedded
bidirectional SDR or DDR transfer (shown in Figure 17–8). The I/O registers are
composed of the input path for handling data from the pin to the core, the output path
for handling data from the core to the pin, and the output enable path for handling the
output enable signal for the output buffer. Each path consists of a set of delay
elements that allow you to fine-tune the timing characteristics of each path for skew
management. By default, the Quartus II software displays the used resources in blue
and the unused resources in gray.

f For more information about I/O elements in Stratix III and Stratix IV devices, refer to
the Literature page of the Altera website.

f For more information about programmable I/O elements in Stratix III devices, refer to
AN 474: Implementing Stratix III Programmable I/O Delay Settings in the Quartus II
Software.

Figure 17–8. Stratix III Device I/O Element and Structure
June 2012 Altera Corporation Quartus II Handbook Version 13.1
Volume 2: Design Implementation and Optimization

http://www.altera.com/literature/lit-index.html
http://www.altera.com/literature/an/an474.pdf
http://www.altera.com/literature/an/an474.pdf

17–16 Chapter 17: Engineering Change Management with the Chip Planner
Performing ECOs in the Resource Property Editor
Cyclone and Cyclone II I/O Elements
The I/O elements in Cyclone® and Cyclone II devices contain a bidirectional I/O
buffer and three registers for complete bidirectional single data-rate transfer.
Figure 17–9 shows the Cyclone and Cyclone II I/O element structure. The I/O
element contains one input register, one output register, and one output enable
register. By default, the Quartus II software displays the used resources in blue and
the unused resources in gray.

f For more information about I/O elements in Cyclone II and Cyclone devices, refer to
the Cyclone II Device Handbook and Cyclone Device Handbook, respectively.

Figure 17–9. Cyclone and Cyclone II Device I/O Elements and Structure
Quartus II Handbook Version 13.1 June 2012 Altera Corporation
Volume 2: Design Implementation and Optimization

http://www.altera.com/literature/hb/cyc2/cyc2_cii5v1.pdf
http://www.altera.com/literature/hb/cyc/cyc_c5v1.pdf

Chapter 17: Engineering Change Management with the Chip Planner 17–17
Performing ECOs in the Resource Property Editor
Cyclone III I/O Elements
The I/O elements in Cyclone III devices contain a bidirectional I/O buffer and five
registers for complete embedded bidirectional single data rate transfer. Figure 17–10
shows the Cyclone III I/O element structure. The I/O element contains one input
register, two output registers, and two output-enable registers. The two output
registers and two output-enable registers are utilized for double-data rate (DDR)
applications. You can use the input registers for fast setup times and the output
registers for fast clock-to-output times. Additionally, you can use the output-enable
(OE) registers for fast clock-to-output enable timing. You can use I/O elements for
input, output, or bidirectional data paths. By default, the Quartus II software displays
the used resources in blue and the unused resources in gray.

f For more information about I/O elements in Cyclone III devices, refer to the
Cyclone III Device Handbook.

Figure 17–10. Cyclone III Device I/O Elements and Structure
June 2012 Altera Corporation Quartus II Handbook Version 13.1
Volume 2: Design Implementation and Optimization

http://www.altera.com/literature/hb/cyc3/cyclone3_handbook.pdf

17–18 Chapter 17: Engineering Change Management with the Chip Planner
Performing ECOs in the Resource Property Editor
MAX II I/O Elements
The I/O elements in MAX® II devices contain a bidirectional I/O buffer. Figure 17–11
shows the MAX II I/O element structure. You can drive registers from adjacent LABs
to or from the bidirectional I/O buffer of the I/O element. By default, the Quartus II
software displays the used resources in blue and the unused resources in gray.

f For more information about I/O elements in MAX II devices, refer to the MAX II
Device Handbook.

Figure 17–11. MAX II Device I/O Elements and Structure
Quartus II Handbook Version 13.1 June 2012 Altera Corporation
Volume 2: Design Implementation and Optimization

http://www.altera.com/literature/hb/max2/max2_mii5v1.pdf
http://www.altera.com/literature/hb/max2/max2_mii5v1.pdf

Chapter 17: Engineering Change Management with the Chip Planner 17–19
Performing ECOs in the Resource Property Editor
FPGA RAM Blocks
With the Resource Property Editor, you can view the architecture of different RAM
blocks in the device, modify the input and output registers to and from the RAM
blocks, and modify the connectivity of the input and output ports. Figure 17–12
shows an M9K RAM view in a Stratix III device.

Figure 17–12. M9K RAM View in a Stratix III Device (1)

Note to Figure 17–12:

(1) By default, the Quartus II software displays the used resources in blue and the unused resources in gray. In Figure 17–12, the used resources are
in blue and the unused resources are in gray.
June 2012 Altera Corporation Quartus II Handbook Version 13.1
Volume 2: Design Implementation and Optimization

17–20 Chapter 17: Engineering Change Management with the Chip Planner
Performing ECOs in the Resource Property Editor
FPGA DSP Blocks
Dedicated hardware DSP circuit blocks in Altera devices provide performance
benefits for the critical DSP functions in your design. The Resource Property Editor
allows you to view the architecture of DSP blocks in the Resource Property Editor for
the Cyclone and Stratix series of devices. The Resource Property Editor also allows
you to modify the signal connections to and from the DSP blocks and modify the
input and output registers to and from the DSP blocks.

Figure 17–13 shows the DSP architecture in a Stratix III device.

Figure 17–13. DSP Block View in a Stratix III Device (1)

Note to Figure 17–13:

(1) By default, the Quartus II software displays the used resources in blue and the unused resources in gray. In Figure 17–13, the used resources are
in blue and the unused resources are in red.
Quartus II Handbook Version 13.1 June 2012 Altera Corporation
Volume 2: Design Implementation and Optimization

Chapter 17: Engineering Change Management with the Chip Planner 17–21
Change Manager
Change Manager
The Change Manager maintains a record of every change you perform with the Chip
Planner, the Resource Property Editor, the SignalProbe feature, or a Tcl script. Each
row of data in the Change Manager represents one ECO.

The Change Manager allows you to apply changes, roll back changes, delete changes,
and export change records to a Text File (.txt), a Comma-Separated Value File (.csv),
or a Tcl Script File (.tcl). The Change Manager tracks dependencies between changes,
so that when you apply, roll back, or delete a change, any prerequisite or dependent
changes are also applied, rolled back, or deleted.

h For more information about the Change Manager, refer to About the Change Manager in
Quartus II Help.

Complex Changes in the Change Manager
Certain changes (including creating or deleting atoms and changing connectivity) can
appear to be self-contained, but are actually composed of multiple actions. The
Change Manager marks such complex changes with a plus icon in the Index column.

You can click the plus icon to expand the change record and show all the component
actions preformed as part of that complex change.

h For more information about complex change records and about managing changes
with the Change Manager, refer to Examples of Managing Changes With the Change
Manager in Quartus II Help.

Managing SignalProbe Signals
The SignalProbe pins that you create from the SignalProbe Pins dialog box are
recorded in the Change Manager. After you have made a SignalProbe assignment,
you can use the Change Manager to quickly disable SignalProbe assignments by
selecting Revert to Last Saved Netlist on the shortcut menu in the Change Manager.

f For more information about SignalProbe pins, refer to the Quick Design Debugging
Using SignalProbe chapter in volume 3 of the Quartus II Handbook.

Exporting Changes
You can export changes to a .txt, a .csv, or a .tcl. Tcl scripts allow you to reapply
changes that were deleted during compilation.

h For more information about exporting changes, refer to Managing Changes With the
Change Manager in Quartus II Help.

f For more information about netlist types and the Quartus II incremental compilation
feature, refer to the Quartus II Incremental Compilation for Hierarchical and Team-Based
Design chapter in volume 1 of the Quartus II Handbook.
June 2012 Altera Corporation Quartus II Handbook Version 13.1
Volume 2: Design Implementation and Optimization

http://quartushelp.altera.com/current/master.htm#mergedProjects/optimize/ace/eco_pro_launching_eco.htm
http://quartushelp.altera.com/current/master.htm#mergedProjects/optimize/ace/eco_pro_launching_eco.htm
http://quartushelp.altera.com/current/master.htm#mergedProjects/optimize/ace/eco_ex_change_manager_usage.htm
http://quartushelp.altera.com/current/master.htm#mergedProjects/optimize/ace/eco_ex_change_manager_usage.htm
http://quartushelp.altera.com/current/master.htm#mergedProjects/optimize/ace/eco_view_eco_overview.htm
http://www.altera.com/literature/hb/qts/qts_qii51015.pdf
http://www.altera.com/literature/hb/qts/qts_qii51015.pdf
http://www.altera.com/literature/hb/qts/qts_qii53008.pdf
http://www.altera.com/literature/hb/qts/qts_qii53008.pdf

17–22 Chapter 17: Engineering Change Management with the Chip Planner
Scripting Support
Scripting Support
You can run procedures and make settings described in this chapter in a Tcl script.
You can also run some procedures at a command prompt. The Tcl commands for
controlling the Chip Planner are located in the chip_planner package of the
quartus_cdb executable.

h A comprehensive list of Tcl commands for the Chip Planner can be found in About
Quartus II Scripting in Quartus II Help.

f For more information about Tcl scripting, refer to the Tcl Scripting chapter in volume 2
of the Quartus II Handbook. For more information about all settings and constraints in
the Quartus II software, refer to the Quartus II Settings File Manual. For more
information about command-line scripting, refer to the Command-Line Scripting
chapter in volume 2 of the Quartus II Handbook.

Common ECO Applications
This section provides examples of how you might use an ECO to make a
post-compilation change to your design. To help build your system quickly, you can
use Chip Planner functions to perform the following activities:

■ Adjust the drive strength of an I/O with the Chip Planner

■ Modify the PLL properties with the Resource Property Editor (see “Modify the
PLL Properties With the Chip Planner” on page 17–23)

■ Modify the connectivity between new resource atoms with the Chip Planner and
Resource Property Editor

Adjust the Drive Strength of an I/O with the Chip Planner
To adjust the drive strength of an I/O, follow the steps in this section to incorporate
the ECO changes into the netlist of the design.
Quartus II Handbook Version 13.1 June 2012 Altera Corporation
Volume 2: Design Implementation and Optimization

http://quartushelp.altera.com/current/master.htm#mergedProjects/reference/scripting/tcl_view_using_tcl_scripts.htm
http://quartushelp.altera.com/current/master.htm#mergedProjects/reference/scripting/tcl_view_using_tcl_scripts.htm
http://www.altera.com/literature/hb/qts/qts_qii52003.pdf
http://www.altera.com/literature/manual/mnl_qsf_reference.pdf
http://www.altera.com/literature/hb/qts/qts_qii52002.pdf

Chapter 17: Engineering Change Management with the Chip Planner 17–23
Common ECO Applications
1. In the Editing Mode list at the top of the Chip Planner, select the ECO editing
mode.

2. Locate the I/O in the Resource Property Editor, as shown in Figure 17–14.

3. In the Resource Property Editor, point to the Current Strength option in the
Properties pane and double-click the value to enable the drop-down list.

4. Change the value for the Current Strength option.

5. Right-click the ECO change in the Change Manager and click Check & Save All
Netlist Changes to apply the ECO change.

1 You can change the pin locations of input or output ports with the ECO flow. You can
drag and move the signal from an existing pin location to a new location while in the
Post Compilation Editing (ECO) task in the Chip Planner. You can then click Check &
Save All Netlist Changes to compile the ECO.

Modify the PLL Properties With the Chip Planner
You use PLLs to modify and generate clock signals to meet design requirements.
Additionally, you can use PLLs to distribute clock signals to different devices in a
design, reducing clock skew between devices, improving I/O timing, and generating
internal clock signals.

Figure 17–14. I/O in the Resource Property Editor
June 2012 Altera Corporation Quartus II Handbook Version 13.1
Volume 2: Design Implementation and Optimization

17–24 Chapter 17: Engineering Change Management with the Chip Planner
Common ECO Applications
The Resource Property Editor allows you to view and modify PLL properties to meet
your design requirements. Using the Stratix PLL as an example, the rest of this section
describes the adjustable PLL properties and the equations as a function of the
adjustable PLL properties that govern the PLL output parameters.

Figure 17–15 shows a Stratix PLL in the Resource Property Editor.

PLL Properties
The Resource Property Editor allows you to modify PLL options, such as phase shift,
output clock frequency, and duty cycle. You can also change the following PLL
properties with the Resource Property Editor:

■ Input frequency

■ M VCO tap

■ M initial

■ M value

■ N value

■ M counter delay

■ N counter delay

Figure 17–15. PLL View in a Stratix Device
Quartus II Handbook Version 13.1 June 2012 Altera Corporation
Volume 2: Design Implementation and Optimization

Chapter 17: Engineering Change Management with the Chip Planner 17–25
Common ECO Applications
■ M2 value

■ N2 value

■ SS counter

■ Charge pump current

■ Loop filter resistance

■ Loop filter capacitance

■ Counter delay

■ Counter high

■ Counter low

■ Counter mode

■ Counter initial

■ VCO tap

You can also view post-compilation PLL properties in the Compilation Report. To do
so, in the Compilation Report, select Fitter and then select Resource Section.

Adjusting the Duty Cycle
Use Equation 17–1 to adjust the duty cycle of individual output clocks.

Adjusting the Phase Shift
Use Equation 17–2 to adjust the phase shift of an output clock of a PLL.

For normal mode, Tap VCO, Initial VCO, and Period VCO are governed by the following
settings:

For external feedback mode, Tap VCO, Initial VCO, and Period VCO are governed by the
following settings:

Equation 17–1.

Equation 17–2.

High % Counter High
Counter High Counter Low+()

---=

Phase Shift Period VCO 0.125 Tap VCO××() Initial VCO Period VCO×()+=

Tap VCO Counter Delay M Tap VCO–=

Initial VCO Counter Initial M Initial–=

Period VCO In Clock Period N× M÷=

Tap VCO Counter Delay M Tap VCO–=

Initial VCO Counter Initial M Initial–=

Period VCO
In Clock Period N×

M Counter High Counter Low+ +()
---=
June 2012 Altera Corporation Quartus II Handbook Version 13.1
Volume 2: Design Implementation and Optimization

17–26 Chapter 17: Engineering Change Management with the Chip Planner
Common ECO Applications
f For a detailed description of the settings, refer to the Quartus II Help. For more
information about Stratix device PLLs, refer to the Stratix Architecture chapter in
volume 1 of the Stratix Device Handbook. For more information about PLLs in
Arria GX, Cyclone, Cyclone II, and Stratix II devices, refer to the appropriate device
handbook.

Adjusting the Output Clock Frequency
Use Equation 17–3 to adjust the PLL output clock in normal mode.

Use Equation 17–4 to adjust the PLL output clock in external feedback mode.

Adjusting the Spread Spectrum
Use Equation 17–5 to adjust the spread spectrum for your PLL.

Modify the Connectivity between Resource Atoms
The Chip Planner and Resource Property Editor allow you to create new resource
atoms and manipulate the existing connection between resource atoms in the post-fit
netlist. These features are useful for small changes when you are debugging a design,
such as manually inserting pipeline registers into a combinational path that fails
timing, or routing a signal to a spare I/O pin for analysis. Use the following
procedure to create a new register in a Cyclone III device and route register output to
a spare I/O pin. This example illustrates how to create a new resource atom and
modify the connections between resource atoms.

To create new resource atoms and manipulate the existing connection between
resource atoms in the post-fit netlist, follow these steps:

1. Create a new register in the Chip Planner.

2. Locate the atom in the Resource Property Editor.

3. To assign a clock signal to the register, right-click the clock input port for the
register, point to Edit connection, and click Other. Use the Node Finder to assign a
clock signal from your design.

4. To tie the SLOAD input port to VCC, right-click the clock input port for the register,
point to Edit connection, and click VCC.

Equation 17–3.

Equation 17–4.

Equation 17–5.

Output Clock Frequency Input Frequency M value
N Value Counter High Counter Low+ +
---•=

OUTCLK M value External Feedback Counter High External Feedback Counter Low+ +
N value Counter High Counter Low+ +

---=

% spread
M2N1
M1N2
---------------=
Quartus II Handbook Version 13.1 June 2012 Altera Corporation
Volume 2: Design Implementation and Optimization

http://www.altera.com/literature/hb/stx/stratix_handbook.pdf

Chapter 17: Engineering Change Management with the Chip Planner 17–27
Post ECO Steps
5. Assign a data signal from your design to the SDATA port.

6. In the Connectivity window, under the output port names, copy the port name of
the register.

7. In the Chip Planner, locate a free I/O resource and create an output buffer.

8. Locate the new I/O atom in the Resource Property Editor.

9. On the input port to the output buffer, right-click, point to Edit connection, and
click Other.

10. In the Edit Connection dialog box, type the output port name of the register you
have created.

11. Run the ECO Fitter to apply the changes by clicking Check and Save Netlist
Changes.

1 A successful ECO connection is subject to the available routing resources. You can
view the relative routing utilization by selecting Routing Utilization as the
Background Color Map in the Layers Settings dialog box of the Chip Planner. Also,
you can view individual routing channel utilization from local, row, and column
interconnects with the tooltips created when you position your mouse pointer over
the appropriate resource. Refer to the device data sheet for more information about
the architecture of the routing interconnects of your device.

Post ECO Steps
After you make an ECO change with the Chip Planner, you must perform static
timing analysis of your design with the TimeQuest analyzer to ensure that your
changes did not adversely affect the timing performance of your design.

For example, when you turn on one of the delay chain settings for a specific pin, you
change the I/O timing. Therefore, to ensure that the design still meets all timing
requirements, you should perform static timing analysis.

f For more information about performing a static timing analysis of your design, refer
to The Quartus II TimeQuest Timing Analyzer chapter in volume 3 of the Quartus II
Handbook.

Conclusion
The Chip Planner allows you to analyze and modify your design floorplan. Also, ECO
changes made with the Chip Planner do not require a full recompilation, eliminating
the lengthy process of RTL modification, resynthesis, and another place-and-route
cycle. In summary, the Chip Planner speeds design verification and timing closure.
June 2012 Altera Corporation Quartus II Handbook Version 13.1
Volume 2: Design Implementation and Optimization

http://www.altera.com/literature/hb/qts/qts_qii53018.pdf

17–28 Chapter 17: Engineering Change Management with the Chip Planner
Document Revision History
Document Revision History
Table 17–1 shows the revision history for this chapter.

f For previous versions of the Quartus II Handbook, refer to the Quartus II Handbook
Archive.

Table 17–1. Document Revision History

Date Version Changes

June 2012 12.0.0 Removed survey link.

November 2011 10.1.1 Template update.

December 2010 10.1.0

■ Updated chapter to new template

■ Removed “The Chip Planner FloorPlan Views” section

■ Combined “Creating Atoms”, “Deleting Atoms”, and “Moving Atoms” sections, and linked
to Help.

■ Added Stratix V I/O elements in “FPGA I/O Elements” on page 17–12.

July 2010 10.0.0

■ Added information to page 17–1.

■ Added information to “Engineering Change Orders” on page 17–2.

■ Changed heading from “Performance” to “Performance Preservation” on page 17–2.

■ Updated information in “Performance Preservation” on page 17–2.

■ Changed heading from “Documentation” to “Change Modification Record” on page 17–3.

■ Changed heading from “Resource Property Editor” to “Performing ECOs in the Resource
Property Editor” on page 17–15.

■ Removed “Using Incremental Compilation in the ECO Flow” section. Preservation support
for ECOs with the incremental compilation flow has been removed in the Quartus II
software version 10.0.

■ Removed “Referenced Documents” section.

November 2009 9.1.0
■ Updated device support list

■ Made minor editorial updates

March 2009 9.0.0

■ Updated Figure 17–17.

■ Made minor editorial updates.

■ Chapter 15 was previously Chapter 13 in the 8.1.0 release.

November 2008 8.1.0

■ Corrected preservation attributes for ECOs in the section “Using Incremental Compilation
in the ECO Flow” on page 15–32.

■ Minor editorial updates.

■ Changed to 8½” x 11” page size.

May 2008 8.0.0

■ Updated device support list

■ Modified description for ECO support for block RAMs and DSP blocks

■ Corrected Stratix PLL ECO example

■ Added an application example to show modifying the connectivity between resource
atoms
Quartus II Handbook Version 13.1 June 2012 Altera Corporation
Volume 2: Design Implementation and Optimization

http://www.altera.com/literature/lit-qts_archive.jsp
http://www.altera.com/literature/lit-qts_archive.jsp

November 2013 Altera Corporation
Additional Information
This chapter provides additional information about the document and Altera.

About this Handbook
This handbook provides comprehensive information about the current version of the
Altera® Quartus® II design software.

How to Contact Altera
To locate the most up-to-date information about Altera products, refer to the
following table.

Third-Party Software Product Information
Third-party software products described in this handbook are not Altera products, are
licensed by Altera from third parties, and are subject to change without notice.
Updates to these third-party software products may not be concurrent with Quartus II
software releases. Altera has assumed responsibility for the selection of such
third-party software products and its use in the Quartus II 12.0 software release. To
the extent that the software products described in this handbook are derived from
third-party software, no third party warrants the software, assumes any liability
regarding use of the software, or undertakes to furnish you any support or
information relating to the software. EXCEPT AS EXPRESSLY SET FORTH IN THE
APPLICABLE ALTERA PROGRAM LICENSE SUBSCRIPTION AGREEMENT
UNDER WHICH THIS SOFTWARE WAS PROVDED TO YOU, ALTERA AND
THIRD-PARTY LICENSORS DISCLAIM ALL WARRANTIES WITH RESPECT TO
THE USE OF SUCH THIRD-PARTY SOFTWARE CODE OR DOCUMENTATION IN
THE SOFTWARE, INCLUDING, WITHOUT LIMITATION, ANY WARRANTIES OF
MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE, TITLE, AND
NONINFRINGEMENT. For more information, including the latest available version
of specific third-party software products, refer to the documentation for the software
in question.

Contact (1) Contact Method Address

Technical support Website www.altera.com/support

Technical training
Website www.altera.com/training

Email custrain@altera.com

Product literature Website www.altera.com/literature

Nontechnical support (general) Email nacomp@altera.com

(software licensing) Email authorization@altera.com

Note to Table:

(1) You can also contact your local Altera sales office or sales representative.
Quartus II Handbook Version 13.1
Volume 2: Design Implementation and Optimization

http://www.altera.com/support
http://www.altera.com/training
mailto:custrain@altera.com
http://www.altera.com/literature/
mailto:nacomp@altera.com
mailto:authorization@altera.com

Info–2 Additional Information
Typographic Conventions
Typographic Conventions
The following table shows the typographic conventions this document uses.

Visual Cue Meaning

Bold Type with Initial Capital
Letters

Indicate command names, dialog box titles, dialog box options, and other GUI
labels. For example, Save As dialog box. For GUI elements, capitalization matches
the GUI.

bold type
Indicates directory names, project names, disk drive names, file names, file name
extensions, software utility names, and GUI labels. For example, \qdesigns
directory, D: drive, and chiptrip.gdf file.

Italic Type with Initial Capital Letters Indicate document titles. For example, Stratix IV Design Guidelines.

italic type
Indicates variables. For example, n + 1.

Variable names are enclosed in angle brackets (< >). For example, <file name> and
<project name>.pof file.

Initial Capital Letters Indicate keyboard keys and menu names. For example, the Delete key and the
Options menu.

“Subheading Title” Quotation marks indicate references to sections in a document and titles of
Quartus II Help topics. For example, “Typographic Conventions.”

Courier type

Indicates signal, port, register, bit, block, and primitive names. For example, data1,
tdi, and input. The suffix n denotes an active-low signal. For example, resetn.

Indicates command line commands and anything that must be typed exactly as it
appears. For example, c:\qdesigns\tutorial\chiptrip.gdf.

Also indicates sections of an actual file, such as a Report File, references to parts of
files (for example, the AHDL keyword SUBDESIGN), and logic function names (for
example, TRI).

r An angled arrow instructs you to press the Enter key.

1., 2., 3., and
a., b., c., and so on

Numbered steps indicate a list of items when the sequence of the items is important,
such as the steps listed in a procedure.

■ ■ ■ Bullets indicate a list of items when the sequence of the items is not important.

1 The hand points to information that requires special attention.

h The question mark directs you to a software help system with related information.

f The feet direct you to another document or website with related information.

m The multimedia icon directs you to a related multimedia presentation.

c A caution calls attention to a condition or possible situation that can damage or
destroy the product or your work.

w A warning calls attention to a condition or possible situation that can cause you
injury.

The envelope links to the Email Subscription Management Center page of the Altera
website, where you can sign up to receive update notifications for Altera documents.

The feedback icon allows you to submit feedback to Altera about the document.
Methods for collecting feedback vary as appropriate for each document.

The social media icons allow you to inform others about Altera documents. Methods
for submitting information vary as appropriate for each medium.
Quartus II Handbook Version 13.1 November 2013 Altera Corporation
Volume 2: Design Implementation and Optimization

https://www.altera.com/subscriptions/email/signup/eml-index.jsp

101 Innovation Drive
San Jose, CA 95134
www.altera.com

QII5V3-13.1.0

Volume 3: Verification

Quartus II Handbook Version 13.1

http://www.altera.com

© 2013 Altera Corporation. All rights reserved. ALTERA, ARRIA, CYCLONE, HARDCOPY, MAX, MEGACORE, NIOS, QUARTUS and STRATIX words and logos
are trademarks of Altera Corporation and registered in the U.S. Patent and Trademark Office and in other countries. All other words and logos identified as
trademarks or service marks are the property of their respective holders as described at www.altera.com/common/legal.html. Altera warrants performance of its
semiconductor products to current specifications in accordance with Altera's standard warranty, but reserves the right to make changes to any products and
services at any time without notice. Altera assumes no responsibility or liability arising out of the application or use of any information, product, or service
described herein except as expressly agreed to in writing by Altera. Altera customers are advised to obtain the latest version of device specifications before relying
on any published information and before placing orders for products or services.

November 2013 Altera Corporation Quartus II Handbook Version 13.1
Volume 3: Verification

ISO
9001:2008
Registered

http://www.altera.com/common/legal.html
http://www.altera.com/support/devices/reliability/certifications/rel-certifications.html
http://www.altera.com/support/devices/reliability/certifications/rel-certifications.html

November 2013 Altera Corporation
Chapter Revision Dates
The Quartus II Handbook Volume 3: Verification was revised on the following dates.

Chapter 1. Simulating Altera Designs
Revised: May 2013
Part Number: QII53025-13.0.0

Chapter 2. Mentor Graphics ModelSim and QuestaSim Support
Revised: November 2012
Part Number: QII53001-12.1.0

Chapter 3. Synopsys VCS and VCS MX Support
Revised: November 2012
Part Number: QII53002-12.1.0

Chapter 4. Cadence Incisive Enterprise Simulator Support
Revised: May 2013
Part Number: QII53003-13.0.0

Chapter 5. Aldec Active-HDL and Riviera-PRO Support
Revised: November 2012
Part Number: QII53023-12.1.0

Chapter 6. Timing Analysis Overview
Revised: June 2012
Part Number: QII53030-12.0.0

Chapter 7. The Quartus II TimeQuest Timing Analyzer
Revised: November 2013
Part Number: QII53018-13.1.0

Chapter 8. PowerPlay Power Analysis
Revised: November 2013
Part Number: QII53013-13.1.0

Chapter 9. System Debugging Tools Overview
Revised: November 2013
Part Number: QII53027-13.1.0

Chapter 10. Analyzing and Debugging Designs with the System Console
Revised: November 2013
Part Number: QII53028-13.1.0

Chapter 11. Debugging Transceiver Links
Revised: November 2013
Part Number: QII53029-13.1.0

Chapter 12. Quick Design Debugging Using SignalProbe
Revised: May 2013
Part Number: QII53008-13.0.0
Quartus II Handbook Version 13.1
Volume 3: Verification

iv Chapter Revision Dates
Chapter 13. Design Debugging Using the SignalTap II Logic Analyzer
Revised: November 2013
Part Number: QII53009-13.1.0

Chapter 14. In-System Debugging Using External Logic Analyzers
Revised: June 2012
Part Number: QII53016-12.0.0

Chapter 15. In-System Modification of Memory and Constants
Revised: June 2012
Part Number: QII53012-12.0.0

Chapter 16. Design Debugging Using In-System Sources and Probes
Revised: June 2012
Part Number: QII53021-12.0.0

Chapter 17. Cadence Encounter Conformal Support
Revised: November 2013
Part Number: QII53011-13.1.0

Chapter 18. Quartus II Programmer
Revised: November 2013
Part Number: QII53022-13.1.0
Quartus II Handbook Version 13.1 November 2013 Altera Corporation
Volume 3: Verification

© 2013 Altera Corporation. All rights reserved. ALTERA, ARRI
are trademarks of Altera Corporation and registered in the U.S
trademarks or service marks are the property of their respectiv
semiconductor products to current specifications in accordance
services at any time without notice. Altera assumes no respons
described herein except as expressly agreed to in writing by Al
on any published information and before placing orders for pr

Quartus II Handbook Version 13.1
Volume 3: Verification
November 2013
Section I. Simulation
As the design complexity of FPGAs continues to rise, accurate simulation is critical to
your overall design efficiency. The Quartus II software provides a wide range of
features that support RTL and gate-level simulation in industry standard EDA
simulators.

This section includes the following chapters:

■ Chapter 1, Simulating Altera Designs

This chapter provides general guidelines to help you simulate Altera® designs in
EDA simulators.

■ Chapter 2, Mentor Graphics ModelSim and QuestaSim Support

This chapter provides specific guidelines for simulation of Quartus® II designs
with Mentor Graphics® ModelSim-Altera®, ModelSim, or QuestaSim software.

■ Chapter 3, Synopsys VCS and VCS MX Support

This chapter provides specific guidelines for simulation of Quartus® II designs
with the Synopsys VCS or VCS MX software.

■ Chapter 4, Cadence Incisive Enterprise Simulator Support

This chapter provides specific guidelines for simulation of Quartus® II designs
with the Cadence Incisive Enterprise (IES) software.

■ Chapter 5, Aldec Active-HDL and Riviera-PRO Support

This chapter provides specific guidelines for simulation of Quartus® II designs
with the Aldec Active-HDL or Riviera-PRO software.
A, CYCLONE, HARDCOPY, MAX, MEGACORE, NIOS, QUARTUS and STRATIX words and logos
. Patent and Trademark Office and in other countries. All other words and logos identified as
e holders as described at www.altera.com/common/legal.html. Altera warrants performance of its
with Altera's standard warranty, but reserves the right to make changes to any products and

ibility or liability arising out of the application or use of any information, product, or service
tera. Altera customers are advised to obtain the latest version of device specifications before relying
oducts or services.

ISO
9001:2008
Registered

http://www.altera.com/common/legal.html
http://www.altera.com/support/devices/reliability/certifications/rel-certifications.html
http://www.altera.com/support/devices/reliability/certifications/rel-certifications.html

QII53025-13.0.0

© 2013 Altera Corporation. All rights reserved. ALTERA, ARRI
are trademarks of Altera Corporation and registered in the U.S
trademarks or service marks are the property of their respectiv
semiconductor products to current specifications in accordance
services at any time without notice. Altera assumes no respons
described herein except as expressly agreed to in writing by Al
on any published information and before placing orders for pr

Quartus II Handbook Version 13.1
Volume 3: Verification
May 2013

May 2013
QII53025-13.0.0
1. Simulating Altera Designs
This document describes simulating designs that target Altera® devices. Simulation
verifies design behavior before device programming. The Quartus® II software
supports RTL and gate level design simulation in third-party EDA simulators.

Altera Simulation Overview
Simulation involves setting up your simulator working environment, compiling
simulation model libraries, and running your simulation. Generate simulation files in
an automated or custom flow. Refer to Figure 1–1 and Table 1–3.

You can use the Quartus II NativeLink feature to automatically generate simulation
files and scripts. NativeLink can launch your simulator a from within the Quartus II
software. Use a custom flow for more control over all aspects of simulation file
generation.

Figure 1–1. Simulation in Quartus II Design Flow

(1) Timing simulation is not supported for Arria® V, Cyclone® V, Stratix® V, and newer families.

Post-fit timing
 simulation netlist (1) Post-fit timing

 simulation (3)

Post-fit functional
simulation netlist

Post-fit functional
simulation

Analysis & Synthesis

Fitter
(place-and-route)

TimeQuest Timing Analyzer

Device Programmer

Quartus II
Design Flow

Gate-Level Simulation

Post-synthesis
functional
simulation

Post-synthesis functional
 simulation netlist

(Optional) Post-fit
 timing simulation

RTL Simulation

Design Entry
(HDL, Qsys, DSP Builder)

Altera Simulation
Models

EDA
 Netlist
 Writer
A, CYCLONE, HARDCOPY, MAX, MEGACORE, NIOS, QUARTUS and STRATIX words and logos
. Patent and Trademark Office and in other countries. All other words and logos identified as
e holders as described at www.altera.com/common/legal.html. Altera warrants performance of its
 with Altera's standard warranty, but reserves the right to make changes to any products and
ibility or liability arising out of the application or use of any information, product, or service
tera. Altera customers are advised to obtain the latest version of device specifications before relying
oducts or services.

ISO
9001:2008
Registered

Feedback SubscribeTwitter

<enter your linkedin URL>
http://twitter.com/home/?status=Simulating+Altera+Designs+http://www.altera.com/literature/hb/qts/qts_qii53025.pdf?WT.mc_id=gc_so_tw_st_tx_a_011+(via @alteracorp)+%23Altera

https://www.altera.com/servlets/subscriptions/alert?id=QII53025
mailto:TechDocFeedback@altera.com?subject=Feedback on qts_qii53025-13.0 (QII HB, Vol3, Ch1: Simulating Altera Designs)
http://www.altera.com/common/legal.html
http://www.altera.com/support/reliability/certifications/rel-certifications.html
http://www.altera.com/support/reliability/certifications/rel-certifications.html

1–2 Chapter 1: Simulating Altera Designs
Simulator Support
Simulator Support
The Quartus II software supports specific versions of the following EDA simulators
for RTL and gate-level simulation.

Simulation Levels
Table 1–2 describes the supported Quartus II simulation levels.

1 Gate-level timing simulation of an entire design can be slow and should be avoided.
Gate-level timing simulation is not supported for Arria V, Cyclone V, or Stratix V
devices. Rely on TimeQuest static timing analysis rather than on gate-level timing
simulation.

Table 1–1. Supported Simulators

Vendor Simulator Platform

Aldec Active-HDL Windows

Aldec Riviera-PRO Windows, Linux

Cadence® Incisive Enterprise Linux

Mentor Graphics ModelSim-Altera (provided) Windows, Linux

Mentor Graphics ModelSim PE Windows

Mentor Graphics ModelSim® SE Windows, Linux

Mentor Graphics QuestaSim Windows, Linux

Synopsys VCS/VCS MX Linux

Table 1–2. Supported Simulation Levels

Simulation Level Description Simulation Input

RTL

Cycle-accurate simulation using
Verilog HDL, SystemVerilog, and VHDL
design source code with simulation
models provided by Altera and other IP
providers.

■ Design source/testbench

■ Altera simulation libraries

■ Altera IP plain text or IEEE
encrypted RTL models

■ IP simulation models

■ Altera IPFS models

■ Altera IP BFMs

■ Qsys-generated models

■ Verification IP

Gate-level functional

Simulation using a post-synthesis or
post-fit functional netlist testing the post-
synthesis functional netlist, or post-fit
functional netlist.

■ Testbench

■ Altera simulation libraries

■ Post-synthesis or post-fit
functional netlist

■ Altera IP Bus BFMs

Gate-level timing

Simulation using a post-fit timing netlist,
testing design’s functional and timing
correctness. Not supported for Arria V,
Cyclone V, or Stratix V devices.

■ Testbench

■ Altera simulation libraries

■ Post-fit timing netlist

■ Post-fit Standard Delay
Output File (.sdo)
Quartus II Handbook Version 13.1 May 2013 Altera Corporation
Volume 3: Verification

Chapter 1: Simulating Altera Designs 1–3
Simulator Support
Simulation Flows
Table 1–3 describes the supported Quartus II simulation flows.

Table 1–3. Simulation Flows

Simulation Flow Description

NativeLink flow

The NativeLink automated flow supports a variety of design flows. NativeLink is
not recommended if you require direct control over every aspect of simulation.

■ Use NativeLink to generate simulation scripts to compile your design and
simulation libraries, and to automatically launch your simulator, as described
in “Setting Up Simulation (NativeLink Flow)” on page 1–8.

■ Specify your own compilation, elaboration, and simulation scripts for
testbench and simulation model files that have not been analyzed by the
Quartus II software.

■ Use NativeLink to supplement your scripts by automatically compiling:

■ Design files

■ IP simulation model files

■ Altera simulation library models

Custom flows

Custom flows support manual control of all aspects of simulation, including the
following:

■ Manually compile and simulate testbench, design, IP, and simulation model
libraries, or write scripts to automate compilation and simulation in your
simulator.

■ Use the Simulation Library Compiler to compile simulation libraries for all
Altera devices and supported third-party simulators and languages, as
described in “Using IP and Qsys Simulation Setup Scripts (Custom Flow)” on
page 1–12.

Use the custom flow if you require any of the following:

■ Custom compilation commands for design, IP, or simulation library model
files (for example, macros, debugging or optimization options, or other
simulator-specific options).

■ Multi-pass simulation flows.

■ Flow that use dynamically generated simulation scripts.

Specialized
flows

Altera supports specialized flows for various design variations, including the
following:

■ For simulation of Altera example designs, refer to the documentation for the
example design or to the IP core user guide on the IP and Megafunctions
Documentation section of the Altera website.

■ For simulation of Qsys designs, refer to Creating a System with Qsys chapter
of the Quartus II Handbook.

■ For simulation of designs that include the Nios II embedded processor, refer
to AN 351: Simulating Nios II Embedded Processors Designs.
May 2013 Altera Corporation Quartus II Handbook Version 13.1
Volume 3: Verification

http://www.altera.com/literature/lit-ip.jsp
http://www.altera.com/literature/lit-ip.jsp
http://www.altera.com/literature/hb/qts/qsys_intro.pdf
http://www.altera.com/literature/an/an351.pdf

1–4 Chapter 1: Simulating Altera Designs
Simulator Support
HDL Support
Table 1–4 describes Quartus II simulation support for hardware description
languages:

Table 1–4. HDL Support

Language Description

VHDL

■ For VHDL RTL simulation, compile design files directly in your simulator. To use Nativelink
automation, analyze and elaborate your design in the Quartus II software, and then use the Nativelink
simulator scripts to compile the design files in your simulator. You must also compile simulation
models from the Altera simulation libraries and simulation models for the IP cores in your design. Use
the Simulation Library Compiler or Nativelink to compile simulation models.

■ For gate-level simulation, the EDA Netlist Writer generates a synthesized design netlist VHDL Output
File (.vho). Compile the .vho in your simulator. You may also need to compile models from the Altera
simulation libraries.

■ IEEE 1364-2005 encrypted Verilog HDL simulation models are encrypted separately for each
Altera-supported simulation vendor. If you want to simulate the model in a VHDL design, you need
either a simulator that is capable of VHDL/Verilog HDL co-simulation, or any Mentor Graphics single
language VHDL simulator.

Verilog HDL
SystemVerilog

■ For RTL simulation in Verilog HDL or SystemVerilog, compile your design files in your simulator. To
use Nativelink automation, analyze and elaborate your design in the Quartus II software, and then use
the Nativelink simulator scripts to compile your design files in your simulator. You must also compile
simulation models from the Altera simulation libraries and simulation models for the IP cores in your
design. Use the Simulation Library Compiler or Nativelink to compile simulation models.

■ For gate-level simulation, the EDA Netlist Writer generates a synthesized design netlist Verilog Output
File (.vo), Compile the .vo in your simulator.

Mixed HDL

■ If your design is a mix of VHDL and Verilog/SystemVerilog files, you must use a mixed language
simulator. Since Altera supports both languages, choose the most convenient language for any Altera
IP in your design.

■ Altera provides Stratix V, Arria V, Cyclone V and newer simulation model libraries and IP simulation
models in Verilog HDL and IEEE encrypted Verilog. Your simulator's co-simulation capabilities
support VHDL simulation of these models using VHDL “wrapper” files. Altera provides the wrapper
for Verilog models to instantiate these models directly from your VHDL design.

Schematic You must convert schematics to HDL format before simulation. You can use the converted VHDL or
Verilog HDL files for RTL simulation.
Quartus II Handbook Version 13.1 May 2013 Altera Corporation
Volume 3: Verification

Chapter 1: Simulating Altera Designs 1–5
Simulator Support
System and IP File Locations
The Quartus II software generates the following files for Altera IP cores:.

The Quartus II software optionally generates the following files for other EDA tools:

Figure 1–2. System and IP Files Generated by MegaWizard Plug-In Manager and Qsys

<sub_module_name>

<simulation_model_files>

<EDA_tool_name>

<IEEE_encrypted_Verilog_simulation_models>

<instance name> .sv, .v, or .vhd simulation model

<instance name> (QII synthesis files)

<instance name> .sv, .v, or .vhd synthesis files

<Quartus II Project Directory>

<instance name>.bsf - represents your IP in schematics

<instance name>.qip - lists all design files for this IP

<instance name>. v or .vhd - parameterized IP core

<instance name>_sim (IP simulation files) <EDA_tool_name> - EDA simulation files

<Qsys system name> - Qsys system files

<system name>.qip - lists all system component files for synthesis

<Quartus II Project Directory>

simulation - Qsys simulation files

<simulator_setup_scripts>

synthesis - system synthesis files

<system name>. v or .vhd - top-level system file

testbench - system testbanch files

<simulation testbench files>

<EDA_tool_name> - EDA simulation files

<system name>.sip - lists system component files for simulation

<system name>. v or .vhd - top-level simulation file

MegaWizard-Generated IP Files Qsys-Generated System and IP Files

Figure 1–3. Quartus II Generated Files for Other EDA Tools

<EDA_simulator>

<Quartus II Project Directory>

simulation - EDA simulation files

<.vo, .vho, .sv for simulation>

<EDA_board_symbol_tool_name>

symbols - EDA board-level symbol tool files

<.fx or .xml for symbol generation and board-level verification>

hspice or ibis

board - EDA board-level signal integrity tool files

<.sp or .ibs for signal integrity analysis>

<EDA_board_timing_tool_name>

timing - EDA board-level timing analysis tool files

<STAMP model files, .data, .mod, and .lib>

bsdl

board - EDA board-level boundary scan tool files

< Boundary Scan Description Language File (.bsd)>
May 2013 Altera Corporation Quartus II Handbook Version 13.1
Volume 3: Verification

1–6 Chapter 1: Simulating Altera Designs
Preparing for Simulation
Preparing for Simulation
Preparing for RTL or gate-level simulation involves compiling the RTL or gate-level
representation of your design and testbench. You must also compile IP simulation
models, models from the Altera simulation libraries, and any other model libraries
required for your design.

Compiling Simulation Models
The Quartus II software includes simulation models for Altera megafunctions,
primitives, library of parameterized modules (LPMs), IPFS models, and device family
specific models in the <Quartus II installation path>/eda/sim_lib directory. These
models include IEEE encrypted Verilog HDL models for both Verilog HDL and
VHDL simulation in the simulators listed in Table 1–1. Before running simulation you
must compile the appropriate simulation models from the Altera simulation libraries.

Use any of the following methods to compile Altera simulation models:

■ Use the NativeLink feature to automatically compile your design, Altera IP,
simulation model libraries, and testbench, as described in “Running RTL
Simulation (NativeLink Flow)” on page 1–9.

■ Run the Simulation Library Compiler to compile all RTL and gate-level simulation
model libraries for your device, simulator, and design language, as described in
“Using Simulation Library Compiler (Custom Flow)” on page 1–10.

■ Compile Altera simulation models manually with your simulator, as described in
Preparing for EDA Simulation in Quartus II Help.

After you compile the simulation model libraries, you can reuse these libraries in
subsequent simulations to avoid having to compile them again.

h For a complete list of the Altera simulation models, refer to Altera Simulation Models in
Quartus II Help.

Generating IP Simulation Files for RTL Simulation
The Quartus II software supports both Verilog HDL and VHDL simulation of
encrypted and unencrypted Altera IP cores. If your design includes Altera IP cores,
you must compile any corresponding IP simulation models in your simulator along
with the rest of your design and testbench. The Quartus II software generates and
copies the simulation models for IP cores to your project design directory. For
information about the location of IP simulation models for the IP cores in your design,
refer to “Document Revision History” on page 1–13.

The Quartus II software can generate one or more of the files in Table 1–5 to support
the IP core simulation. If generated, use these files to simulate your Altera IP core.
Quartus II Handbook Version 13.1 May 2013 Altera Corporation
Volume 3: Verification

http://quartushelp.altera.com/current/master.htm#mergedProjects/eda/simulation/modelsim/eda_view_using_msim.htm
http://quartushelp.altera.com/current/master.htm#mergedProjects/eda/eda_topics/quartus2/eda_pro_advanced_options.htm
http://quartushelp.altera.com/current/master.htm#mergedProjects/eda/eda_topics/quartus2/eda_ref_presynth_lib.htm

Chapter 1: Simulating Altera Designs 1–7
Preparing for Simulation
Generating IP Functional Simulation Models for RTL Simulation
Altera provides IPFS models for some Altera IP cores. To generate IPFS models,
follow these steps:

■ Turn on the Generate Simulation Model option when parameterizing the IP core
in the MegaWizard Plug-In Manager.

■ When you simulate your design, only compile the .vo or .vho for these IP cores in
your simulator, rather than the corresponding HDL file, which may be encrypted
to support only synthesis by the Quartus II software.

1 Altera IP cores that do not require IPFS models for simulation lack the
Generate Simulation Model option in the IP core parameter editor.

Table 1–5. Altera IP Simulation Files

File Type Description File Name

Simulator setup
script

Simulator-specific script to compile, elaborate,
and simulate Altera IP models and simulation
model library files. Copy the commands into your
simulation script, or edit these files to compile,
elaborate, and simulate your design and
testbench. Refer to “Using IP and Qsys Simulation
Setup Scripts (Custom Flow)” on page 1–12.

Cadence

■ cds.lib

■ ncsim_setup.sh

■ hdl.var

Mentor Graphics

■ msim_setup.tcl

Synopsys

■ synopsys_sim.setup

■ vcs_setup.sh

■ vcsmx_setup.sh

Aldec

■ rivierapro_setup.tcl

Quartus II Simulation
IP File (.sip)

Contains IP core simulation library mapping
information..sip files enable NativeLink simulation
and the Quartus II Archiver for IP cores.

<design name>.sip

IPFS models

IP Functional Simulation (IPFS) models are cycle-
accurate VHDL or Verilog HDL models generated
by the Quartus II software for some Altera IP
cores. IPFS models support fast functional
simulation of IP using industry-standard VHDL
and Verilog HDL simulators. Refer to “Generating
IP Functional Simulation Models for RTL
Simulation” on page 1–7.

<design name>.vho
<design name>.vo

IEEE encrypted
models

Stratix V, Arria V, Cyclone V and newer simulation
model libraries and IP simulation models are
provided in Verilog HDL and IEEE encrypted
Verilog HDL. VHDL simulation of these models is
supported using your simulator's co-simulation
capabilities. IEEE encrypted Verilog HDL models
are significantly faster than IPFS models.

<design name>.v
May 2013 Altera Corporation Quartus II Handbook Version 13.1
Volume 3: Verification

1–8 Chapter 1: Simulating Altera Designs
Running a Simulation (NativeLink Flow)
1 Many recently released Altera IP cores support RTL simulation using IEEE
Verilog HDL encryption. IEEE encrypted models are significantly faster than IPFS
models and can be simulated in both Verilog HDL and VHDL designs.

f Generating an IPFS model for some AMPP megafunctions may require a license, refer
to AN 343: OpenCore Evaluation of AMPP Megafunctions.

Running a Simulation (NativeLink Flow)
The NativeLink feature integrates your EDA simulator with the Quartus II software
and automates the following simulation steps:

■ Set and reuse simulation settings

■ Generate simulator-specific files and simulation scripts

■ Compile Altera simulation libraries

■ Launch your simulator automatically following Quartus II Analysis &
Elaboration, Analysis & Synthesis, or after a full compilation.

Setting Up Simulation (NativeLink Flow)
Before running simulation using the NativeLink flow, you must specify settings for
your simulator in the Quartus II software. To specify simulation settings in the
Quartus II software, follow these steps:

1. Open a Quartus II project.

2. Click Tools > Options and specify the location of your simulator executable file .

3. Click Assignments > Settings and specify options on the Simulation page and
More NativeLink Settings dialog box. Specify default options for simulation
library compilation, netlist and tool command script generation, and for launching
RTL or gate-level simulation automatically following Quartus II processing.

4. If your design includes a testbench, turn on Compile test bench and then click
Test Benches to specify options for each testbench. Alternatively, turn on Use
script to compile testbench and specify the script file.

5. If you want to use a script to setup simulation, turn on Use script to setup
simulation.

Table 1–6. Execution Paths for EDA Simulators

Simulator Path

Mentor Graphics
ModelSim-Altera

<drive letter>:\<simulator install path>\win32aloem (Windows)

/<simulator install path>/bin (Linux)

Mentor Graphics ModelSim
Mentor Graphics QuestaSim

<drive letter>:\<simulator install path>\win32 (Windows)

<simulator install path>/bin (Linux)

Synopsys VCS/VCS MX <simulator install path>/bin (Linux)

Cadence Incisive Enterprise <simulator install path>/tools/bin (Linux)

Aldec Active-HDL
Aldec Riviera-PRO

<drive letter>:\<simlulator install path>\bin (Windows)
<simulator install path>/bin (Linux)
Quartus II Handbook Version 13.1 May 2013 Altera Corporation
Volume 3: Verification

http://www.altera.com/literature/an/an343.pdf

Chapter 1: Simulating Altera Designs 1–9
Running a Simulation (Custom Flow)
Running RTL Simulation (NativeLink Flow)
To run RTL simulation using the NativeLink flow, follow these steps:

1. Set up the simulation environment, as described in “Setting Up Simulation
(NativeLink Flow)” on page 1–8.

2. Click Processing > Start > Analysis and Elaboration.

3. Click Tools > Run Simulation Tool > RTL Simulation.

NativeLink compiles simulation libraries and launches and runs your RTL
simulator automatically according to the NativeLink settings.

4. Review and analyze the simulation results in your simulator. Correct any
functional errors in your design. If necessary, re-simulate the design to verify
correct behavior.

Running Gate-Level Simulation (NativeLink Flow)
To run gate-level simulation with the NativeLink flow, follow these steps:

1. Prepare for simulation, as described in “Preparing for Simulation” on page 1–6.

2. Set up the simulation environment, as described in “Setting Up Simulation
(NativeLink Flow)” on page 1–8. To generate only a functional (rather than timing)
gate-level netlist, click More EDA Netlist Writer Settings, and turn on Generate
netlist for functional simulation only.

3. To synthesize the design, follow one of these steps:

■ To generate a post-fit functional or post-fit timing netlist and then
automatically simulate your design according to your NativeLink settings,
Click Processing > Start Compilation. Skip to step 6.

■ To synthesize the design for post-synthesis functional simulation only, click
Processing > Start > Start Analysis and Synthesis.

4. To generate the simulation netlist, click Start EDA Netlist Writer.

5. Click Tools > Run Simulation Tool > Gate Level Simulation.

6. Review and analyze the simulation results in your simulator. Correct any
unexpected or incorrect conditions found in your design. Simulate the design
again until you verify correct behavior.

Running a Simulation (Custom Flow)
Use a custom simulation flow to support any of the following more complex
simulation scenarios:

■ Custom compilation, elaboration, or run commands for your design, IP, or
simulation library model files (for example, macros, debugging/optimization
options, simulator-specific elaboration or run-time options)

■ Multi-pass simulation flows

■ Flows that use dynamically generated simulation scripts
May 2013 Altera Corporation Quartus II Handbook Version 13.1
Volume 3: Verification

1–10 Chapter 1: Simulating Altera Designs
Running a Simulation (Custom Flow)
Use these to compile libraries and generate simulation scripts for custom simulation
flows:

■ NativeLink-generated scripts—use NativeLink only to generate simulation script
templates to develop your own custom scripts.

■ Simulation Library Compiler—compile Altera simulation libraries for your device,
HDL, and simulator. Generate scripts to compile simulation libraries as part of
your custom simulation flow. This tool does not compile your design, IP, or
testbench files.

■ IP and Qsys simulation scripts—use the scripts generated for Altera IP cores and
Qsys systems as templates to create simulation scripts. If your design includes
multiple IP cores or Qsys systems, you can combine the simulation scripts into a
single script, manually or by using the
ip-make-simscript utility, described in “Generating Custom Simulation Scripts
with ip-make-simscript” on page 1–12.

Use the following steps in a custom simulation flow:

1. “Preparing for Simulation” on page 1–6.

2. “Using Simulation Library Compiler (Custom Flow)” on page 1–10

3. “Using NativeLink-Generated Scripts (Custom Flow)” on page 1–11.

4. “Using IP and Qsys Simulation Setup Scripts (Custom Flow)” on page 1–12.

5. Compile the design and testbench files in your simulator.

6. Run the simulation in your simulator.

Post-synthesis and post-fit gate-level simulations run significantly slower than RTL
simulation. Altera recommends that you verify your design using RTL simulation for
functionality and use the TimeQuest timing analyzer for timing. Timing simulation is
not supported for Arria V, Cyclone V, Stratix V, and newer families.

h For more information about running EDA simulation, refer to Running EDA
Simulators in Quartus II Help.

Using Simulation Library Compiler (Custom Flow)
Simulation Library Compiler compiles all required Quartus II simulation library files
for your HDL, device, and simulator. If your design includes IP cores generated with
the classic IP file directory structure in Figure 1–2, you may need to compile
additional library files.

If your design includes IP cores generated with the IP file directory structure
illustrated in Figure 1–2, refer to “Generating Custom Simulation Scripts with ip-
make-simscript” on page 1–12 to use the scripts in combination with the Simulation
Library Compiler's generated simulation scripts.

h For detailed steps on using Simulation Library Compiler, refer to Preparing for EDA
Simulation in Quartus II Help. For a complete list of the Altera simulation models,
refer to Altera Simulation Models in Quartus II Help.
Quartus II Handbook Version 13.1 May 2013 Altera Corporation
Volume 3: Verification

http://quartushelp.altera.com/current/master.htm#mergedProjects/eda/eda_topics/quartus2/eda_pro_advanced_options.htm
http://quartushelp.altera.com/current/master.htm#mergedProjects/eda/eda_topics/quartus2/eda_pro_advanced_options.htm
http://quartushelp.altera.com/current/master.htm#mergedProjects/eda/eda_topics/quartus2/eda_ref_presynth_lib.htm
http://quartushelp.altera.com/current/master.htm#mergedProjects/eda/simulation/activeHDL/eda_view_aldec.htm
http://quartushelp.altera.com/current/master.htm#mergedProjects/eda/simulation/activeHDL/eda_view_aldec.htm

Chapter 1: Simulating Altera Designs 1–11
Running a Simulation (Custom Flow)
Using NativeLink-Generated Scripts (Custom Flow)
Use the NativeLink feature to generate simulation scripts to automate simulation
steps. You can reuse these generated files and simulation scripts in a custom
simulation flow. NativeLink optionally generates scripts for your simulator in the
project subdirectory described in Table 1–7. To generate simulation scripts using the
NativeLink feature, perform the following steps:

1. Click Assignments > Settings.

2. Under EDA Tool Settings, click Simulation .

3. Select the Tool name of your simulator.

4. Click More NativeLink Settings.

5. Turn on Generate third-party EDA tool command scripts without running the
EDA tool.

Table 1–7. NativeLink Generated Scripts for RTL Simulation

Simulator(s) Simulation File Use

Mentor Graphics
ModelSim
QuestaSim

/simulation/modelsim/<design>.do Source directly with your
simulator.

Aldec Riviera Pro /simulation/modelsim/<design>.do Source directly with your
simulator.

Synopsys VCS /simulation/modelsim/<revision name>_<rtl or
gate>.vcs

Add your testbench file
name to this options file to
pass the file to VCS using
the -file option. If you
specify a testbench file to
NativeLink, and direct not
to simulate, Nativelink
generates an .sh script that
runs VCS.

Synopsys VCS MX:
 /simulation/scsim/<revision
name>_vcsmx_<rtl or gate>_<verilog or
vhdl>.tcl

Run this script at the
command line using
quartus_sh -t <script>

Any testbench you specify
with NativeLink is included
in this script.

Cadence Incisive
(NC SIM)

 /simulation/ncsim/<revision
name>_ncsim_<rtl or gate>_<verilog or
vhdl>.tcl

Run this script at the
command line using
quartus_sh -t <script>.

Any testbench you specify
with NativeLink is included
in this script.
May 2013 Altera Corporation Quartus II Handbook Version 13.1
Volume 3: Verification

1–12 Chapter 1: Simulating Altera Designs
Running a Simulation (Custom Flow)
Using IP and Qsys Simulation Setup Scripts (Custom Flow)
Altera IP cores and Qsys systems generate simulation setup scripts. Modify these
scripts to set up supported simulators. Use the scripts to compile the required device
libraries and system design files in the correct order, and then elaborate or load the
top-level design for simulation. Also use the script to modify the top-level simulation
environment independent of the IP simulation files that are over-written during
regeneration.

These simulation scripts variables set up your simulation environment:

■ TOP_LEVEL_NAME—the top-level entity of your simulation is often a testbench that
instantiates your design, and then your design instantiates IP cores and/or Qsys
systems. Set the value of TOP_LEVEL_NAME to the simulation the top-level entity.

■ QSYS_SIMDIR—specifies the top-level directory containing the simulation files.

■ Other variables control the compilation, elaboration, and simulation process.

Generating Custom Simulation Scripts with ip-make-simscript
Use the ip-make-simscript utility to generate simulation command scripts for
multiple IP cores or Qsys systems. Specify all Simulation Package Descriptor files
(.spd), each of which lists the required simulation files for the corresponding IP core
or Qsys system. The MegaWizard Plug-In Manager and Qsys generate the .spd files.

This utility compiles IP simulation models into various simulation libraries. Use the
compile-to-work option to compile all simulation files into a single work library. Use
this option only if you require a simplified library structure.

When you specify multiple .spd files, the ip-make-simscript utility generates a single
simulation script containing all required simulation information. The default value of
TOP_LEVEL_NAME is the TOP_LEVEL_NAME defined in the IP core or Qsys .spd file. If this
is not the top-level instance in your design, specify the top-level instance of your
testbench or design.

Setting appropriate variables in the script, or edit the variable assignment directly in
the script. If the simulation script is a tcl file that can be sourced in the simulator, set
the variables before sourcing the script. If the simulation script is a shell script, pass in
the variables as command-line arguments to shell script.

■ To run ip-make-simscript, type the following at the command prompt:

<ACDS installation path>\quartus\sopc_builder\bin\ip-make-simscript
Quartus II Handbook Version 13.1 May 2013 Altera Corporation
Volume 3: Verification

Chapter 1: Simulating Altera Designs 1–13
Document Revision History
The following are examples of options you can use with the utility:

f Refer to Aldec Active-HDL and Riviera-PRO Support, Synopsys VCS and VCS MX
Support, Cadence Incisive Enterprise Simulator Support, and Mentor Graphics ModelSim
and QuestaSim Support for simulation script examples.

Document Revision History
Table 1–9 shows the revision history for this chapter.

Table 1–8.

Option Description Status

--spd=<file>

Describes the list of compiled files and memory model
hierarchy. If your design includes multiple IP cores or
Qsys systems that include .spd files, use this option
for each file. For example:

ip-make-simscript --spd=ip1.spd --
spd=ip2.spd

Required

--output-
directory=<director
y>

Directory path specifying the location of output files. If
unspecified, the default setting is the directory from
which ip-make-simscript is run.

Optional

--compile-to-work
Compiles all design files to the default work library.
Use this option only if you encounter problems
managing your simulation with multiple libraries.

Optional

--use-relative-
paths

Uses relative paths whenever possible Optional

Table 1–9. Document Revision History (Part 1 of 2)

Date Version Changes

May 2013 13.0.0 ■ Updated introductory section and system and IP file locations.

November 2012 12.1.0 ■ Revised chapter to reflect latest changes to other simulation documentation.

June 2012 12.0.0
■ Reorganization of chapter to reflect various simulation flows.

■ Added NativeLink support for newer IP cores.

November 2011 11.1.0
■ Added information about encrypted Altera simulation model files.

■ Added information about IP simulation and NativeLink.

May 2011 11.0.0

■ Added note to Figure 1–1 on page 1–2

■ Added new section “Converting Block Design Files (.bdf) to HDL Format (.v/.vhd)”
on page 1–4

■ Updated information in “Simulation Netlist Files”.

■ Updated information in “Generating Gate-Level Timing Simulation Netlist Files”.

■ Updated information in “Generating Post-Synthesis Simulation Netlist Files”.

■ Removed information from “Generating Timing Simulation Netlist Files with
Different Timing Models”.

■ Removed information from “Running the Simulation Library Compiler Through
the GUI”.

■ Updated Table 1–1.

■ Updated “Simulating Qsys and SOPC Builder System Designs”
May 2013 Altera Corporation Quartus II Handbook Version 13.1
Volume 3: Verification

http://www.altera.com/literature/hb/qts/qts_qii52002.pdf
http://www.altera.com/literature/hb/qts/qts_qii53023.pdf
http://www.altera.com/literature/hb/qts/qts_qii53002.pdf
http://www.altera.com/literature/hb/qts/qts_qii53002.pdf
http://www.altera.com/literature/hb/qts/qts_qii53003.pdf
http://www.altera.com/literature/hb/qts/qts_qii53001.pdf
http://www.altera.com/literature/hb/qts/qts_qii53001.pdf

1–14 Chapter 1: Simulating Altera Designs
Document Revision History
f For previous versions of the Quartus II Handbook, refer to the Quartus II Handbook
Archive.

December 2010 10.1.0

■ Title changed from “Simulating Designs with EDA Tools”.

■ Merged content from “Simulating Altera IP in Third-Party Simulation Tools”
chapter to “Simulating Altera IP Cores”.

■ Added new section “IP Variant Directory Structure”.

■ Added new section “Simulating Qsys and SOPC Builder System Designs”.

■ Added information about simulating designs with Stratix V devices

■ Updated chapter to new template

July 2010 10.0.0

■ Linked to Quartus II Help where appropriate

■ Removed Referenced Documents section

■ Removed Creating Testbench Files

■ Added VCS and QuestaSim as third-party simulation tools

■ Updated “Running the EDA Simulation Library Compiler Through the GUI” on
page 1–18

■ Updated “Setting Up the EDA Simulator Execution Path”.

■ Updated “Configuring NativeLink Settings”

■ Updated “Setting Up Testbench Files Using the NativeLink Feature”

November 2009 9.1.0 Initial release

Table 1–9. Document Revision History (Part 2 of 2)

Date Version Changes
Quartus II Handbook Version 13.1 May 2013 Altera Corporation
Volume 3: Verification

http://www.altera.com/literature/lit-qts_archive.jsp
http://www.altera.com/literature/lit-qts_archive.jsp

QII53001-12.1.0

© 2012 Altera Corporation. All rights reserved. ALTERA, ARRI
are trademarks of Altera Corporation and registered in the U.S
trademarks or service marks are the property of their respectiv
semiconductor products to current specifications in accordance
services at any time without notice. Altera assumes no respons
described herein except as expressly agreed to in writing by Al
on any published information and before placing orders for pr

Quartus II Handbook Version 13.1
Volume 3: Verification
November 2012

November 2012
QII53001-12.1.0
2. Mentor Graphics ModelSim and
QuestaSim Support
This chapter provides specific guidelines for simulation of Quartus® II designs with
Mentor Graphics® ModelSim-Altera®, ModelSim, or QuestaSim software. Altera
provides the entry-level ModelSim-Altera software, along with precompiled Altera
simulation libraries, to simplify simulation of Altera designs. You can also refer to the
following for more information about EDA simulation:

■ For overview information, Simulating Altera Designs in the Quartus II Handbook and
About Using EDA Simulators in Quartus II Help.

■ For detailed GUI steps, Preparing for EDA Simulation and Running EDA Simulators
in Quartus II Help.

■ For support information, ModelSim-Altera Software page of the Altera website,
Mentor Graphics ModelSim Simulation Design Examples page.

Quick Start Example (ModelSim Verilog)
You can adapt the following RTL simulation example to get started quickly with
ModelSim:

1. Specify your EDA simulator and executable path in the Quartus II software:
set_user_option -name EDA_TOOL_PATH_MODELSIM <modelsim executable path>r
set_global_assignment -name EDA_SIMULATION_TOOL "MODELSIM (verilog)"r

2. Compile simulation model libraries using one of the following:

■ Run NativeLink RTL simulation to compile required design files, simulation
models, and run your simulator. Verify results in your simulator. Skip steps 3
through 5.

■ Use Simulation Library Compiler to compile all required simulation models.

■ Create and map Altera libraries manually:
vlib <lib1>_verr
vmap <lib1>_ver <lib1>_verr

Then, compile Altera simulation models manually:
vlog -work <lib1> <lib1>

3. Compile your design and testbench files:
vlog -work work <design or testbench name>.vr

4. Load the design:
vsim -L work -L <lib1>_ver -L <lib2>_ver work.<testbench name>r

5. Run the simulation in the ModelSim simulator.
A, CYCLONE, HARDCOPY, MAX, MEGACORE, NIOS, QUARTUS and STRATIX words and logos
. Patent and Trademark Office and in other countries. All other words and logos identified as
e holders as described at www.altera.com/common/legal.html. Altera warrants performance of its
 with Altera's standard warranty, but reserves the right to make changes to any products and
ibility or liability arising out of the application or use of any information, product, or service
tera. Altera customers are advised to obtain the latest version of device specifications before relying
oducts or services.

Feedback SubscribeTwitter

ISO
9001:2008
Registered

http://www.altera.com/common/legal.html
http://www.altera.com/support/reliability/certifications/rel-certifications.html
http://www.altera.com/support/reliability/certifications/rel-certifications.html
http://www.altera.com/products/software/quartus-ii/modelsim/qts-modelsim-index.html
http://www.altera.com/support/examples/modelsim/exm-modelsim.html
https://www.altera.com/servlets/subscriptions/alert?id=QII53001
http://www.altera.com/literature/hb/qts/qts_qii53028.pdf
mailto:TechDocFeedback@altera.com?subject=Feedback on qts_qii53001-12.1 (QII HB, Vol3, Ch2: ModelSim and QuestaSim Support)
http://quartushelp.altera.com/current/master.htm#mergedProjects/eda/eda_topics/quartus2/eda_view_using_sim.htm
http://quartushelp.altera.com/current/master.htm#mergedProjects/eda/eda_topics/quartus2/eda_pro_advanced_options.htm
http://quartushelp.altera.com/current/master.htm#mergedProjects/eda/simulation/activeHDL/eda_view_aldec.htm
http://twitter.com/home/?status=Mentor+Graphics+ModelSim+and+QuestaSim+Support+http://www.altera.com/literature/hb/qts/qts_qii53001.pdf?WT.mc_id=gc_so_tw_st_tx_a_011+(via @alteracorp)+%23Altera

2–2 Chapter 2: Mentor Graphics ModelSim and QuestaSim Support
ModelSim, ModelSim-Altera, and QuestaSim Guidelines
1 In this chapter, “ModelSim” refers to ModelSim SE, PE, and DE, which share the same
commands as QuestaSim. “ModelSim-Altera” refers to ModelSim-Altera Starter
Edition and ModelSim-Altera Subscription Edition.

ModelSim, ModelSim-Altera, and QuestaSim Guidelines
The following guidelines apply to simulation of Altera designs in the ModelSim,
ModelSim-Altera, or QuestaSim software.

Using ModelSim-Altera Precompiled Libraries
Precompiled libraries for both functional and gate-level simulations are provided for
the ModelSim-Altera software. You should not compile these library files before
running a simulation. No precompiled libraries are provided for ModelSim or
QuestaSim. You must compile the necessary libraries to perform functional or
gate-level simulation with these tools.

The precompiled libraries provided in <ModelSim-Altera path>/altera/must be
compatible with the version of the Quartus II software that is used to create the
simulation netlist. To check whether the precompiled libraries are compatible with
your version of the Quartus II software, refer to the
<ModelSim-Altera path>/altera/version.txt file. This file shows which version and
build of the Quartus II software was used to create the precompiled libraries.

h For a list of precompiled library names for all functional and gate-level simulation
models, refer to ModelSim-Altera Precompiled Libraries in Quartus II Help. For a list of
all simulation model files, refer to Altera Simulation Models in Quartus II Help.

1 Encrypted Altera simulation model files shipped with the Quartus II software
version 10.1 and later can only be read by ModelSim-Altera Edition Software version
6.6c and later. These encrypted simulation model files are located at the <Quartus II
System directory>/quartus/eda/sim_lib/<mentor> directory.

Disabling Timing Violation on Registers
In certain situations, you may want to ignore timing violations on registers and
disable the “X” propagation that occurs (for example, timing violations in internal
synchronization registers in asynchronous clock-domain crossing).

By default, the x_on_violation_option logic option applying to all design registers is
On, resulting in an output of “X” at timing violation. To disable “X” propagation at
timing violations on a specific register, set the x_on_violation_option logic option to
Off for that register. The following command is an example from the Quartus II
Settings File (.qsf):

set_instance_assignment -name X_ON_VIOLATION_OPTION OFF -to \
<register_name>
Quartus II Handbook Version 13.1 November 2012 Altera Corporation
Volume 3: Verification

http://quartushelp.altera.com/current/master.htm#mergedProjects/eda/simulation/modelsim/eda_ref_msim_precomp_lib.htm
http://quartushelp.altera.com/current/master.htm#mergedProjects/eda/eda_topics/quartus2/eda_ref_presynth_lib.htm

Chapter 2: Mentor Graphics ModelSim and QuestaSim Support 2–3
ModelSim, ModelSim-Altera, and QuestaSim Guidelines
Passing Parameter Information from Verilog HDL to VHDL
You must use in-line parameters to pass values from Verilog HDL to VHDL.
Example 2–1 shows modification to use in-line parameters.

1 The sequence of the parameters depends on the sequence of the GENERIC in the
VHDL component declaration.

Increasing Simulation Speed
By default, the ModelSim and QuestaSim software runs in a debug-optimized mode.
To run the ModelSim and QuestaSim software in speed-optimized mode, add the
following two vlog command-line switches:

vlog -fast -05

In this mode, module boundaries are flattened and loops are optimized, which
eliminates levels of debugging hierarchy and may result in faster simulation. This
switch is not supported in the ModelSim-Altera simulator.

Simulating Transport Delays
By default, the ModelSim and QuestaSim software filter out all pulses that are shorter
than the propagation delay between primitives. Turning on the transport delay
options in the ModelSim and QuestaSim software prevents the simulator from
filtering out these pulses.

Table 2–1 describes the transport delay options.

1 The +transport_path_delays and +transport_path_delays options apply by default
during NativeLink gate-level timing simulation.

Example 2–1. In-Line Parameter Passing Example

lpm_add_sub#(.lpm_width(12), .lpm_direction("Add"),
.lpm_type("LPM_ADD_SUB"),
.lpm_hint("ONE_INPUT_IS_CONSTANT=NO,CIN_USED=NO"))

lpm_add_sub_component (

 .dataa (dataa),

 .datab (datab),

 .result (sub_wire0)

);

Table 2–1. Transport Delay Options

Option Description

+transport_path_delays
Use when simulation pulses are shorter than the delay in
a gate-level primitive. You must include the
+pulse_e/number and +pulse_r/number options.

+transport_int_delays

Use when simulation pulses are shorter than the
interconnect delay between gate-level primitives. You
must include the +pulse_int_e/number and
+pulse_int_r/number options.
November 2012 Altera Corporation Quartus II Handbook Version 13.1
Volume 3: Verification

2–4 Chapter 2: Mentor Graphics ModelSim and QuestaSim Support
ModelSim, ModelSim-Altera, and QuestaSim Guidelines
f For more information about either of these options, refer to the ModelSim-Altera
Command Reference installed with the ModelSim and QuestaSim software.

The following ModelSim and QuestaSim software command shows the command
line syntax to perform a gate-level timing simulation with the device family library:

vsim -t 1ps -L stratixii -sdftyp /i1=filtref_vhd.sdo work.filtref_vhd_vec_tst \
+transport_int_delays +transport_path_delays

Viewing Error Messages
ModelSim and QuestaSim error and warning messages are tagged with a vsim or vcom
code. To determine the cause and resolution for a vsim or vcom error or warning, use
the verror command.

For example, ModelSim and QuestaSim may display the following error message:

** Error:
C:/altera_trn/DUALPORT_TRY/simulation/modelsim/DUALPORT_TRY.vho(31):
(vcom-1136) Unknown identifier "stratixiii".

In this case, type the following command:

verror 1136 r
A description of the error message appears as follows:

vcom Message # 1136:
The specified name was referenced but was not found. This indicates
that either the name specified does not exist or is not visible at
this point in the code.

Generating Power Analysis Files
To generate a timing Value Change Dump File (.vcd) for power analysis, you must
first generate a <filename>_dump_all_vcd_nodes.tcl script file in the Quartus II
software. You can then run the script from the ModelSim, QuestaSim, or
ModelSim-Altera software to generate a timing <filename>.vcd. You can use this .vcd
for power analysis in the Quartus II PowerPlay power analyzer.

To use a.vcd for power analysis, follow these steps:

1. In the Quartus II software, click Settings on the Assignments menu.

2. Click Simulation under EDA Tool Settings.

3. Turn on Generate Value Change Dump file script, specify the type of output
signals to include, and specify the top-level design instance name in your
testbench.

4. On the Processing menu, click Start Compilation.

5. On the Tools menu, point to Run EDA Simulation, and then click EDA Gate
Level Simulation. The Compiler creates the <filename>_dump_all_vcd_nodes.tcl
file, the ModelSim simulation <filename>_run_msim_gate_vhdl/verilog.do file
(including the .vcd and .tcl execution lines), and all other files for simulation.
ModelSim then automatically runs the generated .do to start the simulation.

6. Break the simulation if your testbench does not have a break point. End the
simulation to have ModelSim generate the .vcd. You can only generate the .vcd
after simulation ends with the End Simulation function.
Quartus II Handbook Version 13.1 November 2012 Altera Corporation
Volume 3: Verification

Chapter 2: Mentor Graphics ModelSim and QuestaSim Support 2–5
ModelSim, ModelSim-Altera, and QuestaSim Guidelines
f For more information about using the timing <filename>.vcd for power estimation,
refer to the PowerPlay Power Analysis chapter in volume 3 of the Quartus II Handbook.

Viewing a Simulation Waveform
ModelSim-Altera, ModelSim, and QuestaSim automatically generate a Wave Log
Format File (.wlf) following simulation. You can use the .wlf to generate a waveform
view.

To view a waveform from a .wlf through ModelSim-Altera, ModelSim, or QuestaSim,
perform the following steps:

1. Type vsim at the command line. The ModelSim/QuestaSim or ModelSim-Altera
dialog box appears.

2. On the File menu, click Datasets. The Datasets Browser dialog box appears.

3. Click Open and browse to the directory that contains your .wlf.

4. Select the .wlf file and click Open, then click OK.

5. Click Done.

6. In the Object browser, select the signals that you want to observe.

7. On the Add menu, click Wave and then click Selected Signals.

You cannot view a waveform from a .vcd in ModelSim-Altera, ModelSim, or
QuestaSim directly. The .vcd must first be converted to a .wlf.

1. Use the vcd2wlf command to convert the file. For example, type the following at
the command-line:

vcd2wlf <example>.vcd <example>.wlf r
2. After you convert the .vcd to a .wlf, follow the procedures for viewing a waveform

from a .wlf through ModelSim and QuestaSim.

You can also convert your .wlf to a .vcd by using the wlf2vcd command.

Simulating with ModelSim-Altera Waveform Editor
You can use the ModelSim-Altera Waveform Editor as a simple method to create
stimulus vectors for simulation. You can create this design stimulus via interactive
manipulation of waveforms from the wave window in ModelSim-Altera. With the
ModelSim-Altera waveform editor, you can create and edit waveforms, drive
simulation directly from created waveforms, and save created waveforms into a
stimulus file.

f For more information, refer to the Generating Stimulus with Waveform Editor chapter in
the ModelSim SE User’s Manual available on the ModelSim website (www.model.com).
November 2012 Altera Corporation Quartus II Handbook Version 13.1
Volume 3: Verification

http://model.com/
http://www.altera.com/literature/hb/qts/qts_qii53013.pdf

2–6 Chapter 2: Mentor Graphics ModelSim and QuestaSim Support
ModelSim, ModelSim-Altera, and QuestaSim Guidelines
Simulation Setup Script Example
The Quartus II software can generate a msim_setup.tcl simulation setup script for IP
cores in your design. The script compiles the required device library models, compiles
the design files, and elaborates the design with or without simulator optimization. To
run the script, type source msim_setup.tcl in the simulator Transcript window.
Alternatively, if you are using the simulator at the command line, you can type the
following command:

vsim -c -do msim_setup.tcl.

Example 2–2 shows the top-level-simulate.do custom top-level simulation script that
sets the hierarchy variable TOP_LEVEL_NAME to top_testbench for the design, and sets
the variable QSYS_SIMDIR to the location of the generated simulation files.

In this example, the top-level simulation files are stored in the same directory as the
original IP core, so this variable is set to the IP-generated directory structure. The
QSYS_SIMDIR variable provides the relative hierarchy path for the generated IP
simulation files. The script calls the generated msim_setup.tcl script and uses the
alias commands from the script to compile and elaborate the IP files required for
simulation along with the top-level simulation testbench. You can specify additional
simulator elaboration command options when you run the elab command, for
example, elab +nowarnTFMPC. The last command run in the example starts the
simulation.

Unsupported Features
The Quartus II software does not support the following simulation features:

■ Altera does not support companion licensing for ModelSim AE.

■ The USB software guard is not supported by versions earlier than Mentor
Graphics ModelSim software version 5.8d.

■ For ModelSim-Altera software versions prior to 5.5b, use the PCLS utility
included with the software to set up the license.

Example 2–2. Example Top Level Simulation Script (top-level-simulate.do)

Set hierarchy variables used in the IP-generated files
set TOP_LEVEL_NAME "top_testbench"
set QSYS_SIMDIR "./ip_top_sim"

Source generated simulation script which defines aliases used below
source $QSYS_SIMDIR/mentor/msim_setup.tcl

dev_com alias compiles simulation libraries for device library files
dev_com

com alias compiles IP simulation or Qsys model files and/or Qsys model
files in the correct order
com

Compile top level testbench that instantiates your IP
vlog -sv ./top_testbench.sv

elab alias elaborates the top-level design and testbench
elab

Run the full simulation
run - all
Quartus II Handbook Version 13.1 November 2012 Altera Corporation
Volume 3: Verification

Chapter 2: Mentor Graphics ModelSim and QuestaSim Support 2–7
Document Revision History
■ Some versions of ModelSim and QuestaSim support SystemVerilog, PSL
assertions, SystemC, and more. For more information about specific feature
support, refer to Mentor Graphics literature.

f For more information about the ModelSim-Altera Subscription Edition software,
including pricing, refer to the ModelSim-Altera Software page of the Altera website.
For more information about obtaining and setting up the license for the
ModelSim-Altera Subscription Edition software, refer to the “Licensing Altera
Software” section in the Altera Software Installation and Licensing Manual.

Document Revision History
Table 2–2 shows the revision history for this chapter.

Table 2–2. Document Revision History (Part 1 of 2)

Date Version Changes

November 2012 12.1.0 Relocated general simulation information to Simulating Altera Designs.

June 2012 12.0.0 Removed survey link.

November 2011 11.1.0
■ Added information about encrypted Altera simulation model files.

■ Updated power analysis information.

May 2011 11.0.0

■ Updated “Software Requirements” on page 2–2

■ Updated “Design Flow with ModelSim-Altera, ModelSim, or QuestaSim Software”
on page 2–2

■ Restructured “Simulating with the ModelSim-Altera Software” on page 2–4

■ Restructured “Simulating with the ModelSim and QuestaSim Software” on page 2–5

■ Restructured “Simulating Designs that Include Transceivers” on page 2–12

■ Changed section name from “ModelSim and QuestaSim Error Message Verification”
to “ModelSim and QuestaSim Error Message Information” on page 2–18

■ Changed section name from “Simulating with ModelSim-Altera Waveform” to
“Simulating with ModelSim-Altera Waveform Editor” on page 2–20

December 2010 10.1.0

■ Changed to new document template

■ Referenced Simulating Altera Designs chapter

■ Added new section, “Simulating with ModelSim-Altera Waveform Editor” on
page 2–20

■ Removed Stratix V compilation information and linked to Quartus II Help

July 2010 10.0.0

■ Removed simulation library tables and linked to Quartus II Help

■ Added other links to Quartus II Help and ModelSim-Altera Help where appropriate
and removed redundant information

■ Added QuestaSim support

■ Added Stratix V simulation information

■ Minor editorial changes throughout

■ Removed Referenced Documents section
November 2012 Altera Corporation Quartus II Handbook Version 13.1
Volume 3: Verification

http://www.altera.com/products/software/quartus-ii/modelsim/qts-modelsim-index.html
http://www.altera.com/literature/manual/quartus_install.pdf?GSA_pos=1&WT.oss_r=1&WT.oss=altera software licensing and installation
http://www.altera.com/literature/hb/qts/qts_qii52002.pdf

2–8 Chapter 2: Mentor Graphics ModelSim and QuestaSim Support
Document Revision History
November 2009 9.1.0

■ Removed NativeLink information and referenced new Simulating Designs with EDA
Tools chapter

■ Added Stratix IV transceiver simulation section

■ Reformatted transceiver simulation sections

■ Text edits throughout chapter

March 2009 9.0.0

Added the following sections:

■ “Compile Libraries Using the EDA Simulation Library Compiler” on page 2–17

■ “Generate Simulation Script from EDA Netlist Writer” on page 2–77

■ “Viewing a Waveform from a .wlf File” on page 2–78

Updated the following:

■ Table 2–1, Table 2–2, Table 2–5, Table 2–6, Table 2–7, Table 2–8, Table 2–9,
Table 2–10

■ Figure 2–4 on page 2–81

■ All sections titled “Loading the Design”

November 2008 8.1.0

Updated the following:

■ Table 2–2, Table 2–3, Table 2–4, Table 2–5, Table 2–6

■ Removed --zero_ic_delays from quartus_sta option in “Generate
Post-Synthesis Simulation Netlist Files” on page 2–11

■ Removed steps to include the library when the simulation is run in VHDL mode from
all procedures; this is no longer necessary

■ Added information about the Altera Simulation Library Compiler throughout the
chapter

■ Added “Compile Libraries Using the Altera Simulation Library Compiler” on
page 2–15

■ Added “Disabling Simulation” on page 2–72

■ Minor editorial updates

■ Updated entire chapter using 8½” × 11” chapter template

May 2008 8.0.0

Updated the following:

■ “Altera Design Flow with ModelSim-Altera or ModelSim Software” on page 2–3

■ “Simulation Libraries” on page 2–4

■ “Simulation Netlist Files” on page 2–11

■ “Perform Simulation Using ModelSim-Altera Software” on page 2–15

■ “Perform Simulation Using ModelSim Software” on page 2–33

■ “Simulating Designs that Include Transceivers” on page 2–57

■ “Using the NativeLink Feature with ModelSim-Altera or ModelSim Software” on
page 2–63

■ “Generating a Timing VCD File for PowerPlay” on page 2–68

Table 2–2. Document Revision History (Part 2 of 2)

Date Version Changes
Quartus II Handbook Version 13.1 November 2012 Altera Corporation
Volume 3: Verification

QII53002-12.1.0

© 2012 Altera Corporation. All rights reserved. ALTERA, ARRI
are trademarks of Altera Corporation and registered in the U.S
trademarks or service marks are the property of their respectiv
semiconductor products to current specifications in accordance
services at any time without notice. Altera assumes no respons
described herein except as expressly agreed to in writing by Al
on any published information and before placing orders for pr

Quartus II Handbook Version 13.1
Volume 3: Verification
November 2012

November 2012
QII53002-12.1.0
3. Synopsys VCS and VCS MX Support
This chapter provides specific guidelines for simulation of Quartus® II designs with
the Synopsys VCS or VCS MX software. You can also refer to the following for more
information about EDA simulation:

■ For overview and version support information, Simulating Altera Designs in the
Quartus II Handbook and About Using EDA Simulators in Quartus II Help.

■ For detailed GUI steps, Preparing for EDA Simulation and Running EDA Simulators
in Quartus II Help.

■ The VCS User Guide installed with the VCS software, and the Synopsys VCS
Simulation Design Example page.

Quick Start Example (VCS Verilog)
You can adapt the following RTL simulation example to get started quickly with VCS:

1. Specify your EDA simulator and executable path in the Quartus II software:
set_user_option -name EDA_TOOL_PATH_VCS <VCS executable path>r
set_global_assignment -name EDA_SIMULATION_TOOL "VCS"r

2. Compile simulation model libraries using one of the following:

■ Run NativeLink RTL simulation to compile required design files, simulation
models, and run your simulator. Verify results in your simulator. Skip steps 3
through 4.

■ Use Simulation Library Compiler to generate the simlib_comp.vcs options file
that contains VCS command-line arguments specifying required simulation
models.

3. Modify the simlib_comp.vcs file to specify your design and testbench files.

4. Run the VCS simulator:
vcs -R -file simlib_comp.vcs

VCS and VCS MX Guidelines
The following guidelines apply to simulating Quartus II designs in the VCS or
VCS MX software:

■ Do not specify the -v option for altera_lnsim.sv because it defines a
systemverilog package.

■ Add -verilog and +verilog2001ext+.v options to make sure all .v files are
compiled as verilog 2001 files, and all other files are compiled as systemverilog
files.
A, CYCLONE, HARDCOPY, MAX, MEGACORE, NIOS, QUARTUS and STRATIX words and logos
. Patent and Trademark Office and in other countries. All other words and logos identified as
e holders as described at www.altera.com/common/legal.html. Altera warrants performance of its
 with Altera's standard warranty, but reserves the right to make changes to any products and
ibility or liability arising out of the application or use of any information, product, or service
tera. Altera customers are advised to obtain the latest version of device specifications before relying
oducts or services.

Feedback SubscribeTwitter

ISO
9001:2008
Registered

https://www.altera.com/servlets/subscriptions/alert?id=QII53002
http://www.altera.com/literature/hb/qts/qts_qii53028.pdf
http://synopsys.com/
http://www.altera.com/support/examples/vcs/exm-vcs.html
http://www.altera.com/support/examples/vcs/exm-vcs.html
http://quartushelp.altera.com/current/master.htm#mergedProjects/eda/eda_topics/quartus2/eda_view_using_sim.htm
http://quartushelp.altera.com/current/master.htm#mergedProjects/eda/eda_topics/quartus2/eda_pro_advanced_options.htm
http://quartushelp.altera.com/current/master.htm#mergedProjects/eda/simulation/activeHDL/eda_view_aldec.htm
http://www.altera.com/common/legal.html
http://www.altera.com/support/reliability/certifications/rel-certifications.html
http://www.altera.com/support/reliability/certifications/rel-certifications.html
http://twitter.com/home/?status=Synopsys+VCS+and+VCS+MX+Support+http://www.altera.com/literature/hb/qts/qts_qii53002.pdf?WT.mc_id=gc_so_tw_st_tx_a_011+(via @alteracorp)+%23Altera
mailto:TechDocFeedback@altera.com?subject=Feedback on qts_qii53002-12.1 (QII HB, Vol3, Ch3: VCS and VCS MX Support)

3–2 Chapter 3: Synopsys VCS and VCS MX Support
VCS and VCS MX Guidelines
■ Add the -lca option for Stratix V and later families because they include IEEE-
encrypted simulation files for VCS and VCS MX.

■ Add -timescale=1ps/1ps to ensure picosecond resolution.

Disabling Timing Violation on Registers
In certain situations, you may want to ignore timing violations on registers and
disable the “X” propagation that occurs (for example, timing violations in internal
synchronization registers in asynchronous clock-domain crossing).

By default, the x_on_violation_option logic option applying to all design registers is
On, resulting in an output of “X” at timing violation. To disable “X” propagation at
timing violations on a specific register, set the x_on_violation_option logic option to
Off for that register. The following command is an example from the Quartus II
Settings File (.qsf):

set_instance_assignment -name X_ON_VIOLATION_OPTION OFF -to \
<register_name>

Simulating Transport Delays
By default, the VCS software filters out all pulses that are shorter than the
propagation delay between primitives. Turning on the transport delay options in the
VCS software prevents the simulation tool from filtering out these pulses. Use the
following options to ensure that simulation results include all signal pulses. Table 3–1
describes the transport delay options.

1 The +transport_path_delays and +transport_path_delays options apply by default
during NativeLink gate-level timing simulation.

The following VCS software command runs a post-synthesis simulation:

vcs -R <testbench>.v <gate-level netlist>.v -v <Altera device family \
library>.v +transport_int_delays +pulse_int_e/0 +pulse_int_r/0 \
+transport_path_delays +pulse_e/0 +pulse_r/0 r

Generating Power Analysis Files
To run power analysis in the Quartus II software, you must first generate a Verilog
Value Change Dump File (.vcd) in the Quartus II software, and then run the .vcd from
the VCS software. You can then use this .vcd for power analysis in the Quartus II
PowerPlay power analyzer. To use a.vcd for power analysis, follow these steps:

Table 3–1. Transport Delay Options

Option Description

+transport_path_delays
Use when simulation pulses are shorter than the delay in
a gate-level primitive. You must include the
+pulse_e/number and +pulse_r/number options.

+transport_int_delays

Use when simulation pulses are shorter than the
interconnect delay between gate-level primitives. You
must include the +pulse_int_e/number and
+pulse_int_r/number options.
Quartus II Handbook Version 13.1 November 2012 Altera Corporation
Volume 3: Verification

Chapter 3: Synopsys VCS and VCS MX Support 3–3
VCS and VCS MX Guidelines
1. In the Quartus II software, click Settings on the Assignments menu.

2. Click Simulation under EDA Tool Settings.

3. Turn on Generate Value Change Dump file script, specify the type of output
signals to include, and specify the top-level design instance name in your
testbench.

4. On the Processing menu, click Start Compilation.

5. Include the script in your testbench file where the design under test (DUT) is
instantiated:

include <revision_name>_dump_all_vcd_nodes.v r

1 Include the script within the testbench module block. If you include the
script outside of the testbench module block, syntax errors occur during
compilation.

6. Run the simulation with the VCS command. Exit the VCS software when the
simulation is finished and the <revision_name>.vcd file is generated in the
simulation directory.

f For detailed instructions about generating a .vcd file and running power analysis,
refer to the PowerPlay Power Analysis chapter in volume 3 of the Quartus II Handbook.

Simulation Setup Script Example
The Quartus II software can generate a simulation setup script for IP cores in your
design. The scripts for VCS and VCS MX are vcs_setup.sh (for Verilog HDL or
SystemVerilog) and vcsmx_setup.sh (combined Verilog HDL and SystemVerilog with
VHDL). The scripts contain shell commands that compile the required simulation
models in the correct order, elaborate the top-level design, and run the simulation for
100 time units by default. You can run these scripts from a Linux command shell.

Read the generated .sh script to see the variables that are available for override when
sourcing the script or redefining directly if you edit the script.To set up the simulation
for a design such as Example 3–1, use the command-line to pass variable values to the
shell script, as illustrated in Example 3–2 on page 3–4 and Example 3–3 on page 3–4.
You can alternatively create a shell script that contains these commands.

Example 3–1. Using Command-line to Pass Simulation Variables

sh vcsmx_setup.sh\
USER_DEFINED_ELAB_OPTIONS=+rad\
USER_DEFINED_SIM_OPTIONS=+vcs+lic+wait
November 2012 Altera Corporation Quartus II Handbook Version 13.1
Volume 3: Verification

http://www.altera.com/literature/hb/qts/qts_qii53013.pdf

3–4 Chapter 3: Synopsys VCS and VCS MX Support
Document Revision History
You can edit the .sh script to add simulator commands that compile the top-level
simulation HDL file.

Document Revision History
Table 3–2 shows the revision history for this chapter.

Example 3–2. Example Top-Level Simulation Shell Script for VCS-MX

Run generated script to compile libraries and IP simulation files
Skip elaboration and simulation of the IP variation
sh ./ip_top_sim/synopsys/vcsmx/vcsmx_setup.sh SKIP_ELAB=1 SKIP_SIM=1
QSYS_SIMDIR="./ip_top_sim"

#Compile top-level testbench that instantiates IP
vlogan -sverilog ./top_testbench.sv

#Elaborate and simulate the top-level design
vcs –lca –t ps <elaboration control options> top_testbench
simv <simulation control options>

Example 3–3. Example Top-Level Simulation Shell Script for VCS

Run script to compile libraries and IP simulation files
sh ./ip_top_sim/synopsys/vcs/vcs_setup.sh
TOP_LEVEL_NAME=”top_testbench”\
Pass VCS elaboration options to compile files and elaborate top-level
passed to the script as the TOP_LEVEL_NAME
USER_DEFINED_ELAB_OPTIONS="top_testbench.sv"\
Pass in simulation options and run the simulation for specified amount
of time.
USER_DEFINED_SIM_OPTIONS=”<simulation control options>

Table 3–2. Document Revision History (Part 1 of 2)

Date Version Changes

November 2012 12.1.0 Relocated general simulation information to Simulating Altera Designs.

June 2012 12.0.0 Removed survey link.

November 2011 11.0.1
Template update.

Minor editorial updates.

May 2011 11.0.0

■ Linked to Help for Stratix V Libraries

■ Added SystemVerilog HDL information

■ Editorial updates throughout

December 2010 10.0.1 Changed to new document template. No change to content.

July 2010 10.0.0

■ Linked to Quartus II Help where appropriate

■ Added Stratix V simulation information

■ Minor text edits

■ Removed VirSim references

■ Removed Referenced Documents section

November 2009 9.1.0

■ Removed NativeLink information and referenced new Simulating Designs with EDA
Tools chapter in volume 3 of the Quartus II Handbook

■ Added “RTL Functional Simulation for Stratix IV Devices” and “Gate-Level Timing
Simulation for Stratix IV Devices” sections

■ Minor text edits
Quartus II Handbook Version 13.1 November 2012 Altera Corporation
Volume 3: Verification

http://www.altera.com/literature/hb/qts/qts_qii53025.pdf
http://www.altera.com/literature/hb/qts/qts_qii53025.pdf

Chapter 3: Synopsys VCS and VCS MX Support 3–5
Document Revision History
For previous versions of the Quartus II Handbook, refer to the Quartus II Handbook
Archive.

March 2009 9.0.0

■ Added support for Synopsys VCS MX software

■ Changed chapter title to “Synopsys VCS and VCS MX Support”

■ Major revision to “Compiling Libraries Using the EDA Simulation Library Compiler” on
page 4–2

■ Major revision to “RTL Functional Simulations” on page 4–2

■ Added Table 3–4 on page 3–10 and Table 3–5 on page 3–11

■ Added new section “Using DVE” on page 4–7

■ Added new section “Generating a Simulation Script from the EDA Netlist Writer” on
page 3–16

■ Added new section “Viewing a Waveform from a .vpd or .vcd File” on page 4–13

November 2008 8.1.0

■ Added “Compile Libraries Using the EDA Simulation Library Compiler” on page 3–3

■ Added information about the --simlib_comp utility

■ Updated entire chapter using 8½” × 11” chapter template

■ Minor editorial updates

Table 3–2. Document Revision History (Part 2 of 2)

Date Version Changes
November 2012 Altera Corporation Quartus II Handbook Version 13.1
Volume 3: Verification

http://www.altera.com/literature/lit-qts_archive.jsp
http://www.altera.com/literature/lit-qts_archive.jsp

3–6 Chapter 3: Synopsys VCS and VCS MX Support
Document Revision History
Quartus II Handbook Version 13.1 November 2012 Altera Corporation
Volume 3: Verification

QII53003-13.0.0

© 2013 Altera Corporation. All rights reserved. ALTERA, ARRI
are trademarks of Altera Corporation and registered in the U.S
trademarks or service marks are the property of their respectiv
semiconductor products to current specifications in accordance
services at any time without notice. Altera assumes no respons
described herein except as expressly agreed to in writing by Al
on any published information and before placing orders for pr

Quartus II Handbook Version 13.1
Volume 3: Verification
May 2013

May 2013
QII53003-13.0.0
4. Cadence Incisive Enterprise Simulator
Support
This chapter provides specific guidelines for simulation of Quartus® II designs with
the Cadence Incisive Enterprise (IES) software. You can also refer to the following for
more information about EDA simulation:

■ For overview and version support information, Simulating Altera Designs in the
Quartus II Handbook and About Using EDA Simulators in Quartus II Help.

■ For detailed GUI steps, Preparing for EDA Simulation and Running EDA Simulators
in Quartus II Help.

Quick Start Example (NC-Verilog)
You can adapt the following RTL simulation example to get started quickly with IES:

1. Specify your EDA simulator and executable path in the Quartus II software:
set_user_option -name EDA_TOOL_PATH_NCSIM <ncsim executable path>r
set_global_assignment -name EDA_SIMULATION_TOOL "NC-Verilog (Verilog)"r

2. Compile simulation model libraries using one of the following:

■ Run NativeLink RTL simulation to compile required design files, simulation
models, and run your simulator. Verify results in your simulator. Skip steps 3
through 4.

■ Use Simulation Library Compiler to compile all required simulation models.

■ Map Altera simulation libraries by adding the following commands to a
cds.lib file:
include ${CDS_INST_DIR}/tools/inca/files/cds.lib
DEFINE <lib1>_ver <lib1_ver>

Then, compile Altera simulation models manually:
vlog -work <lib1_ver>r

3. Elaborate your design and testbench with IES:
ncelab <work library>.<top-level entity name>r

4. Run the simulation:
ncsim <work library>.<top-level entity name>r

Cadence Incisive Enterprise Guidelines
The following guidelines apply to simulation of Altera designs in the IES software.
A, CYCLONE, HARDCOPY, MAX, MEGACORE, NIOS, QUARTUS and STRATIX words and logos
. Patent and Trademark Office and in other countries. All other words and logos identified as
e holders as described at www.altera.com/common/legal.html. Altera warrants performance of its
 with Altera's standard warranty, but reserves the right to make changes to any products and
ibility or liability arising out of the application or use of any information, product, or service
tera. Altera customers are advised to obtain the latest version of device specifications before relying
oducts or services.

Feedback SubscribeTwitter

ISO
9001:2008
Registered

mailto:TechDocFeedback@altera.com?subject=Feedback on qts_qii53003-13.0 (QII HB, Vol3, Ch4: Cadence Incisive Enterprise Support)
https://www.altera.com/servlets/subscriptions/alert?id=QII53003
http://twitter.com/home/?status=Cadence+Incisive+Enterprise+Simulator+Support+http://www.altera.com/literature/hb/qts/qts_qii53003.pdf?WT.mc_id=gc_so_tw_st_tx_a_011+(via @alteracorp)+%23Altera
http://quartushelp.altera.com/current/master.htm#mergedProjects/eda/eda_topics/quartus2/eda_view_using_sim.htm
http://www.altera.com/common/legal.html
http://quartushelp.altera.com/current/master.htm#mergedProjects/eda/simulation/activeHDL/eda_view_aldec.htm
http://www.altera.com/support/reliability/certifications/rel-certifications.html
http://www.altera.com/support/reliability/certifications/rel-certifications.html
http://quartushelp.altera.com/current/master.htm#mergedProjects/eda/eda_topics/quartus2/eda_pro_advanced_options.htm
http://www.altera.com/literature/hb/qts/qts_qii53028.pdf

4–2 Chapter 4: Cadence Incisive Enterprise Simulator Support
Cadence Incisive Enterprise Guidelines
Simulation Tool Interfaces
Altera supports both the IES GUI and command-line simulator interfaces. To start the
IES GUI, type the following command at a command prompt:

nclaunchr
Table 4–1 lists the ISE command-line programs supported for IES simulation.

Elaborating Your Design
The simulator automatically reads the .sdo file during elaboration of the
Quartus II-generated Verilog HDL or SystemVerilog HDL netlist file. The ncelab
executable recognizes the embedded system task $sdf_annotate and automatically
compiles and annotates the .sdo file (runs ncsdfc automatically). VHDL netlist files
do not contain system task calls to locate your .sdf file; therefore, you must compile
the standard .sdo file manually. Locate the .sdo file in the same directory where you
run elaboration or simulation. Otherwise, the $sdf_annotate task cannot reference the
.sdo file correctly. If you are starting an elaboration or simulation from a different
directory, you can either comment out the $sdf_annotate and annotate the .sdo file
with the GUI, or add the full path of the .sdo file.

1 If you use NC-Sim for post-fit VHDL functional simulation of a Stratix V design that
includes RAM, an elaboration error might occur if the component declaration
parameters are not in the same order as the architecture parameters. Use the
-namemap_mixgen option with the ncelab command to match the component
declaration parameter and architecture parameter names.

Back-Annotating Simulation Timing Data (VHDL Only)
You can back annotate timing information in a Standard Delay Output File (.sdo) for
VHDL simulators. To back annotate the .sdo timing data at the command line, follow
these steps:

1. To compile the .sdo with the ncsdfc program, type the following command at the
command prompt:

ncsdfc <project name>_vhd.sdo –output <output name>r
The ncsdfc program generates an <output name>.sdf.X compiled .sdo file.

1 If you do not specify an output name, ncsdfc uses <project name>.sdo.X.

Table 4–1. ISE Command-Line Programs

Program Function

ncvlog
ncvhdl

ncvlog compiles your Verilog HDL code and performs syntax and static
semantics checks.

ncvhdl compiles your VHDL code and performs syntax and static semantics
checks.

ncelab Elaborates the design hierarchy and determines signal connectivity.

ncsdfc Performs back-annotation for simulation with VHDL simulators.

ncsim
Runs mixed-language simulation. This program is the simulation kernel that
performs event scheduling and executes the simulation code.
Quartus II Handbook Version 13.1 May 2013 Altera Corporation
Volume 3: Verification

Chapter 4: Cadence Incisive Enterprise Simulator Support 4–3
Cadence Incisive Enterprise Guidelines
2. Specify the compiled .sdf file for the project by adding the following command to
an ASCII SDF command file for the project:

COMPILED_SDF_FILE = "<project name>.sdf.X" SCOPE = <instance path>

Example 4–1 shows an example of an SDF command file.

After you compile the .sdf file, type the following command to elaborate the design:

ncelab worklib.<project name>:entity –SDF_CMD_FILE <SDF Command File>r

Disabling Timing Violations on Registers
In certain situations, you may want to ignore timing violations on registers and
disable the “X” propagation that occurs (for example, timing violations in internal
synchronization registers in asynchronous clock-domain crossing).

By default, the x_on_violation_option logic option applying to all design registers is
On, resulting in an output of “X” at timing violation. To disable “X” propagation at
timing violations on a specific register, set the x_on_violation_option logic option to
Off for that register. The following command is an example from the Quartus II
Settings File (.qsf):

set_instance_assignment -name X_ON_VIOLATION_OPTION OFF -to \
<register_name>

Simulating Pulse Reject Delays
By default, the IES software filters out all pulses that are shorter than the propagation
delay between primitives. Setting the pulse reject delays options in the IES software
prevents the simulation tool from filtering out these pulses. Use the following options
to ensure that all signal pulses are seen in the simulation results.

Table 4–2 describes the pulse reject delay options.

1 The -PULSE_R and -PULSE_INT_R options apply by default during NativeLink
gate-level timing simulation.

Example 4–1. SDF Command File

// SDF command file sdf_file
COMPILED_SDF_FILE = "lpm_ram_dp_test_vhd.sdo.X",
SCOPE = :tb,
MTM_CONTROL = "TYPICAL",
SCALE_FACTORS = "1.0:1.0:1.0",
SCALE_TYPE = "FROM_MTM";

Table 4–2. Pulse Reject Delay Options

Option Description

-PULSE_R
Use when simulation pulses are shorter than the delay in a
gate-level primitive. The argument is the percentage of
delay for pulse reject limit for the path.

-PULSE_INT_R

Use when simulation pulses are shorter than the
interconnect delay between gate-level primitives. The
argument is the percentage of delay for pulse reject limit for
the path.
May 2013 Altera Corporation Quartus II Handbook Version 13.1
Volume 3: Verification

4–4 Chapter 4: Cadence Incisive Enterprise Simulator Support
Cadence Incisive Enterprise Guidelines
To perform a gate-level timing simulation with the device family library, type the
following IES software command:

ncelab worklib.<project name>:entity –SDF_CMD_FILE <SDF Command File> \
-TIMESCALE 1ps/1ps -PULSE_R 0 -PULSE_INT_R 0r

Viewing a Simulation Waveform
IES generates a.trn file automatically following simulation. You can use the .trn for
generating the SimVision waveform view.

To view a waveform from a .trn file through SimVision, follow these steps:

1. Type simvision at the command line. The Design Browser dialog box appears.

2. In the File menu, click Open Database and click the .trn file.

3. In the Design Browser dialog box, select the signals that you want to observe from
the Hierarchy.

4. Right-click the selected signals and click Send to Waveform Window.

1 You cannot view a waveform from a .vcd file in SimVision, and the .vcd file cannot be
converted to a .trn file.

Simulation Setup Script Example
The Quartus II software can generate a ncsim_setup.sh simulation setup script for IP
cores in your design. The script contains shell commands that compile the required
device libraries, IP, or Qsys simulation models in the correct order. The script then
elaborates the top-level design and runs the simulation for 100 time units by default.
You can run these scripts from a Linux command shell.

To set up the simulation script for a design, you can use the command-line to pass
variable values to the shell script, as illustrated in Example 4–2.

Read the generated .sh script to see the variables that are available for you to override
when you source the script or that you can redefine directly in the generated .sh
script. For example, you can specify additional elaboration and simulation options
with the variables USER_DEFINED_ELAB_OPTIONS and USER_DEFINED_SIM_OPTIONS.

Example 4–2. Example Top-Level Simulation Shell Script for Incisive (NCSIM)

Run script to compile libraries and IP simulation files
Skip elaboration and simulation of the IP variation
sh ./ip_top_sim/cadence/ncsim_setup.sh SKIP_ELAB=1 SKIP_SIM=1
QSYS_SIMDIR="./ip_top_sim"

#Compile the top-level testbench that instantiates your IP
ncvlog -sv ./top_testbench.sv

#Elaborate and simulate the top-level design
ncelab <elaboration control options> top_testbench
ncsim <simulation control options> top_testbench
Quartus II Handbook Version 13.1 May 2013 Altera Corporation
Volume 3: Verification

Chapter 4: Cadence Incisive Enterprise Simulator Support 4–5
Document Revision History
Document Revision History
Table 4–3 shows the revision history for this chapter.

Table 4–3. Document Revision History

Date Version Changes

May 2013 13.0.0 Added note about parameter mismatch workaround.

November 2012 12.1.0 Relocated general simulation information to Simulating Altera Designs.

June 2012 12.0.0 Removed survey link.

November 2011 11.0.1 Template update. Minor editorial updates.

May 2011 11.0.0

■ Changed chapter title

■ Linked to Help for Stratix V Libraries

■ Added SystemVerilog HDL information

■ Other minor changes throughout

December 2010 10.0.1 Changed to new document template. No change to content.

July 2010 10.0.0

■ Linked to Help where appropriate

■ Minor text edits

■ Removed Referenced Documents section

November 2009 9.1.0

■ Removed NativeLink information and referenced new Simulating Designs with EDA
Tools chapter in volume 3 of the Quartus II Handbook

■ Added “RTL Functional Simulation for Stratix IV Devices” and “Gate-Level Timing
Simulation for Stratix IV Devices” sections

■ Minor text edits

March 2009 9.0.0

■ Removed “Compile Libraries Using the Altera Simulation Library Compiler”

■ Added “Compile Libraries Using the EDA Simulation Library Compiler” on page 4–5

■ Added “Generate Simulation Script from EDA Netlist Writer” on page 4–35

■ Added “Viewing a Waveform from a .trn File” on page 4–36

November 2008 8.1.0

■ Added “Compile Libraries Using the Altera Simulation Library Compiler” on page 4–5.

■ Added information about the --simlib_comp utility.

■ Minor editorial updates.

■ Updated entire chapter using 8½” × 11” chapter template.

May 2008 8.0.0.

■ Updated Table 4–1.

■ Updated Figure 4–1.

■ Updated “Compilation in Command-Line Mode” on page 4–9.

■ Updated “Generating a Timing Netlist with Different Timing Models” on page 4–18.

■ Added “Disable Timing Violation on Registers” on page 4–20.

■ Updated “Simulating Designs that Include Transceivers” on page 4–23.

■ Updated “Performing a Gate Level Simulation Using NativeLink” on page 4–30.

■ Added “Generating a Timing VCD File for PowerPlay” on page 4–33.

■ Added hyperlinks to referenced documents throughout the chapter.

■ Minor editorial updates.
May 2013 Altera Corporation Quartus II Handbook Version 13.1
Volume 3: Verification

4–6 Chapter 4: Cadence Incisive Enterprise Simulator Support
Document Revision History
f For previous versions of the Quartus II Handbook, refer to the Quartus II Handbook
Archive.
Quartus II Handbook Version 13.1 May 2013 Altera Corporation
Volume 3: Verification

http://www.altera.com/literature/lit-qts_archive.jsp
http://www.altera.com/literature/lit-qts_archive.jsp

QII53023-12.1.0

© 2012 Altera Corporation. All rights reserved. ALTERA, ARRI
are trademarks of Altera Corporation and registered in the U.S
trademarks or service marks are the property of their respectiv
semiconductor products to current specifications in accordance
services at any time without notice. Altera assumes no respons
described herein except as expressly agreed to in writing by Al
on any published information and before placing orders for pr

Quartus II Handbook Version 13.1
Volume 3: Verification
November 2012

November 2012
QII53023-12.1.0
5. Aldec Active-HDL and Riviera-PRO
Support
This chapter provides specific guidelines for simulation of Quartus® II designs with
the Aldec Active-HDL or Riviera-PRO software. You can also refer to the following for
more information about EDA simulation:

■ For overview and version support information, Simulating Altera Designs in the
Quartus II Handbook and About Using EDA Simulators in Quartus II Help.

■ For detailed GUI steps, Preparing for EDA Simulation and Running EDA Simulators
in Quartus II Help.

Quick Start Example (Active-HDL VHDL)
You can adapt the following RTL simulation example to get started quickly with
Active-HDL:

1. Specify your EDA simulator and executable path in the Quartus II software:
set_user_option -name EDA_TOOL_PATH_ACTIVEHDL <active-hdl executable path>r
set_global_assignment -name EDA_SIMULATION_TOOL "Active-HDL (VHDL)"r

2. Compile simulation model libraries using one of the following:

■ Use NativeLink to compile required design files, simulation models, and run
your simulator. Verify results in your simulator. Skip steps 3 through 6.

■ Use Simulation Library Compiler to compile all required simulation models.

■ Compile Altera simulation models manually:
vlib <library1> <altera_library1> r
vcom -strict93 -dbg -work <library1> <lib1_component/pack.vhd> <lib1.vhd>r

3. Create and open the workspace:
createdesign <workspace name> <workspace path>r
opendesign -a <workspace name>.adf r

4. Create the work library and compile the netlist and testbench files:
vlib work r
vcom -strict93 -dbg -work work <output netlist> <testbench file> r

5. Load the design:
vsim +access+r -t 1ps +transport_int_delays +transport_path_delays \
-L work -L <lib1> -L <lib2> work.<testbench module name> r

6. Run the simulation in the Active-HDL simulator.
A, CYCLONE, HARDCOPY, MAX, MEGACORE, NIOS, QUARTUS and STRATIX words and logos
. Patent and Trademark Office and in other countries. All other words and logos identified as
e holders as described at www.altera.com/common/legal.html. Altera warrants performance of its
 with Altera's standard warranty, but reserves the right to make changes to any products and
ibility or liability arising out of the application or use of any information, product, or service
tera. Altera customers are advised to obtain the latest version of device specifications before relying
oducts or services.

Feedback SubscribeTwitter

ISO
9001:2008
Registered

https://www.altera.com/servlets/subscriptions/alert?id=QII53023
http://www.altera.com/common/legal.html
http://www.altera.com/literature/hb/qts/qts_qii53028.pdf
http://quartushelp.altera.com/current/master.htm#mergedProjects/eda/eda_topics/quartus2/eda_view_using_sim.htm
http://quartushelp.altera.com/current/master.htm#mergedProjects/eda/eda_topics/quartus2/eda_pro_advanced_options.htm
http://quartushelp.altera.com/current/master.htm#mergedProjects/eda/simulation/activeHDL/eda_view_aldec.htm
http://www.altera.com/support/reliability/certifications/rel-certifications.html
http://www.altera.com/support/reliability/certifications/rel-certifications.html
http://twitter.com/home/?status=Aldec+Active-HDL+and+Rivera-PRO+Support+http://www.altera.com/literature/hb/qts/qts_qii53023.pdf?WT.mc_id=gc_so_tw_st_tx_a_011+(via @alteracorp)+%23Altera
mailto:TechDocFeedback@altera.com?subject=Feedback on qts_qii53023-12.1 (QII HB, Vol3, Ch5: Aldec Active-HDL and Riviera-PRO Support)

5–2 Chapter 5: Aldec Active-HDL and Riviera-PRO Support
Active-HDL and Riviera-PRO Guidelines
Active-HDL and Riviera-PRO Guidelines
The following guidelines apply to simulating Altera designs in the Active-HDL or
Riviera-PRO software.

Compiling SystemVerilog Files
If your design includes multiple SystemVerilog files, you must compile the System
Verilog files together with a single alog command.

If you have Verilog files and SystemVerilog files in your design, it is recommended
that you compile the Verilog files, and then compile only the SystemVerilog files in the
single alog command.

Simulating Transport Delays
By default, the Active-HDL or Riviera-PRO software filters out all pulses that are
shorter than the propagation delay between primitives. Turning on the transport
delay options in the Active-HDL or Riviera-PRO software prevents the simulation
tool from filtering out these pulses.

Table 5–1 describes the transport delay options.

1 The +transport_path_delays and +transport_path_delays options apply by default
during NativeLink gate-level timing simulation.

f For more information about either of these options, refer to the Active-HDL online
documentation installed with the Active-HDL software.

To perform a gate-level timing simulation with the device family library, type the
Active-HDL command shown in Example 5–1.

Disabling Timing Violation on Registers
In certain situations, you may want to ignore timing violations on registers and
disable the “X” propagation that occurs (for example, timing violations in internal
synchronization registers in asynchronous clock-domain crossing).

Table 5–1. Transport Delay Options

Option Description

+transport_path_delays
Use when simulation pulses are shorter than the delay in
a gate-level primitive. You must include the
+pulse_e/number and +pulse_r/number options.

+transport_int_delays

Use when simulation pulses are shorter than the
interconnect delay between gate-level primitives. You
must include the +pulse_int_e/number and
+pulse_int_r/number options.

Example 5–1.

vsim -t 1ps -L stratixii -sdftyp /i1=filtref_vhd.sdo \
work.filtref_vhd_vec_tst +transport_int_delays +transport_path_delays
Quartus II Handbook Version 13.1 November 2012 Altera Corporation
Volume 3: Verification

Chapter 5: Aldec Active-HDL and Riviera-PRO Support 5–3
Document Revision History
By default, the x_on_violation_option logic option applying to all design registers is
On, resulting in an output of “X” at timing violation. To disable “X” propagation at
timing violations on a specific register, set the x_on_violation_option logic option to
Off for that register. The following command is an example from the Quartus II
Settings File (.qsf):

set_instance_assignment -name X_ON_VIOLATION_OPTION OFF -to \
<register_name>

For VHDL designs, the back-annotating process is done by adding the –sdftyp
option.

Example
vsim +access +r -t 1ps +transport_int_delays +transport_path_delays
-sdftyp <instance path to design>= <path to SDO file> -L adder -L work
-L lpm -L altera_mf work.adder_vhd_vec_tst

Using Simulation Setup Scripts
The Quartus II software can generate a rivierapro_setup.tcl simulation setup script
for IP cores in your design. The use and content of the script file is similar to the
msim_setup.tcl file described in the Mentor Graphics ModelSim and QuestaSim Support
chapter of the Quartus II Handbook.

Document Revision History

f Table 5–2 shows the revision history for this chapter.

Table 5–2. Document Revision History

Date Version Changes

November 2012 12.1.0 Relocated general simulation information to Simulating Altera Designs.

June 2012 12.0.0 Removed survey link.

November 2011 11.0.1
Template update.

Minor editorial updates.

May 2011 11.0.0

■ Linked to Help for Stratix V Libraries.

■ Reorganized and reformatted chapter

■ Other minor changes throughout.

December 2010 10.0.1 ■ Changed to new document template. No change to content.

July 2010 10.0.0

■ Linked to Quartus II Help

■ Revised simulation procedures

■ Added Stratix V simulation information

■ Added Riviera-PRO support

■ Minor text edits

■ Removed Referenced Documents section
November 2012 Altera Corporation Quartus II Handbook Version 13.1
Volume 3: Verification

http://www.altera.com/literature/hb/qts/qts_qii53001.pdf

5–4 Chapter 5: Aldec Active-HDL and Riviera-PRO Support
Document Revision History
For previous versions of the Quartus II Handbook, refer to the Quartus II Handbook
Archive.

November 2000 9.1.0

■ Updated Table 6–1

■ Removed Simulation Library tables and EDA Simulation Library Compiler sections and
referenced new Simulating Designs with EDA Tools chapter

■ Added “RTL Functional Simulation for Stratix IV Devices” and “Gate-Level Timing
Simulation for Stratix IV Devices” sections

■ Minor text edits

March 2009 9.0.0

■ Removed “Compile Libraries Using the Altera Simulation Library Compiler”

■ Added “Compile Libraries Using the EDA Simulation Library Compiler” on page 5–10

■ Added “Generate Simulation Script from EDA Netlist Writer” on page 5–51

■ Minor editorial updates

November 2008 8.1.0

Added the following sections:

■ “Compile Libraries Using the Altera Simulation Library Compiler” on page 5–10

■ Added steps to the procedure “Performing an RTL Simulation Using NativeLink” on
page 5–45 for using the Altera Simulation Library Compilation

■ Added steps to the procedure “Performing a Gate-Level Timing Simulation Using
NativeLink” on page 5–47 for using the Altera Simulation Library Compilation

■ Minor editorial updates

■ Updated entire chapter using 8½” × 11” chapter template

May 2008 8.0.0 Initial release

Table 5–2. Document Revision History

Date Version Changes
Quartus II Handbook Version 13.1 November 2012 Altera Corporation
Volume 3: Verification

http://www.altera.com/literature/lit-qts_archive.jsp
http://www.altera.com/literature/lit-qts_archive.jsp

© 2013 Altera Corporation. All rights reserved. ALTERA, ARRI
are trademarks of Altera Corporation and registered in the U.S
trademarks or service marks are the property of their respectiv
semiconductor products to current specifications in accordance
services at any time without notice. Altera assumes no respons
described herein except as expressly agreed to in writing by Al
on any published information and before placing orders for pr

Quartus II Handbook Version 13.1
Volume 3: Verification
November 2013
Section II. Timing Analysis
As designs become more complex, advanced timing analysis capability requirements
grow. Static timing analysis is a method of analyzing, debugging, and validating the
timing performance of a design. The Quartus® II software provides the features
necessary to perform advanced timing analysis for today’s system-on-a-
programmable-chip (SOPC) designs.

Synopsys PrimeTime is an industry standard sign-off tool, used to perform static
timing analysis on most ASIC designs. The Quartus II software provides a path to
enable you to run PrimeTime on your Quartus II software designs, and export a
netlist, timing constraints, and libraries to the PrimeTime environment.

This section explains the basic principles of static timing analysis, the advanced
features supported by the Quartus II TimeQuest Timing Analyzer, and how you can
use PrimeTime to analyze your Quartus II projects.

This section includes the following chapters:

■ Chapter 6, Timing Analysis Overview

This chapter describes static timing analysis in the context of the TimeQuest
Timing Analyzer. The chapter focuses on the relationships and equations that are
central to timing analysis.

■ Chapter 7, The Quartus II TimeQuest Timing Analyzer

This chapter describes the Quartus II TimeQuest Timing Analyzer, which is a
powerful ASIC-style timing analysis tool that validates the timing performance of
all logic in your design using an industry-standard constraint, analysis, and
reporting methodology.
A, CYCLONE, HARDCOPY, MAX, MEGACORE, NIOS, QUARTUS and STRATIX words and logos
. Patent and Trademark Office and in other countries. All other words and logos identified as
e holders as described at www.altera.com/common/legal.html. Altera warrants performance of its
with Altera's standard warranty, but reserves the right to make changes to any products and

ibility or liability arising out of the application or use of any information, product, or service
tera. Altera customers are advised to obtain the latest version of device specifications before relying
oducts or services.

ISO
9001:2008
Registered

http://www.altera.com/common/legal.html
http://www.altera.com/support/devices/reliability/certifications/rel-certifications.html
http://www.altera.com/support/devices/reliability/certifications/rel-certifications.html

QII53030-12.0.0

© 2012 Altera Corporation. All rights reserved. ALTERA, ARRI
are trademarks of Altera Corporation and registered in the U.S
trademarks or service marks are the property of their respectiv
semiconductor products to current specifications in accordance
services at any time without notice. Altera assumes no respons
described herein except as expressly agreed to in writing by Al
on any published information and before placing orders for pr

Quartus II Handbook Version 13.1
Volume 3: Verification
June 2012

June 2012
QII53030-12.0.0
6. Timing Analysis Overview
Comprehensive static timing analysis involves analysis of register-to-register, I/O,
and asynchronous reset paths. Timing analysis with the TimeQuest Timing Analyzer
uses data required times, data arrival times, and clock arrival times to verify circuit
performance and detect possible timing violations. The TimeQuest analyzer
determines the timing relationships that must be met for the design to correctly
function, and checks arrival times against required times to verify timing. This
chapter is an overview of the concepts you need to know to analyze your designs with
the TimeQuest analyzer.

f For more information about the TimeQuest analyzer flow and TimeQuest examples,
refer to The Quartus II TimeQuest Timing Analyzer chapter of the Quartus II Handbook.

TimeQuest Terminology and Concepts
Table 6–1 describes TimeQuest analyzer terminology.

Timing Netlists and Timing Paths
The TimeQuest analyzer requires a timing netlist to perform timing analysis on any
design. After you generate a timing netlist, the TimeQuest analyzer uses the data to
help determine the different design elements in your design and how to analyze
timing.

Table 6–1. TimeQuest Analyzer Terminology

Term Definition

nodes Most basic timing netlist unit. Used to represent ports, pins, and registers.

cells Look-up tables (LUT), registers, digital signal processing (DSP) blocks, mem-
ory blocks, input/output elements, and so on. (1)

pins Inputs or outputs of cells.

nets Connections between pins.

ports Top-level module inputs or outputs; for example, device pins.

clocks Abstract objects representing clock domains inside or outside of your design.

Notes to Table 6–1:

(1) For Stratix® devices, the LUTs and registers are contained in logic elements (LE) and modeled as cells.
A, CYCLONE, HARDCOPY, MAX, MEGACORE, NIOS, QUARTUS and STRATIX words and logos
. Patent and Trademark Office and in other countries. All other words and logos identified as
e holders as described at www.altera.com/common/legal.html. Altera warrants performance of its
 with Altera's standard warranty, but reserves the right to make changes to any products and
ibility or liability arising out of the application or use of any information, product, or service
tera. Altera customers are advised to obtain the latest version of device specifications before relying
oducts or services.

Feedback SubscribeTwitter

ISO
9001:2008
Registered

https://www.altera.com/servlets/subscriptions/alert?id=QII53030
http://www.altera.com/common/legal.html
http://twitter.com/home/?status=Timing+Analysis+Overview+http://www.altera.com/literature/hb/qts/qts_qii53030.pdf?WT.mc_id=gc_so_tw_st_tx_a_011+(via @alteracorp)+%23Altera
mailto:TechDocFeedback@altera.com?subject=Feedback on QII53030-12.0 (QII HB, Vol 3, Ch6: Timing Analysis Overview)
http://www.altera.com/support/reliability/certifications/rel-certifications.html
http://www.altera.com/support/reliability/certifications/rel-certifications.html
http://www.altera.com/literature/hb/qts/qts_qii53018.pdf

6–2 Chapter 6: Timing Analysis Overview
TimeQuest Terminology and Concepts
The Timing Netlist
Figure 6–1 shows a sample design for which the TimeQuest analyzer generates a
timing netlist equivalent.

Figure 6–2 shows the timing netlist for the sample design in Figure 6–1, including
how different design elements are divided into cells, pins, nets, and ports.

Timing Paths
Timing paths connect two design nodes, such as the output of a register to the input of
another register. Understanding the types of timing paths is important to timing
closure and optimization. The TimeQuest analyzer uses the following commonly
analyzed paths:

■ Edge paths—connections from ports-to-pins, from pins-to-pins, and from
pins-to-ports.

Figure 6–1. Sample Design

data1

data2

clk

reg1

reg2

and_inst

reg3

Figure 6–2. The TimeQuest Analyzer Timing Netlist

reg2

data1

data2

clk clk~clkctrl

reg1

and_inst
reg3 data_out

combout

inclk0

datain

clk
regout

regout

datac

datad

combout

datain

Cells
Cell

Cell

Pin

Pin

outclk

Port

Port

Net
Net

Net
Quartus II Handbook Version 13.1 June 2012 Altera Corporation
Volume 3: Verification

Chapter 6: Timing Analysis Overview 6–3
TimeQuest Terminology and Concepts
■ Clock paths—connections from device ports or internally generated clock pins to
the clock pin of a register.

■ Data paths—connections from a port or the data output pin of a sequential
element to a port or the data input pin of another sequential element.

■ Asynchronous paths—connections from a port or asynchronous pins of another
sequential element such as an asynchronous reset or asynchronous clear.

Figure 6–3 shows path types commonly analyzed by the TimeQuest analyzer.

In addition to identifying various paths in a design, the TimeQuest analyzer analyzes
clock characteristics to compute the worst-case requirement between any two
registers in a single register-to-register path. You must constrain all clocks in your
design before analyzing clock characteristics.

Data and Clock Arrival Times
After the TimeQuest analyzer identifies the path type, it can report data and clock
arrival times at register pins.

The TimeQuest analyzer calculates data arrival time by adding the launch edge time
to the delay from the clock source to the clock pin of the source register, the micro
clock-to-output delay (μtCO) of the source register, and the delay from the source
register’s data output (Q) to the destination register’s data input (D).

The TimeQuest analyzer calculates data required time by adding the latch edge time
to the sum of all delays between the clock port and the clock pin of the destination
register, including any clock port buffer delays, and subtracts the micro setup time
(μtSU) of the destination register, where the μtSU is the intrinsic setup time of an
internal register in the FPGA. Figure 6–4 shows the flow calculated for data arrival
time and data required time.

Figure 6–3. Path Types

Figure 6–4. Data Arrival and Data Required Times

CLRN

D Q

CLRN

D Q

clk

rst

Clock Path Data Path

Asynchronous Clear Path

data

D Q D Q

Data Arrival Time

Data Required Time
June 2012 Altera Corporation Quartus II Handbook Version 13.1
Volume 3: Verification

6–4 Chapter 6: Timing Analysis Overview
TimeQuest Terminology and Concepts
Equation 6–1 shows the basic calculations for data arrival and data required times
including the launch and latch edges.

Launch and Latch Edges
All timing relies on one or more clocks. In addition to analyzing paths, the TimeQuest
analyzer determines clock relationships for all register-to-register transfers in your
design. Figure 6–5 shows the launch edge, which is the clock edge that sends data out
of a register or other sequential element, and acts as a source for the data transfer. A
latch edge is the active clock edge that captures data at the data port of a register or
other sequential element, acting as a destination for the data transfer. In this example,
the launch edge sends the data from register reg1 at 0 ns, and the register reg2
captures the data when triggered by the latch edge at 10 ns. The data arrives at the
destination register before the next latch edge.

In timing analysis, and with the TimeQuest analyzer specifically, you create clock
constraints and assign those constraints to nodes in your design. These clock
constraints provide the structure required for repeatable data relationships. The
primary relationships between clocks, in the same or different domains, are the setup
relationship and the hold relationship. Figure 6–5 also shows the setup and hold
relationships between a launch edge and a latch edge which are 10ns apart.

1 If you do not constrain the clocks in your design, the Quartus II software analyzes in
terms of a 1 GHz clock to maximize timing based Fitter effort. To ensure realistic slack
values, you must constrain all clocks in your design with real values.

Equation 6–1. Data Arrival and Data Required Time Equations

Figure 6–5. Launch and Latch Edges

Data Arrival Time Launch Edge Source Clock Delay μtCO Register-to-Register Delay+ + +=

Data Required Time Latch Edge Destination Clock Delay μtSU –+=

Launch Clock

Latch Clock

0ns 10ns 20ns

Setup relationshipHold relationship
Quartus II Handbook Version 13.1 June 2012 Altera Corporation
Volume 3: Verification

Chapter 6: Timing Analysis Overview 6–5
TimeQuest Terminology and Concepts
Clock Setup Check
To perform a clock setup check, the TimeQuest analyzer determines a setup
relationship by analyzing each launch and latch edge for each register-to-register
path. For each latch edge at the destination register, the TimeQuest analyzer uses the
closest previous clock edge at the source register as the launch edge. Figure 6–6 shows
two setup relationships, setup A and setup B. For the latch edge at 10 ns, the closest
clock that acts as a launch edge is at 3 ns and is labeled setup A. For the latch edge at
20 ns, the closest clock that acts as a launch edge is 19 ns and is labeled setup B.
TimQuest analyzes the most restrictive setup relationship, in this case setup B; if that
relationship meets the design requirement, then setup A meets it by default.

The TimeQuest analyzer reports the result of clock setup checks as slack values. Slack
is the margin by which a timing requirement is met or not met. Positive slack indicates
the margin by which a requirement is met; negative slack indicates the margin by
which a requirement is not met. Equation 6–2 shows the TimeQuest analyzer clock
setup slack time calculation for internal register-to-register paths.

The TimeQuest analyzer performs setup checks using the maximum delay when
calculating data arrival time, and minimum delay when calculating data required
time.

Equation 6–3 shows the TimeQuest analyzer clock setup slack time calculation if the
data path is from an input port to an internal register.

Figure 6–6. Setup Check

Equation 6–2. Clock Setup Slack for Internal Register-to-Register paths

Equation 6–3. Clock Setup Slack from Input Port to Internal Register

Setup A Setup B

0 ns 8 ns 16 ns 24 ns 32 ns

Source Clock

Destination Clock

Clock Setup Slack Data Required Time Data Arrival Time–=

Data Arrival Time Launch Edge Clock Network Delay to Source Register ++=

μtCO Register-to-Register Delay+

Data Required Time Latch Edge Clock Network Delay to Destination Register –+=

μtSU Setup Uncertainty–

Clock Setup Slack Data Required Time Data Arrival Time–=

Data Arrival Time Launch Edge Clock Network Delay ++=

Input Maximum Delay Port-to-Register Delay+

Data Required Time Latch Edge Clock Network Delay to Destination Register –+=

μtSU Setup Uncertainty–
June 2012 Altera Corporation Quartus II Handbook Version 13.1
Volume 3: Verification

6–6 Chapter 6: Timing Analysis Overview
TimeQuest Terminology and Concepts
Equation 6–4 shows the TimeQuest analyzer clock setup slack time calculation if the
data path is an internal register to an output port.

Clock Hold Check
To perform a clock hold check, the TimeQuest analyzer determines a hold relationship
for each possible setup relationship that exists for all source and destination register
pairs. The TimeQuest analyzer checks all adjacent clock edges from all setup
relationships to determine the hold relationships. The TimeQuest analyzer performs
two hold checks for each setup relationship. The first hold check determines that the
data launched by the current launch edge is not captured by the previous latch edge.
The second hold check determines that the data launched by the next launch edge is
not captured by the current latch edge. From the possible hold relationships, the
TimeQuest analyzer selects the hold relationship that is the most restrictive. The most
restrictive hold relationship is the hold relationship with the smallest difference
between the latch and launch edges and determines the minimum allowable delay for
the register-to-register path. Figure 6–7 shows two setup relationships, setup A and
setup B, and their respective hold checks. In this example, the TimeQuest analyzer
selects hold check A2 as the most restrictive hold relationship.

Equation 6–5 shows the TimeQuest analyzer clock hold slack time calculation.

Equation 6–4. Clock Setup Slack from Internal Register to Output Port

Clock Setup Slack Data Required Time Data Arrival Time–=

Data Required Time Latch Edge Clock Network Delay to Output Port –+=

Output Maximum Delay

Data Arrival Time Launch Edge Clock Network Delay to Source Register ++=

μtCO Register-to-Port Delay+

Figure 6–7. Hold Checks

Equation 6–5. Clock Hold Slack for Internal Register-to-Register Paths

Setup A Setup B

0 ns 8 ns 16 ns 24 ns 32 ns

Source Clock

Destination Clock

Hold
Check A1

Hold
Check B2

Hold
Check A2

Hold
Check B1

Clock Hold Slack Data Arrival Time Data Required Time–=

Data Arrival Time Launch Edge Clock Network Delay to Source Register+ +=

μtCO Register-to-Register Delay+

Data Required Time Latch Edge Clock Network Delay to Destination Register + +=

μtH Hold Uncertainty+
Quartus II Handbook Version 13.1 June 2012 Altera Corporation
Volume 3: Verification

Chapter 6: Timing Analysis Overview 6–7
TimeQuest Terminology and Concepts
The TimeQuest analyzer performs hold checks using the minimum delay when
calculating data arrival time, and maximum delay when calculating data required
time.

Equation 6–6 shows the TimeQuest analyzer hold slack time calculation if the data
path is from an input port to an internal register.

Equation 6–7 shows the TimeQuest analyzer hold slack time calculation if the data
path is from an internal register to an output port.

Recovery and Removal Time
Recovery time is the minimum length of time for the deassertion of an asynchronous
control signal realtive to the next clock edge; for example, signals such as clear and
preset must be stable before the next active clock edge. The recovery slack calculation
is similar to the clock setup slack calculation, but it applies to asynchronous control
signals. Equation 6–8 shows the TimeQuest analyzer recovery slack time calculation if
the asynchronous control signal is registered.

Equation 6–9 shows the TimeQuest analyzer recovery slack time calculation if the
asynchronous control signal is not registered.

Equation 6–6. Clock Hold Slack from Input Port to Internal Register

Equation 6–7. Clock Hold Slack from Internal Register to Output Port

Clock Hold Slack Data Arrival Time Data Required Time–=

Data Arrival Time Launch Edge Clock Network Delay ++=

Input Minimum Delay Pin-to-Register Delay+

Data Required Time Latch Edge Clock Network Delay to Destination Register μtH+ +=

Clock Hold Slack Data Arrival Time Data Required Time–=

Data Arrival Time Latch Edge Clock Network Delay to Source Register ++=

μtCO Register-to-Pin Delay+

Data Required Time Latch Edge Clock Network Delay Output Minimum Delay–+=

Equation 6–8. Recovery Slack if Asynchronous Control Signal Registered

Equation 6–9. Recovery Slack if Asynchronous Control Signal not Registered

Recovery Slack Time Data Required Time Data Arrival Time–=

Data Required Time Latch Edge Clock Network Delay to Destination Register μtSU–+=

Data Arrival Time Launch Edge Clock Network Delay to Source Register ++=

μtCO Register-to-Register Delay+

Recovery Slack Time Data Required Time Data Arrival Time–=

Data Required Time Latch Edge Clock Network Delay to Destination Register μtSU–+=

Data Arrival Time Launch Edge Clock Network Delay Input Maximum Delay ++ +=

Port-to-Register Delay
June 2012 Altera Corporation Quartus II Handbook Version 13.1
Volume 3: Verification

6–8 Chapter 6: Timing Analysis Overview
TimeQuest Terminology and Concepts
1 If the asynchronous reset signal is from a device I/O port, you must must create an
input delay constraint for the asynchronous reset port for the TimeQuest analyzer to
perform recovery analysis on the path.

Removal time is the minimum length of time the deassertion of an asynchronous
control signal must be stable after the active clock edge. The TimeQuest analyzer
removal slack calculation is similar to the clock hold slack calculation, but it applies
asynchronous control signals. Equation 6–10 shows the TimeQuest analyzer removal
slack time calculation if the asynchronous control signal is registered.

Equation 6–11 shows the TimeQuest analyzer removal slack time calculation if the
asynchronous control signal is not registered.

1 If the asynchronous reset signal is from a device pin, you must assign the Input
Minimum Delay timing assignment to the asynchronous reset pin for the TimeQuest
analyzer to perform removal analysis on the path.

Equation 6–10. Removal Slack if Asynchronous Control Signal Registered

Equation 6–11. Removal Slack if Asynchronous Control Signal not Registered

Removal Slack Time Data Arrival Time Data Required Time–=

Data Arrival Time Launch Edge Clock Network Delay to Source Register ++=

μt of Source RegisterCO Register-to-Register Delay+

Data Required Time Latch Edge Clock Network Delay to Destination Register μtH+ +=

Removal Slack Time Data Arrival Time Data Required Time–=

Data Arrival Time Launch Edge Clock Network Delay Input Minimum Delay of Pin ++ +=

Minimum Pin-to-Register Delay

Data Required Time Latch Edge Clock Network Delay to Destination Register μtH+ +=
Quartus II Handbook Version 13.1 June 2012 Altera Corporation
Volume 3: Verification

Chapter 6: Timing Analysis Overview 6–9
TimeQuest Terminology and Concepts
Multicycle Paths
Multicycle paths are data paths that require a non-default setup and/or hold
relationship for proper analysis. For example, a register may be required to capture
data on every second or third rising clock edge. Figure 6–8 shows an example of a
multicycle path between the input registers of a multiplier and an output register
where the destination latches data on every other clock edge.

Figure 6–9 shows a register-to-register path used for the default setup and hold
relationship, the respective timing diagrams for the source and destination clocks, and
the default setup and hold relationships, when the source clock, src_clk, has a period
of 10 ns and the destination clock, dst_clk, has a period of 5 ns. The default setup
relationship is 5 ns; the default hold relationship is 0 ns.

To accommodate the system requirements you can modify the default setup and hold
relationships with a multicycle timing exception.

Figure 6–8. Multicycle Path

Figure 6–9. Register-to-Register Path and Default Setup and Hold Timing Diagram

2 Cycles

ENA

D Q

ENA

D Q

D Q

ENA

reg reg

data_out
data_in

src_clk

dst_clk

D Q D Q

0 10 20 30

setup
hold
June 2012 Altera Corporation Quartus II Handbook Version 13.1
Volume 3: Verification

6–10 Chapter 6: Timing Analysis Overview
TimeQuest Terminology and Concepts
Figure 6–10 shows the actual setup relationship after you apply a multicycle timing
exception. The exception has a multicycle setup assignment of two to use the second
occurring latch edge; in this example, to 10 ns from the default value of 5 ns.

f For more information about creating exceptions with multicycle paths, refer to The
Quartus II TimeQuest Timing Analyzer chapter of the Quartus II Handbook.

Metastability
Metastability problems can occur when a signal is transferred between circuitry in
unrelated or asynchronous clock domains because the designer cannot guarantee that
the signal will meet setup and hold time requirements. To minimize the failures due to
metastability, circuit designers typically use a sequence of registers, also known as a
synchronization register chain, or synchronizer, in the destination clock domain to
resynchronize the data signals to the new clock domain.

The mean time between failures (MTBF) is an estimate of the average time between
instances of failure due to metastability.

The TimeQuest analyzer analyzes the potential for metastability in your design and
can calculate the MTBF for synchronization register chains. The MTBF of the entire
design is then estimated based on the synchronization chains it contains.

In addition to reporting synchronization register chains found in the design, the
Quartus II software also protects these registers from optimizations that might
negatively impact MTBF, such as register duplication and logic retiming. The
Quartus II software can also optimize the MTBF of your design if the MTBF is too low.

f For more information about metastability, its effects in FPGAs, and how MTBF is
calculated, refer to the Understanding Metastability in FPGAs white paper. For more
information about metastability analysis, reporting, and optimization features in the
Quartus II software, refer to the Managing Metastability with the Quartus II Software
chapter in volume 1 of the Quartus II Handbook.

Common Clock Path Pessimism Removal
Common clock path pessimism removal accounts for the minimum and maximum
delay variation associated with common clock paths during static timing analysis by
adding the difference between the maximum and minimum delay value of the
common clock path to the appropriate slack equation.

Figure 6–10. Modified Setup Diagram

 new setup
default setup

0 10 20 30
Quartus II Handbook Version 13.1 June 2012 Altera Corporation
Volume 3: Verification

www.altera.com/literature/wp/wp-01082-quartus-ii-metastability.pdf
http://www.altera.com/literature/hb/qts/qts_qii51018.pdf
http://www.altera.com/literature/hb/qts/qts_qii53018.pdf
http://www.altera.com/literature/hb/qts/qts_qii53018.pdf

Chapter 6: Timing Analysis Overview 6–11
TimeQuest Terminology and Concepts
Minimum and maximum delay variation can occur when two different delay values
are used for the same clock path. For example, in a simple setup analysis, the
maximum clock path delay to the source register is used to determine the data arrival
time. The minimum clock path delay to the destination register is used to determine
the data required time. However, if the clock path to the source register and to the
destination register share a common clock path, both the maximum delay and the
minimum delay are used to model the common clock path during timing analysis.
The use of both the minimum delay and maximum delay results in an overly
pessimistic analysis since two different delay values, the maximum and minimum
delays, cannot be used to model the same clock path.

Figure 6–11 shows a typical register-to-register path with the maximum and
minimum delay values shown.

Segment A is the common clock path between reg1 and reg2. The minimum delay is
5.0 ns; the maximum delay is 5.5 ns. The difference between the maximum and
minimum delay value equals the common clock path pessimism removal value; in
this case, the common clock path pessimism is 0.5 ns. The TimeQuest analyzer adds
the common clock path pessimism removal value to the appropriate slack equation to
determine overall slack. Therefore, if the setup slack for the register-to-register path in
Figure 6–11 equals 0.7 ns without common clock path pessimism removal, the slack
would be 1.2 ns with common clock path pessimism removal.

You can also use common clock path pessimism removal to determine the minimum
pulse width of a register. A clock signal must meet a register’s minimum pulse width
requirement to be recognized by the register. A minimum high time defines the
minimum pulse width for a positive-edge triggered register. A minimum low time
defines the minimum pulse width for a negative-edge triggered register.

Figure 6–11. Common Clock Path

D Q

D Q
clk

A

B

C

reg1

reg2

5.5 ns
5.0 ns

2.2 ns
2.0 ns

2.2 ns
2.0 ns

3.2 ns
3.0 ns
June 2012 Altera Corporation Quartus II Handbook Version 13.1
Volume 3: Verification

6–12 Chapter 6: Timing Analysis Overview
TimeQuest Terminology and Concepts
Clock pulses that violate the minimum pulse width of a register prevent data from
being latched at the data pin of the register. To calculate the slack of the minimum
pulse width, the TimeQuest analyzer subtracts the required minimum pulse width
time from the actual minimum pulse width time. The TimeQuest analyzer determines
the actual minimum pulse width time by the clock requirement you specified for the
clock that feeds the clock port of the register. The TimeQuest analyzer determines the
required minimum pulse width time by the maximum rise, minimum rise, maximum
fall, and minimum fall times. Figure 6–12 shows a diagram of the required minimum
pulse width time for both the high pulse and low pulse.

With common clock path pessimism, the minimum pulse width slack can be increased
by the smallest value of either the maximum rise time minus the minimum rise time,
or the maximum fall time minus the minimum fall time. For Figure 6–12, the slack
value can be increased by 0.2 ns, which is the smallest value between 0.3 ns (0.8
ns – 0.5 ns) and 0.2 ns (0.9 ns – 0.7 ns).

h For more information, refer to TimeQuest Timing Analyzer Page (Settings Dialog Box) in
Quartus II Help.

Clock-As-Data Analysis
The majority of FPGA designs contain simple connections between any two nodes
known as either a data path or a clock path. A data path is a connection between the
output of a synchronous element to the input of another synchronous element. A
clock is a connection to the clock pin of a synchronous element. However, for more
complex FPGA designs, such as designs that use source-synchronous interfaces, this
simplified view is no longer sufficient. Clock-as-data analysis is performed in circuits
with elements such as clock dividers and DDR source-synchronous outputs.

Figure 6–12. Required Minimum Pulse Width

High Pulse
Width

Low Pulse
Width

Minimum and
Maximum
Fall Arrival Times

Minimum and
Maximum Rise

Rise Arrival Times

0.8
0.5

0.5
0.8

0.9
0.7
Quartus II Handbook Version 13.1 June 2012 Altera Corporation
Volume 3: Verification

http://quartushelp.altera.com/current/master.htm#mergedProjects/analyze/sta/sta_tqa_settings.htm

Chapter 6: Timing Analysis Overview 6–13
TimeQuest Terminology and Concepts
The connection between the input clock port and output clock port can be treated
either as a clock path or a data path. Figure 6–13 shows a design where the path from
port clk_in to port clk_out is both a clock and a data path. The clock path is from the
port clk_in to the register reg_data clock pin. The data path is from port clk_in to
the port clk_out.

With clock-as-data analysis, the TimeQuest analyzer provides a more accurate
analysis of the path based on user constraints. For the clock path analysis, any phase
shift associated with the phase-locked loop (PLL) is taken into consideration. For the
data path analysis, any phase shift associated with the PLL is taken into consideration
rather than ignored.

The clock-as-data analysis also applies to internally generated clock dividers.
Figure 6–14 shows an internally generated clock divider. In this figure, waveforms are
for the inverter feedback path, analyzed during timing analysis. The output of the
divider register is used to determine the launch time and the clock port of the register
is used to determine the latch time.

Figure 6–13. Simplified Source Synchronous Output

Figure 6–14. Clock Divider

D Q

clk_in
clk_out

reg_data

D Q

D Q

Launch Clock (2 T)

Data Arrival Time

Latch Clock (T)
June 2012 Altera Corporation Quartus II Handbook Version 13.1
Volume 3: Verification

6–14 Chapter 6: Timing Analysis Overview
TimeQuest Terminology and Concepts
Multicorner Analysis
The TimeQuest analyzer performs multicorner timing analysis to verify your design
under a variety of operating conditions—such as voltage, process, and temperature—
while performing static timing analysis.

To change the operating conditions or speed grade of the device used for timing
analysis, use the set_operating_conditions command.

h For more information about the set_operating_conditions and
get_available_operating_conditions commands—including full syntax
information, options, and example usage—refer to set_operating_conditions and
get_available_operating_conditions in Quartus II Help.

If you specify an operating condition Tcl object, the -model, speed, -temperature, and
-voltage options are optional. If you do not specify an operating condition Tcl object,
the -model option is required; the -speed, -temperature, and -voltage options are
optional.

1 To obtain a list of available operating conditions for the target device, use the
get_available_operating_conditions -all command.

To ensure that no violations occur under various conditions during the device
operation, perform static timing analysis under all available operating conditions.
Table 6–2 shows the operating conditions for the slow and fast timing models for
device families that support only slow and fast operating conditions.

Example 6–1 shows how to set the operating conditions in Example 6–2 with a Tcl
object.

Example 6–2 shows how to set the operating conditions for a Stratix III design to the
slow timing model, with a voltage of 1100 mV, and temperature of 85° C.

Table 6–2. Operating Conditions for Slow and Fast Models

Model Speed Grade Voltage Temperature

Slow Slowest speed grade in device density Vcc minimum supply (1) Maximum TJ (1)

Fast Fastest speed grade in device density Vcc maximum supply (1) Minimum TJ (1)

Note toTable 6–2:

(1) Refer to the DC & Switching Characteristics chapter of the applicable device Handbook for Vcc and TJ. values

Example 6–1. Setting Operating Conditions with a Tcl Object

set_operating_conditions 3_slow_1100mv_85c

Example 6–2. Setting Operating Conditions with Individual Values

set_operating_conditions -model slow -temperature 85 -voltage 1100
Quartus II Handbook Version 13.1 June 2012 Altera Corporation
Volume 3: Verification

http://quartushelp.altera.com/current/master.htm#mergedProjects/tafs/tafs/tcl_pkg_sta_ver_1.0_cmd_set_operating_conditions.htm
http://quartushelp.altera.com/current/master.htm#mergedProjects/tafs/tafs/tcl_pkg_sta_ver_1.0_cmd_get_available_operating_conditions.htm

Chapter 6: Timing Analysis Overview 6–15
Document Revision History
Example 6–3 shows how to use the set_operating_conditions command to generate
different reports for various operating conditions.

Document Revision History
Table 6–3 shows the revision history for this document.

f For previous versions of the Quartus II Handbook, refer to the Quartus II Handbook
Archive.

Example 6–3. Script Excerpt for Analysis of Various Operating Conditions

#Specify initial operating conditions
set_operating_conditions -model slow -speed 3 -grade c -temperature 85
-voltage 1100

#Update the timing netlist with the initial conditions
update_timing_netlist

#Perform reporting

#Change initial operating conditions. Use a temperature of 0C
set_operating_conditions -model slow -speed 3 -grade c -temperature 0
-voltage 1100

#Update the timing netlist with the new operating condition
update_timing_netlist

#Perform reporting

#Change initial operating conditions. Use a temperature of 0C and a
model of fast
set_operating_conditions -model fast -speed 3 -grade c -temperature 0
-voltage 1100

#Update the timing netlist with the new operating condition
update_timing_netlist

#Perform reporting

Table 6–3. Document Revision History

Date Version Changes

June 2012 12.0.0 Added social networking icons, minor text updates

November 2011 11.1.0 Initial release.
June 2012 Altera Corporation Quartus II Handbook Version 13.1
Volume 3: Verification

http://www.altera.com/literature/lit-qts_archive.jsp
http://www.altera.com/literature/lit-qts_archive.jsp

6–16 Chapter 6: Timing Analysis Overview
Document Revision History
Quartus II Handbook Version 13.1 June 2012 Altera Corporation
Volume 3: Verification

QII53018-13.1.0

© 2013 Altera Corporation. All rights reserved. ALTERA, ARRI
are trademarks of Altera Corporation and registered in the U.S
trademarks or service marks are the property of their respectiv
semiconductor products to current specifications in accordance
services at any time without notice. Altera assumes no respons
described herein except as expressly agreed to in writing by Al
on any published information and before placing orders for pr

Quartus II Handbook Version 13.1
Volume 3: Verification
November 2013

November 2013
QII53018-13.1.0
7. The Quartus II TimeQuest
Timing Analyzer
The Quartus® II TimeQuest Timing Analyzer is a powerful ASIC-style timing analysis
tool that validates the timing performance of all logic in your design using an
industry-standard constraint, analysis, and reporting methodology. Use the
TimeQuest analyzer GUI or command-line interface to constrain, analyze, and report
results for all timing paths in your design.

This chapter contains the following sections:

■ “Getting Started with the TimeQuest Analyzer”

■ “Constraining and Analyzing with Tcl Commands” on page 7–7

■ “Creating Clocks and Clock Constraints” on page 7–14

■ “Creating I/O Requirements” on page 7–24

■ “Creating Delay and Skew Constraints” on page 7–26

■ “Creating Timing Exceptions” on page 7–27

■ “Examples of Basic Multicycle Exceptions” on page 7–35

■ “Application of Multicycle Exceptions” on page 7–44

■ “Timing Reports” on page 7–57

f For more information about basic timing analysis concepts and how they pertain to
the TimeQuest analyzer, refer to the Timing Analysis Overview chapter in volume 3 of
the Quartus II Handbook.

f For more information about Altera resources available for the TimeQuest analyzer,
refer to the TimeQuest Timing Analyzer Resource Center of the Altera website.

f For more information about the TimeQuest analyzer, refer to the Altera Training page
of the Altera website.
A, CYCLONE, HARDCOPY, MAX, MEGACORE, NIOS, QUARTUS and STRATIX words and logos
. Patent and Trademark Office and in other countries. All other words and logos identified as
e holders as described at www.altera.com/common/legal.html. Altera warrants performance of its
 with Altera's standard warranty, but reserves the right to make changes to any products and
ibility or liability arising out of the application or use of any information, product, or service
tera. Altera customers are advised to obtain the latest version of device specifications before relying
oducts or services.

Feedback SubscribeTwitter

ISO
9001:2008
Registered

http://www.altera.com/literature/hb/qts/qts_qii53030.pdf
http://twitter.com/home/?status=The+Quartus+II+TimeQuest+Timing+Analyzer+http://www.altera.com/literature/hb/qts/qts_qii53018.pdf?WT.mc_id=gc_so_tw_st_tx_a_011+(via @alteracorp)+%23Altera

http://www.altera.com/common/legal.html
mailto:TechDocFeedback@altera.com?subject=Feedback on QII53018-12.0 (QII HB, Vol 3, Ch7: The Quartus II TimeQuest Timing Analyzer)
https://www.altera.com/servlets/subscriptions/alert?id=QII53018
http://www.altera.com/support/software/timequest/sof-qts-timequest.html
http://www.altera.com/education/training/trn-index.jsp
http://www.altera.com/support/reliability/certifications/rel-certifications.html
http://twitter.com/home/?status=The+Quartus+II+TimeQuest+Timing+Analyzer+http://www.altera.com/literature/hb/qts/qts_qii53018.pdf?WT.mc_id=gc_so_tw_st_tx_a_011+(via @alteracorp)+%23Altera

7–2 Chapter 7: The Quartus II TimeQuest Timing Analyzer
Getting Started with the TimeQuest Analyzer
Getting Started with the TimeQuest Analyzer
This section provides an overview of the design steps for setting up your project for
timing and analysis and to constrain your design with the TimeQuest analyzer.

Running the TimeQuest Analyzer
To run the TimeQuest analyzer directly from the Quartus II software GUI, click
TimeQuest Timing Analyzer on the Tools menu.

h For more information about the TimeQuest analyzer GUI, refer to About TimeQuest
Timing Analysis in Quartus II Help.

To run the TimeQuest analyzer as a stand-alone GUI application, type the following
command at the command prompt:

quartus_staw r
To run the TimeQuest analyzer in command-line mode for easy integration with
scripted design flows, type the following command at a system command prompt:

quartus_sta -sr
Table 7–1 describes the available command-line options.

Table 7–1. Summary of Command-Line Options (Part 1 of 2)

Command-Line Option Description

-h | --help Provides help information on quartus_sta.

-t <script file> |
--script=<script file>

Sources the <script file>.

-s | --shell Enters shell mode.

--tcl_eval <tcl command> Evaluates the Tcl command <tcl command>.

--do_report_timing

For all clocks in the design, run the following commands:

report_timing -npaths 1 -to_clock $clock

report_timing -setup -npaths 1 -to_clock $clock

report_timing -hold -npaths 1 -to_clock $clock

report_timing -recovery -npaths 1 -to_clock $clock

report_timing -removal -npaths 1 -to_clock $clock

--force_dat Forces an update of the project database with new delay information.

--lower_priority Lowers the computing priority of the quartus_sta process.

--post_map Uses the post-map database results.

--sdc=<SDC file> Specifies the .sdc to use.

--report_script=<script> Specifies a custom report script to call.

--speed=<value> Specifies the device speed grade used for timing analysis.

--tq2pt
Generates temporary files to convert the TimeQuest analyzer .sdc file(s) to a
PrimeTime .sdc.

-f <argument file> Specifies a file containing additional command-line arguments.

-c <revision name> |
--rev=<revision_name>

Specifies which revision and its associated .qsf to use.
Quartus II Handbook Version 13.1 November 2013 Altera Corporation
Volume 3: Verification

http://quartushelp.altera.com/current/master.htm#mergedProjects/analyze/sta/sta_about_sta.htm
http://quartushelp.altera.com/current/master.htm#mergedProjects/analyze/sta/sta_about_sta.htm

Chapter 7: The Quartus II TimeQuest Timing Analyzer 7–3
Getting Started with the TimeQuest Analyzer
For more information about steps to perform before opening the TimeQuest analyzer,
refer to “Recommended Flow” on page 7–3.

For more information about using Tcl commands to constrain and analyze your
design, refer to “Constraining and Analyzing with Tcl Commands” on page 7–7.

Recommended Flow
The Quartus II TimeQuest analyzer performs constraint validation to timing
verification as part of the compilation flow. Figure 7–1 shows the recommended
design flow to maximize the benefits of the TimeQuest Analyzer.

Creating and Setting Up your Design
You must first create your project in the Quartus II software. Include all the necessary
design files, including any existing Synopsys Design Constraints (.sdc) files that
contain timing constraints for your design.

h For more information, refer to Managing Files in a Project in Quartus II Help.

--multicorner
Specifies that all slack summary reports be generated for both slow- and
fast-corners.

--multicorner[=on|off] Turns off multicorner timing analysis.

--voltage=<value_in_mV> Specifies the device voltage, in mV used for timing analysis.

--temperature=
<value_in_C>

Specifies the device temperature in degrees Celsius, used for timing analysis.

--parallel
[=<num_processors>] Specifies the number of computer processors to use on a multiprocessor system.

--64bit Enables 64-bit version of the executable.

Table 7–1. Summary of Command-Line Options (Part 2 of 2)

Command-Line Option Description

Figure 7–1. Design Flow with the TimeQuest Timing Analyzer

Create Quartus II Project
and Specify Design Files

Perform Initial Compilation

Specify Timing Requirements

Perform Compilation

Verify Timing
November 2013 Altera Corporation Quartus II Handbook Version 13.1
Volume 3: Verification

http://quartushelp.altera.com/current/master.htm#mergedProjects/global/pjn/pjn_pro_add_delete_files.htm

7–4 Chapter 7: The Quartus II TimeQuest Timing Analyzer
Getting Started with the TimeQuest Analyzer
Performing an Initial Compilation
If you have never compiled your design, or you don't have an .sdc file, and you want
to use the TimeQuest analyzer to create one interactively, you must compile your
design to create an initial design database before you specify timing constraints. You
can either perform Analysis and Synthesis to create a post-map database, or perform a
full compilation to create a post-fit database. Creating a post-map database is faster
than a post-fit database, and is sufficient for creating initial timing constraints. The
type of database you create determines the type of timing netlist generated by the
TimeQuest analyzer; a post-map netlist if you perform Analysis and Synthesis or a
post-fit netlist if you perform a full compilation.

1 If you are using incremental compilation, you must merge your design partitions after
performing Analysis and Synthesis to create a post-map database.

h For more information, refer to Setting up and Running Analysis and Synthesis and
Setting up and Running a Compilation in Quartus II Help.

Specifying Timing Requirements
Before running timing analysis with the TimeQuest analyzer, you must specify initial
timing constraints that describe the clock characteristics, timing exceptions, and signal
transition arrival and required times. You can use the TimeQuest Timing Analyzer
Wizard to enter initial constraints for your design, and then refine timing constraints
with the TimeQuest analyzer GUI or with a Tcl script.

1 The Quartus II software assigns a default frequency of 1 GHz for clocks that have not
been constrained, either in the TimeQuest GUI or an .sdc file, unless any constraint
exists in the design. In that case, all unconstrained clocks remain unconstrained.

h For more information, refer to Specifying Timing Constraints and Exceptions in
Quartus II Help.

The .sdc must contain only SDC commands. Tcl commands to manipulate the timing
netlist or control the compilation flow should be run as part of a separate Tcl script.
After you create timing constraints, update the timing netlist to apply the new
constraints. The TimeQuest analyzer applies all constraints to the netlist for
verification and removes any invalid or false paths in the design from verification.

1 The constraints in the .sdc are read in sequence. You must first make a constraint
before making any references to that constraint. For example, if a generated clock
references a base clock, the base clock constraint must be made before the generated
clock constraint.

The Quartus II Text Editor provides templates for SDC constraints. For more
information, refer to “Using the Quartus II Templates” on page 7–6.

Performing a Full Compilation
After creating initial timing constraints, you must fully compile your design. When
compilation is complete, you can open the TimeQuest analyzer to verify timing results
and to generate summary, clock setup and clock hold, recovery, and removal reports
for all defined clocks in the design.
Quartus II Handbook Version 13.1 November 2013 Altera Corporation
Volume 3: Verification

http://quartushelp.altera.com/current/master.htm#mergedProjects/comp/comp/comp_pro_set_synthesis.htm
http://quartushelp.altera.com/current/master.htm#mergedProjects/comp/comp/comp_pro_compile.htm
http://quartushelp.altera.com/current/master.htm#mergedProjects/analyze/sta/sta_pro_constraints.htm

Chapter 7: The Quartus II TimeQuest Timing Analyzer 7–5
Getting Started with the TimeQuest Analyzer
Verifying Timing
The TimeQuest analyzer examines the timing paths in the design, calculates the
propagation delay along each path, checks for timing constraint violations, and
reports timing results as positive slack or negative slack. Negative slack indicates a
timing violation. If you encounter violations along timing paths, use the timing
reports to analyze your design and determine how best to optimize your design. If
you modify, remove, or add constraints, you should perform a full compilation again.
This iterative process helps resolve timing violations in your design.

h For more information, refer to Viewing Timing Analysis Results in Quartus II Help.

Figure 7–2 shows the recommended flow for constraining and analyzing your design
within the TimeQuest analyzer. Included are the corresponding Tcl commands for
each step.

SDC File Precedence
The Fitter and the TimeQuest analyzer process .sdc files in the order you specify in the
Quartus II Settings File (.qsf). You can specify the files to process and the order they
are processed from the Assignments menu. Click Settings, then TimeQuest Timing
Analyzer. and specify a processing order in the SDC files to include in the project
box.

If no .sdc files are listed in the .qsf, the Quartus II software looks for an .sdc named
<current revision>.sdc in the project directory. An .sdc can also be added from a
Quartus II IP File (.qip) included in the .qsf.

Figure 7–2. The TimeQuest Timing Analyzer Flow

Open Project
project_open

Create Timing Netlist
create_timing_netlist

Apply Timing Constraints
read_sdc

Update Timing Netlist
update_timing_netlist

report_clocks_transfers
report_min_pulse_width

report_net_timing

report_sdc
report_timing
report_clocks

report_min_pulse_width
report_ucp

Verify Static Timing Analysis
Results
November 2013 Altera Corporation Quartus II Handbook Version 13.1
Volume 3: Verification

http://quartushelp.altera.com/current/master.htm#mergedProjects/analyze/sta/sta_pro_view_result.htm

7–6 Chapter 7: The Quartus II TimeQuest Timing Analyzer
Using the Quartus II Templates
Figure 7–3 shows the order in which the Quartus II software searches for an .sdc.

1 If you type the read_sdc command at the command line without any arguments, the
TimeQuest analyzer reads constraints embedded in HDL files, then follows the .sdc
file precedence order shown in Figure 7–3.

Using the Quartus II Templates
You can create an .sdc from constraint templates in the Quartus II software with the
Quartus II Text Editor, or with your preferred text editor.

Creating a Constraint File with the Quartus II Text Editor
To insert constraints with the Quartus II Text Editor, follow these steps:

1. On the File menu, click New.

2. In the New dialog box, select the Synopsys Design Constraints File type from the
Other Files group. Click OK.

3. Click the Insert Template button on the text editor menu, or, right-click in the
blank .sdc file in the Quartus II Text Editor, then click Insert Template.

4. In the Insert Template dialog box, expand the TimeQuest section, then expand the
SDC Commands section.

5. Expand a command category, for example, Clocks.

6. Select a command. The SDC constraint appears in the Preview pane.

7. Click Insert to paste the SDC constraint into the blank .sdc you created in step 2.

8. Repeat as needed with other constraints, or click Close to close the Insert
Template dialog box.

You can now use any of the standard features of the Quartus II Text Editor to modify
the .sdc or save the .sdc to edit in a text editor.

Figure 7–3. .sdc File Order of Precedence

Is one or more .sdc file
specified in the .qsf?

No

Yes

Does an .sdc named
<current revision>.sdc

exist in the project
directory?

No

Yes

Analyze the design
Quartus II Handbook Version 13.1 November 2013 Altera Corporation
Volume 3: Verification

Chapter 7: The Quartus II TimeQuest Timing Analyzer 7–7
Constraining and Analyzing with Tcl Commands
h For more information on inserting a template with the Quartus II Text Editor, refer to
About the Quartus II Text Editor in Quartus II Help.

Constraining and Analyzing with Tcl Commands
You can use Tcl commands from the Quartus II software Tcl Application
Programming Interface (API) to constrain, analyze, and collect information for your
design. This section focuses on executing timing analysis tasks with Tcl commands;
however, you can perform many of the same functions in the TimeQuest analyzer
GUI. SDC commands are Tcl commands for constraining a design. SDC extension
commands provide additional constraint methods and are specific to the TimeQuest
analyzer. Additional TimeQuest analyzer commands are available for controlling
timing analysis and reporting. These commands are contained in the following Tcl
packages available in the Quartus II software:

■ ::quartus::sta

■ ::quartus::sdc

■ ::quartus::sdc_ext

h For more information about TimeQuest analyzer Tcl commands and a complete list of
commands, refer to ::quartus::sta in Quartus II Help. For more information about
standard SDC commands and a complete list of commands, refer to ::quartus::sdc in
Quartus II Help. For more information about Altera extensions of SDC commands
and a complete list of commands, refer to ::quartus::sdc_ext in Quartus II Help.

Collection Commands
The TimeQuest analyzer Tcl commands often return port, pin, cell, or node names in a
data set called a collection. In your Tcl scripts you can iterate over the values in
collections to analyze or modify constraints in your design.

The TimeQuest analyzer supports collection commands that provide easy access to
ports, pins, cells, or nodes in the design. Use collection commands with any valid
constraints or Tcl commands specified in the TimeQuest analyzer.

Table 7–2 describes the collection commands supported by the TimeQuest analyzer.

Table 7–2. SDC Collection Commands (Part 1 of 2)

Command Description of the collection returned

all_clocks All clocks in the design.

all_inputs All input ports in the design.

all_outputs All output ports in the design.

all_registers All registers in the design.

get_cells
Cells in the design. All cell names in the collection match the specified pattern. Wildcards can be
used to select multiple cells at the same time.

get_clocks
Clocks in the design. When used as an argument to another command, such as the -from or -to
of set_multicycle_path, each node in the clock represents all nodes clocked by the clocks in
the collection. The default uses the specific node (even if it is a clock) as the target of a command.

get_nets
Nets in the design. All net names in the collection match the specified pattern. You can use
wildcards to select multiple nets at the same time.
November 2013 Altera Corporation Quartus II Handbook Version 13.1
Volume 3: Verification

http://quartushelp.altera.com/current/master.htm#mergedProjects/tafs/tafs/tcl_pkg_sta_ver_1.0.htm
http://quartushelp.altera.com/current/master.htm#mergedProjects/tafs/tafs/tcl_pkg_sdc_ver_1.5.htm
http://quartushelp.altera.com/current/master.htm#mergedProjects/tafs/tafs/tcl_pkg_sdc_ext_ver_1.0.htm
http://quartushelp.altera.com/current/master.htm#mergedProjects/design/ted/ted_view_edit.htm

7–8 Chapter 7: The Quartus II TimeQuest Timing Analyzer
Constraining and Analyzing with Tcl Commands
Wildcard Characters
To apply constraints to many nodes in a design, use the “*” and “?” wildcard
characters. The “*” wildcard character matches any string; the “?” wildcard character
matches any single character.

If you make an assignment to node reg*, the TimeQuest analyzer searches for and
applies the assignment to all design nodes that match the prefix reg with any number
of following characters, such as reg, reg1, reg[2], regbank, and reg12bank.

If you make an assignment to a node specified as reg?, the TimeQuest analyzer
searches and applies the assignment to all design nodes that match the prefix reg and
any single character following; for example, reg1, rega, and reg4.

Adding and Removing Collection Items
Wildcards used with collection commands define collection items identified by the
command. For example, if a design contains registers named src0, src1, src2, and
dst0, the collection command [get_registers src*] identifies registers src0, src1,
and src2, but not register dst0. To identify register dst0, you must use an additional
command, [get_registers dst*]. To include dst0, you could also specify a collection
command [get_registers {src* dst*}].

To modify collections, use the add_to_collection and remove_from_collection
commands. The add_to_collection command allows you to add additional items to
an existing collection. Example 7–1 shows the add_to_collection command and
arguments.

1 The add_to_collection command creates a new collection that is the union of the two
specified collections.

The remove_from_collection command allows you to remove items from an existing
collection. Example 7–2 shows the remove_from_collection command and
arguments.

get_pins
Pins in the design. All pin names in the collection match the specified pattern. You can use
wildcards to select multiple pins at the same time.

get_ports Ports (design inputs and outputs) in the design.

Table 7–2. SDC Collection Commands (Part 2 of 2)

Command Description of the collection returned

Example 7–1. add_to_collection Command

add_to_collection <first collection> <second collection>

Example 7–2. remove_from_collection Command

remove_from_collection <first collection> <second collection>
Quartus II Handbook Version 13.1 November 2013 Altera Corporation
Volume 3: Verification

Chapter 7: The Quartus II TimeQuest Timing Analyzer 7–9
Constraining and Analyzing with Tcl Commands
Example 7–3 shows examples of how to add elements to collections.

1 In the Quartus II software, keepers are I/O ports or registers. An .sdc that includes
get_keepers can only be processed as part of the TimeQuest analyzer flow and is not
compatible with third-party timing analysis flows.

h For more information about the add_to_collection and remove_from_collection
commands—including full syntax information, options, and example usage—refer to
add_to_collection and remove_from_collection in Quartus II Help.

Using the query_collection Command
You can display the contents of a collection with the query_collection command.

Example 7–4 shows how to report the contents of a collection:

You can also examine collections and experiment with collections using wildcards in
the TimeQuest analyzer by clicking Name Finder from the View menu.

Using the get_pins Command
The collection commands get_pins allow you to refine searches that include wildcard
characters.

Table 7–3 shows examples of search strings that use options to refine the search and
wildcards. The examples in Table 7–3 filter the following node and pin names to
illustrate function:

■ foo

■ foo|dataa

■ foo|datab

■ foo|bar

■ foo|bar|datac

Example 7–3. Adding Items to a Collection

#Setting up initial collection of registers
set regs1 [get_registers a*]

#Setting up initial collection of keepers
set kprs1 [get_keepers b*]

#Creating a new set of registers of $regs1 and $kprs1
set regs_union [add_to_collection $kprs1 $regs1]

#OR
Creating a new set of registers of $regs1 and b*
Note that the new collection appends only registers with name b*
not all keepers
set regs_union [add_to_collection $regs1 b*]

Example 7–4. query_collection Command

query_collection -report -all $regs_union
November 2013 Altera Corporation Quartus II Handbook Version 13.1
Volume 3: Verification

http://quartushelp.altera.com/current/master.htm#mergedProjects/tafs/tafs/tcl_pkg_sta_ver_1.0_cmd_add_to_collection.htm
http://quartushelp.altera.com/current/master.htm#mergedProjects/tafs/tafs/tcl_pkg_sta_ver_1.0_cmd_add_to_collection.htm
http://quartushelp.altera.com/current/master.htm#mergedProjects/tafs/tafs/tcl_pkg_sta_ver_1.0_cmd_remove_from_collection.htm

7–10 Chapter 7: The Quartus II TimeQuest Timing Analyzer
Constraining and Analyzing with Tcl Commands
■ foo|bar|datad

The default method separates hierarchy levels of instances from nodes and pins with
the pipe character (|). A match occurs when the levels of hierarchy match, and the
string values including wildcards match the instance and/or pin names. For example,
the command get_pins <instance_name>|*|datac returns all the datac pins for
registers in a given instance. However, the command get_pins *|datac returns and
empty collection because the levels of hierarchy do not match.

Use the -hierarchical matching scheme to return a collection of cells or pins in all
hierarchies of your design.

For example, the command get_pins -hierarchical *|datac returns all the datac
pins for all registers in your design. However, the command get_pins -hierarchical
||datac returns an empty collection because more than one pipe character (|) is not
supported.

The -compatibility_mode option returns collections matching wildcard strings
through any number of hierarchy levels. For example, an asterisk can match a pipe
character when using -compatibility_mode.

Table 7–3. Sample Search Strings and Search Results

Search String Search Result

get_pins *|dataa foo|dataa

get_pins *|datac <empty> (1)

get_pins *|*|datac foo|bar|datac

get_pins foo*|* foo|dataa, foo|datab

get_pins -hierarchical *|*|datac <empty> (1)

get_pins -hierarchical foo|* foo|dataa, foo|datab

get_pins -hierarchical *|datac foo|bar|datac

get_pins -hierarchical foo|*|datac <empty> (1)

get_pins -compatibility_mode *|datac foo|bar|datac

get_pins -compatibility_mode *|*|datac foo|bar|datac

Note to Table 7–3:

(1) The search result is <empty> because more than one pipe character (|) is not supported.
Quartus II Handbook Version 13.1 November 2013 Altera Corporation
Volume 3: Verification

Chapter 7: The Quartus II TimeQuest Timing Analyzer 7–11
Constraining and Analyzing with Tcl Commands
Identifying the Quartus II Software Executable from the SDC File
To identify which Quartus II software executable is currently running you can use the
$::TimeQuestInfo(nameofexecutable) variable from within an .sdc. Example 7–5
shows how to specify different SDC constraints for a specific Quartus II software
executable.

Examples of different executable names are quartus_map for Analysis & Synthesis,
quartus_fit for Fitter, and quartus_sta for the TimeQuest analyzer.

Locating Timing Paths in Other Tools
You can locate paths and elements from the TimeQuest analyzer to other tools in the
Quartus II software. Use the Locate Path command in the TimeQuest analyzer GUI or
the locate command.

h For more information about locating paths from the TimeQuest analyzer, refer to
Viewing Timing Analysis Results and locate in Quartus II Help.

Example 7–6 shows how to locate ten paths from TimeQuest analyzer to the Chip
Planner and locate all data ports in the Technology Map Viewer.

Example 7–5. Identifying the Quartus II Executable

#Identify which executable is running:
set current_exe $::TimeQuestInfo(nameofexecutable)

if { [string equal $current_exe “quartus_fit"] } {

 #Apply .sdc assignments for Fitter executable here
} else {

 #Apply .sdc assignments for non-Fitter executables here
}

if { ! [string equal "quartus_sta" $::TimeQuestInfo(nameofexecutable)] } {

 #Apply .sdc assignments for non-TimeQuest executables here
} else {

 #Apply .sdc assignments for TimeQuest executable here

Example 7–6. Locating from the TimeQuest Analyzer

Locate in the Chip Planner all of the nodes in ten paths with the
longest delay

locate [get_path -npaths 10] -chip

locate all ports that begin with data to the Technology Map Viewer

locate [get_ports data*] -tmv
November 2013 Altera Corporation Quartus II Handbook Version 13.1
Volume 3: Verification

http://quartushelp.altera.com/current/master.htm#mergedProjects/analyze/sta/sta_pro_view_result.htm
http://quartushelp.altera.com/current/master.htm#mergedProjects/tafs/tafs/tcl_pkg_sta_ver_1.0_cmd_locate.htm

7–12 Chapter 7: The Quartus II TimeQuest Timing Analyzer
Design Constraints: An Example
Design Constraints: An Example
Figure 7–4 shows an example circuit including two clocks, a phase-locked loop (PLL),
and other common synchronous design elements.

Figure 7–4. TimeQuest Constraint Example

data1

data2

clk1

clk2

inst

inst1

inst2lpm_add_sub0 myfifo

altpll0

dataout
Quartus II Handbook Version 13.1 November 2013 Altera Corporation
Volume 3: Verification

Chapter 7: The Quartus II TimeQuest Timing Analyzer 7–13
Design Constraints: An Example
Example 7–7 shows an .sdc file containing basic constraints for the circuit in
Figure 7–4.

The .sdc in Example 7–7 contains the following basic constraints you should include
for most designs:

■ Definitions of clockone and clocktwo as base clocks, and assignment of those
settings to nodes in the design.

■ Definitions of clockone_ext and clocktwo_ext as virtual clocks, which represent
clocks driving external devices interfacing with the FPGA.

■ Automated derivation of generated clocks on PLL outputs.

■ Derivation of clock uncertainty.

■ Specification of two clock groups, the first containing clockone and its related
clocks, the second containing clocktwo and its related clocks, and the third group
containing the output of the PLL. This specification overrides the default analysis
of all clocks in the design as related to each other. For more information about
asynchronous clock groups, refer to “Asynchronous Clock Groups” on page 7–22.

■ Specification of input and output delays for the design.

The following sections describe each of these constraint types in detail.

Example 7–7. Example Basic SDC Constraints

Create clock constraints

create_clock -name clockone -period 10.000 [get_ports {clk1}]
create_clock -name clocktwo -period 10.000 [get_ports {clk2}]

Create virtual clocks for input and output delay constraints

create clock -name clockone_ext -period 10.000
create clock -name clockone_ext -period 10.000

derive_pll_clocks

derive clock uncertainty

derive_clock_uncertainty

Specify that clockone and clocktwo are unrelated by assinging
them to seperate asynchronus groups

set_clock_groups \
-asynchronous \
-group {clockone} \
-group {clocktwo \

altpll0|altpll_component|auto_generated|pll1|clk[0]}]

set input and output delays

set_input_delay -clock { clockone_ext } -max 4 [get_ports {data1}]
set_input_delay -clock { clockone_ext } -min -1 [get_ports {data1}]

set_input_delay -clock { clockone_ext } -max 4 [get_ports {data2}]
set_input_delay -clock { clockone_ext } -min -1 [get_ports {data2}]

set_output_delay -clock { clocktwo_ext } -max 6 [get_ports {dataout}]

set_output_delay -clock { clocktwo_ext } -min -3 [get_ports {dataout}]
November 2013 Altera Corporation Quartus II Handbook Version 13.1
Volume 3: Verification

7–14 Chapter 7: The Quartus II TimeQuest Timing Analyzer
Creating Clocks and Clock Constraints
Creating Clocks and Clock Constraints
To ensure accurate static timing analysis results, you must specify all clocks and any
associated clock characteristics in your design. The TimeQuest analyzer supports SDC
commands that accommodate various clocking schemes and clock characteristics.

The TimeQuest analyzer supports the following types of clocks:

■ Base clocks

■ Virtual clocks

■ Multifrequency clocks

■ Generated clocks

Clocks are used to specify requirements for synchronous transfers and guide the Fitter
optimization algorithms to achieve the best possible placement for your design.

Specify clock constraints first in the .sdc because other constraints may reference
previously defined clocks. The TimeQuest analyzer reads SDC constraints and
exceptions from top to bottom in the file.

Creating Base Clocks
Base clocks are the primary input clocks to the device. Unlike clocks from PLLs that
are generated in the device, base clocks are generated by off-chip oscillators or
forwarded from an external device. Define base clocks first because generated clocks
and other constraints often reference base clocks.

To create clock settings for the signal from any register, port, or pin, use the
create_clock command. You can create each clock with unique characteristics.

Example 7–8 shows how to create a 10 ns clock with a 50% duty cycle that is phase
shifted by 90 degrees applied to port clk_sys.

Use the create_clock command to constrain all primary input clocks. The target for
the create_clock command is usually a pin. To specify the pin as the target, use the
get_ports command. Example 7–9 shows how to specify a 100 MHz requirement on a
clk_sys input clock port.

You can apply multiple clocks on the same clock node with the -add option.
Example 7–10 shows how to specify that two oscillators drive the same clock port on
the device.

Example 7–8. 100 MHz Shifted by 90 Degrees Clock Creation

create_clock -period 10 -waveform { 2.5 7.5 } [get_ports clk_sys]

Example 7–9. create_clock Command

create_clock -period 10 -name clk_sys [get_ports clk_sys]

Example 7–10. Two Oscillators Driving the Same Clock Port

create_clock -period 10 -name clk_100 [get_ports clk_sys]

create_clock -period 5 -name clk_200 [get_ports clk_sys] -add
Quartus II Handbook Version 13.1 November 2013 Altera Corporation
Volume 3: Verification

Chapter 7: The Quartus II TimeQuest Timing Analyzer 7–15
Creating Clocks and Clock Constraints
h For more information about the create_clock and get_ports commands—including
full syntax information, options, and example usage—refer to create_clock and
get_ports in Quartus II Help.

Creating Virtual Clocks
A virtual clock is a clock that does not have a real source in the design or that does not
interact directly with the design. Virtual clocks are used in most I/O constraints, they
represent the clock at the external device connected to the FPGA.

To create virtual clocks, use the create_clock command with no value specified for
the <targets> option. Use virtual clocks for the reference clocks of set_input_delay
and set_output_delay constraints.

Example 7–11 shows how to create a 10 ns virtual clock. The example is a virtual clock
because no target is specified.

h For more information about the set_input_delay, and set_output_delay
commands—including full syntax information, options, and example usage—refer to
set_input_delay, and set_output_delay in Quartus II Help.

Figure 7–5 shows a design where a virtual clock is required for the TimeQuest
analyzer to properly analyze the relationship between the external register and the
registers in the design. Because the oscillator, virt_clk, does not interact with the
Altera device, but acts as the clock source for the external register, you must declare
the clock as a virtual clock. After you create the virtual clock, you can perform a
register-to-register analysis between the register in the Altera device and the register
in the external device.

Example 7–11. Create Virtual Clock

create_clock -period 10 -name my_virt_clk

Figure 7–5. Virtual Clock Board Topology

Altera FPGA External Device

system_clk virt_clk

reg_a reg_b
dataout

datain
November 2013 Altera Corporation Quartus II Handbook Version 13.1
Volume 3: Verification

http://quartushelp.altera.com/current/master.htm#mergedProjects/tafs/tafs/tcl_pkg_sdc_ver_1.5_cmd_set_input_delay.htm
http://quartushelp.altera.com/current/master.htm#mergedProjects/tafs/tafs/tcl_pkg_sdc_ver_1.5_cmd_set_output_delay.htm
http://quartushelp.altera.com/current/master.htm#mergedProjects/tafs/tafs/tcl_pkg_sdc_ver_1.5_cmd_create_clock.htm
http://quartushelp.altera.com/current/master.htm#mergedProjects/tafs/tafs/tcl_pkg_sdc_ver_1.5_cmd_get_ports.htm

7–16 Chapter 7: The Quartus II TimeQuest Timing Analyzer
Creating Clocks and Clock Constraints
Example 7–12 shows how to create a 10 ns virtual clock named virt_clk with a 50%
duty cycle where the first rising edge occurs at 0 ns. The virtual clock is then used as
the clock source for an output delay constraint.

I/O Interface Uncertainty
Virtual clocks are recommended for I/O constraints because the
derive_clock_uncertainty command can add different uncertainty values on clocks
that interface with an external I/O port than uncertainty values between register
paths fed by a clock inside the FPGA.

To specify I/O interface uncertainty, you must create a virtual clock and constrain the
input and output ports with the set_input_delay and set_output_delay commands
that reference the virtual clock. When the set_input_delay or set_output_delay
commands reference a clock port or PLL output, the virtual clock allows the
derive_clock_uncertainty command to apply separate clock uncertainties for
internal clock transfers and I/O interface clock transfers

Create the virtual clock with the same properties as the original clock that is driving
the I/O port. Figure 7–6 shows a typical input I/O interface with clock specifications.

Example 7–12. Virtual Clock Example

#create base clock for the design
create_clock -period 5 [get_ports system_clk]

#create the virtual clock for the external register
create_clock -period 10 -name virt_clk

#set the output delay referencing the virtual clock
set_output_delay -clock virt_clk -max 1.5 [get_ports dataout]
set_output_delay -clock virt_clk -min 0.0 [get_ports dataout]

Figure 7–6. I/O Interface Clock Specifications

Altera FPGAExternal Device
data_in

clk_in

Q Q

reg1

D

reg1

D

100 MHz
Quartus II Handbook Version 13.1 November 2013 Altera Corporation
Volume 3: Verification

Chapter 7: The Quartus II TimeQuest Timing Analyzer 7–17
Creating Clocks and Clock Constraints
Example 7–13 shows the SDC commands to constrain the I/O interface shown in
Figure 7–6.

f For more information about clock uncertainty and clock transfers, refer to “Clock
Uncertainty” on page 7–23

Creating Multifrequency Clocks
You must create a multifrequency clock if your design has more than one clock source
feeding a single clock node in your design. The additional clock may act as a
low-power clock, with a lower frequency than the primary clock. If your design uses
multifrequency clocks, use the set_clock_groups command to define clocks that are
exclusive. For more information about creating exclusive clock groups, refer to
“Creating Clock Groups” on page 7–21.

To create multifrequency clocks, use the create_clock command with the -add option
to create multiple clocks on a clock node. Example 7–14 shows how to create a 10 ns
clock applied to clock port clk, and then add an additional 15 ns clock to the same
clock port. The TimeQuest analyzer uses both clocks when it performs timing
analysis.

Creating Generated Clocks
Generated clocks are applied in the design when you modify the properties of a
source synchronous clock signal, including phase, frequency, offset, and duty cycle. In
the .sdc, generated clocks, which can be the outputs of PLLs or register clock dividers,
are constrained after all base clocks. Generated clocks capture all clock delays and
clock latency where the generated clock target is defined, ensuring that all base clock
properties are accounted for in the generated clock.

Use the create_generated_clock command to constrain generated clocks in your
design. The source of the create_generated_clock command should be a node in
your design and not a previously constrained clock.

Example 7–13. SDC Commands to Constrain the I/O Interface

Create the base clock for the clock port
create_clock -period 10 -name clk_in [get_ports clk_in]

Create a virtual clock with the same properties of the base clock
driving the source register
create_clock -period 10 -name virt_clk_in

Create the input delay referencing the virtual clock and not the base
clock
DO NOT use set_input_delay -clock clk_in <delay value>
[get_ports data_in]
set_input_delay -clock virt_clk_in <delay value> [get_ports data_in]

Example 7–14. Multifrequency Clock Example

create_clock –period 10 –name clock_primary –waveform { 0 5 } \
[get_ports clk]

create_clock –period 15 –name clock_secondary –waveform { 0 7.5 } \
[get_ports clk] -add
November 2013 Altera Corporation Quartus II Handbook Version 13.1
Volume 3: Verification

7–18 Chapter 7: The Quartus II TimeQuest Timing Analyzer
Creating Clocks and Clock Constraints
A common form of generated clock is a clock divider. Example 7–15 creates a base
clock, clk_sys, then defines a generated clock clk_div_2, which is the clock frequency
of clk_sys divided by two.

When you use the create_generated_clock command, the -source option specifies a
node with a clock used as a reference for your generated clock. Best practice is to
specify the input clock pin of the target node for your new generated clock. You can
also specify the target node of the reference clock. In Example 7–15, the -source
option specifies the clock port clk feeding the clock pin of register reg.

If you have multiple base clocks feeding a node that is the source for a generated
clock, you must define multiple generated clocks. Each generated clock is associated
to one base clock using the -master_clock option in each generated clock statement.

The TimeQuest analyzer provides the derive_pll_clocks command to automatically
generate clocks for all PLL clock outputs. The properties of the generated clocks on
the PLL outputs match the properties defined for the PLL. For more information
about deriving PLL clock outputs, refer to “Deriving PLL Clocks” on page 7–19.

h For more information about the create_generated_clock and derive_pll_clocks
commands—including for full syntax information, options, and example usage—refer
to create_generate_clock and derive_pll_clocks in Quartus II Help.

Example 7–15. Clock Divider

create_clock -period 10 -name clk_sys [get_ports clk_sys]

create_generated_clock -name clk_div_2 -divide_by 2 -source
[get_ports clk_sys] [get_pins reg|regout]

1 2 3 4 5 6 7 8Edges

clk_sys

clk_div_2

0 10 20 30
Time
Quartus II Handbook Version 13.1 November 2013 Altera Corporation
Volume 3: Verification

http://quartushelp.altera.com/current/master.htm#mergedProjects/tafs/tafs/tcl_pkg_sdc_ver_1.5_cmd_create_generated_clock.htm
http://quartushelp.altera.com/current/master.htm#mergedProjects/tafs/tafs/tcl_pkg_sdc_ext_ver_1.0_cmd_derive_pll_clocks.htm

Chapter 7: The Quartus II TimeQuest Timing Analyzer 7–19
Creating Clocks and Clock Constraints
The inverse of a clock divider is a clock multiplier. Figure 7–7 shows the effect of
applying a multiplication factor to the generated clock.

An uncommon but useful type of generated clock is one with shifted edges.
Figure 7–8 shows how to modify the generated clock by defining and shifting the
edges.

h For information about creating generated clocks, refer to create_generated_clocks and
Specifying Timing Constraints and Exceptions in Quartus II Help.

Deriving PLL Clocks
Use the derive_pll_clocks command to direct the TimeQuest analyzer to
automatically search the timing netlist for all unconstrained PLL output clocks. The
derive_pll_clocks command automatically creates generated clocks on the outputs
of every PLL by calling the create_generated_clock command. The source for the
create_generated_clock command is the input clock pin of the PLL.

Figure 7–7. Multiplying a Generated Clock

create_clock -period 10 -waveform { 0 5 } [get_ports clk]

Creates a multiply-by-two clock
create_generated_clock -source [get_ports clk] -multiply_by 2 [get_registers \
clkmult|clkreg]

clk

clkmult|clkreg

0 10 20 30
Time

Figure 7–8. Edge Shifting a Generated Clock

create_clock -period 10 -waveform { 0 5 } [get_ports clk]

Creates a divide-by-two clock
create_generated_clock -source [get_ports clk] -edges { 1 3 5 } [get_registers \
clkdivA|clkreg]

Creates a divide-by-two clock independent of the master clock’s duty cycle (now 50%)
create_generated_clock -source [get_ports clk] -edges { 1 1 5 } \
-edge_shift { 0 2.5 0 } [get_registers clkdivB|clkreg]

1 2 3 4 5 6 7 8Edges

clk

clkdivA|clkreg

clkdivB|clkreg

0 10 20 30
Time
November 2013 Altera Corporation Quartus II Handbook Version 13.1
Volume 3: Verification

http://quartushelp.altera.com/current/master.htm#mergedProjects/analyze/sta/sta_pro_constraints.htm
http://quartushelp.altera.com/current/master.htm#mergedProjects/tafs/tafs/tcl_pkg_sdc_ver_1.5_cmd_create_generated_clock.htm

7–20 Chapter 7: The Quartus II TimeQuest Timing Analyzer
Creating Clocks and Clock Constraints
Example 7–16 shows the command to create a base clock for the PLL input clock port
and call derive_pll_clocks to create PLL output clocks.

1 If your design contains LVDS transmitters, LVDS receivers, or transceivers, Altera
recommends using the derive_pll_clocks command. The command automatically
constrains this logic in your design by adding the appropriate multicycle constraints
to account for any deserialization factors.

h For more information about the derive_pll_clocks command—including full syntax
information, options, and example usage—refer to derive_pll_clocks and Derive PLL
Clocks in Quartus II Help.

You can include the derive_pll_clocks command in your .sdc, which automatically
detects any changes to the PLL settings. Each time the TimeQuest analyzer reads your
.sdc, the appropriate create_generated_clocks command is generated for the PLL
output clock pin.

Figure 7–9 shows a simple PLL design with a register-to-register path.

Example 7–17 shows the messages generated by the TimeQuest analyzer when you
use the derive_pll_clocks command to automatically constrain the PLL for the
design shown in Figure 7–9.

The input clock pin of the PLL is the node
pll_inst|altpll_component|pll|inclk[0] is used for the -source option. The name
of the output clock of the PLL is the PLL output clock node,
pll_inst|altpll_component|pll|clk[0].

Example 7–16. Create Base Clock for PLL input Clock Ports

create_clock -period 10.0 -name fpga_sys_clk [get_ports fpga_sys_clk]
derive_pll_clocks

Figure 7–9. Simple PLL Design

Example 7–17. derive_pll_clocks Command Messages

Info:
Info: Deriving PLL Clocks:
Info: create_generated_clock -source
pll_inst|altpll_component|pll|inclk[0] -divide_by 2 -name
pll_inst|altpll_component|pll|clk[0]
pll_inst|altpll_component|pll|clk[0]
Info:

reg_1 reg_2

pll_inclk pll_inst

dataout
Quartus II Handbook Version 13.1 November 2013 Altera Corporation
Volume 3: Verification

http://quartushelp.altera.com/current/master.htm#mergedProjects/tafs/tafs/tcl_pkg_sdc_ext_ver_1.0_cmd_derive_pll_clocks.htm
http://quartushelp.altera.com/current/master.htm#mergedProjects/analyze/sta/sta_db_derive_pll_clocks.htm
http://quartushelp.altera.com/current/master.htm#mergedProjects/analyze/sta/sta_db_derive_pll_clocks.htm

Chapter 7: The Quartus II TimeQuest Timing Analyzer 7–21
Creating Clocks and Clock Constraints
If the PLL is in clock switchover mode, multiple clocks are created for the output clock
of the PLL; one for the primary input clock (for example, inclk[0]), and one for the
secondary input clock (for example, inclk[1]). You should create exclusive clock
groups for the primary and secondary output clocks.

For more information about creating exclusive clock groups, refer to “Creating Clock
Groups” on page 7–21.

Automatically Detecting Clocks and Creating Default Clock Constraints
To automatically create clocks for all clock nodes in your design, use the
derive_clocks command. The derive_clocks command is equivalent to using the
create_clock command for each register or port feeding the clock pin of a register.
The derive_clocks command creates clock constraints on ports or registers to ensure
every register in your design has a clock constraints, and it applies one period to all
base clocks in your design.

If there are no clock constraints in your design, the TimeQuest analyzer automatically
creates default clock constraints for all detected unconstrained clock nodes to provide
a complete clock analysis. The TimeQuest analyzer automatically creates clocks only
when all synchronous elements have no associated clocks. For example, the
TimeQuest analyzer does not create a default clock constraint if your design contains
two clocks and you assigned constraints to one of the clocks. However, if you do not
assign constraints to either clock, then the TimeQuest analyzer creates a default clock
constraint.

Example 7–18 shows how the TimeQuest analyzer creates a base clock with a 1 GHz
requirement for unconstrained clock nodes.

1 Do not use the derive_clocks command for final timing sign-off; instead, you should
create clocks for all clock sources with the create_clock and
create_generated_clock commands. If your design has more than a single clock, the
derive_clocks command constrains all the clocks to the same specified frequency. To
achieve a thorough and realistic analysis of your design’s timing requirements, you
should make individual clock constraints for all clocks in your design.

You can also use the command derive_pll_clocks -create_base_clocks to create
the input clocks for all PLL inputs automatically.

h For more information about the derive_clocks command—including full syntax
information, options, and example usage—refer to derive_clocks in Quartus II Help.

Creating Clock Groups
The TimeQuest analyzer assumes all clocks are related unless constrained otherwise.
To specify clocks in your design that are exclusive or asynchronous, use the
set_clock_groups command. The set_clock_groups command cuts timing between
clocks in different groups, and performs the same analysis regardless of whether you
specify -exclusive or -asynchronous.

Example 7–18. Create Base Clock for Unconstrained Clock Nodes

derive_clocks -period 1
November 2013 Altera Corporation Quartus II Handbook Version 13.1
Volume 3: Verification

http://quartushelp.altera.com/current/master.htm#mergedProjects/tafs/tafs/tcl_pkg_sdc_ver_1.5_cmd_derive_clocks.htm

7–22 Chapter 7: The Quartus II TimeQuest Timing Analyzer
Creating Clocks and Clock Constraints
h For more information about the set_clock_groups command—including full syntax
information, options, and example usage—refer to set_clock_groups in Quartus II Help.

Exclusive Clock Groups
Use the -exclusive option to declare that two clocks are mutually exclusive. You may
want to declare clocks as mutually exclusive when multiple clocks are created on the
same node or for multiplexed clocks. For example, a port can be clocked by either a
25-MHz or a 50-MHz clock. To constrain this port, you should create two clocks on the
port, and then create clock groups to declare that they cannot coexist in the design at
the same time. Declaring the clocks as mutually exclusive eliminates any clock
transfers that may be derived between the 25-MHz clock and the 50-MHz clock.
Example 7–19 shows how to create mutually exclusive clock groups.

A group is defined with the -group option. The TimeQuest analyzer excludes the
timing paths between clocks for each of the separate groups.

If you apply multiple clocks to the same port, use the set_clock_groups command
with the -exclusive option to place the clocks into separate groups and declare that
the clocks are mutually exclusive. The clocks cannot physically exist in your design at
the same time.

Asynchronous Clock Groups
Use the -asynchronous option to create asynchronous clock groups. Clocks contained
within an asynchronous clock group are considered asynchronous to clocks in other
clock groups; however, any clocks within a clock group are considered synchronous
to each other.

For example, if your design has three clocks, clk_A, clk_B, and clk_C, and you
establish that clk_A and clk_B are related to each other, but clock clk_C operates
completely asynchronously, you can set up clock groups to define the clock behavior.
If set_clock_groups is used with only one group, the clocks in that group are
asynchronous with all other clocks in the design. For example, you can create a clock
group containing only clk_C to ensure that clk_A and clk_B are synchronous with
each other and asynchronous with clk_C. Because clk_C is the only clock in the
constraint, it is asynchronous with every other clock in the design.

Example 7–20 shows how to create a clock group containing clocks clk_A and clk_B
and a second unrelated clock group containing clk_C.

h For more information about the set_clock_groups command—including full syntax
information, options, and example usage—refer to set_clock_groups in Quartus II Help.

Example 7–19. Create Mutually Exclusive Clock Groups

create_clock -period 40 -name clk_A [get_ports {port_A}]
create_clock -add -period 20 -name clk_B [get_ports {port_A}]
set_clock_groups -exclusive -group {clk_A} -group {clk_B}

Example 7–20. Create Asynchronous Clock Groups

set_clock_groups -asynchronous -group {clk_A clk_B} -group {clk_C}
Quartus II Handbook Version 13.1 November 2013 Altera Corporation
Volume 3: Verification

http://quartushelp.altera.com/current/master.htm#mergedProjects/tafs/tafs/tcl_pkg_sdc_ver_1.5_cmd_set_clock_groups.htm
http://quartushelp.altera.com/current/master.htm#mergedProjects/tafs/tafs/tcl_pkg_sdc_ver_1.5_cmd_set_clock_groups.htm

Chapter 7: The Quartus II TimeQuest Timing Analyzer 7–23
Creating Clocks and Clock Constraints
Accounting for Clock Effect Characteristics
The clocks you create with the TimeQuest analyzer are ideal clocks that do not
account for any board effects. You can account for clock effect characteristics with
clock latency and clock uncertainty.

Clock Latency
There are two forms of clock latency, clock source latency and clock network latency.
Source latency is the propagation delay from the origin of the clock to the clock
definition point (for example, a clock port). Network latency is the propagation delay
from a clock definition point to a register’s clock pin. The total latency at a register’s
clock pin is the sum of the source and network latencies in the clock path.

To specify source latency to any clock ports in your design, use the
set_clock_latency command.

1 The TimeQuest analyzer automatically computes network latencies; therefore, you
only can characterize source latency with the set_clock_latency command. You
must use the -source option.

h For more information about the set_clock_latency command—including full syntax
information, options, and example usage—refer to set_clock_latency in Quartus II
Help.f

Clock Uncertainty
The TimeQuest analyzer accounts for uncertainty clock effects for three types of
clock-to-clock transfers; intraclock transfers, interclock transfers, and I/O interface
clock transfers.

■ Intraclock transfers occur when the register-to-register transfer takes place in the
core of the device and the source and destination clocks come from the same PLL
output pin or clock port.

■ Interclock transfers occur when a register-to-register transfer takes place in the
core of the device and the source and destination clocks come from a different PLL
output pin or clock port.

■ I/O interface clock transfers occur when data transfers from an I/O port to the
core of the device or from the core of the device to the I/O port.

To manually specify clock uncertainty, or skew, for clock-to-clock transfers, use the
set_clock_uncertainty command. You can specify the uncertainty separately for
setup and hold, and you can specify separate rising and falling clock transitions. The
TimeQuest analyzer subtracts setup uncertainty from the data required time for each
applicable path and adds the hold uncertainty to the data required time for each
applicable path.

To automatically apply interclock, intraclock, and I/O interface uncertainties, use the
derive_clock_uncertainty command. The TimeQuest analyzer automatically
applies clock uncertainties to clock-to-clock transfers in the design, and calculates
both setup and hold uncertainties for each clock-to-clock transfer.
November 2013 Altera Corporation Quartus II Handbook Version 13.1
Volume 3: Verification

http://quartushelp.altera.com/current/master.htm#mergedProjects/tafs/tafs/tcl_pkg_sdc_ver_1.5_cmd_set_clock_latency.htm

7–24 Chapter 7: The Quartus II TimeQuest Timing Analyzer
Creating I/O Requirements
Any clock uncertainty constraints applied to source and destination clock pairs with
the set_clock_uncertainty command have a higher precedence than the clock
uncertainties derived with the derive_clock_uncertainty command for the same
source and destination clock pairs. For example, if you use the
set_clock_uncertainty command to set clock uncertainty between clka and clkb,
the TimeQuest analyzer ignores the values for the clock transfer calculated with the
derive_clock_uncertainty command. The TimeQuest analyzer reports the values
calculated with the derive_clock_uncertainty command even if they are not used.

Use set_clock_uncertainty or derive_clock_uncertainty with the -overwrite
option to overwrite previously applied clock uncertainty assignments. Use
set_clock_uncertainty or derive_clock_uncertainty with the -add option to apply
additional clock uncertainty to previously applied clock uncertainty. Use the
remove_clock_uncertainty command to remove previous clock uncertainty
assignments.

h For more information about the set_clock_uncertainty, derive_clock_uncertainty,
and remove_clock_uncertainty commands—including full syntax information,
options, and example usage—refer to set_clock_uncertainty, remove_clock_uncertainty
and derive_clock_uncertainty, in Quartus II Help.

Creating I/O Requirements
The TimeQuest analyzer reviews setup and hold relationships for designs in which an
external source interacts with a register internal to the design. The TimeQuest
analyzer supports input and output external delay modeling with the
set_input_delay and set_output_delay commands. You can specify the clock and
minimum and maximum arrival times relative to the clock.

You must specify timing requirements, including internal and external timing
requirements, before you fully analyze a design. With external timing requirements
specified, the TimeQuest analyzer verifies the I/O interface, or periphery of the
device, against any system specification.

Input Constraints
Input constraints allow you to specify all the external delays feeding into the device.
Specify input requirements for all input ports in your design.
Quartus II Handbook Version 13.1 November 2013 Altera Corporation
Volume 3: Verification

http://quartushelp.altera.com/current/master.htm#mergedProjects/tafs/tafs/tcl_pkg_sdc_ext_ver_1.0_cmd_derive_clock_uncertainty.htm
http://quartushelp.altera.com/current/master.htm#mergedProjects/tafs/tafs/tcl_pkg_sdc_ver_1.5_cmd_set_clock_uncertainty.htm
http://quartushelp.altera.com/current/master.htm#mergedProjects/tafs/tafs/tcl_pkg_sdc_ver_1.5_cmd_remove_clock_uncertainty.htm

Chapter 7: The Quartus II TimeQuest Timing Analyzer 7–25
Creating I/O Requirements
You can use the set_input_delay command to specify external input delay
requirements. Use the -clock option to reference a virtual clock. Using a virtual clock
allows the TimeQuest analyzer to correctly derive clock uncertainties for interclock
and intraclock transfers. The virtual clock defines the launching clock for the input
port. The TimeQuest analyzer automatically determines the latching clock inside the
device that captures the input data, because all clocks in the device are defined.
Figure 7–10 shows an example of an input delay referencing a virtual clock.

Equation 7–1 shows a typical input delay calculation.

Output Constraints
Output constraints allow you to specify all external delays from the device for all
output ports in your design.

You can use the set_output_delay command to specify external output delay
requirements. Use the -clock option to reference a virtual clock. The virtual clock
defines the latching clock for the output port. The TimeQuest analyzer automatically
determines the launching clock inside the device that launches the output data,
because all clocks in the device are defined. Figure 7–11 shows an example of an
output delay referencing a virtual clock.

Figure 7–10. Input Delay

Equation 7–1. Input Delay Calculation

External Device Altera Device

Oscillator

dd

cd_altrcd_ext

tco_ext

input delayMAX cd_extMAX cd_altrMIN–() tco_extMAX ddMAX+ +=

input delayMIN cd_extMIN cd_altrMAX–() tco_extMIN ddMIN+ +=

Figure 7–11. Output Delay

External DeviceAltera Device

Oscillator

dd

cd_altr

cd_ext

tsu_ext/th_ext
November 2013 Altera Corporation Quartus II Handbook Version 13.1
Volume 3: Verification

7–26 Chapter 7: The Quartus II TimeQuest Timing Analyzer
Creating Delay and Skew Constraints
Equation 7–2 shows a typical output delay calculation.

h For more information about the set_input_delay and set_output_delay
commands—including full syntax information, options, and example usage—refer to
set_input_delay and set_output_delay in Quartus II Help.

Creating Delay and Skew Constraints
The TimeQuest analyzer supports the Synopsys Design Constraint format for
constraining timing for the ports in your design. These constraints allow the
TimeQuest analyzer to perform a system static timing analysis that includes not only
the device internal timing, but also any external device timing and board timing
parameters.

Advanced I/O Timing and Board Trace Model Delay
The TimeQuest analyzer can use advanced I/O timing and board trace model
assignments to model I/O buffer delays in your design.

If you change any advanced I/O timing settings or board trace model assignments,
recompile your design before you analyze timing, or use the -force_dat option to
force delay annotation when you create a timing netlist. Example 7–21 shows how to
force delay annotation when creating a timing netlist.

h For more information about using advanced I/O timing, refer to Using Advanced I/O
Timing in Quartus II Help.

f For more information about advanced I/O timing, refer to the I/O Management
chapter in volume 2 of the Quartus II Handbook.

Maximum Skew
To specify the maximum path-based skew requirements for registers and ports in the
design and report the results of maximum skew analysis, use the set_max_skew
command in conjunction with the report_max_skew command.

By default, the set_max_skew command excludes any input or output delay
constraints.

h For more information about the set_max_skew and report_max_skew commands—
including full syntax information, options, and example usage—refer to set_max_skew
report_max_skew in Quartus II Help.

Equation 7–2. output Delay Calculation

output delayMAX ddMAX tsu_ext cd_altrMAX cd_extMIN–()+ +=

output delayMIN ddMIN th_ext + cd_altrMIN cd_extMAX–()+()=

Example 7–21. Forcing Delay Annotation

create_timing_netlist -force_dat r
Quartus II Handbook Version 13.1 November 2013 Altera Corporation
Volume 3: Verification

http://quartushelp.altera.com/current/master.htm#mergedProjects/tafs/tafs/tcl_pkg_sdc_ext_ver_1.0_cmd_set_max_skew.htm
http://quartushelp.altera.com/current/master.htm#mergedProjects/optimize/ssn/ssn_pro_using_adv_io_analysis.htm
http://quartushelp.altera.com/current/master.htm#mergedProjects/optimize/ssn/ssn_pro_using_adv_io_analysis.htm
http://quartushelp.altera.com/current/master.htm#mergedProjects/tafs/tafs/tcl_pkg_sta_ver_1.0_cmd_report_max_skew.htm
http://www.altera.com/literature/hb/qts/qts_qii52013.pdf
http://quartushelp.altera.com/current/master.htm#mergedProjects/tafs/tafs/tcl_pkg_sdc_ver_1.5_cmd_set_input_delay.htm
http://quartushelp.altera.com/current/master.htm#mergedProjects/tafs/tafs/tcl_pkg_sdc_ver_1.5_cmd_set_output_delay.htm

Chapter 7: The Quartus II TimeQuest Timing Analyzer 7–27
Creating Timing Exceptions
Creating Timing Exceptions
Timing exceptions in the TimeQuest analyzer provide a way to modify the default
timing analysis behavior to match the analysis required by your design. Specify
timing exceptions after clocks and input and output delay constraints because timing
exceptions can modify the default analysis.

Precedence
If a conflict of node names occurs between timing exceptions, the following order of
precedence applies:

1. False path

2. Minimum delays and maximum delays

3. Multicycle path

The false path timing exception has the highest precedence. Within each category,
assignments to individual nodes have precedence over assignments to clocks. Finally,
the remaining precedence for additional conflicts is order-dependent, such that the
assignments most recently created overwrite, or partially overwrite, earlier
assignments.

False Paths
Specifying a false path in your design removes the path from timing analysis. Use the
set_false_path command to specify false paths in your design. You can specify
either a point-to-point or clock-to-clock path as a false path. For example, a path you
should specify as false path is a static configuration register that is written once
during power-up initialization, but does not change state again. Although signals
from static configuration registers often cross clock domains, you may not want to
make false path exceptions to a clock-to-clock path, because some data may transfer
across clock domains. However, you can selectively make false path exceptions from
the static configuration register to all endpoints.

Example 7–22 shows how to make false path exceptions from all registers beginning
with A to all registers beginning with B.

The TimeQuest analyzer assumes all clocks are related unless you specify otherwise.
The “Creating Clock Groups” on page 7–21 describes how you can use clock groups.
Clock groups are a more efficient way to make false path exceptions between clocks,
compared to writing multiple set_false_path exceptions between every clock
transfer you want to eliminate.

h For more information about the set_false_path command—including full syntax
information, options, and example usage—refer to set_false_path in Quartus II Help.

Example 7–22. False Path

set_false_path -from [get_pins A*] -to [get_pins B*]
November 2013 Altera Corporation Quartus II Handbook Version 13.1
Volume 3: Verification

http://quartushelp.altera.com/current/master.htm#mergedProjects/tafs/tafs/tcl_pkg_sdc_ver_1.5_cmd_set_false_path.htm

7–28 Chapter 7: The Quartus II TimeQuest Timing Analyzer
Creating Timing Exceptions
Minimum and Maximum Delays
To specify an absolute minimum or maximum delay for a path, use the
set_min_delay command or the set_max_delay commands, respectively. Specifying
minimum and maximum delay directly overwrites existing setup and hold
relationships with the minimum and maximum values.

Use the set_max_delay and set_min_delay commands to create constraints for
asynchronous signals that do not have a specific clock relationship in your design, but
require a minimum and maximum path delay. You can create minimum and
maximum delay exceptions for port-to-port paths through the device without a
register stage in the path. If you use minimum and maximum delay exceptions to
constrain the path delay, specify both the minimum and maximum delay of the path;
do not constrain only the minimum or maximum value.

If the source or destination node is clocked, the TimeQuest analyzer takes into account
the clock paths, allowing more or less delay on the data path. If the source or
destination node has an input or output delay, that delay is also included in the
minimum or maximum delay check.

If you specify a minimum or maximum delay between timing nodes, the delay
applies only to the path between the two nodes. If you specify a minimum or
maximum delay for a clock, the delay applies to all paths where the source node or
destination node is clocked by the clock.

You can create a minimum or maximum delay exception for an output port that does
not have an output delay constraint. You cannot report timing for the paths associated
with the output port; however, the TimeQuest analyzer reports any slack for the path
in the setup summary and hold summary reports. Because there is no clock associated
with the output port, no clock is reported for timing paths associated with the output
port.

1 To report timing with clock filters for output paths with minimum and maximum
delay constraints, you can set the output delay for the output port with a value of
zero. You can use an existing clock from the design or a virtual clock as the clock
reference.

h For more information about the set_min_delay, and set_max_delay, commands—
including full syntax information, options, and example usage—refer to set_min_delay,
and set_max_delay, in Quartus II Help.

Delay Annotation
To modify the default delay values used during timing analysis, use the
set_annotated_delay and set_timing_derate commands. You must update the
timing netlist to see the results of these commands

To specify different operating conditions in a single .sdc, rather than having multiple
.sdc files that specify different operating conditions, use the set_annotated_delay
command with the -operating_conditions option.

h For more information about the set_annotated_delay and set_timing_derate
commands—including full syntax information, options, and example usage—refer to
set_annotated_delay and set_timing_derate in Quartus II Help.
Quartus II Handbook Version 13.1 November 2013 Altera Corporation
Volume 3: Verification

http://quartushelp.altera.com/current/master.htm#mergedProjects/tafs/tafs/tcl_pkg_sdc_ext_ver_1.0_cmd_set_annotated_delay.htm
http://quartushelp.altera.com/current/master.htm#mergedProjects/tafs/tafs/tcl_pkg_sdc_ext_ver_1.0_cmd_set_annotated_delay.htm
http://quartushelp.altera.com/current/master.htm#mergedProjects/tafs/tafs/tcl_pkg_sdc_ext_ver_1.0_cmd_set_timing_derate.htm
http://quartushelp.altera.com/current/master.htm#mergedProjects/tafs/tafs/tcl_pkg_sdc_ver_1.5_cmd_set_min_delay.htm
http://quartushelp.altera.com/current/master.htm#mergedProjects/tafs/tafs/tcl_pkg_sdc_ver_1.5_cmd_set_max_delay.htm

Chapter 7: The Quartus II TimeQuest Timing Analyzer 7–29
Creating Timing Exceptions
Multicycle Paths
By default, the TimeQuest analyzer performs a single-cycle analysis, which is the
most restrictive type of analysis. When analyzing a path, the setup launch and latch
edge times are determined by finding the closest two active edges in the respective
waveforms. For a hold analysis, the timing analyzer analyzes the path against two
timing conditions for every possible setup relationship, not just the worst-case setup
relationship. Therefore, the hold launch and latch times may be completely unrelated
to the setup launch and latch edges. The TimeQuest analyzer does not report negative
setup or hold relationships. When either a negative setup or a negative hold
relationship is calculated, the TimeQuest analyzer moves both the launch and latch
edges such that the setup and hold relationship becomes positive.

A multicycle constraint adjusts setup or hold relationships by the specified number of
clock cycles based on the source (-start) or destination (-end) clock. An end setup
multicycle constraint of 2 extends the worst-case setup latch edge by one destination
clock period. If -start and -end values are not specified, the default constraint is -
end.

Hold multicycle constraints are based on the default hold position (the default value
is 0). An end hold multicycle constraint of 1 effectively subtracts one destination clock
period from the default hold latch edge.

When the objects are timing nodes, the multicycle constraint only applies to the path
between the two nodes. When an object is a clock, the multicycle constraint applies to
all paths where the source node (-from) or destination node (-to) is clocked by the
clock. When you adjust a setup relationship with a multicycle constraint, the hold
relationship is adjusted automatically.

Table 7–4 shows the commands you can use to modify either the launch or latch edge
times that the TimeQuest analyzer uses to determine a setup relationship or hold
relationship.

Common Multicycle Variations
Multicycle exceptions adjust the timing requirements for a register-to-register path,
allowing the Fitter to optimally place and route a design in a device. Multicycle
exceptions also can reduce compilation time and improve the quality of results, and
can be used to change timing requirements. Two common multicycle variations are
relaxing setup to allow a slower data transfer rate, and altering the setup to account
for a phase shift.

Relaxing Setup with set_multicyle_path
A common type of multicycle exception occurs when the data transfer rate is slower
than the clock cycle.

Table 7–4. Commands to Modify Edge Times

Command Description of Modification

set_multicycle_path -setup -end <value> Latch edge time of the setup relationship

set_multicycle_path -setup -start<value> Launch edge time of the setup relationship

set_multicycle_path -hold -end <value> Latch edge time of the hold relationship

set_multicycle_path -hold -start <value> Launch edge time of the hold relationship
November 2013 Altera Corporation Quartus II Handbook Version 13.1
Volume 3: Verification

7–30 Chapter 7: The Quartus II TimeQuest Timing Analyzer
Creating Timing Exceptions
In this example, the source clock has a period of 10 ns, but a group of registers are
enabled by a toggling clock, so they only toggle every other cycle. Since they are fed
by a 10 ns clock, the TimeQuest analyzer reports a set up of 10 ns and a hold of 0 ns,
However, since the data is transferring every other cycle, the relationships should be
analyzed as if the clock were operating at 20 ns, which would result in a setup of
20 ns, while the hold remains 0 ns, in essence, extending the window of time when the
data can be recognized.

Example 7–23 shows a pair of multicycle assignments that relax the setup relationship
by specifying the -setup value of N and the -hold value as N-1. You must specify the
hold relationship with a -hold assignment to prevent a positive hold requirement.

Figure 7–12 shows how the exception relaxes the setup by two or three cycles.

This pattern can be extended to create larger setup relationships in order to ease
timing closure requirements. A common use for this exception is when writing to
asynchronous RAM across an I/O interface. The delay between address, data, and a
write enable may be several cycles. A multicycle exception to I/O ports can allow
extra time for the address and data to resolve before the enable occurs.

Example 7–24 shows how a relaxing the setup by three cycles can be achieved.

Example 7–23. Relaxing Setup while Maintaining Hold

set_multicycle_path -setup -from src_reg* -to dst_reg* 2
set_multicycle_path -hold -from src_reg* -to dst_reg* 1

Figure 7–12. Relaxing Setup by Multiple Cycles

Example 7–24. Three Cycle I/O Interface Exception

set_multicycle_path -setup -to [get_ports {SRAM_ADD[*] SRAM_DATA[*]} 3
set_multicycle_path -hold -to [get_ports {SRAM_ADD[*] SRAM_DATA[*]} 2

0 ns 10 ns 20 ns 30 ns

0 ns 10 ns 20 ns 30 ns

0 ns 10 ns 20 ns 30 ns

No Multicycles
(Default Relationship)

Setup = 10 ns
Hold = 0 ns

Setup = 2
Hold = 1

Setup = 20 ns
Hold = 0 ns

Setup = 3
Hold = 2

Setup = 30 ns
Hold = 0 ns
Quartus II Handbook Version 13.1 November 2013 Altera Corporation
Volume 3: Verification

Chapter 7: The Quartus II TimeQuest Timing Analyzer 7–31
Creating Timing Exceptions
Accounting for a Phase Shift
In this example, the design contains a PLL that performs a phase-shift on a clock
whose domain exchanges data with domains that do not experience the phase shift.
For example, when the destination clock is phase-shifted forward and the source clock
is not, the default setup relationship becomes that phase-shift.

Example 7–25 shows a circumstance where a PLL phase-shifts one output forward by
a small amount, for example 0.2 ns.

The default setup relationship for this phase-shift is 0.2 ns, shown in Figure A,
creating a scenario where the hold relationship is negative, which makes achieving
timing closure nearly impossible.

Adding the constraint shown in Example Y allows the data to transfer to the following
edge.

The hold relationship is derived from the setup relationship, making a multicyle hold
constraint unnecessary. For a more complete example refer to “Same Frequency
Clocks with Destination Clock Offset” on page 7–44.

h For more information about the set_multicycle_path command—including full
syntax information, options, and example usage—refer to set_multicycle_path in
Quartus II Help.

Example 7–25. Cross Domain Phase-Shift

create_generated_clock -source pll|inclk[0] -name pll|clk[0] pll|clk[0]
create_generated_clock -source pll|inclk[0] -name pll|clk[1] -phase 30 pll|clk[1]

Figure 7–13. Phase-Shifted Setup and Hold

-10 ns 0 ns 10 ns 20 ns

-10 ns 0 ns 10 ns 20 ns

No Multicycles
(Default Relationship)

Setup = 0.2 ns
Hold = -9.8 ns

Setup = 2

Setup = 10.2 ns
Hold = 0.2 ns

Example 7–26. Adjusting the Phase-Shift with a set_multicycle_path Constraint

set_multicycle_path -setup -from [get_clocks clk_a] -to [get_clocks clk_b] 2
November 2013 Altera Corporation Quartus II Handbook Version 13.1
Volume 3: Verification

http://quartushelp.altera.com/current/master.htm#mergedProjects/tafs/tafs/tcl_pkg_sdc_ver_1.5_cmd_set_multicycle_path.htm

7–32 Chapter 7: The Quartus II TimeQuest Timing Analyzer
Creating Timing Exceptions
Multicycle Clock Setup Check and Hold Check Analysis
You can modify the setup and hold relationship when you apply a multicycle
exception to a register-to-register path. Figure 7–14 shows a register-to-register path
with various timing parameters labeled.

Multicycle Clock Setup
The setup relationship is defined as the number of clock periods between the latch
edge and the launch edge. By default, the TimeQuest analyzer performs a single-cycle
path analysis, which results in the setup relationship being equal to one clock period
(latch edge – launch edge). Applying a multicycle setup assignment, adjusts the setup
relationship by the multicycle setup value. The adjustment value may be negative.

An end multicycle setup assignment modifies the latch edge of the destination clock
by moving the latch edge the specified number of clock periods to the right of the
determined default latch edge. Figure 7–15 shows various values of the end
multicycle setup assignment and the resulting latch edge.

Figure 7–14. Register-to-Register Path

REG1 REG2
Combinational

Logic
SET SET

D Q D Q

CLR CLR

CLK

Tclk1

TCO TSU / TH

Tdata

Tclk2

Figure 7–15. End Multicycle Setup Values

-10 0 10 20

REG1.CLK

REG2.CLK

EMS = 2

EMS = 1
(default)

EMS = 3
Quartus II Handbook Version 13.1 November 2013 Altera Corporation
Volume 3: Verification

Chapter 7: The Quartus II TimeQuest Timing Analyzer 7–33
Creating Timing Exceptions
A start multicycle setup assignment modifies the launch edge of the source clock by
moving the launch edge the specified number of clock periods to the left of the
determined default launch edge. Figure 7–16 shows various values of the start
multicycle setup assignment and the resulting launch edge.

Figure 7–17 shows the setup relationship reported by the TimeQuest analyzer for the
negative setup relationship shown in Figure 7–16.

Multicycle Clock Hold
The setup relationship is defined as the number of clock periods between the launch
edge and the latch edge. By default, the TimeQuest analyzer performs a single-cycle
path analysis, which results in the hold relationship being equal to one clock period
(launch edge – latch edge). When analyzing a path, the TimeQuest analyzer performs
two hold checks. The first hold check determines that the data launched by the
current launch edge is not captured by the previous latch edge. The second hold check
determines that the data launched by the next launch edge is not captured by the
current latch edge. The TimeQuest analyzer reports only the most restrictive hold
check. Equation 7–3 shows the calculation that the TimeQuest analyzer performs to
determine the hold check.

Figure 7–16. Start Multicycle Setup Values

100 20 30 40

SMS = 2

SMS = 3
SMS = 1
(default)

Source Clock

Destination Clock

Figure 7–17. Start Multicycle Setup Values Reported by the TimeQuest Analyzer

-10 0 10 20

Source Clock

Destination Clock

SMS = 2

SMS = 1
(default)

SMS = 3

Equation 7–3. Hold Check

hold check 1 current launch edge= previous latch edge–

hold check 2 next launch edge= current latch edge–
November 2013 Altera Corporation Quartus II Handbook Version 13.1
Volume 3: Verification

7–34 Chapter 7: The Quartus II TimeQuest Timing Analyzer
Creating Timing Exceptions
1 If a hold check overlaps a setup check, the hold check is ignored.

A start multicycle hold assignment modifies the launch edge of the destination clock
by moving the latch edge the specified number of clock periods to the right of the
determined default launch edge. Figure 7–18 shows various values of the start
multicycle hold assignment and the resulting launch edge.

An end multicycle hold assignment modifies the latch edge of the destination clock by
moving the latch edge the specific ed number of clock periods to the left of the
determined default latch edge. Figure 7–19 shows various values of the end
multicycle hold assignment and the resulting latch edge.

Figure 7–18. Start Multicycle Hold Values

-10 0 10 20

Source Clock

Destination Clock

SMH = 1
SMH = 0
(default) SMH = 2

Figure 7–19. End Multicycle Hold Values

-10-20 0 10 20

Source Clock

Destination Clock

EMH = 2

EMH= 0
(default)EMH = 1
Quartus II Handbook Version 13.1 November 2013 Altera Corporation
Volume 3: Verification

Chapter 7: The Quartus II TimeQuest Timing Analyzer 7–35
Creating Timing Exceptions
Figure 7–20 shows the hold relationship reported by the TimeQuest analyzer for the
negative hold relationship shown in Figure 7–19.

Examples of Basic Multicycle Exceptions
This section describes the following examples of combinations of multicycle
exceptions:

■ “Default Settings” on page 7–35

■ “End Multicycle Setup = 2 and End Multicycle Hold = 0” on page 7–38

■ “End Multicycle Setup = 2 and End Multicycle Hold = 1” on page 7–41

Each example explains how the multicycle exceptions affect the default setup and
hold analysis in the TimeQuest analyzer. The multicycle exceptions are applied to a
simple register-to-register circuit. Both the source and destination clocks are set to
10 ns.

Default Settings
By default, the TimeQuest analyzer performs a single-cycle analysis to determine the
setup and hold checks. Also, by default, the TimeQuest analyzer sets the end
multicycle setup assignment value to one and the end multicycle hold assignment
value to zero.

Figure 7–20. End Multicycle Hold Values Reported by the TimeQuest Analyzer

-10 0 10 20

Source Clock

Destination Clock

EMH = 2EMH = 0
default)

EMH = 1
November 2013 Altera Corporation Quartus II Handbook Version 13.1
Volume 3: Verification

7–36 Chapter 7: The Quartus II TimeQuest Timing Analyzer
Creating Timing Exceptions
Figure 7–21 shows the source and the destination timing waveform for the source
register and destination register, respectively where HC1 and HC2 are hold checks
one and two and SC is the setup check.

Equation 7–4 shows the calculation that the TimeQuest analyzer performs to
determine the setup check.

The most restrictive setup relationship with the default single-cycle analysis, that is, a
setup relationship with an end multicycle setup assignment of one, is 10 ns.

Figure 7–21. Default Timing Diagram

-10 0 10 20

Current Launch

Current Latch

0 1 2

HC1 HC2SC

REG1.CLK

REG2.CLK

Equation 7–4. Setup Check

=

=

=

setup check current latch edge closest previous launch edge–

10 ns 0 ns–

10 ns
Quartus II Handbook Version 13.1 November 2013 Altera Corporation
Volume 3: Verification

Chapter 7: The Quartus II TimeQuest Timing Analyzer 7–37
Creating Timing Exceptions
Figure 7–22 shows the setup report for the default setup in the TimeQuest analyzer
with the launch and latch edges highlighted.

Equation 7–5 shows the calculation that the TimeQuest analyzer performs to
determine the hold check. Both hold checks are equivalent.

The most restrictive hold relationship with the default single-cycle analysis, that a
hold relationship with an end multicycle hold assignment of zero, is 0 ns.

Figure 7–22. Setup Report

Equation 7–5. Hold Check

=

=

=

=

=

hold check 1 current launch edge previous latch edge–

0 ns 0 ns–

0 ns

hold check 2 next launch edge current latch edge–

10 ns 10 ns–

0 ns
November 2013 Altera Corporation Quartus II Handbook Version 13.1
Volume 3: Verification

7–38 Chapter 7: The Quartus II TimeQuest Timing Analyzer
Creating Timing Exceptions
Figure 7–23 shows the hold report for the default setup in the TimeQuest analyzer
with the launch and latch edges highlighted.

End Multicycle Setup = 2 and End Multicycle Hold = 0
In this example, the end multicycle setup assignment value is two, and the end
multicycle hold assignment value is zero. Example 7–27 shows the multicycle
exceptions applied to the register-to-register design for this example.

1 An end multicycle hold value is not required because the default end multicycle hold
value is zero.

In this example, the setup relationship is relaxed by a full clock period by moving the
latch edge to the next latch edge. The hold analysis is unchanged from the default
settings.

Figure 7–23. Hold Report

Example 7–27. Multicycle Exceptions

set_multicycle_path -from [get_clocks clk_src] -to [get_clocks clk_\
dst] -setup -end 2
Quartus II Handbook Version 13.1 November 2013 Altera Corporation
Volume 3: Verification

Chapter 7: The Quartus II TimeQuest Timing Analyzer 7–39
Creating Timing Exceptions
Figure 7–24 shows the setup timing diagram. The latch edge is a clock cycle later than
in the default single-cycle analysis.

Equation 7–6 shows the calculation that the TimeQuest analyzer performs to
determine the setup check.

The most restrictive setup relationship with an end multicycle setup assignment of
two is 20 ns.

Figure 7–25 shows the setup report in the TimeQuest analyzer with the launch and
latch edges highlighted.

Figure 7–24. Setup Timing Diagram

-10 0 10 20

Current Launch

Current Latch

SC

REG1.CLK

REG2.CLK

Equation 7–6. Setup Check

=

=

=

setup check current latch edge closest previous launch edge–

20 ns 0 ns–

20 ns

Figure 7–25. Setup Report
November 2013 Altera Corporation Quartus II Handbook Version 13.1
Volume 3: Verification

7–40 Chapter 7: The Quartus II TimeQuest Timing Analyzer
Creating Timing Exceptions
Because the multicycle hold latch and launch edges are the same as the results of hold
analysis with the default settings, the multicycle hold analysis in this example is
equivalent to the single-cycle hold analysis. Figure 7–26 shows the timing diagram for
the hold checks for this example. The hold checks are relative to the setup check.
Usually, the TimeQuest analyzer performs hold checks on every possible setup check,
not only on the most restrictive setup check edges.

Equation 7–7 shows the calculation that the TimeQuest analyzer performs to
determine the hold check. Both hold checks are equivalent.

The most restrictive hold relationship with an end multicycle setup assignment value
of two and an end multicycle hold assignment value of zero is 10 ns.

Figure 7–26. Hold Timing DIagram

-10 0 10 20

Current Launch

Current Latch

REG1.CLK

REG2.CLK

SCHC1Data HC2

Equation 7–7. Hold Check

=

=

=

=

=

=

hold check 1 current launch edge previous latch edge–

0 ns 10 ns–

10 ns–

hold check 2 next launch edge current latch edge–

10 ns 20 ns–

10 ns–
Quartus II Handbook Version 13.1 November 2013 Altera Corporation
Volume 3: Verification

Chapter 7: The Quartus II TimeQuest Timing Analyzer 7–41
Creating Timing Exceptions
Figure 7–27 shows the hold report for this example in the TimeQuest analyzer with
the launch and latch edges highlighted.

End Multicycle Setup = 2 and End Multicycle Hold = 1
In this example, the end multicycle setup assignment value is two, and the end
multicycle hold assignment value is one. Example 7–28 shows the multicycle
exceptions applied to the register-to-register design for this example.

In this example, the setup relationship is relaxed by two clock periods by moving the
latch edge to the left two clock periods. The hold relationship is relaxed by a full
period by moving the latch edge to the previous latch edge.

Figure 7–27. Hold Report

Example 7–28. Multicycle Exceptions

set_multicycle_path -from [get_clocks clk_src] -to [get_clocks clk_dst]
-setup -end 2
set_multicycle_path -from [get_clocks clk_src] -to [get_clocks clk_dst]
-hold -end 1
November 2013 Altera Corporation Quartus II Handbook Version 13.1
Volume 3: Verification

7–42 Chapter 7: The Quartus II TimeQuest Timing Analyzer
Creating Timing Exceptions
Figure 7–28 shows the setup timing diagram.

Equation 7–8 shows the calculation that the TimeQuest analyzer performs to
determine the setup check.

The most restrictive hold relationship with an end multicycle setup assignment value
of two is 20 ns.

Figure 7–29 shows the setup report for this example in the TimeQuest analyzer with
the launch and latch edges highlighted.

Figure 7–28. Setup Timing Diagram

-10 0

0 1 2

10 20

SC

SRC.CLK

DST.CLK

Current
Launch

Current
Latch

Equation 7–8. Setup Check

=

=

=

setup check current latch edge closest previous launch edge–

20 ns 0 ns–

20 ns

Figure 7–29. Setup Report
Quartus II Handbook Version 13.1 November 2013 Altera Corporation
Volume 3: Verification

Chapter 7: The Quartus II TimeQuest Timing Analyzer 7–43
Creating Timing Exceptions
Figure 7–30 shows the timing diagram for the hold checks for this example. The hold
checks are relative to the setup check.

Equation 7–9 shows the calculation that the TimeQuest analyzer performs to
determine the hold check. Both hold checks are equivalent.

The most restrictive hold relationship with an end multicycle setup assignment value
of two and an end multicycle hold assignment value of one is 0 ns.

Figure 7–30. Hold Timing Diagram

-10 0 10 20

SRC.CLK

DST.CLK

Current
Launch

Current
Latch

SC

HC1

HC2

Equation 7–9. Hold Check

=

=

=

=

=

=

hold check 1 current launch edge previous latch edge–

0 ns 0 ns–

0 ns

hold check 2 next launch edge current latch edge–

10 ns 10 ns–

0 ns
November 2013 Altera Corporation Quartus II Handbook Version 13.1
Volume 3: Verification

7–44 Chapter 7: The Quartus II TimeQuest Timing Analyzer
Creating Timing Exceptions
Figure 7–31 shows the hold report for this example in the TimeQuest analyzer with
the launch and latch edges highlighted.

Application of Multicycle Exceptions
This section shows the following examples of applications of multicycle exceptions:

■ “Same Frequency Clocks with Destination Clock Offset” on page 7–44

■ “The Destination Clock Frequency is a Multiple of the Source Clock Frequency” on
page 7–47

■ “The Destination Clock Frequency is a Multiple of the Source Clock Frequency
with an Offset” on page 7–50

■ “The Source Clock Frequency is a Multiple of the Destination Clock Frequency” on
page 7–52

■ “The Source Clock Frequency is a Multiple of the Destination Clock Frequency
with an Offset” on page 7–55

Each example explains how the multicycle exceptions affect the default setup and
hold analysis in the TimeQuest analyzer. All of the examples are between related
clock domains. If your design contains related clocks, such as PLL clocks, and paths
between related clock domains, you can apply multicycle constraints.

Same Frequency Clocks with Destination Clock Offset
In this example, the source and destination clocks have the same frequency, but the
destination clock is offset with a positive phase shift. Both the source and destination
clocks have a period of 10 ns. The destination clock has a positive phase shift of 2 ns
with respect to the source clock. Figure 7–32 shows an example of a design with same
frequency clocks and a destination clock offset.

Figure 7–31. Hold Report
Quartus II Handbook Version 13.1 November 2013 Altera Corporation
Volume 3: Verification

Chapter 7: The Quartus II TimeQuest Timing Analyzer 7–45
Creating Timing Exceptions
Figure 7–33 shows the timing diagram for default setup check analysis performed by
the TimeQuest analyzer.

Equation 7–10 shows the calculation that the TimeQuest analyzer performs to
determine the setup check.

The setup relationship shown in Figure 7–33 is too pessimistic and is not the setup
relationship required for typical designs. To correct the default analysis, you must use
an end multicycle setup exception of two. Example 7–29 shows the multicycle
exception used to correct the default analysis in this example.

Figure 7–32. Same Frequency Clocks with Destination Clock Offset

Figure 7–33. Setup Timing Diagram

Equation 7–10. Setup Check

=

=

=

Example 7–29. Multicycle Exceptions

set_multicycle_path -from [get_clocks clk_src] -to [get_clocks clk_dst]
-setup -end 2

REG1 REG2
Combinational

Logic
SET SET

D Q D Q

CLR CLR

clk1

In

clk0

Out

-10 0

1 2

10 20

REG1.CLK

REG2.CLK

Launch

Latch

SC

setup check current latch edge closest previous launch edge–

2 ns 0 ns–

2 ns
November 2013 Altera Corporation Quartus II Handbook Version 13.1
Volume 3: Verification

7–46 Chapter 7: The Quartus II TimeQuest Timing Analyzer
Creating Timing Exceptions
Figure 7–34 shows the timing diagram for the preferred setup relationship for this
example.
.

Figure 7–35 shows the timing diagram for default hold check analysis performed by
the TimeQuest analyzer with an end multicycle setup value of two.

Equation 7–11 shows the calculation that the TimeQuest analyzer performs to
determine the hold check.

In this example, the default hold analysis returns the preferred hold requirements and
no multicycle hold exceptions are required.

Figure 7–34. Preferred Setup Relationship

Figure 7–35. Default Hold Check

Equation 7–11. Hold Check

=

=

=

=

=

=

-10 0

1 2

10 20

REG1.CLK

REG2.CLK

Launch

Latch

SC

-10 0 10 20

REG1.CLK

REG2.CLK

Current
Launch

Current
Latch

SCHC1 HC2

hold check 1 current launch edge previous latch edge–

0 ns 2 ns–

2 ns–

hold check 2 next launch edge current latch edge–

10 ns 12 ns–

2 ns–
Quartus II Handbook Version 13.1 November 2013 Altera Corporation
Volume 3: Verification

Chapter 7: The Quartus II TimeQuest Timing Analyzer 7–47
Creating Timing Exceptions
Figure 7–36 shows the associated setup and hold analysis if the phase shift is –2 ns. In
this example, the default hold analysis is correct for the negative phase shift of 2 ns,
and no multicycle exceptions are required.

The Destination Clock Frequency is a Multiple of the Source Clock
Frequency
In this example, the destination clock frequency value of 5 ns is an integer multiple of
the source clock frequency of 10 ns. The destination clock frequency can be an integer
multiple of the source clock frequency when a PLL is used to generate both clocks
with a phase shift applied to the destination clock. Figure 7–37 shows an example of a
design where the destination clock frequency is a multiple of the source clock
frequency.

Figure 7–36. Negative Phase Shift

Figure 7–37. Destination Clock is Multiple of Source Clock

-10 0 10 20

REG1.CLK

REG2.CLK

Current
Launch

Current
Latch

SCHC1 HC2

REG1 REG2
Combinational

Logic
SET SET

D Q D Q

CLR CLRclk

In

clk0

clk1

Out
November 2013 Altera Corporation Quartus II Handbook Version 13.1
Volume 3: Verification

7–48 Chapter 7: The Quartus II TimeQuest Timing Analyzer
Creating Timing Exceptions
Figure 7–38 shows the timing diagram for default setup check analysis performed by
the TimeQuest analyzer.

Equation 7–12 shows the calculation that the TimeQuest analyzer performs to
determine the setup check.

The setup relationship shown in Figure 7–38 demonstrates that the data does not need
to be captured at edge one, but can be captured at edge two; therefore, you can relax
the setup requirement. To correct the default analysis, you must shift the latch edge by
one clock period with an end multicycle setup exception of two. Example 7–30 shows
the multicycle exception used to correct the default analysis in this example.

Figure 7–38. Setup Timing Diagram

Equation 7–12. Setup Check

=

=

=

Example 7–30. Multicycle Exceptions

set_multicycle_path -from [get_clocks clk_src] -to [get_clocks clk_dst]
-setup -end 2

-10 0

1 2

10 20

REG1.CLK

REG2.CLK

Launch

Latch

SC

setup check current latch edge closest previous launch edge–

5 ns 0 ns–

5 ns
Quartus II Handbook Version 13.1 November 2013 Altera Corporation
Volume 3: Verification

Chapter 7: The Quartus II TimeQuest Timing Analyzer 7–49
Creating Timing Exceptions
Figure 7–39 shows the timing diagram for the preferred setup relationship for this
example.

Figure 7–40 shows the timing diagram for default hold check analysis performed by
the TimeQuest analyzer with an end multicycle setup value of two.

Equation 7–13 shows the calculation that the TimeQuest analyzer performs to
determine the hold check.

In this example, hold check one is too restrictive. The data is launched by the edge at
0 ns and should check against the data captured by the previous latch edge at 0 ns,
which does not occur in hold check one. To correct the default analysis, you must use
an end multicycle hold exception of one.

Figure 7–39. Preferred Setup Analysis

Figure 7–40. Default Hold Check

Equation 7–13. Hold Check

=

=

=

=

=

=

-10 0

1 2

10 20

REG1.CLK

REG2.CLK

Launch

Latch

SC

-10 0 10 20

REG1.CLK

REG2.CLK

Current
Launch

Current
Latch

SC
HC1

HC2

hold check 1 current launch edge previous latch edge–

0 ns 5 ns–

5 ns–

hold check 2 next launch edge current latch edge–

10 ns 10 ns–

0 ns
November 2013 Altera Corporation Quartus II Handbook Version 13.1
Volume 3: Verification

7–50 Chapter 7: The Quartus II TimeQuest Timing Analyzer
Creating Timing Exceptions
The Destination Clock Frequency is a Multiple of the Source Clock
Frequency with an Offset
This example is a combination of the previous two examples. The destination clock
frequency is an integer multiple of the source clock frequency and the destination
clock has a positive phase shift. The destination clock frequency is 5 ns and the source
clock frequency is 10 ns. The destination clock also has a positive offset of 2 ns with
respect to the source clock. The destination clock frequency can be an integer multiple
of the source clock frequency with an offset when a PLL is used to generate both
clocks with a phase shift applied to the destination clock. Figure 7–41 shows an
example of a design in which the destination clock frequency is a multiple of the
source clock frequency with an offset.

Figure 7–42 shows the timing diagram for default setup check analysis performed by
the TimeQuest analyzer.

Equation 7–14 shows the calculation that the TimeQuest analyzer performs to
determine the setup check.
.

The setup relationship shown in Figure 7–42 demonstrates that the data does not need
to be captured at edge one, but can be captured at edge two; therefore, you can relax
the setup requirement. To correct the default analysis, you must shift the latch edge by
one clock period with an end multicycle setup exception of three.

Figure 7–41. Destination Clock is Multiple of Source Clock with Offset

Figure 7–42. Setup Timing Diagram

Equation 7–14. Setup Check

=

=

=

REG1 REG2
Combinational

Logic
SET SET

D Q D Q

CLR CLRclk

In

clk0

clk1

Out

-10 0

1 2 3

10 20

REG1.CLK

REG2.CLK

Launch

Latch

SC

setup check current latch edgeˆ closest previous launch edge–

2 ns 0 ns–

2 ns
Quartus II Handbook Version 13.1 November 2013 Altera Corporation
Volume 3: Verification

Chapter 7: The Quartus II TimeQuest Timing Analyzer 7–51
Creating Timing Exceptions
Example 7–31 shows the multicycle exception used to correct the default analysis in
this example.

Figure 7–43 shows the timing diagram for the preferred setup relationship for this
example.

Figure 7–44 shows the timing diagram for default hold check analysis performed by
the TimeQuest analyzer with an end multicycle setup value of three.

Example 7–31. Multicycle Exceptions

set_multicycle_path -from [get_clocks clk_src] -to [get_clocks clk_dst]
-setup -end 3

Figure 7–43. Preferred Setup Analysis

Figure 7–44. Default Hold Check

SC

-10 0

1 2 3

10 20

REG1.CLK

REG2.CLK

Launch

Latch

SC

-10 0 10 20

REG1.CLK

REG2.CLK

Current
Launch

Current
Latch

HC1
HC2
November 2013 Altera Corporation Quartus II Handbook Version 13.1
Volume 3: Verification

7–52 Chapter 7: The Quartus II TimeQuest Timing Analyzer
Creating Timing Exceptions
Equation 7–15 shows the calculation that the TimeQuest analyzer performs to
determine the hold check.

In this example, hold check one is too restrictive. The data is launched by the edge at
0 ns and should check against the data captured by the previous latch edge at 2 ns,
which does not occur in hold check one. To correct the default analysis, you must use
an end multicycle hold exception of one.

The Source Clock Frequency is a Multiple of the Destination Clock
Frequency
In this example, the source clock frequency value of 5 ns is an integer multiple of the
destination clock frequency of 10 ns. The source clock frequency can be an integer
multiple of the destination clock frequency when a PLL is used to generate both
clocks and different multiplication and division factors are used. Figure 7–45 shows
an example of a design where the source clock frequency is a multiple of the
destination clock frequency.

Equation 7–15. Hold Check

=

=

=

=

=

=

Figure 7–45. Source Clock Frequency is Multiple of Destination Clock Frequency

hold check 1 current launch edge previous latch edge–

0 ns 5 ns–

5 ns–

hold check 2 next launch edge current latch edge–

10 ns 10 ns–

0 ns

REG1 REG2
Combinational

Logic
SET SET

D Q D Q

CLR CLRclk

In

clk0

clk1

Out
Quartus II Handbook Version 13.1 November 2013 Altera Corporation
Volume 3: Verification

Chapter 7: The Quartus II TimeQuest Timing Analyzer 7–53
Creating Timing Exceptions
Figure 7–46 shows the timing diagram for default setup check analysis performed by
the TimeQuest analyzer.

Equation 7–16 shows the calculation that the TimeQuest analyzer performs to
determine the setup check.

The setup relationship shown in Figure 7–46 demonstrates that the data launched at
edge one does not need to be captured, and the data launched at edge two must be
captured; therefore, you can relax the setup requirement. To correct the default
analysis, you must shift the launch edge by one clock period with a start multicycle
setup exception of two.

Example 7–32 shows the multicycle exception used to correct the default analysis in
this example.

Figure 7–46. Default Setup Check Analysis

Equation 7–16. Setup Check

=

=

=

Example 7–32. Multicycle Exceptions

set_multicycle_path -from [get_clocks clk_src] -to [get_clocks clk_dst]
-setup -start 2

SC

-10 0

2 1

10 20

REG1.CLK

REG2.CLK

Launch

Latch

setup check current latch edge closest previous launch edge–

10 ns 5 ns–

5 ns
November 2013 Altera Corporation Quartus II Handbook Version 13.1
Volume 3: Verification

7–54 Chapter 7: The Quartus II TimeQuest Timing Analyzer
Creating Timing Exceptions
Figure 7–47 shows the timing diagram for the preferred setup relationship for this
example.

Figure 7–48 shows the timing diagram for default hold check analysis performed by
the TimeQuest analyzer with a start multicycle setup value of two.

Equation 7–17 shows the calculation that the TimeQuest analyzer performs to
determine the hold check.
.

In this example, hold check two is too restrictive. The data is launched next by the
edge at 10 ns and should check against the data captured by the current latch edge at
10 ns, which does not occur in hold check two. To correct the default analysis, you
must use a start multicycle hold exception of one.

Figure 7–47. Preferred Setup Check Analysis

Figure 7–48. Default Hold Check

Equation 7–17. Hold Check

=

=

=

=

=

=

SC

-10 0

2 1

10 20

REG1.CLK

REG2.CLK

Launch

Latch

SC

-10 0 10 20

REG1.CLK

REG2.CLK

Current
Launch

Current
Latch

HC1 HC2

hold check 1 current launch edge previous latch edge–

0 ns 0 ns–

0 ns

hold check 2 next launch edge current latch edge–

5 ns 10 ns–

5 ns–
Quartus II Handbook Version 13.1 November 2013 Altera Corporation
Volume 3: Verification

Chapter 7: The Quartus II TimeQuest Timing Analyzer 7–55
Creating Timing Exceptions
The Source Clock Frequency is a Multiple of the Destination Clock
Frequency with an Offset
In this example, the source clock frequency is an integer multiple of the destination
clock frequency and the destination clock has a positive phase offset. The source clock
frequency is 5 ns and destination clock frequency is 10 ns. The destination clock also
has a positive offset of 2 ns with respect to the source clock. The source clock
frequency can be an integer multiple of the destination clock frequency with an offset
when a PLL is used to generate both clocks, different multiplication and division
factors are used, and a phase shift applied to the destination clock. Figure 7–49 shows
an example of a design where the source clock frequency is a multiple of the
destination clock frequency with an offset.

Figure 7–50 shows the timing diagram for default setup check analysis performed by
the TimeQuest analyzer.

Equation 7–18 shows the calculation that the TimeQuest analyzer performs to
determine the setup check.
.

The setup relationship shown in Figure 7–50 demonstrates that the data is not
launched at edge one, and the data that is launched at edge three must be captured;
therefore, you can relax the setup requirement. To correct the default analysis, you
must shift the launch edge by two clock periods with a start multicycle setup
exception of three.

Figure 7–49. Source Clock Frequency is Multiple of Destination Clock Frequency with Offset

Figure 7–50. Setup Timing Diagram

Equation 7–18. setup Check

=

=

=

REG1 REG2
Combinational

Logic
SET SET

D Q D Q

CLR CLRclk

In

clk0

clk1

Out

C

-10 0

3 2 1

10 20

REG1.CLK

REG2.CLK

Launch

Latch

setup check current latch edge closest previous launch edge–

12 ns 10 ns–

2 ns
November 2013 Altera Corporation Quartus II Handbook Version 13.1
Volume 3: Verification

7–56 Chapter 7: The Quartus II TimeQuest Timing Analyzer
Creating Timing Exceptions
Example 7–33 shows the multicycle exception used to correct the default analysis in
this example.

Figure 7–51 shows the timing diagram for the preferred setup relationship for this
example.

Figure 7–52 shows the timing diagram for default hold check analysis performed by
the TimeQuest analyzer with a start multicycle setup value of three.

Equation 7–19 shows the calculation that the TimeQuest analyzer performs to
determine the hold check.

Example 7–33. Multicycle Exceptions

set_multicycle_path -from [get_clocks clk_src] -to [get_clocks clk_dst]
-setup -start 3

Figure 7–51. Preferred Setup Check Analysis

Figure 7–52. Default Hold Check Analysis

Equation 7–19. Hold Check

=

=

=

=

-10 0

3 2 1

10 20

REG1.CLK

REG2.CLK

Launch

Latch

SC

-10 0 10 20

REG1.CLK

REG2.CLK

Current
Launch

Current
Latch

HC1

HC2

SC

hold check 1 current launch edge previous latch edge–

0 ns 2 ns–

2 ns–

hold check 2 next launch edge current latch edge–
Quartus II Handbook Version 13.1 November 2013 Altera Corporation
Volume 3: Verification

Chapter 7: The Quartus II TimeQuest Timing Analyzer 7–57
Timing Reports
In this example, hold check two is too restrictive. The data is launched next by the
edge at 10 ns and should check against the data captured by the current latch edge at
12 ns, which does not occur in hold check two. To correct the default analysis, you
must use a start multicycle hold exception of one.

Timing Reports
The TimeQuest analyzer provides real-time static timing analysis result reports. The
TimeQuest analyzer does not automatically generate reports; you must create each
report individually in the TimeQuest analyzer GUI or with command-line commands.
You can customize in which report to display specific timing information, excluding
fields that are not required.

Table 7–5 shows some of the different command-line commands you can use to
generate reports in the TimeQuest analyzer and the equivalent reports shown in the
TimeQuest analyzer GUI.

h For more information—including a complete list of commands to generate timing
reports and full syntax information, options, and example usage—refer to
::quartus::sta in Quartus II Help.

During compilation, the Quartus II software generates timing reports on different
timing areas in the design. You can configure various options for the TimeQuest
analyzer reports generated during compilation.

h For more information about the options you can set to customize the reports, refer to
TimeQuest Timing Analyzer Page in Quartus II Help.

You can also use the TIMEQUEST_REPORT_WORST_CASE_TIMING_PATHS assignment to
generate a report of the worst-case timing paths for each clock domain. This report
contains worst-case timing data for setup, hold, recovery, removal, and minimum
pulse width checks.

Use the TIMEQUEST_REPORT_NUM_WORST_CASE_TIMING_PATHS assignment to specify the
number of paths to report for each clock domain.

=

=

Equation 7–19. Hold Check

5 ns 12 ns–

7 ns–

Table 7–5. TimeQuest Analyzer Reports

Command-Line Command Report

report_timing Timing report

report_exceptions Exceptions report

report_clock_transfers Clock Transfers report

report_min_pulse_width Minimum Pulse Width report

report_ucp Unconstrained Paths report
November 2013 Altera Corporation Quartus II Handbook Version 13.1
Volume 3: Verification

http://quartushelp.altera.com/current/master.htm#mergedProjects/tafs/tafs/tcl_pkg_sta_ver_1.0.htm
http://quartushelp.altera.com/current/master.htm#mergedProjects/analyze/sta/sta_tqa_settings.htm

7–58 Chapter 7: The Quartus II TimeQuest Timing Analyzer
Document Revision History
Example 7–34 shows an example of how to use the
TIMEQUEST_REPORT_WORST_CASE_TIMING_PATHS and
TIMEQUEST_REPORT_NUM_WORST_CASE_TIMING_PATHS assignments in the .qsf to
generate reports.

f For more information about timing closure recommendations, refer to the Area and
Timing Optimization chapter in volume 2 of the Quartus II Handbook.

Document Revision History
Table 7–6 shows the revision history for this chapter.

Example 7–34. Generating Worst-Case Timing Reports

#Enable Worst-Case Timing Report
set_global_assignment -name TIMEQUEST_REPORT_WORST_CASE_TIMING_PATHS ON
#Report 10 paths per clock domain
set_global_assignment -name TIMEQUEST_REPORT_NUM_WORST_CASE_TIMING_PATHS 10

Table 7–6. Document Revision History (Part 1 of 2)

Date Version Changes

November 2013 13.1.0 ■ Removed HardCopy device information.

June 2012 12.0.0

■ Reorganized chapter.

■ Added “Using the Quartus II Templates” section on creating an SDC constraints file with
the Insert Template dialog box.

■ Added “Identifying the Quartus II Software Executable from the SDC File” section.

■ Revised multicycle exceptions section.

November 2011 11.1.0
■ Consolidated content from the Best Practices for the Quartus II TimeQuest

Timing Analyzer chapter.

■ Changed to new document template.

May 2011 11.0.0 ■ Updated to improve flow. Minor editorial updates.

December 2010 10.1.0

■ Changed to new document template.

■ Revised and reorganized entire chapter.

■ Linked to Quartus II Help.

July 2010 10.0.0 Updated to link to content on SDC commands and the TimeQuest analyzer GUI in Quartus II
Help.
Quartus II Handbook Version 13.1 November 2013 Altera Corporation
Volume 3: Verification

http://www.altera.com/literature/hb/qts/qts_qii52005.pdf
http://www.altera.com/literature/hb/qts/qts_qii52005.pdf

Chapter 7: The Quartus II TimeQuest Timing Analyzer 7–59
Document Revision History
f For previous versions of the Quartus II Handbook, refer to the Quartus II Handbook
Archive.

November 2009 9.1.0

Updated for the Quartus II software version 9.1, including:

■ Added information about commands for adding and removing items from collections

■ Added information about the set_timing_derate and report_skew commands

■ Added information about worst-case timing reporting

■ Minor editorial updates

November 2008 8.1.0

Updated for the Quartus II software version 8.1, including:

■ Added the following sections:

■ “set_net_delay” on page 7–42

■ “Annotated Delay” on page 7–49

■ “report_net_delay” on page 7–66

■ Updated the descriptions of the -append and -file <name> options in tables
throughout the chapter

■ Updated entire chapter using 8½” × 11” chapter template

■ Minor editorial updates

Table 7–6. Document Revision History (Part 2 of 2)

Date Version Changes
November 2013 Altera Corporation Quartus II Handbook Version 13.1
Volume 3: Verification

http://www.altera.com/literature/lit-qts_archive.jsp
http://www.altera.com/literature/lit-qts_archive.jsp

© 2013 Altera Corporation. All rights reserved. ALTERA, ARRI
are trademarks of Altera Corporation and registered in the U.S
trademarks or service marks are the property of their respectiv
semiconductor products to current specifications in accordance
services at any time without notice. Altera assumes no respons
described herein except as expressly agreed to in writing by Al
on any published information and before placing orders for pr

Quartus II Handbook Version 13.1
Volume 3: Verification
November 2013
Section III. Power Estimation and
Analysis
As FPGA designs grow larger and processes continue to shrink, power is an ever-
increasing concern. When designing a PCB, the power consumed by a device must be
accurately estimated to develop an appropriate power budget, and to design the
power supplies, voltage regulators, heat sink, and cooling system.

The Quartus® II software allows you to estimate the power consumed by your current
design during timing simulation. The power consumption of your design can be
calculated using the Microsoft Excel-based power calculator, or the Simulation-Based
Power Estimation features in the Quartus II software. This section explains how to use
both.

This section includes the following chapter:

■ Chapter 8, PowerPlay Power Analysis

This chapter describes the Altera® Quartus II PowerPlay power analysis tool and
how to use the tools to accurately estimate device power consumption.
A, CYCLONE, HARDCOPY, MAX, MEGACORE, NIOS, QUARTUS and STRATIX words and logos
. Patent and Trademark Office and in other countries. All other words and logos identified as
e holders as described at www.altera.com/common/legal.html. Altera warrants performance of its
with Altera's standard warranty, but reserves the right to make changes to any products and

ibility or liability arising out of the application or use of any information, product, or service
tera. Altera customers are advised to obtain the latest version of device specifications before relying
oducts or services.

ISO
9001:2008
Registered

http://www.altera.com/common/legal.html
http://www.altera.com/support/devices/reliability/certifications/rel-certifications.html
http://www.altera.com/support/devices/reliability/certifications/rel-certifications.html

8PowerPlay Power Analysis

2013.11.04

QII53013 Subscribe Send Feedback

The PowerPlay Power Analysis tools allow you to estimate device power consumption accurately.

As designs grow larger and process technology continues to shrink, power becomes an increasingly important
design consideration.Whendesigning a PCB, youmust estimate the power consumption of a device accurately
to develop an appropriate power budget, and to design the power supplies, voltage regulators, heat sink, and
cooling system.

The following figure shows the PowerPlay Power Analysis tools ability to estimate power consumption from
early design concept through design implementation.

Figure 8-1: PowerPlay Power Analysis From Design Concept Through Design Implementation

User Input

Quartus II
Design Profile

Placement and
Routing
Results

Simulation
Results

PowerPlay Early Power Estimator

PowerPlay Power Analysis Input

Es
tim

at
io
n
Ac

cu
ra
cy

Quartus II PowerPlay Power Analyzer

Design ImplementationDesign Concept

Lo
we

r
Hi
gh

er

For the majority of the designs, the PowerPlay Power Analyzer and the PowerPlay EPE spreadsheet have
the following accuracy after the power models are final:

• PowerPlay Power Analyzer—±20% from silicon, assuming that the PowerPlay Power Analyzer uses the
Value Change Dump File (.vcd) generated toggle rates.

• PowerPlay EPE spreadsheet— ±20% from the PowerPlay Power Analyzer results using .vcd generated
toggle rates. 90%of EPE designs (using .vcd generated toggle rates exported fromPPPA) arewithin ±30%
silicon.

The toggle rates are derived using the PowerPlay Power Analyzer with a .vcd file generated from a gate level
simulation representative of the system operation.

ISO
9001:2008
Registered

© 2013 Altera Corporation. All rights reserved. ALTERA, ARRIA, CYCLONE, HARDCOPY, MAX, MEGACORE, NIOS, QUARTUS and STRATIX words
and logos are trademarks of Altera Corporation and registered in the U.S. Patent and Trademark Office and in other countries. All other
words and logos identified as trademarks or service marks are the property of their respective holders as described at
www.altera.com/common/legal.html. Altera warrants performance of its semiconductor products to current specifications in accordance with
Altera's standard warranty, but reserves the right to make changes to any products and services at any time without notice. Altera assumes
no responsibility or liability arising out of the application or use of any information, product, or service described herein except as expressly
agreed to in writing by Altera. Altera customers are advised to obtain the latest version of device specifications before relying on any published
information and before placing orders for products or services.

www.altera.com

101 Innovation Drive, San Jose, CA 95134

https://www.altera.com/servlets/subscriptions/alert?id=QII53013
mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20(QII53013%202013.11.04)%20PowerPlay%20Power%20Analysis&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.
http://www.altera.com/support/devices/reliability/certifications/rel-certifications.html
http://www.altera.com/support/devices/reliability/certifications/rel-certifications.html
http://www.altera.com/support/devices/reliability/certifications/rel-certifications.html

Related Information

• About Power Estimation and Analysis

• PowerPlay Early Power Estimators (EPE) and Power Analyzer

Types of Power Analyses
Understanding the uses of power analysis and the factors affecting power consumption helps you to use the
PowerPlay PowerAnalyzer effectively. Power analysismeets the following significant planning requirements:

• Thermal planning—Thermal power is the power that dissipates as heat from the FPGA. You must use
a heatsink or fan to act as a cooling solution for your device. The cooling solution must be sufficient to
dissipate the heat that the device generates. The computed junction temperature must fall within normal
device specifications.

• Power supply planning—Power supply is the power needed to run your device. Power supplies must
provide adequate current to support device operation.

For power supply planning, use the PowerPlay EPE at the early stages of your design cycle. Use
the PowerPlay Power Analyzer reports when your design is complete to get an estimate of your
design power requirement.

Note:

The two types of analyses are closely related because much of the power supplied to the device dissipates as
heat from the device; however, in some situations, the two types of analyses are not identical. For example,
if you use terminated I/O standards, some of the power drawn from the power supply of the device dissipates
in termination resistors rather than in the device.

Power analysis also addresses the activity of your design over time as a factor that impacts the power
consumption of the device. The static power (PSTATIC) is the thermal power dissipated on chip, independent
of user clocks. PSTATIC includes the leakage power from all FPGA functional blocks, except for I/O DC bias
power and transceiver DC bias power, which are accounted for in the I/O and transceiver sections. Dynamic
power is the additional power consumption of the device due to signal activity or toggling.

Related Information

• PowerPlay Early Power Estimator (EPE) User Guide

Differences between the PowerPlay EPE and the Quartus II PowerPlay Power Analyzer
The following table lists the differences between the PowerPlay EPE and the Quartus II PowerPlay Power
Analyzer.

Table 8-1: Comparison of the PowerPlay EPE and Quartus II PowerPlay Power Analyzer

Quartus II PowerPlay Power AnalyzerPowerPlay EPECharacteristic

Post-fitAny time, but it is recommended to use
Quartus II PowerPlay Power Analyzer for
post-fit power analysis.

Phase in the design cycle

The Quartus II softwareSpreadsheet programTool requirements

PowerPlay Power AnalysisAltera Corporation

Send Feedback

QII53013
Types of Power Analyses8-2 2013.11.04

http://quartushelp.altera.com/current/mergedProjects/optimize/pwr/pwr_about_pwr.htm
http://www.altera.com/support/devices/estimator/pow-powerplay.jsp
http://www.altera.com/literature/ug/ug_epe.pdf
mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20PowerPlay%20Power%20Analysis%20(QII53013%202013.11.04)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Quartus II PowerPlay Power AnalyzerPowerPlay EPECharacteristic

Medium to very highMediumAccuracy

• Post-fit design
• Clock requirements
• Signal activity defaults
• Environmental conditions
• Register transfer level (RTL)

simulation results (optional)
• Post-fit simulation results

(optional)
• Signal activities per node or

entity (optional)

• Resource usage estimates
• Clock requirements
• Environmental conditions
• Toggle rate

Data inputs

• Total thermal power
• Thermal static power
• Thermal dynamic power
• Thermal I/O power
• Thermal power by design

hierarchy
• Thermal power by block type
• Thermal power dissipation

by clock domain
• Off-chip (non-thermal)

power dissipation
• Device supply currents

• Total thermal power dissipation
• Thermal static power
• Thermal dynamic power
• Off-chip power dissipation
• Current drawn from voltage supplies

Data outputs (1)

The result of the PowerPlay Power Analyzer is only an estimation of power. Altera does not recommend
using the result as a specification. The purpose of the estimation is to help you establish guidelines for the
power budget of your design. It is important that you verify the actual power during device operation as the
information is sensitive to the actual device design and the environmental operating conditions.

The PowerPlay Power Analyzer does not include the transceiver power for features that can only be
enabled through dynamic reconfiguration (DFE, ADCE/AEQ, EyeQ). Use the EPE to estimate the
incremental power consumption by these features.

Note:

Related Information

• PowerPlay Early Power Estimators (EPE) and Power Analyzer Page
For more information, refer to the device-specific PowerPlay Early Power Estimators (EPE) page on the
Altera website.

• PowerPlay Power Analyzer Reports
For more information, refer to this page for device-specific information about the PowerPlay Early Power
Estimator.

(1) PowerPlay EPE and PowerPlay Power Analyzer outputs vary by device family. For more information, refer to
the device-specific PowerPlay Early Power Estimators (EPE) and Power Analyzer Page and PowerPlay Power
Analyzer Reports in the Quartus II Help.

Altera CorporationPowerPlay Power Analysis

Send Feedback

8-3Differences between the PowerPlay EPE and the Quartus II PowerPlay Power Analyzer
QII53013
2013.11.04

http://www.altera.com/support/devices/estimator/pow-powerplay.jsp
http://quartushelp.altera.com/current/mergedProjects/report/rpt/rpt_file_powerplay_analyzer.htm
mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20PowerPlay%20Power%20Analysis%20(QII53013%202013.11.04)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Factors Affecting Power Consumption
Understanding the following factors that affect power consumption allows you to use the PowerPlay Power
Analyzer and interpret its results effectively:

• Device Selection
• Environmental Conditions
• Device Resource Usage
• Signal Activities

Device Selection
Device families have different power characteristics. Many parameters affect the device family power
consumption, including choice of process technology, supply voltage, electrical design, and device
architecture.

Power consumption also varies in a single device family. A larger device consumes more static power than
a smaller device in the same family because of its larger transistor count. Dynamic power can also increase
with device size in devices that employ global routing architectures.

The choice of device package also affects the ability of the device to dissipate heat. This choice can impact
your required cooling solution choice to comply to junction temperature constraints.

Process variation can affect power consumption. Process variation primarily impacts static power because
sub-threshold leakage current varies exponentially with changes in transistor threshold voltage. Therefore,
you must consult device specifications for static power and not rely on empirical observation. Process
variation has a weak effect on dynamic power.

Environmental Conditions
Operating temperature primarily affects device static power consumption. Higher junction temperatures
result in higher static power consumption. The device thermal power and cooling solution that you usemust
result in the device junction temperature remaining within the maximum operating range for the device.
The main environmental parameters affecting junction temperature are the cooling solution and ambient
temperature.

The following table lists the environmental conditions that could affect power consumption.

Table 8-2: Environmental Conditions that Could Affect Power Consumption

DescriptionEnvironmental Conditions

A measure of how quickly the device removes heated air from the vicinity
of the device and replaces it with air at ambient temperature.

You can either specify airflow as “still air” when you are not using a fan, or
as the linear feet per minute rating of the fan in the system. Higher airflow
decreases thermal resistance.

Airflow

PowerPlay Power AnalysisAltera Corporation

Send Feedback

QII53013
Factors Affecting Power Consumption8-4 2013.11.04

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20PowerPlay%20Power%20Analysis%20(QII53013%202013.11.04)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

DescriptionEnvironmental Conditions

A heat sink allows more efficient heat transfer from the device to the
surrounding area because of its large surface area exposed to the air. The
thermal compound that interfaces the heat sink to the device also influences
the rate of heat dissipation. The case-to-ambient thermal resistance (θCA)
parameter describes the cooling capacity of the heat sink and thermal
compound employed at a given airflow. Larger heat sinks andmore effective
thermal compounds reduce θCA.

Heat Sink and Thermal
Compound

The junction temperature of a device is equal to:

TJunction = TAmbient + PThermal · θJA

in which θJA is the total thermal resistance from the device transistors to the
environment, having units of degrees Celsius per watt. The value θJA is equal
to the sum of the junction-to-case (package) thermal resistance (θJC), and
the case-to-ambient thermal resistance (θCA) of your cooling solution.

Junction Temperature

The junction-to-board thermal resistance (θJB) is the thermal resistance of
the path through the board, having units of degrees Celsius per watt. To
compute junction temperature, you can use this board thermal model along
with the board temperature, the top-of-chip θJA and ambient temperatures.

Board Thermal Model

Device Resource Usage
The number and types of device resources used greatly affects power consumption.

• Number, Type, and Loading of I/O Pins—Output pins drive off-chip components, resulting in high-
load capacitance that leads to a high-dynamic power per transition. Terminated I/O standards require
external resistors that draw constant (static) power from the output pin.

• Number andTypeofHardLogicBlocks—Adesignwithmore logic elements (LEs),multiplier elements,
memory blocks, transceiver blocks orHPS system tends to consumemore power than a designwith fewer
circuit elements. The operating mode of each circuit element also affects its power consumption. For
example, aDSPblock performing 18×18multiplications and aDSPblock performingmultiply-accumulate
operations consume different amounts of dynamic power because of different amounts of charging
internal capacitance on each transition. The operating mode of a circuit element also affects static power.

• Number andType ofGlobal Signals—Global signal networks span large portions of the device and have
high capacitance, resulting in significant dynamic power consumption. The type of global signal is
important as well. For example, Stratix V devices support global clocks and quadrant (regional) clocks.
Global clocks cover the entire device, whereas quadrant clocks only span one-fourth of the device. Clock
networks that span smaller regions have lower capacitance and tend to consume less power. The location
of the logic array blocks (LABs) driven by the clock network can also have an impact because the Quartus
II software automatically disables unused branches of a clock.

Altera CorporationPowerPlay Power Analysis

Send Feedback

8-5Device Resource Usage
QII53013
2013.11.04

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20PowerPlay%20Power%20Analysis%20(QII53013%202013.11.04)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Signal Activities
The behavior of each signal in your design is an important factor in estimating power consumption. The
following table lists the two vital behaviors of a signal, which are toggle rate and static probability:

Table 8-3: Signal Behavior

DescriptionSignal Behavior

• The toggle rate of a signal is the average number of times that the signal
changes value per unit of time. The units for toggle rate are transitions per
second and a transition is a change from 1 to 0, or 0 to 1.

• Dynamic power increases linearly with the toggle rate as you charge the
board trace model more frequently for logic and routing. The Quartus II
software models full rail-to-rail switching. For high toggle rates, especially
on circuit output I/O pins, the circuit can transition before fully charging
the downstream capacitance. The result is a slightly conservative prediction
of power by the PowerPlay Power Analyzer.

Toggle rate

• The static probability of a signal is the fraction of time that the signal is
logic 1 during the period of device operation that is being analyzed. Static
probability ranges from 0 (always at ground) to 1 (always at logic-high).

• Static probabilities of their input signals can sometimes affect the static
power that routing and logic consume. This effect is due to state-dependent
leakage and has a larger effect on smaller process geometries. The Quartus
II softwaremodels this effect on devices at 90 nmor smaller if it is important
to the power estimate. The static power also varies with the static probability
of a logic1 or0 on the I/O pinwhen output I/O standards drive termination
resistors.

Static probability

To get accurate results from the power analysis, the signal activities for analysis must represent the
actual operating behavior of your design. Inaccurate signal toggle rate data is the largest source of
power estimation error.

Note:

PowerPlay Power Analyzer Flow
The PowerPlay PowerAnalyzer supports accurate power estimations by allowing you to specify the important
design factors affecting power consumption. The following figure shows the high-level PowerPlay Power
Analyzer flow.

PowerPlay Power AnalysisAltera Corporation

Send Feedback

QII53013
Signal Activities8-6 2013.11.04

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20PowerPlay%20Power%20Analysis%20(QII53013%202013.11.04)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Figure 8-2: PowerPlay Power Analyzer High-Level Flow

PowerPlay
Power Analyzer

Operating
Conditions

User Design
(Post-Fit)

Power Analysis
Report

Signal
Activities

Operating condition specifications are available for
only some device families. For more information,
refer to “Performing Power Analysis with the
PowerPlay Power Analyzer” in Quartus II Help.

To obtain accurate I/O power estimates, the PowerPlay Power Analyzer requires you to synthesize your
design and then fit your design to the target device. You must specify the electrical standard on each I/O cell
and the board trace model on each I/O standard in your design.

Related Information

• Performing Power Analysis with the PowerPlay Power Analyzer

Operating Settings and Conditions
You can specify device power characteristics, operating voltage conditions, and operating temperature
conditions for power analysis in the Quartus II software.

On the Operating Settings and Conditions page of the Settings dialog box, you can specify whether the
device has typical power consumption characteristics or maximum power consumption characteristics.

On the Voltage page of the Settings dialog box, you can view the operating voltage conditions for each
power rail in the device, and specify supply voltages for power rails with selectable supply voltages.

The Quartus II Fitter may override some of the supply voltages settings specified in this chapter. For
example, supply voltages for several Stratix V transceiver power supplies depend on the data rate

Note:

used. If the Fitter detects that voltage required is different from the one specified in theVoltage page,
it will automatically set the correct voltage for relevant rails. TheQuartus II PowerPlay PowerAnalyzer
uses voltages selected by the Fitter if they conflict with the settings specified in the Voltage page.

On the Temperature page of the Settings dialog box, you can specify the thermal operating conditions of
the device.

Related Information

• Operating Settings and Conditions Page (Settings Dialog Box)

Altera CorporationPowerPlay Power Analysis

Send Feedback

8-7Operating Settings and Conditions
QII53013
2013.11.04

http://quartushelp.altera.com/current/mergedProjects/optimize/pwr/pwr_pro_power_analyzer.htm
http://quartushelp.altera.com/current/mergedProjects/optimize/pwr/pwr_tab_pppa_operating_conditions.htm
mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20PowerPlay%20Power%20Analysis%20(QII53013%202013.11.04)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

• Voltage Page (Settings Dialog Box)

• Temperature Page (Settings Dialog Box)

Signal Activities Data Sources
The PowerPlay Power Analyzer provides a flexible framework for specifying signal activities. The framework
reflects the importance of using representative signal-activity data during power analysis. Use the following
sources to provide information about signal activity:

• Simulation results
• User-entered node, entity, and clock assignments
• User-entered default toggle rate assignment
• Vectorless estimation

The PowerPlay Power Analyzer allows you to mix and match the signal-activity data sources on a signal-by-
signal basis. The following figure shows the priority scheme applied to each signal.

Figure 8-3: Signal-Activity Data Source Priority Scheme

Node or entity
assignment?

Simulation
data?

Is primary
input?

Vectorless
supported and

enabled?

Use vectorless
estimation

Use default
assignment

Use simulation
data

Use node or
entity assignment

Start

Yes Yes Yes No

YesNoNoNo

Related Information

• Performing Power Analysis with the PowerPlay Power Analyzer

Simulation Results

The PowerPlay Power Analyzer directly reads the waveforms generated by a design simulation. Static
probability and toggle rate can be calculated for each signal from the simulation waveform. Power analysis
is most accurate when you use representative input stimuli to generate simulations.

The PowerPlay Power Analyzer reads results generated by the following simulators:

• ModelSim®
• ModelSim-Altera
• QuestaSim
• Active-HDL
• NCSim

PowerPlay Power AnalysisAltera Corporation

Send Feedback

QII53013
Signal Activities Data Sources8-8 2013.11.04

http://quartushelp.altera.com/current/mergedProjects/optimize/pwr/pwr_tab_pppa_operating_conditions-voltage.htm
http://quartushelp.altera.com/current/mergedProjects/optimize/pwr/pwr_tab_pppa_operating_conditions-temperature.htm
http://quartushelp.altera.com/current/mergedProjects/optimize/pwr/pwr_pro_power_analyzer.htm
mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20PowerPlay%20Power%20Analysis%20(QII53013%202013.11.04)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

• VCS
• VCS MX
• Riviera-PRO

Signal activity and static probability information are derived from aVerilogValueChangeDumpFile (.vcd).
For more information, refer to Signal Activities on page 8-6.

For third-party simulators, use the EDATool Settings to specify the Generate Value Change Dump (VCD)
file script option in the Simulation page of the Settings dialog box. These scripts instruct the third-party
simulators to generate a .vcd that encodes the simulated waveforms. The Quartus II PowerPlay Power
Analyzer reads this file directly to derive the toggle rate and static probability data for each signal.

Third-party EDA simulators, other than those listed, can generate a .vcd that you can usewith the PowerPlay
PowerAnalyzer. For those simulators, youmustmanually create a simulation script to generate the appropriate
.vcd.

You can use a .vcd created for power analysis to optimize your design for power during fitting by
utilizing the appropriate settings in the PowerPlay power optimization list, available in the Fitter
Settings page of the Settings dialog box.

Note:

Related Information

• Power Optimization

• Section I. Simulation

Using Simulation Files in Modular Design Flows
A common design practice is to create modular or hierarchical designs in which you develop each design
entity separately, and then instantiate these modules in a higher-level entity to form a complete design. You
can perform simulation on a complete design or on each module for verification. The PowerPlay Power
Analyzer supportsmodular design flowswhen reading the signal activities from simulation files. The following
figure shows an example of a modular design flow.

Figure 8-4: Modular Simulation Flow

Parameter
Input

Video
Processing

Column
Driver

Memory
Interface

Video
Source
Interface

Timing
Control

system.vcd

video_gizmo.vcd

output_driver.vcd

video_input.vcd

When specifying a simulation file (a .vcd), the software provides support to specify an associated design
entity name, such that the PowerPlay Power Analyzer imports the signal activities derived from that file for
the specified design entity. The PowerPlay Power Analyzer also supports the specification of multiple .vcd

Altera CorporationPowerPlay Power Analysis

Send Feedback

8-9Using Simulation Files in Modular Design Flows
QII53013
2013.11.04

http://www.altera.com/literature/hb/qts/qts_qii52016.pdf
http://www.altera.com/literature/hb/qts/qts_qii5v3_01.pdf?GSA_pos=1&WT.oss_r=1&WT.oss=Section%20I.%20Simulation
mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20PowerPlay%20Power%20Analysis%20(QII53013%202013.11.04)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

files for power analysis, with each having an associated design entity name to enable the integration of partial
design simulations into a complete design power analysis. When specifying multiple .vcd files for your
design, more than one simulation file can contain signal-activity information for the same signal.

When you apply multiple .vcd files to the same design entity, the signal activity used in the power
analysis is the equal-weight arithmetic average of each .vcd.

Note:

When you applymultiple simulation files to design entities at different levels in your design hierarchy,
the signal activity in the power analysis derives from the simulation file that applies to the most
specific design entity.

Note:

The following figure shows an example of a hierarchical design. The top-level module of your design, called
Top, consists of three 8b/10b decoders, followed by a mux. The software then encodes the output of the mux
to produce the final output of the top-levelmodule. An error-handlingmodule handles any 8b/10b decoding
errors. The Top module contains the top-level entity of your design and any logic not defined as part of
another module. The design file for the top-level module might be a wrapper for the hierarchical entities
below it, or it might contain its own logic. The following usage scenarios show common ways that you can
simulate your design and import the .vcd into the PowerPlay Power Analyzer.

Figure 8-5: Example Hierarchical Design

8b10b_dec:decode1

8b10b_dec:decode2

8b10b_dec:decode3

8b10b_rxerr:err1

mux:mux1

8b10b_enc:encode1

Top

Complete Design Simulation
You can simulate the entire design and generate a .vcd from a third-party simulator. The PowerPlay Power
Analyzer can then import the .vcd (specifying the top-level design). The resulting power analysis uses the
signal activities information from the generated .vcd, including those that apply to submodules, such as
decode [1-3], err1, mux1, and encode1.

Modular Design Simulation
You can independently simulate of the top-level design, and then import all the resulting .vcd files into the
PowerPlay Power Analyzer. For example, you can simulate the 8b10b_dec independent of the entire
design and mux, 8b10b_rxerr, and 8b10b_enc. You can then import the .vcd files generated from
each simulation by specifying the appropriate instance name. For example, if the files produced by the

PowerPlay Power AnalysisAltera Corporation

Send Feedback

QII53013
Complete Design Simulation8-10 2013.11.04

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20PowerPlay%20Power%20Analysis%20(QII53013%202013.11.04)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

simulations are 8b10b_dec.vcd, 8b10b_enc.vcd, 8b10b_rxerr.vcd, and mux.vcd, you can use the import
specifications in the following table:

Table 8-4: Import Specifications

EntityFile Name

Top|8b10b_dec:decode18b10b_dec.vcd

Top|8b10b_dec:decode28b10b_dec.vcd

Top|8b10b_dec:decode38b10b_dec.vcd

Top|8b10b_rxerr:err18b10b_rxerr.vcd

Top|8b10b_enc:encode18b10b_enc.vcd

Top|mux:mux1mux.vcd

The resulting power analysis applies the simulation vectors in each file to the assigned entity. Simulation
provides signal activities for the pins and for the outputs of functional blocks. If the inputs to an entity
instance are input pins for the entire design, the simulation file associated with that instance does not provide
signal activities for the inputs of that instance. For example, an input to an entity such as mux1 has its signal
activity specified at the output of one of the decode entities.

Multiple Simulations on the Same Entity
You can perform multiple simulations of an entire design or specific modules of a design. For example, in
the process of verifying the top-level design, you can have three different simulation testbenches: one for
normal operation, and two for corner cases. Each of these simulations produces a separate .vcd. In this case,
apply the different .vcd file names to the same top-level entity, as shown in the following table.

Table 8-5: Multiple Simulation File Names and Entities

EntityFile Name

Topnormal.vcd

Topcorner1.vcd

Topcorner2.vcd

The resulting power analysis uses an arithmetic average of the signal activities calculated from each simulation
file to obtain the final signal activities used. If a signal err_out has a toggle rate of zero transition per
second innormal.vcd, 50 transitions per second in corner1.vcd, and 70 transitions per second in corner2.vcd,
the final toggle rate in the power analysis is 40 transitions per second.

If you do not want the PowerPlay Power Analyzer to read information from multiple instances and take an
arithmetic average of the signal activities, use a .vcd that includes only signals from the instance that you
care about.

Overlapping Simulations
You can perform a simulation on the entire design, and more exhaustive simulations on a submodule, such
as 8b10b_rxerr. The following table lists the import specification for overlapping simulations.

Altera CorporationPowerPlay Power Analysis

Send Feedback

8-11Multiple Simulations on the Same Entity
QII53013
2013.11.04

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20PowerPlay%20Power%20Analysis%20(QII53013%202013.11.04)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Table 8-6: Overlapping Simulation Import Specifications

EntityFile Name

Topfull_design.vcd

Top|8b10b_rxerr:err1error_cases.vcd

In this case, the software uses signal activities from error_cases.vcd for all the nodes in the generated .vcd
and uses signal activities from full_design.vcd for only those nodes that do not overlap with nodes in
error_cases.vcd. In general, the more specific hierarchy (the most bottom-level module) derives signal
activities for overlapping nodes.

Partial Simulations
You can perform a simulation in which the entire simulation time is not applicable to signal-activity
calculation. For example, if you run a simulation for 10,000 clock cycles and reset the chip for the first 2,000
clock cycles. If the PowerPlay Power Analyzer performs the signal-activity calculation over all 10,000 cycles,
the toggle rates are only 80% of their steady state value (because the chip is in reset for the first 20% of the
simulation). In this case, you must specify the useful parts of the .vcd for power analysis. The Limit VCD
Period option enables you to specify a start and end time when performing signal-activity calculations.

Specifying Start and End Time when Performing Signal-Activity Calculations using the Limit VCD Period
Option

To specify a start and end time when performing signal-activity calculations using the Limit VCD period
option, follow these steps:

1. In the Quartus II software, on the Assignments menu, click Settings.
2. Under the Category list, click PowerPlay Power Analyzer Settings.
3. Turn on the Use input file(s) to initialize toggle rates and static probabilities during power analysis

option.
4. Click Add.
5. In the File name and Entity fields, browse to the necessary files.
6. Under Simulation period, turn on VCD file and Limit VCD period options.
7. In the Start time and End time fields, specify the desired start and end time.
8. Click OK.

You can also use the following tcl or qsf assignment to specify .vcd files:

set_global_assignment -name POWER_INPUT_FILE_NAME "test.vcd" -section_id
test.vcd

set_global_assignment -name POWER_INPUT_FILE_TYPE VCD -section_id
test.vcd

set_global_assignment -name POWER_VCD_FILE_START_TIME "10 ns" -section_id
test.vcd

set_global_assignment -name POWER_VCD_FILE_END_TIME "1000 ns" -section_id
test.vcd

PowerPlay Power AnalysisAltera Corporation

Send Feedback

QII53013
Partial Simulations8-12 2013.11.04

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20PowerPlay%20Power%20Analysis%20(QII53013%202013.11.04)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

set_instance_assignment -name POWER_READ_INPUT_FILE test.vcd -to
test_design

Related Information

• set_power_file_assignment

• Add/Edit Power Input File Dialog Box

Node Name Matching Considerations
Node name mismatches happen when you have .vcd applied to entities other than the top-level entity. In a
modular design flow, the gate-level simulation files created in different Quartus II projects might not match
their node names with the current Quartus II project.

For example, youmay have a file named 8b10b_enc.vcd, which theQuartus II software generates in a separate
project called 8b10b_enc while simulating the 8b10b encoder. If you import the .vcd into another project
called Top, you might encounter name mismatches when applying the .vcd to the 8b10b_encmodule in
the Top project. This mismatch happens because the Quartus II software might name all the combinational
nodes in the 8b10b_enc.vcd differently than in the Top project.

You can avoid name mismatching with only RTL simulation data, in which register names do not change,
or with an incremental compilation flow that preserves node names along with a gate-level simulation.

To ensure accuracy, Altera recommends that you use an incremental compilation flow to preserve
the node names of your design.

Note:

Related Information

• Quartus II Incremental Compilation for Hierarchical and Team-Based Design

Glitch Filtering
The PowerPlay Power Analyzer defines a glitch as two signal transitions so closely spaced in time that the
pulse, or glitch, occurs faster than the logic and routing circuitry can respond. The output of a transport
delay model simulator contains glitches for some signals. The logic and routing structures of the device form
a low-pass filter that filters out glitches that are tens to hundreds of picoseconds long, depending on the
device family.

Some third-party simulators use different models than the transport delay model as the default model.
Different models cause differences in signal activity and power estimation. The inertial delay model, which
is the ModelSim default model, filters out more glitches than the transport delay model and usually yields
a lower power estimate.

Altera recommends that you use the transport simulation model when using the Quartus II software
glitch filtering support with third-party simulators. Simulation glitch filtering has little effect if you
use the inertial simulation model.

Note:

Glitch filtering in a simulator can also filter a glitch on one logic element (LE) (or other circuit element)
output from propagating to downstream circuit elements to ensure that the glitch does not affect simulated
results. Glitch filtering prevents a glitch on one signal fromproducing non-physical glitches on all downstream
logic, which can result in a signal toggle rate and a power estimate that are too high. Circuit elements in

Altera CorporationPowerPlay Power Analysis

Send Feedback

8-13Node Name Matching Considerations
QII53013
2013.11.04

http://quartushelp.altera.com/current/mergedProjects/tafs/tafs/tcl_pkg_project_ui_ver_1.0_cmd_set_power_file_assignment.htm
http://quartushelp.altera.com/current/mergedProjects/optimize/pwr/pwr_db_add_power_input_file.htm
http://www.altera.com/literature/hb/qts/qts_qii51015.pdf
mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20PowerPlay%20Power%20Analysis%20(QII53013%202013.11.04)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

which every input transition produces an output transition, including multipliers and logic cells configured
to implement XOR functions, are especially prone to glitches. Therefore, circuits with such functions can
have power estimates that are too high when glitch filtering is not used.

Altera recommends that you use the glitch filtering feature to obtain themost accurate power estimates.
For .vcd files, the PowerPlay Power Analyzer flows support two levels of glitch filtering.

Note:

Enabling First Level of Glitch Filtering

To enable the first level of glitch filtering in the Quartus II software for supported third-party simulators,
follow these steps:

1. On the Assignments menu, click Settings.
2. In the Category list, select Simulation under EDA Tool Settings.
3. Select the Tool name to use for the simulation.
4. Turn on Enable glitch filtering.

Enabling Second Level of Glitch Filtering

The second level of glitch filtering occurs while the PowerPlay Power Analyzer is reading the .vcd generated
by a third-party simulator. To enable the second level of glitch filtering, follow these steps:

1. On the Assignments menu, click Settings.
2. In the Category list, select PowerPlay Power Analyzer Settings.
3. Under Input File(s), turn on Perform glitch filtering on VCD files.

The .vcd file reader performs filtering complementary to the filtering performed during simulation and is
often not as effective. While the .vcd file reader can remove glitches on logic blocks, the file reader cannot
determine how a given glitch affects downstream logic and routing, and may eliminate the impact of the
glitch completely. Filtering the glitches during simulation avoids switching downstream routing and logic
automatically.

When running simulation for design verification (rather than to produce input to the PowerPlay
PowerAnalyzer), Altera recommends that you turn off the glitch filtering option to produce themost

Note:

rigorous and conservative simulation from a functionality viewpoint. When performing simulation
to produce input for the PowerPlay Power Analyzer, Altera recommends that you turn on the glitch
filtering to produce the most accurate power estimates.

Node and Entity Assignments
You can assign toggle rates and static probabilities to individual nodes and entities in the design. These
assignments have the highest priority, overriding data from all other signal-activity sources.

You must use the Assignment Editor or Tcl commands to create the Power Toggle Rate and Power Static
Probability assignments. You can specify the power toggle rate as an absolute toggle rate in transitions per
second using the Power Toggle Rate assignment, or you can use the Power Toggle Rate Percentage
assignment to specify a toggle rate relative to the clock domain of the assigned node for a more specific
assignment made in terms of hierarchy level.

If you use thePowerToggleRatePercentage assignment, and the node does not have a clock domain,
the Quartus II software issues a warning and ignores the assignment.

Note:

PowerPlay Power AnalysisAltera Corporation

Send Feedback

QII53013
Enabling First Level of Glitch Filtering8-14 2013.11.04

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20PowerPlay%20Power%20Analysis%20(QII53013%202013.11.04)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Assigning toggle rates and static probabilities to individual nodes and entities is appropriate for signals in
which you have knowledge of the signal or entity being analyzed. For example, if you know that a 100 MHz
data bus or memory output produces data that is essentially random (uncorrelated in time), you can directly
enter a 0.5 static probability and a toggle rate of 50 million transitions per second.

The PowerPlay Power Analyzer treats bidirectional I/O pins differently. The combinational input port and
the output pad for a pin share the same name.However, those portsmight not share the same signal activities.
For reading signal-activity assignments, the PowerPlay Power Analyzer creates a distinct name
<node_name~output> when configuring the bidirectional signal as an output and <node_name~result>
when configuring the signal as an input. For example, if a design has a bidirectional pin named MYPIN,
assignments for the combinational input use the nameMYPIN~result, and the assignments for the output
pad use the name MYPIN~output.

When you create the logic assignment in theAssignment Editor, you cannot find theMYPIN~result
and MYPIN~output node names in the Node Finder. Therefore, to create the logic assignment,

Note:

you must manually enter the two differentiating node names to create the assignment for the input
and output port of the bidirectional pin.

Related Information

• Constraining Designs

For more information about how to use the Assignment Editor in the Quartus II software, refer to this
document.

Timing Assignments to Clock Nodes

For clock nodes, the PowerPlay Power Analyzer uses timing requirements to derive the toggle rate when
neither simulation data nor user-entered signal-activity data is available. fMAX requirements specify full
cycles per second, but each cycle represents a rising transition and a falling transition. For example, a clock
fMAX requirement of 100 MHz corresponds to 200 million transitions per second for the clock node.

Default Toggle Rate Assignment
You can specify a default toggle rate for primary inputs and other nodes in your design. The PowerPlay
Power Analyzer uses the default toggle rate when no other method specifies the signal-activity data.

The PowerPlay Power Analyzer specifies the toggle rate in absolute terms (transitions per second), or as a
fraction of the clock rate in effect for each node. The toggle rate for a clock derives from the timing settings
for the clock. For example, if the PowerPlay Power Analyzer specifies a clock with an fMAX constraint of 100
MHz and a default relative toggle rate of 20%, nodes in this clock domain transition in 20% of the clock
periods, or 20 million transitions occur per second. In some cases, the PowerPlay Power Analyzer cannot
determine the clock domain for a node because either the PowerPlay Power Analyzer cannot determine a
clock domain for the node, or the clock domain is ambiguous. For example, the PowerPlay Power Analyzer
may not be able to determine a clock domain for a node if the user did not specify sufficient timing
assignments. In these cases, the PowerPlay Power Analyzer substitutes and reports a toggle rate of zero.

Vectorless Estimation
For some device families, the PowerPlay Power Analyzer automatically derives estimates for signal activity
on nodes with no simulation or user-entered signal-activity data. Vectorless estimation statistically estimates
the signal activity of a node based on the signal activities of nodes feeding that node, and on the actual logic

Altera CorporationPowerPlay Power Analysis

Send Feedback

8-15Timing Assignments to Clock Nodes
QII53013
2013.11.04

http://www.altera.com/literature/hb/qts/qts_qii52001.pdf
mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20PowerPlay%20Power%20Analysis%20(QII53013%202013.11.04)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

function that the node implements. Vectorless estimation cannot derive signal activities for primary inputs.
Vectorless estimation is accurate for combinational nodes, but not for registered nodes. Therefore, the
PowerPlay Power Analyzer requires simulation data for at least the registered nodes and I/O nodes for
accuracy.

The PowerPlay Power Analyzer Settings dialog box allows you to disable vectorless estimation. When
turned on, vectorless estimation takes precedence over default toggle rates. Vectorless estimation does not
override clock assignments.

To disable vectorless estimation, perform the following steps:

1. In the Quartus II software, on the Assignments menu, click Settings.
2. In the Category list, select PowerPlay Power Analyzer Settings.
3. Turn off the Use vectorless estimation option.

Related Information

• Performing Power Analysis with the PowerPlay Power Analyzer

Using the PowerPlay Power Analyzer
For flows that use the PowerPlay Power Analyzer, you must first synthesize your design, and then fit it to
the target device. You must either provide timing assignments for all the clocks in your design, or use a
simulation-based flow to generate activity data. You must specify the I/O standard on each device input and
output and the board trace model on each output in your design.

Related Information

• Performing Power Analysis with the PowerPlay Power Analyzer

Common Analysis Flows
You can use the analysis flows in this section with the PowerPlay Power Analyzer. However, vectorless
activity estimation is only available for some device families.

Signal Activities from Full Post-Fit Netlist (Timing) Simulation

Timing Simulation flow provides the most accuracy because all node activities reflect actual design behavior
if supplied input vectors are representative of typical design operation. Results are better if the simulation
filters glitches. The disadvantage of this method is that the simulation time is long.

Signal Activities from Full Post-Fit Netlist (Zero Delay) Simulation

You can use the zero delay simulation flow with designs for which signal activities from a full post-fit netlist
(timing) simulation are not available. Zero delay simulation is as accurate as timing simulation in 95% of
designs with no glitches.

If your design has glitches, the power estimation may not be accurate. Altera recommends that you
use the signal activities from a full post-fit netlist (timing) simulation to achieve an accurate power
estimation of your design.

Note:

PowerPlay Power AnalysisAltera Corporation

Send Feedback

QII53013
Using the PowerPlay Power Analyzer8-16 2013.11.04

http://quartushelp.altera.com/current/mergedProjects/optimize/pwr/pwr_pro_power_analyzer.htm
http://quartushelp.altera.com/current/mergedProjects/optimize/pwr/pwr_pro_power_analyzer.htm
mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20PowerPlay%20Power%20Analysis%20(QII53013%202013.11.04)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

The following designs might exhibit glitches:

• Designs with many XOR gates (for example, an encryption core)
• Designs with arithmetic blocks without input and output registers (DSPs and carry chains)

Related Information

• Generating a .vcd from Full Post-Fit Netlist (Zero Delay) Simulation on page 8-19
For more information about creating zero delay simulation signal activities, refer to this page.

Signal Activities from RTL (Functional) Simulation, Supplemented by Vectorless Estimation

In the functional simulation flow, simulation provides toggle rates and static probabilities for all pins and
registers in your design. Vectorless estimation fills in the values for all the combinational nodes between
pins and registers, giving good results. This flow usually provides a compilation time benefit when you use
the third-party RTL simulator.

RTL Simulation Limitation

RTL simulation may not provide signal activities for all registers in the post-fitting netlist because synthesis
loses some register names. For example, synthesismight automatically transform statemachines and counters,
thus changing the names of registers in those structures.

Signal Activities from Vectorless Estimation and User-Supplied Input Pin Activities

The vectorless estimation flow provides a low level of accuracy, because vectorless estimation for registers
is not entirely accurate.

Signal Activities from User Defaults Only

The user defaults only flow provides the lowest degree of accuracy.

Importance of .vcd
Altera recommends that you use a .vcd or a .saf generated by gate-level timing simulation for an accurate
power estimation because gate-level timing simulation takes all the routing resources and the exact logic
array resource usage into account.

Generating a .vcd
In previous versions of the Quartus II software, you could use either the Quartus II simulator or an EDA
simulator to perform your simulation. The Quartus II software no longer supports a built-in simulator, and
you must use an EDA simulator to perform simulation. Use the .vcd as the input to the PowerPlay Power
Analyzer to estimate power for your design.

To create a .vcd for your design, follow these steps:

1. On the Assignments menu, click Settings.
2. In the Category list, under EDA Tool Settings, click Simulation.
3. In the Tool name list, select your preferred EDA simulator.
4. In the Format for output netlist list, select Verilog HDL, or SystemVerilog HDL, or VHDL.
5. Turn on Generate Value Change Dump (VCD) file script.

Altera CorporationPowerPlay Power Analysis

Send Feedback

8-17Signal Activities from RTL (Functional) Simulation, Supplemented by Vectorless Estimation
QII53013
2013.11.04

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20PowerPlay%20Power%20Analysis%20(QII53013%202013.11.04)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

This option turns on the Map illegal HDL characters and Enable glitch filtering options. The Map
illegal HDL characters option ensures that all signals have legal names and that signal toggle rates are
available later in the PowerPlay Power Analyzer. The Enable glitch filtering option directs the EDA
Netlist Writer to perform glitch filtering when generating VHDL Output Files, Verilog Output Files, and
the corresponding Standard Delay Format Output Files for use with other EDA simulation tools. This
option is available regardless of whether or not you want to generate .vcd scripts.

When performing simulation using ModelSim, the +nospecify option for the vsim command
disables the specify pathdelays and timing checks option inModelSim. By enabling glitch filtering

Note:

on the Simulation page, the simulation models include specified path delays. Thus, ModelSim
might fail to simulate a design if you enabled glitch filtering and specified the +nospecify option.
Altera recommends that you remove the +nospecify option from the ModelSimvsim command
to ensure accurate simulation for power estimation.

6. Click Script Settings. Select the signals that you want to output to the .vcd.
With All signals selected, the generated script instructs the third-party simulator to write all connected
output signals to the .vcd. With All signals except combinational lcell outputs selected, the generated
script tells the third-party simulator to write all connected output signals to the .vcd, except logic cell
combinational outputs.

The file can become extremely large if you write all output signals to the file because the file size
depends on the number of output signals being monitored and the number of transitions that
occur.

Note:

7. Click OK.
8. In the Design instance name box, type a name for your testbench.
9. Compile your design with the Quartus II software and generate the necessary EDA netlist and script that

instructs the third-party simulator to generate a .vcd.
10. Perform a simulationwith the third-party EDA simulation tool. Call the generated script in the simulation

tool before running the simulation. The simulation tool generates the .vcd and places it in the project
directory.

Related Information

• Simulation Results on page 8-8

• Glitch Filtering on page 8-13

• Section I. Simulation

Generating a .vcd from ModelSim Software

To generate a .vcd with the ModelSim software, follow these steps:

1. In the Quartus II software, on the Assignments menu, click Settings.
2. In the Category list, under EDA Tool Settings, click Simulation.
3. In the Tool name list, select your preferred EDA simulator.
4. In the Format for output netlist list, select Verilog HDL, or SystemVerilog HDL, or VHDL.
5. Turn on Generate Value Change Dump (VCD) file script.
6. To generate the .vcd, perform a full compilation.
7. In the ModelSim software, compile the files necessary for simulation.

PowerPlay Power AnalysisAltera Corporation

Send Feedback

QII53013
Generating a .vcd from ModelSim Software8-18 2013.11.04

http://www.altera.com/literature/hb/qts/qts_qii52003.pdf
mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20PowerPlay%20Power%20Analysis%20(QII53013%202013.11.04)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

8. Load your design by clicking Start Simulation on the Tools menu, or use the vsim command.
9. Use the .vcd script created in step 6 using the following command:

source <design>_dump_all_vcd_nodes.tcl

10. Run the simulation (for example, run 2000ns or run -all).
11. Quit the simulation using the quit -sim command, if required.
12. Exit the ModelSim software.

If you do not exit the software, the ModelSim software might end the writing process of the .vcd
improperly, resulting in a corrupt .vcd.

Generating a .vcd from Full Post-Fit Netlist (Zero Delay) Simulation

To successfully generate a .vcd from the full post-fit Netlist (zero delay) simulation, follow these steps:

1. Compile your design in the Quartus II software to generate the Netlist <project_name>.vo.
2. In <project_name>.vo, search for the include statement for <project_name>.sdo, comment the

statement out, and save the file.
Altera recommends that you use the Standard Delay Format Output File (.sdo) for gate-level timing
simulation. The .sdo contains the delay information of each architecture primitive and routing element
in your design; however, you must exclude the .sdo for zero delay simulation.

3. Generate a .vcd for power estimation by performing the steps in Generating a .vcd on page 8-17.

Related Information

• Section I. Simulation

PowerPlay Power Analyzer Compilation Report
The following table list the items in the Compilation Report of the PowerPlay Power Analyzer section.

DescriptionSection

The Summary section of the report shows the estimated total thermal power
consumption of your design. This includes dynamic, static, and I/O thermal power
consumption. The I/O thermal power includes the total I/O power drawn from
the VCCIO and VCCPD power supplies and the power drawn from VCCINT in the I/
O subsystem including I/O buffers and I/O registers. The report also includes a
confidence metric that reflects the overall quality of the data sources for the signal
activities. For example, a Low power estimation confidence value reflects that you
have provided insufficient toggle rate data, ormost of the signal-activity information
used for power estimation is from default or vectorless estimation settings. For
more information about the input data, refer to the PowerPlay Power Analyzer
Confidence Metric report.

Summary

The Settings section of the report shows the PowerPlay Power Analyzer settings
information of your design, including the default input toggle rates, operating
conditions, and other relevant setting information.

Settings

Altera CorporationPowerPlay Power Analysis

Send Feedback

8-19Generating a .vcd from Full Post-Fit Netlist (Zero Delay) Simulation
QII53013
2013.11.04

http://www.altera.com/literature/hb/qts/qts_qii52003.pdf
mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20PowerPlay%20Power%20Analysis%20(QII53013%202013.11.04)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

DescriptionSection

The Simulation Files Read section of the report lists the simulation output file that
the .vcd used for power estimation. This section also includes the file ID, file type,
entity, VCD start time, VCD end time, the unknown percentage, and the toggle
percentage. The unknown percentage indicates the portion of the design module
unused by the simulation vectors.

Simulation Files Read

The Operating Conditions Used section of the report shows device characteristics,
voltages, temperature, and cooling solution, if any, during the power estimation.
This section also shows the entered junction temperature or auto-computed junction
temperature during the power analysis.

Operating Conditions
Used

The Thermal Power Dissipated by Block section of the report shows estimated
thermal dynamic power and thermal static power consumption categorized by
atoms. This information provides youwith estimated power consumption for each
atom in your design.

By default, this section does not contain any data, but you can turn on the report
with theWrite power dissipation by block to report file option on thePowerPlay
Power Analyzer Settings page.

Thermal Power
Dissipated by Block

This Thermal Power Dissipation by Block Type (Device Resource Type) section
of the report shows the estimated thermal dynamic power and thermal static power
consumption categorized by block types. This information is further categorized
by estimated dynamic and static power and provides an average toggle rate by block
type. Thermal power is the power dissipated as heat from the FPGA device.

Thermal PowerDissipa-
tion by Block Type
(Device Resource Type)

This Thermal PowerDissipation byHierarchy section of the report shows estimated
thermal dynamic power and thermal static power consumption categorized by
design hierarchy. This information is further categorized by the dynamic and static
power that was used by the blocks and routing in that hierarchy. This information
is useful when locating modules with high power consumption in your design.

Thermal PowerDissipa-
tion by Hierarchy

The Core Dynamic Thermal Power Dissipation by Clock Domain section of the
report shows the estimated total core dynamic power dissipation by each clock
domain, which provides designswith estimated power consumption for each clock
domain in the design. If the clock frequency for a domain is unspecified by a
constraint, the clock frequency is listed as “unspecified.” For all the combinational
logic, the clock domain is listed as no clock with zero MHz.

Core Dynamic Thermal
Power Dissipation by
Clock Domain

PowerPlay Power AnalysisAltera Corporation

Send Feedback

QII53013
PowerPlay Power Analyzer Compilation Report8-20 2013.11.04

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20PowerPlay%20Power%20Analysis%20(QII53013%202013.11.04)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

DescriptionSection

The Current Drawn from Voltage Supplies section of the report lists the current
drawn from each voltage supply. TheVCCIO andVCCPD voltage supplies are further
categorized by I/O bank and by voltage. This section also lists the minimum safe
power supply size (current supply ability) for each supply voltage.Minimumcurrent
requirement can be higher than user mode current requirement in cases in which
the supply has a specific power up current requirement that goes beyond usermode
requirement, such as the VCCPD power rail in Stratix III and Stratix IV devices, and
the VCCIO power rail in Stratix IV devices.

The I/O thermal power dissipation on the summary page does not correlate directly
to the power drawn from theVCCIO andVCCPD voltage supplies listed in this report.
This is because the I/O thermal power dissipation value also includes portions of
the VCCINT power, such as the I/O element (IOE) registers, which are modeled as
I/O power, but do not draw from the VCCIO and VCCPD supplies.

The reported current drawn from the I/O Voltage Supplies (ICCIO and ICCPD)
as reported in the PowerPlay Power Analyzer report includes any current drawn
through the I/O into off-chip termination resistors. This can result in ICCIO and
ICCPD values that are higher than the reported I/O thermal power, because this
off-chip current dissipates as heat elsewhere and does not factor in the calculation
of device temperature. Therefore, total I/O thermal power does not equal the sum
of current drawn from each VCCIO and VCCPD supply multiplied by VCCIO and
VCCPD voltage.

Current Drawn from
Voltage Supplies

The Confidence Metric is defined in terms of the total weight of signal activity data
sources for both combinational and registered signals. Each signal has two data
sources allocated to it; a toggle rate source and a static probability source.

The Confidence Metric Details section also indicates the quality of the signal toggle
rate data to compute a power estimate. The confidence metric is low if the signal
toggle rate data comes from poor predictors of real signal toggle rates in the device
during an operation. Toggle rate data that comes from simulation, user-entered
assignments on specific signals or entities are reliable. Toggle rate data from default
toggle rates (for example, 12.5% of the clock period) or vectorless estimation are
relatively inaccurate. This section gives an overall confidence rating in the toggle
rate data, from low to high. This section also summarizes howmany pins, registers,
and combinational nodes obtained their toggle rates from each of simulation, user
entry, vectorless estimation, or default toggle rate estimations. This detailed
information helps you understand how to increase the confidence metric, letting
you determine your own confidence in the toggle rate data.

Confidence Metric
Details

Altera CorporationPowerPlay Power Analysis

Send Feedback

8-21PowerPlay Power Analyzer Compilation Report
QII53013
2013.11.04

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20PowerPlay%20Power%20Analysis%20(QII53013%202013.11.04)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

DescriptionSection

The Signal Activities section lists toggle rates and static probabilities assumed by
power analysis for all signals with fan-out and pins. This section also lists the signal
type (pin, registered, or combinational) and the data source for the toggle rate and
static probability. By default, this section does not contain any data, but you can
turn on the report with the Write signal activities to report file option on the
PowerPlay Power Analyzer Settings page.

Altera recommends that you keep the Write signal activities to report file option
turned off for a large design because of the large number of signals present. You
can use the Assignment Editor to specify that activities for individual nodes or
entities are reported by assigning an on value to those nodes for the Power Report
Signal Activities assignment.

Signal Activities

The Messages section lists the messages that the Quartus II software generates
during the analysis.

Messages

Scripting Support
You can run procedures and create settings described in this chapter in a Tcl script. You can also run some
procedures at a command prompt. For more information about scripting command options, refer to the
Quartus II Command-Line andTcl APIHelp browser. To run theHelp browser, type the following command
at the command prompt:

quartus_sh --qhelp

Related Information

• Tcl Scripting

• API Functions for Tcl

• Quartus II Settings File Reference Manual

• Command-Line Scripting

Running the PowerPlay Power Analyzer from the Command–Line
The executable to run the PowerPlay Power Analyzer is quartus_pow. For a complete listing of all
command–line options supported by quartus_pow, type the following command at a system command
prompt:

quartus_pow --help

or-

quartus_sh --qhelp

PowerPlay Power AnalysisAltera Corporation

Send Feedback

QII53013
Scripting Support8-22 2013.11.04

http://www.altera.com/literature/hb/qts/qts_qii52003.pdf
http://quartushelp.altera.com/current/mergedProjects/tafs/tafs/tcl_list_of_packages.htm
http://www.altera.com/literature/manual/mnl_qsf_reference.pdf
http://www.altera.com/literature/hb/qts/qts_qii51015.pdf
mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20PowerPlay%20Power%20Analysis%20(QII53013%202013.11.04)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

The following lists the examples of using the quartus_pow executable. Type the command listed in the
following section at a system command prompt. These examples assume that operations are performed on
Quartus II project called sample.

To instruct the PowerPlay Power Analyzer to generate a PowerPlay EPE File:

quartus_pow sample --output_epe=sample.csv

To instruct the PowerPlay Power Analyzer to generate a PowerPlay EPE File without performing the
power estimate:

quartus_pow sample --output_epe=sample.csv --estimate_power=off

To instruct the PowerPlay Power Analyzer to use a .vcd as input (sample.vcd):

quartus_pow sample --input_vcd=sample.vcd

To instruct the PowerPlay Power Analyzer to use two .vcd files as input files (sample1.vcd and
sample2.vcd), perform glitch filtering on the .vcd and use a default input I/O toggle rate of 10,000
transitions per second:

quartus_pow sample --input_vcd=sample1.vcd --input_vcd=sample2.vcd \
--vcd_filter_glitches=on --\
default_input_io_toggle_rate=10000transitions/s

To instruct the PowerPlay Power Analyzer to not use an input file, a default input I/O toggle rate of
60%, no vectorless estimation, and a default toggle rate of 20% on all remaining signals:

quartus_pow sample --no_input_file --default_input_io_toggle_rate=60%
 \
--use_vectorless_estimation=off --default_toggle_rate=20%

No command–line options are available to specify the information found on the PowerPlay Power
Analyzer Settings Operating Conditions page. Use the Quartus II GUI to specify these options.

Note:

The quartus_pow executable creates a report file, <revision name>.pow.rpt. You can locate the report
file in themain project directory. The report file contains the same information inPowerPlayPowerAnalyzer
Compilation Report on page 8-19.

Document Revision History
The following table lists the revision history for this chapter.

Altera CorporationPowerPlay Power Analysis

Send Feedback

8-23Document Revision History
QII53013
2013.11.04

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20PowerPlay%20Power%20Analysis%20(QII53013%202013.11.04)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

ChangesVersionDate

• Updated Multiple Simulations on the Same Entity on page 8-11 to
indicate the usage of a .vcd that only includes signals from the instance
that you care about if you do not want the PowerPlay Power Analyzer
to read information from multiple instances and take an arithmetic
average of the signal activities.

• Updated Differences between the PowerPlay EPE and the Quartus
II PowerPlay Power Analyzer on page 8-2 to include a note.

• Removed “Avoiding Power Estimation and Hardware Measurement
Mismatch” section.

• Updated Figure 8-1.
• Updated Types of Power Analyses on page 8-2 to remove the note

about HPS Power Calculator.
• Removed "Creating PowerPlay EPE Spreadsheet", "PowerPlay EPE File

Generator Compilation Report", "Using the HPS Power Calculator",
and "Running the PowerPlay Power Analyzer Compilation Report"
sections.

• Updated PowerPlay Power Analysis on page 8-1 to include the
accuracy of the PowerPlay Power Analyzer and PowerPlay EPE
spreadsheet.

• Updated Device Resource Usage on page 8-5.
• Added Differences between the PowerPlay EPE and the Quartus II

PowerPlay Power Analyzer on page 8-2.
• Added a note in the Operating Settings and Conditions on page 8-7

to notify that the Quartus II Fitter may override some of the supply
voltages settings specified in this section.

• Updated Using Simulation Files in Modular Design Flows on page
8-9.

• Updated Generating a .vcd on page 8-17.
• Updated PowerPlay Power Analyzer Compilation Report on page

8-19
• Updated Multiple Simulations on the Same Entity on page 8-11,

Glitch Filtering on page 8-13, Node and Entity Assignments on page
8-14and Node Name Matching Considerations on page 8-13 for
editorial edits.

• Added RTL Simulation Limitation on page 8-17.
• Added Specifying Start and End Time when Performing Signal-

Activity Calculations using the Limit VCD Period Option on page
8-12.

• Updated Partial Simulations on page 8-12.

13.1.0November 2013

• Updated “Types of Power Analyses” on page 8–2, and “Confidence
Metric Details” on page 8–23.

• Added “Importance of .vcd” on page 8–20, and “Avoiding Power
Estimation and Hardware Measurement Mismatch” on page 8–24

12.1.0November 2012

PowerPlay Power AnalysisAltera Corporation

Send Feedback

QII53013
Document Revision History8-24 2013.11.04

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20PowerPlay%20Power%20Analysis%20(QII53013%202013.11.04)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

ChangesVersionDate

• Updated “Current Drawn from Voltage Supplies” on page 8–22.
• Added “Using the HPS Power Calculator” on page 8–7.

12.0.0June 2012

• Template update.
• Minor editorial updates.

10.1.1November 2011

• Added links to Quartus II Help, removed redundant material.
• Moved “Creating PowerPlay EPE Spreadsheets” to page 8–6.
• Minor edits.

10.1.0December 2010

• Removed references to the Quartus II Simulator.
• Updated Table 8–1 on page 8–6, Table 8–2 on page 8–13, and Table

8–3 on page 8–14.
• Updated Figure 8–3 on page 8–9, Figure 8–4 on page 8–10, and Figure

8–5 on page 8–12.

10.0.0July 2010

• Updated “Creating PowerPlay EPE Spreadsheets” on page 8–6 and
“Simulation Results” on page 8–10.

• Added “Signal Activities from Full Post-Fit Netlist (Zero Delay)
Simulation” on page 8–19 and “Generating a .vcd from Full Post-Fit
Netlist (Zero Delay) Simulation” on page 8–21.

• Minor changes to “Generating a .vcd fromModelSim Software” on page
8–21.

• Updated Figure 11–8 on page 11–24.

9.1.0November 2009

• This chapter was chapter 11 in version 8.1.
• Removed Figures 11-10, 11-11, 11-13, 11-14, and 11-17 from8.1 version.

9.0.0March 2009

• Updated for the Quartus II software version 8.1.
• Replaced Figure 11-3.
• Replaced Figure 11-14.

8.1.0November 2008

• Updated Figure 11–5.
• Updated “Types of Power Analyses” on page 11–5.
• Updated “Operating Conditions” on page 11–9.
• Updated “PowerPlay Power Analyzer Compilation Report” on page

11–31.
• Updated “Current Drawn from Voltage Supplies” on page 11–32.

8.0.0May 2008

Altera CorporationPowerPlay Power Analysis

Send Feedback

8-25Document Revision History
QII53013
2013.11.04

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20PowerPlay%20Power%20Analysis%20(QII53013%202013.11.04)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

© 2013 Altera Corporation. All rights reserved. ALTERA, ARRI
are trademarks of Altera Corporation and registered in the U.S
trademarks or service marks are the property of their respectiv
semiconductor products to current specifications in accordance
services at any time without notice. Altera assumes no respons
described herein except as expressly agreed to in writing by Al
on any published information and before placing orders for pr

Quartus II Handbook Version 13.1
Volume 3: Verification
November 2013
Section IV. System Debugging Tools
The Altera® Quartus® II design software provides a complete design debugging
environment that easily adapts to your specific design requirements. This handbook
is arranged in chapters, sections, and volumes that correspond to the major tools
available for debugging your designs. For a general introduction to features and the
standard design flow in the software, refer to the Introduction to the Quartus II Software
manual.

This section is an introduction to System Debugging Tools and includes the following
chapters:

■ Chapter 9, System Debugging Tools Overview

This chapter compares the various system debugging tools and explains when to
use each of them.

■ Chapter 10, Analyzing and Debugging Designs with the System Console

This chapter describes the System Console Toolkit and compares the different
capabilities within the toolkit.

■ Chapter 11, Debugging Transceiver Links

This chapter explains what functions are available within the Transceiver Toolkit
and helps you decide which tool best meets your debugging needs.

■ Chapter 12, Quick Design Debugging Using SignalProbe

This chapter provides detailed instructions about how to use SignalProbe to
quickly debug your design.

Use this chapter to verify your design more efficiently by routing internal signals
to I/O pins quickly without affecting the design.

■ Chapter 13, Design Debugging Using the SignalTap II Logic Analyzer

This chapter describes how to debug your FPGA design during normal device
operation without the need for external lab equipment. Use this chapter to learn
how to examine the behavior of internal signals, without using extra I/O pins,
while the design is running at full speed on an FPGA device.

■ Chapter 14, In-System Debugging Using External Logic Analyzers

This chapter explains how to use external logic analyzers to debug designs on
Altera devices.

■ Chapter 15, In-System Modification of Memory and Constants

This chapter explains how to use the Quartus II In-System Memory Content Editor
as part of your FPGA design and verification flow to easily view and debug your
design in the hardware lab.
A, CYCLONE, HARDCOPY, MAX, MEGACORE, NIOS, QUARTUS and STRATIX words and logos
. Patent and Trademark Office and in other countries. All other words and logos identified as
e holders as described at www.altera.com/common/legal.html. Altera warrants performance of its
with Altera's standard warranty, but reserves the right to make changes to any products and

ibility or liability arising out of the application or use of any information, product, or service
tera. Altera customers are advised to obtain the latest version of device specifications before relying
oducts or services.

ISO
9001:2008
Registered

http://www.altera.com/common/legal.html
http://www.altera.com/support/devices/reliability/certifications/rel-certifications.html
http://www.altera.com/support/devices/reliability/certifications/rel-certifications.html
http://www.altera.com/literature/manual/quartus2_introduction.pdf

Section IV: System Debugging Tools
■ Chapter 16, Design Debugging Using In-System Sources and Probes

This chapter provides detailed instructions about how to use the In-System
Sources and Probes Editor and Tcl scripting in the Quartus® II software to debug
your design.
Quartus II Handbook Version 13.1 November 2012 Altera Corporation
Volume 3: Verification

9System Debugging Tools Overview

2013.11.04

QII53027 Subscribe Send Feedback

About Altera System Debugging Tools
The Altera® system debugging tools help you verify your FPGA designs. As your product requirements
continue to increase in complexity, the time you spend on design verification continues to rise. This manual
provides a quick overview of the tools available in the system debugging suite and discusses the criteria for
selecting the best tool for your design.

System Debugging Tools Portfolio
The Quartus® II software provides a portfolio of system design debugging tools for real-time verification of
your design. Each tool in the system debugging portfolio uses a combination of available memory, logic,
and routing resources to assist in the debugging process. The tools provide visibility by routing (or “tapping”)
signals in your design to debugging logic. The debugging logic is then compiled with your design and
downloaded into the FPGA or CPLD for analysis. Because different designs can have different constraints
and requirements, such as the number of spare pins available or the amount of logic or memory resources
remaining in the physical device, you can choose a tool from the available debugging tools that matches the
specific requirements for your design.

ISO
9001:2008
Registered

© 2013 Altera Corporation. All rights reserved. ALTERA, ARRIA, CYCLONE, HARDCOPY, MAX, MEGACORE, NIOS, QUARTUS and STRATIX words
and logos are trademarks of Altera Corporation and registered in the U.S. Patent and Trademark Office and in other countries. All other
words and logos identified as trademarks or service marks are the property of their respective holders as described at
www.altera.com/common/legal.html. Altera warrants performance of its semiconductor products to current specifications in accordance with
Altera's standard warranty, but reserves the right to make changes to any products and services at any time without notice. Altera assumes
no responsibility or liability arising out of the application or use of any information, product, or service described herein except as expressly
agreed to in writing by Altera. Altera customers are advised to obtain the latest version of device specifications before relying on any published
information and before placing orders for products or services.

www.altera.com

101 Innovation Drive, San Jose, CA 95134

https://www.altera.com/servlets/subscriptions/alert?id=QII53027
mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20(QII53027%202013.11.04)%20System%20Debugging%20Tools%20Overview&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.
http://www.altera.com/support/devices/reliability/certifications/rel-certifications.html
http://www.altera.com/support/devices/reliability/certifications/rel-certifications.html
http://www.altera.com/support/devices/reliability/certifications/rel-certifications.html

System Debugging Tools Comparison

Table 9-1: Debugging Tools Portfolio

Typical UsageDescriptionTool

You need to perform system-level
debugging. For example, if you
have an Avalon-MM slave or
Avalon-ST interfaces, you can
debug your design at a transaction
level. The tool supports JTAG
connectivity, but also supports
connectivity to a simulation
model, as well as TCP/IP
connectivity to the target FPGA
you wish to debug.

Uses a Tcl interpreter to communi-
cate with hardwaremodules instanti-
ated in your design. You can use it
with the Transceiver Toolkit to
monitor or debug your design.

System Console provides real-time
in-system debugging capabilities.
Using System Console, you can read
from and write to Memory Mapped
components in our system without
the help of a processor or additional
software.

System Console uses Tcl as the
fundamental infrastructure which
means you can source scripts, set
variables, write procedures, and take
advantage of all the features of the Tcl
scripting language.

System Console

You need to debug or optimize
signal integrity of your board
layout even before the actual
design to be run on the FPGA is
ready.

The Transceiver Toolkit allows you
to test and tune transceiver link signal
quality. You can use a combination
of bit error rate (BER), bathtub curve,
and eye contour graphs as quality
metrics. Auto Sweeping of physical
medium attachment (PMA) settings
allows you to quickly find an optimal
solution.

Transceiver Toolkit

You have spare on-chip memory
and you want functional verifica-
tion of your design running in
hardware.

This logic analyzer uses FPGA
resources to sample test nodes and
outputs the information to the
Quartus II software for display and
analysis.

SignalTap ® II Logic Analyzer

You have spare I/O pins and you
would like to check the operation
of a small set of control pins using
either an external logic analyzer
or an oscilloscope.

This tool incrementally routes
internal signals to I/O pins while
preserving results from your last
place-and-routed design.

SignalProbe

System Debugging Tools OverviewAltera Corporation

Send Feedback

QII53027
System Debugging Tools Comparison9-2 2013.11.04

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20System%20Debugging%20Tools%20Overview%20(QII53027%202013.11.04)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Typical UsageDescriptionTool

You have limited on-chip
memory, and have a large set of
internal data buses that youwould
like to verify using an external
logic analyzer. Logic analyzer
vendors, such as Tektronics and
Agilent, provide integration with
the tool to improve the usability
of the tool.

This tool multiplexes a larger set of
signals to a smaller number of spare
I/O pins. LAI allows you to select
which signals are switched onto the
I/O pins over a JTAG connection.

Logic Analyzer Interface (LAI)

You want to prototype a front
panel with virtual buttons for your
FPGA design.

This tool provides an easy way to
drive and sample logic values to and
from internal nodes using the JTAG
interface.

In-System Sources and Probes

You would like to view and edit
the contents of on-chip memory
that is not connected to a Nios II
processor. You can also use the
tool when you do notwant to have
a Nios II debug core in your
system.

This tool displays and allows you to
edit on-chip memory.

In-System Memory Content
Editor

You have custom signals in your
design that you want to be able to
communicate with.

This megafunction allows you to
communicatewith the JTAG interface
so that you can develop your own
custom applications.

Virtual JTAG Interface

Altera JTAG Interface (AJI)
With the exception of SignalProbe, each of the on-chip debugging tools uses the JTAG port to control and
read back data from debugging logic and signals under test. System Console uses JTAG and other interfaces
as well. The JTAG resource is shared among all of the on-chip debugging tools.

Required Arbitration Logic
For all system debugging tools except System Console, the Quartus II software compiles logic into your
design automatically to distinguish between data and control information and each of the debugging logic
blocks, when the JTAG resource is required. This arbitration logic, also known as the System-LevelDebugging
(SLD) infrastructure, is shown in the design hierarchy of your compiled project as sld_hub:sld_hub_inst.
The SLD logic allows you to instantiate multiple debugging blocks into your design and run them
simultaneously. For System Console, you must explicitly insert debug IP cores into your design to enable
debugging.

Debugging Ecosystem
To maximize debugging closure, the Quartus II software allows you to use a combination of the debugging
tools in tandem to fully exercise and analyze the logic under test. All of the tools have basic analysis features
built in; that is, all of the tools enable you to read back information collected from the design nodes that are

Altera CorporationSystem Debugging Tools Overview

Send Feedback

9-3Altera JTAG Interface (AJI)
QII53027
2013.11.04

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20System%20Debugging%20Tools%20Overview%20(QII53027%202013.11.04)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

connected to the debugging logic. Out of the set of debugging tools, the SignalTap II Logic Analyzer, the
LAI, and the SignalProbe feature are general purpose debugging tools optimized for probing signals in your
register transfer level (RTL) netlist. In-System Sources and Probes, the Virtual JTAG Interface, System
Console, Transceiver Toolkit, and In-System Memory Content Editor, allow you to read back data from the
debugging breakpoints, and to input values into your design during runtime.

Taken together, the set of on-chip debugging tools form a debugging ecosystem. The set of tools can generate
a stimulus to and solicit a response from the logic under test, providing a complete debugging solution.

Figure 9-1: Debugging Ecosystem

In-System Sources and Probes
In-System Memory Content Editor

VJI

SignalTap II Logic Analyzer
In-System Memory Content Editor

Transceiver Toolkit - System Console
LAI

Design
Under Test

JTAG

FPGA

Quartus II Software

About Analysis Tools for RTL Nodes
The SignalTap II Logic Analyzer, SignalProbe, and LAI are designed specifically for probing and debugging
RTL signals at system speed. They are general-purpose analysis tools that enable you to tap and analyze any
routable node from the FPGA or CPLD. If you have spare logic and memory resources, the SignalTap II
Logic Analyzer is useful for providing fast functional verification of your design running on actual hardware.

Conversely, if logic and memory resources are tight and you require the large sample depths associated with
external logic analyzers, both the LAI and the SignalProbe make it easy to view internal design signals using
external equipment.

The SignalTap II Logic Analyzer is not supported on CPLDs, because there are no memory resources
available on these devices.

Note:

Resource Usage
The most important selection criteria for these three tools are the available resources remaining on your
device after implementing your design and the number of spare pins available. You should evaluate your
preferred debugging option early on in the design planning process to ensure that your board, yourQuartus II
project, and your design are all set up to support the appropriate options. Planning early can reduce time

System Debugging Tools OverviewAltera Corporation

Send Feedback

QII53027
About Analysis Tools for RTL Nodes9-4 2013.11.04

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20System%20Debugging%20Tools%20Overview%20(QII53027%202013.11.04)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

spent during debugging and eliminate the necessary late changes to accommodate your preferred debugging
methodologies.

Figure 9-2: Resource Usage per Debugging Tool

Memory

Lo
gi
c

SignalTap II

Signal
Probe

Lo
gi
cA

na
lyz

er
In
te
rfa

ce

Overhead Logic
Any debugging tool that requires the use of a JTAG connection requires the SLD infrastructure logic, for
communication with the JTAG interface and arbitration between any instantiated debugging modules. This
overhead logic uses around 200 logic elements (LEs), a small fraction of the resources available in any of the
supported devices. The overhead logic is shared between all available debugging modules in your design.
Both the SignalTap II Logic Analyzer and the LAI use a JTAG connection.
For SignalProbe
SignalProbe requires very few on-chip resources. Because it requires no JTAG connection, SignalProbe uses
no logic or memory resources. SignalProbe uses only routing resources to route an internal signal to a
debugging test point.
For Logic Analyzer Interface
The LAI requires a small amount of logic to implement the multiplexing function between the signals under
test, in addition to the SLD infrastructure logic. Because no data samples are stored on the chip, the LAI
uses no memory resources.
For SignalTap II
The SignalTap II Logic Analyzer requires both logic and memory resources. The number of logic resources
used depends on the number of signals tapped and the complexity of the trigger logic. However, the amount
of logic resources that the SignalTap II Logic Analyzer uses is typically a small percentage of most designs.
A baseline configuration consisting of the SLD arbitration logic and a single node with basic triggering logic
contains approximately 300 to 400 Logic Elements (LEs). Each additional node you add to the baseline
configuration adds about 11 LEs. Compared with logic resources, memory resources are a more important
factor to consider for your design. Memory usage can be significant and depends on how you configure your
SignalTap II Logic Analyzer instance to capture data and the sample depth that your design requires for
debugging. For the SignalTap II Logic Analyzer, there is the added benefit of requiring no external equipment,
as all of the triggering logic and storage is on the chip.

Resource Estimation
The resource estimation feature for the SignalTap II Logic Analyzer and the LAI allows you to quickly judge
if enough on-chip resources are available before compiling the tool with your design.

Altera CorporationSystem Debugging Tools Overview

Send Feedback

9-5Overhead Logic
QII53027
2013.11.04

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20System%20Debugging%20Tools%20Overview%20(QII53027%202013.11.04)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Figure 9-3: Resource Estimator

Pin Usage

For SignalProbe
The ratio of the number of pins used to the number of signals tapped for the SignalProbe feature is one-to-one.
Because this feature can consume free pins quickly, a typical application for this feature is routing control
signals to spare pins for debugging.

For Logic Analyzer Interface
The ratio of the number of pins used to the number of signals tapped for the LAI is many-to-one. It can map
up to 256 signals to each debugging pin, depending on available routing resources. The control of the active
signals that are mapped to the spare I/O pins is performed via the JTAG port. The LAI is ideal for routing
data buses to a set of test pins for analysis.

For SignalTap II
Other than the JTAG test pins, the SignalTap II Logic Analyzer uses no additional pins. All data is buffered
using on-chip memory and communicated to the SignalTap II Logic Analyzer GUI via the JTAG test port.

Usability Enhancements
The SignalTap II Logic Analyzer, SignalProbe, and LAI tools can be added to your existing design with
minimal effects. With the node finder, you can find signals to route to a debugging module without making
any changes to yourHDL files. SignalProbe inserts signals directly from your post-fit database. The SignalTap
II Logic Analyzer and LAI support inserting signals from both pre-synthesis and post-fit netlists.

Incremental Compilation
All three tools allow you to find and configure your debugging setup quickly. In addition, the Quartus II
incremental compilation feature and the Quartus II incremental routing feature allow for a fast turnaround
time for your programming file, increasing productivity and enabling fast debugging closure.

Both the LAI and SignalTap II Logic Analyzer support incremental compilation. With incremental
compilation, you can add a SignalTap II Logic Analyzer instance or an LAI instance incrementally into your
placed-and-routed design. This has the benefit of both preserving your timing and area optimizations from
your existing design, and decreasing the overall compilation time when any changes are necessary during
the debugging process. With incremental compilation, you can save up to 70% compile time of a full
compilation.

Incremental Routing
SignalProbe uses the incremental routing feature. The incremental routing feature runs only the Fitter stage
of the compilation. This leaves your compiled design untouched, except for the newly routed node or nodes.
With SignalProbe, you can save as much as 90% compile time of a full compilation.

System Debugging Tools OverviewAltera Corporation

Send Feedback

QII53027
Pin Usage9-6 2013.11.04

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20System%20Debugging%20Tools%20Overview%20(QII53027%202013.11.04)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Automation Via Scripting
As another productivity enhancement, all tools in the on-chip debugging tool set support scripting via the
quartus_stp Tcl package. For the SignalTap II Logic Analyzer and the LAI, scripting enables user-defined
automation for data collection while debugging in the lab. The System Console includes a full Tcl interpreter
for scripting.

Remote Debugging
You can perform remote debugging of your system with the Quartus II software via the System Console.
This feature allows you to debug equipment deployed in the field through an existing TCP/IP connection.

There are two Application Notes available to assist you.

• Application Note 624 describes how to set up your NIOS II system to use the System Console to perform
remote debugging.

• Application Note 693 describes how to set up your Altera SoC to use the SLD tools to perform remote
debugging.

Related Information

• Application Note 624: Debugging with System Console over TCP/IP

• Application Note 693: Remote Debugging over TCP/IP for Altera SoC

Suggested On-Chip Debugging Tools for Common Debugging Features

Table 9-2: Tools for Common Debugging Features (1)

DescriptionSignalTap II Logic
Analyzer

Logic Analyzer
Interface (LAI)

SignalProbeFeature

An external logic
analyzer usedwith
the LAI has a
bigger buffer to
store more
captured data than
the SignalTap II
Logic Analyzer.
No data is
captured or stored
with SignalProbe.

—XN/ALarge Sample
Depth

Altera CorporationSystem Debugging Tools Overview

Send Feedback

9-7Automation Via Scripting
QII53027
2013.11.04

http://www.altera.com/literature/an/an624.pdf
http://www.altera.com/literature/an/an_693.pdf
mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20System%20Debugging%20Tools%20Overview%20(QII53027%202013.11.04)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

DescriptionSignalTap II Logic
Analyzer

Logic Analyzer
Interface (LAI)

SignalProbeFeature

External
equipment, such
as oscilloscopes
and mixed signal
oscilloscopes
(MSOs), can be
used with either
LAI or
SignalProbe.
When used with
the LAI, external
equipment
provides you with
access to timing
mode, which
allows you to
debug combined
streams of data.

—XXEase in
Debugging
Timing Issue

The LAI adds
minimal logic to a
design, requiring
fewer device
resources. The
SignalTap II Logic
Analyzer has little
effect on the
design, because it
is set as a separate
design partition.
SignalProbe
incrementally
routes nodes to
pins, not affecting
the design at all.

X (2)X (2)XMinimal Effect
on Logic Design

System Debugging Tools OverviewAltera Corporation

Send Feedback

QII53027
Suggested On-Chip Debugging Tools for Common Debugging Features9-8 2013.11.04

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20System%20Debugging%20Tools%20Overview%20(QII53027%202013.11.04)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

DescriptionSignalTap II Logic
Analyzer

Logic Analyzer
Interface (LAI)

SignalProbeFeature

SignalProbe
attaches
incrementally
routed signals to
previously
reserved pins,
requiring very
little recompila-
tion time to make
changes to source
signal selections.
The SignalTap II
Logic Analyzer
and the LAI can
take advantage of
incremental
compilation to
refit their own
design partitions
to decrease
recompilation
time.

X (2)X (2)XShort Compile
and Recompile
Time

The SignalTap II
Logic Analyzer
offers triggering
capabilities that
are comparable to
commercial logic
analyzers.

XN/AN/ATriggering
Capability

No additional
output pins are
required with the
SignalTap II Logic
Analyzer. Both the
LAI and
SignalProbe
require I/O pin
assignments.

X——I/O Usage

Altera CorporationSystem Debugging Tools Overview

Send Feedback

9-9Suggested On-Chip Debugging Tools for Common Debugging Features
QII53027
2013.11.04

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20System%20Debugging%20Tools%20Overview%20(QII53027%202013.11.04)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

DescriptionSignalTap II Logic
Analyzer

Logic Analyzer
Interface (LAI)

SignalProbeFeature

The SignalTap II
Logic Analyzer
can acquire data at
speeds of over 200
MHz. The same
acquisition speeds
are obtainable
with an external
logic analyzer used
with the LAI, but
might be limited
by signal integrity
issues.

X—N/AAcquisition
Speed

A FPGA design
with the LAI
requires an active
JTAG connection
to a host running
the Quartus II
software.
SignalProbe and
SignalTap II do
not require a host
for debugging
purposes.

X—XNo JTAG
Connection
Required

System Debugging Tools OverviewAltera Corporation

Send Feedback

QII53027
Suggested On-Chip Debugging Tools for Common Debugging Features9-10 2013.11.04

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20System%20Debugging%20Tools%20Overview%20(QII53027%202013.11.04)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

DescriptionSignalTap II Logic
Analyzer

Logic Analyzer
Interface (LAI)

SignalProbeFeature

The SignalTap II
Logic Analyzer
logic is completely
internal to the
programmed
FPGA device. No
extra equipment is
required other
than a JTAG
connection from a
host running the
Quartus II
software or the
stand-alone
SignalTap II Logic
Analyzer software.
SignalProbe and
the LAI require
the use of external
debugging
equipment, such
as multimeters,
oscilloscopes, or
logic analyzers.

X——No External
Equipment
Required

Notes to Table:

1. • X indicates the recommended tools for the feature.

• — indicates that while the tool is available for that feature, that tool might not give the best results.

• N/A indicates that the feature is not applicable for the selected tool.

2. When used with incremental compilation.

About Stimulus-Capable Tools
The In-System Memory Content Editor, In-System Sources and Probes, and Virtual JTAG interface enable
you to use the JTAG interface as a general-purpose communication port. Though all three tools can be used
to achieve the same results, there are some considerations that make one tool easier to use in certain
applications than others. In-System Sources and Probes is ideal for toggling control signals. The In-System
Memory Content Editor is useful for inputting large sets of test data. Finally, the Virtual JTAG interface is
well suited for more advanced users who want to develop their own customized JTAG solution.

System Console provides system-level debugging at a transaction level, such as with Avalon-MM slave or
Avalon-ST interfaces. You can communicate to a chip through JTAG, virtual peripheral interface (VPI) for
simulation models, and TCP/IP protocols. System Console uses a Tcl interpreter to communicate with
hardware modules that you have instantiated into your design.

Altera CorporationSystem Debugging Tools Overview

Send Feedback

9-11About Stimulus-Capable Tools
QII53027
2013.11.04

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20System%20Debugging%20Tools%20Overview%20(QII53027%202013.11.04)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

In-System Sources and Probes
In-System Sources and Probes is an easy way to access JTAG resources to both read and write to your design.
You can start by instantiating a megafunction into your HDL code. The megafunction contains source ports
and probe ports for driving values into and sampling values from the signals that are connected to the ports,
respectively. Transaction details of the JTAG interface are abstracted away by the megafunction. During
runtime, a GUI displays each source and probe port by instance and allows you to read from each probe
port and drive to each source port. The GUI makes this tool ideal for toggling a set of control signals during
the debugging process.

Push Button Functionality
A good application of In-System Sources and Probes is to use the GUI as a replacement for the push buttons
and LEDs used during the development phase of a project. Furthermore, In-System Sources and Probes
supports a set of scripting commands for reading and writing using quartus_stp. When used with the
Tk toolkit, you can build your own graphical interfaces. This feature is ideal for building a virtual front panel
during the prototyping phase of the design.

In-System Memory Content Editor
The In-System Memory Content Editor allows you to quickly view and modify memory content either
through a GUI interface or through Tcl scripting commands. The In-System Memory Content Editor works
by turning single-port RAM blocks into dual-port RAM blocks. One port is connected to your clock domain
and data signals, and the other port is connected to the JTAG clock and data signals for editing or viewing.

Generate Test Vectors
Because you can modify a large set of data easily, a useful application for the In-System Memory Content
Editor is to generate test vectors for your design. For example, you can instantiate a free memory block,
connect the output ports to the logic under test (using the same clock as your logic under test on the system
side), and create the glue logic for the address generation and control of the memory. At runtime, you can
modify the contents of the memory using either a script or the In-System Memory Content Editor GUI and
perform a burst transaction of the data contents in the modified RAM block synchronous to the logic being
tested.

Virtual JTAG Interface Megafunction
The Virtual JTAG Interface megafunction provides the finest level of granularity for manipulating the JTAG
resource. This megafunction allows you to build your own JTAG scan chain by exposing all of the JTAG
control signals and configuring your JTAG Instruction Registers (IRs) and JTAG Data Registers (DRs).
During runtime, you control the IR/DR chain through a Tcl API, or with System Console. This feature is
meant for users who have a thorough understanding of the JTAG interface and want precise control over
the number and type of resources used.

System Console
System Console is a framework that you can launch from the Quartus II software to start services for
performing various debugging tasks. System Console provides you with Tcl scripts and a GUI to access the
Qsys system integration tool to perform low-level hardware debugging of your design, as well as identify a
module by its path, and open and close a connection to a Qsys module. You can access your design at a
system level for purposes of loading, unloading, and transferring designs to multiple devices.

Test Signal Integrity
SystemConsole also allows you to access commands that allow you to control how you generate test patterns,
as well as verify the accuracy of data generated by test patterns. You can use JTAG debug commands in

System Debugging Tools OverviewAltera Corporation

Send Feedback

QII53027
In-System Sources and Probes9-12 2013.11.04

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20System%20Debugging%20Tools%20Overview%20(QII53027%202013.11.04)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

System Console to verify the functionality and signal integrity of your JTAG chain. You can test clock and
reset signals.

Board Bring-Up and Verification
You can use System Console to access programmable logic devices on your development board, perform
board bring-up, and perform verification. You can also access software running on a Nios II or Altera SoC
processor, as well as access modules that produce or consume a stream of bytes.

Test Link Signal Integrity with Transceiver Toolkit
Transceiver Toolkit runs from the System Console framework, and allows you to run automatic tests of your
transceiver links for debugging and optimizing your transceiver designs. You can use the Transceiver Toolkit
GUI to set up channel links in your transceiver devices, and then automatically run EyeQ and Auto Sweep
testing to view a graphical representation of your test data.

Document Revision History

Table 9-3: Document Revision History

ChangesVersionDate

Dita conversion. Added link to Remote
Debugging over TCP/IP for Altera SoC
Application Note.

13.1.0November 2013

Maintenance release.12.0.0June 2012

Maintenance release. Changed to new
document template.

10.0.2November 2011

Maintenance release. Changed to new
document template.

10.0.1December 2010

Initial release10.0.0July 2010

For previous versions of the Quartus II Handbook, refer to the Quartus II Handbook Archive.

Related Information
Quartus II Handbook Archive

Altera CorporationSystem Debugging Tools Overview

Send Feedback

9-13Board Bring-Up and Verification
QII53027
2013.11.04

http://www.altera.com/literature/lit-qts_archive.jsp
mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20System%20Debugging%20Tools%20Overview%20(QII53027%202013.11.04)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

10Analyzing and Debugging Designs with the System
Console

2013.11.04

QII53028 Subscribe Send Feedback

About the System Console
The System Console facilitates visibility into your system to enable faster debugging, and faster time to
market for your FPGA. You can access the hardware modules instantiated in your FPGA. System Console
andQsys provide the framework and baseline functionality that you need to compose your own sophisticated
instrumentation and verification solution.

You can use the System Console for the following tasks:

• To start, stop, or step a Nios II or SoC processor.
• To read or write Avalon Memory-Mapped slaves using special masters.
• To sample the Qsys system clock and system reset signals.
• To run JTAG loopback tests to analyze board noise problems.
• To shift arbitrary instruction register and data register values to instantiated system level debug (SLD)

nodes.
• To write or source Tcl macros to deploy your verification solutions efficiently.
• To create test platforms for streaming peripherals.
• To perform low level tasks such as board bring-up and device driver debugging.

Related Information
System Console Online Training

System Level Debugging Architecture
The System Console is an API that works with instantiated debug IP, such as the JTAG Master component,
to send commands and receive data. Applications, such as the Transceiver Toolkit, run on the SystemConsole
framework.

ISO
9001:2008
Registered

© 2013 Altera Corporation. All rights reserved. ALTERA, ARRIA, CYCLONE, HARDCOPY, MAX, MEGACORE, NIOS, QUARTUS and STRATIX words
and logos are trademarks of Altera Corporation and registered in the U.S. Patent and Trademark Office and in other countries. All other
words and logos identified as trademarks or service marks are the property of their respective holders as described at
www.altera.com/common/legal.html. Altera warrants performance of its semiconductor products to current specifications in accordance with
Altera's standard warranty, but reserves the right to make changes to any products and services at any time without notice. Altera assumes
no responsibility or liability arising out of the application or use of any information, product, or service described herein except as expressly
agreed to in writing by Altera. Altera customers are advised to obtain the latest version of device specifications before relying on any published
information and before placing orders for products or services.

www.altera.com

101 Innovation Drive, San Jose, CA 95134

https://www.altera.com/servlets/subscriptions/alert?id=QII53028
mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20(QII53028%202013.11.04)%20Analyzing%20and%20Debugging%20Designs%20with%20the%20System%20Console&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.
http://www.altera.com/education/training/courses/OEMB1117
http://www.altera.com/support/devices/reliability/certifications/rel-certifications.html
http://www.altera.com/support/devices/reliability/certifications/rel-certifications.html
http://www.altera.com/support/devices/reliability/certifications/rel-certifications.html

Figure 10-1: System Level Debugging Architecture

System Console Flow
A high-level flow for the System Console comprises the following:

Figure 10-2: System Console Flow

Analyzing and Debugging Designs with the System ConsoleAltera Corporation

Send Feedback

QII53028
System Console Flow10-2 2013.11.04

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Analyzing%20and%20Debugging%20Designs%20with%20the%20System%20Console%20(QII53028%202013.11.04)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Related Information

• Qsys Components on page 10-6

• Starting System Console on page 10-8

• Locating Available Services on page 10-9

• Opening and Closing Services on page 10-10

Use-Cases for the System Console
You can leverage the SystemConsole formultiple debugging use-cases. There are tutorials, application notes,
and design examples to aid in this evaluation.

• Board bring-up
• Remote debug over TCP/IP
• Test the signal integrity of serial links with the Transceiver Toolkit
• Debug memory interfaces with the External Memory Interface Toolkit

Related Information

• Debugging Transceiver Links Documentation

• External Memory Interface Documentation

• Application Note 693: Remote Debugging over TCP/IP for Altera SoC

• Application Note 624: Debugging with System Console over TCP/IP

• Board Bring-Up with the System Console Tutorial on page 10-11

System Console GUI
The System Console GUI consists of a main window with four separate panes:

• The System Explorer pane allows you to view a hierarchy of the System Console virtual file system in
your design, including connections, devices, designs, design instances, and scripts.

• TheTools pane allows you to launch tools such as theGDB Server Control Panel and Transceiver Toolkit.
• The Tcl Console allows you to source scripts, set variables, and write procedures.
• The Messages pane displays status, warning, and error messages.

Altera CorporationAnalyzing and Debugging Designs with the System Console

Send Feedback

10-3Use-Cases for the System Console
QII53028
2013.11.04

http://www.altera.com/literature/hb/qts/qts_qii53029.pdf
http://www.altera.com/literature/hb/external-memory/emi.pdf
http://www.altera.com/literature/an/an693.pdf
http://www.altera.com/literature/an/an624.pdf
mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Analyzing%20and%20Debugging%20Designs%20with%20the%20System%20Console%20(QII53028%202013.11.04)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Figure 10-3: System Console GUI

Related Information

• System Console Online Help

• Introduction to Tcl Online Training

System Explorer Pane
The System Explorer pane contains the following information about the system being debugged:

• The connections folder displays information about the debug cables which are visible to the System
Console.

• The designs folder displays information about Quartus II project designs which have been loaded into
the System Console.

• The devices folder contains information about each device connected to the System Console.
• The design_instances folder contains design instances.
• The scripts folder stores scripts for easy execution.

Analyzing and Debugging Designs with the System ConsoleAltera Corporation

Send Feedback

QII53028
System Explorer Pane10-4 2013.11.04

http://quartushelp.altera.com/current/mergedProjects/program/syscon/syscon_about.htm
http://www.altera.com/education/training/courses/ODSW1180
mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Analyzing%20and%20Debugging%20Designs%20with%20the%20System%20Console%20(QII53028%202013.11.04)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

You will be doing most of your work within the devices folder. Within the devices folder is a folder for each
device currently connected to the SystemConsole. Each device folder contains a (link) folder and sometimes
contains a (files) folder.

The (link) folder shows debug agents (and other hardware) which the System Console is able to access,
arranged by connection type. The (files) folder contains information about the design files loaded from the
Quartus II project for the device. Folders under the design_instances folder are linked to the appropriate
(files) node.

Figure 10-4: System Explorer Pane

• The Figure shows that the EP4SGX230 folder contains a (link) folder. The link folder contains a JTAG
folder. The JTAG folder contains folders that describe the debug pipes and agents that are connected to
the EP4SGX230 device via a JTAG connection.

• The (files) folder contains information about the design files loaded from the Quartus II project for the
device. Instances within the design_instances folder are linked to the corresponding files in the (files)
folder.

• Folders that have a context menu available show a small context menu icon. Right-click these folders to
view the context menu.

• Folders that have informational messages available display a small informational message icon. Hover
over these folders to see the informational message.

• Folders corresponding to debug agents have a clock status icon. There is a green clock signal icon if the
clock is running or a red clock signal icon if the clock is not running.

Setting Up the System Console
Set up the System Console according to the hardware available in your system. You can access available
debug IP on your system with the System Console. The debug IP allows you to access the running state of
your system.

The System Console Examples provide you with detailed examples of using the System Console with debug
IP.

Altera CorporationAnalyzing and Debugging Designs with the System Console

Send Feedback

10-5Setting Up the System Console
QII53028
2013.11.04

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Analyzing%20and%20Debugging%20Designs%20with%20the%20System%20Console%20(QII53028%202013.11.04)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Related Information

• On-chip Debugging Design Examples Website
This page contains example design files that you can download.

• System Console Examples on page 10-11

Qsys Components
You can use the System Console to help you debug Qsys systems. The System Console communicates with
debug IP in your system design. You can instantiate debug IP cores using Qsys or the MegaWizard Plug-In
Manager.

The following table describes some of the IP cores you can use with the SystemConsole to debug your system.
When connected to the SystemConsole, these components enable you to send commands and receive data.(1)

Table 10-1: Qsys Components for Communication with the System Console

Component Interface Types for DebuggingComponent Name

Components that include an Avalon® Memory-
Mapped (Avalon-MM) slave interface. The JTAG
debug module can also control the Nios II processor
for debug functionality, including starting, stopping,
and stepping the processor.

Nios® II processor with JTAG debug enabled

Components that include an Avalon-MM slave
interface.

JTAG to Avalon master bridge

Provides the same functionality as JTAG to Avalon
master bridge, but is faster.

USB Debug Master

Components that include an Avalon-ST interface.Avalon Streaming (Avalon-ST) JTAG Interface

The JTAG UART is an Avalon-MM slave device that
can be used in conjunction with the System Console
to send and receive bytestreams.

JTAG UART

For more information, refer to AN624: Debugging
with SystemConsole over TCP/IP andAN693: Remote
Debugging over TCP/IP for Altera SoC.

TCP/IP

Provides Tcl support for ISSP.In-System Sources and Probes (ISSP)

The following figure shows examples of interfaces of the components that the System Console can use.

(1) The System Console can also send and receive bytestreams from any system-level debugging (SLD) node in
Qsys components provided by Altera, a custom component, or part of your Quartus II project; however, this
approach requires detailed knowledge of the JTAG commands.

Analyzing and Debugging Designs with the System ConsoleAltera Corporation

Send Feedback

QII53028
Qsys Components10-6 2013.11.04

http://www.altera.com/support/examples/on-chip-debugging/on-chip-debugging.html
mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Analyzing%20and%20Debugging%20Designs%20with%20the%20System%20Console%20(QII53028%202013.11.04)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Figure 10-5: Example Interfaces (Paths) the System Console Uses to Send Commands

Connections You Make
in Qsys

Transparent Connections

JTAG Logic
(Quartus II)

JTAG TAP
Controller
(Hard IP)

Virtual
JTAG Hub
(Soft IP)

JTAG Avalon Master Bridge

Virtual JTAG
Interface

Avalon-MM
Master

Nios II Processor

Virtual JTAG
Interface

Avalon-MM
Master

Avalon-ST JTAG Interface

Virtual JTAG
Interface

Avalon-ST
Source and

Sink

JTAG UART

Legacy
JTAG

Interface

Avalon-MM
Slave

User Component

Avalon-MM
Slave

User Component

Avalon-ST
Source
and Sink

or

To
Host PC
Running

System Console

The System Console provides many different types of services. Different modules can provide the same type
of service. For example, both theNios II processor and the JTAG toAvalonBridgemaster provide themaster
service; consequently, you can use the master commands to access both of these modules.

If your system includes a Nios II/f core with a data cache, it may complicate the debugging process. If you
suspect the Nios II/f core writes to memory from the data cache at nondeterministic intervals; thereby,
overwriting data written by the System Console, you can disable the cache of the Nios II/f core while
debugging.

Related Information

• System Design with Qsys Documentation

• App Note 624: Debugging with System Console over TCP/IP

• App Note 693: Remote Debugging over TCP/IP for Altera SoC

• Nios II Processor website

• Embedded Peripherals IP Documentation

• Avalon Verification IP Suite Documentation

Altera CorporationAnalyzing and Debugging Designs with the System Console

Send Feedback

10-7Qsys Components
QII53028
2013.11.04

http://www.altera.com/literature/hb/qts/qsys_section.pdf
http://www.altera.com/literature/an/an624.pdf
http://www.altera.com/literature/an/an693.pdf
http://www.altera.com/literature/lit-nio2.jsp
http://www.altera.com/literature/ug/ug_embedded_ip.pdf
http://www.altera.com/literature/ug/ug_avalon_verification_ip.pdf
mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Analyzing%20and%20Debugging%20Designs%20with%20the%20System%20Console%20(QII53028%202013.11.04)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

• Embedded Peripherals IP Documentation

• Virtual JTAG (sld_virtual_jtag) Megafunction Documentation

• System Console Flow on page 10-2

Starting System Console
There are three different ways to launch the System Console.

Related Information
System Console Flow on page 10-2

Starting System Console from Quartus II
To start System Console from Quartus II, do the following:

• On the Tools menu, point to System Console, and then click System Console.

Starting System Console from Qsys
To start System Console from Qsys, do the following:

• On the Tools menu, click System Console.

Starting System Console from Nios II Command Shell
To start the System Console from a Nios II command shell, follow these steps:

1. On the Windows Start menu, point to All Programs, then Altera, then Nios II EDS <version>, and then
click Nios II <version> Command Shell.

2. To start the System Console, type the following command:

system-console

You can customize your System Console environment by adding commands to the configuration file called
system_console_rc.tcl. You can locate this file in either of the following locations:

• <quartus_install_dir> /sopc_builder/system_console_macros/system_console_rc.tcl, known as the
global configuration file, which affects all users of the system

• <$HOME> /system_console/system_console_rc.tcl, known as the user configuration file, which only
affects the owner of that home directory

On startup, the System Console automatically runs any Tcl commands in these files. The commands in the
global configuration file run first, followed by the commands in the user configuration file.

Services for System Console
The System Console provides extensive portfolios of services for various applications, such as real-time
on-chip control and debugging, and system measurement. The System Console functions by running Tcl
commands. When you interact with the Tcl console in the System Console, you have general commands
related to finding and accessing instances of those services. Each service type has functions that are unique
to that service.

Analyzing and Debugging Designs with the System ConsoleAltera Corporation

Send Feedback

QII53028
Starting System Console10-8 2013.11.04

http://www.altera.com/literature/ug/ug_embedded_ip.pdf
http://www.altera.com/literature/ug/ug_virtualjtag.pdf
mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Analyzing%20and%20Debugging%20Designs%20with%20the%20System%20Console%20(QII53028%202013.11.04)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Table 10-2: System Console Example Applications

Services UsedApplication

device, jtag_debug, sldBoard Bring-Up

processor, elf, bytestream, masterProcessor Debug

bytestream, master, isspActive retrieval of dynamic information

marker, designQuery static design information

monitor, master, dashboardSystem Monitoring

transceiver_reconfig_analog, alt_xcvr_reconfig_dfe,
alt_xcvr_reconfig_eye_viewer

Transceiver Toolkit Direct PHY Control

transceiver_channel_rx, transceiver_channel_tx,
transceiver_debug_link

Transceiver Toolkit System Level Control

Locating Available Services
The System Console uses a virtual file system to organize the available services, which is similar to the /
dev location on Linux systems. Instances of services are referred to by their unique service path in
the file system. You can retrieve service paths for a particular service with the command
get_service_paths <service-type>.

Table 10-3: Example of Locating a Service Path

• Locating the Master Service

set m_path [lindex [get_service_paths master] 0]

• set allows you to set the value of a variable.
• m_path is a variable name.
• lindex allows you to retrieve an element from a list.
• get_service_paths returns a list of service instances by type.
• master is a service type that accesses memory-mapped slaves.
• 0 is the 0th element of the list of the service instance returned.

System Console commands require service paths to identify the service instance you want to access. The
paths for different components can change between runs of the tool and between versions. Use
get_service_paths and similar commands to obtain service paths rather then hard coding them into
your Tcl scripts.

Most System Console service instances are automatically discovered when you start the System Console.
The System Console automatically scans for all JTAG and USB-based service instances and retrieves their
service paths. Some other services, such as those connected by TCP/IP, are not automatically discovered.
You can use the add_service Tcl command to inform the System Console about those services.

Altera CorporationAnalyzing and Debugging Designs with the System Console

Send Feedback

10-9Locating Available Services
QII53028
2013.11.04

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Analyzing%20and%20Debugging%20Designs%20with%20the%20System%20Console%20(QII53028%202013.11.04)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Related Information
System Console Flow on page 10-2

Opening and Closing Services
After you have a service path to a particular service instance, you can access the service for use.

The open_service command tells the System Console to start using a particular service instance. The
open_service command works on every service type. The open_service command claims a service
instance for exclusive use.

Table 10-4: Example of Opening a Service

• Opening the Master Service

open_service master $m_path

• open_service master opens the master service instance.
• $m_path is the name of a variable.

The open_service command does not tell the System Console which part of a service you are interested
in. As such, service instances that you open are not safe for shared use among multiple users.

Theclaim_service command tells the SystemConsole to start accessing a particular portion of a service
instance. For example, if you use the master service to access memory, then use claim_service to tell
the System Console that you only want to access the address space between 0x0 and 0x1000. The System
Console then allows other users to access other memory ranges and denies them access to your claimed
memory range. The claim_service command returns a newly created service path that you can use to
access your claimed resources.

Not all services support the claim_service command.Note:

You can access a service after you open or claim it. When you finish accessing a service instance, use the
close_service command to direct the System Console to make resources available.

Table 10-5: Example of Closing a Service

• Closing the Master Service

close_service master $m_path

• close_service master closes the master service.
• $m_path is the name of a variable.

Related Information
System Console Flow on page 10-2

Analyzing and Debugging Designs with the System ConsoleAltera Corporation

Send Feedback

QII53028
Opening and Closing Services10-10 2013.11.04

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Analyzing%20and%20Debugging%20Designs%20with%20the%20System%20Console%20(QII53028%202013.11.04)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Using the System Console
The Quartus II software expands the framework of the System Console by allowing you to start services for
performing different types of tasks.

To use the System Console commands, you must connect to a system with a programming cable and with
the proper debugging IP.

Interactive Help
Typing help help into the Tcl Console lists all available commands. Typing help <command name>
provides the syntax of individual commands. The System Console provides command completion if you
type the beginning letters of a command and then press the Tab key.

The SystemConsole interactive help commands only provide help for enabled services; consequently, typing
help help does not display help for commands supplied by disabled plug-ins.

System Console Examples
There are examples for performing board bring-up, creating a simple dashboard, loading and linking a
design, and programming a Nios II processor. The Debugging_using_SystemConsole.zip file contains
design files for the board bring-up example. The Nios II Ethernet Standard zip files contain the design files
for the Nios II processor example.

The instructions for these examples assume that you are familiar with the Quartus II software, Tcl
commands, and Qsys.

Note:

Related Information

• On-Chip Debugging Design Examples Website
Contains the design files for the example designs that you can download.

• Setting Up the System Console on page 10-5

Board Bring-Up with the System Console Tutorial
You can perform low-level hardware debugging of Qsys systems with the System Console. Debug systems
that include IP cores instantiated in your Qsys system or perform initial bring-up of your PCB. This board
bring-up example uses a NEEK board (Cyclone III) and USB-Blaster cable. You can use different hardware
for this tutorial, but additional setup time is required to change device and pin assignments.

Related Information

• Faster Board Bring-Up with System Console Demo Video

• Use-Cases for the System Console on page 10-3

• Board Bring-Up Commands on page 10-35

Altera CorporationAnalyzing and Debugging Designs with the System Console

Send Feedback

10-11Using the System Console
QII53028
2013.11.04

http://www.altera.com/support/examples/on-chip-debugging/on-chip-debugging.html
http://www.altera.com/products/software/quartus-ii/subscription-edition/qsys/systems/qts-systems-console.html?GSA_pos=7&WT.oss_r=1&WT.oss=system%20console%20video
mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Analyzing%20and%20Debugging%20Designs%20with%20the%20System%20Console%20(QII53028%202013.11.04)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Board Bring-Up Flow
The following figure shows the board bring-up flow for this tutorial.

Figure 10-6: Board Bring-Up Flow

Related Information

• Setting Up the Board Bring-Up Design Example on page 10-13

• Verifying JTAG Connectivity on page 10-14

• Verifying Clock and Reset Signals on page 10-15

• Verifying Memory and Other Peripheral Interfaces on page 10-16

Qsys Modules
Figure 10-7: Qsys Modules for Board Bring-up Example

Analyzing and Debugging Designs with the System ConsoleAltera Corporation

Send Feedback

QII53028
Board Bring-Up Flow10-12 2013.11.04

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Analyzing%20and%20Debugging%20Designs%20with%20the%20System%20Console%20(QII53028%202013.11.04)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

The Qsys design for this example includes the following modules:

• JTAG Avalon-MM—Provides a connection between your development board and the Qsys system via
JTAG interface.

• On-chip memory—Simplest type of memory for use in an FPGA-based embedded system. The memory
is implemented on the FPGA; consequently, external connections on the circuit board are not necessary.

• Parallel I/O (PIO) module—Provides a memory-mapped interface between an Avalon-MM slave port
and general purpose I/O ports.

• ChecksumAccelerator—Calculates the checksumof a data buffer inmemory. TheChecksumAccelerator
consists of the following:

• Checksum Calculator (checksum_transform.v)
• Read Master (slave.v)
• Checksum Controller (latency_aware_read_master.v)

How the Qsys Modules Work
The base address of thememory buffer and data length passes to theChecksumController via theAvalon-MM
master. The Read Master continuously reads data from memory and passes the data to the Checksum
Calculator. When the checksum calculations are complete, the Checksum Calculator issues a valid signal
along with the checksum result to the Checksum Controller. The Checksum Controller sets the DONE bit
in the status register and also asserts the interrupt signal. You should only read the result from theChecksum
Controller when the DONE bit and interrupt signal are asserted.

Setting Up the Board Bring-Up Design Example
To load the design example into the Quartus II software and program your device, follow these steps:

1. Extract the Debugging_using_SystemConsole.zip file to your local hard drive.
2. Open Systemconsole_design_example.qpf from step 1.
3. Verify the device name in the Project Navigator, Cyclone III: EP3C25, matches your device. If it does

not match, change the pin assignments (LED, clock, and reset pins) in the Systemcon-
sole_design_example.qsf file.

4. Compile the design.

a. Right-click Compile Design under Task and click Start.

5. Program your device.

a. On the Tools menu, click Programmer.
b. Click Hardware Setup.
c. Click the Hardware Settings tab.
d. Under Currently selected hardware, click USB-Blaster, and click Close.

If you do not see the USB-Blaster option, then your device was not detected. Verify that the
USB-Blaster driver is installed, theNEEKboard is powered off, and theUSB-Blaster connecting
wire is intact.

Note:

This design example has been validated using a USB-Blaster cable. If you do not have a USB-Blaster
cable and you are using a different cable type, then select your cable from the Currently selected
hardware options.

e. Click Auto Detect, select EP3C25 device.
f. Double-click your device under File, browse to your project folder from step 1 and open

Systemconsole_design_example.sof.

Altera CorporationAnalyzing and Debugging Designs with the System Console

Send Feedback

10-13How the Qsys Modules Work
QII53028
2013.11.04

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Analyzing%20and%20Debugging%20Designs%20with%20the%20System%20Console%20(QII53028%202013.11.04)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

g. Turn on the Program/Configure option.
h. Click Start.
i. Close the Programmer.

6. Open Qsys.

a. On the Tools menu, click Qsys.

7. Open the Systemconsole_design_example.qsys file in your project folder from step 1.

The design takes about two minutes to load.Note:

Related Information
Board Bring-Up Flow on page 10-12

Verifying JTAG Connectivity
To debug any design with the System Console, begin by verifying JTAG connectivity.

1. Open System Console. From Qsys, under the Tools menu, click System Console.
2. In the Tcl Console, type the following:

pwd

System Console returns the current working directory.Note:

3. Type the following:

get_service_types

System Console returns the available service types.Note:

4. Find the available paths to the jtag_debug service. Type the following:

get_service_paths jtag_debug

5. Select a service path. Type the following:

set jtag_debug_path [lindex [get_service_paths jtag_debug] 0]

6. Open the service. Type the following:

open_service jtag_debug $jtag_debug_path

7. Verify the JTAG chain. Type the following:

jtag_debug_loop $jtag_debug_path [list 1 2 3 4 5 6 7 8 9 10]

Analyzing and Debugging Designs with the System ConsoleAltera Corporation

Send Feedback

QII53028
Verifying JTAG Connectivity10-14 2013.11.04

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Analyzing%20and%20Debugging%20Designs%20with%20the%20System%20Console%20(QII53028%202013.11.04)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Sends a specified list of bytes through the loopback debug node and returns a list of bytes in the
order received.

Note:

8. Issue a reset request to the system through the master_reset output of the JTAG to Avalon Master Bridge.
Type the following:

jtag_debug_reset_system $jtag_debug_path

Figure 10-8: Master Reset of the JTAG to Avalon Master Bridge

Figure 10-9: Verifying JTAG Connectivity

Related Information
Board Bring-Up Flow on page 10-12

Verifying Clock and Reset Signals
To verify clock and reset signals, follow these steps:

1. Verify that the clock is toggling.

Altera CorporationAnalyzing and Debugging Designs with the System Console

Send Feedback

10-15Verifying Clock and Reset Signals
QII53028
2013.11.04

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Analyzing%20and%20Debugging%20Designs%20with%20the%20System%20Console%20(QII53028%202013.11.04)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

• Type the following:

jtag_debug_sample_clock $jtag_debug_path

Repeat several times. System Console returns a zero and then a one when the clock toggles.
• Or type the following:

jtag_debug_sense_clock

System Console returns a one if the clock has ever toggled.

2. Test the reset signal. Type the following:

jtag_debug_sample_reset $jtag_debug_path

3. Close jtag_debug service. Type the following:

close_service jtag_debug $jtag_debug_path

Figure 10-10: Verifying Clock and Reset

Related Information
Board Bring-Up Flow on page 10-12

Verifying Memory and Other Peripheral Interfaces
The Avalon-MM service accesses memory-mapped slaves via a suitable Avalon-MM master, which can be
controlled by the host. You can use Tcl commands to read and write to memory with a master service.
Master services are provided by System Console master components such as the JTAG Avalon master.

Related Information
Board Bring-Up Flow on page 10-12

Analyzing and Debugging Designs with the System ConsoleAltera Corporation

Send Feedback

QII53028
Verifying Memory and Other Peripheral Interfaces10-16 2013.11.04

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Analyzing%20and%20Debugging%20Designs%20with%20the%20System%20Console%20(QII53028%202013.11.04)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Locating and Opening the Master Service

1. Select the master service type and check for available service paths. Type the following:

get_service_paths master

2. Set the master service path. Type the following:

set master_service_path [lindex [get_service_paths master] 0]

3. Open the master service. Type the following:

open_service master $master_service_path

Avalon-MM Slaves
The address range for every Qsys component is specified under the Address Map tab. These addresses are
used by the Avalon-MM master to communicate with slaves.

Register mapping for all Altera components is specified in their respective Data Sheets.

Figure 10-11: Address Map

Related Information
Data Sheets Website

Testing the PIO component
The PIO connects to the LEDs of the Cyclone III board. Test if this component is operating properly by
forcing values to it with the Avalon-MM master.

Figure 10-12: Register Map for the PIO Core

Altera CorporationAnalyzing and Debugging Designs with the System Console

Send Feedback

10-17Locating and Opening the Master Service
QII53028
2013.11.04

http://www.altera.com/literature/lit-ds.jsp
mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Analyzing%20and%20Debugging%20Designs%20with%20the%20System%20Console%20(QII53028%202013.11.04)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

1. Write to memory locations of the PIO component.

a. Type the following:

master_write_8 $master_service_path 0x0 0x7

To read back the register value, type the following:

master_read_8 $master_service_path 0x0 0x1

Note:

b. Type the following:

master_write_8 $master_service_path 0x0 0x2

c. Type the following:

master_write_8 $master_service_path 0x0 0xe

d. Type the following:

master_write_8 $master_service_path 0x0 0x7

Observe the LEDs turn on and off as you execute these Tcl commands. The LED is on if the register value
is zero and off if the register value is one. LED 0, LED 1, and LED 2 connect to the PIO. LED 3 connects to
the interrupt signal of the Checksum Accelerator.

Figure 10-13: Verifying Clock and Reset Signals

Testing On-chip Memory
Test the memory by using a recursive function that writes to incrementing memory addresses.

Analyzing and Debugging Designs with the System ConsoleAltera Corporation

Send Feedback

QII53028
Testing On-chip Memory10-18 2013.11.04

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Analyzing%20and%20Debugging%20Designs%20with%20the%20System%20Console%20(QII53028%202013.11.04)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

1. Run the design example Tcl script. Type the following:

source set_memory_values.tcl

Figure 10-14: Testing On-chip Memory

Testing the Checksum Accelerator
The Checksum Accelerator calculates the checksum of a data buffer in memory. It calculates the value for
a specified memory buffer, sets the DONE bit in the status register, and asserts the interrupt signal. You
should only read the result from the controller when both the DONE bit and the interrupt signal are asserted.
The host should assert the interrupt enable control bit in order to check the interrupt signal.

Figure 10-15: Register Map for Checksum Component

1. Pass base address of the memory buffer and data length to the Checksum Accelerator.

a. Type the following:

master_write_32 $master_service_path 0x24 0x80

b. Type the following:

master_write_32 $master_service_path 0x2C 0x20

2. Write clear to status and control registers.

Altera CorporationAnalyzing and Debugging Designs with the System Console

Send Feedback

10-19Testing the Checksum Accelerator
QII53028
2013.11.04

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Analyzing%20and%20Debugging%20Designs%20with%20the%20System%20Console%20(QII53028%202013.11.04)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Type the following:

master_write_32 $master_service_path 0x20 0x0

a.

b. Type the following:

master_write_32 $master_service_path 0x38 0x1

3. Write Go to the control register. Type the following:

master_write_32 $master_service_path 0x38 0x8

4. Cross check if the checksum DONE bit is set. Type the following:

master_read_32 $master_service_path 0x20 0x1

5. Is the DONE bit set?

• If yes, check the result. Type the following:

master_read_16 $master_service_path 0x3C 0x1

You are finished with the Board Bring-Up Design Example.
• If the result is zero and the JTAG chain works properly, the clock and reset signals work properly,

and the memory works properly, then the problem is the Checksum Accelerator component.

6. Confirm if the DONE bit in the status register (bit 0) and interrupt signal are asserted.

a. Type the following:

master_read_32 $master_service_path 0x20 0x1

• Check DONE bit should return a one.

b. Type the following:

master_write_32 $master_service_path 0x38 0x18

c. Check the Control Enable to see the interrupt signal. LED 3 (MSB) should be off. This indicates the
interrupt signal is asserted.

• You have narrowed down the problem to the data path. View the RTL to check the data path.

7. Open the Checksum_transform.v file from your project folder.

• <unzip dir>/Debugging_using_SystemConsole/ip/checksum_accelerator/checksum_accelerator.v

8. Notice that the data_out signal is grounded, uncommented line 87 and comment line 88. Fix the problem.
9. Save the file and regenerate the Qsys system.
10. Re-compile the design and reprogram your device.
11. Redo the above steps, starting with “Verifying Memory and Other Peripheral Interfaces” or run the Tcl

script included with this design example.

Analyzing and Debugging Designs with the System ConsoleAltera Corporation

Send Feedback

QII53028
Testing the Checksum Accelerator10-20 2013.11.04

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Analyzing%20and%20Debugging%20Designs%20with%20the%20System%20Console%20(QII53028%202013.11.04)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

• Type the following:

source set_memory_and_run_checksum.tcl

Figure 10-16: Checksum File

Creating a Simple Dashboard Example
The following shows how to create a simple dashboard:

1. Create a Tcl file inside $HOME/system_console/scripts and name it dashboard_example.tcl.
2. Open the System Console from the command line by typing system-console. You should now see

the System Console GUI, including the System Explorer.
3. Add the following lines to your Tcl file:

namespace eval dashboard_example {

set dash [add_service dashboard dashboard_example
"Dashboard Example" "Tools/Example"]

dashboard_set_property $dash self developmentMode true

dashboard_add $dash mylabel label self

dashboard_set_property $dash mylabel text "Hello World!"

dashboard_add $dash mybutton button self

dashboard_set_property $dash mybutton text "Start Count"

dashboard_set_property $dash mybutton onClick
{::dashboard_example::start_count 0}

dashboard_set_property $dash self itemsPerRow 1

dashboard_set_property $dash self visible true}

4. Return to the System Console GUI. Under the System Explorer tree, locate the scripts, and right-click
the node dashboard_example.tcl.

5. On the popup menu, click Execute. This command executes the Tcl script that you added to
$HOME/system_console/scripts.

6. You should now see an internal window titled “Dashboard Example”, “Hello World!” in
the middle of the dashboard window and a button named Start Count.

Altera CorporationAnalyzing and Debugging Designs with the System Console

Send Feedback

10-21Creating a Simple Dashboard Example
QII53028
2013.11.04

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Analyzing%20and%20Debugging%20Designs%20with%20the%20System%20Console%20(QII53028%202013.11.04)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

7. To add some behavior to the example dashboard, you can create a seconds counter. First create a proc
inside the namespace_eval as follows:

proc start_count { c } {

incr c

variable dash

dashboard_set_property $dash mylabel text $c

after 1000 ::dashboard_example::start_count $c

}

8. Then add a line in the main script as shown by the following:

dashboard_set_property $dash mybutton onclick
{::dashboard_example::start_count 0}

9. The lines above define a proc inside the namespace. When you click Start Count, the script calls the
proc start_count with an argument of 0. The body of the proc is fairly simple. The proc
increments the argument, sets the value of the label to the argument, and then directs Tcl to call this
proc again in another 1000 milliseconds, using the recently incremented value as an argument.

Table 10-6: Example of Creating a Simple Dashboard

• Creating a Simple Dashboard

namespace eval dashboard example {

proc start count { c } {
incr c
variable dash
dashboard_set_property $dash mylabel text $c
after 1000 ::dashboard_example::start_count $c
}

set dash [add_service dashboard dashboard_example "Dashboard Example"
Tools/Example"]
dashboard_set_property $dash self developmentmode true
dashboard_add $dash mylabel label self
dashboard_set_property $dash mylabel text "Hello World!"
dashboard_add $dash mybutton button self
dashboard_set_property $dash mybutton text "Start Count"
dashboard_set_property $dash mybutton onclick {
::dashbard_example::start_count 0}
dashboard_set_property $dash self itemsperrow 1
dashboard_set_property $dash self visible true

Related Information

• Building a Custom Verification GUI with System Console Demo Video

Analyzing and Debugging Designs with the System ConsoleAltera Corporation

Send Feedback

QII53028
Creating a Simple Dashboard Example10-22 2013.11.04

http://www.altera.com/products/software/quartus-ii/subscription-edition/qsys/systems/qts-systems-console.html?GSA_pos=7&WT.oss_r=1&WT.oss=system%20console%20video
mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Analyzing%20and%20Debugging%20Designs%20with%20the%20System%20Console%20(QII53028%202013.11.04)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

• Dashboard Commands on page 10-43

Nios II Processor Example
In this example, you program the Nios II processor on your board to run the count binary software example
that is included in the Nios II installation. This is a simple program that uses an 8-bit variable to repeatedly
count from 0x00 to 0xFF. The output of this variable is displayed on the LEDs on your board. After
programming the Nios II processor, you use the System Console processor commands to start and stop the
processor.

To run this example, perform the following steps:

1. Download the Nios II Ethernet Standard Design Example for your board from the Altera website.
2. Create a folder to extract the design. For this example, use C:\Count_binary.
3. Unzip the Nios II Ethernet Standard Design Example into C:\Count_binary.
4. In a Nios II command shell, change to the directory of your new project.
5. Program your board. In a Nios II command shell, type the following:

nios2-configure-sof niosii_ethernet_standard_<board_version>.sof

6. Using Nios II Software Build Tools for Eclipse, create a new Nios II Application and BSP from Template
using the Count Binary template and targeting the Nios II Ethernet Standard Design Example.

7. To build the executable and linkable format (ELF) file (.elf) for this application, right-click the Count
Binary project and select Build Project.

8. Download the .elf file to your board by right-clicking Count Binary project and selecting Run As, Nios
II Hardware.

• The LEDs on your board provide a new light show.

9. Start the System Console. Type the following:

system-console

10. Set the processor service path to the Nios II processor. Type the following:

set niosii_proc [lindex [get_service_paths processor] 0]

11. Open both services. Type the following:

open_service processor $niosii_proc

12. Stop the processor. Type the following:

processor_stop $niosii_proc

• The LEDs on your board freeze.

13. Start the processor. Type the following:

processor_run $niosii_proc

Altera CorporationAnalyzing and Debugging Designs with the System Console

Send Feedback

10-23Nios II Processor Example
QII53028
2013.11.04

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Analyzing%20and%20Debugging%20Designs%20with%20the%20System%20Console%20(QII53028%202013.11.04)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

• The LEDs on your board resume their previous activity.

14. Stop the processor. Type the following:

processor_stop $niosii_proc

15. Close the services. Type the following:

close_service processor $niosii_proc

• The processor_step, processor_set_register, and processor_get_register
commands provide additional control over the Nios II processor.

Related Information

• Nios II Ethernet Standard Design Example

• Nios II Software Build Tools User Guide

• Processor Commands on page 10-39

On-Board USB Blaster II Support
The System Console supports an On-Board USB-BlasterTM II circuit via the USB Debug master command.

Not all Stratix V boards support the On-Board USB-Blaster II. For example, the transceiver signal integrity
board does not support the On-Board USB-Blaster II.

Related Information
All Development Kits website

Console Commands
The console commands enable testing. You can use console commands to identify a module by its path, and
to open and close a connection to it. The path that identifies a module is the first argument to most of the
System Console commands.

Table 10-7: Console Commands

FunctionArgumentsCommand

Returns a list of service types that the System Console
manages. Examples of service types include master,
bytestream, processor, sld, jtag_debug, device, and
plugin.

—get_service_types

Analyzing and Debugging Designs with the System ConsoleAltera Corporation

Send Feedback

QII53028
On-Board USB Blaster II Support10-24 2013.11.04

http://www.altera.com/support/examples/nios2/exm-net-std-de.html
http://www.altera.com/literature/hb/nios2/n2sw_nii52015.pdf
http://www.altera.com/products/devkits/kit-dev_platforms.jsp
mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Analyzing%20and%20Debugging%20Designs%20with%20the%20System%20Console%20(QII53028%202013.11.04)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

FunctionArgumentsCommand

Returns a list of paths to nodes that implement the
requested service type.

When this command returns an item in the
list that has only one element and the
element has no spaces in it, you should not
pass the element to other commands.

Note:

Run this command:

set masters [get_service_paths master]
set master [lindex $masters 0]
master_read_memory $master 0x0200 16

As an example, do not run this command:

set master [get_service_paths master]
master_read_memory $master 0x0200 16

<service_type>get_service_paths

Opens the specified service type at the specified path.
An open_service command is equivalent to a
claim_service commandwithout claims specified.

<service_type>

<service_path>

open_service

Provides finer control of the portion of a service you
want to use.

Runhelp claim_service to get a<service-type>
list .

Then run help claim_service <service-type>
to get specific help on that service.

<service-type>

<service-path>

<claim-group>
<claims>

claim_service

Closes the specified service type at the specified path.<service_type>

<service_path>

close_service

Returns 1 if the service type provided by the path is
open, 0 if the service type is closed.

<service_type>

<service_path>

is_service_open

Returns a list of all services that are instantiable with
the add_service command.

—get_services_to_
add

Adds a service of the specified service type with the
given instance name. Runget_services_to_add
to retrieve a list of instantiable services. This command
returns the path where the service was added.

Run help add_service <service-type> to get
specific help about that service type, including any
parameters that might be required for that service.

<service-type>
<instance-name>
<optional-parameters>

add_service

Altera CorporationAnalyzing and Debugging Designs with the System Console

Send Feedback

10-25Console Commands
QII53028
2013.11.04

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Analyzing%20and%20Debugging%20Designs%20with%20the%20System%20Console%20(QII53028%202013.11.04)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

FunctionArgumentsCommand

Creates a new GUI dashboard in System Console
desktop.

<name> <title>
<menu>

add_service
dashboard

Instantiates a gdbserver.<Processor Service>
<port number>

add_service
gdbserver

Instantiates a Nios II DPX debug driver.<path to debug
channel>

<isDualHeaded>

<Base Av St Channel
number>

add_service
nios2dpx

Instantiates a tcp service.<instance_name>

<ip_addr>

<port number>

add_service tcp

Instantiates a Transceiver Toolkit receiver channel.<data_pattern_checker
path>

<transceiver path>

<transceiver channel
address>

<reconfig path>

<reconfig channel
address>

add_service
transceiver_
channel_rx

Instantiates a Transceiver Toolkit transceiver channel.<data_pattern_
generator path>

<transceiver path>

<transceiver channel
address>

<reconfig path>

<reconfig channel
address>

add_service
transceiver_
channel_tx

Instantiates a Transceiver Toolkit debug link.<transceiver_channel_
tx path>

<transceiver_channel_
rx path>

add_service
transceiver_debug_
link

Returns the current System Console version and build
number.

—get_version

Analyzing and Debugging Designs with the System ConsoleAltera Corporation

Send Feedback

QII53028
Console Commands10-26 2013.11.04

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Analyzing%20and%20Debugging%20Designs%20with%20the%20System%20Console%20(QII53028%202013.11.04)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

FunctionArgumentsCommand

Adds help text for a given command. Use this when
youwrite a Tcl script procedure (proc) and thenwant
to provide help for others to use the script.

<command>

<help-text>

add_help

For the given claim group, returns a list of services
claimed. The returned list consists of pairs of paths and
service types. Each pair is one claimed service.

<claim-group>get_claimed_
services

Scans for available hardware and updates the available
service paths if there have been any changes.

—refresh_
connections

Sends a message of the given level to the message
window. Available levels are info, warning, error, and
debug.

<level>

<message>

send_message

Plugins
Plugins allow you to customize how you use the System Console services and are enabled by default.

Table 10-8: Plugin Commands

FunctionArgumentsCommand

Enables the plugin specified by the
path. After a plugin is enabled, you
can retrieve the <service-path>
and <service_type_name> for
additional services using theget_
service_paths command.

<plugin-path>plugin_enable

Disables the plugin specified by
the path.

<plugin-path>plugin_disable

Returns a non-zero value when
the plugin at the specified path is
enabled.

<plugin-path>is_plugin_enabled

Design Service Commands
Design Service commands allow you to use the System Console services to load and work with your design
at a system level.

Altera CorporationAnalyzing and Debugging Designs with the System Console

Send Feedback

10-27Plugins
QII53028
2013.11.04

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Analyzing%20and%20Debugging%20Designs%20with%20the%20System%20Console%20(QII53028%202013.11.04)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Table 10-9: Example of Loading and Linking a Design

• Loading and Linking a Design

#Load design and specify the directory of the .qpf

design_load /my project

#Locate the design and device paths. Set paths as variables.

set design_path [lindex [get_service_paths design] 0]
set device_path [lindex [get_service_paths device] 0]

#Link the design and device paths

design_link $design_path $device_path

Table 10-10: Design Service Commands

FunctionArgumentsCommand

Loads a model of a Quartus II
design into the System Console.
Returns the design path.

For example, if your Quartus II
Project File (.qpf) file is in c:/
projects/loopback, type the
following command: design_
load {c:\projects\
loopback\}

<quartus-project-path>,

<sof-file-path>,

or <qpf-file-path>

design_load (2)

Instantiates a Quartus II design,
which creates an instance. The
instance name is optional. Returns
the instance path.

<design-path>

<instance-name>

design_instantiate

(2) Turn on theAutoUsercode option to have the System Console automatically instantiate and link designs after
they have been loaded. You can turn on this option from the General Page (Device and Pin Options Dialog
Box) in the Quartus II Online Help.

Analyzing and Debugging Designs with the System ConsoleAltera Corporation

Send Feedback

QII53028
Design Service Commands10-28 2013.11.04

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Analyzing%20and%20Debugging%20Designs%20with%20the%20System%20Console%20(QII53028%202013.11.04)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

FunctionArgumentsCommand

Creates a design instance if
necessary and then links a
Quartus II logical design with a
physical device.

For example, you can link a
Quartus II design called 2c35_
quartus_design to a 2c35 device.
After you create this link, the
System Console creates the
appropriate correspondences
between the logical and physical
submodules of the Quartus II
project.

System Console does
not verify that the link
is valid; if you create an
incorrect link, the
System Console does
not report an error.

Note:

<design-instance-path>

<device-service-path>

design_link

Extracts debug files from a SRAM
Object File (.sof) to a zip file
which can be emailed to Altera
Support for analysis.

<design-path>

<zip-file-name>

design_extract_debug_
files

Converts the project into a dotty
file which shows what the System
Console has extracted from the
project. Use the Graphviz tools to
display the file.

<design-path>

<dot-file-name>

design_extract_dotty

Gets the list of warnings for this
design. If the design loads
corrrectly, then an empty list
returns.

<design-path>design_get_warnings

Adds or updates files within the
debug files section of the .sof.

<design-path>

<list-of-files-to-update>

design_update_debug_
files

Related Information

• Altera Support Website

• General Page (Device and Pin Options Dialog Box) Online Help

Altera CorporationAnalyzing and Debugging Designs with the System Console

Send Feedback

10-29Design Service Commands
QII53028
2013.11.04

https://www.altera.com/myaltera/mal-index.jsp
http://quartushelp.altera.com/current/mergedProjects/comp/comp/comp_tab_dp_gen.htm
mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Analyzing%20and%20Debugging%20Designs%20with%20the%20System%20Console%20(QII53028%202013.11.04)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Programmable Logic Device (PLD) Commands
The PLD commands provide access to programmable logic devices on your board. Before you use these
commands, identify the path to the programmable logic device on your board using the
get_service_paths.

Table 10-11: PLD Commands

FunctionArgumentsCommand

Loads the specified .sof file to the
device specified by the path.

<service_path>

<sof-file-path>

device_download_sof

Returns all connections which go
to the device at the specified path.

<service_path>device_get_connections

Returns the design this device is
currently linked to.

<device_path>device_get_design

Monitor Commands
You can use the Monitor commands to read many Avalon-MM slave memory locations at a regular interval.

For example, if you want to perform 100 reads per second, every second, you get much better performance
using the monitor service than if you call 100 separate master_read_memory commands every second.
This is the primary difference between the monitor service and the master service.

To use Monitor commands, you must create a new monitor, set its callback and interval, add ranges, and
then set it to enabled.

From within the callback you must use appropriate read_data commands to extract the data. Note that
under heavy load, one or more monitor callbacks might be skipped.

Analyzing and Debugging Designs with the System ConsoleAltera Corporation

Send Feedback

QII53028
Programmable Logic Device (PLD) Commands10-30 2013.11.04

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Analyzing%20and%20Debugging%20Designs%20with%20the%20System%20Console%20(QII53028%202013.11.04)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Table 10-12: Example Monitor Script

• Monitor Script

#Locate monitor and master paths, and open monitor path

set monitor_path [get_service_paths monitor]
set master_path [lindex [get_service_paths master] 0]
open_service monitor $monitor_path

#Configuremonitorwith specific address in themaster path, set the interval at 3000ms, and set callback procedure
with monitor path and master path as arguments

monitor_add_range $monitor_path $master_path 0x2000 4
monitor_set_interval $monitor_path 3000
monitor_set_callback $monitor_path [list callback_proc \ $monitor_path
$master_path]

#Callback procedure to retrieve read data, store the data in the variable data , and print out data using the puts
command

proc callback_proc {mon_path mstr_path} {set data [monitor_read_data
$mon_path $mstr_path 0x2000 4] puts "Data at Address 0x2000: $data"}

#Activate the monitor service

monitor_set_enabled $monitor_path 1

Table 10-13: Main Monitoring Commands

FunctionArgumentsCommand

Adds a contiguous memory
address into the monitored
memory list.

<service path> is the value
returned when you opened the
service.

<target-path> argument is the
name of a master service to read.
The address is within the address
space of this service.<target-path>
is returned from [lindex
[get_service_paths
master] n] where n is the
number of the master service.

<address> and <size> are relative
to the master service.

<service-path>

<target-path>

<address>

<size>

monitor_add_range

Altera CorporationAnalyzing and Debugging Designs with the System Console

Send Feedback

10-31Monitor Commands
QII53028
2013.11.04

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Analyzing%20and%20Debugging%20Designs%20with%20the%20System%20Console%20(QII53028%202013.11.04)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

FunctionArgumentsCommand

Defines a Tcl expression in a
single string that will be evaluated
after all the memories monitored
by this service are read. Typically,
this expression should be specified
as a Tcl procedure call with
necessary argument passed in.

<service-path>

<Tcl-expression>

monitor_set_callback

Specifies the frequency of the
polling action by specifying the
interval between two memory
reads. The actual polling
frequency varies depending on the
system activity. The monitor
service will try to keep it as close
to this specification as possible.

<service-path>

<interval>

monitor_set_interval

Returns the current interval set
which specifies the frequency of
the polling action.

<service-path>monitor_get_interval

Enables/disables monitoring.
Memory read starts after this is
enabled, and Tcl callback is
evaluated after data is read.

<service-path>

<enable(1)/disable(0)>

monitor_set_enabled

Table 10-14: Monitor Callback Commands

FunctionArgumentsCommand

Adds contiguous memory
addresses into the monitored
memory list.

The<target-path> argument is the
name of a master service to read.
The address is within the address
space of this service.

<service-path> <target-path>
<address> <size>

monitor_add_range

Defines a Tcl expression in a
single string that will be evaluated
after all the memories monitored
by this service are read. Typically,
this expression should be specified
as a Tcl procedure call with
necessary argument passed in.

<service-path>

<Tcl-expression>

monitor_set_callback

Analyzing and Debugging Designs with the System ConsoleAltera Corporation

Send Feedback

QII53028
Monitor Commands10-32 2013.11.04

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Analyzing%20and%20Debugging%20Designs%20with%20the%20System%20Console%20(QII53028%202013.11.04)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

FunctionArgumentsCommand

Returns a list of 8-bit values read
from the most recent values read
from device. The memory range
specified must be the same as the
monitored memory range as
defined by monitor_add_range.

<service-path> <target-path>
<address> <size>

monitor_read_data

Returns a list of 8-bit values read
from all recent values read from
device since last Tcl callback. The
memory range specified must be
within the monitored memory
range as defined bymonitor_add_
range.

<service-path> <target-path>
<address> <size>

monitor_read_all_data

Returns the number of millisec-
onds between last two data reads
returned by monitor_read_data.

<service-path> <target-path>
<address> <size>

monitor_get_read_
interval

Returns a list of intervals in
milliseconds between two reads
within the data returned by
monitor_read_all_data.

<service-path> <target-path>
<address> <size>

monitor_get_all_read_
intervals

Returns the number of callback
events missed during the
evaluation of last Tcl callback
expression.

<service-path>monitor_get_missing_
event_count

Under normal load, the monitor service reads the data after each interval and then calls the callback. If the
value you read is timing sensitive, the monitor_get_read_interval command can be used to read
the exact time between the intervals at which the data was read.

Under heavy load, or with a callback that takes a long time to execute, the monitor service skips some
callbacks. If the registers you read do not have side effects (for example, they read the total number of events
since reset), skipping callbacks has no effect on your code. The monitor_read_data command and
monitor_get_read_interval command are adequate for this scenario.

If the registers you read have side effects (for example, they return the number of events since the last read),
you must have access to the data that was read, but for which the callback was skipped. The
monitor_read_all_data andmonitor_get_all_read_intervals commands provide access
to this data.

Trace Commands
The System Console trace system allows you to identify events of interest in the hardware and send details
of those events to the host system.

To use the trace commands listed in this section and capture the data these commands produce, instantiate
an Altera Trace System and suitable monitors (for example, an Avalon-ST Video Monitor) in your system.
Open the trace systemwith theclaim_service trace<service-path><library-name> command. You
can determine the path to your instantiated trace system by running get_service_paths trace.

Altera CorporationAnalyzing and Debugging Designs with the System Console

Send Feedback

10-33Trace Commands
QII53028
2013.11.04

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Analyzing%20and%20Debugging%20Designs%20with%20the%20System%20Console%20(QII53028%202013.11.04)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

The claim_service trace command returns a new service path that represents the instantiated and
opened trace system. Use the returned service path in the commands below to access your hardware and
retrieve events of interest.

Table 10-15: Trace System Commands

FunctionArgumentsCommand

Returns a Tcl list of monitor paths
to the monitors (for example, an
Avalon-ST Video Monitor) that
are currently connected to the
trace system specified by<service-
path>.

<service-path>trace_get_monitors

Returns all the information that is
known about the specified
monitor on this trace system. The
values returned are a serialized
array of key / value pairs—they
can be converted to an array with
the array set command.

<service-path>

<monitor-path>

trace_get_monitor_info

Reads a configuration register
from the monitor specified. The
register at index 0 typically
identifies the type of monitor,
registers at higher indexes (which
areword addresses), and provides
more information about the
monitor.

<service-path>

<monitor-path>

<index>

trace_read_monitor

Writes a configuration register in
the specifiedmonitor. The register
at word address 4 typically holds
enable bits for the monitor, the
meanings of registers at higher
addresses are dependent on the
type of monitor being accessed.

<service-path>

<monitor-path>

<index>

<value>

trace_write_monitor

Sets the maximum database size
(in bytes) that the driver stores in
memory. When the database
becomes larger than the specified
size, the oldest events are dropped
to prevent the application from
running out of memory.

<service-path>

<size>

trace_set_max_db_size

Returns the current maximum
database size (in bytes) for the
trace system.

<service-path>trace_get_max_db_size

Returns the approximate current
size (in bytes) for the database.

<service-path>trace_get_db_size

Analyzing and Debugging Designs with the System ConsoleAltera Corporation

Send Feedback

QII53028
Trace Commands10-34 2013.11.04

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Analyzing%20and%20Debugging%20Designs%20with%20the%20System%20Console%20(QII53028%202013.11.04)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

FunctionArgumentsCommand

Starts data collection using the
current monitor settings.
Currently only the FIFO capture
mode is supported—this mode
uses little buffering in the
hardware and sends the captured
data to the host as quickly as
possible.

<service-path>

<capture-mode>

trace_start

Stops data collection. Any data
that has been collected before the
stop command is issued is sent to
the host.

<service-path>trace_stop

Returns the current status of the
trace system. The status returned
is either IDLE (if the trace system
is not running) or RUNNING (if it
is collecting data). Intermediate
states (where the trace system is
starting up or flushing data before
going idle) are not currently
represented.

<service-path>trace_get_status

Saves the current trace database
to the specified file. Trace database
files typically have the extension
.tdb.

<service-path>

<filename>

trace_save

Loads a previously saved trace
database intomemory. The system
loads the database into a newnode
in the filesystem—the service path
to that node is returned by this
trace_load command.

<filename>trace_load

Board Bring-Up Commands
The board bring-up commands allow you to debug your design while the design is running in an FPGA.
These commands are presented in the order that you would use them during board bring-up.

The System Console is intended for debugging the basic hardware functionality of your Nios II
processor, including its memories and pinout. If you are writing device drivers, you may want to use
the System Console and the Nios II software build tools together to debug your code.

Note:

Related Information

• Nios II Software Build Tools Reference

• Board Bring-Up with the System Console Tutorial on page 10-11

Altera CorporationAnalyzing and Debugging Designs with the System Console

Send Feedback

10-35Board Bring-Up Commands
QII53028
2013.11.04

http://www.altera.com/literature/hb/nios2/n2sw_nii52016.pdf
mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Analyzing%20and%20Debugging%20Designs%20with%20the%20System%20Console%20(QII53028%202013.11.04)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

JTAG Debug Commands
You can use JTAG debug commands to verify the functionality and signal integrity of your JTAG chain.
Your JTAG chain must function correctly to debug the rest of your system. To verify signal integrity of your
JTAG chain, Altera recommends that you provide an extensive list of byte values.

Table 10-16: JTAG Commands

FunctionArgumentsCommand

Loops the specified list of bytes
through a loopback of tdi and
tdoof a system-level debug (SLD)
node. Returns the list of byte
values in the order that they were
received. Blocks until all bytes are
received. Byte values are given
with the 0x (hexadecimal) prefix
and delineated by spaces.

<service-path>

<list_of_byte_values>

jtag_debug_loop

Issues a reset request to the
specified service. Connectivity
within your device determines
which part of the system is reset.

<service-path>jtag_debug_reset_system

Clock and Reset Signal Commands
The next stage of board bring-up tests the clock and reset signals. Use these commands to verify that your
clock is toggling and that the reset signal has the expected value.

Table 10-17: Clock and Reset Commands

FunctionArgumentCommand

Returns the value of the clock
signal of the system clock that
drives the module's system
interface. The clock value is
sampled asynchronously;
consequently, you may need to
sample the clock several times to
guarantee that it is toggling.

<service-path>jtag_debug_sample_clock

Returns the value of the reset_
n signal of the Avalon-ST JTAG
Interface core. Ifreset_n is low
(asserted), the value is 0 and if
reset_n is high (deasserted), the
value is 1.

<service-path>jtag_debug_sample_reset

Analyzing and Debugging Designs with the System ConsoleAltera Corporation

Send Feedback

QII53028
JTAG Debug Commands10-36 2013.11.04

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Analyzing%20and%20Debugging%20Designs%20with%20the%20System%20Console%20(QII53028%202013.11.04)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

FunctionArgumentCommand

Returns the result of a sticky bit
that monitors for system clock
activity. If the clock has toggled
since the last execution of this
command, the bit is 1. Returns
true if the bit has ever toggled
and otherwise returns false.
The sticky bit is reset to 0 on read.

<service-path>jtag_debug_sense_clock

Avalon-MM Commands
The master service provides commands that allow you to access memory-mapped slaves via a suitable
Avalon-MM master, which can be controlled by the host. You can use the commands to read and write
memory with a master service. Master services are provided either by System Console master components
such as the JTAG Avalon Master or the USB Debug Master, by PLI or TCP masters, and by some processors
which typically must be paused before they can be used for general purpose memory access.

SLD Commands
You can use the SLD commands to shift values into the instruction and data registers of SLD nodes and read
the previous value.

Claim Values for Claim Services
Each master claim consists of three parts: a base address, a size, and an access mode. The base address and
size can be specified in decimal or hexadecimal (with preceding 0x).

Valid access modes include the following:

• RO or READONLY gives read access to the specified addresses.
• RW or READWRITE gives read and write access to the specified addresses.
• EXC or EXCLUSIVE gives read and write access to the specified addresses.

If multiple RO and/or RW addresses have overlapping address ranges they are allowed to open at the same
time. EXC and EXCLUSIVE claims do not allow other claims for the same memory range.

Table 10-18: Module Commands

FunctionArgumentsCommand
(3)

Avalon-MM Master Commands

Writes the list of byte values,
starting at the specified base
address.

<service-path>

<base-address>

<list_of_byte_values>

master_write_memory

(3) Transfers performed in 16- and 32-bit sizes are packed in little-endian format.

Altera CorporationAnalyzing and Debugging Designs with the System Console

Send Feedback

10-37Avalon-MM Commands
QII53028
2013.11.04

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Analyzing%20and%20Debugging%20Designs%20with%20the%20System%20Console%20(QII53028%202013.11.04)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

FunctionArgumentsCommand
(3)

Writes the list of byte values,
starting at the specified base
address, using 8-bit accesses.

<service-path>

<base-address>

<list_of_byte_values>

master_write_8

Writes the list of 16-bit values,
starting at the specified base
address, using 16-bit accesses.

<service-path>

<base-address>

<list_of_16_bit_words>

master_write_16

Writes the entire contents of the
file through the master, starting at
the specified address. The file is
treated as a binary file containing
a stream of bytes.

<service-path>

<file-name>

<address>

master_write_from_file

Writes the list of 32-bit values,
starting at the specified base
address, using 32-bit accesses.

<service-path>

<base-address>

<list_of_32_bit_words>

master_write_32

Returns a list of <size> bytes.
Read from memory starts at the
specified base address.

<service-path>

<base-address>

<size_in_bytes>

master_read_memory

Returns a list of<size> bytes. Read
from memory starts at the
specified base address, using 8-bit
accesses.

<service-path>

<base-address>

<size_in_bytes>

master_read_8

Returns a list of <size> 16-bit
values. Read from memory starts
at the specified base address, using
16-bit accesses.

<service-path>

<base-address>

<size_in_multiples_of_16_bits>

master_read_16

Returns a list of <size> 32-bit
values. Read from memory starts
at the specified base address, using
32-bit accesses.

<service-path>

<base-address>

<size_in_multiples_of_32_bits>

master_read_32

Reads the number of bytes
specified by <count> from the
memory address specified and
creates (or overwrites) a file
containing the values read. The
file is written as a binary file.

<service-path>

<file-name>

<address>

<count>

master_read_to_file

(3) Transfers performed in 16- and 32-bit sizes are packed in little-endian format.

Analyzing and Debugging Designs with the System ConsoleAltera Corporation

Send Feedback

QII53028
Claim Values for Claim Services10-38 2013.11.04

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Analyzing%20and%20Debugging%20Designs%20with%20the%20System%20Console%20(QII53028%202013.11.04)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

FunctionArgumentsCommand
(3)

When a register map is defined,
returns a list of register names in
the slave.

<service-path>master_get_register_
names

SLD Commands

Shifts the instruction value into
the instruction register of the
specified node. Returns the
previous value of the instruction.
If the <timeout>value is set to
0, the operation never times out.
A suggested starting value for
<delay> is 1000 µs.

<service-path>

<ir-value>

<delay> (in µs)

sld_access_ir

Shifts the byte values into the data
register of the SLD node up to the
size in bits specified. If the
<timeout> value is set to 0, the
operationnever times out. Returns
the previous contents of the data
register. A suggested starting value
for <delay> is 1000 µs.

<service-path>

<size_in_bits>

<delay-in-µs>,

<list_of_byte_values>

sld_access_dr

Locks the SLD chain to guarantee
exclusive access. If the SLD chain
is already locked, tries for
<timeout> ms before returning -
1, indicating an error. Returns 0
if successful.

<service-path>

<timeout-in-milliseconds>

sld_lock

Unlocks the SLD chain. Returns 0
for success, -1 for any errors.

<service-path>sld_unlock

Processor Commands
These commands allow you to start, stop, and step through software running on a Nios II processor. The
commands also allow you to read and write the registers of the processor.

(3) Transfers performed in 16- and 32-bit sizes are packed in little-endian format.

Altera CorporationAnalyzing and Debugging Designs with the System Console

Send Feedback

10-39Processor Commands
QII53028
2013.11.04

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Analyzing%20and%20Debugging%20Designs%20with%20the%20System%20Console%20(QII53028%202013.11.04)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Table 10-19: Processor Commands

FunctionArgumentsCommand

Downloads the given Executable
and Linking Format File (.elf) to
memoryusing the specifiedmaster
service. Sets the processor's
program counter to the .elf entry
point.

<processor-service-path>

<master-service-path>

<elf-file-path>

elf_download

Returns a non-zero value if the
processor is in debug mode.

<service-path>processor_in_debug_mode

Resets the processor and places it
in debug mode.

<service-path>processor_reset

Puts the processor into run mode.<service-path>processor_run

Puts the processor into stopmode.<service-path>processor_stop

Executes one assembly instruction.<service-path>processor_step

Returns a list with the names of all
of the processor's accessible
registers.

<service-path>processor_get_register_
names

Returns the value of the specified
register.

<service-path>

<register_name>

processor_get_register

Sets the value of the specified
register.

<service-path>

<value>

<register_name>

processor_set_register

Related Information
Nios II Processor Example on page 10-23

Bytestream Commands
These commands provide access to modules that produce or consume a stream of bytes. You can use the
bytestream service to communicate directly to IP that provides bytestream interfaces, such as the Altera
JTAG UART.

Analyzing and Debugging Designs with the System ConsoleAltera Corporation

Send Feedback

QII53028
Bytestream Commands10-40 2013.11.04

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Analyzing%20and%20Debugging%20Designs%20with%20the%20System%20Console%20(QII53028%202013.11.04)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Table 10-20: Example Bytestream Script

• Bytestream Script

#Locate and open the path

set b_path [lindex [get_service_paths bytestream] 0]
open_service bytestream $b_path

#Send eight bytes, eight numbers starting with one

bytestream_send $b_path [list 1 2 3 4 5 6 7 8]

#Create a list variable return_bytes as a placeholder for the returned bytes

set return_bytes [list]
while { [length $return_bytes] ==0}{set return_bytes [bytestream_receive
 $b_path 8]}

#Close the service

close_service bytestream $b_path

Table 10-21: Bytestream Commands

FunctionArgumentsCommand

Sends the list of bytes to the
specified bytestream service.
Values argument is the list of bytes
to send.

<service-path>

<values>

bytestream_send

Returns a list of bytes currently
available in the specified services
receive queue, up to the specified
limit. Length argument is the
maximum number of bytes to
receive.

<service-path>

<length>

bytestream_receive

Marker Commands
These commands provide debugging information.

Table 10-22: Marker Commands

FunctionArgumentsCommand

Returns all debug assignments in
a key value ordered list.

<service-path>marker_get_assignments

Altera CorporationAnalyzing and Debugging Designs with the System Console

Send Feedback

10-41Marker Commands
QII53028
2013.11.04

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Analyzing%20and%20Debugging%20Designs%20with%20the%20System%20Console%20(QII53028%202013.11.04)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

FunctionArgumentsCommand

Returns all debug information in
a key value ordered list.

<service-path>marker_get_info

Returns the debug type of the
marker.

<service-path>marker_get_type

In-System Sources and Probes Commands
You can use the In-System Sources and Probes (ISSP) commands to read source and probe data. You use
these commands with the In-System Sources and Probes that you insert into your project from the Quartus
II software main menu.

Before you use the ISSP service, you must open it with commands similar to the following:

set issp [lindex [get_service_paths issp] 0]
set chan [claim_service issp $issp <library-name>
set v [issp_read_probe_data $chan]

The valid values for probe claims include read_only, normal, and exclusive.

Table 10-23: In-System Sources and Probes Tcl Commands

FunctionArgumentsCommand

Returns a list of the configurations
of the In-System Sources and
Probes instance, including:

instance_index

instance_name

source_width

probe_width

<service-path>issp_get_instance_info

Retrieves the current value of the
probes. A hex string is returned
representing the probe port value.

<service-path>issp_read_probe_data

Retrieves the current value of the
sources. A hex string is returned
representing the source port value.

<service-path>issp_read_source_data

Sets values for the sources. The
value can be either a hex string or
a decimal value supported by
System Console Tcl interpreter.

<service-path>

<source-value>

issp_write_source_data

Analyzing and Debugging Designs with the System ConsoleAltera Corporation

Send Feedback

QII53028
In-System Sources and Probes Commands10-42 2013.11.04

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Analyzing%20and%20Debugging%20Designs%20with%20the%20System%20Console%20(QII53028%202013.11.04)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Dashboard Commands
The System Console dashboard allows you to create graphical tools that seamlessly integrate into the System
Console. This section describes how to build your own dashboard with Tcl commands and the properties
that you can assign to the widgets on your dashboard. The dashboard allows you to create tools that interact
with live instances of an IP core on your device.

Table 10-24: Example of Creating a Dashboard

• Creating a Dashboard

add_service dashboard my_new_dashboard "This is a New Dashboard" “Tools/My
New Dashboard”

Table 10-25: Dashboard Commands

DescriptionArgumentsCommand

Allows you to add a specified
widget to your GUI dashboard.

<service-path>

<id>

<type>

<group id>

dashboard_add

Allows you to remove a specified
widget fromyourGUI dashboard.

<service-path>

<id>

dashboard_remove

Allows you to set the specified
properties of the specified widget
that has been added to your GUI
dashboard.

<service-path>

<property>

<id>

<value>

dashboard_set_property

Allows you to determine the
existing properties of a widget
added to your GUI dashboard.

<service-path>

<id>

<type>

dashboard_get_property

Returns a list of all possible
widgets that you can add to your
GUI dashboard.

—dashboard_get_types

Returns a list of all possible
properties of the specified widgets
in your GUI dashboard.

<widget type>dashboard_get_
properties

Related Information
Creating a Simple Dashboard Example on page 10-21

Altera CorporationAnalyzing and Debugging Designs with the System Console

Send Feedback

10-43Dashboard Commands
QII53028
2013.11.04

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Analyzing%20and%20Debugging%20Designs%20with%20the%20System%20Console%20(QII53028%202013.11.04)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Specifying Widgets
You can specify the widgets that you add to your dashboard.

Note that dashboard_add performs a case-sensitive match against the widget type name.Note:

Table 10-26: Dashboard Widgets

DescriptionWidget

Allows you to add a collection of widgets and control
the general layout of the widgets.

group

Allows you to add a button.button

Allows you to group tabs together.tabbedGroup

Allows you to define button actions.fileChooserButton

Allows you to add a text string.label

Allows you to display text.text

Allows you add a text field.textField

Allows you to add a list.list

Allows you to add a table.table

Allows you to add an LED with a label.led

Allows you to add the shape of an analog dial.dial

Allows you to add a chart of historic values, with the
X-axis of the chart representing time.

timeChart

Allows you to add a bar chart.barChart

Allows you to add a check box.checkBox

Allows you to add a combo box.comboBox

Allows you to add a line chart.lineChart

Allows you to add a pie chart.pieChart

The Example is a Tcl script to instantiate a widget. In this example, the Tcl command adds a label to the
dashboard. The first argument is the path to the dashboard. This path is returned by the add_service
command. The next argument is the ID you assign to thewidget. The IDmust be uniquewithin the dashboard.
You use this ID later on to refer to the widget.

Following that argument is the type of widget you are adding, which in this example is a label. The last
argument to this command is the groupwhere youwant to put this widget. In this example, a special keyword
self is used. Self refers to the dashboard itself, the primary group. You can then add a group to self,
which allows you to add other widgets to this group by using the ID of the new group, rather than using the
ID of the self group.

Analyzing and Debugging Designs with the System ConsoleAltera Corporation

Send Feedback

QII53028
Specifying Widgets10-44 2013.11.04

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Analyzing%20and%20Debugging%20Designs%20with%20the%20System%20Console%20(QII53028%202013.11.04)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Table 10-27: Example of Instantiating a Widget

• Instantiating a Widget

dashboard_add $dash mylabel label self

Customizing Widgets
You can change widget properties at any time. The dashboard_set_property command allows you
to interact with the widgets you instantiate. This functionality is most useful when you change part of the
execution of a callback.

In the following example, the first argument is the path to the dashboard. Next is the unique ID of thewidget,
which then allows you to target an arbitrary widget. Following that is the name of the property. Each type
of widget has a defined set of properties, discussed later. You can change the properties. In this example,
mylabel is of the type label, and the example shows how to set its text property. The last argument
is the value that the property takes when the command is executed.

Table 10-28: Example of Customizing a Widget

• Customizing a Widget

dashboard_set_property $dash mylabel text "Hello World!"

Assigning Dashboard Widget Properties
The following table lists the various properties that you can apply to the widgets on your dashboard.

Table 10-29: Example of Viewing Properties for a Widget

• Viewing Properties for a Widget

View all the properties for a widget

dashboard_get_properties <widget_type>

View all the properties for the dial widget

dashboard_get_properties dial

Table 10-30: Properties Common to All Widgets

DescriptionProperty

Enables or disables the widget.enabled

Allows the widget to be expanded.expandable

Allows the widget to be resized horizontally if there's
space available in the cell where it resides.

expandableX

Allows the widget to be resized vertically if there's
space available in the cell where it resides.

expandableY

Altera CorporationAnalyzing and Debugging Designs with the System Console

Send Feedback

10-45Customizing Widgets
QII53028
2013.11.04

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Analyzing%20and%20Debugging%20Designs%20with%20the%20System%20Console%20(QII53028%202013.11.04)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

DescriptionProperty

If thewidget's expandableY is set, this is themaximum
height in pixels that the widget can take .

maxHeight

If thewidget's expandableY is set, this is theminimum
height in pixels that the widget can take.

minHeight

If thewidget's expandableX is set, this is themaximum
width in pixels that the widget can take.

maxWidth

If thewidget's expandableX is set, this is theminimum
width in pixels that the widget can take.

minWidth

The height of the widget if expandableY is not set.preferredHeight

The width of the widget if expandableX is not set.preferredWidth

A tool tip string that appears once the mouse hovers
above the widget.

toolTip

The value of the checkbox, whether it is selected or
not.

selected

Allows the widget to be displayed.visible

Allows for registering a callback function to be called
when the value of the box changes.

onChange

Allows you to list available options.options

Table 10-31: button Properties

DescriptionProperty

A Tcl command to run, usually a proc, every time
the button is clicked.

onClick

The text on the button.text

Table 10-32: fileChooserButton Properties

DescriptionProperty

The text on the button.text

A Tcl command to run, usually a proc, every time
the button is clicked.

onChoose

The text of file chooser dialog box title.title

The text of file chooser dialog box approval button.
By default, it is "Open".

chooserButtonText

Analyzing and Debugging Designs with the System ConsoleAltera Corporation

Send Feedback

QII53028
Assigning Dashboard Widget Properties10-46 2013.11.04

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Analyzing%20and%20Debugging%20Designs%20with%20the%20System%20Console%20(QII53028%202013.11.04)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

DescriptionProperty

The file filter based on extension. Only one extension
is supported. By default, all file names are allowed.
The filter is specified as [list filter_description file_
extension], for example [list "Text Document
(.txt)" "txt"].

filter

Specifies what kind of files or directories can be
selected. "files_only", by default. Possible options are
"files_only" and "directories_only".

mode

Controls whether multiple files can be selected. False,
by default.

multiSelectionEnabled

Returns a list of file paths selected in the file chooser
dialog box. This property is read-only. It ismost useful
when usedwithin theonclick script or a procedure
when the result is freshly updated after the dialog box
closes.

paths

Table 10-33: dial Properties

DescriptionProperties

The maximum value that the dial can show.max

The minimum value that the dial can show.min

The space between the different tick marks of the dial.tickSize

The title of the dial.title

The value that the dial's needle should mark. It must
be between min and max.

value

Table 10-34: group Properties

DescriptionProperties

The number of widgets the group can position in one
row, from left to right, beforemoving to the next row.

itemsPerRow

The title of the group. Groups with a title can have a
border around them, and setting an empty title
removes the border.

title

Table 10-35: label Properties

DescriptionProperties

The text to show in the label.text

Altera CorporationAnalyzing and Debugging Designs with the System Console

Send Feedback

10-47Assigning Dashboard Widget Properties
QII53028
2013.11.04

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Analyzing%20and%20Debugging%20Designs%20with%20the%20System%20Console%20(QII53028%202013.11.04)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Table 10-36: led Properties

DescriptionProperties

The color of the LED. The options are: red_off, red,
yellow_off, yellow, green_off, green, blue_off, blue,
and black.

color

The text to show next to the LED.text

Table 10-37: text Properties

DescriptionProperties

Controls whether the text box is editable.editable

Controls whether the text box can format HTML.htmlCapable

The text to show in the text box.text

Table 10-38: timeChart Properties

DescriptionProperties

The label for the X axis.labelX

The label for the Y axis.labelY

The latest value in the series.latest

The number of sample points to display in the historic
record.

maximumItemCount

The title of the chart.title

Table 10-39: table Properties

DescriptionProperties

Table-wide Properties

The number of columns (Mandatory) (0, by default)
.

columnCount

The number of rows (Mandatory) (0, by default).rowCount

Controls whether you can drag the columns (false, by
default).

headerReorderingAllowed

Controls whether you can resize all column widths.
(false, by default). Note, each column can be individ-
ually configured to be resized by using the
columnWidthResizable property.

headerResizingAllowed

Analyzing and Debugging Designs with the System ConsoleAltera Corporation

Send Feedback

QII53028
Assigning Dashboard Widget Properties10-48 2013.11.04

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Analyzing%20and%20Debugging%20Designs%20with%20the%20System%20Console%20(QII53028%202013.11.04)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

DescriptionProperties

Controls whether you can sort the cell values in a
column (false, by default).

rowSorterEnabled

Controls whether to draw both horizontal and vertical
lines (true, by default).

showGrid

Controls whether to draw horizontal line (true, by
default).

showHorizontalLines

Controls whether to draw vertical line (true, by
default).

showVerticalLines

Current row index. Zero-based. This value affects
some properties below (0, by default).

rowIndex

Current column index. Zero-based. This value affects
all column specific properties below (0, by default).

columnIndex

Specifies the text to be filled in the cell specified the
current rowIndex and columnIndex (Empty, by
default).

cellText

Control or retrieve row selection.selectedRows

Column-specific Properties

The text to be filled in the column header.columnHeader

The cell text alignment in the specified column.
Supported types are "leading"(default), "left", "center",
"right", "trailing".

columnHorizontalAlignment

The type of sorting method used. This is applicable
only if rowSorterEnabled is true. Each column has its
own sorting type. Supported types are "string"
(default), "int", and "float".

columnRowSorterType

The number of pixels used for the column width.columnWidth

Controls whether the column width is resizable by
you (false, by default).

columnWidthResizable

Table 10-40: barChart Properties

DescriptionProperties

Chart title.title

X axis label text.labelX

Y axis label text.labelY

Altera CorporationAnalyzing and Debugging Designs with the System Console

Send Feedback

10-49Assigning Dashboard Widget Properties
QII53028
2013.11.04

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Analyzing%20and%20Debugging%20Designs%20with%20the%20System%20Console%20(QII53028%202013.11.04)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

DescriptionProperties

Y axis value range. By default, it is auto range. Range
is specified in a Tcl list, for example [list lower_
numerical_value upper_numerical_value].

range

Item value. Value is specified in a Tcl list, for example
[list bar_category_str numerical_value].

itemValue

Table 10-41: lineChart Properties

DescriptionProperties

Chart title.title

Axis X label text.labelX

Axis Y label text.labelY

Axis Y value range. By default, it is auto range. Range
is specified in a Tcl list, for example [list lower_
numerical_value upper_numerical_value].

range

Item value. Value is specified in a Tcl list, for example
[list bar_category_str numerical_value].

itemValue

Table 10-42: pieChart Properties

DescriptionProperties

Chart title.title

Item value. Value is specified in a Tcl list, for example
[list bar_category_str numerical_value].

itemValue

Document Revision History

Table 10-43: Document Revision History

ChangesVersionDate

Re-organization of sections.
Added high-level information
with block diagram, workflow,
SLD overview, use-cases, and
example Tcl scripts.

13.1.0November 2013

Updated Tcl command tables.
Added board bring-up design
example. Removed SOPC Builder
content.

13.0.0June 2013

Analyzing and Debugging Designs with the System ConsoleAltera Corporation

Send Feedback

QII53028
Document Revision History10-50 2013.11.04

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Analyzing%20and%20Debugging%20Designs%20with%20the%20System%20Console%20(QII53028%202013.11.04)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

ChangesVersionDate

Re-organization of content.12.1.0November 2012

Moved Transceiver Toolkit
commands to Transceiver Toolkit
chapter.

12.0.1August 2012

Maintenance release. This chapter
adds newSystemConsole features.

12.0.0June 2012

Maintenance release. This chapter
adds newSystemConsole features.

11.1.0November 2011

Maintenance release. This chapter
adds newSystemConsole features.

11.0.0May 2011

Maintenance release. This chapter
adds new commands and
references for Qsys.

10.1.0December 2010

Initial release. Previously released
as the SystemConsoleUserGuide,
which is being obsoleted. This new
chapter adds new commands.

10.0.0July 2010

For previous versions of the Quartus II Handbook, refer to the Quartus II Handbook Archive.

Related Information
Quartus II Handbook Archive

Altera CorporationAnalyzing and Debugging Designs with the System Console

Send Feedback

10-51Document Revision History
QII53028
2013.11.04

http://www.altera.com/literature/lit-qts_archive.jsp
mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Analyzing%20and%20Debugging%20Designs%20with%20the%20System%20Console%20(QII53028%202013.11.04)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

11Debugging Transceiver Links

2013.11.04

QII53029 Subscribe Send Feedback

This chapter describes using the Transceiver Toolkit to optimize high-speed serial links in your board design.
The Transceiver Toolkit provides real-time control, monitoring, and debugging of the transceiver links
running on your board.

You can control the transmitter or receiver channels to optimize transceiver settings and hardware features.
The toolkit tests bit-error rate (BER) while running multiple links at the target data rate. You can also run
auto sweep tests to identify the best PMA settings for each link. An “EyeQ “graph displays the receiver
horizontal and vertical eye margin during testing. The toolkit supports testing of multiple devices across
one or more boards simultaneously.

Figure 11-1: Transceiver Toolkit GUI

System Explorer—displays the
main components and
hardware connections for your
design

Transceiver Toolkit—displays
Transmitter Channel,
Receiver Channel, and
Transceiver Link control
settings, tests, and results

Messages—displays messages
about Transceiver Toolkit
processes

Tcl Console—supports
scripting control of Transceiver
Toolkit

Quick Start

Get started quickly by downloading Transceiver Toolkit design examples from the On-Chip Debugging
Design Exampleswebsite. For an online demonstration of how to use the Transceiver Toolkit to run a high-
speed link test with one of the design examples, refer to theTransceiver ToolkitOnlineDemo on the Altera
website.

ISO
9001:2008
Registered

© 2013 Altera Corporation. All rights reserved. ALTERA, ARRIA, CYCLONE, HARDCOPY, MAX, MEGACORE, NIOS, QUARTUS and STRATIX words
and logos are trademarks of Altera Corporation and registered in the U.S. Patent and Trademark Office and in other countries. All other
words and logos identified as trademarks or service marks are the property of their respective holders as described at
www.altera.com/common/legal.html. Altera warrants performance of its semiconductor products to current specifications in accordance with
Altera's standard warranty, but reserves the right to make changes to any products and services at any time without notice. Altera assumes
no responsibility or liability arising out of the application or use of any information, product, or service described herein except as expressly
agreed to in writing by Altera. Altera customers are advised to obtain the latest version of device specifications before relying on any published
information and before placing orders for products or services.

www.altera.com

101 Innovation Drive, San Jose, CA 95134

https://www.altera.com/servlets/subscriptions/alert?id=QII53029
mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20(QII53029%202013.11.04)%20Debugging%20Transceiver%20Links&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.
http://www.altera.com/support/examples/on-chip-debugging/on-chip-debugging.html
http://www.altera.com/support/examples/on-chip-debugging/on-chip-debugging.html
http://www.altera.com/customertraining/webex/Transceiver_Toolkit/player.html
http://www.altera.com/support/devices/reliability/certifications/rel-certifications.html
http://www.altera.com/support/devices/reliability/certifications/rel-certifications.html
http://www.altera.com/support/devices/reliability/certifications/rel-certifications.html

Transceiver Debugging Overview
Testing transceiver links involves configuring your system for debug, and then running various link tests.
The following table details the steps in this flow.

Table 11-1: Transceiver Link Debugging Flow

Flow Description

1. Use one of the following methods to define a system that includes necessary transceiver
debugging components:

• Click Tools > Qsys and modify Altera design examples for use with your design.
• Click Tools > MegaWizard Plug-In Manager to define and integrate debugging

components into your own design.

2. Click Assignments > Pin Planner to assign device I/O pins to match your device and
board.

3. Click Processing > Start Compilation to compile your design.
4. Connect your target device to Altera programming hardware.
5. Click Tools > Programmer to program your target device.

System
Configuration
Steps

1. Click File > Load Design, and select the SRAM Object File (.sof) generated for your
transceiver design.

2. (Optional) Create any additional links between transmitter channel and receiver.
3. Run any of the following tests:

• Run BER with various combinations of PMA settings.
• Run PRBS Signal eye tests
• Run custom traffic tests
• Run link optimization tests
• Directly control PMA analog settings to experiment with settings while the link is

running

LinkDebugging
Steps

Using the Transceiver Toolkit GUI
The Transceiver Toolkit GUI helps you to easily visualize and debug transceiver links in your design. To
launch the GUI, click Tools > System Console > Transceiver Toolkit.

Related Information
Toolkit GUI Setting Reference on page 11-21

Controlling Transceiver Channels
You can directly control and monitor transmitters, receivers, and links running on the board in real time.
You can transmit a data pattern across the transceiver link, and then report the signal quality of the received
data in terms of bit error rate or eye margin with EyeQ. ClickControl Transmitter (Transmitter Channels
tab),ControlReceiver (ReceiverChannels tab), orControl Link (TransceiverLinks tab) to adjust transmitter
or receiver settings while the channels are running.

Debugging Transceiver LinksAltera Corporation

Send Feedback

QII53029
Transceiver Debugging Overview11-2 2013.11.04

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Debugging%20Transceiver%20Links%20(QII53029%202013.11.04)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Auto Sweep Testing
Use the auto sweep feature to automatically sweep ranges for the best transceiver PMA settings. You can
store a history of the test runs and keep a record of the best PMA settings. You can use the best found settings
in your final design for improved signal integrity compared with the default settings.

Adaptive Equalization Control
Adaptive equalization (AEQ) automatically evaluates and selects the best combination of reconfiguration
equalizer settings for the receiver. AEQcontinuously evaluates and changes the settings for current conditions.
You can use AEQ for multiple, independently controlled receiver channels.

Enable this feature by selecting One-time adaptive for the Equalization control receiver setting.

Signal Eye Margin Testing
Some Altera devices include EyeQ circuitry that allows visualization of the horizontal and vertical eye margin
at the receiver. For supported devices, use signal eye tests to tune the PMA settings of your transceiver, which
results in the best eye margin and BER at high data rates. This GUI is disabled for unsupported devices.

The EyeQ graph displays a bathtub curve or eye diagram representing eye margin. The run list displays the
statistics of each EyeQ test. When PMA settings are suitable, the bathtub curve is wide, with sharp slopes
near the edges. The curve is up to 30 units wide. If the bathtub is narrow, then the signal quality is poor. The
wider the bathtub curve, the wider the eye. The smaller the bathtub curve, the smaller the eye. The eye
contour shows the estimated horizontal and vertical eye opening at the receiver.

You can right-click any of the test runs in the list, and then click Apply Settings to Device to quickly apply
that PMA setting to your device. You can also click Export, Import, or Create Report.

Figure 11-2: EyeQ Settings and Status Showing Results of Two Test Runs

Serial Bit Comparator Mode
Serial bit comparatormode allows you to runEyeQdiagnostic featureswith any PRBSpatterns or user-design
data, without disrupting the data path.

Altera CorporationDebugging Transceiver Links

Send Feedback

11-3Auto Sweep Testing
QII53029
2013.11.04

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Debugging%20Transceiver%20Links%20(QII53029%202013.11.04)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

To enable this mode you must enable the following debugging component options when configuring the
debugging system:

Table 11-2: Component Settings for Serial Bit Comparator Mode

Setting for Serial Bit ModeDebugging Component

Turn on Enable EyeQ block and Enable Bit Error Rate BlockTransceiver Reconfiguration
Controller

Turn on Enable Bypass interfaceData Pattern Generator

Serial bit comparator mode is less accurate than Data pattern checker mode for single bit error checking.
Do not use Serial bit comparator mode if you require an exact error rate. Use the Serial bit comparator
mode for checking a large window of error.

Serial bit comparator mode has the following hardware limitations:

• You can add only one BER counter per reconfiguration controller. You can monitor only one channel
at a time if the reconfiguration controller is shared by multiple channels.

• Use of the reconfiguration controller is limited while BER is running. For example, you cannot switch
logical channels, run decision feedback equalization one-time, run adaptive equalization one-time, or
recalibrate because it corrupts the error count.

• This method may double count the number of errors.
• The bit error counter is not read in real-time because it is read through the memory mapped interface.

Scripting Support
You can alternatively use Tcl commands to access Transceiver Toolkit functions, rather than using the GUI.
You can script various tasks, such as loading a project, creating design instances, linking device resources,
and identifying high-speed serial links. You can save your project setup in a Tcl script for use in subsequent
testing sessions. You can also build a custom test routine script.

After you set up and define links that describe the entire physical system, you can click Save Tcl Script to
save the setup for future use. To run the scripts, double-click script names in the System Explorer scripts
folder.

Related Information
Scripting API on page 11-26

Configuring Systems for Debug
To debug transceivers, you must first configure a system that includes the appropriate Altera IP core(s) that
supports each debugging operation. You can create such a system by either modifying an Altera design
example, or by integrating debugging components into your own design.

You can quickly parameterize the debugging components by clickingTools>MegaWizardPlug-InManager.
Refer to the following configuration for your debugging operation.

Debugging Transceiver LinksAltera Corporation

Send Feedback

QII53029
Scripting Support11-4 2013.11.04

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Debugging%20Transceiver%20Links%20(QII53029%202013.11.04)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Table 11-3: Transceiver Toolkit IP Core Configuration

Parameterization NotesDebugging FunctionsComponent

• If Enable 10G PCS is enabled, 10G PCS protocol
mode must be set to basic on the 10G PCS tab.

Supports all debugging
functions

TransceiverNative
PHY

• Set lanes, group size, serialization factor, data rate, and
input clock frequency to match your application.

• Turn on Avalon data interfaces.
• Disable 8B/10B.
• Set Word alignment mode to manual.
• Disable rate match FIFO.
• Disable byte ordering block.

Test all possible transceiver
parallel data widths

Custom PHY

• SetPhase compensationFIFOmode toEMBEDDED
above certain data rates and set to NONE for PMA
direct mode (Stratix IV designs only).

• Turn on Avalon data interfaces.
• Set serial loopback mode to enable serial loopback

controls in the toolkit.

Test at more than 8.5 Gbps in
GT devices or use of PMA
direct mode (such as when
using six channels in one
quad)

Low Latency PHY

• Select PRBS7, PRBS15, PRBS23, PRBS31, high
frequency, or low frequency patterns

Generates standard data test
patterns at Avalon-ST source
ports

Avalon-ST Data
Pattern Generator

• Specify a value for ST_DATA_W that matches the
FPGA-fabric interface width.

Validates incoming data
stream against test patterns
acceptedonAvalon streaming
sink ports

Avalon-ST Data
Pattern Checker

• Connect the reconfiguration controller to all PHYs
that you want controlled by the toolkit.

• Connect reconfig_from_xcvr to reconfig_
to_xcvr.

• Enable Analog controls.
• Enable EyeQ block (Stratix V devices only).
• Enable AEQ block (Stratix V devices only).
• Enable DFE block (Stratix V devices only).

Supports PMA control and
other transceiver settings

Reconfiguration
Controller

N/AAccepts encoded streams of
bytes with transaction data
and initiates Avalon-MM
transactions

JTAG to Avalon
Master Bridge

Related Information

• Adapting Altera Design Examples

• Integrating Debug Components In Your Design on page 11-8

Altera CorporationDebugging Transceiver Links

Send Feedback

11-5Configuring Systems for Debug
QII53029
2013.11.04

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Debugging%20Transceiver%20Links%20(QII53029%202013.11.04)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Adapting Altera Design Examples
Altera provides design examples to help you quickly test your own design. You can experiment with these
designs and modify them for your own application. Refer to the readme.txt of each design example for more
information. Download the Transceiver Toolkit design examples from the On-Chip Debugging Design
Examples page of the Altera website.

You can use the design examples as a starting point to work with a particular signal integrity development
board. The design examples provide the components to quickly test the functionality of the receiver and
transmitter channels in your design. You can easily change the transceiver settings in the design examples
to see how they affect your transceiver link performance. You can isolate and verify the high-speed serial
links without debugging other logic in your design. You can modify and customize the design examples to
match your intended transceiver design.

Once you have downloaded the design examples, open theQuartus II software and restore the design example
project archive. If you have access to the same development board with the same device as mentioned in the
readme.txt file of the example, you can directly program the device with the provided programming file in
that example. If you want to recompile the design, you must make your modifications to the configuration
in Qsys, regenerate in Qsys, and recompile the design in the Quartus II software to generate a new
programming file.

If you have the same board as mentioned in the readme.txt file, but a different device on your board, you
must choose the appropriate device and recompile the design. For example, some early development boards
are shipped with engineering sample devices.

You can make changes to the design examples so that you can use a different development board or different
device. You make pin assignment changes and then recompile the design. If you have a different board, you
must edit the necessary pin assignments and recompile the design examples.

Related Information

• On-Chip Debugging Design Examples

Modifying Design Examples
You can adapt an Altera design example to experiment with various configurations that match your own
design. For example, you can change data rate, number of lanes, PCS-PMA width, FPGA-fabric interface
width, or input reference clock frequency. Tomodify the design examples, youmodify the IP core parameters
and regenerate the system in Qsys. Next, you modify the top-level design file, and reassign device I/O pins
as necessary.

Before you begin

To modify a design example PHY block to match your design, follow these steps:

1. Determine the number of channels required by your design.
2. Open the <project name>.qpf for the design example in the Quartus II software.
3. Click Tools > Qsys.
4. On the System Contents tab, right-click the PHY block and click Edit. On the General tab, specify

options for the PHY block to match your design requirement for number of lanes, data rate, PCS-PMA
width, FPGA-fabric interface width, and input reference clock frequency.

5. Right-click the PHY block and click Edit. ClickAdditional Options and specify a multiple of the FPGA-
fabric interface data width for Avalon Data Symbol Size. The available values are 8 or 10. Click Finish.

Debugging Transceiver LinksAltera Corporation

Send Feedback

QII53029
Adapting Altera Design Examples11-6 2013.11.04

http://www.altera.com/support/examples/on-chip-debugging/on-chip-debugging.html
mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Debugging%20Transceiver%20Links%20(QII53029%202013.11.04)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

6. Delete any timing adapter from the design. The timing adaptors are not required.
7. Right-click data pattern generator and click Edit. Specify a value for ST_DATA_W that matches the

FPGA-fabric interface width.
8. Right-clickdata pattern checker and clickEdit. Specify a value for ST_DATA_W thatmatches the FPGA-

fabric interface width.
9. Right-click transceiver configuration controller and click Edit. Specify 2* number of lanes for the

number of reconfigurations interfaces. Click finish.
10. Add one data pattern generator and data pattern checker for each transmitter and receiver lane. From

the Component Library, instantiate the data pattern generator and data pattern checker components.
The components are under Debug and Performance under Peripherals.

11. Create connections for the data pattern generator and data pattern checker components. Right-click the
net name in the System Contents tab and specify the following connections.

ToFrom

Net NameBlock NameNet NameBlock Name

csr_clkdata_pattern_generatorclkclk_100

csr_clk_resetdata_pattern_generatorclk_resetclk_100

csr_slavedata_pattern_generatormastermaster_0

pattern_out_clkdata_pattern_generatortx_clk_out0xcvr_*_phy_0

pattern_outdata_pattern_generatortx_parallel_data0xcvr_*_phy_0

csr_clkdata_pattern_checkerclkclk_100

csr_clk_resetdata_pattern_checkerclk_resetclk_100

csr_slavedata_pattern_checkermastermaster_0

pattern_in_clkdata_pattern_checkerrx_clk_out0xcvr_*_phy_0

pattern_indata_pattern_checkerrx_parallel_data0xcvr_*_phy_0

12. Click System > Assign Base Addresses.
13. Connect the reset port of timing adapters to clk_reset of clk_100.
14. To implement the changes to the system, click Generate.
15. If you modify the number of lanes in the PHY, you must update the top-level file accordingly. The

following example shows Verilog HDL code for a two-channel design that declares input and output
ports in the top-level design. The example design includes the low latency PHY IP core. If you modify
the PHY parameters, you must modify the top-level design with the correct port names. Qsys displays
an example of the PHY in the design on the HDL example tab.

module low_latency_10g_1ch DUT (
 input wire GXB_RXL11,
 input wire GXB_RXL12,
 output wire GXB_TXL11,

Altera CorporationDebugging Transceiver Links

Send Feedback

11-7Modifying Design Examples
QII53029
2013.11.04

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Debugging%20Transceiver%20Links%20(QII53029%202013.11.04)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

 output wire GXB_TX12
);
.....

low_latency_10g_1ch DUT (

 .xcvr_low_latency_phy_0_tx_serial_data_export ({GXB_TXL11,
GXB_TXL12}),
 .xcvr_low_latency_phy_0_rx_serial_data_export ({GXB_RXL11,
GXB_TXL12}),

);

16. Click Assignments > Pin Planner and update pin assignments to match your board.
17. Edit the design’s Synopsys Design Constraints (.sdc) to reflect the reference clock change. Ignore the

reset warning messages.
18. Recompile the design.

Modifying Design Example Pin Assignments
Click Assignments > Pin Planner to modify pin assignments in your project to match development kit or
your own board.

Related Information

• Managing I/O Pins

Integrating Debug Components In Your Design
This section describes integrating debugging IP components into your own design. You can integrate
transceiver debugging components into your design, rather than modifying the Altera Debugging Design
Examples.

Configuring BER Tests
To integrate components with your design for BER testing, follow these steps.

1. To add and connect debugging components to your system, click Tools > Qsys.
2. Define and instantiate the following from the Qsys component library:

• Click Peripherals > Debug and Performance > Altera Avalon Data Pattern Generator. Turn on
Enable Bypass interface for connection to design logic.

• ClickPeripherals>Debug andPerformance>AlteraAvalonDataPatternChecker. Turn onEnable
Bypass interface for connection to design logic.

• Click Bidges > Memory-Mapped > JTAG to Avalon Master Bridge.

3. Make the following connections between components in your system:

ToFrom

Data Pattern Generator bypass portYour Design Logic

PHY input portData Pattern Generator

Altera Avalon Data Pattern GeneratorJTAG to Avalon Master Bridge

Debugging Transceiver LinksAltera Corporation

Send Feedback

QII53029
Modifying Design Example Pin Assignments11-8 2013.11.04

http://www.altera.com/literature/hb/qts/qts_qii52013.pdf
mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Debugging%20Transceiver%20Links%20(QII53029%202013.11.04)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

ToFrom

Altera Avalon Data Pattern CheckerJTAG to Avalon Master Bridge

PHY input portJTAG to Avalon Master Bridge

PHY output portData Pattern Checker

PHY input portTransceiver Reconfiguration Controller

4. To generate the system, click Generate > Generate.
5. To compile the design and generate configuration files, click Processing > Start Compilation.
6. Click Tools > Programmer and configure the target device with your debugging design.

You are now prepared to run BER tests.

Figure 11-3: BER Test Configuration

JTAG-to-Avalon
Master Bridge

Avalon-ST Data
Pattern Generator

Avalon-ST Data
Pattern Checker

Custom PHY
IP Core

or
Low-Latency
PHY IP Core

Your Design Logic

XCVR Reconfig
Controller

Related Information
Running BER Tests on page 11-18

Configuring PRBS Signal Eye Tests
To integrate components with your design for testing PRBS signal eye, follow these steps.

1. To add and connect debugging components to your system, click Tools > Qsys.
2. Define and instantiate the following from the Qsys component library:

Altera CorporationDebugging Transceiver Links

Send Feedback

11-9Configuring PRBS Signal Eye Tests
QII53029
2013.11.04

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Debugging%20Transceiver%20Links%20(QII53029%202013.11.04)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

• Click Peripherals > Debug and Performance > Altera Avalon Data Pattern Generator. Turn on
Enable Bypass interface for connection to design logic.

• ClickPeripherals>Debug andPerformance>AlteraAvalonDataPatternChecker. Turn onEnable
Bypass interface for connection to design logic.

• Click Bridges > Memory-Mapped > JTAG to Avalon Master Bridge.
• Click Interface Protocols > Transceiver PHY > Transceiver Reconfiguration Controller. Turn on

Enable EyeQ block to enable signal eye analysis.

3. Make the following connections between components in your system:

ToFrom

Data Pattern Generator bypass portYour Design Logic

PHY input portData Pattern Generator

Altera Avalon Data Pattern GeneratorJTAG to Avalon Master Bridge

Altera Avalon Data Pattern CheckerJTAG to Avalon Master Bridge

PHY output portData Pattern Checker

Transceiver Reconfiguration ControllerJTAG to Avalon Master Bridge

PHY input portJTAG to Avalon Master Bridge

PHY input portTransceiver Reconfiguration Controller

4. To generate the system, click Generate > Generate.
5. To compile the design and generate configuration files, click Processing > Start Compilation.
6. Click Tools > Programmer and configure the target device with your debugging design.

You are now prepared to run PRBS signal eye tests.

Figure 11-4: PRBS Signal Eye Test Configuration

JTAG-to-Avalon
Master Bridge

Avalon-ST Data
Pattern Generator

Avalon-ST Data
Pattern Checker

Custom PHY
IP Core

or
Low-Latency
PHY IP Core

Your Design Logic

XCVR
Reconfiguration

Controller

Debugging Transceiver LinksAltera Corporation

Send Feedback

QII53029
Configuring PRBS Signal Eye Tests11-10 2013.11.04

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Debugging%20Transceiver%20Links%20(QII53029%202013.11.04)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Related Information
Running PRBS Signal Eye Tests on page 11-19

Configuring Custom Traffic Signal Eye Tests
To integrate components with your design for testing custom traffic signal eye, follow these steps.

1. To add and connect debugging components to your system, click Tools > Qsys.
2. Define and instantiate the following from the Qsys component library:

• Click Bridges > Memory-Mapped > JTAG to Avalon Master Bridge.
• Click Interface Protocols > Transceiver PHY > Transceiver Reconfiguration Controller. Turn on

Enable EyeQ block to enable signal eye analysis. Turn on Enable Bit Error Rate Block to perform
BER testing.

3. Make the following connections between components in your system:

ToFrom

PHY input portYour design logic with custom traffic

Transceiver Reconfiguration ControllerJTAG to Avalon Master Bridge

PHY input portJTAG to Avalon Master Bridge

PHY input portTransceiver Reconfiguration Controller

4. To generate the system, click Generate > Generate.
5. To compile the design and generate configuration files, click Processing > Start Compilation.
6. Click Tools > Programmer and configure the target device with your debugging design.

You are now prepared to run custom traffic signal eye tests.

Figure 11-5: Custom Traffic Signal Eye Test Configuration

JTAG-to-Avalon
Master Bridge

Custom PHY
IP Core

or
Low-Latency
PHY IP Core

Your Design Logic
(Custom Traffic)

XCVR
Reconfiguration

Controller

Altera CorporationDebugging Transceiver Links

Send Feedback

11-11Configuring Custom Traffic Signal Eye Tests
QII53029
2013.11.04

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Debugging%20Transceiver%20Links%20(QII53029%202013.11.04)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Related Information
Running Custom Traffic Tests on page 11-19

Configuring Link Optimization Tests
To integrate components with your design for link optimization tests, follow these steps.

1. To add and connect debugging components to your system, click Tools > Qsys.
2. Define and instantiate the following from the Qsys component library:

• Click Peripherals > Debug and Performance > Altera Avalon Data Pattern Generator. Turn on
Enable Bypass interface for connection to design logic.

• ClickPeripherals>Debug andPerformance>AlteraAvalonDataPatternChecker. Turn onEnable
Bypass interface for connection to design logic.

• Click Bridges > Memory-Mapped > JTAG to Avalon Master Bridge.
• Click Interface Protocols > Transceiver PHY > Transceiver Reconfiguration Controller. Turn on

Enable EyeQ block, Enable Analog controls, Enable decision feedback equilizer (DFE) block, and
Enable adaptive equalization (AEQ) block to enable all types of link analysis.

3. Make the following connections between components in your system:

ToFrom

Data Pattern Generator bypass portYour Design Logic

PHY input portData Pattern Generator

Altera Avalon Data Pattern GeneratorJTAG to Avalon Master Bridge

Altera Avalon Data Pattern CheckerJTAG to Avalon Master Bridge

PHY output portData Pattern Checker

Transceiver Reconfiguration ControllerJTAG to Avalon Master Bridge

PHY input portJTAG to Avalon Master Bridge

PHY input portTransceiver Reconfiguration Controller

4. To generate the system, click Generate > Generate.
5. To compile the design and generate configuration files, click Processing > Start Compilation.
6. Click Tools > Programmer and configure the target device with your debugging design.

You are now prepared to run BER tests.

Debugging Transceiver LinksAltera Corporation

Send Feedback

QII53029
Configuring Link Optimization Tests11-12 2013.11.04

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Debugging%20Transceiver%20Links%20(QII53029%202013.11.04)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Figure 11-6: Link Optimization Test Configuration

JTAG-to-Avalon
Master Bridge

Avalon-ST Data
Pattern Generator

Avalon-ST Data
Pattern Checker

Custom PHY
IP Core

or
Low-Latency
PHY IP Core

Your Design Logic

XCVR
Reconfiguration

Controller

Related Information
Running Link Optimization Tests on page 11-20

Configuring PMA Analog Setting Control
To integrate components for PMA analog setting control, follow these steps.

1. To add and connect debugging components to your system, click Tools > Qsys.
2. Define and instantiate the following from the Qsys component library:

• Click Bridges > Memory-Mapped > JTAG to Avalon Master Bridge.
• Click Interface Protocols > Transceiver PHY > Transceiver Reconfiguration Controller. Turn on

Enable Analog controls. You can optionally turn on Enable EyeQ block, Enable decision feedback
equilizer (DFE) block, and Enable adaptive equalization (AEQ) block to enable these types of link
analysis.

3. Make the following connections between components in your system:

ToFrom

Transceiver Reconfiguration ControllerJTAG to Avalon Master Bridge

PHY input portJTAG to Avalon Master Bridge

PHY input portTransceiver Reconfiguration Controller

4. To generate the system, click Generate > Generate.
5. To compile the design and generate configuration files, click Processing > Start Compilation.
6. Click Tools > Programmer and configure the target device with your debugging design.

You are now prepared to control PMA settings.

Altera CorporationDebugging Transceiver Links

Send Feedback

11-13Configuring PMA Analog Setting Control
QII53029
2013.11.04

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Debugging%20Transceiver%20Links%20(QII53029%202013.11.04)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Figure 11-7: PMA Analog Setting Control Configuration

JTAG-to-Avalon
Master Bridge

Custom PHY
IP Core

or
Low-Latency
PHY IP Core

XCVR
Reconfiguration

Controller

Related Information
Controlling PMA Analog Settings on page 11-20

Debugging Transceiver Links
The Transceiver Toolkit allows you to control and monitor the performance of high-speed serial links
running on your board in real-time. You can identify the transceiver links in your design, transmit a data
pattern across the transceiver link, and report the signal quality of the received data in terms of bit error
rate, bathtub curve, or EyeQ graph (for supported families).

The toolkit automatically identifies the transceiver links in your design, or you canmanually create transceiver
links. You can then run auto sweep to help you quickly identify the best physical media attachment (PMA)
settings for each link. You can directly control the transmitter/receiver channels to experiment with various
settings suggested by auto sweep. The EyeQ graph allows you to visualize the estimated horizontal and
vertical eye opening at the receiver.

The Transceiver Toolkit supports various transceiver link testing configurations. You can identify and test
the transceiver link between two Altera devices, or you can transmit a test pattern with a third-party device
and monitor the data on an Altera device receiver channel. If a third-party chip includes self-test capability,
then you can send the test pattern from the Altera device and monitor the signal integrity at the third-party
device receiver channel. If the third-party device supports reverse serial loopback, you can run the test entirely
within the Transceiver Toolkit.

Debugging Transceiver LinksAltera Corporation

Send Feedback

QII53029
Debugging Transceiver Links11-14 2013.11.04

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Debugging%20Transceiver%20Links%20(QII53029%202013.11.04)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Before you can monitor transceiver channels, you must configure a system with debugging components,
and program the design into an FPGA. Once those steps are complete, use the following flow to test the
channels:

1. Load the design in Transceiver Toolkit
2. Link hardware resources
3. Verify hardware connections
4. Identify transceiver channels
5. Run link tests or control PMA analog settings
6. View results

Step 1: Load Your Design
The Transceiver Toolkit automatically loads the last compiled design upon opening. To load any design into
the toolkit, click File > Load Design and select the .sof programming file generated for your transceiver
design. Loading the .sof automatically links the design to the target hardware in the toolkit. The toolkit
automatically discovers links between transmitter and receiver of the same channel. The System Explorer
displays information about the loaded design.

Step 2: Link Hardware Resources
The toolkit automatically discovers connected hardware and designs. You can also manually link a design
to connected hardware resources in the System Explorer.

You can identify and test the transceiver link between two Altera devices, or you can transmit a test pattern
with a third-party device and monitor the data on an Altera device receiver channel. If a third-party device
includes self-test capability, you can send the test pattern from the Altera device and monitor the signal
integrity on the third-party receiver channel. If the third-party device supports reverse serial loopback, you
can run the test entirely within the Transceiver Toolkit.

If you are using more than one Altera board, you can set up a test with multiple devices linked to the same
design. This setup is useful when you want to perform a link test between a transmitter and receiver on two
separate devices. You can also load multiple Quartus II projects and make links between different systems.
You can perform tests on completely separate and unrelated systems in a single tool instance.

Prior to the Transceiver Toolkit version 11.1, you must manually load and link your design to
hardware. In version 11.1 and later, the Transceiver Toolkit automatically links any device
programmed with a project.

Note:

Altera CorporationDebugging Transceiver Links

Send Feedback

11-15Step 1: Load Your Design
QII53029
2013.11.04

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Debugging%20Transceiver%20Links%20(QII53029%202013.11.04)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Figure 11-8: One Channel Loopback Mode

JTAG-to-Avalon
Master Bridge

Loopback
on board

Top-Level Design (FPGA)

Avalon-ST Data
Pattern Generator

Avalon-ST Data
Pattern Checker

Custom PHY
IP Core

or
Low-Latency
PHY IP Core

Transceiver Toolkit
host computer

XCVR
Reconfiguration

Controller

Figure 11-9: Four Channel Loopback Mode

JTAG-to-Avalon
Master Bridge

Top-Level Design (FPGA)

Custom PHY
IP Core

or
Low-Latency
PHY IP Core

Transceiver Toolkit
host computer

Avalon-ST Data
Pattern Generator

Avalon-ST Data
Pattern Checker

Avalon-ST Data
Pattern Generator

Avalon-ST Data
Pattern Checker

Avalon-ST Data
Pattern Generator

Avalon-ST Data
Pattern Checker

Avalon-ST Data
Pattern Generator

Avalon-ST Data
Pattern Checker

Loopback
on board

Loopback
on board

Loopback
on board

Loopback
on board

XCVR
Reconfiguration

Controller

Linking One Design to One Device
To link one design to one device by one USB-Blaster download cable, follow these steps:

1. Load the design for your Quartus II project.

Debugging Transceiver LinksAltera Corporation

Send Feedback

QII53029
Linking One Design to One Device11-16 2013.11.04

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Debugging%20Transceiver%20Links%20(QII53029%202013.11.04)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

2. Link each device to an appropriate design if the design has not auto-linked.
3. Create the link between channels on the device to test.

Linking Two Designs to Two Devices
To link two designs to two separate devices on the same board, connected by one USB-Blaster download
cable, follow these steps:

1. Load the design for all the Quartus II project files you might need.
2. Link each device to an appropriate design if the design has not auto-linked.
3. Open the project for the second device.
4. Link the second device on the JTAG chain to the second design (unless the design auto-links).
5. Create a link between the channels on the devices you want to test.

Linking Designs and Devices on Separate Boards
To link two designs to two separate devices on separate boards, connected to separateUSB-Blaster download
cables, follow these steps:

1. Load the design for all the Quartus II project files you might need.
2. Link each device to an appropriate design if the design has not auto-linked.
3. Create the link between channels on the device to test.
4. Link the device you connected to the second USB-Blaster download cable to the second design.
5. Create a link between the channels on the devices you want to test.

Linking One Design on Two Devices
To link the same design on two separate devices, follow these steps:

1. In the Transceiver Toolkit, open the .sof you are using on both devices.
2. Link the first device to this design instance.
3. Link the second device to the design.
4. Create a link between the channels on the devices you want to test.

Step 3: Verify Hardware Connections
After you load your design and link your hardware, verify that the channels are connected correctly and
looped back properly on the hardware. Use the toolkit to send data patterns and receive them correctly.
Verifying your link and correct channel before you perform Auto Sweep or EyeQ tests can save time in the
work flow.

After you have verified that the transmitter and receiver are communicating with each other, you can create
a link between the two transceivers so that you can perform Auto Sweep and EyeQ tests with this pair.

Step 4: Identify Transceiver Channels
The Transceiver Toolkit automatically displays recognized transmitter and receiver channels. The toolkit
identifies a channel automatically whenever a receiver and transmitter share a transceiver channel. You can
also manually identify the transmitter and receiver in a transceiver channel and create a link between the
two for testing.

Altera CorporationDebugging Transceiver Links

Send Feedback

11-17Linking Two Designs to Two Devices
QII53029
2013.11.04

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Debugging%20Transceiver%20Links%20(QII53029%202013.11.04)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Figure 11-10: Identified Transceiver Links and Status

When you run link tests, channel color highlights indicate the test status:

Table 11-4: Transceiver Toolkit IP Core Configuration

Receiver ChannelTransmitter ChannelColor

Channel is closed or checker clock is not
running

Channel is closed or generator clock is not
running

Red

Checker is checking and data pattern is
locked

Generator is sending a patternGreen

Channel is open, checker clock is running,
and checker is not checking, or checker is
not checking

Channel is open, generator clock is running,
and generator is not sending a pattern, or
generator is not sending a pattern

Neutral

Checker is checking and data pattern is not
locked

N/AYellow

Step 5: Run Link Tests
Once you identify the transceiver channels for debugging, you can run various link tests in the toolkit.

Use the Transceiver Links tab to control link test. For example, use the Auto Sweep feature to sweep
transceiver settings to determine the parameters that support the best BER value. Open the Transmitter,
Receiver and Link Control panels to control the PMA settings and run tests.

Running BER Tests
You can run BER tests across your transceiver link. After programming the FPGA with your debugging
design, loading the design in the toolkit, and linking hardware, follow these steps to run BER tests:

1. Click Tools > System Console > Transceiver Toolkit.
2. Click theTransmitterChannels tab, select the generator youwant to control, and clickCreateTransmitter

Channel.
3. Click the Receiver Channels tab, select the checker you want to control, and click Create Receiver

Channel.

Debugging Transceiver LinksAltera Corporation

Send Feedback

QII53029
Step 5: Run Link Tests11-18 2013.11.04

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Debugging%20Transceiver%20Links%20(QII53029%202013.11.04)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

4. Click the Transceiver Links tab, select the transmitter and receiver pair you want to control, and click
Create Transceiver Link.

5. Click Control Transceiver Link, and specify a PRBS Test pattern and Checker mode for the Data
pattern checker. If you select Bypass for the Test pattern, the toolkit bypasses the PRBS generator and
runs your design through the link. The bypass option is only available after you turn on Enable Bypass
interface in the Reconfiguration Controller component.

6. Experiment with Reconfiguration, Generator, or Checker settings.
7. Click Start to run the patternwith your settings. You can then click Inject Error to inject error bits,Reset

the counter, or Stop the test.

Related Information
Configuring BER Tests on page 11-8

Running PRBS Signal Eye Tests
You can run PRBS signal eye tests to visualize the estimated horizontal and vertical eye opening at the
receiver. After programming the FPGA with your debugging design, loading the design in the toolkit, and
linking hardware, follow these steps to run PRBS signal eye tests:

1. Click Tools > System Console > Transceiver Toolkit.
2. Click theTransmitterChannels tab, select the generator youwant to control, and clickCreateTransmitter

Channel.
3. Click the Receiver Channels tab, select the checker you want to control, and click Create Receiver

Channel.
4. Click theTransceiver Links tab, select the transmitter and receivers you want to control, and clickCreate

Transceiver Link .
5. Click Transceiver EyeQ, and select EyeQ as the Test mode. The EyeQ mode displays test results as a

bathtub curve or eye contour representing bit error and phase offset data.
6. Specify the PRBS Test pattern and the Checker mode. Use Serial bit comparator checker mode only

for checking a large window of error with custom traffic.
7. Specify Run length and EyeQ settings to control the test coverage and type of EyeQ results displayed,

respectively.
8. Click Start to run the pattern with your settings. EyeQ uses the current channel settings to start a phase

sweep of the channel. The phase sweep runs 32 iterations. As the run progresses, view the status under
EyeQ status. Use this diagram to compare PMA settings for the same channel and to choose the best
combination of PMA settings for a particular channel.

9. When the run completes the chart is displayed and the characteristics of each run are listed in the run
list. You can click Stop to halt the test, change the PMA settings, and re-start the test. ClickCreate Report
to export data to a table format for further viewing.

Related Information
Configuring PRBS Signal Eye Tests on page 11-9

Running Custom Traffic Tests
After programming the FPGA with your debugging design, loading the design in the toolkit, and linking
hardware, follow these steps to run custom traffic tests:

1. Click Tools > System Console > Transceiver Toolkit.
2. Click theReceiverChannels tab, select the associated reconfiguration controller, and clickCreateReceiver

Channel.

Altera CorporationDebugging Transceiver Links

Send Feedback

11-19Running PRBS Signal Eye Tests
QII53029
2013.11.04

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Debugging%20Transceiver%20Links%20(QII53029%202013.11.04)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

3. Click the Receiver EyeQ, and select EyeQ as the Test mode. The EyeQ mode displays test results as a
bathtub curve or eye contour representing bit error and phase offset data.

4. Specify the PRBS Test pattern
5. For Checker mode, select Serial bit comparator. This option is only available after you turn on Enable

EyeQ block and Enable Bit Error Rate Block for the Reconfiguration Controller component.
6. Specify Run length and EyeQ settings to control the test coverage and type of EyeQ results displayed,

respectively.
7. Click Start to run the pattern with your settings. EyeQ uses the current channel settings to start a phase

sweep of the channel. The phase sweep runs 32 iterations. As the run progresses, view the status under
EyeQ status.

8. When the run completes the chart is displayed and the characteristics of each run are listed in the run
list. You can click Stop to halt the test, change the PMA settings, and re-start the test. ClickCreate Report
to export data to a table format for further viewing.

Related Information
Configuring Custom Traffic Signal Eye Tests on page 11-11

Running Link Optimization Tests
After programming the FPGA with your debugging design, loading the design in the toolkit, and linking
hardware, follow these steps to run link optimization tests:

1. Click Tools > System Console > Transceiver Toolkit.
2. Click the Transceiver Links tab, and select the channel you want to control.
3. Click Transceiver Autosweep. The Advanced tab appears with Auto sweep as Test mode.
4. Specify the PRBS Test pattern.
5. Specify Run length and experiment with the Transmitter settings, Reciever settings to control the test

coverage and PMA settings, respectively.
6. Click Start to run all combinations of tests meeting the PMA parameter limits.
7. When the run completes the chart is displayed and the characteristics of each run are listed in the run

list. You can click Stop to halt the test, change the PMA settings, and re-start the test. ClickCreate Report
to export data to a table format for further viewing.

8. To use decision feedback equalization (DFE) to determine the best tap settings, follow these steps:
a. Use the Auto sweep to find optimal PMA settings while leaving the DFE mode set to Off.
b. If BER = 0, use the best PMA settings achieved.
c. If BER > 0, use this PMA setting, and set the minimum and maximum values obtained from Auto

Sweep to match this setting. Set the maximum DFE range to limits for each of the three DFE settings.
d. Run Create Report to view the results and determine which DFE setting has the best BER. Use these

settings in conjunction with the PMA settings for the best results.

Related Information
Configuring Link Optimization Tests on page 11-12

Controlling PMA Analog Settings
You can directly control PMA analog settings to experiment with settings while the link is running. To
control PMA analog settings, follow these steps:

1. Click Tools > System Console > Transceiver Toolkit.

Debugging Transceiver LinksAltera Corporation

Send Feedback

QII53029
Running Link Optimization Tests11-20 2013.11.04

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Debugging%20Transceiver%20Links%20(QII53029%202013.11.04)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

2. Click the Transmitter Channels tab, define a transmitter without a generator, and click Create
Transmitter Channel.

3. Click theReceiverChannels tab, define a receiverwithout a generator, and clickCreateReceiverChannel.
4. Click theTransceiver Links tab, select the transmitter and receivers you want to control, and clickCreate

Transceiver Link .
5. ClickControlReceiverChannel,Control TransmitterChannel, orControl Transceiver Link to directly

control the PMA settings while running.

Related Information
Configuring PMA Analog Setting Control on page 11-13

Toolkit GUI Setting Reference
The following settings are available on the Receiver Channels, Transmitter Channels, and Transceiver
Links tabs for interaction with the transmitter or receiver channels or transceiver links in the Transceiver
Toolkit GUI.

Table 11-5: Transceiver Toolkit Control Panel Settings

Control PanelDescriptionSetting

Receiver

Transceiver Link

Ignores the vertical step settings for EyeQ. This feature
should be used when DFE is on and the EyeQ mode is
set to Bathtub curve.

1-D EyeQ mode

Transmitter

Receiver

Transceiver Link

Name you choose for the channel.Alias

Receiver

Transceiver Link

Reports the current and best tested bits, errors, bit error
rate, and case count for the current auto sweep test.

Auto sweep status

Receiver

Transceiver Link

Specifies errors divided by bits tested since the last reset
of the checker.

Bit error rate (BER)

Transmitter

Receiver

Transceiver Link

Logical address number of the transceiver channel.Channel address

Receiver

Transceiver Link

SpecifyData pattern checker or Serial bit comparator
for BER tests.

If you enable Serial bit comparator the Data Pattern
Generator sends the PRBS pattern, but the pattern is
checked by the serial bit comparator.

In Bypass mode, clicking Start begins counting on the
Serial bit comparator.

Checker mode

Altera CorporationDebugging Transceiver Links

Send Feedback

11-21Toolkit GUI Setting Reference
QII53029
2013.11.04

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Debugging%20Transceiver%20Links%20(QII53029%202013.11.04)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Control PanelDescriptionSetting

Transmitter

Receiver

Transceiver Link

Data rate of the channel as read from the project file or
data rate as measured by the frequency detector.

To use the frequency detector, turn on Enable
FrequencyCounter in theData PatternChecker IP core
and/or Data Pattern Generator IP core, regenerate the
IP cores, and recompile the design.

The measured data rate depends on the Avalon
management clock frequency as read from the project
file.

Click the refresh button next to the measured Data
rate if you make changes to your settings and want to
sample the data rate again.

Data rate

Receiver

Transceiver Link

Circuitry that provides an equal boost to the incoming
signal across the frequency spectrum.

DC gain

Receiver

Transceiver Link

Decision feedback equalization (DFE) for improving
signal quality. One-timemodeDFE determines the best
tap settings and stops searching. There is also a one-time
adaptive mode button that automatically turns on one-
timemode and immediately populates converged values
into the manual settings lists. Adaptive mode DFE
automatically tries to find the best tap values.

DFE mode and tap
values 1-5

Receiver

Transceiver Link

Forces the transceiver channel to align to the word you
specify.

Enable word aligner

Receiver

Transceiver Link

Boosts the high-frequency gain of the incoming
signal, thereby compensating for the low-pass filter
effects of the physical medium. AEQ one-time
adaptation is supported inAuto Sweep.When usedwith
DFE, you need to use DFE triggered mode or DFE
continuous.

Equalization control

Receiver

Transceiver Link

Adaptive equalization (AEQ) automatically evaluates
and selects the best combination of equalizer settings.
The setting applies only to Stratix V devices. When
turned on, it automatically turns off Equalization
Control. The one-time selection determines the best
setting and stops searching. You can use AEQ for
multiple, independently controlled receiver channels.

Equalization mode

Debugging Transceiver LinksAltera Corporation

Send Feedback

QII53029
Toolkit GUI Setting Reference11-22 2013.11.04

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Debugging%20Transceiver%20Links%20(QII53029%202013.11.04)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Control PanelDescriptionSetting

Receiver

Transceiver Link

Turns on or off error rate limits. Start checking after
waits until the set number of bits are satisfied until it
starts looking at the bit error rate (BER) for the next two
checks.

Bit error rate achieves below sets upper bit error rate
limits. If the error rate is better than the set error rate,
the test ends.

Bit error rate exceeds Sets lower bit error rate limits. If
the error rate is worse than the set error rate, the test
ends.

Error rate limit

Transmitter

Receiver

Transceiver Link

Allows you to specify Eye contour or Bathtub curve as
the type of EyeQ graph generated by the test.

EyeQ mode

Receiver

Transceiver Link

Sets the phase step for sampling the data from an offset
of the CDR (clock data recovery) data path; set to Off
to use the regular clock data recovery (CDR) data path.

EyeQ phase step

Transmitter

Receiver

Transceiver Link

Displays a graphical representation of signal integrity
as an eye contour or bathtub curve plot.

EyeQ status

Receiver

Transceiver Link

Sets the voltage threshold of the sampler to report the
height of the eye. Negative numbers are allowed for
vertical steps to capture asymmetric eye.

EyeQ vertical step

Transmitter

Receiver

Transceiver Link

Specify the number of horizontal steps to increment
when performing a sweep. Increasing the value increases
the speed of the test but at a lower resolution. This
option only applies to eye contour.

Horizontal phase
step interval

Receiver

Transceiver Link

Right-click in the Advanced panel to use the span
capabilities of Auto Sweep to automatically increase the
span of tests by one unit down for the minimum and
one unit up for the maximum, for the selected set of
controls. You can span either PMA Analog controls
(non-DFE controls), or the DFE controls. You can
quickly set up a test to check if any PMA setting
combinations near your current best could yield better
results.

Increase test range

Transmitter

Transceiver Link

Flips one bit to the output of the data pattern generator
to introduce an artificial error.

Inject Error

Altera CorporationDebugging Transceiver Links

Send Feedback

11-23Toolkit GUI Setting Reference
QII53029
2013.11.04

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Debugging%20Transceiver%20Links%20(QII53029%202013.11.04)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Control PanelDescriptionSetting

Receiver

Transceiver Link

Sets the maximum number of tested bits for each test
iteration.

Maximum tested
bits

Receiver

Transceiver Link

Specifies the number of bits tested since the last reset of
the checker.

Number of bits
tested

Receiver

Transceiver Link

Specifies the number of error bits encountered since the
last reset of the checker.

Number of error bits

Transmitter

Transceiver Link

The number of clock cycles towhich the preambleword
is sent before the test pattern begins.

Numberof preamble
beats

Transmitter

Receiver

Transceiver Link

Channel reference clock frequency as read from the
project file or measured reference clock frequency as
calculated from the measured data rate.

PLL refclk freq

Receiver

Transceiver Link

Right-click in theAdvanced panel to load current values
on the device as a starting point, or initially load the best
settings determined through auto sweep. The Quartus
II software automatically applies the values you specify
in the drop-down lists for the Transmitter settings and
Receiver settings.

Populate with

Transmitter

Transceiver Link

Word to send out if the preamble mode is used.Preamble word

Transmitter

Transceiver Link

The programmable pre-emphasis module in each
transmit buffer boosts high frequencies in the transmit
data signal, whichmay be attenuated in the transmission
media. Using pre-emphasis can maximize the data eye
opening at the far-end receiver.

Pre-emphasis

Receiver

Transceiver Link

Specifies the name of the selected receiver channel.Receiver channel

Receiver

Transceiver Link

Resets the current test.Reset

Debugging Transceiver LinksAltera Corporation

Send Feedback

QII53029
Toolkit GUI Setting Reference11-24 2013.11.04

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Debugging%20Transceiver%20Links%20(QII53029%202013.11.04)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Control PanelDescriptionSetting

Receiver

Transceiver Link

Displays invalid combination of settings in red in each
list under Transmitter settings and Receiver settings,
based on previous settings. If selected, the settings
remain in red to indicate the currently selected
combination is invalid. This feature helps you to avoid
manually testing invalid settings that cannot be compiled
into your design. Also, this feature helps to prevent you
from setting the device into an invalid mode for
extended periods of time and potentially damaging the
circuits.

Rules Based
Configuration
(RBC) validity
checking

Transmitter

Receiver

Transceiver Link

Sets coverage parameters for test runs.Run length

Transmitter

Receiver

Transceiver Link

Lists the statistics of each EyeQ test run. The run table
is sortable. You can right-click any of the tests in the
table and then clickApply Settings toDevice to quickly
apply the chosen PMA settings to your device. You can
click Import to load reports from previously generated
EyeQ runs into the run table. You can click Export to
export single or multiple runs from the run table to a
report.

Run table

Receiver

Transceiver Link

Shows the receiver in lock-to-reference (LTR) mode.
When in auto-mode, if data cannot be locked, this signal
alternates in LTD mode if the CDR is locked to data.

RX CDR PLL status

Receiver

Transceiver Link

Shows the receiver in lock-to-data (LTD) mode. When
in auto-mode, if data cannot be locked, the signal stays
high when locked to data and never toggles.

RX CDR data status

Transmitter

Receiver

Transceiver Link

Inserts a serial loopback before the buffers, allowing you
to form a link on a transmitter and receiver pair on the
same physical channel of the device.

Serial loopback
enabled

Transmitter

Receiver

Transceiver Link

Starts the pattern generator or checker on the channel
to verify incoming data.

Start

Transmitter

Receiver

Transceiver Link

Stops generating patterns and testing the channel.Stop

Altera CorporationDebugging Transceiver Links

Send Feedback

11-25Toolkit GUI Setting Reference
QII53029
2013.11.04

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Debugging%20Transceiver%20Links%20(QII53029%202013.11.04)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Control PanelDescriptionSetting

Transmitter

Receiver

Transceiver Link

Finds the contour edge of the bit error rate that you
select. This option only applies to eye contour mode.

Target bit error rate

Receiver

Transceiver Link

Allows you to specify the Auto sweep, EyeQ, or Auto
sweep and EyeQ test mode.

Test mode

Transmitter

Receiver

Transceiver Link

Test pattern sent by the transmitter channel. Options
include PRBS7, PRBS15, PRBS23, PRBS31,
LowFrequency, andHighFrequency andBypassmode.
The Data Pattern Checker self-aligns both high and low
frequency patterns. Use Bypass mode to send user-
design data.

Test pattern

Receiver

Transceiver Link

Specifies the time limit unit and value to have a
maximum bounds time limit for each test iteration

Time limit

Transmitter

Transceiver Link

Specifies the name of the selected transmitter channel.Transmitter channel

Transmitter

Transceiver Link

Provides status of whether the transmitter channel PLL
is locked to the reference clock.

TX/CMUPLL status

Transmitter

Transceiver Link

If turned on, sends the preamble word before starting
of the test pattern. If turned off, starts sending the test
pattern immediately.

Use preamble upon
start

Transmitter

Receiver

Transceiver Link

Specify the number of vertical steps to increment when
performing a sweep. Increasing the value increases the
speed of the test but at a lower resolution. This option
only applies to eye contour.

Vertical phase step
interval

Transmitter

Transceiver Link

Programmable transmitter differential output voltage.VOD control

Scripting API
You can alternatively use Tcl commands to access Transceiver Toolkit functions, rather than using the GUI.
You can script various tasks, such as loading a project, creating design instances, linking device resources,
and identifying high-speed serial links. You can save your project setup in a Tcl script for use in subsequent
testing sessions. You can also build a custom test routine script.

After you set up and define links that describe the entire physical system, you can click Save Tcl Script to
save the setup for future use. To run the scripts, double-click script names in the System Explorer scripts
folder.

Debugging Transceiver LinksAltera Corporation

Send Feedback

QII53029
Scripting API11-26 2013.11.04

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Debugging%20Transceiver%20Links%20(QII53029%202013.11.04)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

View a list of the available Tcl commands in the Tcl Console window. Select Tcl commands in the list to
view descriptions, including example usage.

To view Tcl command descriptions from the Tcl Console window:

1. Type help help. The Console displays all Transceiver Toolkit Tcl commands.
2. Type help <command name>. The Console displays the command description.

The following Tcl command example uses the following commands to locate and open an instance of the
master service.

• set—Tcl command that sets the value of a variable.
• m_path—name of a variable.
• lindex—Tcl command that retrieves an element from a list.
• get_service_paths—returns a list of service instances by type.
• master—service type that accesses memory-mapped slaves.
• n—number of the master service.
• open_service—initiates a service instance.

set m_path [lindex [get_service_paths master] n]
open_service master $m_path

Transceiver Toolkit Commands
The following tables list the available Transceiver Toolkit scripting commands.

Table 11-6: Transceiver Toolkit Channel_rx Commands

FunctionArgumentsCommand

Returns a list of the current
checker data. The results are in the
order of number of bits, number
of errors, and bit error rate.

<service-path>transceiver_channel_rx_
get_data

Gets the DC gain value on the
receiver channel.

<service-path>transceiver_channel_rx_
get_dcgain

Gets the current tap value of the
specified channel at the specified
tap position.

<service-path> <tap position>transceiver_channel_rx_
get_dfe_tap_value

Gets the equalization control value
on the receiver channel.

<service-path>transceiver_channel_rx_
get_eqctrl

Returns the current data checker
pattern by name.

<service-path>transceiver_channel_rx_
get_pattern

Gets whether this channel has the
DFE feature available.

<service-path>transceiver_channel_rx_
has_dfe

Gets whether the EyeQ feature is
available for the specified channel.

<service-path>transceiver_channel_rx_
has_eyeq

Altera CorporationDebugging Transceiver Links

Send Feedback

11-27Transceiver Toolkit Commands
QII53029
2013.11.04

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Debugging%20Transceiver%20Links%20(QII53029%202013.11.04)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

FunctionArgumentsCommand

Returns non-zero if the checker is
running.

<service-path>transceiver_channel_rx_
is_checking

Gets whether the DFE feature is
enabled on the specified channel.

<service-path>transceiver_channel_rx_
is_dfe_enabled

Returns non-zero if the checker is
locked onto the incoming data.

<service-path>transceiver_channel_rx_
is_locked

Resets the bit and error counters
inside the checker.

<service-path>transceiver_channel_rx_
reset_counters

Resets the specified channel.<service-path>transceiver_channel_rx_
reset

Sets the DC gain value on the
receiver channel.

<service-path> <value>transceiver_channel_rx_
set_dcgain

Enables or disables the DFE
feature on the specified channel.

<service-path> <disable(0)/enable(1)
>

transceiver_channel_rx_
set_dfe_enabled

Sets the current tap value of the
specified channel at the specified
tap position to the specified value.

<service-path> <tap position> <tap
value>

transceiver_channel_rx_
set_dfe_tap_value

Gets themode ofDFE adaptation.
0=off, 1=adaptive, 2= one-time
adaptive

<service-path>transceiver_channel_rx_
get_dfe_adaptive

Sets the mode of DFE adaptation.
0=off, 1=adaptive, 2= one-time
adaptive

<service-path>transceiver_channel_rx_
set_dfe_adaptive

Sets the equalization control value
on the receiver channel.

<service-path> <value>transceiver_channel_rx_
set_eqctrl

Starts the checker.<service-path>transceiver_channel_rx_
start_checking

Stops the checker.<service-path>transceiver_channel_rx_
stop_checking

Gets the current phase step of the
specified channel.

<service-path>transceiver_channel_rx_
get_eyeq_phase_step

Sets the expected pattern to the
one specified by the pattern name.

<service-path> <pattern-name>transceiver_channel_rx_
set_pattern

Gets whether the EyeQ feature is
enabled on the specified channel.

<service-path>transceiver_channel_rx_
is_eyeq_enabled

Debugging Transceiver LinksAltera Corporation

Send Feedback

QII53029
Transceiver Toolkit Commands11-28 2013.11.04

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Debugging%20Transceiver%20Links%20(QII53029%202013.11.04)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

FunctionArgumentsCommand

Sets the phase step of the specified
channel.

<service-path> <phase step>transceiver_channel_rx_
set_eyeq_phase_step

Enables or disables the word
aligner of the specified channel.

<service-path> <disable(0)/enable(1)
>

transceiver_channel_rx_
set_word_aligner_
enabled

Gets whether the word aligner
feature is enabled on the specified
channel.

<service-path> <disable(0)/enable(1)
>

transceiver_channel_rx_
is_word_aligner_enabled

Returns non-zero if the checker is
locked onto the incoming signal.

<service-path>transceiver_channel_rx_
is_locked

Returns 1 if transceiver is in lock
to data (LTD)mode. Otherwise0.

<service-path>transceiver_channel_rx_
is_rx_locked_to_data

Returns 1 if transceiver is in lock
to reference (LTR) mode.
Otherwise 0.

<service-path>transceiver_channel_rx_
is_rx_locked_to_ref

Detects whether the eye viewer
pointed to by <service-path>
supports 1D-EyeQ mode.

<service-path>transceiver_channel_rx_
has_eyeq_1d

Enables or disables 1D-EyeQ
mode.

<service-path> <disable(0)/enable(1)
>

transceiver_channel_rx_
set_1deye_mode

Returns the current on or off
status of 1D-EyeQ mode.

<service-path>transceiver_channel_rx_
get_1deye_mode

Table 11-7: Transceiver Toolkit Channel _tx Commands

FunctionArgumentsCommand

Disables the preamblemode at the
beginning of generation.

<service-path>transceiver_channel_tx_
disable_preamble

Enables the preamble mode at the
beginning of generation.

<service-path>transceiver_channel_tx_
enable_preamble

Returns the currently set number
of beats to send out the preamble
word.

<service-path>transceiver_channel_tx_
get_number_of_preamble_
beats

Returns the currently set pattern.<service-path>transceiver_channel_tx_
get_pattern

Returns the currently set preamble
word.

<service-path>transceiver_channel_tx_
get_preamble_word

Altera CorporationDebugging Transceiver Links

Send Feedback

11-29Transceiver Toolkit Commands
QII53029
2013.11.04

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Debugging%20Transceiver%20Links%20(QII53029%202013.11.04)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

FunctionArgumentsCommand

Gets the pre-emphasis pre-tap
value on the transmitter channel.

<service-path>transceiver_channel_tx_
get_preemph0t

Gets the pre-emphasis first post-
tap value on the transmitter
channel.

<service-path>transceiver_channel_tx_
get_preemph1t

Gets the pre-emphasis second
post-tap value on the transmitter
channel.

<service-path>transceiver_channel_tx_
get_preemph2t

Gets the VOD control value on the
transmitter channel.

<service-path>transceiver_channel_tx_
get_vodctrl

Injects a 1-bit error into the
generator's output.

<service-path>transceiver_channel_tx_
inject_error

Returns non-zero if the generator
is running.

<service-path>transceiver_channel_tx_
is_generating

Returns non-zero if preamble
mode is enabled.

<service-path>transceiver_channel_tx_
is_preamble_enabled

Sets the number of beats to send
out the preamble word.

<service-path><number-of-preamble-
beats>

transceiver_channel_tx_
set_number_of_preamble_
beats

Sets the output pattern to the one
specified by the pattern name.

<service-path> <pattern-name>transceiver_channel_tx_
set_pattern

Sets the preamble word to be sent
out.

<service-path> <preamble-word>transceiver_channel_tx_
set_preamble_word

Sets the pre-emphasis pre-tap
value on the transmitter channel.

<service-path>

<preemph0t value>

transceiver_channel_tx_
set_preemph0t

Sets the pre-emphasis first post-
tap value on the transmitter
channel.

<service-path>

<preemph1t value>

transceiver_channel_tx_
set_preemph1t

Sets the pre-emphasis second
post-tap value on the transmitter
channel.

<service-path>

<preemph2t value>

transceiver_channel_tx_
set_preemph2t

Sets the VOD control value on the
transmitter channel.

<service-path>

< vodctrl value>

transceiver_channel_tx_
set_vodctrl

Starts the generator.<service-path>transceiver_channel_tx_
start_generation

Debugging Transceiver LinksAltera Corporation

Send Feedback

QII53029
Transceiver Toolkit Commands11-30 2013.11.04

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Debugging%20Transceiver%20Links%20(QII53029%202013.11.04)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

FunctionArgumentsCommand

Stops the generator.<service-path>transceiver_channel_tx_
stop_generation

Table 11-8: Transceiver Toolkit Transceiver Toolkit Debug_Link Commands

FunctionArgumentsCommand

Gets the currently set pattern the
link uses to run the test.

<service-path>transceiver_debug_link_
get_pattern

Returns non-zero if the test is
running on the link.

<service-path>transceiver_debug_link_
is_running

Sets the pattern the link uses to
run the test.

<service-path> <data pattern>transceiver_debug_link_
set_pattern

Starts running a test with the
currently selected test pattern.

<service-path>transceiver_debug_link_
start_running

Stops running the test.<service-path>transceiver_debug_link_
stop_running

Table 11-9: Transceiver Toolkit Reconfig_Analog Commands

FunctionArgumentsCommand

Gets the transceiver logical
channel address currently set.

<service-path>transceiver_reconfig_
analog_get_logical_
channel_address

Gets the DC gain value on the
receiver channel specified by the
current logical channel address.

<service-path>transceiver_reconfig_
analog_get_rx_dcgain

Gets the equalization control value
on the receiver channel specified
by the current logical channel
address.

<service-path>transceiver_reconfig_
analog_get_rx_eqctrl

Gets the pre-emphasis pre-tap
value on the transmitter channel
specified by the current logical
channel address.

<service-path>transceiver_reconfig_
analog_get_tx_preemph0t

Gets the pre-emphasis first post-
tap value on the transmitter
channel specified by the current
logical channel address.

<service-path>transceiver_reconfig_
analog_get_tx_preemph1t

Altera CorporationDebugging Transceiver Links

Send Feedback

11-31Transceiver Toolkit Commands
QII53029
2013.11.04

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Debugging%20Transceiver%20Links%20(QII53029%202013.11.04)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

FunctionArgumentsCommand

Gets the pre-emphasis second
post-tap value on the transmitter
channel specified by the current
logical channel address.

<service-path>transceiver_reconfig_
analog_get_tx_preemph2t

Gets the VOD control value on the
transmitter channel specified by
the current logical channel
address.

<service-path>transceiver_reconfig_
analog_get_tx_vodctrl

Sets the transceiver logical channel
address.

<service-path>

<logical channel address>

transceiver_reconfig_
analog_set_logical_
channel_address

Sets the DC gain value on the
receiver channel specified by the
current logical channel address

<service-path>

< dc_gain value>

transceiver_reconfig_
analog_set_rx_dcgain

Sets the equalization control value
on the receiver channel specified
by the current logical channel
address.

<service-path>

< eqctrl value>

transceiver_reconfig_
analog_set_rx_eqctrl

Sets the pre-emphasis pre-tap
value on the transmitter channel
specified by the current logical
channel address.

<service-path>

<preemph0t value>

transceiver_reconfig_
analog_set_tx_preemph0t

Sets the pre-emphasis first post-
tap value on the transmitter
channel specified by the current
logical channel address.

<service-path>

<preemph1t value>

transceiver_reconfig_
analog_set_tx_preemph1t

Sets the pre-emphasis second
post-tap value on the transmitter
channel specified by the current
logical channel address.

<service-path>

<preemph2t value>

transceiver_reconfig_
analog_set_tx_preemph2t

Sets the VOD control value on the
transmitter channel specified by
the current logical channel
address.

<service-path>

< vodctrl value>

transceiver_reconfig_
analog_set_tx_vodctrl

.

Debugging Transceiver LinksAltera Corporation

Send Feedback

QII53029
Transceiver Toolkit Commands11-32 2013.11.04

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Debugging%20Transceiver%20Links%20(QII53029%202013.11.04)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Table 11-10: Transceiver Toolkit Decision Feedback Equalization (DFE) Commands

FunctionArgumentsCommand

Gets the logical channel address
that other alt_xcvr_
reconfig_dfe commands use
to apply.

<service-path>alt_xcvr_reconfig_dfe_
get_logical_channel_
address

Gets whether the DFE feature is
enabled on the previously
specified channel.

<service-path>alt_xcvr_reconfig_dfe_
is_enabled

Enables or disables the DFE
feature on the previously specified
channel.

<service-path> <disable(0)/enable(1)
>

alt_xcvr_reconfig_dfe_
set_enabled

Sets the logical channel address
that other alt_xcvr_
reconfig_eye_viewer
commands use.

<service-path> <logical channel
address>

alt_xcvr_reconfig_dfe_
set_logical_channel_
address

Sets the tap value at the previously
specified channel at specified tap
position and value.

<service-path> <tap position> <tap
value>

alt_xcvr_reconfig_dfe_
set_tap_value

Table 11-11: Transceiver Toolkit Eye Monitor Commands

FunctionArgumentsCommand

Gets whether the word aligner
feature is enabled on the
previously specified channel.

<service-path> <disable(0)/enable(1)
>

alt_xcvr_custom_is_
word_aligner_enabled

Enables or disables the word
aligner of the previously specified
channel.

<service-path> <disable(0)/enable(1)
>

alt_xcvr_custom_set_
word_aligner_enabled

Returnswhether the receiverCDR
is locked to data.

<service-path>alt_xcvr_custom_is_rx_
locked_to_data

Returnswhether the receiverCDR
PLL is locked to the reference
clock.

<service-path>alt_xcvr_custom_is_rx_
locked_to_ref

Returns whether the serial
loopback mode of the previously
specified channel is enabled.

<service-path>alt_xcvr_custom_is_
serial_loopback_enabled

Altera CorporationDebugging Transceiver Links

Send Feedback

11-33Transceiver Toolkit Commands
QII53029
2013.11.04

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Debugging%20Transceiver%20Links%20(QII53029%202013.11.04)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

FunctionArgumentsCommand

Enables or disables the serial
loopback mode of the previously
specified channel.

<service-path> <disable(0)/enable(1)
>

alt_xcvr_custom_set_
serial_loopback_enabled

Returns whether the transmitter
PLL is locked to the reference
clock.

<service-path>alt_xcvr_custom_is_tx_
pll_locked

Gets the logical channel address
on which other alt_
reconfig_eye_viewer
commands will use to apply.

<service-path>alt_xcvr_reconfig_eye_
viewer_get_logical_
channel_address

Gets the current phase step of the
previously specified channel.

<service-path>alt_xcvr_reconfig_eye_
viewer_get_phase_step

Gets whether the EyeQ feature is
enabled on the previously
specified channel.

<service-path>alt_xcvr_reconfig_eye_
viewer_is_enabled

Enables or disables the EyeQ
feature on the previously specified
channel.

Setting a value of 2 enables both
EyeQ and the Serial Bit
Comparator.

<service-path> <disable(0)/enable(1)
>

alt_xcvr_reconfig_eye_
viewer_set_enabled

Sets the logical channel address on
which other alt_reconfig_
eye_viewer commandswill use
to apply.

<service-path> <logical channel
address>

alt_xcvr_reconfig_eye_
viewer_set_logical_
channel_address

Sets the phase step of the
previously specified channel.

<service-path> <phase step>alt_xcvr_reconfig_eye_
viewer_set_phase_step

Detects whether the eye viewer
pointed to by <service-path>
supports the Serial Bit
Comparator.

<service-path>alt_xcvr_reconfig_eye_
viewer_has_ber_checker

Detects whether the Serial Bit
Comparator is enabled.

<service-path>alt_xcvr_reconfig_eye_
viewer_ber_checker_is_
enabled

Starts the Serial Bit Comparator
counters.

<service-path>alt_xcvr_reconfig_eye_
viewer_ber_checker_
start

Debugging Transceiver LinksAltera Corporation

Send Feedback

QII53029
Transceiver Toolkit Commands11-34 2013.11.04

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Debugging%20Transceiver%20Links%20(QII53029%202013.11.04)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

FunctionArgumentsCommand

Stops the Serial Bit Comparator
counters.

<service-path>alt_xcvr_reconfig_eye_
viewer_ber_checker_stop

Resets the Serial Bit Comparator
counters.

<service-path>alt_xcvr_reconfig_eye_
viewer_ber_checker_
reset_counters

Gets whether the Serial Bit
Comparator counters are
currently running or not.

<service-path>alt_xcvr_reconfig_eye_
viewer_ber_checker_is_
running

Gets the current total bit, error bit,
and exception counts for the Serial
Bit Comparator.

<service-path>alt_xcvr_reconfig_eye_
viewer_ber_checker_get_
data

Detects whether the eye viewer
pointed to by <service-path>
supports 1D-EyeQ mode.

<service-path>alt_xcvr_reconfig_eye_
viewer_has_1deye

Enables or disables 1D-EyeQ
mode.

<service-path>

<disable(0)/enable(1)

alt_xcvr_reconfig_eye_
viewer_set_1deye_mode

Gets the enable or disabled state
of 1D-EyeQ mode.

<service-path>alt_xcvr_reconfig_eye_
viewer_get_1deye_mode

Table 11-12: Channel Type Commands

FunctionArgumentsCommand

Reports the detected type (GX/
GT) of channel <logical-channel-
num > for the reconfiguration
block located at <service-path>.

<service-path>

<logical-channel- num >

get_channel_type

Overrides the detected channel
type of channel <logical-channel-
num > for the reconfiguration
block located at <service-path> to
the type specified (0:GX, 1:GT).

<service-path>

<logical-channel- num >

<channel-type>

set_channel_type

Altera CorporationDebugging Transceiver Links

Send Feedback

11-35Transceiver Toolkit Commands
QII53029
2013.11.04

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Debugging%20Transceiver%20Links%20(QII53029%202013.11.04)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Table 11-13: Loopback Commands

FunctionArgumentsCommand

Returns the value of a setting or
result on the loopback channel.
Available results include:

• Status—running or stopped.
• Bytes—number of bytes sent

through the loopback channel.
• Errors—number of errors

reported by the loopback
channel.

• Seconds—number of seconds
since the loopback channelwas
started.

<service-path>loopback_get

Sets the value of a setting control-
ling the loopback channel. Some
settings are only supported by
particular channel types. Available
settings include:

• Timer—number of seconds for
the test run.

• Size—size of the test data.
• Mode—mode of the test.

<service-path>loopback_set

Starts sending data through the
loopback channel.

<service-path>loopback_start

Stops sending data through the
loopback channel.

<service-path>loopback_stop

Data Pattern Generator Commands
You can use Data Pattern Generator commands to control data patterns for debugging transceiver channels.
You must instantiate the Data Pattern Generator component to support these commands.

Table 11-14: Data Pattern Generator Commands

FunctionArgumentsCommand

Starts the data pattern generator.<service-path>data_pattern_generator_
start

Stops the data pattern generator.<service-path>data_pattern_generator_
stop

Debugging Transceiver LinksAltera Corporation

Send Feedback

QII53029
Data Pattern Generator Commands11-36 2013.11.04

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Debugging%20Transceiver%20Links%20(QII53029%202013.11.04)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

FunctionArgumentsCommand

Returns non-zero if the generator
is running.

<service-path>data_pattern_generator_
is_generating

Injects a 1-bit error into the
generator output.

<service-path>data_pattern_generator_
inject_error

Sets the output pattern specified
by the <pattern-name>. In all, 6
patterns are available, 4 are
pseudo-randombinary sequences
(PRBS), 1 is high frequency and 1
is low frequency.

The PRBS7, PRBS15, PRBS23,
PRBS31, HF (outputs high
frequency, constant pattern of
alternating 0s and 1s), and LF
(outputs low frequency, constant
pattern of 10b’1111100000 for 10-
bit symbols and 8b’11110000 for
8-bit symbols) pattern names are
defined.

PRBS files are clear text and you
can modify the PRBS files.

<service-path> <pattern-name>data_pattern_generator_
set_pattern

Returns currently selected output
pattern.

<service-path>data_pattern_generator_
get_pattern

Returns a list of available data
patterns by name.

<service-path>data_pattern_generator_
get_available_patterns

Enables the preamble mode at the
beginning of generation.

<service-path>data_pattern_generator_
enable_preamble

Disables the preamblemode at the
beginning of generation.

<service-path>data_pattern_generator_
disable_preamble

Returns a non-zero value if
preamble mode is enabled.

<service-path>data_pattern_generator_
is_preamble_enabled

Sets the preamble word (could be
32-bit or 40-bit).

<service-path> <preamble-word>data_pattern_generator_
set_preamble_word

Gets the preamble word.<service-path>data_pattern_generator_
get_preamble_word

Sets the number of beats to send
out in the preamble word.

<service-path> <number-of-
preamble- beats>

data_pattern_generator_
set_preamble_beats

Altera CorporationDebugging Transceiver Links

Send Feedback

11-37Data Pattern Generator Commands
QII53029
2013.11.04

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Debugging%20Transceiver%20Links%20(QII53029%202013.11.04)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

FunctionArgumentsCommand

Returns the currently set number
of beats to send out in the
preamble word.

<service-path>data_pattern_generator_
get_preamble_beats

Sets themax cycle count and starts
the frequency counter.

<service-path>

<max-cycles>

data_pattern_generator_
fcnter_start

Queries the data pattern generator
for current status. Returns a
bitmap indicating the status, with
bits defined as follows: [0]-
enabled, [1]-bypass enabled, [2]-
avalon, [3]-sink ready, [4]-source
valid, and [5]-frequency counter
enabled.

<service-path>data_pattern_generator_
check_status

Reports the current measured
clock ratio, stopping the counting
first depending on <force-stop>.

<service-path>

<force-stop>

data_pattern_generator_
fcnter_report

Data Pattern Checker Commands
You can use Data Pattern Checker commands to verify your generated data patterns. You must instantiate
the Data Pattern Checker component to support these commands.

Table 11-15: Data Pattern Checker Commands

FunctionArgumentsCommand

Starts the data pattern checker.<service-path>data_pattern_checker_
start

Stops the data pattern checker.<service-path>data_pattern_checker_
stop

Returns a non-zero value if the
checker is running.

<service-path>data_pattern_checker_
is_checking

Returns non-zero if the checker is
locked onto the incoming data.

<service-path>data_pattern_checker_
is_locked

Sets the expected pattern to the
one specified by the <pattern-
name>.

<service-path> <pattern-name>data_pattern_checker_
set_pattern

Returns the currently selected
expected pattern by name.

<service-path>data_pattern_checker_
get_pattern

Debugging Transceiver LinksAltera Corporation

Send Feedback

QII53029
Data Pattern Checker Commands11-38 2013.11.04

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Debugging%20Transceiver%20Links%20(QII53029%202013.11.04)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

FunctionArgumentsCommand

Returns a list of available data
patterns by name.

<service-path>data_pattern_checker_
get_available_patterns

Returns a list of the current
checker data. The results are in the
following order: number of bits,
number of errors, and bit error
rate.

<service-path>data_pattern_checker_
get_data

Resets the bit and error counters
inside the checker.

<service-path>data_pattern_checker_
reset_counters

Sets themax cycle count and starts
the frequency counter.

<service-path>

<max-cycles>

data_pattern_checker_
fcnter_start

Queries the data pattern checker
for current status. Returns a
bitmap indicating status, with bits
defined as follows: [0]-enabled,
[1]-locked, [2]-bypass enabled,
[3]-avalon, [4]-sink ready, [5]-
source valid, and [6]-frequency
counter enabled.

<service-path>data_pattern_checker_
check_status

Reports the current measured
clock ratio, stopping the counting
first depending on <force-stop>.

<service-path>

<force-stop>

data_patte rn_checker_
fcnter_report

Revision History
The following table shows the revision history for this chapter.

Table 11-16: Document Revision History

ChangesVersionDate

• Reorganization and conversion to DITA.13.1.0November,
2013

• Added Conduit Mode Support, Serial Bit Comparator, Required Files and Tcl
command tables.

13.0.0May, 2013

• Minor editorial updates. AddedTcl help information and removedTcl command
tables. Added 28-Gbps Transceiver support section.

12.1.0November,
2012

• General reorganization and revised steps in modifying Altera example designs.12.0.1August, 2012

• Maintenance release for update of Transceiver Toolkit features.12.0.0June, 2012

Altera CorporationDebugging Transceiver Links

Send Feedback

11-39Revision History
QII53029
2013.11.04

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Debugging%20Transceiver%20Links%20(QII53029%202013.11.04)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

ChangesVersionDate

• Maintenance release for update of Transceiver Toolkit features.11.1.0November,
2011

• Added new Tcl scenario.11.0.0May, 2011

• Changed to new document template. Added new 10.1 release features.10.1.0December,
2010

• Corrected links.10.0.1August, 2010

• Initial release.10.0.0July 2010

Related Information
Quartus II Handbook Archive

Debugging Transceiver LinksAltera Corporation

Send Feedback

QII53029
Revision History11-40 2013.11.04

http://www.altera.com/literature/lit-qts_archive.jsp
mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Debugging%20Transceiver%20Links%20(QII53029%202013.11.04)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

QII53008-13.0.0

© 2013 Altera Corporation. All rights reserved. ALTERA, ARRI
are trademarks of Altera Corporation and registered in the U.S
trademarks or service marks are the property of their respectiv
semiconductor products to current specifications in accordance
services at any time without notice. Altera assumes no respons
described herein except as expressly agreed to in writing by Al
on any published information and before placing orders for pr

Quartus II Handbook Version 13.1
Volume 3: Verification
May 2013

May 2013
QII53008-13.0.0
12. Quick Design Debugging Using
SignalProbe
This chapter provides detailed instructions about how to use SignalProbe to quickly
debug your design. The SignalProbe incremental routing feature helps reduce the
hardware verification process and time-to-market for
system-on-a-programmable-chip (SOPC) designs.

Easy access to internal device signals is important in the design or debugging process.
The SignalProbe feature makes design verification more efficient by routing internal
signals to I/O pins quickly without affecting the design. When you start with a fully
routed design, you can select and route signals for debugging to either previously
reserved or currently unused I/O pins.

The SignalProbe feature supports the Arria® series, Cyclone® series, MAX® II, and
Stratix® series, device families.

f The Quartus® II software provides a portfolio of on-chip debugging tools. For an
overview and comparison of all the tools available in the Quartus II software, refer to
Section IV. System Debugging Tools in volume 3 of the Quartus II Handbook.

Debugging Using the SignalProbe Feature
The SignalProbe feature allows you to reserve available pins and route internal
signals to those reserved pins, while preserving the behavior of your design.
SignalProbe is an effective debugging tool that provides visibility into your FPGA.

You can reserve pins for SignalProbe and assign I/O standards after a full
compilation. Each SignalProbe-source to SignalProbe-pin connection is implemented
as an engineering change order (ECO) that is applied to your netlist after a full
compilation.

To route the internal signals to the device’s reserved pins for SignalProbe, perform the
following tasks:

1. Performing a Full Compilation, described on page 12–2.

2. Reserving SignalProbe Pins, described on page 12–2.

3. Assigning SignalProbe Sources, described on page 12–2.

4. Adding Registers Between Pipeline Paths and SignalProbe Pins, described on
page 12–3.

5. Performing a SignalProbe Compilation, described on page 12–3.

6. Analyzing the Results of a SignalProbe Compilation, described on page 12–4.
A, CYCLONE, HARDCOPY, MAX, MEGACORE, NIOS, QUARTUS and STRATIX words and logos
. Patent and Trademark Office and in other countries. All other words and logos identified as
e holders as described at www.altera.com/common/legal.html. Altera warrants performance of its
 with Altera's standard warranty, but reserves the right to make changes to any products and
ibility or liability arising out of the application or use of any information, product, or service
tera. Altera customers are advised to obtain the latest version of device specifications before relying
oducts or services.

Feedback SubscribeTwitter

ISO
9001:2008
Registered

http://www.altera.com/literature/hb/qts/qts_qii5v3_05.pdf
http://www.altera.com/literature/hb/qts/qts_qii5v3_05.pdf
https://www.altera.com/servlets/subscriptions/alert?id=QII53008
http://www.altera.com/common/legal.html
http://www.altera.com/support/reliability/certifications/rel-certifications.html
http://www.altera.com/support/reliability/certifications/rel-certifications.html
http://twitter.com/home/?status=Quick+Design+Debugging+Using+Signal+Probe+http://www.altera.com/literature/hb/qts/qts_qii53008.pdf?WT.mc_id=gc_so_tw_st_tx_a_011+(via @alteracorp)+%23Altera
mailto:TechDocFeedback@altera.com?subject=Feedback on QII53008-13.0.0 (QII HB, Vol 3, Ch12: Quick Design Debugging Using SignalProbe)

12–2 Chapter 12: Quick Design Debugging Using SignalProbe
Debugging Using the SignalProbe Feature
Performing a Full Compilation
You must complete a full compilation to generate an internal netlist containing a list of
internal nodes to probe.

To perform a full compilation, on the Processing menu, click Start Compilation.

Reserving SignalProbe Pins
SignalProbe pins can only be reserved after a full compilation. You can also probe any
unused I/Os of the device. Assigning sources is a simple process after reserving
SignalProbe pins. The sources for SignalProbe pins are the internal nodes and
registers in the post-compilation netlist that you want to probe.

1 Although you can reserve SignalProbe pins using many features within the Quartus II
software, including the Pin Planner and the Tcl interface, you should use the
SignalProbe Pins dialog box to create and edit your SignalProbe pins.

h For more information, refer to About SignalProbe in Quartus II Help.

Assigning SignalProbe Sources
A SignalProbe source can be any combinational node, register, or pin in your
post-compilation netlist. To find a SignalProbe source, in the Node Finder, use the
SignalProbe filter to remove all sources that cannot be probed. You might not be able
to find a particular internal node because the node can be optimized away during
synthesis, or the node cannot be routed to the SignalProbe pin. For example, you
cannot probe nodes and registers within Gigabit transceivers in Stratix IV devices
because there are no physical routes available to the pins.

1 To probe virtual I/O pins generated in low-level partitions in an incremental
compilation flow, select the source of the logic that feeds the virtual pin as your
SignalProbe source pin.

h For more information, refer to SignalProbe Pins Dialog Box and Add SignalProbe Pins
Dialog Box in Quartus II Help.

Because SignalProbe pins are implemented and routed as ECOs, turning the
SignalProbe enable option on or off is the same as selecting Apply Selected Change
or Restore Selected Change in the Change Manager window. (If the Change Manager
window is not visible at the bottom of your screen, on the View menu, point to Utility
Windows and click Change Manager.)

f For more information about the Change Manager for the Chip Planner and Resource
Property Editor, refer to the Engineering Change Management with the Chip Planner
chapter in volume 2 of the Quartus II Handbook.
Quartus II Handbook Version 13.1 May 2013 Altera Corporation
Volume 3: Verification

http://quartushelp.altera.com/current/master.htm#mergedProjects/program/sipro/comp_intro_signalprobe.htm
http://quartushelp.altera.com/current/master.htm#mergedProjects/program/sipro/comp_db_pin_assignments.htm
http://www.altera.com/literature/hb/qts/qts_qii52017.pdf
http://quartushelp.altera.com/current/master.htm#mergedProjects/program/sipro/sipro_db_add_sipro_pin.htm
http://quartushelp.altera.com/current/master.htm#mergedProjects/program/sipro/sipro_db_add_sipro_pin.htm

Chapter 12: Quick Design Debugging Using SignalProbe 12–3
Debugging Using the SignalProbe Feature
Adding Registers Between Pipeline Paths and SignalProbe Pins
You can specify the number of registers placed between a SignalProbe source and a
SignalProbe pin. The registers synchronize data to a clock and control the latency of
the SignalProbe outputs. The SignalProbe feature automatically inserts the number of
registers specified into the SignalProbe path.

Figure 12–1 shows a single register between the SignalProbe source Reg_b_1 and
SignalProbe SignalProbe_Output_2 output pin added to synchronize the data
between the two SignalProbe output pins.

1 When you add a register to a SignalProbe pin, the SignalProbe compilation attempts
to place the register to best meet timing requirements. You can place SignalProbe
registers either near the SignalProbe source to meet fMAX requirements, or near the
I/O to meet tCO requirements.

h To pipeline an existing SignalProbe connection, refer to Add SignalProbe Pins Dialog
Box in Quartus II Help.

In addition to clock input for pipeline registers, you can also specify a reset signal pin
for pipeline registers. To specify a reset pin for pipeline registers, use the Tcl command
make_sp, as described in “Scripting Support” on page 12–6.

Performing a SignalProbe Compilation
Perform a SignalProbe compilation to route your SignalProbe pins. A SignalProbe
compilation saves and checks all netlist changes without recompiling the other parts
of the design. A SignalProbe compilation takes a fraction of the time of a full
compilation to finish. The design’s current placement and routing are preserved.

To perform a SignalProbe compilation, on the Processing menu, point to Start and
click Start SignalProbe Compilation.

Figure 12–1. Synchronizing SignalProbe Outputs with a SignalProbe Register

Reg_b_1

SignalProbe
Pipeline
Register

SignalProbe_Output_1

SignalProbe_Output_2

D Q

DFF

Reg_b_2

D Q

DFF

D Q

D Q

DFF

Reg_a_1

D Q

DFF
Reg_a_2

Logic

Logic

Logic

Logic
May 2013 Altera Corporation Quartus II Handbook Version 13.1
Volume 3: Verification

http://quartushelp.altera.com/current/master.htm#mergedProjects/program/sipro/sipro_db_add_sipro_pin.htm
http://quartushelp.altera.com/current/master.htm#mergedProjects/program/sipro/sipro_db_add_sipro_pin.htm

12–4 Chapter 12: Quick Design Debugging Using SignalProbe
Debugging Using the SignalProbe Feature
Analyzing the Results of a SignalProbe Compilation
After a SignalProbe compilation, the results are available in the compilation report
file. Each SignalProbe pin is displayed in the SignalProbe Fitting Result page in the
Fitter section of the Compilation Report. To view the status of each SignalProbe pin in
the SignalProbe Pins dialog box, on the Tools menu, click SignalProbe Pins.

The status of each SignalProbe pin appears in the Change Manager window
(Figure 12–2). (If the Change Manager window is not visible at the bottom of your
GUI, from the View menu, point to Utility Windows and click Change Manager.)

f For more information about how to use the Change Manager, refer to the Engineering
Change Management with the Chip Planner chapter in volume 2 of the Quartus II
Handbook.

To view the timing results of each successfully routed SignalProbe pin, on the
Processing menu, point to Start and click Start Timing Analysis.

SignalProbe Compilation Functions
After a full compilation, you can start a SignalProbe compilation either manually or
automatically. A SignalProbe compilation performs the following functions:

■ Validates SignalProbe pins

■ Validates your specified SignalProbe sources

■ Adds registers into SignalProbe paths, if applicable

■ Attempts to route from SignalProbe sources through registers to SignalProbe pins

To run the SignalProbe compilation immediately after a full compilation, on the Tools
menu, click SignalProbe Pins. In the SignalProbe Pins dialog box, click Start Check
& Save All Netlist Changes.

To run a SignalProbe compilation manually after a full compilation, on the Processing
menu, point to Start and click Start SignalProbe Compilation.

1 You must run the Fitter before a SignalProbe compilation. The Fitter generates a list of
all internal nodes that can serve as SignalProbe sources.

Turn the SignalProbe enable option on or off in the SignalProbe Pins dialog box to
enable or disable each SignalProbe pin.

Figure 12–2. Change Manager Window with SignalProbe Pins
Quartus II Handbook Version 13.1 May 2013 Altera Corporation
Volume 3: Verification

http://www.altera.com/literature/hb/qts/qts_qii52017.pdf
http://www.altera.com/literature/hb/qts/qts_qii52017.pdf

Chapter 12: Quick Design Debugging Using SignalProbe 12–5
Debugging Using the SignalProbe Feature
Understanding the Results of a SignalProbe Compilation
After a SignalProbe compilation, the results appear in two sections of the compilation
report file. The fitting results and status (Table 12–1) of each SignalProbe pin appears
in the SignalProbe Fitting Result screen in the Fitter section of the Compilation
Report (Figure 12–3).

The SignalProbe source to output delays screen in the Timing Analysis section of the
Compilation Report displays the timing results of each successfully routed
SignalProbe pin (Figure 12–4).

Table 12–1. Status Values

Status Description

Routed Connected and routed successfully

Not Routed Not enabled

Failed to Route Failed routing during last SignalProbe compilation

Need to Compile Assignment changed since last SignalProbe compilation

Figure 12–3. SignalProbe Fitting Results Page in the Compilation Report Window

Figure 12–4. SignalProbe Source to Output Delays Page in the Compilation Report Window
May 2013 Altera Corporation Quartus II Handbook Version 13.1
Volume 3: Verification

12–6 Chapter 12: Quick Design Debugging Using SignalProbe
Scripting Support
1 After a SignalProbe compilation, the processing screen of the Messages window also
provides the results for each SignalProbe pin and displays slack information for each
successfully routed SignalProbe pin.

Analyzing SignalProbe Routing Failures
A SignalProbe compilation can fail for any of the following reasons:

■ Route unavailable—the SignalProbe compilation failed to find a route from the
SignalProbe source to the SignalProbe pin because of routing congestion.

■ Invalid or nonexistent SignalProbe source—you entered a SignalProbe source
that does not exist or is invalid.

■ Unusable output pin—the output pin selected is found to be unusable.

Routing failures can occur if the SignalProbe pin’s I/O standard conflicts with other
I/O standards in the same I/O bank.

If routing congestion prevents a successful SignalProbe compilation, you can allow
the compiler to modify routing to the specified SignalProbe source. On the Tools
menu, click SignalProbe Pins and turn on Modify latest fitting results during
SignalProbe compilation. This setting allows the Fitter to modify existing routing
channels used by your design.

1 Turning on Modify latest fitting results during SignalProbe compilation can change
the performance of your design.

Scripting Support
You can also run some procedures at a command prompt. For detailed information
about scripting command options, refer to the Quartus II command-line and Tcl API
Help browser. To run the Help browser, type the following command at the command
prompt:

quartus_sh --qhelp r

1 The Tcl commands in this section are part of the ::quartus::chip_planner Quartus II
Tcl API. Source or include the ::quartus::chip_planner Tcl package in your scripts
to make these commands available.

f For more information about Tcl scripting, refer to the Tcl Scripting chapter in volume 2
of the Quartus II Handbook. For more information about all settings and constraints in
the Quartus II software, refer to the Quartus II Settings File Reference Manual. For more
information about command-line scripting, refer to the Command-Line Scripting
chapter in volume 2 of the Quartus II Handbook.

Making a SignalProbe Pin
To make a SignalProbe pin, type the following command:

make_sp [-h | -help] [-long_help] [-clk <clk>] [-io_std <io_std>] \
-loc <loc> -pin_name <pin name> [-regs <regs>] [-reset <reset>] \
-src_name <source name>
Quartus II Handbook Version 13.1 May 2013 Altera Corporation
Volume 3: Verification

http://www.altera.com/literature/hb/qts/qts_qii52003.pdf
http://www.altera.com/literature/manual/mnl_qsf_reference.pdf
http://www.altera.com/literature/hb/qts/qts_qii52002.pdf

Chapter 12: Quick Design Debugging Using SignalProbe 12–7
Scripting Support
Deleting a SignalProbe Pin
To delete a SignalProbe pin, type the following Tcl command:

delete_sp [-h | -help] [-long_help] -pin_name <pin name>

Enabling a SignalProbe Pin
To enable a SignalProbe pin, type the following Tcl command:

enable_sp [-h | -help] [-long_help] -pin_name <pin name>

Disabling a SignalProbe Pin
To disable a SignalProbe pin, type the following Tcl command:

disable_sp [-h | -help] [-long_help] -pin_name <pin name>

Performing a SignalProbe Compilation
To perform a SignalProbe compilation, type the following command:

quartus_sh --flow signalprobe <project name>

Script Example
Example 12–1 shows a script that creates a SignalProbe pin called sp1 and connects
the sp1 pin to source node reg1 in a project that was already compiled.

Reserving SignalProbe Pins
To reserve a SignalProbe pin, add the commands shown in Example 12–2 to the
Quartus II Settings File (.qsf) for your project.

Valid locations are pin location names, such as Pin_A3.

For more information about reserving SignalProbe pins, refer to “Reserving
SignalProbe Pins” on page 12–2.

Example 12–1. Creating a SignalProbe Pin Called sp1

package require ::quartus::chip_planner
project_open project
read_netlist
make_sp -pin_name sp1 -src_name reg1
check_netlist_and_save
project_close

Example 12–2. Reserving a SignalProbe Pin

set_location_assignment <location> -to <SignalProbe pin name>
set_instance_assignment -name RESERVE_PIN \
"AS SIGNALPROBE OUTPUT" -to <SignalProbe pin name>
May 2013 Altera Corporation Quartus II Handbook Version 13.1
Volume 3: Verification

12–8 Chapter 12: Quick Design Debugging Using SignalProbe
Scripting Support
Common Problems When Reserving a SignalProbe Pin
If you cannot reserve a SignalProbe pin in the Quartus II software, it is likely that one
of the following is true:

■ You have selected multiple pins.

■ A compilation is running in the background. Wait until the compilation is
complete before reserving the pin.

■ You have the Quartus II Web Edition software, in which the SignalProbe feature is
not enabled by default. You must turn on TalkBack to enable the SignalProbe
feature in the Quartus II Web Edition software.

■ You have not set the pin reserve type to As Signal Probe Output. To reserve a pin,
on the Assignments menu, in the Assign Pins dialog box, select As SignalProbe
Output.

■ The pin is reserved from a previous compilation. During a compilation, the
Quartus II software reserves each pin on the targeted device. If you end the
Quartus II process during a compilation, for example, with the Windows Task
Manager End Process command or the UNIX kill command, perform a full
recompilation before reserving pins as SignalProbe outputs.

■ The pin does not support the SignalProbe feature. Select another pin.

■ The current device family does not support the SignalProbe feature.

Adding SignalProbe Sources
Use the following Tcl commands to add SignalProbe sources.

To assign the node name to a SignalProbe pin, type the following Tcl command:

set_instance_assignment -name SIGNALPROBE_SOURCE <node name> -to \
<SignalProbe pin name>

The next command turns on SignalProbe routing. To turn off individual SignalProbe
pins, specify OFF instead of ON with the following command:

set_instance_assignment -name SIGNALPROBE_ENABLE ON -to \
<SignalProbe pin name>

h For more information about adding SignalProbe sources, refer to SignalProbe Pins
Dialog Box and Add SignalProbe Pins Dialog Box in Quartus II Help.

Assigning I/O Standards
To assign an I/O standard to a pin, type the following Tcl command:

set_instance_assignment -name IO_STANDARD <I/O standard> -to \
<SignalProbe pin name>

h For a list of valid I/O standards, refer I/O Standards to the in the Quartus II Help.
Quartus II Handbook Version 13.1 May 2013 Altera Corporation
Volume 3: Verification

Add SignalProbe Pins Dialog Box
http://quartushelp.altera.com/current/mergedProjects/reference/glossary/def_iostandard.htm
http://quartushelp.altera.com/current/master.htm#mergedProjects/program/sipro/comp_db_pin_assignments.htm
http://quartushelp.altera.com/current/master.htm#mergedProjects/program/sipro/comp_db_pin_assignments.htm
http://quartushelp.altera.com/current/master.htm#mergedProjects/program/sipro/sipro_db_add_sipro_pin.htm

Chapter 12: Quick Design Debugging Using SignalProbe 12–9
Scripting Support
Adding Registers for Pipelining
To add registers for pipelining, type the following Tcl command:

set_instance_assignment -name SIGNALPROBE_CLOCK <clock name> -to \
<SignalProbe pin name>

set_instance_assignment \
-name SIGNALPROBE_NUM_REGISTERS <number of registers> -to \
<SignalProbe pin name>

Running SignalProbe Immediately After a Full Compilation
To run SignalProbe immediately after a full compilation, type the following Tcl
command:

set_global_assignment -name SIGNALPROBE_DURING_NORMAL_COMPILATION ON

For more information about running SignalProbe automatically, refer to “SignalProbe
Compilation Functions” on page 12–4.

Running SignalProbe Manually
To run SignalProbe as part of a scripted flow using Tcl, use the following in your
script:

execute_flow -signalprobe

To perform a Signal Probe compilation interactively at a command prompt, type the
following command:

quartus_sh_fit --flow signalprobe <project name>

For more information about running SignalProbe manually, refer to “SignalProbe
Compilation Functions” on page 12–4.

Enabling or Disabling All SignalProbe Routing
Use the Tcl command in Example 12–3 to turn on or turn off SignalProbe routing.
When using this command, to turn SignalProbe routing on, specify ON. To turn
SignalProbe routing off, specify OFF.

For more information about enabling or disabling SignalProbe routing, refer to
page 12–4.

Allowing SignalProbe to Modify Fitting Results
To turn on Modify latest fitting results, type the following Tcl command:

set_global_assignment -name SIGNALPROBE_ALLOW_OVERUSE ON

Example 12–3. Turning SignalProbe On or Off with Tcl Commands

set spe [get_all_assignments -name SIGNALPROBE_ENABLE] \
foreach_in_collection asgn $spe {

set signalprobe_pin_name [lindex $asgn 2]
set_instance_assignment -name SIGNALPROBE_ENABLE -to \

$signalprobe_pin_name <ON|OFF> }
May 2013 Altera Corporation Quartus II Handbook Version 13.1
Volume 3: Verification

12–10 Chapter 12: Quick Design Debugging Using SignalProbe
Document Revision History
For more information, refer to “Analyzing SignalProbe Routing Failures” on
page 12–6.

Document Revision History
Table 12–2 shows the revision history for this chapter.

f For previous versions of the Quartus II Handbook, refer to the Quartus II Handbook
Archive.

Table 12–2. Document Revision History

Date Version Changes

May 2013 13.0.0

Changed sequence of flow to clarify that you need to perform a full compilation before
reserving SignalProbe pins. Affected sections are “Debugging Using the SignalProbe
Feature” on page 12–1 and “Reserving SignalProbe Pins” on page 12–2. Moved
“Performing a Full Compilation” on page 12–2 before “Reserving SignalProbe Pins” on
page 12–2.

June 2012 12.0.0 Removed survey link.

November 2011 10.0.2 Template update.

December 2010 10.0.1 Changed to new document template.

July 2010 10.0.0

■ Revised for new UI.

■ Removed section SignalProbe ECO flows

■ Removed support for SignalProbe pin preservation when recompiling with incremental
compilation turned on.

■ Removed outdated FAQ section.

■ Added links to Quartus II Help for procedural content.

November 2009 9.1.0
■ Removed all references and procedures for APEX devices.

■ Style changes.

March 2009 9.0.0

■ Removed the “Generate the Programming File” section

■ Removed unnecessary screenshots

■ Minor editorial updates

November 2008 8.1.0

■ Modified description for preserving SignalProbe connections when using Incremental
Compilation

■ Added plausible scenarios where SignalProbe connections are not reserved in the
design

May 2008 8.0.0

■ Added “Arria GX” to the list of supported devices

■ Removed the “On-Chip Debugging Tool Comparison” and replaced with a reference to
the Section V Overview on page 13–1

■ Added hyperlinks to referenced documents throughout the chapter

■ Minor editorial updates
Quartus II Handbook Version 13.1 May 2013 Altera Corporation
Volume 3: Verification

http://www.altera.com/literature/lit-qts_archive.jsp
http://www.altera.com/literature/lit-qts_archive.jsp

QII53009-13.1.0

© 2013 Altera Corporation. All rights reserved. ALTERA, ARRI
are trademarks of Altera Corporation and registered in the U.S
trademarks or service marks are the property of their respectiv
semiconductor products to current specifications in accordance
services at any time without notice. Altera assumes no respons
described herein except as expressly agreed to in writing by Al
on any published information and before placing orders for pr

Quartus II Handbook Version 13.1
Volume 3: Verification
November 2013

November 2013
QII53009-13.1.0
13. Design Debugging Using the
SignalTap II Logic Analyzer
Altera provides the SignalTap® II Logic Analyzer to help with the process of design
debugging. This logic analyzer is a solution that allows you to examine the behavior
of internal signals, without using extra I/O pins, while the design is running at full
speed on an FPGA device.

The SignalTap II Logic Analyzer is scalable, easy to use, and is available as a
stand-alone package or included with the Quartus® II software subscription. This
logic analyzer helps debug an FPGA design by probing the state of the internal
signals in the design without the use of external equipment. Defining custom
trigger-condition logic provides greater accuracy and improves the ability to isolate
problems. The SignalTap II Logic Analyzer does not require external probes or
changes to the design files to capture the state of the internal nodes or I/O pins in the
design. All captured signal data is conveniently stored in device memory until you
are ready to read and analyze the data.

The topics in this chapter include:

■ “Design Flow Using the SignalTap II Logic Analyzer” on page 13–5

■ “SignalTap II Logic Analyzer Task Flow” on page 13–6

■ “Configure the SignalTap II Logic Analyzer” on page 13–9

■ “Define Triggers” on page 13–26

■ “Compile the Design” on page 13–44

■ “Program the Target Device or Devices” on page 13–49

■ “Run the SignalTap II Logic Analyzer” on page 13–50

■ “View, Analyze, and Use Captured Data” on page 13–54

■ “Other Features” on page 13–60

■ “Design Example: Using SignalTap II Logic Analyzers” on page 13–66

■ “Custom Triggering Flow Application Examples” on page 13–66

■ “SignalTap II Scripting Support” on page 13–68
A, CYCLONE, HARDCOPY, MAX, MEGACORE, NIOS, QUARTUS and STRATIX words and logos
. Patent and Trademark Office and in other countries. All other words and logos identified as
e holders as described at www.altera.com/common/legal.html. Altera warrants performance of its
 with Altera's standard warranty, but reserves the right to make changes to any products and
ibility or liability arising out of the application or use of any information, product, or service
tera. Altera customers are advised to obtain the latest version of device specifications before relying
oducts or services.

Feedback SubscribeTwitter

ISO
9001:2008
Registered

https://www.altera.com/servlets/subscriptions/alert?id=QII53009
http://www.altera.com/common/legal.html
http://www.altera.com/support/reliability/certifications/rel-certifications.html
http://www.altera.com/support/reliability/certifications/rel-certifications.html
http://twitter.com/home/?status=Design+Debugging+Using+the+SignalTap+II+Logic+Analyzer+http://www.altera.com/literature/hb/qts/qts_qii53009.pdf?WT.mc_id=gc_so_tw_st_tx_a_011+(via @alteracorp)+%23Altera
mailto:TechDocFeedback@altera.com?subject=Feedback on QII53009-13.0 (QII HB, Vol 3, Ch13: Design Debugging Using the SignalTap II Logic Analyzer)

13–2 Chapter 13: Design Debugging Using the SignalTap II Logic Analyzer
The SignalTap II Logic Analyzer is a next-generation, system-level debugging tool
that captures and displays real-time signal behavior in a system-on-a-programmable-
chip (SOPC) or any FPGA design. The SignalTap II Logic Analyzer supports the
highest number of channels, largest sample depth, and fastest clock speeds of any
logic analyzer in the programmable logic market. Figure 13–1 shows a block diagram
of the components that make up the SignalTap II Logic Analyzer.

This chapter is intended for any designer who wants to debug an FPGA design
during normal device operation without the need for external lab equipment. Because
the SignalTap II Logic Analyzer is similar to traditional external logic analyzers,
familiarity with external logic analyzer operations is helpful, but not necessary. To
take advantage of faster compile times when making changes to the SignalTap II
Logic Analyzer, knowledge of the Quartus II incremental compilation feature is
helpful.

f For information about using the Quartus II incremental compilation feature, refer to
the Quartus II Incremental Compilation for Hierarchical and Team-Based Design chapter in
volume 1 of the Quartus II Handbook.

Figure 13–1. SignalTap II Logic Analyzer Block Diagram (1)

Note to Figure 13–1:

(1) This diagram assumes that you compiled the SignalTap II Logic Analyzer with the design as a separate design partition using the Quartus II
incremental compilation feature. This is the default setting for new projects in the Quartus II software. If incremental compilation is disabled or
not used, the SignalTap II logic is integrated with the design. For information about the use of incremental compilation with SignalTap II, refer to
“Faster Compilations with Quartus II Incremental Compilation” on page 13–44.

Design Logic

1 2 30

1 2 30

SignalTap II
 Instances

JTAG

Hub

Altera
Programming

Hardware

Quartus II
Software

Buffers (Device Memory)

FPGA Device
Quartus II Handbook Version 13.1 November 2013 Altera Corporation
Volume 3: Verification

http://www.altera.com/literature/hb/qts/qts_qii51015.pdf

Chapter 13: Design Debugging Using the SignalTap II Logic Analyzer 13–3
Hardware and Software Requirements
You need the following components to perform logic analysis with the SignalTap II
Logic Analyzer:

■ Quartus II design software
or
Quartus II Web Edition (with the TalkBack feature enabled)
or
SignalTap II Logic Analyzer standalone software, included in and requiring the
Quartus II standalone Programmer software available from the Downloads page
of the Altera website (www.altera.com)

■ Download/upload cable

■ Altera® development kit or your design board with JTAG connection to device
under test

1 The Quartus II software Web Edition does not support the SignalTap II
Logic Analyzer with the incremental compilation feature.

The memory blocks of the device store captured data and transfers the data to the
Quartus II software waveform display with a JTAG communication cable, such as
EthernetBlaster or USB-BlasterTM. Table 13–1 summarizes features and benefits of the
SignalTap II Logic Analyzer.

Table 13–1. SignalTap II Logic Analyzer Features and Benefits (Part 1 of 2)

Feature Benefit

Multiple logic analyzers in a single device Captures data from multiple clock domains in a design at the same time.

Multiple logic analyzers in multiple devices in
a single JTAG chain Simultaneously captures data from multiple devices in a JTAG chain.

Plug-In Support Easily specifies nodes, triggers, and signal mnemonics for IP, such as the
Nios® II processor.

Up to 10 basic or advanced trigger conditions
for each analyzer instance

Enables sending more complex data capture commands to the logic
analyzer, providing greater accuracy and problem isolation.

Power-Up Trigger Captures signal data for triggers that occur after device programming, but
before manually starting the logic analyzer.

State-based Triggering Flow Enables you to organize your triggering conditions to precisely define what
your logic analyzer captures.

Incremental compilation Modifies the SignalTap II Logic Analyzer monitored signals and triggers
without performing a full compilation, saving time.

Flexible buffer acquisition modes

The buffer acquisition control allows you to precisely control the data that is
written into the acquisition buffer. Both segmented buffers and
non-segmented buffers with storage qualification allow you to discard data
samples that are not relevant to the debugging of your design.

MATLAB integration with included MEX
function

Collects the SignalTap II Logic Analyzer captured data into a MATLAB
integer matrix.

Up to 2,048 channels per logic analyzer
instance Samples many signals and wide bus structures.

Up to 128K samples in each device Captures a large sample set for each channel.
November 2013 Altera Corporation Quartus II Handbook Version 13.1
Volume 3: Verification

http://www.altera.com

13–4 Chapter 13: Design Debugging Using the SignalTap II Logic Analyzer
f The Quartus II software offers a portfolio of on-chip debugging solutions. For an
overview and comparison of all tools available in the In-System Verification Tool set,
refer to Section IV. In-System Design Debugging.

Fast clock frequencies Synchronous sampling of data nodes using the same clock tree driving the
logic under test.

Resource usage estimator Provides estimate of logic and memory device resources used by
SignalTap II Logic Analyzer configurations.

No additional cost The SignalTap II Logic Analyzer is included with a Quartus II subscription
and with the Quartus II Web Edition (with TalkBack enabled).

Compatibility with other on-chip debugging
utilities

You can use the SignalTap II Logic Analyzer in tandem with any JTAG-based
on-chip debugging tool, such as an In-System Memory Content editor,
allowing you to change signal values in real-time while you are running an
analysis with the SignalTap II Logic Analyzer.

Table 13–1. SignalTap II Logic Analyzer Features and Benefits (Part 2 of 2)

Feature Benefit
Quartus II Handbook Version 13.1 November 2013 Altera Corporation
Volume 3: Verification

http://www.altera.com/literature/hb/qts/qts_qii5v3_05.pdf

Chapter 13: Design Debugging Using the SignalTap II Logic Analyzer 13–5
Design Flow Using the SignalTap II Logic Analyzer
Design Flow Using the SignalTap II Logic Analyzer
Figure 13–2 shows a typical overall FPGA design flow for using the SignalTap II Logic
Analyzer in your design. A SignalTap II file (.stp) is added to and enabled in your
project, or a SignalTap II HDL function, created with the MegaWizard™ Plug-In
Manager, is instantiated in your design. The figure shows the flow of operations from
initially adding the SignalTap II Logic Analyzer to your design to final device
configuration, testing, and debugging.

Figure 13–2. SignalTap II FPGA Design and Debugging Flow

Fitter
Place-and-Route

Analysis and Synthesis

Verilog
HDL
(.v)

VHDL
(.vhd)

AHDL
(.tdf)

Block
Design File

(.bdf)

EDIF
Netlist
(.edf)

VQM
Netlist
(.vqm)

Assembler

Timing Analyzer

Yes

SignalTap II File (.stp)
or SignalTap II

MegaWizard File

Debug Source File No

End

Configuration

Functionality
Satisfied?
November 2013 Altera Corporation Quartus II Handbook Version 13.1
Volume 3: Verification

13–6 Chapter 13: Design Debugging Using the SignalTap II Logic Analyzer
SignalTap II Logic Analyzer Task Flow
SignalTap II Logic Analyzer Task Flow
To use the SignalTap II Logic Analyzer to debug your design, you perform a number
of tasks to add, configure, and run the logic analyzer. Figure 13–3 shows a typical flow
of the tasks you complete to debug your design. Refer to the appropriate section of
this chapter for more information about each of these tasks.

Add the SignalTap II Logic Analyzer to Your Design
Create an .stp or create a parameterized HDL instance representation of the logic
analyzer using the MegaWizard Plug-In Manager. If you want to monitor multiple
clock domains simultaneously, add additional instances of the logic analyzer to your
design, limited only by the available resources in your device.

h For information about creating an .stp, refer to Setting Up the SignalTap II Logic
Analyzer in Quartus II Help.

Figure 13–3. SignalTap II Logic Analyzer Task Flow

End

Create New Project or
Open Existing Project

Yes

No

No

Functionality
Satisfied or Bug

Fixed?

Add SignalTap II Logic
Analyzer to Design Instance

Configure
SignalTap II Logic Analyzer

Program Target
Device or Devices

View, Analyze, and
Use Captured Data

Define Triggers

Compile Design

Run SignalTap II
Logic Analyzer

Adjust Options,
Triggers, or both

Continue Debugging

Recompilation
Necessary?

Yes
Quartus II Handbook Version 13.1 November 2013 Altera Corporation
Volume 3: Verification

http://quartushelp.altera.com/current/master.htm#mergedProjects/program/ela/ela_pro_setup.htm
http://quartushelp.altera.com/current/master.htm#mergedProjects/program/ela/ela_pro_setup.htm

Chapter 13: Design Debugging Using the SignalTap II Logic Analyzer 13–7
SignalTap II Logic Analyzer Task Flow
Configure the SignalTap II Logic Analyzer
After you add the SignalTap II Logic Analyzer to your design, configure the logic
analyzer to monitor the signals you want. You can manually add signals or use a
plug-in, such as the Nios II processor plug-in, to quickly add entire sets of associated
signals for a particular intellectual property (IP). You can also specify settings for the
data capture buffer, such as its size, the method in which data is captured and stored,
and the device memory type to use for the buffer in devices that support memory
type selection.

h For information about configuring the SignalTap II Logic Analyzer, refer to Setting Up
the SignalTap II Logic Analyzer in Quartus II Help.

Define Trigger Conditions
The SignalTap II Logic Analyzer captures data continuously while the logic analyzer
is running. To capture and store specific signal data, set up triggers that tell the logic
analyzer under what conditions to stop capturing data. The SignalTap II Logic
Analyzer allows you to define trigger conditions that range from very simple, such as
the rising edge of a single signal, to very complex, involving groups of signals, extra
logic, and multiple conditions. Power-Up Triggers allow you to capture data from
trigger events occurring immediately after the device enters user-mode after
configuration.

h For information about defining trigger conditions, refer to Setting Up the SignalTap II
Logic Analyzer in Quartus II Help.

Compile the Design
With the .stp configured and trigger conditions defined, compile your project as usual
to include the logic analyzer in your design. Because you may need to change
monitored signal nodes or adjust trigger settings frequently during debugging, Altera
recommends that you use the incremental compilation feature built into the
SignalTap II Logic Analyzer, along with Quartus II incremental compilation, to reduce
recompile times.

h For information about compiling your design, refer to Compiling a Design that Contains
a SignalTap II Logic Analyzer in Quartus II Help.

Program the Target Device or Devices
When you debug a design with the SignalTap II Logic Analyzer, you can program a
target device directly from the .stp without using the Quartus II Programmer. You can
also program multiple devices with different designs and simultaneously debug
them.

1 The SignalTap II Logic Analyzer supports all current Altera FPGA device families
including Arria®, Cyclone®, and Stratix® devices.

h For instructions on programming devices in the Quartus II software, refer to Running
the SignalTap II Logic Analyzer in Quartus II Help.
November 2013 Altera Corporation Quartus II Handbook Version 13.1
Volume 3: Verification

http://quartushelp.altera.com/current/master.htm#mergedProjects/program/ela/ela_pro_run.htm
http://quartushelp.altera.com/current/master.htm#mergedProjects/program/ela/ela_pro_run.htm
http://quartushelp.altera.com/current/master.htm#mergedProjects/program/ela/ela_pro_setup.htm
http://quartushelp.altera.com/current/master.htm#mergedProjects/program/ela/ela_pro_setup.htm
http://quartushelp.altera.com/current/master.htm#mergedProjects/program/ela/ela_pro_setup.htm
http://quartushelp.altera.com/current/master.htm#mergedProjects/program/ela/ela_pro_setup.htm
http://quartushelp.altera.com/current/master.htm#mergedProjects/program/ela/ela_pro_compile_sigtap2.htm
http://quartushelp.altera.com/current/master.htm#mergedProjects/program/ela/ela_pro_compile_sigtap2.htm

13–8 Chapter 13: Design Debugging Using the SignalTap II Logic Analyzer
SignalTap II Logic Analyzer Task Flow
Run the SignalTap II Logic Analyzer
In normal device operation, you control the logic analyzer through the JTAG
connection, specifying when to start looking for trigger conditions to begin capturing
data. With Runtime or Power-Up Triggers, read and transfer the captured data from
the on-chip buffer to the .stp for analysis.

h For information about analyzing results from the SignalTap II Logic Analyzer, refer to
Analyzing Data in the SignalTap II Logic Analyzer in Quartus II Help.

View, Analyze, and Use Captured Data
After you have captured data and read it into the .stp, that data is available for
analysis and debugging. Set up mnemonic tables, either manually or with a plug-in,
to simplify reading and interpreting the captured signal data. To speed up debugging,
use the Locate feature in the SignalTap II node list to find the locations of problem
nodes in other tools in the Quartus II software. Save the captured data for later
analysis, or convert the data to other formats for sharing and further study.

h For information about analyzing results from the SignalTap II Logic Analyzer, refer to
Analyzing Data in the SignalTap II Logic Analyzer in Quartus II Help.

Embedding Multiple Analyzers in One FPGA
The SignalTap II Logic Analyzer Editor includes support for adding multiple logic
analyzers by creating instances in the .stp. You can create a unique logic analyzer for
each clock domain in the design.

h For information about creating instances, refer to Running the SignalTap II Logic
Analyzer in Quartus II Help.

Monitoring FPGA Resources Used by the SignalTap II Logic Analyzer
The SignalTap II Logic Analyzer has a built-in resource estimator that calculates the
logic resources and amount of memory that each logic analyzer instance uses.
Furthermore, because the most demanding on-chip resource for the logic analyzer is
memory usage, the resource estimator reports the ratio of total RAM usage in your
design to the total amount of RAM available, given the results of the last compilation.
The resource estimator provides a warning if a potential for a “no-fit” occurs.

You can see resource usage of each logic analyzer instance and total resources used in
the columns of the Instance Manager pane of the SignalTap II Logic Analyzer Editor.
Use this feature when you know that your design is running low on resources.

The logic element value reported in the resource usage estimator may vary by as
much as 10% from the actual resource usage.
Quartus II Handbook Version 13.1 November 2013 Altera Corporation
Volume 3: Verification

http://quartushelp.altera.com/current/master.htm#mergedProjects/program/ela/ela_pro_wform.htm
http://quartushelp.altera.com/current/master.htm#mergedProjects/program/ela/ela_pro_wform.htm
http://quartushelp.altera.com/current/master.htm#mergedProjects/program/ela/ela_pro_run.htm
http://quartushelp.altera.com/current/master.htm#mergedProjects/program/ela/ela_pro_run.htm

Chapter 13: Design Debugging Using the SignalTap II Logic Analyzer 13–9
Configure the SignalTap II Logic Analyzer
Table 13–2 shows the SignalTap II Logic Analyzer M4K memory block resource usage
for the listed devices per signal width and sample depth.

Using the MegaWizard Plug-In Manager to Create Your Logic Analyzer
You can create a SignalTap II Logic Analyzer instance by using the MegaWizard
Plug-In Manager. The MegaWizard Plug-In Manager generates an HDL file that you
instantiate in your design.

1 The State-based trigger flow, the state machine debugging feature, and the storage
qualification feature are not supported when using the MegaWizard Plug-In Manager
to create the logic analyzer. These features are described in the following sections:

■ “Adding Finite State Machine State Encoding Registers” on page 13–14

■ “Using the Storage Qualifier Feature” on page 13–18

■ “State-Based Triggering” on page 13–30

h For information about creating a SignalTap II instance with the MegaWizard Plug-In
Manager, refer to Setting Up the SignalTap II Logic Analyzer in Quartus II Help.

Configure the SignalTap II Logic Analyzer
There are many ways to configure instances of the SignalTap II Logic Analyzer. Some
of the settings are similar to those found on traditional external logic analyzers. Other
settings are unique to the SignalTap II Logic Analyzer because of the requirements for
configuring a logic analyzer. All settings allow you to configure the logic analyzer the
way you want to help debug your design.

1 Some settings can only be adjusted when you are viewing Run-Time Trigger
conditions instead of Power-Up Trigger conditions. To learn about Power-Up Triggers
and viewing different trigger conditions, refer to “Creating a Power-Up Trigger” on
page 13–41.

Table 13–2. SignalTap II Logic Analyzer M4K Block Utilization (1)

Signals (Width)
Samples (Depth)

256 512 2,048 8,192

8 < 1 1 4 16

16 1 2 8 32

32 2 4 16 64

64 4 8 32 128

256 16 32 128 512

Note to Table 13–2:

(1) When you configure a SignalTap II Logic Analyzer, the Instance Manager reports an estimate of the memory bits
and logic elements required to implement the given configuration.
November 2013 Altera Corporation Quartus II Handbook Version 13.1
Volume 3: Verification

http://quartushelp.altera.com/current/master.htm#mergedProjects/program/ela/ela_pro_setup.htm

13–10 Chapter 13: Design Debugging Using the SignalTap II Logic Analyzer
Configure the SignalTap II Logic Analyzer
Assigning an Acquisition Clock
Assign a clock signal to control the acquisition of data by the SignalTap II Logic
Analyzer. The logic analyzer samples data on every positive (rising) edge of the
acquisition clock. The logic analyzer does not support sampling on the negative
(falling) edge of the acquisition clock. You can use any signal in your design as the
acquisition clock. However, for best results, Altera recommends that you use a global,
non-gated clock synchronous to the signals under test for data acquisition. Using a
gated clock as your acquisition clock can result in unexpected data that does not
accurately reflect the behavior of your design. The Quartus II static timing analysis
tools show the maximum acquisition clock frequency at which you can run your
design. Refer to the Timing Analysis section of the Compilation Report to find the
maximum frequency of the logic analyzer clock.

h For information about assigning an acquisition clock, refer to Working with Nodes in the
SignalTap II Logic Analyzer in Quartus II Help.

1 Altera recommends that you exercise caution when using a recovered clock from a
transceiver as an acquisition clock for the SignalTap II Logic Analyzer. Incorrect or
unexpected behavior has been noted, particularly when a recovered clock from a
transceiver is used as an acquisition clock with the power-up trigger feature.

If you do not assign an acquisition clock in the SignalTap II Logic Analyzer Editor, the
Quartus II software automatically creates a clock pin called auto_stp_external_clk.

You must make a pin assignment to this pin independently from the design. Ensure
that a clock signal in your design drives the acquisition clock.

f For information about assigning signals to pins, refer to the I/O Management chapter in
volume 2 of the Quartus II Handbook.

Adding Signals to the SignalTap II File
While configuring the logic analyzer, add signals to the node list in the .stp to select
which signals in your design you want to monitor. You can also select signals to
define triggers. You can assign the following two types of signals to your .stp file:

■ Pre-synthesis—These signals exists after design elaboration, but before any
synthesis optimizations are done. This set of signals should reflect your Register
Transfer Level (RTL) signals.

■ Post-fitting—This signal exists after physical synthesis optimizations and
place-and-route.

1 If you are not using incremental compilation, add only pre-synthesis signals to the
.stp. Using pre-synthesis helps when you want to add a new node after you change a
design. Source file changes appear in the Node Finder after you perform an Analysis
and Elaboration. On the Processing Menu, point to Start and click Start Analysis &
Elaboration.

h For more information about incremental compilation, refer to About Incremental
Compilation in Quartus II Help.
Quartus II Handbook Version 13.1 November 2013 Altera Corporation
Volume 3: Verification

http://quartushelp.altera.com/current/master.htm#mergedProjects/program/ela/ela_pro_nodes.htm
http://quartushelp.altera.com/current/master.htm#mergedProjects/program/ela/ela_pro_nodes.htm
http://quartushelp.altera.com/current/master.htm#mergedProjects/comp/increment/comp_view_qid.htm
http://quartushelp.altera.com/current/master.htm#mergedProjects/comp/increment/comp_view_qid.htm
http://www.altera.com/literature/hb/qts/qts_qii52013.pdf

Chapter 13: Design Debugging Using the SignalTap II Logic Analyzer 13–11
Configure the SignalTap II Logic Analyzer
The Quartus II software does not limit the number of signals available for monitoring
in the SignalTap II window waveform display. However, the number of channels
available is directly proportional to the number of logic elements (LEs) or adaptive
logic modules (ALMs) in the device. Therefore, there is a physical restriction on the
number of channels that are available for monitoring. Signals shown in blue text are
post-fit node names. Signals shown in black text are pre-synthesis node names.

After successful Analysis and Elaboration, invalid signals are displayed in red. Unless
you are certain that these signals are valid, remove them from the .stp for correct
operation. The SignalTap II Status Indicator also indicates if an invalid node name
exists in the .stp.

You can tap signals if a routing resource (row or column interconnects) exists to route
the connection to the SignalTap II instance. For example, signals that exist in the I/O
element (IOE) cannot be directly tapped because there are no direct routing resources
from the signal in an IOE to a core logic element. For input pins, you can tap the signal
that is driving a logic array block (LAB) from an IOE, or, for output pins, you can tap
the signal from the LAB that is driving an IOE.

When adding pre-synthesis signals, make all connections to the SignalTap II Logic
Analyzer before synthesis. Logic and routing resources are allocated during
recompilation to make the connection as if a change in your design files had been
made. Pre-synthesis signal names for signals driving to and from IOEs coincide with
the signal names assigned to the pin.

In the case of post-fit signals, connections that you make to the SignalTap II Logic
Analyzer are the signal names from the actual atoms in your post-fit netlist. You can
only make a connection if the signals are part of the existing post-fit netlist and
existing routing resources are available from the signal of interest to the SignalTap II
Logic Analyzer. In the case of post-fit output signals, tap the COMBOUT or REGOUT signal
that drives the IOE block. For post-fit input signals, signals driving into the core logic
coincide with the signal name assigned to the pin.

1 Because NOT-gate push back applies to any register that you tap, the signal from the
atom may be inverted. You can check this by locating the signal in either the Resource
Property Editor or the Technology Map Viewer. The Technology Map viewer and the
Resource Property Editor can also be used to help you find post-fit node names.

f For information about cross-probing to source design files and other Quartus II
windows, refer to the Analyzing Designs with Quartus II Netlist Viewers chapter in
volume 1 of the Quartus II Handbook.

For more information about the use of incremental compilation with the SignalTap II
Logic Analyzer, refer to “Faster Compilations with Quartus II Incremental
Compilation” on page 13–44.

Signal Preservation
Many of the RTL signals are optimized during the process of synthesis and
place-and-route. RTL signal names frequently may not appear in the post-fit netlist
after optimizations. For example, the compilation process can add tildes (“~”) to nets
that fan-out from a node, making it difficult to decipher which signal nets they
actually represent. These process results can cause problems when you use the
incremental compilation flow with the SignalTap II Logic Analyzer. Because you can
November 2013 Altera Corporation Quartus II Handbook Version 13.1
Volume 3: Verification

http://www.altera.com/literature/hb/qts/qts_qii51013.pdf

13–12 Chapter 13: Design Debugging Using the SignalTap II Logic Analyzer
Configure the SignalTap II Logic Analyzer
only add post-fitting signals to the SignalTap II Logic Analyzer in partitions of type
post-fit, RTL signals that you want to monitor may not be available, preventing their
use. To avoid this issue, use synthesis attributes to preserve signals during synthesis
and place-and-route. When the Quartus II software encounters these synthesis
attributes, it does not perform any optimization on the specified signals, forcing them
to continue to exist in the post-fit netlist. However, if you do this, you could see an
increase in resource utilization or a decrease in timing performance. The two
attributes you can use are:

■ keep—Ensures that combinational signals are not removed

■ preserve—Ensures that registers are not removed

f For more information about using these attributes, refer to the Quartus II Integrated
Synthesis chapter in volume 1 of the Quartus II Handbook.

If you are debugging an IP core, such as the Nios II CPU or other encrypted IP, you
might need to preserve nodes from the core to make them available for debugging
with the SignalTap II Logic Analyzer. Preserving nodes is often necessary when a
plug-in is used to add a group of signals for a particular IP.

If you use incremental compilation flow with the SignalTap II Logic Analyzer,
pre-synthesis nodes may not be connected to the SignalTap II Logic Analyzer if the
affected partition is of the post-fit type. A critical warning is issued for all pre-
synthesis node names that are not found in the post-fit netlist.

h For more information about node preservation or how to avoiding these warnings,
refer to Working with Nodes in the SignalTap II Logic Analyzer in Quartus II Help.

Assigning Data Signals Using the Technology Map Viewer
You can easily add post-fit signal names that you find in the Technology map viewer.
To do so, launch the Technology map viewer (post-fitting) after compiling your
design. When you find the desired node, copy the node to either the active .stp for
your design or a new .stp.

Node List Signal Use Options
When a signal is added to the node list, you can select options that specify how the
signal is used with the logic analyzer. You can turn off the ability of a signal to trigger
the analyzer by disabling the Trigger Enable option for that signal in the node list in
the .stp. This option is useful when you want to see only the captured data for a signal
and you are not using that signal as part of a trigger.

You can turn off the ability to view data for a signal by disabling the Data Enable
column. This option is useful when you want to trigger on a signal, but have no
interest in viewing data for that signal.

For information about using signals in the node list to create SignalTap II trigger
conditions, refer to “Define Triggers” on page 13–26.
Quartus II Handbook Version 13.1 November 2013 Altera Corporation
Volume 3: Verification

http://quartushelp.altera.com/current/master.htm#mergedProjects/program/ela/ela_pro_nodes.htm
http://www.altera.com/literature/hb/qts/qts_qii51008.pdf
http://www.altera.com/literature/hb/qts/qts_qii51008.pdf

Chapter 13: Design Debugging Using the SignalTap II Logic Analyzer 13–13
Configure the SignalTap II Logic Analyzer
Untappable Signals
Not all of the post-fitting signals in your design are available in the SignalTap II :
post-fitting filter in the Node Finder dialog box. The following signal types cannot be
tapped:

■ Post-fit output pins—You cannot tap a post-fit output pin directly. To make an
output signal visible, tap the register or buffer that drives the output pin. This
includes pins defined as bidirectional.

■ Signals that are part of a carry chain—You cannot tap the carry out (cout0 or
cout1) signal of a logic element. Due to architectural restrictions, the carry out
signal can only feed the carry in of another LE.

■ JTAG Signals—You cannot tap the JTAG control (TCK, TDI, TDO, and TMS) signals.

■ ALTGXB megafunction—You cannot directly tap any ports of an ALTGXB
instantiation.

■ LVDS—You cannot tap the data output from a serializer/deserializer (SERDES)
block.

■ DQ, DQS Signals—You cannot directly tap the DQ or DQS signals in a DDR/DDRII
design.

Adding Signals with a Plug-In
Instead of adding individual or grouped signals through the Node Finder, you can
add groups of relevant signals of a particular type of IP with a plug-in. The
SignalTap II Logic Analyzer comes with one plug-in already installed for the Nios II
processor. Besides easy signal addition, plug-ins also provide features such as
pre-designed mnemonic tables, useful for trigger creation and data viewing, as well as
the ability to disassemble code in captured data.

The Nios II plug-in, for example, creates one mnemonic table in the Setup tab and two
tables in the Data tab:

■ Nios II Instruction (Setup tab)—Capture all the required signals for triggering on
a selected instruction address.

■ Nios II Instance Address (Data tab)—Display address of executed instructions in
hexadecimal format or as a programming symbol name if defined in an optional
Executable and Linking Format (.elf) file.

■ Nios II Disassembly (Data tab)—Displays disassembled code from the
corresponding address.

For information about the other features plug-ins provide, refer to “Define Triggers”
on page 13–26 and “View, Analyze, and Use Captured Data” on page 13–54.

To add signals to the .stp using a plug-in, perform the following steps after running
Analysis and Elaboration on your design:

1. Right-click in the node list. On the Add Nodes with Plug-In submenu, choose the
plug-in you want to use, such as the included plug-in named Nios II.

1 If the IP for the selected plug-in does not exist in your design, a message
informs you that you cannot use the selected plug-in.
November 2013 Altera Corporation Quartus II Handbook Version 13.1
Volume 3: Verification

13–14 Chapter 13: Design Debugging Using the SignalTap II Logic Analyzer
Configure the SignalTap II Logic Analyzer
2. The Select Hierarchy Level dialog box appears showing the IP hierarchy of your
design. Select the IP that contains the signals you want to monitor with the plug-in
and click OK.

3. If all the signals in the plug-in are available, a dialog box might appear, depending
on the plug-in selected, where you can specify options for the plug-in. With the
Nios II plug-in, you can optionally select an .elf containing program symbols from
your Nios II Integrated Development Environment (IDE) software design. Specify
options for the selected plug-in as desired and click OK.

1 To make sure all the required signals are available, in the Quartus II Analysis &
Synthesis settings, turn on Create debugging nodes for IP cores.

All the signals included in the plug-in are added to the node list.

Adding Finite State Machine State Encoding Registers
Finding the signals to debug Finite State Machines (FSM) can be challenging. Finding
nodes from the post-fit netlist may be impossible, as FSM encoding signals may be
changed or optimized away during synthesis and place-and-route. If you can find all
of the relevant nodes in the post-fit netlist or you used the nodes from the
pre-synthesis netlist, an additional step is required to find and map FSM signal values
to the state names that you specified in your HDL.

The SignalTap II Logic Analyzer GUI can detect FSMs in your compiled design. The
SignalTap II Logic Analyzer configuration automatically tracks the FSM state signals
as well as state encoding through the compilation process. Shortcut menu commands
from the SignalTap II Logic Analyzer GUI allow you to add all of the FSM state
signals to your logic analyzer with a single command. For each FSM added to your
SignalTap II configuration, the FSM debugging feature adds a mnemonic table to map
the signal values to the state enumeration that you provided in your source code. The
mnemonic tables enable you to visualize state machine transitions in the waveform
viewer. The FSM debugging feature supports adding FSM signals from both the
pre-synthesis and post-fit netlists.

Figure 13–4 shows the waveform viewer with decoded signal values from a state
machine added with the FSM debugging feature.

f For coding guidelines for specifying FSM in Verilog and VHDL, refer to the
Recommended HDL Coding Styles chapter in volume 1 of the Quartus II Handbook.

h For information about adding FSM signals to the configuration file, refer to Setting Up
the SignalTap II Logic Analyzer in Quartus II Help.

Figure 13–4. Decoded FSM Mnemonics
Quartus II Handbook Version 13.1 November 2013 Altera Corporation
Volume 3: Verification

http://www.altera.com/literature/hb/qts/qts_qii51007.pdf
http://quartushelp.altera.com/current/master.htm#mergedProjects/program/ela/ela_pro_setup.htm
http://quartushelp.altera.com/current/master.htm#mergedProjects/program/ela/ela_pro_setup.htm

Chapter 13: Design Debugging Using the SignalTap II Logic Analyzer 13–15
Configure the SignalTap II Logic Analyzer
Modifying and Restoring Mnemonic Tables for State Machines
When you add FSM state signals via the FSM debugging feature, the SignalTap II
Logic Analyzer GUI creates a mnemonic table using the format
<StateSignalName>_table, where StateSignalName is the name of the state signals
that you have declared in your RTL. You can edit any mnemonic table using the
Mnemonic Table Setup dialog box.

If you want to restore a mnemonic table that was modified, right-click anywhere in
the node list window and select Recreate State Machine Mnemonics. By default,
restoring a mnemonic table overwrites the existing mnemonic table that you
modified. To restore a FSM mnemonic table to a new record, turn off Overwrite
existing mnemonic table in the Recreate State Machine Mnemonics dialog box.

1 If you have added or deleted a signal from the FSM state signal group from within the
setup tab, delete the modified register group and add the FSM signals back again.

For more information about using Mnemonics, refer to “Creating Mnemonics for Bit
Patterns” on page 13–58.

Additional Considerations
The SignalTap II configuration GUI recognizes state machines from your design only
if you use Quartus II Integrated Synthesis (QIS). The state machine debugging feature
is not able to track the FSM signals or state encoding if you use other EDA synthesis
tools.

If you add post-fit FSM signals, the SignalTap II Logic Analyzer FSM debug feature
may not track all optimization changes that are a part of the compilation process. If
the following two specific optimizations are enabled, the SignalTap II FSM debug
feature may not list mnemonic tables for state machines in the design:

■ If you have physical synthesis turned on, state registers may be resource balanced
(register retiming) to improve fMAX. The FSM debug feature does not list post-fit
FSM state registers if register retiming occurs.

■ The FSM debugging feature does not list state signals that have been packed into
RAM and DSP blocks during QIS or Fitter optimizations.

You can still use the FSM debugging feature to add pre-synthesis state signals.

Specifying the Sample Depth
The sample depth specifies the number of samples that are captured and stored for
each signal in the captured data buffer. To specify the sample depth, select the desired
number of samples to store in the Sample Depth list. The sample depth ranges from
0 to 128K.

If device memory resources are limited, you may not be able to successfully compile
your design with the sample buffer size you have selected. Try reducing the sample
depth to reduce resource usage.
November 2013 Altera Corporation Quartus II Handbook Version 13.1
Volume 3: Verification

13–16 Chapter 13: Design Debugging Using the SignalTap II Logic Analyzer
Configure the SignalTap II Logic Analyzer
Capturing Data to a Specific RAM Type
When you use the SignalTap II Logic Analyzer with some devices, you have the
option to select the RAM type where acquisition data is stored. Once SignalTap II
Logic Analyzer is allocated to a particular RAM block, the entire RAM block becomes
a dedicated resource for the logic analyzer. RAM selection allows you to preserve a
specific memory block for your design and allocate another portion of memory for
SignalTap II Logic Analyzer data acquisition. For example, if your design has an
application that requires a large block of memory resources, such a large instruction
or data cache, you would choose to use MLAB, M512, or M4k blocks for data
acquisition and leave the M9k blocks for the rest of your design.

To select the RAM type to use for the SignalTap II Logic Analyzer buffer, select it from
the RAM type list. Use this feature when the acquired data (as reported by the
SignalTap II resource estimator) is not larger than the available memory of the
memory type that you have selected in the FPGA.

Choosing the Buffer Acquisition Mode
The Buffer Acquisition Type Selection feature in the SignalTap II Logic Analyzer lets
you choose how the captured data buffer is organized and can potentially reduce the
amount of memory that is required for SignalTap II data acquisition. There are two
types of acquisition buffer within the SignalTap II Logic Analyzer—a non-segmented
buffer and a segmented buffer. With a non-segmented buffer, the SignalTap II Logic
Analyzer treats entire memory space as a single FIFO, continuously filling the buffer
until the logic analyzer reaches a defined set of trigger conditions. With a segmented
buffer, the memory space is split into a number of separate buffers. Each buffer acts as
a separate FIFO with its own set of trigger conditions. Only a single buffer is active
during an acquisition. The SignalTap II Logic Analyzer advances to the next segment
after the trigger condition or conditions for the active segment has been reached.

When using a non-segmented buffer, you can use the storage qualification feature to
determine which samples are written into the acquisition buffer. Both the segmented
buffers and the non-segmented buffer with the storage qualification feature help you
maximize the use of the available memory space. Figure 13–5 illustrates the
differences between the two buffer types.

Figure 13–5. Buffer Type Comparison in the SignalTap II Logic Analyzer (1), (2)

Newly
Captured
Data

Oldest Data
 Removed

Post-Trigger Pre-Trigger Center Trigger

1 1

All
Trigger Level

Segment 1 Segment 2 Segment 3 Segment 4

Segment
Trigger Level

1 1 ... 0 1 1 0 ... 0 1 1 1 ... 0 1 1 0 ... 0 1

0 0 1 0 0 1 0 1

Segment
Trigger Level

Segment
Trigger Level

1(a) Circular Buffer

(b) Segmented Buffer
Quartus II Handbook Version 13.1 November 2013 Altera Corporation
Volume 3: Verification

Chapter 13: Design Debugging Using the SignalTap II Logic Analyzer 13–17
Configure the SignalTap II Logic Analyzer
For more information about the storage qualification feature, refer to “Using the
Storage Qualifier Feature” on page 13–18.

Non-Segmented Buffer
The non-segmented buffer (also known as a circular buffer) shown in Figure 13–5 (a)
is the default buffer type used by the SignalTap II Logic Analyzer. While the logic
analyzer is running, data is stored in the buffer until it fills up, at which point new
data replaces the oldest data. This continues until a specified trigger event, consisting
of a set of trigger conditions, occurs. When the trigger event happens, the logic
analyzer continues to capture data after the trigger event until the buffer is full, based
on the trigger position setting in the Signal Configuration pane in the .stp. To capture
the majority of the data before the trigger occurs, select Post trigger position from the
list. To capture the majority of the data after the trigger, select Pre-trigger position. To
center the trigger position in the data, select Center trigger position. Alternatively,
use the custom State-based triggering flow to define a custom trigger position within
the capture buffer.

For more information, refer to “Specifying the Trigger Position” on page 13–41.

Segmented Buffer
A segmented buffer allows you to debug systems that contain relatively infrequent
recurring events. The acquisition memory is split into evenly sized segments, with a
set of trigger conditions defined for each segment. Each segment acts as a non-
segmented buffer. If you want to have separate trigger conditions for each of the
segmented buffers, you must use the state-based trigger flow. Figure 13–6 shows an
example of a segmented buffer system.

Notes to Figure 13–5:

(1) Both non-segmented and segmented buffers can use a predefined trigger (Pre-Trigger, Center Trigger, Post-Trigger) position or define a custom
trigger position using the State-Based Triggering tab. Refer to “Specifying the Trigger Position” on page 13–41 for more details.

(2) Each segment is treated like a FIFO, and behaves as the non-segmented buffer shown in (a).

Figure 13–5. Buffer Type Comparison in the SignalTap II Logic Analyzer (1), (2)

Figure 13–6. Example System that Generates Recurring Events

QDR SRAM
Controller

WADDR[17..0]
RADDR[17..0]
WDATA[35..0]
RDATA[35..0]

CMD[1..0]

INCLK

A[17..0]
Q[17..0]
D[17..0]
BWSn[1..0]
RPSn
WPSn

K, Kn

QDR
SRAM

Reference Design Top-Level File

Stratix Device

Pipeline
Registers
(Optional)

K_FB_OUT
K_FB_IN

C, Cn

SRAM Interface Signals
November 2013 Altera Corporation Quartus II Handbook Version 13.1
Volume 3: Verification

13–18 Chapter 13: Design Debugging Using the SignalTap II Logic Analyzer
Configure the SignalTap II Logic Analyzer
The SignalTap II Logic Analyzer verifies the functionality of the design shown in
Figure 13–6 to ensure that the correct data is written to the SRAM controller. Buffer
acquisition in the SignalTap II Logic Analyzer allows you to monitor the RDATA port
when H'0F0F0F0F is sent into the RADDR port. You can monitor multiple read
transactions from the SRAM device without running the SignalTap II Logic Analyzer
again. The buffer acquisition feature allows you to segment the memory so you can
capture the same event multiple times without wasting allocated memory. The
number of cycles that are captured depends on the number of segments specified
under the Data settings.

To enable and configure buffer acquisition, select Segmented in the SignalTap II Logic
Analyzer Editor and select the number of segments to use. In the example in
Figure 13–6, selecting sixty-four 64-sample segments allows you to capture 64 read
cycles when the RADDR signal is H'0F0F0F0F.

h For more information about buffer acquisition mode, refer to Configuring the Trigger
Flow in the SignalTap II Logic Analyzer in the Quartus II Help.

Using the Storage Qualifier Feature
Both non-segmented and segmented buffers described in the previous section offer a
snapshot in time of the data stream being analyzed. The default behavior for writing
into acquisition memory with the SignalTap II Logic Analyzer is to sample data on
every clock cycle. With a non-segmented buffer, there is one data window that
represents a comprehensive snapshot of the datastream. Similarly, segmented buffers
use several smaller sampling windows spread out over more time, with each
sampling window representing a contiguous data set.

With carefully chosen trigger conditions and a generous sample depth for the
acquisition buffer, analysis using segmented and non-segmented buffers captures a
majority of functional errors in a chosen signal set. However, each data window can
have a considerable amount of redundancy associated with it; for example, a capture
of a data stream containing long periods of idle signals between data bursts. With
default behavior using the SignalTap II Logic Analyzer, you cannot discard the
redundant sample bits.

The Storage Qualification feature allows you to filter out individual samples not
relevant to debugging the design. With this feature, a condition acts as a write enable
to the buffer during each clock cycle of data acquisition. Through fine tuning the data
that is actually stored in acquisition memory, the Storage Qualification feature allows
for a more efficient use of acquisition memory in the specified number of samples
over a longer period of analysis.

Use of the Storage Qualification feature is similar to an acquisition using a segmented
buffer, in that you can create a discontinuity in the capture buffer. Because you can
create a discontinuity between any two samples in the buffer, the Storage
Qualification feature is equivalent to being able to create a customized segmented
buffer in which the number and size of segment boundaries are adjustable.
Figure 13–7 illustrates three ways the SignalTap II Logic Analyzer writes into
acquisition memory.
Quartus II Handbook Version 13.1 November 2013 Altera Corporation
Volume 3: Verification

http://quartushelp.altera.com/current/master.htm#mergedProjects/program/ela/ela_proc_cust_trig_flow.htm
http://quartushelp.altera.com/current/master.htm#mergedProjects/program/ela/ela_proc_cust_trig_flow.htm

Chapter 13: Design Debugging Using the SignalTap II Logic Analyzer 13–19
Configure the SignalTap II Logic Analyzer
1 You can only use the Storage Qualification feature with a non-segmented buffer. The
MegaWizard Plug-In Manager instantiated flow only supports the Input Port mode
for the Storage Qualification feature.

There are six storage qualifier types available under the Storage Qualification feature:

■ Continuous

■ Input port

■ Transitional

■ Conditional

■ Start/Stop

■ State-based

Continuous (the default mode selected) turns the Storage Qualification feature off.

Each selected storage qualifier type is active when an acquisition starts. Upon the start
of an acquisition, the SignalTap II Logic Analyzer examines each clock cycle and
writes the data into the acquisition buffer based upon storage qualifier type and
condition. The acquisition stops when a defined set of trigger conditions occur.

Figure 13–7. Data Acquisition Using Different Modes of Controlling the Acquisition Buffer

Notes to Figure 13–7:

(1) Non-segmented Buffers capture a fixed sample window of contiguous data.
(2) Segmented buffers divide the buffer into fixed sized segments, with each segment having an equal sample depth.
(3) Storage Qualification allows you to define a custom sampling window for each segment you create with a qualifying condition. Storage

qualification potentially allows for a larger time scale of coverage.
November 2013 Altera Corporation Quartus II Handbook Version 13.1
Volume 3: Verification

13–20 Chapter 13: Design Debugging Using the SignalTap II Logic Analyzer
Configure the SignalTap II Logic Analyzer
1 Trigger conditions are evaluated independently of storage qualifier conditions. The
SignalTap II Logic Analyzer evaluates the data stream for trigger conditions on every
clock cycle after the acquisition begins.

Trigger conditions are defined in “Define Trigger Conditions” on page 13–7.

The storage qualifier operates independently of the trigger conditions.

The following subsections describe each storage qualification mode from the
acquisition buffer.

Input Port Mode
When using the Input port mode, the SignalTap II Logic Analyzer takes any signal
from your design as an input. When the design is running, if the signal is high on the
clock edge, the SignalTap II Logic Analyzer stores the data in the buffer. If the signal is
low on the clock edge, the data sample is ignored. A pin is created and connected to
this input port by default if no internal node is specified.

If you are using an .stp to create a SignalTap II Logic Analyzer instance, specify the
storage qualifier signal using the input port field located on the Setup tab. You must
specify this port for your project to compile.

If you use the MegaWizard Plug-In Manager flow, the storage qualification input port,
if specified, appears in the MegaWizard-generated instantiation template. You can
then connect this port to a signal in your RTL.

Figure 13–8 shows a data pattern captured with a segmented buffer. Figure 13–9
shows a capture of the same data pattern with the storage qualification feature
enabled.

Figure 13–8. Data Acquisition of a Recurring Data Pattern in Continuous Capture Mode (to illustrate Input port mode)

Figure 13–9. Data Acquisition of a Recurring Data Pattern Using an Input Signal as a Storage Qualifier
Quartus II Handbook Version 13.1 November 2013 Altera Corporation
Volume 3: Verification

Chapter 13: Design Debugging Using the SignalTap II Logic Analyzer 13–21
Configure the SignalTap II Logic Analyzer
Transitional Mode
In Transitional mode, you choose a set of signals for inspection using the node list
check boxes in the Storage Qualifier column. During acquisition, if any of the signals
marked for inspection have changed since the previous clock cycle, new data is
written to the acquisition buffer. If none of the signals marked have changed since the
previous clock cycle, no data is stored. Figure 13–10 shows the transitional storage
qualifier setup. Figure 13–11 and Figure 13–12 show captures of a data pattern in
continuous capture mode and a data pattern using the Transitional mode for storage
qualification.

Conditional Mode
In Conditional mode, the SignalTap II Logic Analyzer evaluates a combinational
function of storage qualifier enabled signals within the node list to determine whether
a sample is stored. The SignalTap II Logic Analyzer writes into the buffer during the
clock cycles in which the condition you specify evaluates TRUE.

Figure 13–10. Transitional Storage Qualifier Setup

Figure 13–11. Data Acquisition of a Recurring Data Pattern in Continuous Capture Mode (to
illustrate Transitional mode)

Figure 13–12. Data Acquisition of Recurring Data Pattern Using a Transitional Mode as a Storage
Qualifier

Node List Storage Enable Transitional Enable
Storage Qualifier
Dialog Box
November 2013 Altera Corporation Quartus II Handbook Version 13.1
Volume 3: Verification

13–22 Chapter 13: Design Debugging Using the SignalTap II Logic Analyzer
Configure the SignalTap II Logic Analyzer
You can select either Basic AND, Basic OR, or Advanced storage qualifier conditions.
A Basic AND or Basic OR storage qualifier condition matches each signal to one of
the following:

■ Don’t Care

■ Low

■ High

■ Falling Edge

■ Rising Edge

■ Either Edge

If you specify a Basic AND storage qualifier condition for more than one signal, the
SignalTap II Logic Analyzer evaluates the logical AND of the conditions.

Any other combinational or relational operators that you may want to specify with
the enabled signal set for storage qualification can be done with an advanced storage
condition. Figure 13–13 details the conditional storage qualifier setup in the .stp.

You can specify storage qualification conditions similar to the manner in which
trigger conditions are specified. For details about basic and advanced trigger
conditions, refer to the sections “Creating Basic Trigger Conditions” on page 13–26
and “Creating Advanced Trigger Conditions” on page 13–27. Figure 13–14 and
Figure 13–15 show a data capture with continuous sampling, and the same data
pattern using the conditional mode for analysis, respectively.

Figure 13–13. Conditional Storage Qualifier Setup

Figure 13–14. Data Acquisition of a Recurring Data Pattern in Continuous Capture Mode (to
illustrate Conditional capture)
Quartus II Handbook Version 13.1 November 2013 Altera Corporation
Volume 3: Verification

Chapter 13: Design Debugging Using the SignalTap II Logic Analyzer 13–23
Configure the SignalTap II Logic Analyzer
Start/Stop Mode
The Start/Stop mode is similar to the Conditional mode for storage qualification.
However, in this mode there are two sets of conditions, one for start and one for stop.
If the start condition evaluates to TRUE, data begins is stored in the buffer every clock
cycle until the stop condition evaluates to TRUE, which then pauses the data capture.
Additional start signals received after the data capture has started are ignored. If both
start and stop evaluate to TRUE at the same time, a single cycle is captured.

1 You can force a trigger by pressing the Stop button if the buffer fails to fill to
completion due to a stop condition.

Figure 13–16 shows the Start/Stop mode storage qualifier setup. Figure 13–17 and
Figure 13–18 show captures data pattern in continuous capture mode and a data
pattern in using the Start/Stop mode for storage qualification.

Figure 13–15. Data Acquisition of a Recurring Data Pattern in Conditional Capture Mode

Figure 13–16. Start/Stop Mode Storage Qualifier Setup

Figure 13–17. Data Acquisition of a Recurring Data Pattern in Continuous Mode (to illustrate
Start/Stop mode)
November 2013 Altera Corporation Quartus II Handbook Version 13.1
Volume 3: Verification

13–24 Chapter 13: Design Debugging Using the SignalTap II Logic Analyzer
Configure the SignalTap II Logic Analyzer
State-Based
The State-based storage qualification mode is used with the State-based triggering
flow. The state based triggering flow evaluates an if-else based language to define
how data is written into the buffer. With the State-based trigger flow, you have
command over boolean and relational operators to guide the execution flow for the
target acquisition buffer. When the storage qualifier feature is enabled for the
State-based flow, two additional commands are available, the start_store and
stop_store commands. These commands operate similarly to the Start/Stop capture
conditions described in the previous section. Upon the start of acquisition, data is not
written into the buffer until a start_store action is performed. The stop_store
command pauses the acquisition. If both start_store and stop_store actions are
performed within the same clock cycle, a single sample is stored into the acquisition
buffer.

For more information about the State-based flow and storage qualification using the
State-based trigger flow, refer to the section “State-Based Triggering” on page 13–30.

Showing Data Discontinuities
When you turn on Record data discontinuities, the SignalTap II Logic Analyzer
marks the samples during which the acquisition paused from a storage qualifier. This
marker is displayed in the waveform viewer after acquisition completes.

Disable Storage Qualifier
You can turn off the storage qualifier quickly with the Disable Storage Qualifier
option, and perform a continuous capture. This option is run-time reconfigurable; that
is, the setting can be changed without recompiling the project. Changing storage
qualifier mode from the Type field requires a recompilation of the project.

1 For a detailed explanation of Runtime Reconfigurable options available with the
SignalTap II Logic Analyzer, and storage qualifier application examples using
runtime reconfigurable options, refer to “Runtime Reconfigurable Options” on
page 13–51.

Figure 13–18. Data Acquisition of a Recurring Data Pattern with Start/Stop Storage Qualifier
Enabled
Quartus II Handbook Version 13.1 November 2013 Altera Corporation
Volume 3: Verification

Chapter 13: Design Debugging Using the SignalTap II Logic Analyzer 13–25
Configure the SignalTap II Logic Analyzer
Managing Multiple SignalTap II Files and Configurations
You may have more than one .stp in one design. Each file potentially has a different
group of monitored signals. These signal groups make it possible to debug different
blocks in your design. In turn, each group of signals can also be used to define
different sets of trigger conditions. Along with each .stp, there is also an associated
programming file (SRAM Object File [.sof]). The settings in a selected SignalTap II file
must match the SignalTap II logic design in the associated .sof for the logic analyzer to
run properly when the device is programmed. Use the Data Log feature and the
SOF Manager to manage all of the .stp files and their associated settings and
programming files.

The Data Log allows you to store multiple SignalTap II configurations within a single
.stp. Figure 13–19 shows two signal set configurations with multiple trigger
conditions in one .stp. To toggle between the active configurations, double-click on an
entry in the Data Log. As you toggle between the different configurations, the signal
list and trigger conditions change in the Setup tab of the .stp. The active configuration
displayed in the .stp is indicated by the blue square around the signal specified in the
Data Log. To store a configuration in the Data Log, on the Edit menu, click Save to
Data Log or click Save to Data Log at the top of the Data Log.

The SOF Manager allows you to embed multiple SOFs into one .stp. Embedding an
SOF in an .stp lets you move the .stp to a different location, either on the same
computer or across a network, without the need to include the associated .sof as a
separate. To embed a new SOF in the .stp, right-click in the SOF Manager, and click
Attach SOF File (Figure 13–20).

Figure 13–19. Data Log

Figure 13–20. SOF Manager

Save to Data Log

Enable
Data Log
November 2013 Altera Corporation Quartus II Handbook Version 13.1
Volume 3: Verification

13–26 Chapter 13: Design Debugging Using the SignalTap II Logic Analyzer
Define Triggers
As you switch between configurations in the Data Log, you can extract the SOF that is
compatible with that particular configuration. You can use the programmer in the
SignalTap II Logic Analyzer to download the new SOF to the FPGA, ensuring that the
configuration of your .stp always matches the design programmed into the target
device.

Define Triggers
When you start the SignalTap II Logic Analyzer, it samples activity continuously from
the monitored signals. The SignalTap II Logic Analyzer “triggers”—that is, the logic
analyzer stops and displays the data—when a condition or set of conditions that you
specified has been reached. This section describes the various types of trigger
conditions that you can specify using the SignalTap II Logic Analyzer on the Signal
Configuration pane.

Creating Basic Trigger Conditions
The simplest kind of trigger condition is a basic trigger. Select this from the list at the
top of the Trigger Conditions column in the node list in the SignalTap II Logic
Analyzer Editor. If you select the Basic AND or Basic OR trigger type, you must
specify the trigger pattern for each signal you have added in the .stp. To specify the
trigger pattern, right-click in the Trigger Conditions column and click the desired
pattern. Set the trigger pattern to any of the following conditions:

■ Don’t Care

■ Low

■ High

■ Falling Edge

■ Rising Edge

■ Either Edge

For buses, type a pattern in binary, or right-click and select Insert Value to enter the
pattern in other number formats. Note that you can enter X to specify a set of “don’t
care” values in either your hexadecimal or your binary string. For signals added to the
.stp that have an associated mnemonic table, you can right-click and select an entry
from the table to specify pre-defined conditions for the trigger.

For more information about creating and using mnemonic tables, refer to “View,
Analyze, and Use Captured Data” on page 13–54, and to the Quartus II Help.

For signals added with certain plug-ins, you can create basic triggers easily using
predefined mnemonic table entries. For example, with the Nios II plug-in, if you have
specified an .elf from your Nios II IDE design, you can type the name of a function
from your Nios II code. The logic analyzer triggers when the Nios II instruction
address matches the address of the specified code function name.

Data capture stops and the data is stored in the buffer when the logical AND of all the
signals for a given trigger condition evaluates to TRUE.
Quartus II Handbook Version 13.1 November 2013 Altera Corporation
Volume 3: Verification

Chapter 13: Design Debugging Using the SignalTap II Logic Analyzer 13–27
Define Triggers
Creating Advanced Trigger Conditions
With the basic triggering capabilities of the SignalTap II Logic Analyzer, you can build
more complex triggers with extra logic that enables you to capture data when a
combination of conditions exist. If you select the Advanced trigger type at the top of
the Trigger Conditions column in the node list of the SignalTap II Logic Analyzer
Editor, a new tab named Advanced Trigger appears where you can build a complex
trigger expression using a simple GUI. Drag-and-drop operators into the Advanced
Trigger Configuration Editor window to build the complex trigger condition in an
expression tree. To configure the operators’ settings, double-click or right-click the
operators that you have placed and select Properties. Table 13–3 lists the operators
you can use.

Adding many objects to the Advanced Trigger Condition Editor can make the work
space cluttered and difficult to read. To keep objects organized while you build your
advanced trigger condition, use the shortcut menu and select Arrange All Objects.
You can also use the Zoom-Out command to fit more objects into the Advanced
Trigger Condition Editor window.

Table 13–3. Advanced Triggering Operators (1)

Name of Operator Type

Less Than Comparison

Less Than or Equal To Comparison

Equality Comparison

Inequality Comparison

Greater Than Comparison

Greater Than or Equal To Comparison

Logical NOT Logical

Logical AND Logical

Logical OR Logical

Logical XOR Logical

Reduction AND Reduction

Reduction OR Reduction

Reduction XOR Reduction

Left Shift Shift

Right Shift Shift

Bitwise Complement Bitwise

Bitwise AND Bitwise

Bitwise OR Bitwise

Bitwise XOR Bitwise

Edge and Level Detector Signal Detection

Note to Table 13–3:

(1) For more information about each of these operators, refer to the Quartus II Help.
November 2013 Altera Corporation Quartus II Handbook Version 13.1
Volume 3: Verification

13–28 Chapter 13: Design Debugging Using the SignalTap II Logic Analyzer
Define Triggers
Examples of Advanced Triggering Expressions
The following examples show how to use Advanced Triggering:

■ Trigger when bus outa is greater than or equal to outb (Figure 13–21).

■ Trigger when bus outa is greater than or equal to bus outb, and when the enable
signal has a rising edge (Figure 13–22).

Figure 13–21. Bus outa is Greater Than or Equal to Bus outb

Figure 13–22. Enable Signal has a Rising Edge
Quartus II Handbook Version 13.1 November 2013 Altera Corporation
Volume 3: Verification

Chapter 13: Design Debugging Using the SignalTap II Logic Analyzer 13–29
Define Triggers
■ Trigger when bus outa is greater than or equal to bus outb, or when the enable
signal has a rising edge. Or, when a bitwise AND operation has been performed
between bus outc and bus outd, and all bits of the result of that operation are equal
to 1 (Figure 13–23).

Trigger Condition Flow Control
The SignalTap II Logic Analyzer offers multiple triggering conditions to give you
precise control of the method in which data is captured into the acquisition buffers.
Trigger Condition Flow allows you to define the relationship between a set of
triggering conditions. The SignalTap II Logic Analyzer Signal Configuration pane
offers two flow control mechanisms for organizing trigger conditions:

■ Sequential Triggering—The default triggering flow. Sequential triggering allows
you to define up to 10 triggering levels that must be satisfied before the acquisition
buffer finishes capturing.

■ State-Based Triggering—Allows you the greatest control over your acquisition
buffer. Custom-based triggering allows you to organize trigger conditions into
states based on a conditional flow that you define.

You can use sequential or state based triggering with either a segmented or a non-
segmented buffer.

Sequential Triggering
Sequential triggering flow allows you to cascade up to 10 levels of triggering
conditions. The SignalTap II Logic Analyzer sequentially evaluates each of the
triggering conditions. When the last triggering condition evaluates to TRUE, the
SignalTap II Logic Analyzer triggers the acquisition buffer. For segmented buffers,
every acquisition segment after the first segment triggers on the last triggering
condition that you have specified. Use the Simple Sequential Triggering feature with
basic triggers, advanced triggers, or a mix of both. Figure 13–24 illustrates the simple
sequential triggering flow for non-segmented and segmented buffers.

Figure 13–23. Bitwise AND Operation
November 2013 Altera Corporation Quartus II Handbook Version 13.1
Volume 3: Verification

13–30 Chapter 13: Design Debugging Using the SignalTap II Logic Analyzer
Define Triggers
1 The external trigger is considered as trigger level 0. The external trigger must be
evaluated before the main trigger levels are evaluated.

To configure the SignalTap II Logic Analyzer for Sequential triggering, in the
SignalTap II editor on the Trigger flow control list, select Sequential. Select the
desired number of trigger conditions from the Trigger Conditions list. After you
select the desired number of trigger conditions, configure each trigger condition in the
node list. To disable any trigger condition, turn on the trigger condition at the top of
the column in the node list.

State-Based Triggering
Custom State-based triggering provides the most control over triggering condition
arrangement. The State-Based Triggering flow allows you to describe the relationship
between triggering conditions precisely, using an intuitive GUI and the SignalTap II
Trigger Flow Description Language, a simple description language based upon
conditional expressions. Tooltips within the custom triggering flow GUI allow you to
describe your desired flow quickly. The custom State-based triggering flow allows for
more efficient use of the space available in the acquisition buffer because only specific
samples of interest are captured.

Figure 13–24. Sequential Triggering Flow (1), (2)

Notes to Figure 13–24:

(1) The acquisition buffer stops capture when all n triggering levels are satisfied, where .
(2) An external trigger input, if defined, is evaluated before all other defined trigger conditions are evaluated. For more information about external

triggers, refer to “Using External Triggers” on page 13–43.

Non-segmented Buffer Segmented Buffer

Acquisition Segment 1
trigger

Acquisition Segment 2
trigger

Acquisition Segment m
trigger

Acquisition Buffer
trigger

m - 2 transitions

Trigger Condition 1

Trigger Condition 2

Trigger Condition n

n - 2 transitions

n - 2 transitions

Trigger Condition 1

Trigger Condition 2

Trigger Condition n

Trigger Condition n

Trigger Condition n

n 10≤
Quartus II Handbook Version 13.1 November 2013 Altera Corporation
Volume 3: Verification

Chapter 13: Design Debugging Using the SignalTap II Logic Analyzer 13–31
Define Triggers
Figure 13–25 illustrates the custom State-based triggering flow. Events that trigger the
acquisition buffer are organized by a state diagram that you define. All actions
performed by the acquisition buffer are captured by the states and all transition
conditions between the states are defined by the conditional expressions that you
specify within each state.

Each state allows you to define a set of conditional expressions. Each conditional
expression is a Boolean expression dependent on a combination of triggering
conditions (configured within the Setup tab), counters, and status flags. Counters and
status flags are resources provided by the SignalTap II Logic Analyzer custom-based
triggering flow.

Within each conditional expression you define a set of actions. Actions include
triggering the acquisition buffer to stop capture, a modification to either a counter or
status flag, or a state transition.

Trigger actions can apply to either a single segment of a segmented acquisition buffer
or to the entire non-segmented acquisition buffer. Each trigger action provides you
with an optional count that specifies the number of samples captured before stopping
acquisition of the current segment. The count argument allows you to control the
amount of data captured precisely before and after triggering event.

Resource manipulation actions allow you to increment and decrement counters or set
and clear status flags. The counter and status flag resources are used as optional
inputs in conditional expressions. Counters and status flags are useful for counting
the number of occurrences of particular events and for aiding in triggering flow
control.

This SignalTap II custom State-based triggering flow allows you to capture a sequence
of events that may not necessarily be contiguous in time; for example, capturing a
communication transaction between two devices that includes a handshaking
protocol containing a sequence of acknowledgements.

Figure 13–25. State-Based Triggering Flow (1), (2)

Notes to Figure 13–25:
(1) You are allowed up to 20 different states.
(2) An external trigger input, if defined, is evaluated before any conditions in the custom State-based triggering flow are evaluated. For more

information, refer to “Using External Triggers” on page 13–43.

User-Defined Triggering Flow

Segmented Acquisition Buffer

Trigger Condition Set a

State 1:

Trigger Condition Set b

State 2:

Trigger Condition Set c

State 3:

Trigger Condition Set d

State n (last state):

First Acquisition Segment Next Acquisition Segment Last Acquisition Segment

Transition Condition i

Transition Condition j

Transition Condition l

segment_triggersegment_trigger segment_trigger segment_trigger

Transition Condition k

Next Acquisition Segment
November 2013 Altera Corporation Quartus II Handbook Version 13.1
Volume 3: Verification

13–32 Chapter 13: Design Debugging Using the SignalTap II Logic Analyzer
Define Triggers
The State-Based Trigger Flow tab is the control interface for the custom state-based
triggering flow. To enable this tab, select State-based on the Trigger Flow Control list.
(Note that when Trigger Flow Control is specified as Sequential, the State-Based
Trigger Flow tab is hidden.)

The State-Based Trigger Flow tab is partitioned into the following three panes:

■ State Diagram Pane

■ Resources Pane

■ State Machine Pane

State Diagram Pane

The State Diagram pane provides a graphical overview of the triggering flow that
you define. It shows the number of states available and the state transitions between
the states. You can adjust the number of available states by using the menu above the
graphical overview.

State Machine Pane

The State Machine pane contains the text entry boxes where you can define the
triggering flow and actions associated with each state. You can define the triggering
flow using the SignalTap II Trigger Flow Description Language, a simple language
based on “if-else” conditional statements. Tooltips appear when you move the mouse
over the cursor, to guide command entry into the state boxes. The GUI provides a
syntax check on your flow description in real-time and highlights any errors in the
text flow.

1 For a full description of the SignalTap II Trigger Flow Description Language, refer to
“SignalTap II Trigger Flow Description Language” on page 13–33.

h You can also refer to SignalTap II Trigger Flow Description Language in Quartus II Help.

The State Machine description text boxes default to show one text box per state. You
can also have the entire flow description shown in a single text field. This option can
be useful when copying and pasting a flow description from a template or an external
text editor. To toggle between one window per state, or all states in one window, select
the appropriate option under State Display mode.

Resources Pane

The Resources pane allows you to declare Status Flags and Counters for use in the
conditional expressions in the Custom Triggering Flow. Actions to decrement and
increment counters or to set and clear status flags are performed within the triggering
flow that you define.

You can specify up to 20 counters and 20 status flags. Counter and status flags values
may be initialized by right-clicking the status flag or counter name after selecting a
number of them from the respective pull-down list, and selecting Set Initial Value. To
specify a counter width, right-click the counter name and select Set Width. Counters
and flag values are updated dynamically after acquisition has started to assist in
debugging your trigger flow specification.
Quartus II Handbook Version 13.1 November 2013 Altera Corporation
Volume 3: Verification

http://quartushelp.altera.com/current/master.htm#mergedProjects/program/ela/ela_proc_trigflow_lang.htm

Chapter 13: Design Debugging Using the SignalTap II Logic Analyzer 13–33
Define Triggers
The configurable at runtime options in the Resources pane allows you to configure
the custom-flow control options that can be changed at runtime without requiring a
recompilation. Table 13–4 contains a description of options for the State-based trigger
flow that can be reconfigured at runtime.

1 For a broader discussion about all options that can be changed without incurring a
recompile refer to “Runtime Reconfigurable Options” on page 13–51.

You can restrict changes to your SignalTap configuration to include only the options
that do not require a recompilation by using the menu above the trigger list in the
Setup tab. Allow trigger condition changes only restricts changes to only the
configuration settings that have the configurable at runtime specified. With this
option enabled, to modify Trigger Flow conditions in the Custom Trigger Flow tab,
click the desired parameter in the text box and select a new parameter from the menu
that appears.

1 The runtime configurable settings for the Custom Trigger Flow tab are on by default.
You may get some performance advantages by disabling some of the runtime
configurable options. For details about the effects of turning off the runtime
modifiable options, refer to “Performance and Resource Considerations” on
page 13–48.

SignalTap II Trigger Flow Description Language
The Trigger Flow Description Language is based on a list of conditional expressions
per state to define a set of actions. Each line in Example 13–1 shows a language
format. Keywords are shown in bold. Non-terminals are delimited by “<>” and are
further explained in the following sections. Optional arguments are delimited by
“[]“ (Example 13–1).

Table 13–4. Runtime Reconfigurable Settings, State-Based Triggering Flow

Setting Description

Destination of goto action Allows you to modify the destination of the state transition at runtime.

Comparison values Allows you to modify comparison values in Boolean expressions at runtime. In addition, you
can modify the segment_trigger and trigger action post-fill count argument at runtime.

Comparison operators Allows you to modify the operators in Boolean expressions at runtime.

Logical operators Allows you to modify the logical operators in Boolean expressions at runtime.
November 2013 Altera Corporation Quartus II Handbook Version 13.1
Volume 3: Verification

13–34 Chapter 13: Design Debugging Using the SignalTap II Logic Analyzer
Define Triggers
1 Examples of Triggering Flow descriptions for common scenarios using the
SignalTap II Custom Triggering Flow are provided in “Custom Triggering Flow
Application Examples” on page 13–66.

The priority for evaluation of conditional statements is assigned from top to bottom.
The <boolean_expression> in an if statement can contain a single event, or it can
contain multiple event conditions. The action_list within an if or an else if clause
must be delimited by the begin and end tokens when the action list contains multiple
statements. When the boolean expression is evaluated TRUE, the logic analyzer
analyzes all of the commands in the action list concurrently. The possible actions
include:

■ Triggering the acquisition buffer

■ Manipulating a counter or status flag resource

■ Defining a state transition

State Labels
State labels are identifiers that can be used in the action goto.

state <state_label>: begins the description of the actions evaluated when this state is
reached.

The description of a state ends with the beginning of another state or the end of the
whole trigger flow description.

Boolean_expression
Boolean_expression is a collection of logical operators, relational operators, and their
operands that evaluate into a Boolean result. Depending on the operator, the operand
can be a reference to a trigger condition, a counter and a register, or a numeric value.
Within an expression, parentheses can be used to group a set of operands.

Example 13–1. Trigger Flow Description Language Format (1)

state <State_label>:
<action_list>

if(<Boolean_expression>)
<action_list>
[else if (<boolean_expression>)
<action_list>] (1)

[else
<action_list>]

Note to Example 13–1:

(1) Multiple else if conditions are allowed.
Quartus II Handbook Version 13.1 November 2013 Altera Corporation
Volume 3: Verification

Chapter 13: Design Debugging Using the SignalTap II Logic Analyzer 13–35
Define Triggers
Logical operators accept any boolean expression as an operand. The supported
logical operators are shown in Table 13–5.

Relational operators are performed on counters or status flags. The comparison
value, the right operator, must be a numerical value. The supported relational
operators are shown in Table 13–6.

Action_list
Action_list is a list of actions that can be performed when a state is reached and a
condition is also satisfied. If more than one action is specified, they must be enclosed
by begin and end. The actions can be categorized as resource manipulation actions,
buffer control actions, and state transition actions. Each action is terminated by a
semicolon (;).

Resource Manipulation Action
The resources used in the trigger flow description can be either counters or status
flags. Table 13–7 shows the description and syntax of each action.

Table 13–5. Logical Operators

Operator Description Syntax

! NOT operator ! expr1

&& AND operator expr1 && expr2

|| OR operator expr1 || expr2

Table 13–6. Relational Operators

Operator Description Syntax (1) (2)

> Greater than <identifier> > <numerical_value>

>= Greater than or Equal to <identifier> >= <numerical_value>

== Equals <identifier> == <numerical_value>

!= Does not equal <identifier> != <numerical_value>

<= Less than or equal to <identifier> <= <numerical_value>

< Less than <identifier> < <numerical_value>

Notes to Table 13–6:

(1) <identifier> indicates a counter or status flag.
(2) <numerical_value> indicates an integer.

Table 13–7. Resource Manipulation Action

Action Description Syntax

increment Increments a counter resource by 1 increment <counter_identifier>;

decrement Decrements a counter resource by 1 decrement <counter_identifier>;

reset Resets counter resource to initial value reset <counter_identifier>;

set Sets a status Flag to 1 set <register_flag_identifier>;

clear Sets a status Flag to 0 clear <register_flag_identifier>;
November 2013 Altera Corporation Quartus II Handbook Version 13.1
Volume 3: Verification

13–36 Chapter 13: Design Debugging Using the SignalTap II Logic Analyzer
Define Triggers
Buffer Control Action
Buffer control actions specify an action to control the acquisition buffer. Table 13–8
shows the description and syntax of each action.

Both trigger and segment_trigger actions accept an optional post-fill count
argument. If provided, the current acquisition acquires the number of samples
provided by post-fill count and then stops acquisition. If no post-count value is
specified, the trigger position for the affected buffer defaults to the trigger position
specified in the Setup tab.

1 In the case of segment_trigger, acquisition of the current buffer stops immediately if a
subsequent triggering action is issued in the next state, regardless of whether or not
the post-fill count has been satisfied for the current buffer. The remaining unfilled
post-count acquisitions in the current buffer are discarded and displayed as
grayed-out samples in the data window.

State Transition Action
The State Transition action specifies the next state in the custom state control flow. It is
specified by the goto command. The syntax is as follows:

goto <state_label>;

Using the State-Based Storage Qualifier Feature
When you select State-based for the storage qualifier type, the start_store and
stop_store actions are enabled in the State-based trigger flow. These commands,
when used in conjunction with the expressions of the State-based trigger flow, give
you maximum flexibility to control data written into the acquisition buffer.

Table 13–8. Buffer Control Action

Action Description Syntax

trigger
Stops the acquisition for the current buffer and
ends analysis. This command is required in
every flow definition.

trigger <post-fill_count>;

segment_trigger

Ends the acquisition of the current segment.
The SignalTap II Logic Analyzer starts
acquiring from the next segment on evaluating
this command. If all segments are filled, the
oldest segment is overwritten with the latest
sample. The acquisition stops when a trigger
action is evaluated.

This action cannot be used in non-segmented
acquisition mode.

segment_trigger <post-fill_count>;

start_store

Asserts the write_enable to the SignalTap II
acquisition buffer. This command is active
only when the State-based storage qualifier
mode is enabled.

start_store

stop_store

De-asserts the write_enable signal to the
SignalTap II acquisition buffer. This command
is active only when the State-based storage
qualifier mode is enabled.

stop_store
Quartus II Handbook Version 13.1 November 2013 Altera Corporation
Volume 3: Verification

Chapter 13: Design Debugging Using the SignalTap II Logic Analyzer 13–37
Define Triggers
1 The start_store and stop_store commands can only be applied to a non-segmented
buffer.

The start_store and stop_store commands function similar to the start and stop
conditions when using the start/stop storage qualifier mode conditions. If storage
qualification is enabled, the start_store command must be issued for SignalTap II to
write data into the acquisition buffer. No data is acquired until the start_store
command is performed. Also, a trigger command must be included as part of the
trigger flow description. The trigger command is necessary to complete the
acquisition and display the results on the waveform display.

The following examples illustrate the behavior of the State-based trigger flow with the
storage qualification commands.

Figure 13–26 shows a hypothetical scenario with three trigger conditions that happen
at different times after you click Start Analysis. The trigger flow description in
Example 13–2, when applied to the scenario shown in Figure 13–26, illustrates the
functionality of the storage qualification feature for the state-based trigger flow.

In this example, the SignalTap II Logic Analyzer does not write into the acquisition
buffer until sample a, when Condition 1 occurs. Once sample b is reached, the
trigger value command is evaluated. The logic analyzer continues to write into the
buffer to finish the acquisition. The trigger flow specifies a stop_store command at
sample c, m samples after the trigger point occurs.

The logic analyzer finishes the acquisition and displays the contents of the waveform
if it can successfully finish the post-fill acquisition samples before Condition 3 occurs.
In this specific case, the capture ends if the post-fill count value is less than m.

Example 13–2. Trigger Flow Description 1

State 1: ST1:

if (condition1)

start_store;

else if (condition2)

trigger value;

else if (condition3)

stop_store;

Figure 13–26. Capture Scenario for Storage Qualification with the State-Based Trigger Flow
November 2013 Altera Corporation Quartus II Handbook Version 13.1
Volume 3: Verification

13–38 Chapter 13: Design Debugging Using the SignalTap II Logic Analyzer
Define Triggers
If the post-fill count value specified in Trigger Flow description 1 is greater than m
samples, the buffer pauses acquisition indefinitely, provided there is no recurrence of
Condition 1 to trigger the logic analyzer to start capturing data again. The SignalTap II
Logic Analyzer continues to evaluate the stop_store and start_store commands even
after the trigger command is evaluated. If the acquisition has paused, you can click
Stop Analysis to manually stop and force the acquisition to trigger. You can use
counter values, flags, and the State diagram to help you perform the trigger flow. The
counter values, flags, and the current state are updated in real-time during a data
acquisition.

Figure 13–27 and Figure 13–28 show a real data acquisition of the scenario.
Figure 13–27 illustrates a scenario where the data capture finishes successfully. It uses
a buffer with a sample depth of 64, m = n = 10, and the post-fill count value = 5.
Figure 13–28 illustrates a scenario where the logic analyzer pauses indefinitely even
after a trigger condition occurs due to a stop_store condition. This scenario uses a
sample depth of 64, with m = n = 10 and post-fill count = 15.

Figure 13–27. Storage Qualification with Post-Fill Count Value Less than m (Acquisition
Successfully Completes)
Quartus II Handbook Version 13.1 November 2013 Altera Corporation
Volume 3: Verification

Chapter 13: Design Debugging Using the SignalTap II Logic Analyzer 13–39
Define Triggers
Figure 13–28. Storage Qualification with Post-Fill Count Value Greater than m (Acquisition
Indefinitely Paused)

Figure 13–29. Waveform After Forcing the Analysis to Stop
November 2013 Altera Corporation Quartus II Handbook Version 13.1
Volume 3: Verification

13–40 Chapter 13: Design Debugging Using the SignalTap II Logic Analyzer
Define Triggers
The combination of using counters, Boolean and relational operators in conjunction
with the start_store and stop_store commands can give a clock-cycle level of
resolution to controlling the samples that are written into the acquisition buffer.
Example 13–3 shows a trigger flow description that skips three clock cycles of samples
after hitting condition 1. Figure 13–30 shows the data transaction on a continuous
capture and Figure 13–32 shows the data capture with the Trigger flow description in
Example 13–3 applied.

Example 13–3. Trigger Flow Description 2

State 1: ST1
start_store
if (condition1)
begin

stop_store;
goto ST2;

end

State 2: ST2
if (c1 < 3)

increment c1; //skip three clock cycles; c1 initialized to 0

else if (c1 == 3)
begin

start_store; //start_store necessary to enable writing to finish
//acquisition

trigger;
end

Figure 13–30. Continuous Capture of Data Transaction for Example 2

Figure 13–31. Capture of Data Transaction with Trigger Flow Description Applied
Quartus II Handbook Version 13.1 November 2013 Altera Corporation
Volume 3: Verification

Chapter 13: Design Debugging Using the SignalTap II Logic Analyzer 13–41
Define Triggers
Specifying the Trigger Position
The SignalTap II Logic Analyzer allows you to specify the amount of data that is
acquired before and after a trigger event. You can specify the trigger position
independently between a Runtime and Power-Up Trigger. Select the desired ratio of
pre-trigger data to post-trigger data by choosing one of the following ratios:

■ Pre—Saves signal activity that occurred after the trigger (12% pre-trigger, 88%
post-trigger).

■ Center—Saves 50% pre-trigger and 50% post-trigger data.

■ Post—Saves signal activity that occurred before the trigger (88% pre-trigger, 12%
post-trigger).

These pre-defined ratios apply to both non-segmented buffers and segmented buffers.

If you use the custom-state based triggering flow, you can specify a custom trigger
position. The segment_trigger and trigger actions accept a post-fill count argument.
The post-fill count specifies the number of samples to capture before stopping data
acquisition for the non-segmented buffer or a data segment when using the trigger
and segment_trigger commands, respectively. When the captured data is displayed
in the SignalTap II data window, the trigger position appears as the number of post-
count samples from the end of the acquisition segment or buffer. Refer to
Equation 13–1:

In this case, N is the sample depth of either the acquisition segment or non-segmented
buffer.

For segmented buffers, the acquisition segments that have a post-count argument
define use of the post-count setting. Segments that do not have a post-count setting
default to the trigger position ratios defined in the Setup tab.

For more details about the custom State-based triggering flow, refer to “State-Based
Triggering” on page 13–30.

Creating a Power-Up Trigger
Typically, the SignalTap II Logic Analyzer is used to trigger on events that occur
during normal device operation. You start an analysis manually once the target device
is fully powered on and the JTAG connection for the device is available. However,
there may be cases when you would like to capture trigger events that occur during
device initialization, immediately after the FPGA is powered on or reset. With the
SignalTap II Power-Up Trigger feature, you arm the SignalTap II Logic Analyzer and
capture data immediately after device programming.

Equation 13–1.

Sample Number of Trigger Position N Post-Fill Count–()=
November 2013 Altera Corporation Quartus II Handbook Version 13.1
Volume 3: Verification

13–42 Chapter 13: Design Debugging Using the SignalTap II Logic Analyzer
Define Triggers
Enabling a Power-Up Trigger
You can add a different Power-Up Trigger to each logic analyzer instance in the
SignalTap II Instance Manager pane. To enable the Power-Up Trigger for a logic
analyzer instance, right-click the instance and click Enable Power-Up Trigger, or
select the instance, and on the Edit menu, click Enable Power-Up Trigger. To disable a
Power-Up Trigger, click Disable Power-Up Trigger in the same locations. Power-Up
Trigger is shown as a child instance below the name of the selected instance with the
default trigger conditions specified in the node list. Figure 13–32 shows the
SignalTap II Logic Analyzer Editor when Power-Up Trigger is enabled.

Managing and Configuring Power-Up and Runtime Trigger Conditions
When the Power-Up Trigger is enabled for a logic analyzer instance, you can create
basic and advanced trigger conditions for the trigger as you do with a Run-Time
Trigger. Power-Up Trigger conditions that you can adjust are color coded light blue,
while Run-Time Trigger conditions you cannot adjust remain white. Since each
instance now has two sets of trigger conditions—the Power-Up Trigger and the
Run-Time Trigger—you can differentiate between the two with color coding. To
switch between the trigger conditions of the Power-Up Trigger and the Run-Time
Trigger, double-click the instance name or the Power-Up Trigger name in the Instance
Manager.

You cannot make changes to Power-Up Trigger conditions that would normally
require a full recompile with Runtime Trigger conditions, such as adding signals,
deleting signals, or changing between basic and advanced triggers. To apply these
changes to the Power-Up Trigger conditions, first make the changes using the
Runtime Trigger conditions.

Figure 13–32. SignalTap II Logic Analyzer Editor with Power-Up Trigger Enabled
Quartus II Handbook Version 13.1 November 2013 Altera Corporation
Volume 3: Verification

Chapter 13: Design Debugging Using the SignalTap II Logic Analyzer 13–43
Define Triggers
1 Any change made to the Power-Up Trigger conditions requires that you recompile the
SignalTap II Logic Analyzer instance, even if a similar change to the Runtime Trigger
conditions does not require a recompilation.

While creating or making changes to the trigger conditions for the Run-Time Trigger
or the Power-Up Trigger, you may want to copy these conditions to the other trigger.
This enables you to look for the same trigger during both power-up and runtime. To
do this, right-click the instance name or the Power-Up Trigger name in the Instance
Manager and click Duplicate Trigger, or select the instance name or the Power-Up
Trigger name and on the Edit menu, click Duplicate Trigger.

You can also use In-System Sources and Probes in conjunction with the SignalTap II
Logic Analyzer to force trigger conditions. The In-System Sources and Probes feature
allows you to drive and sample values on to selected nets over the JTAG chain. For
more information, refer to the Design Debugging Using In-System Sources and Probes
chapter in volume 3 of the Quartus II Handbook.

Using External Triggers
You can create a trigger input that allows you to trigger the SignalTap II Logic
Analyzer from an external source. The external trigger input behaves like trigger
condition 1, is evaluated, and must be TRUE before any other configured trigger
conditions are evaluated. The logic analyzer supplies a signal to trigger external
devices or other SignalTap II Logic Analyzer instances. These features allow you to
synchronize external logic analysis equipment with the internal logic analyzer.
Power-Up Triggers can use the external triggers feature, but they must use the same
source or target signal as their associated Run-Time Trigger.

You can use external triggers to perform cross-triggering on a hard processor system
(HPS). Use your processor debugger to configure the HPS to obey or disregard cross-
trigger request from the FPGA, and to issue or not issue cross-trigger requests to the
FPGA. Use your processor debugger in combination with the SignalTap II external
trigger feature to develop a dynamic combination of cross-trigger behaviors. You can
use the cross-triggering feature with the ARM Development Studio 5 (DS-5) software
to implement a system-level debugging solution for your Altera SoC.

For more information about the ARM DS-5 debugging solution, refer to the FPGA-
Adaptive Software Debug and Performance Analysis white paper.

h For more information about setting up external triggers, refer to Signal Configuration
Pane in Quartus II Help.

Using the Trigger Out of One Analyzer as the Trigger In of Another Analyzer
An advanced feature of the SignalTap II Logic Analyzer is the ability to use the
Trigger out of one analyzer as the Trigger in to another analyzer. This feature allows
you to synchronize and debug events that occur across multiple clock domains.

To perform this operation, first turn on Trigger out for the source logic analyzer
instance. On the Instance list of the Trigger out trigger, select the targeted logic
analyzer instance. For example, if the instance named auto_signaltap_0 should
trigger auto_signaltap_1, select auto_signaltap_1|trigger_in .
November 2013 Altera Corporation Quartus II Handbook Version 13.1
Volume 3: Verification

http://quartushelp.altera.com/current/master.htm#mergedProjects/program/ela/ela_tab_sig_config.htm
http://quartushelp.altera.com/current/master.htm#mergedProjects/program/ela/ela_tab_sig_config.htm
http://www.altera.com/literature/wp/wp-01198-fpga-software-debug-soc.pdf
http://www.altera.com/literature/wp/wp-01198-fpga-software-debug-soc.pdf
http://www.altera.com/literature/hb/qts/qts_qii53021.pdf

13–44 Chapter 13: Design Debugging Using the SignalTap II Logic Analyzer
Compile the Design
Turning on Trigger out automatically enables the Trigger in of the targeted logic
analyzer instance and fills in the Instance field of the Trigger in trigger with the
Trigger out signal from the source logic analyzer instance. In this example,
auto_signaltap_0 is targeting auto_signaltap_1. The Trigger In Instance field of
auto_signaltap_1 is automatically filled in with auto_signaltap_0|trigger_out.

Compile the Design
When you add an .stp to your project, the SignalTap II Logic Analyzer becomes part
of your design. You must compile your project to incorporate the SignalTap II logic
and enable the JTAG connection you use to control the logic analyzer. When you are
debugging with a traditional external logic analyzer, you must often make changes to
the signals monitored as well as the trigger conditions. Because these adjustments
require that you recompile your design when using the SignalTap II Logic Analyzer,
use the SignalTap II Logic Analyzer feature along with incremental compilation in the
Quartus II software to reduce recompilation time.

h For more information on reducing your recompilation burden with incremental
compilation, refer to Using the Incremental Compilation Design Flow in Quartus II Help.

Faster Compilations with Quartus II Incremental Compilation
When you compile your design with an .stp, the sld_signaltap and sld_hub entities
are automatically added to the compilation hierarchy. These two entities are the main
components of the SignalTap II Logic Analyzer, providing the trigger logic and JTAG
interface required for operation.

Incremental compilation enables you to preserve the synthesis and fitting results of
your original design and add the SignalTap II Logic Analyzer to your design without
recompiling your original source code. Incremental compilation is also useful when
you want to modify the configuration of the .stp. For example, you can modify the
buffer sample depth or memory type without performing a full compilation after the
change is made. Only the SignalTap II Logic Analyzer, configured as its own design
partition, must be recompiled to reflect the changes.

To use incremental compilation, first enable Full Incremental Compilation for your
design if it is not already enabled, assign design partitions if necessary, and set the
design partitions to the correct preservation levels. Incremental compilation is the
default setting for new projects in the Quartus II software, so you can establish design
partitions immediately in a new project. However, it is not necessary to create any
design partitions to use the SignalTap II incremental compilation feature. When your
design is set up to use full incremental compilation, the SignalTap II Logic Analyzer
acts as its own separate design partition. You can begin taking advantage of
incremental compilation by using the SignalTap II: post-fitting filter in the Node
Finder to add signals for logic analysis.
Quartus II Handbook Version 13.1 November 2013 Altera Corporation
Volume 3: Verification

http://quartushelp.altera.com/current/master.htm#mergedProjects/comp/increment/comp_pro_running_incremental_compilation.htm

Chapter 13: Design Debugging Using the SignalTap II Logic Analyzer 13–45
Compile the Design
Enabling Incremental Compilation for Your Design
Your project is fully compiled the first time, establishing the design partitions you
have created. When enabled for your design, the SignalTap II Logic Analyzer is
always a separate partition. After the first compilation, you can use the SignalTap II
Logic Analyzer to analyze signals from the post-fit netlist. If your partitions are
designed correctly, subsequent compilations due to SignalTap II Logic Analyzer
settings take less time.

The netlist type for the top-level partition defaults to source. To take advantage of
incremental compilation, specify the Netlist types for the partitions you wish to tap as
Post-fit.

f For more information about configuring and performing incremental compilation,
refer to the Quartus II Incremental Compilation for Hierarchical and Team-Based Design
chapter in volume 1 of the Quartus II Handbook.

Using Incremental Compilation with the SignalTap II Logic Analyzer
The SignalTap II Logic Analyzer is automatically configured to work with the
incremental compilation flow. For all signals that you want to connect to the
SignalTap II Logic Analyzer from the post-fit netlist, set the netlist type of the
partition containing the desired signals to Post-Fit or Post-Fit (Strict) with a Fitter
Preservation Level of Placement and Routing using the Design Partitions window.
Use the SignalTap II: post-fitting filter in the Node Finder to add the signals of
interest to your SignalTap II configuration file. If you want to add signals from the
pre-synthesis netlist, set the netlist type to Source File and use the SignalTap II:
pre-synthesis filter in the Node Finder. Do not use the netlist type Post-Synthesis
with the SignalTap II Logic Analyzer.

c Be sure to conform to the following guidelines when using post-fit and pre-synthesis
nodes:

■ Read all incremental compilation guidelines to ensure the proper partition of a
project.

■ To speed compile time, use only post-fit nodes for partitions specified as to
preservation-level post-fit.

■ Do not mix pre-synthesis and post-fit nodes in any partition. If you must tap
pre-synthesis nodes for a particular partition, make all tapped nodes in that
partition pre-synthesis nodes and change the netlist type to source in the
design partitions window.

Node names may be different between a pre-synthesis netlist and a post-fit netlist. In
general, registers and user input signals share common names between the two
netlists. During compilation, certain optimizations change the names of
combinational signals in your RTL. If the type of node name chosen does not match
the netlist type, the compiler may not be able to find the signal to connect to your
SignalTap II Logic Analyzer instance for analysis. The compiler issues a critical
warning to alert you of this scenario. The signal that is not connected is tied to ground
in the SignalTap II data tab.
November 2013 Altera Corporation Quartus II Handbook Version 13.1
Volume 3: Verification

http://www.altera.com/literature/hb/qts/qts_qii51015.pdf

13–46 Chapter 13: Design Debugging Using the SignalTap II Logic Analyzer
Compile the Design
If you do use incremental compile flow with the SignalTap II Logic Analyzer and
source file changes are necessary, be aware that you may have to remove
compiler-generated post-fit net names. Source code changes force the affected
partition to go through resynthesis. During synthesis, the compiler cannot find
compiler-generated net names from a previous compilation.

1 Altera recommends using only registered and user-input signals as debugging taps in
your .stp whenever possible.

Both registered and user-supplied input signals share common node names in the
pre-synthesis and post-fit netlist. As a result, using only registered and user-supplied
input signals in your .stp limits the changes you need to make to your SignalTap II
Logic Analyzer configuration.

You can check the nodes that are connected to each SignalTap II instance using the
In-System Debugging compilation reports. These reports list each node name you
selected to connect to a SignalTap II instance, the netlist type used for the particular
connection, and the actual node name used after compilation. If incremental compile
is turned off, the In-System Debugging reports are located in the Analysis & Synthesis
folder. If incremental compile is turned on, this report is located in the Partition Merge
folder. Figure 13–33 shows an example of an In-System Debugging compilation report
for a design using incremental compilation.

Figure 13–33. Compilation Report Showing Connectivity to SignalTap II Instance
Quartus II Handbook Version 13.1 November 2013 Altera Corporation
Volume 3: Verification

Chapter 13: Design Debugging Using the SignalTap II Logic Analyzer 13–47
Compile the Design
To verify that your original design was not modified, examine the messages in the
Partition Merge section of the Compilation Report. Figure 13–34 shows an example of
the messages displayed.

Unless you make changes to your design partitions that require recompilation, only
the SignalTap II design partition is recompiled. If you make subsequent changes to
only the .stp, only the SignalTap II design partition must be recompiled, reducing
your recompilation time.

Preventing Changes Requiring Recompilation
You can configure the .stp to prevent changes that normally require recompilation. To
do this, select a lock mode from above the node list in the Setup tab. To lock your
configuration, choose to allow only trigger condition changes, regardless of whether
you use incremental compilation.

h For more information about the use of lock modes, refer to Setup Tab (SignalTap II Logic
Analyzer) in Quartus II Help.

Timing Preservation with the SignalTap II Logic Analyzer
In addition to verifying functionality, timing closure is one of the most crucial
processes in successfully completing a design. When you compile a project with a
SignalTap II Logic Analyzer without the use of incremental compilation, you add IP
to your existing design. Therefore, you can affect the existing placement, routing, and
timing of your design. To minimize the effect that the SignalTap II Logic Analyzer has
on your design, Altera recommends that you use incremental compilation for your
project. Incremental compilation is the default setting in new designs and can be
easily enabled and configured in existing designs. With the SignalTap II Logic
Analyzer instance in its own design partition, it has little to no affect on your design.

In addition to using the incremental compilation flow for your design, you can use the
following techniques to help maintain timing:

Figure 13–34. Compilation Report Messages
November 2013 Altera Corporation Quartus II Handbook Version 13.1
Volume 3: Verification

http://quartushelp.altera.com/current/master.htm#mergedProjects/program/ela/ela_tab_setup.htm
http://quartushelp.altera.com/current/master.htm#mergedProjects/program/ela/ela_tab_setup.htm

13–48 Chapter 13: Design Debugging Using the SignalTap II Logic Analyzer
Compile the Design
■ Avoid adding critical path signals to your .stp.

■ Minimize the number of combinational signals you add to your .stp and add
registers whenever possible.

■ Specify an fMAX constraint for each clock in your design.

f For an example of timing preservation with the SignalTap II Logic Analyzer, refer to
the Area and Timing Optimization chapter in volume 2 of the Quartus II Handbook.

Performance and Resource Considerations
There is a necessary trade-off between the runtime flexibility of the SignalTap II Logic
Analyzer, the timing performance of the SignalTap II Logic Analyzer, and resource
usage. The SignalTap II Logic Analyzer allows you to select the runtime configurable
parameters to balance the need for runtime flexibility, speed, and area. The default
values have been chosen to provide maximum flexibility so you can complete
debugging as quickly as possible; however, you can adjust these settings to determine
whether there is a more optimal configuration for your design.

The following tips provide extra timing slack if you have determined that the
SignalTap II logic is in your critical path, or to alleviate the resource requirements that
the SignalTap II Logic Analyzer consumes if your design is resource-constrained.

If SignalTap II logic is part of your critical path, follow these tips to speed up the
performance of the SignalTap II Logic Analyzer:

■ Disable runtime configurable options—Certain resources are allocated to
accommodate for runtime flexibility. If you use either advanced triggers or State-
based triggering flow, disable runtime configurable parameters for a boost in fMAX
of the SignalTap II logic. If you are using State-based triggering flow, try disabling
the Goto state destination option and performing a recompilation before
disabling the other runtime configurable options. The Goto state destination
option has the greatest impact on fMAX, as compared to the other runtime
configurable options.

■ Minimize the number of signals that have Trigger Enable selected—All signals
that you add to the .stp have Trigger Enable turned on. Turn off Trigger Enable
for signals that you do not plan to use as triggers.

■ Turn on Physical Synthesis for register retiming—If you have a large number of
triggering signals enabled (greater than the number of inputs that would fit in a
LAB) that fan-in logic to a gate-based triggering condition, such as a basic trigger
condition or a logical reduction operator in the advanced trigger tab, turn on
Perform register retiming. This can help balance combinational logic across LABs.

If your design is resource constrained, follow these tips to reduce the amount of logic
or memory used by the SignalTap II Logic Analyzer:

■ Disable runtime configurable options—Disabling runtime configurability for
advanced trigger conditions or runtime configurable options in the State-based
triggering flow results in using fewer LEs.

■ Minimize the number of segments in the acquisition buffer—You can reduce the
number of logic resources used for the SignalTap II Logic Analyzer by limiting the
number of segments in your sampling buffer to only those required.
Quartus II Handbook Version 13.1 November 2013 Altera Corporation
Volume 3: Verification

http://www.altera.com/literature/hb/qts/qts_qii52005.pdf

Chapter 13: Design Debugging Using the SignalTap II Logic Analyzer 13–49
Program the Target Device or Devices
■ Disable the Data Enable for signals that are used for triggering only—By
default, both the data enable and trigger enable options are selected for all
signals. Turning off the data enable option for signals used as trigger inputs only
saves on memory resources used by the SignalTap II Logic Analyzer.

Because performance results are design-dependent, try these options in different
combinations until you achieve the desired balance between functionality,
performance, and utilization.

f For more information about area and timing optimization, refer the Area and Timing
Optimization chapter in volume 2 of the Quartus II Handbook.

Program the Target Device or Devices
After you compile your project, including the SignalTap II Logic Analyzer, configure
the FPGA target device. When you are using the SignalTap II Logic Analyzer for
debugging, configure the device from the .stp instead of the Quartus II Programmer.
Because you configure from the .stp, you can open more than one .stp and program
multiple devices to debug multiple designs simultaneously.

The settings in an .stp must be compatible with the programming .sof used to
program the device. An .stp is considered compatible with an .sof when the settings
for the logic analyzer, such as the size of the capture buffer and the signals selected for
monitoring or triggering, match the way the target device is programmed. If the files
are not compatible, you can still program the device, but you cannot run or control the
logic analyzer from the SignalTap II Logic Analyzer Editor.

1 When the SignalTap II Logic Analyzer detects incompatibility after analysis is started,
a system error message is generated containing two CRC values, the expected value
and the value retrieved from the .stp instance on the device. The CRC values are
calculated based on all SignalTap II settings that affect the compilation.

To ensure programming compatibility, make sure to program your device with the
latest .sof created from the most recent compilation. Checking whether or not a
particular SOF is compatible with the current SignalTap II configuration is achieved
quickly by attaching the SOF to the SOF manager. For more details about using the
SOF manager, refer to “Managing Multiple SignalTap II Files and Configurations” on
page 13–25.

Before starting a debugging session, do not make any changes to the .stp settings that
would requires recompiling the project. You can check the SignalTap II status display
at the top of the Instance Manager pane to verify whether a change you made
requires recompiling the project, producing a new .sof. This gives you the
opportunity to undo the change, so that you do not need to recompile your project. To
prevent any such changes, select Allow trigger condition changes only to lock the
.stp.

Although the Quartus II project is not required when using an .stp, it is
recommended. The project database contains information about the integrity of the
current SignalTap II Logic Analyzer session. Without the project database, there is no
way to verify that the current .stp matches the .sof that is downloaded to the device. If
you have an .stp that does not match the .sof, incorrect data is captured in the
SignalTap II Logic Analyzer.
November 2013 Altera Corporation Quartus II Handbook Version 13.1
Volume 3: Verification

http://www.altera.com/literature/hb/qts/qts_qii52005.pdf
http://www.altera.com/literature/hb/qts/qts_qii52005.pdf

13–50 Chapter 13: Design Debugging Using the SignalTap II Logic Analyzer
Run the SignalTap II Logic Analyzer
h For instructions on programming devices in the Quartus II software, refer to Running
the SignalTap II Logic Analyzer in Quartus II Help.

Run the SignalTap II Logic Analyzer
After the device is configured with your design that includes the SignalTap II Logic
Analyzer, perform debugging operations in a manner similar to when you use an
external logic analyzer. You initialize the logic analyzer by starting an analysis. When
your trigger event occurs, the captured data is stored in the memory buffer on the
device and then transferred to the .stp with the JTAG connection.

You can also perform the equivalent of a force trigger instruction that lets you view
the captured data currently in the buffer without a trigger event occurring.
Figure 13–35 illustrates a flow that shows how you operate the SignalTap II Logic
Analyzer. The flowchart indicates where Power-Up and Runtime Trigger events occur
and when captured data from these events is available for analysis.

h For information on running the analyzer from the Instance Manager pane, refer to
Running the SignalTap II Logic Analyzer in Quartus II Help.

Figure 13–35. Power-Up and Runtime Trigger Events Flowchart

Compile Design

Start

End

Yes

NoTrigger
Occurred?

No

Yes

Yes

No
Changes
Require

Recompile?

Continue
Debugging?

Program Device

Manually Run
SignalTap II

Logic Analyzer

Analyze Data:
Power-Up or

Run-Time Trigger

No

Yes

Manually Read
Data from Device

Make Changes
to Setup

(If Needed)

Possible Missed
Trigger

(Unless Power-Up
Trigger Enabled)

Manually
Stop Analyzer

Data
Downloaded?
Quartus II Handbook Version 13.1 November 2013 Altera Corporation
Volume 3: Verification

http://quartushelp.altera.com/current/master.htm#mergedProjects/program/ela/ela_pro_run.htm
http://quartushelp.altera.com/current/master.htm#mergedProjects/program/ela/ela_pro_run.htm
http://quartushelp.altera.com/current/master.htm#mergedProjects/program/ela/ela_pro_run.htm

Chapter 13: Design Debugging Using the SignalTap II Logic Analyzer 13–51
Run the SignalTap II Logic Analyzer
f You can also use In-System Sources and Probes in conjunction with the SignalTap II
Logic Analyzer to force trigger conditions. The In-System Sources and Probes feature
allows you to drive and sample values on to selected signals over the JTAG chain. For
more information, refer to the Design Debugging Using In-System Sources and Probes
chapter in volume 3 of the Quartus II Handbook.

Runtime Reconfigurable Options
Certain settings in the .stp are changeable without recompiling your design when you
use Runtime Trigger mode. Runtime Reconfigurable features are described in
Table 13–9.

Runtime Reconfigurable options can potentially save time during the debugging cycle
by allowing you to cover a wider possible scenario of events without the need to
recompile the design. You may experience a slight impact to the performance and
logic utilization of the SignalTap II IP core. You can turn off Runtime
re-configurability for Advanced Trigger Conditions and the State-based trigger flow
parameters, boosting performance and decreasing area utilization.

You can configure the .stp to prevent changes that normally require recompilation. To
do this, in the Setup tab, select Allow Trigger Condition changes only above the
node list.

Table 13–9. Runtime Reconfigurable Features

Runtime Reconfigurable Setting Description

Basic Trigger Conditions and Basic
Storage Qualifier Conditions

All signals that have the Trigger condition turned on can be
changed to any basic trigger condition value without
recompiling.

Advanced Trigger Conditions and
Advanced Storage Qualifier
Conditions

Many operators include runtime configurable settings. For
example, all comparison operators are
runtime-configurable. Configurable settings are shown with
a white background in the block representation.This
runtime reconfigurable option is turned on in the Object
Properties dialog box.

Switching between a storage-qualified
and a continuous acquisition

Within any storage-qualified mode, you can switch to
continuous capture mode without recompiling the design.
To enable this feature, turn on disable storage qualifier.

State-based trigger flow parameters Table 13–4 lists Reconfigurable State-based trigger flow
options.
November 2013 Altera Corporation Quartus II Handbook Version 13.1
Volume 3: Verification

http://www.altera.com/literature/hb/qts/qts_qii53021.pdf

13–52 Chapter 13: Design Debugging Using the SignalTap II Logic Analyzer
Run the SignalTap II Logic Analyzer
Example 13–4 illustrates a potential use case for Runtime Reconfigurable features.
This example provides a storage qualified enabled State-based trigger flow
description and shows how you can modify the size of a capture window at runtime
without a recompile. This example gives you equivalent functionality to a segmented
buffer with a single trigger condition where the segment sizes are runtime
reconfigurable.

Figure 13–36 shows a segmented buffer described by the trigger flow in
Example 13–4.

During runtime, the values m and n are runtime reconfigurable. By changing the m
and n values in the preceding trigger flow description, you can dynamically adjust the
segment boundaries without incurring a recompile.

Example 13–4. Trigger Flow Description Providing Runtime Reconfigurable “Segments”

state ST1:
if (condition1 && (c1 <= m)) // each "segment" triggers on condition

//1
begin // m = number of total "segments"

start_store;
increment c1;
goto ST2:

End

else (c1 > m) //This else condition handles the last
//segment.

begin
start_store
Trigger (n-1)

end

state ST2:
if (c2 >= n) //n = number of samples to capture in each

//segment.
begin

reset c2;
stop_store;
goto ST1;

end

else (c2 < n)
begin

increment c2;
goto ST2;

end

Note to Example 13–4:

(1) m x n must equal the sample depth to efficiently use the space in the sample buffer.

Figure 13–36. Segmented Buffer Created with Storage Qualifier and State-Based Trigger (1)

Note to Figure 13–36:

(1) Total sample depth is fixed, where m x n must equal sample depth.

Segment 1 Segment 2 Segment m

1 n 1 n 1 n
Quartus II Handbook Version 13.1 November 2013 Altera Corporation
Volume 3: Verification

Chapter 13: Design Debugging Using the SignalTap II Logic Analyzer 13–53
Run the SignalTap II Logic Analyzer
You can add states into the trigger flow description and selectively mask out specific
states and enable other ones at runtime with status flags.

Example 13–5 shows a modified description of Example 13–4 with an additional state
inserted. You use this extra state to specify a different trigger condition that does not
use the storage qualifier feature. You insert status flags into the conditional statements
to control the execution of the trigger flow.

Example 13–5. Modified Trigger Flow Description of Example 16-4 with Status Flags to Selectively Enable States

state ST1 :

if (condition2 && f1) //additional state added for a non-segmented
//acquisition Set f1 to enable state

begin
 start_store;
 trigger
end

else if (! f1)
 goto ST2;

state ST2:
if ((condition1 && (c1 <= m) && f2) // f2 status flag used to mask state. Set f2

//to enable.
begin

start_store;
increment c1;
goto ST3:

end

else (c1 > m)
start_store
Trigger (n-1)

end

state ST3:
if (c2 >= n)
begin

reset c2;
stop_store;
goto ST1;

end

else (c2 < n)
begin

increment c2;
goto ST2;

end
November 2013 Altera Corporation Quartus II Handbook Version 13.1
Volume 3: Verification

13–54 Chapter 13: Design Debugging Using the SignalTap II Logic Analyzer
View, Analyze, and Use Captured Data
SignalTap II Status Messages
Table 13–10 describes the text messages that might appear in the SignalTap II Status
Indicator in the Instance Manager pane before, during, and after a data acquisition.
Use these messages to monitor the state of the logic analyzer or what operation it is
performing.

1 In segmented acquisition mode, pre-trigger and post-trigger do not apply.

View, Analyze, and Use Captured Data
Once a trigger event has occurred or you capture data manually, you can use the
SignalTap II interface to examine the data, and use your findings to help debug your
design.

h For information about what you can do with captured data, refer to Analyzing Data in
the SignalTap II Logic Analyzer in Quartus II Help.

Table 13–10. Text Messages in the SignalTap II Status Indicator

Message Message Description

Not running
The SignalTap II Logic Analyzer is not running. There is no connection to a
device or the device is not configured.

(Power-Up Trigger) Waiting for
clock (1)

The SignalTap II Logic Analyzer is performing a Runtime or Power-Up Trigger
acquisition and is waiting for the clock signal to transition.

Acquiring (Power-Up)
pre-trigger data (1)

The trigger condition has not been evaluated yet. A full buffer of data is collected
if using the non-segmented buffer acquisition mode and storage qualifier type is
continuous.

Trigger In conditions met
Trigger In condition has occurred. The SignalTap II Logic Analyzer is waiting for
the condition of the first trigger condition to occur. This can appear if Trigger In
is specified.

Waiting for (Power-up) trigger
(1) The SignalTap II Logic Analyzer is now waiting for the trigger event to occur.

Trigger level <x> met The condition of trigger condition x has occurred. The SignalTap II Logic
Analyzer is waiting for the condition specified in condition x + 1 to occur.

Acquiring (power-up)
post-trigger data (1)

The entire trigger event has occurred. The SignalTap II Logic Analyzer is
acquiring the post-trigger data. The amount of post-trigger data collected is you
define between 12%, 50%, and 88% when the non-segmented buffer
acquisition mode is selected.

Offload acquired (Power-Up) data
(1) Data is being transmitted to the Quartus II software through the JTAG chain.

Ready to acquire The SignalTap II Logic Analyzer is waiting for you to initialize the analyzer.

Note to Table 13–10:

(1) This message can appear for both Runtime and Power-Up Trigger events. When referring to a Power-Up Trigger, the text in parentheses is
added.
Quartus II Handbook Version 13.1 November 2013 Altera Corporation
Volume 3: Verification

http://quartushelp.altera.com/current/master.htm#mergedProjects/program/ela/ela_pro_wform.htm
http://quartushelp.altera.com/current/master.htm#mergedProjects/program/ela/ela_pro_wform.htm

Chapter 13: Design Debugging Using the SignalTap II Logic Analyzer 13–55
View, Analyze, and Use Captured Data
Capturing Data Using Segmented Buffers
Segmented Acquisition buffers allow you to perform multiple captures with a
separate trigger condition for each acquisition segment. This feature allows you to
capture a recurring event or sequence of events that span over a long period time
efficiently. Each acquisition segment acts as a non-segmented buffer, continuously
capturing data when it is activated. When you run an analysis with the segmented
buffer option enabled, the SignalTap II Logic Analyzer performs back-to-back data
captures for each acquisition segment within your data buffer. The trigger flow, or the
type and order in which the trigger conditions evaluate for each buffer, is defined by
either the Sequential trigger flow control or the Custom State-based trigger flow
control. Figure 13–37 shows a segmented acquisition buffer with four segments
represented as four separate non-segmented buffers.

The SignalTap II Logic Analyzer finishes an acquisition with a segment, and advances
to the next segment to start a new acquisition. Depending on when a trigger condition
occurs, it may affect the way the data capture appears in the waveform viewer.
Figure 13–37 illustrates the method in which data is captured. The Trigger markers in
Figure 13–37—Trigger 1, Trigger 2, Trigger 3 and Trigger 4—refer to the evaluation of
the segment_trigger and trigger commands in the Custom State-based trigger flow.
If you use a sequential flow, the Trigger markers refer to trigger conditions specified
within the Setup tab.

If the Segment 1 Buffer is the active segment and Trigger 1 occurs, the SignalTap II
Logic Analyzer starts evaluating Trigger 2 immediately. Data Acquisition for Segment
2 buffer starts when either Segment Buffer 1 finishes its post-fill count, or when
Trigger 2 evaluates as TRUE, whichever condition occurs first. Thus, trigger conditions
associated with the next buffer in the data capture sequence can preempt the post-fill
count of the current active buffer. This allows the SignalTap II Logic Analyzer to
accurately capture all of the trigger conditions that have occurred. Samples that have
not been used appear as a blank space in the waveform viewer.

Figure 13–37. Segmented Acquisition Buffer

0

1

1

Segment 1 Buffer

1

11
1

1

1

1
1

1 1
1

1

0
00

0

0

0

0 0

0

Trigger 1
Post Pre

0

1

1

Segment 2 Buffer

1

11
1

1

1

1
1

1 1
1

1

0
00

0

0

0

0 0

0

Trigger 2
Post Pre

0

1

1

Segment 3 Buffer

1

11
1

1

1

1
1

1 1
1

1

0
00

0

0

0

0 0

0

Trigger 3
Post Pre

0

1

1

Segment 4 Buffer

1

11
1

1

1

1
1

1 1
1

1

0
00

0

0

0

0 0

0

Trigger 4
Post Pre
November 2013 Altera Corporation Quartus II Handbook Version 13.1
Volume 3: Verification

13–56 Chapter 13: Design Debugging Using the SignalTap II Logic Analyzer
View, Analyze, and Use Captured Data
Figure 13–38 shows an example of a capture using sequential flow control with the
trigger condition for each segment specified as Don’t Care. Each segment before the
last captures only one sample, because the next trigger condition immediately
preempts capture of the current buffer. The trigger position for all segments is
specified as pre-trigger (10% of the data is before the trigger condition and 90% of the
data is after the trigger position). Because the last segment starts immediately with the
trigger condition, the segment contains only post-trigger data. The three empty
samples in the last segment are left over from the pre-trigger samples that the
SignalTap II Logic Analyzer allocated to the buffer.

For the sequential trigger flow, the Trigger Position option applies to every segment
in the buffer. For maximum flexibility on how the trigger position is defined, use the
custom state-based trigger flow. By adjusting the trigger position specific to your
debugging requirements, you can help maximize the use of the allocated buffer space.

Differences in Pre-fill Write Behavior Between Different Acquisition
Modes

The SignalTap II Logic Analyzer uses one of the following three modes when writing
into the acquisition memory:

■ Non-segmented buffer

■ Non-segmented buffer with a storage qualifier

■ Segmented buffer

There are subtle differences in the amount of data captured immediately after running
the SignalTap II Logic Analyzer and before any trigger conditions occur. A non-
segmented buffer, running in continuous mode, completely fills the buffer with
sampled data before evaluating any trigger conditions. Thus, a non-segmented
capture without any storage qualification enabled always shows a waveform with a
full buffer's worth of data captured.

Filling the buffer provides you with as much data as possible within the capture
window. The buffer gets pre-filled with data samples prior to evaluating the trigger
condition. As such, SignalTap requires that the buffer be filled at least once before any
data can be retrieved through the JTAG connection and prevents the buffer from being
dumped during the first acquisition prior to a trigger condition when you perform a
Stop Analysis.

Figure 13–38. Segmented Capture with Preemption of Acquisition Segments (1)

Note to Figure 13–38:

(1) A segmented acquisition buffer using the sequential trigger flow with a trigger condition specified as Don’t Care. All segments, with the exception
of the last segment, capture only one sample because the next trigger condition preempts the current buffer from filling to completion.
Quartus II Handbook Version 13.1 November 2013 Altera Corporation
Volume 3: Verification

Chapter 13: Design Debugging Using the SignalTap II Logic Analyzer 13–57
View, Analyze, and Use Captured Data
For segmented buffers and non-segmented buffers using any storage qualification
mode, the SignalTap II Logic Analyzer immediately evaluates all trigger conditions
while writing samples into the acquisition memory. The logic analyzer evaluates each
trigger condition before acquiring a full buffer's worth of samples. This evaluation is
especially important when using any storage qualification on the data set. The logic
analyzer may miss a trigger condition if it waits until a full buffer's worth of data is
captured before evaluating any trigger conditions.

If the trigger event occurs on any data sample before the specified amount of pre-
trigger data has occurred, then the SignalTap II Logic Analyzer triggers and begins
filling memory with post-trigger data, regardless of the amount of pre-trigger data
you specify. For example, if you set the trigger position to 50% and set the logic
analyzer to trigger on a processor reset, start the logic analyzer, and then power on
your target system, the logic analyzer triggers. However, the logic analyzer memory is
filled only with post-trigger data, and not any pre-trigger data, because the trigger
event, which has higher precedence than the capture of pre-trigger data, occurred
before the pre-trigger condition was satisfied.

Figure 13–39 and Figure 13–40 on page 13–58 show the difference between a non-
segmented buffer in continuous mode and a non-segmented buffer using a storage
qualifier. The logic analyzer for the waveforms below is configured with a sample
depth of 64 bits, with a trigger position specified as Post trigger position.

Figure 13–39. SignalTap II Logic Analyzer Continuous Data Capture (1)

Note to Figure 13–39:

(1) Continuous capture mode with post-trigger position.
(2) Capture of a recurring pattern using a non-segmented buffer in continuous mode. The SignalTap II Logic Analyzer is configured with a basic trigger

condition (shown in the figure as "Trig1") with a sample depth of 64 bits.
November 2013 Altera Corporation Quartus II Handbook Version 13.1
Volume 3: Verification

13–58 Chapter 13: Design Debugging Using the SignalTap II Logic Analyzer
View, Analyze, and Use Captured Data
Notice in Figure 13–39 that Trig1 occurs several times in the data buffer before the
SignalTap II Logic Analyzer actually triggers. A full buffer's worth of data is captured
before the logic analyzer evaluates any trigger conditions. After the trigger condition
occurs, the logic analyzer continues acquisition until it captures eight additional
samples (12% of the buffer, as defined by the "post-trigger" position).

Notice in Figure 13–40 that the logic analyzer triggers immediately. As in
Figure 13–39, the logic analyzer completes the acquisition with eight samples, or 12%
of 64, the sample capacity of the acquisition buffer.

Creating Mnemonics for Bit Patterns
The mnemonic table feature allows you to assign a meaningful name to a set of bit
patterns, such as a bus. To create a mnemonic table, right-click in the Setup or Data
tab of an .stp and click Mnemonic Table Setup. You create a mnemonic table by
entering sets of bit patterns and specifying a label to represent each pattern. Once you
have created a mnemonic table, assign the table to a group of signals. To assign a
mnemonic table, right-click on the group, click Bus Display Format and select the
desired mnemonic table.

You use the labels you create in a table in different ways on the Setup and Data tabs.
On the Setup tab, you can create basic triggers with meaningful names by
right-clicking an entry in the Trigger Conditions column and selecting a label from
the table you assigned to the signal group. On the Data tab, if any captured data
matches a bit pattern contained in an assigned mnemonic table, the signal group data
is replaced with the appropriate label, making it easy to see when expected data
patterns occur.

Automatic Mnemonics with a Plug-In
When you use a plug-in to add signals to an .stp, mnemonic tables for the added
signals are automatically created and assigned to the signals defined in the plug-in. To
enable these mnemonic tables manually, right-click on the name of the signal or signal
group. On the Bus Display Format shortcut menu, then click the name of the
mnemonic table that matches the plug-in.

Figure 13–40. SignalTap II Logic Analyzer Conditional Data Capture (1)

Note to Figure 13–40:

(1) Conditional capture, storage always enabled, post-fill count.
(2) SignalTap II Logic Analyzer capture of a recurring pattern using a non-segmented buffer in conditional mode. The logic analyzer is configured with

a basic trigger condition (shown in the figure as "Trig1"), with a sample depth of 64 bits. The “Trigger in” condition is specified as "Don't care",
which means that every sample is captured.
Quartus II Handbook Version 13.1 November 2013 Altera Corporation
Volume 3: Verification

Chapter 13: Design Debugging Using the SignalTap II Logic Analyzer 13–59
View, Analyze, and Use Captured Data
As an example, the Nios II plug-in helps you to monitor signal activity for your
design as the code is executed. If you set up the logic analyzer to trigger on a function
name in your Nios II code based on data from an .elf, you can see the function name
in the Instance Address signal group at the trigger sample, along with the
corresponding disassembled code in the Disassembly signal group, as shown in
Figure 13–41. Captured data samples around the trigger are referenced as offset
addresses from the trigger function name.

Locating a Node in the Design
When you find the source of an error in your design using the SignalTap II Logic
Analyzer, you can use the node locate feature to locate that signal in many of the tools
found in the Quartus II software, as well as in your design files. This lets you find the
source of the problem quickly so you can modify your design to correct the flaw. To
locate a signal from the SignalTap II Logic Analyzer in one of the Quartus II software
tools or your design files, right-click on the signal in the .stp, and click Locate in
<tool name>.

You can locate a signal from the node list with the following tools:

■ Assignment Editor

■ Pin Planner

■ Timing Closure Floorplan

■ Chip Planner

■ Resource Property Editor

■ Technology Map Viewer

■ RTL Viewer

■ Design File

f For more information about using these tools, refer to each of the corresponding
chapters in the Quartus II Handbook.

Figure 13–41. Data Tab when the Nios II Plug-In is Used
November 2013 Altera Corporation Quartus II Handbook Version 13.1
Volume 3: Verification

http://www.altera.com/literature/lit-qts.jsp

13–60 Chapter 13: Design Debugging Using the SignalTap II Logic Analyzer
Other Features
Saving Captured Data
The data log shows the history of captured data and the triggers used to capture the
data. The SignalTap II Logic Analyzer acquires data, stores it in a log, and displays it
as waveforms. When the logic analyzer is in auto-run mode and a trigger event occurs
more than once, captured data for each time the trigger occurred is stored as a
separate entry in the data log. This allows you to review the captured data for each
trigger event. The default name for a log is based on the time when the data was
acquired. Altera recommends that you rename the data log with a more meaningful
name.

The logs are organized in a hierarchical manner; similar logs of captured data are
grouped together in trigger sets. To open the Data Log pane, on the View menu, select
Data Log. To turn on data logging, turn on Enable data log in the Data Log
(Figure 13–19). To recall and activate a data log for a given trigger set, double-click the
name of the data log in the list.

You can use the Data Log feature for organizing different sets of trigger conditions
and different sets of signal configurations. For more information, refer to “Managing
Multiple SignalTap II Files and Configurations” on page 13–25.

Exporting Captured Data to Other File Formats
You can export captured data to the following file formats, for use with other EDA
simulation tools:

■ Comma Separated Values File (.csv)

■ Table File (.tbl)

■ Value Change Dump File (.vcd)

■ Vector Waveform File (.vwf)

■ Graphics format files (.jpg, .bmp)

To export the captured data from SignalTap II Logic Analyzer, on the File menu, click
Export and specify the File Name, Export Format, and Clock Period.

Creating a SignalTap II List File
Captured data can also be viewed in an .stp list file. An .stp list file is a text file that
lists all the data captured by the logic analyzer for a trigger event. Each row of the list
file corresponds to one captured sample in the buffer. Columns correspond to the
value of each of the captured signals or signal groups for that sample. If a mnemonic
table was created for the captured data, the numerical values in the list are replaced
with a matching entry from the table. This is especially useful with the use of a
plug-in that includes instruction code disassembly. You can immediately see the order
in which the instruction code was executed during the same time period of the trigger
event. To create an .stp list file in the Quartus II software, on the File menu, select
Create/Update and click Create SignalTap II List File.

Other Features
The SignalTap II Logic Analyzer has other features that do not necessarily belong to a
particular task in the task flow.
Quartus II Handbook Version 13.1 November 2013 Altera Corporation
Volume 3: Verification

Chapter 13: Design Debugging Using the SignalTap II Logic Analyzer 13–61
Other Features
Using the SignalTap II MATLAB MEX Function to Capture Data
If you use MATLAB for DSP design, you can call the MATLAB MEX function
alt_signaltap_run, built into the Quartus II software, to acquire data from the
SignalTap II Logic Analyzer directly into a matrix in the MATLAB environment. If
you use the MATLAB MEX function in a loop, you can perform as many acquisitions
in the same amount of time as you can when using SignalTap II in the Quartus II
software environment.

1 The SignalTap II MATLAB MEX function is available in the Windows version and
Linux version of the Quartus II software. It is compatible with MATLAB Release 14
Original Release Version 7 and later.

To set up the Quartus II software and the MATLAB environment to perform
SignalTap II acquisitions, perform the following steps:

1. In the Quartus II software, create an .stp file.

2. In the node list in the Data tab of the SignalTap II Logic Analyzer Editor, organize
the signals and groups of signals into the order in which you want them to appear
in the MATLAB matrix. Each column of the imported matrix represents a single
SignalTap II acquisition sample, while each row represents a signal or group of
signals in the order they are organized in the Data tab.

1 Signal groups acquired from the SignalTap II Logic Analyzer and
transferred into the MATLAB MEX function are limited to a width of
32 signals. If you want to use the MATLAB MEX function with a bus or
signal group that contains more than 32 signals, split the group into smaller
groups that do not exceed the 32-signal limit.

3. Save the .stp and compile your design. Program your device and run the
SignalTap II Logic Analyzer to ensure your trigger conditions and signal
acquisition work correctly.

4. In the MATLAB environment, add the Quartus II binary directory to your path
with the following command:

addpath <Quartus install directory>\win r
You can view the help file for the MEX function by entering the following command
in MATLAB without any operators:

alt_signaltap_run r
Use the MATLAB MEX function to open the JTAG connection to the device and run
the SignalTap II Logic Analyzer to acquire data. When you finish acquiring data, close
the JTAG connection.

To open the JTAG connection and begin acquiring captured data directly into a
MATLAB matrix called stp, use the following command:

stp = alt_signaltap_run \
('<stp filename>'[,('signed'|'unsigned')[,'<instance names>'[, \
'<signalset name>'[,'<trigger name>']]]]); r
November 2013 Altera Corporation Quartus II Handbook Version 13.1
Volume 3: Verification

13–62 Chapter 13: Design Debugging Using the SignalTap II Logic Analyzer
Other Features
When capturing data you must assign a filename, for example, <stp filename> as a
requirement of the MATLAB MEX function. Other MATLAB MEX function options
are described in Table 13–11.

You can enable or disable verbose mode to see the status of the logic analyzer while it
is acquiring data. To enable or disable verbose mode, use the following commands:

alt_signaltap_run('VERBOSE_ON'); r
alt_signaltap_run('VERBOSE_OFF'); r
When you finish acquiring data, close the JTAG connection with the following
command:

alt_signaltap_run('END_CONNECTION'); r

f For more information about the use of MATLAB MEX functions in MATLAB, refer to
the MATLAB Help.

Using SignalTap II in a Lab Environment
You can install a stand-alone version of the SignalTap II Logic Analyzer. This version
is particularly useful in a lab environment in which you do not have a workstation
that meets the requirements for a complete Quartus II installation, or if you do not
have a license for a full installation of the Quartus II software. The standalone version
of the SignalTap II Logic Analyzer is included with and requires the Quartus II stand-
alone Programmer which is available from the Downloads page of the Altera website
(www.altera.com).

Remote Debugging Using the SignalTap II Logic Analyzer

Debugging Using a Local PC and an Altera SoC
You can use the System Console with SignalTap II Logic Analyzer to remote debug
your Altera SoC. This method requires one local PC, an existing TCP/IP connection, a
programming device at the remote location, and an Altera SoC.

f For more information about remote debugging an Altera SoC, refer to the Remote
Debugging over TCP/IP for Altera SoC application note.

Table 13–11. SignalTap II MATLAB MEX Function Options

Option Usage Description

signed

unsigned
'signed'

'unsigned'

The signed option turns signal group data into 32-bit
two’s-complement signed integers. The MSB of the group as
defined in the SignalTap II Data tab is the sign bit. The unsigned
option keeps the data as an unsigned integer. The default is signed.

<instance name>
'auto_signaltap_0'

Specify a SignalTap II instance if more than one instance is defined.
The default is the first instance in the .stp, auto_signaltap_0.

<signal set name>

<trigger name>

'my_signalset'

'my_trigger'

Specify the signal set and trigger from the SignalTap II data log if
multiple configurations are present in the .stp. The default is the
active signal set and trigger in the file.
Quartus II Handbook Version 13.1 November 2013 Altera Corporation
Volume 3: Verification

http://www.altera.com
http://www.altera.com/literature/an/an_693.pdf
http://www.altera.com/literature/an/an_693.pdf

Chapter 13: Design Debugging Using the SignalTap II Logic Analyzer 13–63
Other Features
Debugging Using a Local PC and a Remote PC
You can use the SignalTap II Logic Analyzer to debug a design that is running on a
device attached to a PC in a remote location.

To perform a remote debugging session, you must have the following setup:

■ The Quartus II software installed on the local PC

■ Stand-alone SignalTap II Logic Analyzer or the full version of the Quartus II
software installed on the remote PC

■ Programming hardware connected to the device on the PCB at the remote location

■ TCP/IP protocol connection

Equipment Setup

On the PC in the remote location, install the standalone version of the SignalTap II
Logic Analyzer, included in the Quartus II standalone Programmer, or the full version
of the Quartus II software. This remote computer must have Altera programming
hardware connected, such as the EthernetBlaster or USB-Blaster.

On the local PC, install the full version of the Quartus II software. This local PC must
be connected to the remote PC across a LAN with the TCP/IP protocol.

h For information about enabling remote access to a JTAG server, refer to Using the JTAG
Server in Quartus II Help.

Using the SignalTap II Logic Analyzer in Devices with Configuration
Bitstream Security

Certain device families support bitstream decryption during configuration using an
on-device AES decryption engine. You can still use the SignalTap II Logic Analyzer to
analyze functional data within the FPGA. However, note that JTAG configuration is
not possible after the security key has been programmed into the device.

Altera recommends that you use an unencrypted bitstream during the prototype and
debugging phases of the design. Using an unencrypted bitstream allows you to
generate new programming files and reconfigure the device over the JTAG connection
during the debugging cycle.

If you must use the SignalTap II Logic Analyzer with an encrypted bitstream, first
configure the device with an encrypted configuration file using Passive Serial (PS),
Fast Passive Parallel (FPP), or Active Serial (AS) configuration modes. The design
must contain at least one instance of the SignalTap II Logic Analyzer. After the FPGA
is configured with a SignalTap II Logic Analyzer instance in the design, when you
open the SignalTap II Logic Analyzer in the Quartus II software, you then scan the
chain and are ready to acquire data with the JTAG connection.

Backward Compatibility with Previous Versions of Quartus II Software
You can open an .stp created in a previous version in a current version of the
Quartus II software. However, opening an .stp modifies it so that it cannot be opened
in a previous version of the Quartus II software.
November 2013 Altera Corporation Quartus II Handbook Version 13.1
Volume 3: Verification

http://quartushelp.altera.com/current/master.htm#mergedProjects/program/pgm/pgm_pro_add_server.htm
http://quartushelp.altera.com/current/master.htm#mergedProjects/program/pgm/pgm_pro_add_server.htm

13–64 Chapter 13: Design Debugging Using the SignalTap II Logic Analyzer
Other Features
If you have a Quartus II project file from a previous version of the software, you may
have to update the .stp configuration file to recompile the project. You can update the
configuration file by opening the SignalTap II Logic Analyzer. If you need to update
your configuration, a prompt appears asking if you would like to update the .stp to
match the current version of the Quartus II software.

SignalTap II Command-Line Options
To compile your design with the SignalTap II Logic Analyzer using the command
prompt, use the quartus_stp command. Table 13–12 shows the options that help you
use the quartus_stp executable.

Example 13–6 illustrates how to compile a design with the SignalTap II Logic
Analyzer at the command line.

Table 13–12. SignalTap II Command-Line Options

Option Usage Description

stp_file quartus_stp

--stp_file <stp_filename>

Assigns the specified .stp to the
USE_SIGNALTAP_FILE in the .qsf.

enable quartus_stp --enable Creates assignments to the specified .stp in
the .qsf and changes ENABLE_SIGNALTAP
to ON. The SignalTap II Logic Analyzer is
included in your design the next time the
project is compiled. If no .stp is specified in
the .qsf, the --stp_file option must be
used. If the --enable option is omitted, the
current value of ENABLE_SIGNALTAP in the
.qsf is used.

disable quartus_stp --disable Removes the .stp reference from the .qsf
and changes ENABLE_SIGNALTAP to OFF.
The SignalTap II Logic Analyzer is removed
from the design database the next time you
compile your design. If the --disable
option is omitted, the current value of
ENABLE_SIGNALTAP in the .qsf is used.

create_signaltap_hdl_file quartus_stp

--create_signaltap_hdl_file

Creates an .stp representing the
SignalTap II instance in the design
generated by the SignalTap II Logic
Analyzer megafunction created with the
MegaWizard Plug-In Manager. The file is
based on the last compilation. You must
use the --stp_file option to create an
.stp properly. Analogous to the Create
SignalTap II File from Design Instance(s)
command in the Quartus II software.

Example 13–6.

quartus_stp filtref --stp_file stp1.stp --enable r
quartus_map filtref --source=filtref.bdf --family=CYCLONE r
quartus_fit filtref --part=EP1C12Q240C6 --fmax=80MHz --tsu=8ns r
quartus_asm filtref r
Quartus II Handbook Version 13.1 November 2013 Altera Corporation
Volume 3: Verification

Chapter 13: Design Debugging Using the SignalTap II Logic Analyzer 13–65
Other Features
The quartus_stp --stp_file stp1.stp --enable command creates the QSF variable
and instructs the Quartus II software to compile the stp1.stp file with your design.
The --enable option must be applied for the SignalTap II Logic Analyzer to compile
properly into your design.

Example 13–7 shows how to create a new .stp after building the SignalTap II Logic
Analyzer instance with the MegaWizard Plug-In Manager.

f For information about the other command line executables and options, refer to the
Command-Line Scripting chapter in volume 2 of the Quartus II Handbook.

SignalTap II Tcl Commands
The quartus_stp executable supports a Tcl interface that allows you to capture data
without running the Quartus II GUI. You cannot execute SignalTap II Tcl commands
from within the Tcl console in the Quartus II software. They must be executed from
the command line with the quartus_stp executable. To execute a Tcl file that has
SignalTap II Logic Analyzer Tcl commands, use the following command:

quartus_stp -t <Tcl file> r

h For information about Tcl commands that you can use with the SignalTap II Logic
Analyzer Tcl package, refer to ::quartus::stp in Quartus II Help.

Example 13–8 is an excerpt from a script you can use to continuously capture data.
Once the trigger condition is met, the data is captured and stored in the data log.

When the script is completed, open the .stp that you used to capture data to examine
the contents of the Data Log.

Example 13–7.

quartus_stp filtref --create_signaltap_hdl_file --stp_file stp1.stp r

Example 13–8.

#opens signaltap session
open_session -name stp1.stp
#start acquisition of instance auto_signaltap_0 and
#auto_signaltap_1 at the same time
#calling run_multiple_end will start all instances
#run after run_multiple_start call
run_multiple_start
run -instance auto_signaltap_0 -signal_set signal_set_1 -trigger /
trigger_1 -data_log log_1 -timeout 5
run -instance auto_signaltap_1 -signal_set signal_set_1 -trigger /
trigger_1 -data_log log_1 -timeout 5
run_multiple_end
#close signaltap session
close_session
November 2013 Altera Corporation Quartus II Handbook Version 13.1
Volume 3: Verification

http://quartushelp.altera.com/current/master.htm#mergedProjects/tafs/tafs/tcl_pkg_stp_ver_1.0.htm
http://www.altera.com/literature/hb/qts/qts_qii52002.pdf

13–66 Chapter 13: Design Debugging Using the SignalTap II Logic Analyzer
Design Example: Using SignalTap II Logic Analyzers
Design Example: Using SignalTap II Logic Analyzers
The system in this example contains many components, including a Nios processor, a
direct memory access (DMA) controller, on-chip memory, and an interface to external
SDRAM memory. In this example, the Nios processor executes a simple C program
from on-chip memory and waits for you to press a button. After you press a button,
the processor initiates a DMA transfer, which you analyze using the SignalTap II
Logic Analyzer.

f For more information about this example, refer to AN 446: Debugging Nios II Systems
with the SignalTap II Logic Analyzer.

Custom Triggering Flow Application Examples
The custom triggering flow in the SignalTap II Logic Analyzer is most useful for
organizing a number of triggering conditions and for precise control over the
acquisition buffer. This section provides two application examples for defining a
custom triggering flow within the SignalTap II Logic Analyzer. Both examples can be
easily copied and pasted directly into the state machine description box by using the
state display mode All states in one window.

1 For additional triggering flow design examples for on-chip debugging, refer to the
On-chip Debugging Design Examples page on the Altera website.

Design Example 1: Specifying a Custom Trigger Position
Actions to the acquisition buffer can accept an optional post-count argument. This
post-count argument enables you to define a custom triggering position for each
segment in the acquisition buffer. Example 13–9 shows an example that applies a
trigger position to all segments in the acquisition buffer. The example describes a
triggering flow for an acquisition buffer split into four segments. If each acquisition
segment is 64 samples in depth, the trigger position for each buffer will be at sample
#34. The acquisition stops after all four segments are filled once.

Example 13–9.

if (c1 == 3 && condition1)
trigger 30;

else if (condition1)
begin

segment_trigger 30;
increment c1;

end
Quartus II Handbook Version 13.1 November 2013 Altera Corporation
Volume 3: Verification

http://www.altera.com/literature/an/an446.pdf
http://www.altera.com/literature/an/an446.pdf
http://www.altera.com/support/examples/on-chip-debugging/on-chip-debugging.html
http://www.altera.com/support/examples/on-chip-debugging/on-chip-debugging.html

Chapter 13: Design Debugging Using the SignalTap II Logic Analyzer 13–67
Custom Triggering Flow Application Examples
Each segment acts as a non-segmented buffer that continuously updates the memory
contents with the signal values. The last acquisition before stopping the buffer is
displayed on the Data tab as the last sample number in the affected segment. The
trigger position in the affected segment is then defined by N – post count fill, where N
is the number of samples per segment. Figure 13–42 illustrates the triggering position.

Design Example 2: Trigger When triggercond1 Occurs Ten Times between
triggercond2 and triggercond3

The custom trigger flow description is often useful to count a sequence of events
before triggering the acquisition buffer. Example 13–10 shows such a sample flow.
This example uses three basic triggering conditions configured in the SignalTap II
Setup tab.

Figure 13–42. Specifying a Custom Trigger Position

0

1

1

11
1

1

1

1
1

1 1
1

1

1

0
00

0

0

0

0 0

0

Trigger

Sample #1

Post Count

Last Sample
November 2013 Altera Corporation Quartus II Handbook Version 13.1
Volume 3: Verification

13–68 Chapter 13: Design Debugging Using the SignalTap II Logic Analyzer
SignalTap II Scripting Support
This example triggers the acquisition buffer when condition1 occurs after condition3
and occurs ten times prior to condition3. If condition3 occurs prior to ten repetitions
of condition1, the state machine transitions to a permanent wait state.

SignalTap II Scripting Support
You can run procedures and make settings described in this chapter in a Tcl script.
You can also run some procedures at a command prompt. For detailed information
about scripting command options, refer to the Quartus II Command-Line and Tcl API
Help browser. To run the Help browser, type the following at the command prompt:

quartus_sh --qhelp r

f For more information about Tcl scripting, refer to the Tcl Scripting chapter in volume 2
of the Quartus II Handbook.

h You can also refer to About Quartus II Tcl Scripting in Quartus II Help.

Conclusion
As the FPGA industry continues to make technological advancements, outdated
methodologies are replaced with new technologies that maximize productivity. The
SignalTap II Logic Analyzer gives you the same benefits as a traditional logic
analyzer, without the many shortcomings of a piece of dedicated test equipment. The
SignalTap II Logic Analyzer provides many new and innovative features that allow
you to capture and analyze internal signals in your FPGA, allowing you to quickly
debug your design.

Example 13–10.

state ST1:

if (condition2)
begin

reset c1;
goto ST2;

end

State ST2 :
if (condition1)

increment c1;

else if (condition3 && c1 < 10)
goto ST3;

else if (condition3 && c1 >= 10)
trigger;

ST3:
goto ST3;
Quartus II Handbook Version 13.1 November 2013 Altera Corporation
Volume 3: Verification

http://www.altera.com/literature/hb/qts/qts_qii52003.pdf
http://quartushelp.altera.com/current/master.htm#mergedProjects/reference/scripting/tcl_pro_command.htm

Chapter 13: Design Debugging Using the SignalTap II Logic Analyzer 13–69
Document Revision History
Document Revision History
Table 13–13 shows the revision history for this chapter.

Table 13–13. Document Revision History

Date Version Changes Made

November 2013 13.1.0

Removed HardCopy material. Added section on using cross-triggering with
DS-5 tool and added link to white paper 01198. Added section on remote
debugging an Altera SoC and added link to application note 693. Updated
support for MEX function.

May 2013 13.0.0

■ Added recommendation to use the state-based flow for segmented buffers with separate
trigger conditions, information about Basic OR trigger condition, and hard processor
system (HPS) external triggers.

■ Updated “Segmented Buffer” on page 13–17, “Conditional Mode” on page 13–21,
“Creating Basic Trigger Conditions” on page 13–26, and “Using External Triggers” on
page 13–43.

June 2012 12.0.0 Updated Figure 13–5 on page 13–16 and “Adding Signals to the SignalTap II File” on
page 13–10.

November 2011 11.0.1
Template update.

Minor editorial updates.

May 2011 11.0.0 Updated the requirement for the standalone SignalTap II software.

December 2010 10.0.1 Changed to new document template.

July 2010 10.0.0

■ Add new acquisition buffer content to the “View, Analyze, and Use Captured Data” section.

■ Added script sample for generating hexadecimal CRC values in programmed devices.

■ Created cross references to Quartus II Help for duplicated procedural content.

November 2009 9.1.0 No change to content.

March 2009 9.0.0

■ Updated Table 13–1

■ Updated “Using Incremental Compilation with the SignalTap II Logic Analyzer” on
page 13–45

■ Added new Figure 13–33

■ Made minor editorial updates

November 2008 8.1.0

Updated for the Quartus II software version 8.1 release:

■ Added new section “Using the Storage Qualifier Feature” on page 14–25

■ Added description of start_store and stop_store commands in section “Trigger
Condition Flow Control” on page 14–36

■ Added new section “Runtime Reconfigurable Options” on page 14–63

May 2008 8.0.0

Updated for the Quartus II software version 8.0:

■ Added “Debugging Finite State machines” on page 14-24

■ Documented various GUI usability enhancements, including improvements to the
resource estimator, the bus find feature, and the dynamic display updates to the counter
and flag resources in the State-based trigger flow control tab

■ Added “Capturing Data Using Segmented Buffers” on page 14–16

■ Added hyperlinks to referenced documents throughout the chapter

■ Minor editorial updates
November 2013 Altera Corporation Quartus II Handbook Version 13.1
Volume 3: Verification

13–70 Chapter 13: Design Debugging Using the SignalTap II Logic Analyzer
Document Revision History
f For previous versions of the Quartus II Handbook, refer to the Quartus II Handbook
Archive.
Quartus II Handbook Version 13.1 November 2013 Altera Corporation
Volume 3: Verification

http://www.altera.com/literature/lit-qts_archive.jsp
http://www.altera.com/literature/lit-qts_archive.jsp

QII53016-12.0.0

© 2012 Altera Corporation. All rights reserved. ALTERA, ARRI
are trademarks of Altera Corporation and registered in the U.S
trademarks or service marks are the property of their respectiv
semiconductor products to current specifications in accordance
services at any time without notice. Altera assumes no respons
described herein except as expressly agreed to in writing by Al
on any published information and before placing orders for pr

Quartus II Handbook Version 13.1
Volume 3: Verification
June 2012

June 2012
QII53016-12.0.0
14. In-System Debugging Using External
Logic Analyzers
The Quartus II Logic Analyzer Interface (LAI) allows you to use an external logic
analyzer and a minimal number of Altera-supported device I/O pins to examine the
behavior of internal signals while your design is running at full speed on your
Altera®- supported device.

The LAI connects a large set of internal device signals to a small number of output
pins. You can connect these output pins to an external logic analyzer for debugging
purposes. In the Quartus II LAI, the internal signals are grouped together, distributed
to a user-configurable multiplexer, and then output to available I/O pins on your
Altera-supported device. Instead of having a one-to-one relationship between internal
signals and output pins, the Quartus II LAI enables you to map many internal signals
to a smaller number of output pins. The exact number of internal signals that you can
map to an output pin varies based on the multiplexer settings in the Quartus II LAI.

This chapter details the following topics:

■ “Choosing a Logic Analyzer”

■ “Debugging Your Design Using the LAI” on page 14–4

■ “Working with LAI Files” on page 14–4

■ “Controlling the Active Bank During Runtime” on page 14–7

■ “Using the LAI with Incremental Compilation” on page 14–7

1 The term “logic analyzer” when used in this chapter includes both logic analyzers and
oscilloscopes equipped with digital channels, commonly referred to as mixed signal
analyzers or MSOs.

h Refer to Devices and Adapters in Quartus II Help for a list of Altera-supported devices.

Choosing a Logic Analyzer
The Quartus II software offers the following two general purpose on-chip debugging
tools for debugging a large set of RTL signals from your design:

■ The SignalTap® II Logic Analyzer

■ An external logic analyzer, which connects to internal signals in your
Altera-supported device by using the Quartus II LAI
A, CYCLONE, HARDCOPY, MAX, MEGACORE, NIOS, QUARTUS and STRATIX words and logos
. Patent and Trademark Office and in other countries. All other words and logos identified as
e holders as described at www.altera.com/common/legal.html. Altera warrants performance of its
 with Altera's standard warranty, but reserves the right to make changes to any products and
ibility or liability arising out of the application or use of any information, product, or service
tera. Altera customers are advised to obtain the latest version of device specifications before relying
oducts or services.

Feedback SubscribeTwitter

ISO
9001:2008
Registered

http://quartushelp.altera.com/current/master.htm#mergedProjects/device/dev/dev_list_dev_adapt.htm
https://www.altera.com/servlets/subscriptions/alert?id=QII53016
http://www.altera.com/common/legal.html
http://www.altera.com/support/reliability/certifications/rel-certifications.html
http://www.altera.com/support/reliability/certifications/rel-certifications.html
http://twitter.com/home/?status=In-System+Debugging+Using+External+Logic+Analyzers+http://www.altera.com/literature/hb/qts/qts_qii53016.pdf?WT.mc_id=gc_so_tw_st_tx_a_011+(via @alteracorp)+%23Altera
mailto:TechDocFeedback@altera.com?subject=Feedback on QII53016-12.0 (QII HB, Vol 3, Ch14: In-System Debugging Using External Logic Analyzers)

14–2 Chapter 14: In-System Debugging Using External Logic Analyzers
Choosing a Logic Analyzer
Table 14–1 describes the advantages of each debugging tool.

f The Quartus II software offers a portfolio of on-chip debugging tools. For an overview
and comparison of all tools available in the Quartus II software on-chip debugging
tool suite, refer to Section V. In-System Debugging in volume 3 of the Quartus II
Handbook.

Required Components
You must have the following components to perform analysis using the Quartus II
LAI:

■ The Quartus II software starting with version 5.1 and later

■ The device under test

■ An external logic analyzer

■ An Altera communications cable

■ A cable to connect the Altera-supported device to the external logic analyzer

Table 14–1. Comparing the SignalTap II Logic Analyzer with the Logic Analyzer Interface

Feature and Description
Logic

Analyzer
Interface

SignalTap II
Logic

Analyzer

Sample Depth

You have access to a wider sample depth with an external logic analyzer. In the
SignalTap II Logic Analyzer, the maximum sample depth is set to 128 Kb, which is a device
constraint. However, with an external logic analyzer, there are no device constraints,
providing you a wider sample depth.

v —

Debugging Timing Issues

Using an external logic analyzer provides you with access to a “timing” mode, which
enables you to debug combined streams of data.

v —

Performance

You frequently have limited routing resources available to place and route when you use
the SignalTap II Logic Analyzer with your design. An external logic analyzer adds minimal
logic, which removes resource limits on place-and-route.

v —

Triggering Capability

The SignalTap II Logic Analyzer offers triggering capabilities that are comparable to
external logic analyzers.

v v

Use of Output Pins

Using the SignalTap II Logic Analyzer, no additional output pins are required. Using an
external logic analyzer requires the use of additional output pins.

— v

Acquisition Speed

With the SignalTap II Logic Analyzer, you can acquire data at speeds of over 200 MHz. You
can achieve the same acquisition speeds with an external logic analyzer; however, you
must consider signal integrity issues.

— v
Quartus II Handbook Version 13.1 June 2012 Altera Corporation
Volume 3: Verification

http://www.altera.com/literature/hb/qts/qts_qii5v3_05.pdf

Chapter 14: In-System Debugging Using External Logic Analyzers 14–3
Choosing a Logic Analyzer
Figure 14–1 shows the LAI and the hardware setup.

Figure 14–1. LAI and Hardware Setup

Notes to Figure 14–1:

(1) Configuration and control of the LAI using a computer loaded with the Quartus II software via the JTAG port.
(2) Configuration and control of the LAI using a third-party vendor logic analyzer via the JTAG port. Support varies by

vendor.

JTAG

(1)

(2)

FPGA

Connected to
Unused FPGA Pins

LAI

Altera Programming
Hardware Quartus II Software

External Logic Analyzer
Board
June 2012 Altera Corporation Quartus II Handbook Version 13.1
Volume 3: Verification

14–4 Chapter 14: In-System Debugging Using External Logic Analyzers
Debugging Your Design Using the LAI
Debugging Your Design Using the LAI
Figure 14–2 shows the steps you must follow to debug your design with the
Quartus II LAI.

Working with LAI Files
The .lai file stores the configuration of an LAI instance. The .lai file opens in the LAI
editor. The editor allows you to group multiple internal signals to a set of external
pins. The configuration parameters are described in the following sections.

h To create a new .lai file or open an existing .lai file, refer to Setting Up the Logic
Analyzer Interface in Quartus II Help.

Figure 14–2. LAI and Hardware Setup

Notes to Figure 14–1:

(1) Configuration and control of the LAI using a computer loaded with the Quartus II software via the JTAG port.
(2) Configuration and control of the LAI using a third-party vendor logic analyzer via the JTAG port. Support varies by

vendor.

Configure Logic Analyzer
Interface File

Create New Logic
Analyzer Interface File

Compile Project

Program Device

Control Output Pin

Debug Project

Start the Quartus II Software
Quartus II Handbook Version 13.1 June 2012 Altera Corporation
Volume 3: Verification

http://quartushelp.altera.com/current/master.htm#mergedProjects/program/lai/lai_pro_setup_lai.htm
http://quartushelp.altera.com/current/master.htm#mergedProjects/program/lai/lai_pro_setup_lai.htm

Chapter 14: In-System Debugging Using External Logic Analyzers 14–5
Working with LAI Files
Configuring the File Core Parameters
After you create the .lai file, you must configure the .lai file core parameters by
clicking on the Setup View list, and then selecting Core Parameters. Table 14–2 lists
the .lai file core parameters.

Mapping the LAI File Pins to Available I/O Pins
To configure the .lai file I/O pin parameters, select Pins in the Setup View list. To
assign pin locations for the LAI, double-click the Location column next to the
reserved pins in the Name column, and the Pin Planner opens.

f For information about how to use the Pin Planner, refer to the Pin Planner section in
the I/O Management chapter in volume 2 of the Quartus II Handbook.

Mapping Internal Signals to the LAI Banks
After you have specified the number of banks to use in the Core Parameters settings
page, you must assign internal signals for each bank in the LAI. Click the Setup View
arrow and select Bank n or All Banks.

To view all of your bank connections, click Setup View and select All Banks.

Table 14–2. LAI File Core Parameters

Parameter Description

Pin Count

The Pin Count parameter signifies the number of pins you want dedicated to your LAI. The pins
must be connected to a debug header on your board. Within the Altera-supported device, each pin
is mapped to a user-configurable number of internal signals.

The Pin Count parameter can range from 1 to 255 pins.

Bank Count
The Bank Count parameter signifies the number of internal signals that you want to map to each
pin. For example, a Bank Count of 8 implies that you will connect eight internal signals to each pin.

The Bank Count parameter can range from 1 to 255 banks.

Output/Capture Mode

The Output/Capture Mode parameter signifies the type of acquisition you perform. There are two
options that you can select:

Combinational/Timing—This acquisition uses your external logic analyzer’s internal clock to
determine when to sample data. Because Combinational/Timing acquisition samples data
asynchronously to your Altera-supported device, you must determine the sample frequency you
should use to debug and verify your system. This mode is effective if you want to measure timing
information, such as channel-to-channel skew. For more information about the sampling frequency
and the speeds at which it can run, refer to the data sheet for your external logic analyzer.

Registered/State—This acquisition uses a signal from your system under test to determine when
to sample. Because Registered/State acquisition samples data synchronously with your Altera-
supported device, it provides you with a functional view of your Altera-supported device while it is
running. This mode is effective when you verify the functionality of your design.

Clock

The Clock parameter is available only when Output/Capture Mode is set to Registered State. You
must specify the sample clock in the Core Parameters view. The sample clock can be any signal in
your design. However, for best results, Altera recommends that you use a clock with an operating
frequency fast enough to sample the data you would like to acquire.

Power-Up State
The Power-Up State parameter specifies the power-up state of the pins you have designated for use
with the LAI. You have the option of selecting tri-stated for all pins, or selecting a particular bank
that you have enabled.
June 2012 Altera Corporation Quartus II Handbook Version 13.1
Volume 3: Verification

http://www.altera.com/literature/hb/qts/qts_qii52013.pdf

14–6 Chapter 14: In-System Debugging Using External Logic Analyzers
Working with LAI Files
Using the Node Finder
Before making bank assignments, on the View menu, point to Utility Windows and
click Node Finder. Find the signals that you want to acquire, then drag and drop the
signals from the Node Finder dialog box into the bank Setup View. When adding
signals, use SignalTap II: pre-synthesis for non-incrementally routed instances and
SignalTap II: post-fitting for incrementally routed instances.

As you continue to make assignments in the bank Setup View, the schematic of your
LAI in the Logical View of your .lai file begins to reflect your assignments. Continue
making assignments for each bank in the Setup View until you have added all of the
internal signals for which you wish to acquire data.

Compiling Your Quartus II Project
When you save your .lai file, a dialog box prompts you to enable the LAI instance for
the active project. Alternatively, you can specify the .lai file your project uses in the
Global Project Settings dialog box.

After you specify the name of your .lai file, you must compile your project. To
compile your project, on the Processing menu, click Start Compilation.

To ensure that the LAI is properly compiled with your project, expand the entity
hierarchy in the Project Navigator. (To display the Project Navigator, on the View
menu, point to Utility Windows and click Project Navigator.) If the LAI is compiled
with your design, the sld_hub and sld_multitap entities are shown in the project
navigator (Figure 14–3).

Programming Your Altera-Supported Device Using the LAI
After compilation completes, you must configure your Altera-supported device
before using the LAI.

You can use the LAI with multiple devices in your JTAG chain. Your JTAG chain can
also consist of devices that do not support the LAI or non-Altera, JTAG-compliant
devices. To use the LAI in more than one Altera-supported device, create an .lai file
and configure an .lai file for each Altera-supported device that you want to analyze.

h To configure a device or a set of devices for use with LAI, refer to Enabling the Logic
Analyzer Interface in Quartus II Help.

Figure 14–3. Project Navigator
Quartus II Handbook Version 13.1 June 2012 Altera Corporation
Volume 3: Verification

http://quartushelp.altera.com/current/master.htm#mergedProjects/program/lai/lai_pro_enabling_lai.htm
http://quartushelp.altera.com/current/master.htm#mergedProjects/program/lai/lai_pro_enabling_lai.htm

Chapter 14: In-System Debugging Using External Logic Analyzers 14–7
Controlling the Active Bank During Runtime
Controlling the Active Bank During Runtime
When you have programmed your Altera-supported device, you can control which
bank you map to the reserved .lai file output pins. To control which bank you map, in
the schematic in the logical view, right-click the bank and click Connect Bank
(Figure 14–4).

Acquiring Data on Your Logic Analyzer
To acquire data on your logic analyzer, you must establish a connection between your
device and the external logic analyzer.

f For more information about this process and for guidelines about how to establish
connections between debugging headers and logic analyzers, refer to the
documentation for your logic analyzer.

Using the LAI with Incremental Compilation
The Incremental Compilation feature in the Quartus II software allows you to
preserve the synthesis and fitting results of your design. This is an effective feature for
reducing compilation times if you only modify a portion of a design or you wish to
preserve the optimization results from a previous compilation.

The Incremental Compilation feature is well suited for use with LAI since LAI
comprises a small portion of most designs. Because LAI consists of only a small
portion of your design, incremental compilation helps to minimize your compilation
time. Incremental compilation works best when you are only changing a small
portion of your design. Incremental compilation yields an accurate representation of
your design behavior when changing the .lai file through multiple compilations.

h For further details on how to use Incremental Compilation with the LAI, refer to
Enabling the Logic Analyzer Interface in Quartus II Help.

Figure 14–4. Configuring Banks
June 2012 Altera Corporation Quartus II Handbook Version 13.1
Volume 3: Verification

http://quartushelp.altera.com/current/master.htm#mergedProjects/program/lai/lai_pro_enabling_lai.htm

14–8 Chapter 14: In-System Debugging Using External Logic Analyzers
Conclusion
Conclusion
As the device industry continues to make technological advancements, outdated
debugging methodologies must be replaced with new technologies that maximize
productivity. The LAI feature enables you to connect many internal signals within
your Altera-supported device to an external logic analyzer with the use of a small
number of I/O pins. This new technology in the Quartus II software enables you to
use feature-rich external logic analyzers to debug your Altera-supported device
design, ultimately enabling you to deliver your product in the shortest amount of
time.

Document Revision History
Table 14–3 shows the revision history for this chapter.

f For previous versions of the Quartus II Handbook, refer to the Quartus II Handbook
Archive.

Table 14–3. Document Revision History

Date Version Changes

June 2012 12.0.0 ■ Removed survey link.

November 2011 10.1.1 ■ Changed to new document template

December 2010 10.1.0
■ Minor editorial updates

■ Changed to new document template

August 2010 10.0.1 Corrected links

July 2010 10.0.0

■ Created links to the Quartus II Help

■ Editorial updates

■ Removed Referenced Documents section

November 2009 9.1.0
■ Removed references to APEX devices

■ Editorial updates

March 2009 9.0.0
■ Minor editorial updates

■ Removed Figures 15–4, 15–5, and 15–11 from 8.1 version

November 2008 8.1.0 Changed to 8-1/2 x 11 page size. No change to content

May 2008 8.0.0

■ Updated device support list on page 15–3

■ Added links to referenced documents throughout the chapter

■ Added “Referenced Documents”

■ Added reference to Section V. In-System Debugging

■ Minor editorial updates
Quartus II Handbook Version 13.1 June 2012 Altera Corporation
Volume 3: Verification

http://www.altera.com/literature/lit-qts_archive.jsp
http://www.altera.com/literature/lit-qts_archive.jsp

QII53012-12.0.0

© 2012 Altera Corporation. All rights reserved. ALTERA, ARRI
are trademarks of Altera Corporation and registered in the U.S
trademarks or service marks are the property of their respectiv
semiconductor products to current specifications in accordance
services at any time without notice. Altera assumes no respons
described herein except as expressly agreed to in writing by Al
on any published information and before placing orders for pr

Quartus II Handbook Version 13.1
Volume 3: Verification
June 2012

June 2012
QII53012-12.0.0
15. In-System Modification of Memory
and Constants
This chapter explains how to use the Quartus®II In-System Memory Content Editor as
part of your FPGA design and verification flow.

The In-System Memory Content Editor allows you to view and update memories and
constants with the JTAG port connection.

The In-System Memory Content Editor allows access to dense and complex FPGA
designs. When you program devices, you have read and write access to the memories
and constants through the JTAG interface. You can then identify, test, and resolve
issues with your design by testing changes to memory contents in the FPGA while
your design is running.

Overview
This chapter contains the following sections:

■ “Updating Memory and Constants in Your Design” on page 15–2

■ “Updating Memory and Constants in Your Design” on page 15–2

■ “Creating In-System Modifiable Memories and Constants” on page 15–2

■ “Running the In-System Memory Content Editor” on page 15–2

When you use the In-System Memory Content Editor in conjunction with the
SignalTap II Logic Analyzer, you can more easily view and debug your design in the
hardware lab.

f For more information about the SignalTap II Logic Analyzer, refer to the Design
Debugging Using the SignalTap II Logic Analyzer chapter in volume 3 of the Quartus II
Handbook.

The ability to read data from memories and constants allows you to quickly identify
the source of problems. The write capability allows you to bypass functional issues by
writing expected data. For example, if a parity bit in your memory is incorrect, you
can use the In-System Memory Content Editor to write the correct parity bit values
into your RAM, allowing your system to continue functioning. You can also
intentionally write incorrect parity bit values into your RAM to check the error
handling functionality of your design.

f The Quartus II software offers a variety of on-chip debugging tools. For an overview
and comparison of all tools available in the Quartus II software on-chip debugging
tool suite, refer to Section IV. System Debugging Tools in volume 3 of the Quartus II
Handbook.
A, CYCLONE, HARDCOPY, MAX, MEGACORE, NIOS, QUARTUS and STRATIX words and logos
. Patent and Trademark Office and in other countries. All other words and logos identified as
e holders as described at www.altera.com/common/legal.html. Altera warrants performance of its
 with Altera's standard warranty, but reserves the right to make changes to any products and
ibility or liability arising out of the application or use of any information, product, or service
tera. Altera customers are advised to obtain the latest version of device specifications before relying
oducts or services.

Feedback SubscribeTwitter

ISO
9001:2008
Registered

https://www.altera.com/servlets/subscriptions/alert?id=QII53012
http://www.altera.com/common/legal.html
http://www.altera.com/literature/hb/qts/qts_qii5v3_05.pdf
http://www.altera.com/literature/hb/qts/qts_qii53009.pdf
http://www.altera.com/literature/hb/qts/qts_qii53009.pdf
http://www.altera.com/support/reliability/certifications/rel-certifications.html
http://www.altera.com/support/reliability/certifications/rel-certifications.html
http://twitter.com/home/?status=In-System Modifications of Memory and Constants http://www.altera.com/literature/hb/qts/qts_qii53012.pdf?WT.mc_id=gc_so_tw_st_tx_a_011 (via @alteracorp) #Altera
mailto:TechDocFeedback@altera.com?subject=Feedback on QII53012-12.0 (QII HB, Vol 3, Ch15: In-System Modification of Memory and Constants)

15–2 Chapter 15: In-System Modification of Memory and Constants
Updating Memory and Constants in Your Design
h For a list of the types of memories and constants currently supported by the
Quartus II software, refer to Megafunctions/LPM in Quartus II Help.

Updating Memory and Constants in Your Design
To use the In-System Updating of Memory and Constants feature, perform the
following steps:

1. Identify the memories and constants that you want to access.

2. Edit the memories and constants to be run-time modifiable.

3. Perform a full compilation.

4. Program your device.

5. Launch the In-System Memory Content Editor.

Creating In-System Modifiable Memories and Constants
When you specify that a memory or constant is run-time modifiable, the Quartus II
software changes the default implementation. A single-port RAM is converted to a
dual-port RAM, and a constant is implemented in registers instead of look-up tables
(LUTs). These changes enable run-time modification without changing the
functionality of your design.

h To enable your memory or constant to be modifiable, refer to Setting up the In-System
Memory Content Editor in Quartus II Help.

If you instantiate a memory or constant megafunction directly with ports and
parameters in VHDL or Verilog HDL, add or modify the lpm_hint parameter as
follows:

In VHDL code, add the following:

lpm_hint => "ENABLE_RUNTIME_MOD = YES,
INSTANCE_NAME = <instantiation name>";

In Verilog HDL code, add the following:

defparam <megafunction instance name>.lpm_hint =
"ENABLE_RUNTIME_MOD = YES,
INSTANCE_NAME = <instantiation name>";

Running the In-System Memory Content Editor
The In-System Memory Content Editor has three separate panes: the Instance
Manager, the JTAG Chain Configuration, and the Hex Editor.

The Instance Manager pane displays all available run-time modifiable memories and
constants in your FPGA device. The JTAG Chain Configuration pane allows you to
program your FPGA and select the Altera® device in the chain to update.

Using the In-System Memory Content Editor does not require that you open a project.
The In-System Memory Content Editor retrieves all instances of run-time configurable
memories and constants by scanning the JTAG chain and sending a query to the
specific device selected in the JTAG Chain Configuration pane.
Quartus II Handbook Version 13.1 June 2012 Altera Corporation
Volume 3: Verification

http://quartushelp.altera.com/current/master.htm#mergedProjects/program/red/red_pro_open_editor.htm
http://quartushelp.altera.com/current/master.htm#mergedProjects/program/red/red_pro_open_editor.htm
http://quartushelp.altera.com/current/master.htm#mergedProjects/hdl/mega/mega_list_mega_lpm.htm

Chapter 15: In-System Modification of Memory and Constants 15–3
Running the In-System Memory Content Editor
If you have more than one device with in-system configurable memories or constants
in a JTAG chain, you can launch multiple In-System Memory Content Editors within
the Quartus II software to access the memories and constants in each of the devices.
Each In-System Memory Content Editor can access the in-system memories and
constants in a single device.

Instance Manager
When you scan the JTAG chain to update the Instance Manager pane, you can view a
list of all run-time modifiable memories and constants in the design. The Instance
Manager pane displays the Index, Instance, Status, Width, Depth, Type, and Mode of
each element in the list.

h You can read and write to in-system memory with the Instance Manager pane. For
more information refer to Instance Manager Pane in Quartus II Help.

1 In addition to the buttons available in the Instance Manager pane, you can read and
write data by selecting commands from the Processing menu, or the right-click menu
in the Instance Manager pane or Hex Editor pane.

The status of each instance is also displayed beside each entry in the Instance
Manager pane. The status indicates if the instance is Not running, Offloading data,
or Updating data. The health monitor provides information about the status of the
editor.

The Quartus II software assigns a different index number to each in-system memory
and constant to distinguish between multiple instances of the same memory or
constant function. View the In-System Memory Content Editor Settings section of
the Compilation Report to match an index number with the corresponding instance
ID.

Editing Data Displayed in the Hex Editor Pane
You can edit data read from your in-system memories and constants displayed in the
Hex Editor pane by typing values directly into the editor or by importing memory
files.

h For more information, refer to Working with In-System Memory Content Editor Data in
Quartus II Help.

Importing and Exporting Memory Files
The In-System Memory Content Editor allows you to import and export data values
for memories that have the In-System Updating feature enabled. Importing from a
data file enables you to quickly load an entire memory image. Exporting to a data file
enables you to save the contents of the memory for future use.

h For more information, refer to Working with In-System Memory Content Editor Data in
Quartus II Help.
June 2012 Altera Corporation Quartus II Handbook Version 13.1
Volume 3: Verification

http://quartushelp.altera.com/current/master.htm#mergedProjects/program/red/red_pro_import_export.htm
http://quartushelp.altera.com/current/master.htm#mergedProjects/program/red/red_pro_import_export.htm
http://quartushelp.altera.com/current/master.htm#mergedProjects/program/red/red_com_instance_manager.htm

15–4 Chapter 15: In-System Modification of Memory and Constants
Running the In-System Memory Content Editor
Scripting Support
The In-System Memory Content Editor supports reading and writing of memory
contents via a Tcl script or Tcl commands entered at a command prompt. For detailed
information about scripting command options, refer to the Quartus II command-line
and Tcl API Help browser.

To run the Help browser, type the following command at the command prompt:

quartus_sh --qhelp r

f For more information about Tcl scripting, refer to the Tcl Scripting chapter in volume 2
of the Quartus II Handbook and API Functions for Tcl in Quartus II Help. For more
information about command-line scripting, refer to the Command-Line Scripting
chapter in volume 2 of the Quartus II Handbook.

The commonly used commands for the In-System Memory Content Editor are as
follows:

■ Reading from memory:

read_content_from_memory
[-content_in_hex]
-instance_index <instance index>
-start_address <starting address>
-word_count <word count>

■ Writing to memory:

write_content_to_memory

■ Save memory contents to file:

save_content_from_memory_to_file

■ Update memory contents from File:

update_content_to_memory_from_file

h For descriptions of the command options and scripting examples, refer to the Tcl API
Help Browser and the API Functions for Tcl in Quartus II Help.

Programming the Device with the In-System Memory Content Editor
If you make changes to your design, you can program the device from within the
In-System Memory Content Editor.

h To program the device, refer to Setting up the In-System Memory Content Editor in
Quartus II Help.

Example: Using the In-System Memory Content Editor with the SignalTap II
Logic Analyzer

The following scenario describes how you can use the In-System Updating of
Memory and Constants feature with the SignalTap II Logic Analyzer to efficiently
debug your design in-system. You can use the In-System Memory Content Editor and
the SignalTap II Logic Analyzer simultaneously with the JTAG interface.
Quartus II Handbook Version 13.1 June 2012 Altera Corporation
Volume 3: Verification

http://quartushelp.altera.com/current/master.htm#mergedProjects/tafs/tafs/tcl_list_of_packages.htm
http://quartushelp.altera.com/current/master.htm#mergedProjects/tafs/tafs/tcl_list_of_packages.htm
http://quartushelp.altera.com/current/master.htm#mergedProjects/program/red/red_pro_open_editor.htm
http://www.altera.com/literature/hb/qts/qts_qii52003.pdf
http://www.altera.com/literature/hb/qts/qts_qii52002.pdf

Chapter 15: In-System Modification of Memory and Constants 15–5
Conclusion
Scenario: After completing your FPGA design, you find that the characteristics of
your FIR filter design are not as expected.

1. To locate the source of the problem, change all your FIR filter coefficients to be
in-system modifiable and instantiate the SignalTap II Logic Analyzer.

2. Using the SignalTap II Logic Analyzer to tap and trigger on internal design nodes,
you find the FIR filter to be functioning outside of the expected cutoff frequency.

3. Using the In-System Memory Content Editor, you check the correctness of the FIR
filter coefficients. Upon reading each coefficient, you discover that one of the
coefficients is incorrect.

4. Because your coefficients are in-system modifiable, you update the coefficients
with the correct data with the In-System Memory Content Editor.

In this scenario, you can quickly locate the source of the problem using both the
In-System Memory Content Editor and the SignalTap II Logic Analyzer. You can also
verify the functionality of your device by changing the coefficient values before
modifying the design source files.

You can also modify the coefficients with the In-System Memory Content Editor to
vary the characteristics of the FIR filter, for example, filter attenuation, transition
bandwidth, cut-off frequency, and windowing function.

Conclusion
The In-System Updating of Memory and Constants feature provides access to a device
for efficient debugging in a hardware lab. You can use the In-System Memory and
Content Editor with the SignalTap II Logic Analyzer to maximize the visibility into an
Altera FPGA. By maximizing visibility and access to internal logic of the device, you
can identify and resolve problems with your design more easily.

Document Revision History
Table 15–1 shows the revision history of this chapter.

Table 15–1. Document Revision History

Date Version Changes

June 2012 12.0.0 Removed survey link.

November 2011 10.0.3 Template update.

December 2010 10.0.2 ■ Changed to new document template. No change to content

August 2010 10.0.1 ■ Corrected links

July 2010 10.0.0
■ Inserted links to Quartus II Help

■ Removed Reference Documents section

November 2009 9.1.0
■ Delete references to APEX devices

■ Style changes

March 2009 9.0.0 ■ No change to content
June 2012 Altera Corporation Quartus II Handbook Version 13.1
Volume 3: Verification

15–6 Chapter 15: In-System Modification of Memory and Constants
Document Revision History
f For previous versions of the Quartus II Handbook, refer to the Quartus II Handbook
Archive.

November 2008 8.1.0 ■ Changed to 8-1/2 x 11 page size. No change to content

May 2008 8.0.0

■ Added reference to Section V. In-System Debugging in volume 3 of the Quartus II
Handbook on page 16-1

■ Removed references to the Mercury device, as it is now considered to be a “Mature”
device

■ Added links to referenced documents throughout document

■ Minor editorial updates

Table 15–1. Document Revision History
Quartus II Handbook Version 13.1 June 2012 Altera Corporation
Volume 3: Verification

http://www.altera.com/literature/hb/qts/qts_qii5v3_05.pdf
http://www.altera.com/literature/lit-qts_archive.jsp
http://www.altera.com/literature/lit-qts_archive.jsp

QII53021-12.0.0

© 2012 Altera Corporation. All rights reserved. ALTERA, ARRI
are trademarks of Altera Corporation and registered in the U.S
trademarks or service marks are the property of their respectiv
semiconductor products to current specifications in accordance
services at any time without notice. Altera assumes no respons
described herein except as expressly agreed to in writing by Al
on any published information and before placing orders for pr

Quartus II Handbook Version 13.1
Volume 3: Verification
June 2012

June 2012
QII53021-12.0.0
16. Design Debugging Using In-System
Sources and Probes
This chapter provides detailed instructions about how to use the In-System Sources
and Probes Editor and Tcl scripting in the Quartus® II software to debug your design.

Traditional debugging techniques often involve using an external pattern generator to
exercise the logic and a logic analyzer to study the output waveforms during run
time. The SignalTap® II Logic Analyzer and SignalProbe allow you to read or “tap”
internal logic signals during run time as a way to debug your logic design. You can
make the debugging cycle more efficient when you can drive any internal signal
manually within your design, which allows you to perform the following actions:

■ Force the occurrence of trigger conditions set up in the SignalTap II Logic Analyzer

■ Create simple test vectors to exercise your design without using external test
equipment

■ Dynamically control run time control signals with the JTAG chain

The In-System Sources and Probes Editor in the Quartus II software extends the
portfolio of verification tools, and allows you to easily control any internal signal and
provides you with a completely dynamic debugging environment. Coupled with
either the SignalTap II Logic Analyzer or SignalProbe, the In-System Sources and
Probes Editor gives you a powerful debugging environment in which to generate
stimuli and solicit responses from your logic design.

f The Virtual JTAG Megafunction and the In-System Memory Content Editor also give
you the capability to drive virtual inputs into your design. The Quartus II software
offers a variety of on-chip debugging tools. For an overview and comparison of all the
tools available in the Quartus II software on-chip debugging tool suite, refer to
Section IV. System Debugging Tools in volume 3 of the Quartus II Handbook.

Overview
This chapter includes the following topics:

■ “Design Flow Using the In-System Sources and Probes Editor” on page 16–4

■ “Running the In-System Sources and Probes Editor” on page 16–7

■ “Tcl interface for the In-System Sources and Probes Editor” on page 16–9

■ “Design Example: Dynamic PLL Reconfiguration” on page 16–13

The In-System Sources and Probes Editor consists of the ALTSOURCE_PROBE
megafunction and an interface to control the ALTSOURCE_PROBE megafunction
instances during run time. Each ALTSOURCE_PROBE megafunction instance
provides you with source output ports and probe input ports, where source ports
drive selected signals and probe ports sample selected signals. When you compile
A, CYCLONE, HARDCOPY, MAX, MEGACORE, NIOS, QUARTUS and STRATIX words and logos
. Patent and Trademark Office and in other countries. All other words and logos identified as
e holders as described at www.altera.com/common/legal.html. Altera warrants performance of its
 with Altera's standard warranty, but reserves the right to make changes to any products and
ibility or liability arising out of the application or use of any information, product, or service
tera. Altera customers are advised to obtain the latest version of device specifications before relying
oducts or services.

Feedback SubscribeTwitter

ISO
9001:2008
Registered

https://www.altera.com/servlets/subscriptions/alert?id=QII53021
http://www.altera.com/literature/hb/qts/qts_qii5v3_05.pdf
http://www.altera.com/common/legal.html
http://twitter.com/home/?status=Design+Debugging+Using+In-System+Sources+and+Probes+http://www.altera.com/literature/hb/qts/qts_qii53021.pdf?WT.mc_id=gc_so_tw_st_tx_a_011+(via @alteracorp)+%23Altera
mailto:TechDocFeedback@altera.com?subject=Feedback on QII53021-12.0 (QII HB, Vol 3, Ch16: Design Debugging Using In-System Sources and Probes)
http://www.altera.com/support/reliability/certifications/rel-certifications.html
http://www.altera.com/support/reliability/certifications/rel-certifications.html

16–2 Chapter 16: Design Debugging Using In-System Sources and Probes
Overview
your design, the ALTSOURCE_PROBE megafunction sets up a register chain to either
drive or sample the selected nodes in your logic design. During run time, the
In-System Sources and Probes Editor uses a JTAG connection to shift data to and from
the ALTSOURCE_PROBE megafunction instances. Figure 16–1 shows a block
diagram of the components that make up the In-System Sources and Probes Editor.

The ALTSOURCE_PROBE megafunction hides the detailed transactions between the
JTAG controller and the registers instrumented in your design to give you a basic
building block for stimulating and probing your design. Additionally, the In-System
Sources and Probes Editor provides single-cycle samples and single-cycle writes to
selected logic nodes. You can use this feature to input simple virtual stimuli and to
capture the current value on instrumented nodes. Because the In-System Sources and
Probes Editor gives you access to logic nodes in your design, you can toggle the
inputs of low-level components during the debugging process. If used in conjunction
with the SignalTap II Logic Analyzer, you can force trigger conditions to help isolate
your problem and shorten your debugging process.

The In-System Sources and Probes Editor allows you to easily implement control
signals in your design as virtual stimuli. This feature can be especially helpful for
prototyping your design, such as in the following operations:

■ Creating virtual push buttons

■ Creating a virtual front panel to interface with your design

■ Emulating external sensor data

■ Monitoring and changing run time constants on the fly

Figure 16–1. In-System Sources and Probes Editor Block Diagram

D QD QD QD Q

D QD QD QD Q

Design Logic

altsource_probe
Megafunction

Probes Sources

JTAG
Controller

Altera
Programming

Hardware

Quartus II
Software

FPGA
Quartus II Handbook Version 13.1 June 2012 Altera Corporation
Volume 3: Verification

Chapter 16: Design Debugging Using In-System Sources and Probes 16–3
Overview
The In-System Sources and Probes Editor supports Tcl commands that interface with
all your ALTSOURCE_PROBE megafunction instances to increase the level of
automation.

Hardware and Software Requirements
The following components are required to use the In-System Sources and Probes
Editor:

■ Quartus II software

or

■ Quartus II Web Edition (with the TalkBack feature turned on)

■ Download Cable (USB-BlasterTM download cable or ByteBlasterTM cable)

■ Altera® development kit or user design board with a JTAG connection to device
under test

The In-System Sources and Probes Editor supports the following device families:

■ Arria® GX

■ Stratix® series

■ Cyclone® series

■ MAX® series
June 2012 Altera Corporation Quartus II Handbook Version 13.1
Volume 3: Verification

16–4 Chapter 16: Design Debugging Using In-System Sources and Probes
Design Flow Using the In-System Sources and Probes Editor
Design Flow Using the In-System Sources and Probes Editor
The In-System Sources and Probes Editor supports an RTL flow. Signals that you want
to view in the In-System Sources and Probes editor are connected to an instance of the
ALTSOURCE_PROBE megafunction. After you compile the design, you can control
each ALTSOURCE_PROBE instance via the In-System Sources and Probes Editor
pane or via a Tcl interface. The complete design flow is shown in Figure 16–2.

Configuring the ALTSOURCE_PROBE Megafunction
To use the In-System Sources and Probes Editor in your design, you must first
instantiate the ALTSOURCE_PROBE megafunction variation file. You can configure
the ALTSOURCE_PROBE megafunction with the MegaWizard™ Plug-In Manager.
Each source or probe port can be up to 256 bits. You can have up to 128 instances of
the ALTSOURCE_PROBE megafunction in your design.

Figure 16–2. FPGA Design Flow Using the In-System Sources and Probes Editor

Yes

No

Start

End

Functionality
Satisfied?

Create a New Project
or Open an Existing

Project

Configure
altsource_probe

Megafunction

Instrument selected logic
nodes by Instantiating the

altsource_probe
Megafunction variation file

into the HDL Design

Compile the design

Program Target
Device(s)

Control Source and
Probe Instance(s)

Debug/Modify HDL
Quartus II Handbook Version 13.1 June 2012 Altera Corporation
Volume 3: Verification

Chapter 16: Design Debugging Using In-System Sources and Probes 16–5
Design Flow Using the In-System Sources and Probes Editor
To configure the ALTSOURCE_PROBE megafunction, performing the following
steps:

1. On the Tools menu, click MegaWizard Plug-In Manager.

2. Select Create a new custom megafunction variation.

3. Click Next.

4. On page 2a of the MegaWizard Plug-In Manager, make the following selections:

a. In the Installed Plug-Ins list, expand the JTAG-accessible Extensions folder
and select In-System Sources and Probes.

1 Verify that the currently selected device family matches the device you are
targeting.

b. Select an output file type and enter the name of the ALTSOURCE_PROBE
megafunction. You can choose AHDL (.tdf), VHDL (.vhd), or Verilog HDL (.v)
as the output file type.

5. Click Next.

6. On page 3 of the MegaWizard Plug-In Manager, make the following selections:

a. Under Do you want to specify an Instance Index?, turn on Yes.

b. Specify the ‘Instance ID’ of this instance.

c. Specify the width of the probe port. The width can be from 0 bit to 256 bits.

d. Specify the width of the source port. The width can be from 0 bit to 256 bits.

7. On page 3 of the MegaWizard Plug-In Manager, you can click Advanced Options
and specify other options, including the following:

■ What is the initial value of the source port, in hexadecimal?—Allows you to
specify the initial value driven on the source port at run time.

■ Write data to the source port synchronously to the source clock—Allows you
to synchronize your source port write transactions with the clock domain of
your choice.

■ Create an enable signal for the registered source port—When turned on,
creates a clock enable input for the synchronization registers. You can turn on
this option only when the Write data to the source port synchronously to the
source clock option is turned on.

1 The In-System Sources and Probes Editor does not support simulation. You must
remove the ALTSOURCE_PROBE megafunction instantiation before you create a
simulation netlist.
June 2012 Altera Corporation Quartus II Handbook Version 13.1
Volume 3: Verification

16–6 Chapter 16: Design Debugging Using In-System Sources and Probes
Design Flow Using the In-System Sources and Probes Editor
Instantiating the ALTSOURCE_PROBE Megafunction
The MegaWizard Plug-In Manager produces the necessary variation file and the
instantiation template based on your inputs to the MegaWizard. Use the template to
instantiate the ALTSOURCE_PROBE megafunction variation file in your design. The
port information is shown in Table 16–1.

You can include up to 128 instances of the ALTSOURCE_PROBE megafunction in
your design, if your device has available resources. Each instance of the
ALTSOURCE_PROBE megafunction uses a pair of registers per signal for the width of
the widest port in the megafunction. Additionally, there is some fixed overhead logic
to accommodate communication between the ALTSOURCE_PROBE instances and the
JTAG controller. You can also specify an additional pair of registers per source port for
synchronization.

Compiling the Design
When you compile your design with the In-System Sources and Probes megafunction
instantiated, an instance of the ALTSOURCE_PROBE and SLD_HUB instances are
added to your compilation hierarchy automatically. These instances provide
communication between the JTAG controller and your instrumented logic.

You can modify the number of connections to your design by editing the
ALTSOURCE_PROBE megafunction. To open the design instance you want to modify
in the MegaWizard Plug-In Manager, double-click the instance in the Project
Navigator. You can then modify the connections in the HDL source file. You must
recompile your design after you make changes.

You can use the Quartus II incremental compilation feature to reduce compilation
time. Incremental compilation allows you to organize your design into logical
partitions. During recompilation of a design, incremental compilation preserves the
compilation results and performance of unchanged partitions and reduces design
iteration time by compiling only modified design partitions.

f For more information about the Quartus II incremental compilation feature, refer to
the Quartus II Incremental Compilation for Hierarchical and Team-Based Design chapter in
volume 1 of the Quartus II Handbook.

Table 16–1. ALTSOURCE_PROBE Megafunction Port Information

Port Name Required? Direction Comments

probe[] No Input The outputs from your design.

source_clk No Input
Source Data is written synchronously to this clock. This input is
required if you turn on Source Clock in the Advanced Options box in
the MegaWizard Plug-In Manager.

source_ena No Input Clock enable signal for source_clk. This input is required if specified
in the Advanced Options box in the MegaWizard Plug-In Manager.

source[] No Output Used to drive inputs to user design.
Quartus II Handbook Version 13.1 June 2012 Altera Corporation
Volume 3: Verification

http://www.altera.com/literature/hb/qts/qts_qii51015.pdf

Chapter 16: Design Debugging Using In-System Sources and Probes 16–7
Running the In-System Sources and Probes Editor
Running the In-System Sources and Probes Editor
The In-System Sources and Probes Editor gives you control over all
ALTSOURCE_PROBE megafunction instances within your design. The editor allows
you to view all available run time controllable instances of the ALTSOURCE_PROBE
megafunction in your design, provides a push-button interface to drive all your
source nodes, and provides a logging feature to store your probe and source data.

To run the In-System Sources and Probes Editor, on the Tools menu, click In-System
Sources and Probes Editor.

The In-System Sources and Probes Editor contains three panes:

■ JTAG Chain Configuration—Allows you to specify programming hardware,
device, and file settings that the In-System Sources and Probes Editor uses to
program and acquire data from a device.

■ Instance Manager—Displays information about the instances generated when
you compile a design, and allows you to control data that the In-System Sources
and Probes Editor acquires.

■ In-System Sources and Probes Editor—Logs all data read from the selected
instance and allows you to modify source data that is written to your device.

When you use the In-System Sources and Probes Editor, you do not need to open a
Quartus II software project. The In-System Sources and Probes Editor retrieves all
instances of the ALTSOURCE_PROBE megafunction by scanning the JTAG chain and
sending a query to the device selected in the JTAG Chain Configuration pane. You
can also use a previously saved configuration to run the In-System Sources and
Probes Editor.

Each In-System Sources and Probes Editor pane can access the
ALTSOURCE_PROBE megafunction instances in a single device. If you have more
than one device containing megafunction instances in a JTAG chain, you can launch
multiple In-System Sources and Probes Editor panes to access the megafunction
instances in each device.

Programming Your Device With JTAG Chain Configuration
After you compile your project, you must configure your FPGA before you use the
In-System Sources and Probes Editor. To configure a device to use with the In-System
Sources and Probes Editor, perform the following steps:

1. Open the In-System Sources and Probes Editor.

2. In the JTAG Chain Configuration pane, point to Hardware, and then select the
hardware communications device. You may be prompted to configure your
hardware; in this case, click Setup.

3. From the Device list, select the FPGA device to which you want to download the
design (the device may be automatically detected). You may need to click Scan
Chain to detect your target device.

4. In the JTAG Chain Configuration pane, click to browse for the SRAM Object File
(.sof) that includes the In-System Sources and Probes instance or instances. (The
.sof may be automatically detected).

5. Click Program Device to program the target device.
June 2012 Altera Corporation Quartus II Handbook Version 13.1
Volume 3: Verification

16–8 Chapter 16: Design Debugging Using In-System Sources and Probes
Running the In-System Sources and Probes Editor
Instance Manager
The Instance Manager pane provides a list of all ALTSOURCE_PROBE instances in
the design and allows you to configure how data is acquired from or written to those
instances.

The following buttons and sub-panes are provided in the Instance Manager pane:

■ Read Probe Data—Samples the probe data in the selected instance and displays
the probe data in the In-System Sources and Probes Editor pane.

■ Continuously Read Probe Data—Continuously samples the probe data of the
selected instance and displays the probe data in the In-System Sources and
Probes Editor pane; you can modify the sample rate via the Probe read interval
setting.

■ Stop Continuously Reading Probe Data—Cancels continuous sampling of the
probe of the selected instance.

■ Write Source Data—Writes data to all source nodes of the selected instance.

■ Probe Read Interval—Displays the sample interval of all the In-System Sources
and Probe instances in your design; you can modify the sample interval by
clicking Manual.

■ Event Log—Controls the event log in the In-System Sources and Probes Editor
pane.

■ Write Source Data—Allows you to manually or continuously write data to the
system.

The status of each instance is also displayed beside each entry in the Instance
Manager pane. The status indicates if the instance is Not running Offloading data,
Updating data, or if an Unexpected JTAG communication error occurs. This status
indicator provides information about the sources and probes instances in your design.

In-System Sources and Probes Editor Pane
The In-System Sources and Probes Editor pane allows you to view data from all
sources and probes in your design. The data is organized according to the index
number of the instance. The editor provides an easy way to manage your signals, and
allows you to rename signals or group them into buses. All data collected from
in-system source and probe nodes is recorded in the event log and you can view the
data as a timing diagram.

Reading Probe Data
You can read data by selecting the ALTSOURCE_PROBE instance in the Instance
Manager pane and clicking Read Probe Data. This action produces a single sample of
the probe data and updates the data column of the selected index in the In-System
Sources and Probes Editor pane. You can save the data to an event log by turning on
the Save data to event log option in the Instance Manager pane.

If you want to sample data from your probe instance continuously, in the Instance
Manager pane, click the instance you want to read, and then click Continuously read
probe data. While reading, the status of the active instance shows Unloading. You can
read continuously from multiple instances.
Quartus II Handbook Version 13.1 June 2012 Altera Corporation
Volume 3: Verification

Chapter 16: Design Debugging Using In-System Sources and Probes 16–9
Tcl interface for the In-System Sources and Probes Editor
You can access read data with the shortcut menus in the Instance Manager pane.

To adjust the probe read interval, in the Instance Manager pane, turn on the Manual
option in the Probe read interval sub-pane, and specify the sample rate in the text
field next to the Manual option. The maximum sample rate depends on your
computer setup. The actual sample rate is shown in the Current interval box. You can
adjust the event log window buffer size in the Maximum Size box.

Writing Data
To modify the source data you want to write into the ALTSOURCE_PROBE instance,
click the name field of the signal you want to change. For buses of signals, you can
double-click the data field and type the value you want to drive out to the
ALTSOURCE_PROBE instance. The In-System Sources and Probes Editor stores the
modified source data values in a temporary buffer. Modified values that are not
written out to the ALTSOURCE_PROBE instances appear in red. To update the
ALTSOURCE_PROBE instance, highlight the instance in the Instance Manager pane
and click Write source data. The Write source data function is also available via the
shortcut menus in the Instance Manager pane.

The In-System Sources and Probes Editor provides the option to continuously update
each ALTSOURCE_PROBE instance. Continuous updating allows any modifications
you make to the source data buffer to also write immediately to the
ALTSOURCE_PROBE instances. To continuously update the ALTSOURCE_PROBE
instances, change the Write source data field from Manually to Continuously.

Organizing Data
The In-System Sources and Probes Editor pane allows you to group signals into
buses, and also allows you to modify the display options of the data buffer.

To create a group of signals, select the node names you want to group, right-click and
select Group. You can modify the display format in the Bus Display Format and the
Bus Bit order shortcut menus.

The In-System Sources and Probes Editor pane allows you to rename any signal. To
rename a signal, double-click the name of the signal and type the new name.

The event log contains a record of the most recent samples. The buffer size is
adjustable up to 128k samples. The time stamp for each sample is logged and is
displayed above the event log of the active instance as you move your pointer over
the data samples.

You can save the changes that you make and the recorded data to a Sources and
Probes File (.spf). To save changes, on the File menu, click Save. The file contains all
the modifications you made to the signal groups, as well as the current data event log.

Tcl interface for the In-System Sources and Probes Editor
To support automation, the In-System Sources and Probes Editor supports the
procedures described in this chapter in the form of Tcl commands. The Tcl package for
the In-System Sources and Probes Editor is included by default when you run
quartus_stp.
June 2012 Altera Corporation Quartus II Handbook Version 13.1
Volume 3: Verification

16–10 Chapter 16: Design Debugging Using In-System Sources and Probes
Tcl interface for the In-System Sources and Probes Editor
The Tcl interface for the In-System Sources and Probes Editor provides a powerful
platform to help you debug your design. The Tcl interface is especially helpful for
debugging designs that require toggling multiple sets of control inputs. You can
combine multiple commands with a Tcl script to define a custom command set.

f For more information about Tcl scripting, refer to the Tcl Scripting chapter in volume 2
of the Quartus II Handbook. For more information about settings and constraints in the
Quartus II software, refer to the Quartus II Settings File Manual. For more information
about command-line scripting, refer to the Command-Line Scripting chapter in
volume 2 of the Quartus II Handbook.

Table 16–2 shows the Tcl commands you can use instead of the In-System Sources and
Probes Editor.

Example 16–1 shows an excerpt from a Tcl script with procedures that control the
ALTSOURCE_PROBE instances of the design as shown in Figure 16–3. The example
design contains a DCFIFO with ALTSOURCE_PROBE instances to read from and
write to the DCFIFO. A set of control muxes are added to the design to control the
flow of data to the DCFIFO between the input pins and the ALTSOURCE_PROBE

Table 16–2. In-System Sources and Probes Tcl Commands

Command Argument Description

start_insystem_source_pro
be

-device_name <device name>
-hardware_name <hardware
name>

Opens a handle to a device with the
specified hardware.

Call this command before starting any
transactions.

get_insystem_source_
probe_instance_info

-device_name <device name>
-hardware_name <hardware name>

Returns a list of all ALTSOURCE_PROBE
instances in your design. Each record
returned is in the following format:

{<instance Index>, <source width>, <probe
width>, <instance name>}

read_probe_data
-instance_index
<instance_index>
-value_in_hex (optional)

Retrieves the current value of the probe.

A string is returned that specifies the status
of each probe, with the MSB as the
left-most bit.

read_source_data
-instance_index
<instance_index>
-value_in_hex (optional)

Retrieves the current value of the sources.

A string is returned that specifies the status
of each source, with the MSB as the
left-most bit.

write_source_data

-instance_index
<instance_index>
-value <value>
-value_in_hex (optional)

Sets the value of the sources.

A binary string is sent to the source ports,
with the MSB as the left-most bit.

end_interactive_probe None
Releases the JTAG chain.

Issue this command when all transactions
are finished.
Quartus II Handbook Version 13.1 June 2012 Altera Corporation
Volume 3: Verification

http://www.altera.com/literature/hb/qts/qts_qii52003.pdf
http://www.altera.com/literature/manual/mnl_qsf_reference.pdf
http://www.altera.com/literature/hb/qts/qts_qii52002.pdf

Chapter 16: Design Debugging Using In-System Sources and Probes 16–11
Tcl interface for the In-System Sources and Probes Editor
instances. A pulse generator is added to the read request and write request control
lines to guarantee a single sample read or write. The ALTSOURCE_PROBE instances,
when used with the script in Example 16–1, provide visibility into the contents of the
FIFO by performing single sample write and read operations and reporting the state
of the full and empty status flags.

Use the Tcl script in debugging situations to either empty or preload the FIFO in your
design. For example, you can use this feature to preload the FIFO to match a trigger
condition you have set up within the SignalTap II Logic Analyzer.

Figure 16–3. A DCFIFO Example Design Controlled by the Tcl Script in Example 16–1

D Q

D Q

Write_clock

Write_req
Data[7..0]

Write_clock

Read_req

Read_clock

Wr_full

Q[7..0]

Rd_empty

Data_out

Read_clock

Source_read_sel

S_read_req

S_write_req

Rd_req_in

Wr_req_in

Data_in[7..0]

altsource_probe
(instance 1)

altsource_probe
(instance 0)

Source_write_sel

S_data[7..0]
June 2012 Altera Corporation Quartus II Handbook Version 13.1
Volume 3: Verification

16–12 Chapter 16: Design Debugging Using In-System Sources and Probes
Tcl interface for the In-System Sources and Probes Editor
Example 16–1. Tcl Script Procedures for Reading and Writing to the DCFIFO in Figure 16–3 (Part 1 of 2)

Setup USB hardware - assumes only USB Blaster is installed and
an FPGA is the only device in the JTAG chain

set usb [lindex [get_hardware_names] 0]
set device_name [lindex [get_device_names -hardware_name $usb] 0]
write procedure : argument value is integer

proc write {value} {

global device_name usb
variable full

start_insystem_source_probe -device_name $device_name -hardware_name $usb

#read full flag
set full [read_probe_data -instance_index 0]

if {$full == 1} {end_insystem_source_probe
return "Write Buffer Full"
}

Quartus II Handbook Version 13.1 June 2012 Altera Corporation
Volume 3: Verification

Chapter 16: Design Debugging Using In-System Sources and Probes 16–13
Design Example: Dynamic PLL Reconfiguration
Design Example: Dynamic PLL Reconfiguration
The In-System Sources and Probes Editor can help you create a virtual front panel
during the prototyping phase of your design. You can create relatively simple, high
functioning designs of in a short amount of time. The following PLL reconfiguration
example demonstrates how to use the In-System Sources and Probes Editor to provide
a GUI to dynamically reconfigure a Stratix PLL.

##toggle select line, drive value onto port, toggle enable
##bits 7:0 of instance 0 is S_data[7:0]; bit 8 = S_write_req;
##bit 9 = Source_write_sel

##int2bits is custom procedure that returns a bitstring from an integer
argument

write_source_data -instance_index 0 -value /[int2bits [expr 0x200 | $value]]
write_source_data -instance_index 0 -value [int2bits [expr 0x300 | $value]]

##clear transaction

write_source_data -instance_index 0 -value 0

end_insystem_source_probe
}

proc read {} {

global device_name usb
variable empty
start_insystem_source_probe -device_name $device_name -hardware_name $usb

##read empty flag : probe port[7:0] reads FIFO output; bit 8 reads empty_flag

set empty [read_probe_data -instance_index 1]

if {[regexp {1........} $empty]} { end_insystem_source_probe
return "FIFO empty" }

toggle select line for read transaction
Source_read_sel = bit 0; s_read_reg = bit 1

pulse read enable on DC FIFO
write_source_data -instance_index 1 -value 0x1 -value_in_hex
write_source_data -instance_index 1 -value 0x3 -value_in_hex

set x [read_probe_data -instance_index 1]

end_insystem_source_probe

return $x
}

Example 16–1. Tcl Script Procedures for Reading and Writing to the DCFIFO in Figure 16–3 (Part 2 of 2)
June 2012 Altera Corporation Quartus II Handbook Version 13.1
Volume 3: Verification

16–14 Chapter 16: Design Debugging Using In-System Sources and Probes
Design Example: Dynamic PLL Reconfiguration
Stratix PLLs allow you to dynamically update PLL coefficients during run time. Each
enhanced PLL within the Stratix device contains a register chain that allows you to
modify the pre-scale counters (m and n values), output divide counters, and delay
counters. In addition, the ALTPLL_RECONFIG megafunction provides an easy
interface to access the register chain counters. The ALTPLL_RECONFIG
megafunction provides a cache that contains all modifiable PLL parameters. After you
update all the PLL parameters in the cache, the ALTPLL_RECONFIG megafunction
drives the PLL register chain to update the PLL with the updated parameters.
Figure 16–4 shows a Stratix-enhanced PLL with reconfigurable coefficients.

1 Stratix II and Stratix III devices also allow you to dynamically reconfigure PLL
parameters. For more information about these families, refer to the appropriate data
sheet. For more information about dynamic PLL reconfiguration, refer to AN 282:
Implementing PLL Reconfiguration in Stratix & Stratix GX Devices or AN 367:
Implementing PLL Reconfiguration in Stratix II Devices.

The following design example uses an ALTSOURCE_PROBE instance to update the
PLL parameters in the ALTPLL_RECONFIG megafunction cache. The
ALTPLL_RECONFIG megafunction connects to an enhanced PLL in a Stratix FPGA to
drive the register chain containing the PLL reconfigurable coefficients. This design
example uses a Tcl/Tk script to generate a GUI where you can enter in new m and n
values for the enhanced PLL. The Tcl script extracts the m and n values from the GUI,
shifts the values out to the ALTSOURCE_PROBE instances to update the values in the

Figure 16–4. Stratix-Enhanced PLL with Reconfigurable Coefficients

÷n Δtn

Δtm÷m

÷g0 Δtg0

÷e3 Δte3

÷g3 Δtg3

PFD VCOCharge
Pump

Loop
Filter

fREF

scandata

scanclk

scanaclr

Counters and Clock
Delay Settings are
Programmable

All Output Counters and
Clock Delay Settings can
be Programmed Dynamically

LSB MSB

LSB MSB

LSB MSB

LSB MSB

LSB

MSB

(1) (2)
Quartus II Handbook Version 13.1 June 2012 Altera Corporation
Volume 3: Verification

http://www.altera.com/literature/an/an282.pdf
http://www.altera.com/literature/an/an282.pdf
http://www.altera.com/literature/an/an367.pdf
http://www.altera.com/literature/an/an367.pdf

Chapter 16: Design Debugging Using In-System Sources and Probes 16–15
Design Example: Dynamic PLL Reconfiguration
ALTPLL_RECONFIG megafunction cache, and asserts the reconfiguration signal on
the ALTPLL_RECONFIG megafunction. The reconfiguration signal on the
ALTPLL_RECONFIG megafunction starts the register chain transaction to update all
PLL reconfigurable coefficients. A block diagram of a design example is shown in
Figure 16–5. The Tk GUI is shown in Figure 16–6.

This design example was created using a Nios® II Development Kit, Stratix Edition.
The file sourceprobe_DE_dynamic_pll.zip contains all the necessary files for running
this design example, including the following:

■ Readme.txt—A text file that describes the files contained in the design example
and provides instructions about running the Tk GUI shown in Figure 16–6.

■ Interactive_Reconfig.qar—The archived Quartus II project for this design
example.

f Download the In-System Sources and Probes Example from the On-chip Debugging
Design Examples page of the Altera website.

Figure 16–5. Block Diagram of Dynamic PLL Reconfiguration Design Example

Figure 16–6. Interactive PLL Reconfiguration GUI Created with Tk and In-System Sources and Probes Tcl Package

In-System Sources
and Probes
Tcl Interface

JTAG
Interface

Counter
Parameters

Stratix FPGA

50 MHz

PLL_scandata
PLL_scandlk
PLL_scanaclr

E0

C0

C1

fref

Stratix-Enhanced
PLLalt_pll_reconfig

Megafunction
In-System

Sources and Probes
June 2012 Altera Corporation Quartus II Handbook Version 13.1
Volume 3: Verification

http://www.altera.com/support/examples/on-chip-debugging/on-chip-debugging.html
http://www.altera.com/support/examples/on-chip-debugging/on-chip-debugging.html

16–16 Chapter 16: Design Debugging Using In-System Sources and Probes
Conclusion
Conclusion
The In-System Sources and Probes Editor provides stimuli and receives responses
from the target design during run time. With the simple and intuitive interface, you
can add virtual inputs to your design during run time without using external
equipment. When used in conjunction with the SignalTap II Logic Analyzer, you can
use the In-System Sources and Probes Editor to obtain greater control of the signals in
your design, and thus help shorten the verification cycle.

Document Revision History
Table 16–3 shows the revision history for this chapter.

f For previous versions of the Quartus II Handbook, refer to the Quartus II Handbook
Archive.

Table 16–3. Document Revision History

Date Version Changes

June 2012 12.0.0 Removed survey link.

November 2011 10.1.1 Template update.

December 2010 10.1.0 Minor corrections. Changed to new document template.

July 2010 10.0.0 Minor corrections.

November 2009 9.1.0
■ Removed references to obsolete devices.

■ Style changes.

March 2009 9.0.0 No change to content.

November 2008 8.1.0 Changed to 8-1/2 x 11 page size. No change to content.

May 2008 8.0.0

■ Documented that this feature does not support simulation on page 17–5

■ Updated Figure 17–8 for Interactive PLL reconfiguration manager

■ Added hyperlinks to referenced documents throughout the chapter

■ Minor editorial updates
Quartus II Handbook Version 13.1 June 2012 Altera Corporation
Volume 3: Verification

http://www.altera.com/literature/lit-qts_archive.jsp
http://www.altera.com/literature/lit-qts_archive.jsp

© 2013 Altera Corporation. All rights reserved. ALTERA, ARRI
are trademarks of Altera Corporation and registered in the U.S
trademarks or service marks are the property of their respectiv
semiconductor products to current specifications in accordance
services at any time without notice. Altera assumes no respons
described herein except as expressly agreed to in writing by Al
on any published information and before placing orders for pr

Quartus II Handbook Version 13.1
Volume 3: Verification
November 2013
Section V. Formal Verification
The Quartus® II software easily interfaces with EDA formal design verification tools
such as the Cadence Encounter Conformal and Synopsys Synplify software. In
addition, the Quartus II software has built-in support for verifying the logical
equivalence between the synthesized netlist from Synopsys Synplify and the post-fit
Verilog Quartus Mapped (.vqm) files using Cadence Encounter Conformal software.

This section discusses formal verification, how to set-up the Quartus II software to
generate the .vqm file and Cadence Encounter Conformal script, and how to compare
designs using Cadence Encounter Conformal software.

This section includes the following chapter:

■ Chapter 17, Cadence Encounter Conformal Support
A, CYCLONE, HARDCOPY, MAX, MEGACORE, NIOS, QUARTUS and STRATIX words and logos
. Patent and Trademark Office and in other countries. All other words and logos identified as
e holders as described at www.altera.com/common/legal.html. Altera warrants performance of its
with Altera's standard warranty, but reserves the right to make changes to any products and

ibility or liability arising out of the application or use of any information, product, or service
tera. Altera customers are advised to obtain the latest version of device specifications before relying
oducts or services.

ISO
9001:2008
Registered

http://www.altera.com/common/legal.html
http://www.altera.com/support/devices/reliability/certifications/rel-certifications.html
http://www.altera.com/support/devices/reliability/certifications/rel-certifications.html

QII53011-13.1.0

© 2013 Altera Corporation. All rights reserved. ALTERA, ARRI
are trademarks of Altera Corporation and registered in the U.S
trademarks or service marks are the property of their respectiv
semiconductor products to current specifications in accordance
services at any time without notice. Altera assumes no respons
described herein except as expressly agreed to in writing by Al
on any published information and before placing orders for pr

Quartus II Handbook Version 13.1
Volume 3: Verification
November 2013

November 2013
QII53011-13.1.0
17. Cadence Encounter Conformal
Support
This chapter describes equivalence checking with the Cadence Encounter Conformal
Logic Equivalence Check (LEC) software. The Quartus® II software provides formal
verification support for Altera® designs through interfaces with the Conformal LEC
software.

Logic equivalence checking uses Boolean arithmetic techniques to compare the logical
equivalence of two versions of the same design. You can use the Conformal LEC
software to verify the functional equivalence of a post-synthesis Verilog Quartus
Mapping (.vqm) netlist from the Synopsys Synplify Pro software, a post-fit Verilog
Output File (.vo) from the Quartus II software, or both. You can also use the
Conformal LEC software to verify the functional equivalence of the register transfer
level (RTL) source code and post-fit .vo with the Quartus II software when using
Quartus II integrated synthesis.

This chapter discusses the following topics:

■ “Formal Verification Design Flow” on page 17–2

■ “RTL Coding Guidelines for Quartus II Integrated Synthesis” on page 17–4

■ “Black Boxes in the Conformal LEC Flow” on page 17–8

■ “Generating the Post-Fit Netlist Output File and the Conformal LEC Setup Files”
on page 17–9

■ “Understanding the Formal Verification Scripts for the Conformal LEC Software”
on page 17–12

■ “Comparing Designs Using the Conformal LEC Software” on page 17–15

■ “Known Issues and Limitations” on page 17–16

■ “Black Box Models” on page 17–17

■ “Conformal Dofile/Script Example” on page 17–18
A, CYCLONE, HARDCOPY, MAX, MEGACORE, NIOS, QUARTUS and STRATIX words and logos
. Patent and Trademark Office and in other countries. All other words and logos identified as
e holders as described at www.altera.com/common/legal.html. Altera warrants performance of its
 with Altera's standard warranty, but reserves the right to make changes to any products and
ibility or liability arising out of the application or use of any information, product, or service
tera. Altera customers are advised to obtain the latest version of device specifications before relying
oducts or services.

Feedback SubscribeTwitter

ISO
9001:2008
Registered

https://www.altera.com/servlets/subscriptions/alert?id=QII53011
http://www.altera.com/common/legal.html
mailto:TechDocFeedback@altera.com?subject=Feedback on QII53011-12.0 (QII HB, Vol 3, Ch17:Cadence Encounter Conformal Support)
http://www.altera.com/support/reliability/certifications/rel-certifications.html
http://www.altera.com/support/reliability/certifications/rel-certifications.html
http://twitter.com/home/?status=Cadence+Encounter+Conformal+Support+http://www.altera.com/literature/hb/qts/qts_qii53011.pdf?WT.mc_id=gc_so_tw_st_tx_a_011+(via @alteracorp)+%23Altera

17–2 Chapter 17: Cadence Encounter Conformal Support
Formal Verification Design Flow
Formal Verification Versus Simulation
Formal verification is not a replacement for vector-based simulation. Formal
verification only complements the existing vector-based simulation techniques to
speed up the verification cycle. Vector-based simulation techniques of gate-level
designs can take a considerable amount of time.

You can use vector-based simulation techniques to perform the following functions:

■ Verify design functionality

■ Verify timing specifications

■ Debug designs

Formal Verification: What You Must Know
There might be an impact on area and performance during recompilation of your
design with the Quartus II software if you use the formal verification flow for the
Conformal LEC software. The following factors might affect the area and performance
of your design:

■ Preserving hierarchy

■ Implementing ROM by logic elements (LEs)

■ Enabling retiming

Before you consider using the formal verification flow in your design methodology,
refer to “Known Issues and Limitations” on page 17–16.

Formal Verification Design Flow
Altera supports formal verification with the Conformal LEC software for the
following two synthesis tools:

■ “Quartus II Integrated Synthesis” on page 17–3

■ “Synplify Pro” on page 17–3

The following sections describe the supported design flows for these synthesis tools.
Quartus II Handbook Version 13.1 November 2013 Altera Corporation
Volume 3: Verification

Chapter 17: Cadence Encounter Conformal Support 17–3
Formal Verification Design Flow
Quartus II Integrated Synthesis
Figure 17–1 shows the design flow for formal verification with Quartus II integrated
synthesis. This flow performs equivalence checking of the RTL source code and the
post-fit netlist generated by the Quartus II software. The RTL source code can be in
Verilog HDL or VHDL format. The Quartus II-generated post-fit netlist is in Verilog
HDL format.

EDA Tool Support for Quartus II Integrated Synthesis
The formal verification flow using the Quartus II software and Conformal LEC
software supports the following software versions and operating systems:

■ The Quartus II software beginning with version 4.2

■ The Conformal LEC software beginning with version 4.3.5A

■ Linux operating system

Synplify Pro
Figure 17–2 shows the design flow for formal verification with Synplify Pro Synthesis
performing equivalency checking for the post-synthesis netlist from Synplify Pro and
the post-fit netlist generated by Quartus II software.

Figure 17–1. Formal Verification Using Quartus II Integrated Synthesis and the Conformal LEC
Software

Synthesis

Placement and Routing

Equivalence
Checking

RTL

Quartus II
Software

Post-Fit
Verilog Output

Conformal
LEC Software

Formal Verification
Library
November 2013 Altera Corporation Quartus II Handbook Version 13.1
Volume 3: Verification

17–4 Chapter 17: Cadence Encounter Conformal Support
RTL Coding Guidelines for Quartus II Integrated Synthesis
f For more information about performing equivalence checking between RTL source
code and post-synthesis netlists generated from the Synplify Pro software, refer to the
Synplify Pro documentation.

RTL Coding Guidelines for Quartus II Integrated Synthesis
The Conformal LEC software compares the RTL source code against the
Quartus II-generated post-fit netlist. The Conformal LEC software and Quartus II
integrated synthesis parse and compile the RTL description differently. Quartus II
integrated synthesis supports some RTL features that the Conformal LEC software
does not support and vice versa. The style of the RTL source code is of particular
concern because neither tool supports every construct, leading to potential formal
verification mismatches. For example, different encoding mechanisms for state
machine extraction can result in different structures. Therefore, Quartus II integrated
synthesis and the Conformal LEC software must interpret the RTL source code in the
same manner for successful verification.

The following section describes how you can identify and prevent problems that may
occur in the formal verification flow.

f For more information about RTL coding styles for Quartus II integrated synthesis,
refer to the Recommended HDL Coding Styles chapter in volume 1 of the
Quartus II Handbook.

1 Some of the coding guidelines apply to both Quartus II integrated synthesis and
Synplify Pro flow, as indicated in each of the guidelines in the following sections.

Figure 17–2. Formal Verification Flow Using Synplify Pro and the Conformal LEC Software

Synplify Pro

Quartus II
Software

Synthesized
Netlist

Conformal
LEC Software

Conformal
LEC Software

Formal Verification
 Library

Placement and Routing
Netlist

RTL
Quartus II Handbook Version 13.1 November 2013 Altera Corporation
Volume 3: Verification

http://www.altera.com/literature/hb/qts/qts_qii51007.pdf

Chapter 17: Cadence Encounter Conformal Support 17–5
RTL Coding Guidelines for Quartus II Integrated Synthesis
Synthesis Directives and Attributes
You can use synthesis directives, also known as pragmas, to compare and verify the
RTL source codes against the post-fit .vo netlist from the Quartus II software.

Quartus II integrated synthesis and the Conformal LEC software support the
“synthesis” and “synopsys” trigger keywords. When Quartus II integrated synthesis
does not recognize a keyword (such as “verplex“), the Quartus II software disables
the keyword in the formal verification scripts produced for use with the Conformal
LEC software. Therefore, you must use caution with unsupported pragmas because
the unsupported pragmas can lead to verification mismatches.

Example 17–1 and Example 17–2 show that you can use Quartus II integrated
synthesis to synthesize an RTL source code with the read_comments_as_HDL ()
synthesis directive.

1 The Conformal LEC software does not support the read_comments_as_HDL synthesis
directive, and the directive does not affect the Conformal LEC software.

Table 17–1 lists supported pragmas and trigger keywords for formal verification.

c Do not use Verilog 2001-style pragma declarations. The Quartus II software and the
Conformal LEC software support this style of pragma differently.

Example 17–1. Verilog HDL Example of Read Comments as HDL

// synthesis read_comments_as_HDL on
// my_rom lpm_rom (.address (address),
// .data (data));
// synthesis read_comments_as_HDL off

Example 17–2. VHDL Example of Read Comments as HDL

-- synthesis read_comments_as_HDL on
-- my_rom : entity lpm_rom
-- port map (
-- address => address,
-- data => data,);
-- synthesis read_comments_as_HDL off

Table 17–1. Supported Pragmas and Trigger Keywords for Formal Verification

Pragmas Trigger Keywords

full_case

parallel_case

pragma

synthesis_off

synthesis_on

translate_off

translate_on

synthesis

synopsys
November 2013 Altera Corporation Quartus II Handbook Version 13.1
Volume 3: Verification

17–6 Chapter 17: Cadence Encounter Conformal Support
RTL Coding Guidelines for Quartus II Integrated Synthesis
Fixed-Output Registers
Quartus II integrated synthesis and Synplify Pro eliminate registers that have fixed
ouput. Quartus II integrated synthesis issues a warning message and adds an entry to
the corresponding report panel in the formal verification folder of the Analysis &
Synthesis section of the Compilation Report. If the Conformal LEC software does not
find the same optimizations, the result can lead to unmapped points in the golden
netlist. Example 17–3 shows logic causing register outputs to be fixed at a constant
value.

In this module description, registers e and g are tied to logic 0. In this example, the
Quartus II software generates the following warning message:

Warning: Reduced register "g" with stuck data_in port to stuck value GND
Warning: Reduced register "e" with stuck data_in port to stuck value GND

Example 17–4 shows that Quartus II integrated synthesis adds a command to the
formal verification scripts to inform the Conformal LEC software that a register is
stuck at a constant value.

Quartus II integrated synthesis comments the command in the formal verification
script to force the Conformal LEC software to treat the register as stuck at a constant
value and potentially hides a compilation error. You must verify that input to the e
and g registers is constant in your design and uncomment the command to obtain
accurate results.

1 Altera recommends recoding your design to eliminate registers that have fixed
output.

Example 17–3. Verilog HDL Example Showing Fixed Register Outputs

module stuck_at_example {clk, a,b,c,d,out};
input a,b,c,d,clk;
output out;
reg e,f,g;

always @(posedge clk) begin
e <= a and g;// e is stuck at 0
g <= c and e;// g is stuck at 0
f <= e | b;

end
assign out = f and d;
endmodule

Example 17–4. Conformal LEC Script Showing Commands for Instance Equivalence

// report floating signals
// Instance-constraints commands for constant-value registers removed
// during compilation
// add instance constraints 0 e -golden
// add instance constraints 0 g -golden
Quartus II Handbook Version 13.1 November 2013 Altera Corporation
Volume 3: Verification

Chapter 17: Cadence Encounter Conformal Support 17–7
RTL Coding Guidelines for Quartus II Integrated Synthesis
ROM, LPM_DIVIDE, and Shift Register Inference
For formal verification, Quartus II integrated synthesis implements ROM and shift
registers with LEs instead of with dedicated on-chip memory resources. Using LEs
can be less area efficient than inferring a megafunction that you can implement in a
RAM block. The Quartus II software generates a warning message to indicate that the
software does not infer the megafunction. Quartus II integrated synthesis also reports
a suggested ROM or shift register instantiation that enables you to either use the
MegaWizard™ Plug-In Manager to create the appropriate megafunction explicitly, or
to isolate the corresponding logic in a separate entity that you can set as a black box.
By setting black box properties on a module or a particular entity, you are directing
the formal verification tool not to look inside the module or entity for formal
verification. If you set the black box properties on the corresponding megafunction
before synthesis, you can verify the megafunction with the Conformal LEC software.
For more information about setting black box properties on a particular module, refer
to Table 17–2 on page 17–9.

If your design contains division functionality, the Quartus II software infers an
LPM_DIVIDE megafunction. The Quartus II software treats the inferred
LPM_DIVIDE megafunction as a black box for formal verification.

RAM Inference
When the Quartus II software infers the ALTSYNCRAM megafunction from the RTL
source code, the Quartus II software generates the following warning message:

Created node "<mem_block_name>" as a RAM by generating altsyncram
megafunction to implement register logic with M512 or M4K memory block
or M-RAM. Expect to get an error or a mismatch for this block in the
formal verification tool.

The Quartus II software generates this warning message because the memory block
(altsyncram) is a new instance in the post-fit netlist. The Quartus II software handles
the ALTSYNCRAM megafunction as a black box by the formal verification tool.
However, no such instance exists in the original RTL design, resulting in mismatch or
error reporting in the formal verification tool.

Latch Inference
A combinational feedback loop implements a latch in Quartus II integrated synthesis.
The Conformal LEC software infers a latch primitive in the Conformal LEC software
library to implement a latch. This results in having a library on the golden side and a
combinational loop with a cut point on the revised side, leading to verification
mismatches. The Quartus II software issues a warning message whenever the
Conformal LEC software infers a latch. The Quartus II software then adds an entry to
the report panel in the Formal Verification folder of the Analysis & Synthesis report.

1 Altera recommends that you avoid latches in your design; however, if latches are
necessary, Altera recommends using the LPM_LATCH megafunction.

f For more information about latches, refer to the Recommended HDL Coding Styles
chapter in volume 1 of the Quartus II Handbook.
November 2013 Altera Corporation Quartus II Handbook Version 13.1
Volume 3: Verification

http://www.altera.com/literature/hb/qts/qts_qii51007.pdf

17–8 Chapter 17: Cadence Encounter Conformal Support
Black Boxes in the Conformal LEC Flow
Combinational Loops
If your design consists of an intended combinational loop, you must define an
appropriate cut point for both the RTL and the post-fit .vo netlist. You can find a
warning indicating that a combinational loop exists in your design in the Formal
Verification subfolder of the Quartus II software Analysis & Synthesis report.

For more information about issues with combinational loops, refer to “Known Issues
and Limitations” on page 17–16.

Finite State Machine Coding Styles
When the Conformal LEC software infers a state machine, the state machine uses
sequential encoding as the default encoding in the absence of user encoding. The
Quartus II software selects the encoding most suited for the inferred state machine if
you set the State Machine Processing setting to the default value (Auto). To do this,
follow these steps:

1. On the Assignments menu, click Settings. The Settings dialog box appears.

2. In the Category list, select Analysis & Synthesis Settings. The Analysis &
Synthesis Settings page appears.

3. Click More Settings. The More Analysis & Synthesis Settings dialog box
appears.

4. Under Existing Option Settings, in the Name list, select State Machine
Processing. In the Setting list, select Auto.

5. In the More Analysis & Synthesis Settings dialog box, click OK.

6. Click OK.

f Use the coding style described in the Recommended HDL Coding Styles chapter in
volume 1 of the Quartus II Handbook when writing finite state machines (FSMs). The
coding style in the specified chapter allows Quartus II integrated synthesis and the
Conformal LEC software to infer a similar state machine for the same RTL source
code.

Black Boxes in the Conformal LEC Flow
The Quartus II software generates a flattened netlist; however, you must treat the
following modules in your design as black boxes:

■ LPMs and megafunctions without formal verification models

■ Encrypted IP functions

■ Entities not implemented in Verilog HDL or VHDL

To perform equivalence checking of a design between its version, which consists of
the modules listed above and its implemented version, the Conformal LEC software
must treat these modules as black boxes. To facilitate the formal verification flow, the
Quartus II software reconstructs the hierarchy of the black boxes with a port interface
that is identical to the module on the golden side of your design.
Quartus II Handbook Version 13.1 November 2013 Altera Corporation
Volume 3: Verification

http://www.altera.com/literature/hb/qts/qts_qii51007.pdf

Chapter 17: Cadence Encounter Conformal Support 17–9
Generating the Post-Fit Netlist Output File and the Conformal LEC Setup Files
If your golden netlist (.vqm netlist from Synplify Pro or RTL) includes any design
entity not having a corresponding formal verification model, the software treats that
entity as a black box with its boundary interface preserved. Table 17–2 on page 17–9
lists three types of black boxes with corresponding required actions.

The Quartus II-generated .vo contains the black box hierarchy when you make an
EDA Formal Verification Hierarchy assignment with the value BLACKBOX.

If you do not make this assignment for a module, the Quartus II software implements
that module in logic cells. When this happens, the .vo netlist no longer contains the
black box hierarchy and does not preserve the port interface, resulting in a mismatch
in the Conformal LEC software.

You can also use the Quartus II GUI to set the black box property on the entities,
which the formal verification tool does not compare.

To preserve the boundary interface of an entity using the GUI, make an EDA Formal
Verification Hierarchy assignment to the entity with the value BLACKBOX.

Generating the Post-Fit Netlist Output File and the Conformal LEC Setup
Files

The following steps describe how to set up the Quartus II software environment to
generate the post-fit .vo netlist and the Conformal LEC script for use in formal
verification. With the exception of step 2, the steps are identical for both of the
synthesis tools:

To create a new Quartus II project or open an existing project, follow these steps:

1. On the Assignments menu, click Settings. The Settings dialog box appears.

Table 17–2. Black Boxes and Required Action

Type of Black Box Required Action

Altera library of parameterized modules (LPMs) and
megafunctions.

No action required. The Quartus II software automatically
creates a black box list of components and preserves the
hierarchy.

Any parameterized entity other than the parameterized
entities listed in the Guidelines for Creating a Design for Use
with the Encounter Conformal and Quartus II
Software topic in Quartus II Help.

You must designate the wrapper that instantiates the
parameterized entity as a black box.

Non-parameterized entities that you want to designate as a
black box. You can designate the entity itself as a black box.
November 2013 Altera Corporation Quartus II Handbook Version 13.1
Volume 3: Verification

http://quartushelp.altera.com/current/master.htm#mergedProjects/eda/verification/conformal/eda_gid_lec_fv.htm
http://quartushelp.altera.com/current/master.htm#mergedProjects/eda/verification/conformal/eda_gid_lec_fv.htm
http://quartushelp.altera.com/current/master.htm#mergedProjects/eda/verification/conformal/eda_gid_lec_fv.htm

17–10 Chapter 17: Cadence Encounter Conformal Support
Generating the Post-Fit Netlist Output File and the Conformal LEC Setup Files
2. In the Category list, click EDA Tool Settings.

If you are using Quartus II integrated synthesis, follow these steps:

a. In the Category list, under EDA Tool Settings, select Design Entry/Synthesis.
Select <None> from the Tool name list.

b. In the Category list, under EDA Tool Settings, select Formal Verification.
Select Conformal LEC from the Tool name list.

If you are using Synplify Pro, follow these steps:

a. In the Category list, under EDA Tool Settings, select Design Entry/Synthesis.
Select Synplify Pro from the Tool name list.

b. In the Category list, under EDA Tool Settings, select Formal Verification.
Select Conformal LEC from the Tool name list.

3. In the Category list, click Incremental Compilation under Compilation Process
Settings. The Incremental Compilation page appears.

4. Type the following Tcl command in the Quartus II software Tcl console to turn on
the incremental compilation feature:

set_global_assignment -name INCREMENTAL_COMPILATION FULL_INCREMENTAL_COMPILATION

1 Altera recommends that you turn on the incremental compilation feature
for formal verification, and that your design does not contain any partition
that you created. The incremental compilation feature is on by default.

5. In the Category list, click Physical Synthesis Optimizations under Compilation
Process Settings. The Physical Synthesis Optimizations page appears.

6. Turn off Perform register retiming.

1 If you do not turn off Perform register retiming, an error occurs during
compilation: “Physical Netlist Optimization Register retiming is not
supported by Formal Verification tool Conformal LEC”.

7. Under Optimize for fitting (physical synthesis for density), turn off Perform
physical synthesis for combinational logic and Perform logic to memory
mapping to prevent the software from mapping logic to RAMs.

Retiming a design, either during the synthesis step or during the fitting step,
usually results in moving and merging registers along the critical path and is not
supported by the equivalence checking tools. Because equivalence checkers
compare the logic cone terminating at registers, do not use retiming to move the
registers during optimization in the Quartus II software.

f For more information about physical synthesis, refer to the Netlist Optimizations and
Physical Synthesis chapter in volume 2 of the Quartus II Handbook.

8. Perform a full compilation of your design. On the Processing menu, click Start
Compilation, or click the Start Compilation icon on the toolbar.
Quartus II Handbook Version 13.1 November 2013 Altera Corporation
Volume 3: Verification

http://www.altera.com/literature/hb/qts/qts_qii52007.pdf
http://www.altera.com/literature/hb/qts/qts_qii52007.pdf

Chapter 17: Cadence Encounter Conformal Support 17–11
Generating the Post-Fit Netlist Output File and the Conformal LEC Setup Files
Quartus II Software Generated Files, Formal Verification Scripts, and
Directories

After successful compilation, the Quartus II software generates a list of files, formal
verification scripts, and directories in the <project_directory>/fv/conformal/ directory
(Table 17–3).

Table 17–3. Quartus II Software Compiler-Generated Files and Directories

File or
Directory Name Details

Script file

<proj rev>.ctc

The <proj rev>.ctc references <proj rev>.clg and <proj rev>.clr that read the
library files and black box descriptions. The <proj rev>.ctc also references the
<proj rev>.cmc containing information about the mapped points.

Use the <proj rev>.ctc with the Conformal LEC software.

<proj rev>.cec The <proj rev>.cec contains information for instance equivalences.

<proj rev>.cep The <proj rev>.cep contains information for black box pin equivalences in your
design.

<proj rev>.cmp

The <proj rev>.cmp contains information for the black box pin mapping
between the golden and revised sides.

The Quartus II software calls the <proj rev>.cmp from the <proj rev>.ctc script
file. By default, the line in which this file is called is commented out.

<proj rev>.cmc The <proj rev>.cmc contains information about the additional points that the
Quartus II software maps in addition to the points that the tool selects.

<proj rev>_trivial.cmc

This <proj rev>_trivial.cmc contains mapping information for all the key points
in your design.

Sometimes, the Conformal LEC software performs incorrect key point mapping,
resulting in formal verification mismatches. To overcome the verification
mismatches, the Quartus II software writes out the <proj rev>_trivial.cmc that
contains mapping information for all the key points in your design. Reading this
file during the formal verification setup can result in increased run time.
Therefore, the Quartus II software writes out the top-level script file <proj
rev>.ctc with the command to read the <proj rev>_trivial.cmc commented out.
If the formal verification results are not acceptable, you can uncomment the
command and read the <proj rev>_trivial.cmc. The command in the <proj
rev>.ctc is:

//Trivial mappings with same name registers

//read mapped points $PROJECT/fv/conformal/<proj
rev>_trivial.cmc

<proj rev>.clr The <proj rev>.clr contains information about the macros and libraries for the
revised design.

<proj rev>.clg The <proj rev>.clg contains information about the macros and libraries for the
golden design.

blackboxes
directory

<project directory>/fv/
conformal/<project rev>_
blackboxes

This directory contains top-level module descriptions for all the user-defined
black box entities and contains modules with definitions other than Verilog HDL
or VHDL, for example, in your design directory
<project directory>/fv/conformal/<project rev>_blackboxes

.vo netlist file <proj rev>.vo The Quartus II software-generated netlist for formal verification.
November 2013 Altera Corporation Quartus II Handbook Version 13.1
Volume 3: Verification

17–12 Chapter 17: Cadence Encounter Conformal Support
Understanding the Formal Verification Scripts for the Conformal LEC Software
The script file contains the setup and constraints information to use with the formal
verification tool. The <entity>.v in the blackboxes directory contains the module
description of entities that you do not define in the formal verification library. The file
also contains entities that you treat as black boxes. For example, if a reference to a
black box for an instance of the ALTDPRAM megafunction in your design is present,
the blackboxes directory does not contain a module description for the ALTDPRAM
megafunction because you define the module description in the altdpram.v of the
formal verification library. When a module does not have an RTL description, or the
description exists only in the formal verification library and you do not want to
compare the module with formal verification, a file containing only the top-level
module description with port declaration is written out to the blackboxes directory
and read into the Conformal LEC software. To learn more about black boxes, refer to
“Black Boxes in the Conformal LEC Flow” on page 17–8.

Understanding the Formal Verification Scripts for the Conformal LEC
Software

The Quartus II software generates scripts to use with the Conformal LEC software.
This section describes the details of the Conformal LEC commands in the scripts to
help you compare the revised netlist with the golden netlist. Usually, you do not have
to add anymore Conformal LEC constraints to verify your netlists.

You can view a sample Quartus II software generated script in “Conformal
Dofile/Script Example” on page 17–18.

Conformal LEC Commands in the Quartus II Software Generated Scripts
The value for the variable QUARTUS is the path to the Quartus II software installation
directory:

setenv QUARTUS <Quartus Installation Directory>

The Quartus II software assigns the current working directory of your project to the
PROJECT variable. Use this variable to change your project directory to the directory in
which you install your design files when moving from a UNIX to a Windows
environment, or vice versa:

setenv PROJECT <Quartus Project Directory>

The following command reads both the golden and the revised netlists, along with the
appropriate library models:

read design <design files>

1 You must update your project location when you move the files from the Windows
environment to the UNIX environment.

The post placement and routing netlist from the Quartus II software might contain net
and instance names that are slightly different from net and instance names of the
golden netlist. With the following command, the Quartus II software defines
temporary substitute string patterns enabling the Conformal LEC software to map
key points automatically when the names are different:

add renaming rule <rule>
Quartus II Handbook Version 13.1 November 2013 Altera Corporation
Volume 3: Verification

Chapter 17: Cadence Encounter Conformal Support 17–13
Understanding the Formal Verification Scripts for the Conformal LEC Software
The Conformal LEC software employs three name-based methods to map key points
to compare the revised netlist with the golden netlist. Scripts set the correct method to
get the best results.

set mapping method <mapping_rule>

The Quartus II software performs several optimizations, including optimizing the
registers whose input is driven by a constant. Under these circumstances, for the
formal verification software to compare the netlists properly, use the command set
flatten model with the option seq_constant.

set flatten model <flattening_rule>

When you use the report black box command, verify that the software lists the
following modules as black boxes, along with any of the modules that you treat as
black boxes in the golden and revised netlists:

■ LPMs and megafunctions without the formal verification models

■ Encrypted IP functions

■ Entities not implemented in Verilog HDL or VHDL

Use the following command to set the same implementation on multipliers for both
the golden and revised netlists:

set multiplier implementation <implementation_name>

If combinational loops or instances of LPM_LATCH are present, the Quartus II software
cuts the loop at the same point using the following command on both the golden and
revised netlists:

add cut point

The Conformal LEC software does not always automatically map all the key points, or
can incorrectly map some key points. To help the Conformal LEC software
successfully complete the mapping process, the Quartus II software records
optimizations performed on the netlist as a series of add mapped points in the
Conformal LEC <file_name>.cmc script.

add mapped points <key_points>

When the software moves the inverter before the register to after the register, use the
following command:

add mapped points <key_points> -invert
November 2013 Altera Corporation Quartus II Handbook Version 13.1
Volume 3: Verification

17–14 Chapter 17: Cadence Encounter Conformal Support
Understanding the Formal Verification Scripts for the Conformal LEC Software
The following command reads in the mapped point information from the specified
file:

read mapped points <file_name>.cmc

During optimization, the Quartus II software might merge two registers into one
(Figure 17–3). The Quartus II software informs the formal verification tool that the U1
and U2 registers are equivalent to each other using the following command:

add instance equivalence <instance_pathname ..> [-golden]

When register duplication happens, use the following command:

add instance equivalence <instance_pathname ..> [-revised]

When the software moves the inverter beyond the register along with either register
duplication or merging, use the following command:

add instance equivalences <instance_pathname>
[-invert <instance_pathname>]

Sometimes, the software drives the register output to a constant, either logic 0 or
logic 1. The Quartus II software sets the value of the register to a constraint using the
add instance constraint command. For more information about this command,
refer to “Fixed-Output Registers” on page 17–6.

add instance constraint <constraint_value>

Figure 17–3. Instance Equivalence

Golden Revised

U1

U2

DFF

DFF

PO PO
DFF

U1
Quartus II Handbook Version 13.1 November 2013 Altera Corporation
Volume 3: Verification

Chapter 17: Cadence Encounter Conformal Support 17–15
Comparing Designs Using the Conformal LEC Software
Comparing Designs Using the Conformal LEC Software
This section describes using the Conformal LEC software to compare designs, and to
prove logical equivalence between two versions of your design.

Running the Conformal LEC Software from the GUI
To run the Conformal LEC software from the GUI, follow these steps:

1. Open the Conformal LEC software.

2. On the File menu, click Do Dofile.

3. Select the <path to project directory>/fv/conformal/<proj rev>.ctc.

The Conformal LEC software GUI displays the comparison results. The Golden
window displays the original RTL description or the post synthesis .vqm netlist from
Synplify Pro, and the Revised window displays the information from the post-fit
netlist generated by the Quartus II software. The message section at the bottom of the
window reports the verification results and the number of unmapped and
non-equivalent points found in your design.

To investigate the verification results, click the Mapping Manager icon in the toolbar,
or on the Tools menu, click Mapping Manager. The Conformal LEC software reports
the mapped, unmapped, and compared points in the Mapped Points, Unmapped
Points, and Compared Points windows, respectively.

f For more information about how to diagnose non-equivalent points, refer to the
Conformal LEC software user documentation.

Running the Conformal LEC Software From a System Command Prompt
To run the Conformal LEC software without using the GUI, type the command shown
in Example 17–5 at a system command prompt.

To get a downloadable design example showing the formal verification flow with
Quartus II software, refer to the Formal Verification Design Example page of the
Altera website.

f For more information about the latest debugging tips and solutions for formal
verification flow between the Conformal LEC software and the Quartus II software,
go to www.altera.com and perform an advanced search with keywords “formal
verification”.

Example 17–5. Conformal LEC Command to Run Formal Verification

lec -dofile /<path to project directory>/fv/conformal/<proj rev>.ctc -nogui
November 2013 Altera Corporation Quartus II Handbook Version 13.1
Volume 3: Verification

www.altera.com/support/examples/quartus/exm-formal-verification.html
www.altera.com

17–16 Chapter 17: Cadence Encounter Conformal Support
Known Issues and Limitations
Known Issues and Limitations
The following known issues and limitations can occur when using the formal
verification flow described in this chapter:

■ AIn designs with combinational feedback loops, the Conformal LEC software can
insert extra cut points in the revised netlist, causing unmapped points and
ultimately verification mismatches.

■ For Cyclone II designs, the Conformal LEC software might report non-equivalent
flipflops and extra cut points for the revised (post-fit) design under the following
conditions:

■ When your HDL source code instantiates the lpm_ff primitive with an
asynchronous load signal aload (with or without any other asynchronous
control signals) and;

■ When you use the asynchronous clear signal aclr and asynchronous set signal
aset together.

To avoid this problem, ensure that a wrapper module or entity is present around
the lpm_ff instantiation, and black box the module or entity that instantiates the
lpm_ff primitive.

■ For Stratix III designs, the Conformal LEC software creates cut points for the
combinational loops on the golden side and might fail equivalence checking due
to improper mapping. The combinational loops are due to logic around the
registers emulating multiple sets, resets, or both. The Quartus II software reports
these cut points with warning messages during mapping. You can add Conformal
LEC commands manually to add cut points, which can result in proper mapping
and formal verification.

■ To perform formal verification, the Quartus II software turns off certain synthesis
optimization options (such as register retiming, optimization through black box
hierarchy boundaries, and disabling the ROM and shift register inference), which
can have an impact on the area resource and performance.

1 In the Quartus II software version 9.0 and earlier, turning on gate-level
register retiming as part of a formal verification flow might impact area and
resource utilization.

■ When you do not verify RAM and ROM instantiations, inferences, or both using
formal verification.

■ Incremental compilation for formal verification does not support user-created
design partitions.

■ Formal verification does not support clear box netlists due to unconnected ports
on its WYSIWYG instances.

■ Formal verification does not support VHDL megafunction variations due to
undriven ports on the megafunctions.

■ When a black box contains bidirectional ports, the Quartus II software does not
reconstruct the hierarchy. Therefore, a flat netlist represents the black box, which
results in formal verification mismatches.
Quartus II Handbook Version 13.1 November 2013 Altera Corporation
Volume 3: Verification

Chapter 17: Cadence Encounter Conformal Support 17–17
Black Box Models
■ You must treat ROMs as black boxes in your design before compilation with
Quartus II integrated synthesis, because the Quartus II software might perform
some optimizations on the ROM, resulting in formal verification mismatches.

■ The Conformal LEC software might report mismatches or cancel comparisons of
some key points when the Quartus II software implements a DSP megafunction in
LEs, due to implicit optimizations in the DSP and the complexity of the multiplier
logic in terms of LEs.

■ Unused logic optimized in and around a black box by the Quartus II software can
result in a black-box interface different from the interface in the synthesized .vqm
netlist.

Black Box Models
The black box models are interface definitions of entities, such as primitives, atoms,
LPMs, and megafunctions. These models have a parameterized interface, and do not
contain any definition of behavior. These models work with the Conformal LEC
software, which uses these models along with your design to generate black boxes for
instances of the entity with varying sets of parameters in your design.

h For a complete list of supported black box models, refer to Guidelines for Creating a
Design for Use with the Encounter Conformal and Quartus II Software in Quartus II Help.
November 2013 Altera Corporation Quartus II Handbook Version 13.1
Volume 3: Verification

http://quartushelp.altera.com/current/master.htm#mergedProjects/eda/verification/conformal/eda_gid_lec_fv.htm
http://quartushelp.altera.com/current/master.htm#mergedProjects/eda/verification/conformal/eda_gid_lec_fv.htm

17–18 Chapter 17: Cadence Encounter Conformal Support
Conformal Dofile/Script Example
Conformal Dofile/Script Example
Example 17–6 shows an example script, generated by the Quartus II software. The
example script lists some of the setup commands in Conformal LEC software.

Example 17–6. Conformal LEC Script (Part 1 of 2)

// Copyright (C) 1991-2008 Altera Corporation
// Your use of Altera Corporation's design tools, logic functions
// and other software and tools, and its AMPP partner logi
// functions, and any output files from any of the foregoing
// (including device programming or simulation files), and any
// associated documentation or information are expressly subject
// to the terms and conditions of the Altera Program License
// Subscription Agreement, Altera MegaCore Function License
// Agreement, or other applicable license agreement, including,
// without limitation, that your use is for the sole purpose of
// programming logic devices manufactured by Altera and sold by
// Altera or its authorized distributors. Please refer to the
// applicable agreement for further details.

// Script generated by the Quartus II software

reset
set system mode setup
set log file mfs_3prm_1a.fv.log -replace
set naming rule "%s" -register -golden
set naming rule "%s" -register -revised
// Naming rules for Verilog
set naming rule "%L.%s" "%L[%d].%s" "%s" -instance
set naming rule "%L.%s" "%L[%d].%s" "%s" -variable
// Naming rules for VHDL
// set naming rule "%L:%s" "%L:%d:%s" "%s" -instance
// set naming rule "%L:%s" "%L:%d:%s" "%s" -variable
// set undefined cell black_box -both
// These are the directives that are not supported by the QIS RTL to gates FV flow
set directive off verplex ambit
set directive off assertion_library black_box clock_hold compile_off compile_on
set directive off dc_script_begin dc_script_end divider enum infer_latch
set directive off mem_rowselect multi_port multiplier operand state_vector template
add notranslate module alt3pram -golden
add notranslate module alt3pram -revised
setenv QUARTUS /data/quark/build/ajaishan/quartus
setenv PROJECT /net/quark/build/ajaishan/quartus_regtest/eda/fv/conformal/synplify/
stratix/mfs_3prm_1a_v1_/mfs_3prm_1a/qu_allopt
Quartus II Handbook Version 13.1 November 2013 Altera Corporation
Volume 3: Verification

Chapter 17: Cadence Encounter Conformal Support 17–19
Conformal Dofile/Script Example
read design \
$QUARTUS/eda/fv_lib/vhdl/dummy.vhd \
-map lpm $QUARTUS/eda/fv_lib/vhdl/lpms \
-map altera_mf $QUARTUS/eda/fv_lib/vhdl/mfs \
-map stratix $QUARTUS/eda/fv_lib/vhdl/stratix \
-vhdl -noelaborate -golden

read design \
-file $PROJECT/fv/conformal/mfs_3prm_1a.clg \
$PROJECT/p3rm_block.v \
$PROJECT/mfs_3prm_1a.v \
-verilog2k -merge none -golden

read design \
$QUARTUS/eda/fv_lib/vhdl/dummy.vhd \
-map lpm $QUARTUS/eda/fv_lib/vhdl/lpms \
-map altera_mf $QUARTUS/eda/fv_lib/vhdl/mfs \
-map stratix $QUARTUS/eda/fv_lib/vhdl/stratix \
-vhdl -noelaborate -revised

read design \
-file $PROJECT/fv/conformal/mfs_3prm_1a.clr \
$PROJECT/fv/conformal/mfs_3prm_1a.vo \
-verilog2k -merge none -revised

// add ignored inputs _unassoc_inputs_* -all -revised
add renaming rule r1 "~I\/" "\/" -revised
add renaming rule r2 "_I\/" "\/" -revised
set multiplier implementation rca -golden
set multiplier implementation rca -revised
set mapping method -name first
set mapping method -nounreach
set mapping method -noreport_unreach
set mapping method -nobbox_name_match
set flatten model -seq_constant
set flatten model -nodff_to_dlat_zero
set flatten model -nodff_to_dlat_feedback
set flatten model -nooutput_z
set root module mfs_3prm_1a -golden
set root module mfs_3prm_1a -revised
report messages
report black box
report design data
// report floating signals
dofile $PROJECT/fv/conformal/mfs_3prm_1a.cec
// dofile $PROJECT/fv/conformal/mfs_3prm_1a.cep
// Instance-constraints commands for constant-value registers removed
// during compilation
set system mode lec -nomap
read mapped points $PROJECT/fv/conformal/mfs_3prm_1a.cmc

// Trivial mappings with same name registers
// read mapped points $PROJECT/fv/conformal/mfs_3prm_1a_trivial.cmc
// dofile $PROJECT/fv/conformal/mfs_3prm_1a.cmp
map key points
remodel -seq_constant -repeat
add compare points -all
compare
usage
// exit -f

Example 17–6. Conformal LEC Script (Part 2 of 2)
November 2013 Altera Corporation Quartus II Handbook Version 13.1
Volume 3: Verification

17–20 Chapter 17: Cadence Encounter Conformal Support
Conclusion
Conclusion
Formal verification software enables verification of your design during all stages,
from RTL to placement and routing. Verifying designs requires more time as designs
increase in size. Formal verification helps to reduce the time needed for your design
verification cycle.

Document Revision History
Table 17–4 lists the revision history for this chapter.

f For previous versions of the Quartus II Handbook, refer to the Quartus II Handbook
Archive.

Table 17–4. Document Revision History

Date Version Changes

November 2013 13.1.0 ■ Removed HardCopy device information.

June 2012 12.0.0 ■ Removed survey link.

November 2011 11.1.0
■ Updated “Black Boxes in the Conformal LEC Flow” on page 17–8 and “Known Issues and

Limitations” on page 17–16.

■ Removed Figures.

December 2010 10.1.0 Changed to new document template. Removed Table 21-1.

July 2010 10.0.0 Updates for new GUI changes, and added link to Help.

November 2009 9.1.0 Updated “Black Boxes in the Encounter Conformal Flow” section.

March 2009 9.0.0 Updated Table 21-1.

November 2008 8.1.0

■ Changed to 8-1/2 x 11 page size.

■ Added support for Stratix IV devices.

■ Added support for Cadence Conformal LEC version 7.2 and Synplify Pro version 9.6.2.

May 2008 8.0.0

■ Added support for Cyclone III devices.

■ Updated “Black Boxes in the Encounter Conformal Flow” section.

■ Updated Table 18–1 and Table 18–5.
Quartus II Handbook Version 13.1 November 2013 Altera Corporation
Volume 3: Verification

http://www.altera.com/literature/lit-qts_archive.jsp
http://www.altera.com/literature/lit-qts_archive.jsp

© 2013 Altera Corporation. All rights reserved. ALTERA, ARRI
are trademarks of Altera Corporation and registered in the U.S
trademarks or service marks are the property of their respectiv
semiconductor products to current specifications in accordance
services at any time without notice. Altera assumes no respons
described herein except as expressly agreed to in writing by Al
on any published information and before placing orders for pr

Quartus II Handbook Version 13.1
Volume 3: Verification
November 2013
Section VI. Device Programming
The Quartus® II software offers a complete software solution for system designers
who design with Altera® FPGA and CPLD devices, including device programming.
The Quartus II Programmer is part of the Quartus II software package that allows you
to program Altera CPLD and configuration devices, and configure Altera FPGA
devices. This section describes how you can use the Quartus II Programmer to
program or configure your device after you successfully compile your design.

This section includes the following chapter:

■ Chapter 18, Quartus II Programmer
A, CYCLONE, HARDCOPY, MAX, MEGACORE, NIOS, QUARTUS and STRATIX words and logos
. Patent and Trademark Office and in other countries. All other words and logos identified as
e holders as described at www.altera.com/common/legal.html. Altera warrants performance of its
with Altera's standard warranty, but reserves the right to make changes to any products and

ibility or liability arising out of the application or use of any information, product, or service
tera. Altera customers are advised to obtain the latest version of device specifications before relying
oducts or services.

ISO
9001:2008
Registered

http://www.altera.com/common/legal.html
http://www.altera.com/support/devices/reliability/certifications/rel-certifications.html
http://www.altera.com/support/devices/reliability/certifications/rel-certifications.html

18Quartus II Programmer

2013.11.04

QII53022 Subscribe Send Feedback

The Quartus II Programmer allows you to program and configure Altera®CPLD, FPGA, and configuration
devices. After compiling your design, use the Quartus II Programmer to program or configure your device,
to test its functionality on a circuit board.

Related Information

• Programming Devices

Programming Flow
The following steps describe the general overview of the programming flow:

1. Compile your design, such that the Quartus II Assembler generates the programming or configuration
file.

Figure 18-1: Programming File Generation Flow

Quartus II Assembler

FPGA
.sof

CPLD
.pof

Create Optional
Programming Files

Convert
Programming Files

EPC or
EPCS
.pof

.jam
.jbc

Quartus II Programmer
.cdf

ISO
9001:2008
Registered

© 2013 Altera Corporation. All rights reserved. ALTERA, ARRIA, CYCLONE, HARDCOPY, MAX, MEGACORE, NIOS, QUARTUS and STRATIX words
and logos are trademarks of Altera Corporation and registered in the U.S. Patent and Trademark Office and in other countries. All other
words and logos identified as trademarks or service marks are the property of their respective holders as described at
www.altera.com/common/legal.html. Altera warrants performance of its semiconductor products to current specifications in accordance with
Altera's standard warranty, but reserves the right to make changes to any products and services at any time without notice. Altera assumes
no responsibility or liability arising out of the application or use of any information, product, or service described herein except as expressly
agreed to in writing by Altera. Altera customers are advised to obtain the latest version of device specifications before relying on any published
information and before placing orders for products or services.

www.altera.com

101 Innovation Drive, San Jose, CA 95134

https://www.altera.com/servlets/subscriptions/alert?id=QII53022
mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20(QII53022%202013.11.04)%20Quartus%20II%20Programmer&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.
http://quartushelp.altera.com/current/mergedProjects/program/pgm/pgm_pro_prog_single_as_device.htm
http://www.altera.com/support/devices/reliability/certifications/rel-certifications.html
http://www.altera.com/support/devices/reliability/certifications/rel-certifications.html
http://www.altera.com/support/devices/reliability/certifications/rel-certifications.html

For more information about Chain Description Files (.cdf), refer to About Programming in
Quartus II Help.

Note:

2. Convert the programming or configuration file to target your configuration device and, optionally, create
secondary programming files.
The following table lists the programming and configuration file formats supported by Altera FPGAs,
CPLDs, and configuration devices.

Table 18-1: Programming and Configuration File Format

Serial Configuration DeviceConfiguration
Device

CPLDFPGAFile Format

———YesSRAM Object File (.sof)

YesYesYes—Programmer Object File (.pof)

—YesYesYesJEDEC JESD71 STAPLFormat File
(.jam)

—YesYesYesJam Byte Code File (.jbc)

3. Programand configure the FPGA,CPLD, or configuration device using the programming or configuration
file with the Quartus II Programmer.

Figure 18-2: Programming Flow

Open Quartus II
Programmer

Hardware setup

Specify programming/
configuration file

Add device to Quartus II
Programmer

Start operation

Select programming/
configuration mode

Select programming/
configuration options

Finish

Yes

No

Need to bypass
another device
in the chain?

Start

Quartus II ProgrammerAltera Corporation

Send Feedback

QII53022
Programming Flow18-2 2013.11.04

http://quartushelp.altera.com/current/mergedProjects/program/pgm/pgm_intro.htm
mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Quartus%20II%20Programmer%20(QII53022%202013.11.04)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Optional Programming or Configuration Files
The Quartus II software can generate optional programming or configuration files in various formats that
you can use with programming tools other than the Quartus II Programmer. When you compile a design
in the Quartus II software, the Assembler automatically generates either a .sof or .pof. The Assembler also
allows you to convert FPGA configuration files to programming files for configuration devices.

Related Information

• About Optional Programming Files

• AN 425: Using Command-Line Jam STAPL Solution for Device Programming

Describes how to use the .jam and .jbc programming files with the Jam STAPL Player, Jam STAPL Byte-
Code Player, and the quartus_jli command-line executable.

Secondary Programming Files
The Quartus II software generates programming files in various formats for use with different programming
tools.

The following table lists the file types generated by the Quartus II software and supported by the Quartus II
Programmer.

Table 18-2: File Types Generated by the Quartus II Software and Supported by the Quartus II Programmer

Supported by the Quartus II
Programmer

Generated by the
Quartus II Software

File Type

YesYes.sof

YesYes.pof

YesYes.jam

YesYes.jbc

YesYesJTAG Indirect Configuration File (.jic)

—YesSerial Vector Format File (.svf)

—YesIn System Configuration File (.isc)

—YesHexadecimal (Intel-Format)Output File (.hexout)

—YesRaw Binary File (.rbf)

—YesRaw Binary File for Partial Reconfiguration (.rbf)

—YesTabular Text File (.ttf)

—YesRaw Programming Data File (.rpd)

Related Information

• Generating Secondary Programming Files

Altera CorporationQuartus II Programmer

Send Feedback

18-3Optional Programming or Configuration Files
QII53022
2013.11.04

http://quartushelp.altera.com/current/mergedProjects/program/pgm/pgm_view_convert.htm
http://www.altera.com/literature/an/AN425.pdf
http://quartushelp.altera.com/current/mergedProjects/program/pgm/pgm_pro_set_up_output_prog_files.htm
mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Quartus%20II%20Programmer%20(QII53022%202013.11.04)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Quartus II Programmer GUI
The Quartus II Programmer GUI is a window in which you can add your programming and configuration
files, specify programming options and hardware, and start the programming or configuration of the device.

To open the Programmer window, on the Tools menu, click Programmer. As you proceed through the
programming flow, the Quartus II Message window reports the status of each operation.

Related Information

• Programmer Window
Describes the Programmer window.

• Programmer Page (Options Dialog Box)
Describes the options in the Tools menu.

Editing the Device Details of an Unknown Device
If theQuartus II Programmer automatically detects devices with shared JTAG IDs, the Programmer prompts
you to specify the correct device in the JTAG chain.

If the Programmer does not prompt you to specify the correct device in the JTAG chain, then you must add
a user defined device in the Quartus II software for each unknown device in the JTAG chain and specify the
instruction register length for each device.

To edit the device details of an unknown device, follow these steps:

1. Double-click on the unknown device listed under the device column.
2. Click Edit.
3. Change the device Name.
4. Enter the Instruction register Length.
5. Click OK.
6. Save the .cdf.

Setting Up Your Hardware
The Quartus II Programmer provides the flexibility to choose a download cable or programming hardware.
Before you can program or configure your device, you must have the correct hardware setup.

Related Information

• Setting Up Programming Hardware
Describes the steps to set up your hardware.

• Setting up Programming Hardware in Quartus II Software
Describes the programming hardware driver installation.

Setting the JTAG Hardware
The JTAG server allows the Quartus II Programmer to access the JTAG hardware. You can also access the
JTAG download cable or programming hardware connected to a remote computer through the JTAG server
of that computer. With the JTAG server, you can control the programming or configuration of devices from

Quartus II ProgrammerAltera Corporation

Send Feedback

QII53022
Quartus II Programmer GUI18-4 2013.11.04

http://quartushelp.altera.com/current/mergedProjects/program/pgm/pgm_image.htm
http://quartushelp.altera.com/current/mergedProjects/program/pgm/pgm_com_options_tab.htm
http://quartushelp.altera.com/current/mergedProjects/program/pgm/pgm_pro_add_hardware.htm
http://www.altera.com/download/drivers/dri-quartus.html
mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Quartus%20II%20Programmer%20(QII53022%202013.11.04)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

a single computer through other computers at remote locations. The JTAG server uses the TCP/IP
communications protocol.

Related Information

• Using the JTAG Server
Lists how to use the JTAG Server

Using the JTAG Chain Debugger Tool
The JTAG Chain Debugger tool allows you to test the JTAG chain integrity and detect intermittent failures
of the JTAG chain. In addition, the tool allows you to shift in JTAG instructions and data through the JTAG
interface and step through the test access port (TAP) controller state machine for debugging purposes. You
access the tool from the Tools menu on the main menu of the Quartus II software.

Related Information

• Using the JTAG Chain Debugger

Stand-Alone Quartus II Programmer
Altera offers the free stand-aloneQuartus II Programmer, which has the same full functionality as theQuartus
II Programmer in the Quartus II software. The stand-alone Quartus II Programmer is useful when
programming your devices with another workstation, so you do not need two full licenses. You can download
the stand-alone Quartus II Programmer from the Download Center on the Altera website.

Related Information

• Download Center
You can download the stand-alone Quartus II Programmer from this page.

Programming and Configuration Modes
The following table lists the programming and configuration modes supported by Altera devices.

Table 18-3: Programming and Configuration Modes

Serial Configuration DeviceConfiguration
Device

CPLDFPGAConfiguration Mode Supported by the
Quartus II Programmer

—YesYesYesJTAG

———YesPassive serial (PS)

Yes———Active serial (AS)

———YesConfiguration via Protocol (CvP)

YesYesYes (except
for MAX II
CPLDs)

—In-socket modes (ISM)

Altera CorporationQuartus II Programmer

Send Feedback

18-5Using the JTAG Chain Debugger Tool
QII53022
2013.11.04

http://quartushelp.altera.com/current/mergedProjects/program/pgm/pgm_pro_add_server.htm
http://quartushelp.altera.com/current/mergedProjects/program/pgm/pgm_proc_jtag_debug.htm
https://www.altera.com/download/sw/dnl-sw-index.jsp
mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Quartus%20II%20Programmer%20(QII53022%202013.11.04)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Related Information

• About Programming

• Configuration via Protocol (CvP) Implementation in Altera FPGAs User Guide
Describes the CvP configuration mode.

• Programming Adapters
Contains a list of programming adapters available for Altera devices.

Design Security Keys
The Quartus II Programmer supports the generation of encryption key programming files and encrypted
configuration files for Altera FPGAs that support the design security feature. You can also use the Quartus
II Programmer to program the encryption key into the FPGA.

Related Information

• AN 341: Using the Design Security Feature in Stratix II and Stratix II GX Devices
Describes how to use the feature in Stratix II and Stratix II GX devices.

• AN 512: Using the Design Security Feature in Stratix III Devices
Describes how to use the feature in Stratix III devices.

Convert Programming Files Dialog Box
The Convert Programming Files dialog box in the Programmer allows you to convert programming files
from one file format to another. For example, to store the FPGA data in configuration devices, you can
convert the .sof data to another format, such as .pof, .hexout, .rbf, .rpd, or .jic, and then program the
configuration device.

You can also configure multiple devices with an external host, such as a microprocessor or CPLD. For
example, you can combine multiple .sof files into one .pof.

To access the Convert Programming Files dialog box, on the main menu of the Quartus II software, click
File, and then click Convert Programming Files.

Related Information

• Convert Programming Files Dialog Box

Debugging Your Configuration
Use the Advanced option in the Convert Programming Files dialog box to debug your configuration. You
must choose the advanced settings that apply to your Altera device. You can direct the Quartus II software
to enable or disable an advanced option by turning the option on or off in the Advanced Options dialog
box.

When you change settings in the Advanced Options dialog box, the change affects .pof, .jic, .rpd, and .rbf
files.

Quartus II ProgrammerAltera Corporation

Send Feedback

QII53022
Design Security Keys18-6 2013.11.04

http://quartushelp.altera.com/current/mergedProjects/program/pgm/pgm_intro.htm
http://www.altera.com/literature/ug/ug_cvp.pdf
http://www.altera.com/products/devkits/kit-adapters.html
http://www.altera.com/literature/an/an341.pdf
http://www.altera.com/literature/an/an512.pdf
http://quartushelp.altera.com/current/mergedProjects/program/pgm/pgm_com_convert.htm
mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Quartus%20II%20Programmer%20(QII53022%202013.11.04)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

The following table lists the Advanced Options settings in more detail.

Table 18-4: Advanced Options Settings

DescriptionOption Setting

FPGA skips the EPCS silicon ID verification.

Default setting is unavailable (EPCS ID check is
enabled).

Applies to the single- and multi-device AS configura-
tion modes on all FPGA devices.

Disable EPCS ID check

FPGA skips the CONF_DONE error check.

Default setting is unavailable (ASmodeCONF_DONE
error check is enabled).

Applies to single- andmulti-device (AS) configuration
modes on all FPGA devices.

The CONF_DONE error check is disabled by default
for Stratix V, Arria V, and Cyclone V devices for AS-
PS multi device configuration mode.

Disable AS mode CONF_DONE error check

Specifies the offset you can apply to the computed
PLC of the entire bitstream.

Default setting is 0. The value must be an integer.

Applies to single- andmulti-device (AS) configuration
modes on all FPGA devices.

Program Length Count adjustment

Specifies the number of pad bytes appended to the
end of an entire bitstream.

Default value is set to 0 if the bitstream of the last
device is uncompressed. Set to 2 if the bitstream of
the last device is compressed.

Post-chain bitstream pad bytes

Specifies the number of pad bytes appended to the
end of the bitstream of a device.

Default value is 0. No negative integer.

Applies to all single-device configuration modes on
all FPGA devices.

Post-device bitstream pad bytes

Altera CorporationQuartus II Programmer

Send Feedback

18-7Debugging Your Configuration
QII53022
2013.11.04

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Quartus%20II%20Programmer%20(QII53022%202013.11.04)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

DescriptionOption Setting

Specifies the padding value used to prepare bitslice
configuration bitstreams, such that all bitslice
configuration chains simultaneously receive their final
configuration data bit.

Default value is 1. Valid setting is 0 or 1.

Use only in 2, 4, and 8-bit PS configuration mode,
when you use an EPC device with the decompression
feature enabled.

Applies to all FPGA devices that support enhanced
configuration devices.

Bitslice padding value

The following table lists the symptoms youmay encounter if a configuration fails, and describes the advanced
options you must use to debug your configuration.

Bitslice Padding ValuePost-Device
Bitstream Pad

Bytes

Post-Chain
Bitstream Pad

Bytes

PLC SettingsDisable AS
Mode CONF_
DONE Error

Check

Disable EPCS
ID Check

Failure Symptoms

—Yes (2)

Yes
(1)

YesYes—Configuration
failure occurs
after a
configuration
cycle.

—Yes (2)Yes (1)YesYes—Decompres-
sion feature is
enabled.

—Yes (2)Yes (1)YesYes—Encryption
feature is
enabled.

—Yes (2)Yes (1)Yes (3)Yes—CONF_DONE
stays low after
a configura-
tion cycle.

(2) Use only for single-device chain
(1) Use only for multi-device chain
(3) Start with positive offset to the PLC settings

Quartus II ProgrammerAltera Corporation

Send Feedback

QII53022
Debugging Your Configuration18-8 2013.11.04

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Quartus%20II%20Programmer%20(QII53022%202013.11.04)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Bitslice Padding ValuePost-Device
Bitstream Pad

Bytes

Post-Chain
Bitstream Pad

Bytes

PLC SettingsDisable AS
Mode CONF_
DONE Error

Check

Disable EPCS
ID Check

Failure Symptoms

———Yes (4)Yes—CONF_DONE
goes high
momentarily
after a
configuration
cycle.

—Yes (2)Yes (1)———FPGA does
not enter user
mode even
though
CONF_DONE
goes high.

—————YesConfiguration
failure occurs
at the
beginning of a
configuration
cycle.

—————YesNewly
introduced
EPCS, such as
EPCS128.

Yes—————Failure in .pof
generation for
EPC device
usingQuartus
II Convert
Programming
File Utility
when the
decompres-
sion feature is
enabled.

(4) Start with negative offset to the PLC settings

Altera CorporationQuartus II Programmer

Send Feedback

18-9Debugging Your Configuration
QII53022
2013.11.04

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Quartus%20II%20Programmer%20(QII53022%202013.11.04)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Converting Programming Files for Partial Reconfiguration
TheConvert Programming File dialog box supports the following programming file generation and option
for Partial Reconfiguration:

• Partial-Masked SRAM Object File (.pmsf) output file generation, with .msf and .sof as input files.
• .rbf for Partial Reconfiguration output file generation, with a .pmsf as the input file.

The .rbf for Partial Reconfiguration file is only for Partial Reconfiguration.Note:

• Providing the Enable decompression during Partial Reconfiguration option to enable the option bit
for bitstream decompression during Partial Reconfiguration, when converting a full design .sof to any
supported file type.

Related Information

• Design Planning for Partial Reconfiguration

Generating .pmsf using a .msf and a .sof

To generate the .pmsf in the Convert Programming Files dialog box, follow these steps:

1. In the Convert Programming Files dialog box, under the Programming file type field, select Partial-
Masked SRAM Object File (.pmsf).

2. In the File name field, specify the necessary output file name.
3. In the Input files to convert field, add necessary input files to convert. You can add only a .msf and .sof.
4. Click Generate.

Generating .rbf for Partial Reconfiguration Using a .pmsf

After you have successfully generated the .pmsf, you can convert the .pmsf to a .rbf for Partial Reconfiguration
in the Convert Programming Files dialog box.

To generate the .rbf for Partial Reconfiguration, follow these steps:

1. In the Convert Programming Files dialog box, in the Programming file type field, select Raw Binary
File for Partial Reconfiguration (.rbf).

2. In the File name field, specify the output file name.
3. In the Input files to convert field, add input files to convert. You can add only a .pmsf.
4. After adding the .pmsf, select the .pmsf and click Properties. The PMSF File Properties dialog box

appears.
5. Make your selection either by turning on or turning off the following options:

• Compression option—This option enables compression on Partial Reconfiguration bitstream. If you
turn on this option, then youmust turn on theEnable decompressionduringPartialReconfiguration
option.

• Enable SCRUBmode option—The default of this option is based on AND/OR mode. This option is
valid only when Partial Reconfigurationmasks in your design are not overlapped vertically. Otherwise,
you cannot generate the .rbf for Partial Reconfiguration.

• Writememory contents option—This option is a workaround for initialized RAM/ROM in a Partial
Reconfiguration region.

Quartus II ProgrammerAltera Corporation

Send Feedback

QII53022
Converting Programming Files for Partial Reconfiguration18-10 2013.11.04

http://www.altera.com/literature/hb/qts/qts_qii51026.pdf
mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Quartus%20II%20Programmer%20(QII53022%202013.11.04)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

For more information about these option, refer to the Design Planning for Partial Reconfiguration.

6. Click OK.
7. Click Generate.

Enable Decompression during Partial Reconfiguration Option

You can turn on the Enable decompression during Partial Reconfiguration option in the SOF File
Properties: Bitstream Encryption dialog box, which can be accessed from the Convert Programming File
dialog box. This option is available when converting a .sof to any supported programming file types listed
in Table 18-2.

This option is hidden for other targeted devices that do not support Partial Reconfiguration. To view this
option in the SOF File Properties: Bitstream Encryption dialog box, the .sof must be targeted on an Altera
device that supports Partial Reconfiguration.

If you turn on theCompression option when generating the .rbf for Partial Reconfiguration, then you must
turn on the Enable decompression during Partial Reconfiguration option.

Flash Loaders
Parallel and serial configuration devices do not support the JTAG interface. However, you can use a flash
loader to program configuration devices in-system via the JTAG interface. You can use an FPGA as a bridge
between the JTAG interface and the configuration device. The Quartus II software supports parallel and
serial flash loaders.

Related Information

• About Flash Loaders

JTAG Debug Mode for Partial Reconfiguration
The JTAGdebugmode allows you to configure Partial Reconfiguration bitstream through the JTAG interface.
Use this feature to debug Partial Reconfiguration bitstream and eventually helping you in your Partial
Reconfiguration design prototyping. This feature is available for internal and external host.

During JTAG debug operation, the JTAG command sent from the Quartus II Programmer ignores and
overridesmost of the Partial Reconfigurationmegafunction interface signals (clk,pr_start,double_pr,
data[], data_valid, and data_read).

The TCK is the main clock source for Partial Reconfiguration megafunction during this operation.Note:

You can view the status of Partial Reconfiguration operation in the messages box and the Progress bar in
theQuartus II Programmer. ThePR_DONE,PR_ERROR, andCRC_ERROR signals will bemonitored during
Partial Reconfiguration operation and reported in the Messages box at the end of the operation.

The Quartus II Programmer can detect the number of PR_DONE instruction(s) in plain or compressed
Partial Reconfiguration bitstream and, therefore, can handle single or double Partial Reconfiguration cycle
accordingly. However, only single Partial Reconfiguration cycle is supported for encrypted Partial
Reconfiguration bitstream in JTAG debug mode (provided that the specified device is configured with the
encrypted base bitstream which contains the Partial Reconfiguration megafunction in the design).

Altera CorporationQuartus II Programmer

Send Feedback

18-11Enable Decompression during Partial Reconfiguration Option
QII53022
2013.11.04

http://www.altera.com/literature/hb/qts/qts_qii51026.pdf
http://quartushelp.altera.com/current/mergedProjects/program/pgm/pgm_view_pfl.htm
mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Quartus%20II%20Programmer%20(QII53022%202013.11.04)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Configuring an incompatible PR bitstream to the specified devicemay corrupt your design, including
the routing path and the Partial Reconfiguration megafunction placed in the static region. When

Note:

this issue occurs, the Partial Reconfiguration megafunction stays in an undefined state, and the
Quartus II Programmer is unable to reset the megafunction. As a result, the Quartus II Programmer
generates the following error when you try to configure a new Partial Reconfiguration bitstream:

Error (12897): Partial Reconfiguration status: Can't reset the PR megafunction. This issue occurred because
the designwas corrupted by an incompatible PRbitstream in the previous PRoperation. Youmust reconfigure
the device with a good design.

Configuring Partial Reconfiguration Bitstream in JTAG Debug Mode
To configure the Partial Reconfiguration bitstream in JTAG debug mode, follow these steps:

1. In the Quartus II Programmer GUI, right click on a highlighted base bitstream (in .sof) and then click
Add PR Programming File to add the Partial Reconfiguration bitstream (in .rbf).

Figure 18-3: Adding PR Programming File

2. After adding the Partial Reconfiguration bitstream, you can change or delete the Partial Reconfiguration
programming file by clicking Change PR Programming File or Delete PR Programming File.

Quartus II ProgrammerAltera Corporation

Send Feedback

QII53022
Configuring Partial Reconfiguration Bitstream in JTAG Debug Mode18-12 2013.11.04

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Quartus%20II%20Programmer%20(QII53022%202013.11.04)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Figure 18-4: Change PR Programming File or Delete PR Programming File

3. Click Start to configure the Partial Reconfiguration bitstream. The Quartus II Programmer generates an
error message if the specified device does not contain the Partial Reconfiguration megafunction in the
design (youmust instantiate Partial Reconfigurationmegafunction in your design to use the JTAGdebug
mode).

Figure 18-5: Starting PR Bitstream Configuration

4. Configure the valid .rbf in JTAG debug mode with the Quartus II Programmer.

Altera CorporationQuartus II Programmer

Send Feedback

18-13Configuring Partial Reconfiguration Bitstream in JTAG Debug Mode
QII53022
2013.11.04

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Quartus%20II%20Programmer%20(QII53022%202013.11.04)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Figure 18-6: Configuring Valid .rbf

5. The Partial Reconfiguration megafunction is pre-programmed on the specified device.

Figure 18-7: Partial Reconfiguration Megafunction Successfully Pre-programmed

6. The Quartus II Programmer reports error when you try to configure the corrupted .rbf in JTAG debug
mode.

Quartus II ProgrammerAltera Corporation

Send Feedback

QII53022
Configuring Partial Reconfiguration Bitstream in JTAG Debug Mode18-14 2013.11.04

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Quartus%20II%20Programmer%20(QII53022%202013.11.04)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Figure 18-8: Configuring Corrupted .rbf

Scripting Support
In addition to the Quartus II Programmer GUI, you can use the Quartus II command-line executable
quartus_pgm.exe to access programmer functionality from the command line and from scripts. The
programmer accepts .pof, .sof, and .jic programming or configuration files and Chain Description Files
(.cdf).

The following example shows a command that programs a device:

quartus_pgm –c byteblasterII –m jtag –o bpv;design.pof

Where:

• -c byteblasterII specifies the ByteBlaster II download cable
• -m jtag specifies the JTAG programming mode
• -o bpv represents the blank-check, program, and verify operations
• design.pof represents the .pof used for the programming

The Programmer automatically executes the erase operation before programming the device.

Related Information

• About Quartus II Scripting

The jtagconfig Debugging Tool
You can use the jtagconfig command-line utility (which is similar to the auto detect operation in the
Quartus II Programmer) to check the devices in a JTAG chain and the user-defined devices.

Altera CorporationQuartus II Programmer

Send Feedback

18-15Scripting Support
QII53022
2013.11.04

http://quartushelp.altera.com/current/mergedProjects/reference/scripting/tcl_view_using_tcl_scripts.htm
mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Quartus%20II%20Programmer%20(QII53022%202013.11.04)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Formore information about thejtagconfigutility, type one of the following commands at the command
prompt:

jtagconfig –h

jtagconfig –-help

The help switch does not reference the -n switch. The jtagconfig -n command shows each
node for each JTAG device.

Note:

Related Information

• Command-Line Scripting

Generating .pmsf using a .msf and a .sof
You can generate a .pmsf with the quartus_cpf command by typing the following command:

quartus_cpf -p <pr_revision.msf> <pr_revision.sof> <new_filename.pmsf>

Generating .rbf for Partial Reconfiguration using a .pmsf
You can generate a .rbf for Partial Reconfiguration with the quartus_cpf command by typing the
following command:

quartus_cpf –o foo.txt –c <pr_revision.pmsf> <pr_revision.rbf>

You must run this command in the same directory where the files are located.Note:

Document Revision History
The following table lists the revision history.

Table 18-5: Document Revision History

ChagesVersionDate

• Converted to DITA format.
• Added JTAG Debug Mode for Partial Reconfiguration on page

18-11 andConfiguringPartial ReconfigurationBitstream in JTAG
Debug Mode on page 18-12.

13.1.0November 2013

Quartus II ProgrammerAltera Corporation

Send Feedback

QII53022
Generating .pmsf using a .msf and a .sof18-16 2013.11.04

http://www.altera.com/literature/hb/qts/qts_qii52002.pdf
mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Quartus%20II%20Programmer%20(QII53022%202013.11.04)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

ChagesVersionDate

• Updated Table 18–3 on page 18–6, and Table 18–4 on page 18–8.
• Added “Converting Programming Files for Partial Reconfiguration”

on page 18–10, “Generating .pmsf using a .msf and a .sof” on page
18–10, “Generating .rbf for Partial Reconfiguration Using a .pmsf”
on page 18–12, “Enable Decompression during Partial Reconfigura-
tion Option” on page 18–14

• Updated “Scripting Support” on page 18–15.

12.1.0November 2012

• Updated Table 18–5 on page 18–8.
• Updated “Quartus II Programmer GUI” on page 18–3.

12.0.0June 2012

• Updated “Configuration Modes” on page 18–5.
• Added “Optional Programming or Configuration Files” on page

18–6.
• Updated Table 18–2 on page 18–5.

11.1.0November 2011

• Added links to Quartus II Help.
• Updated “Hardware Setup” onpage 21–4 and “JTAGChainDebugger

Tool” on page 21–4.

11.0.0May 2011

• Changed to new document template.
• Updated “JTAG Chain Debugger Example” on page 20–4.
• Added links to Quartus II Help.
• Reorganized chapter.

10.1.0December 2010

• Added links to Quartus II Help.
• Deleted screen shots.

10.0.0July 2010

No change to content.9.1.0November 2009

• Added a row to Table 21–4.
• Changed references from “JTAG Chain Debug” to “JTAG Chain

Debugger”.
• Updated figures.

9.0.0March 2009

Altera CorporationQuartus II Programmer

Send Feedback

18-17Document Revision History
QII53022
2013.11.04

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Quartus%20II%20Programmer%20(QII53022%202013.11.04)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Section VI: Device Programming
Quartus II Handbook Version 13.1 November 2012 Altera Corporation
Volume 3: Verification

November 2013 Altera Corporation
Additional Information
This chapter provides additional information about the document and Altera.

About this Handbook
This handbook provides comprehensive information about the current version of the
Altera® Quartus® II design software

How to Contact Altera
To locate the most up-to-date information about Altera products, refer to the
following table.

Third-Party Software Product Information
Third-party software products described in this handbook are not Altera products, are
licensed by Altera from third parties, and are subject to change without notice.
Updates to these third-party software products may not be concurrent with Quartus II
software releases. Altera has assumed responsibility for the selection of such third-
party software products and its use in the Quartus II version 12.0 software release. To
the extent that the software products described in this handbook are derived from
third-party software, no third party warrants the software, assumes any liability
regarding use of the software, or undertakes to furnish you any support or
information relating to the software. EXCEPT AS EXPRESSLY SET FORTH IN THE
APPLICABLE ALTERA PROGRAM LICENSE SUBSCRIPTION AGREEMENT
UNDER WHICH THIS SOFTWARE WAS PROVDED TO YOU, ALTERA AND
THIRD-PARTY LICENSORS DISCLAIM ALL WARRANTIES WITH RESPECT TO
THE USE OF SUCH THIRD-PARTY SOFTWARE CODE OR DOCUMENTATION IN
THE SOFTWARE, INCLUDING, WITHOUT LIMITATION, ANY WARRANTIES OF
MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE, TITLE, AND
NONINFRINGEMENT. For more information, including the latest available version
of specific third-party software products, refer to the documentation for the software
in question.

Contact (1) Contact Method Address

Technical support Website www.altera.com/support

Technical training
Website www.altera.com/training

Email custrain@altera.com

Product literature Website www.altera.com/literature

Nontechnical support (general) Email nacomp@altera.com

(software licensing) Email authorization@altera.com

Note to Table:

(1) You can also contact your local Altera sales office or sales representative.
Quartus II Handbook Version 13.1
Volume 3: Verification

http://www.altera.com/support
http://www.altera.com/training
mailto:custrain@altera.com
http://www.altera.com/literature/
mailto:nacomp@altera.com
mailto:authorization@altera.com

Info–2 Additional Information
Typographic Conventions
Typographic Conventions
The following table shows the typographic conventions this document uses.

Visual Cue Meaning

Bold Type with Initial Capital
Letters

Indicate command names, dialog box titles, dialog box options, and other GUI
labels. For example, Save As dialog box. For GUI elements, capitalization matches
the GUI.

bold type
Indicates directory names, project names, disk drive names, file names, file name
extensions, software utility names, and GUI labels. For example, \qdesigns
directory, D: drive, and chiptrip.gdf file.

Italic Type with Initial Capital Letters Indicate document titles. For example, Stratix IV Design Guidelines.

italic type
Indicates variables. For example, n + 1.

Variable names are enclosed in angle brackets (< >). For example, <file name> and
<project name>.pof file.

Initial Capital Letters Indicate keyboard keys and menu names. For example, the Delete key and the
Options menu.

“Subheading Title” Quotation marks indicate references to sections in a document and titles of
Quartus II Help topics. For example, “Typographic Conventions.”

Courier type

Indicates signal, port, register, bit, block, and primitive names. For example, data1,
tdi, and input. The suffix n denotes an active-low signal. For example, resetn.

Indicates command line commands and anything that must be typed exactly as it
appears. For example, c:\qdesigns\tutorial\chiptrip.gdf.

Also indicates sections of an actual file, such as a Report File, references to parts of
files (for example, the AHDL keyword SUBDESIGN), and logic function names (for
example, TRI).

r An angled arrow instructs you to press the Enter key.

1., 2., 3., and
a., b., c., and so on

Numbered steps indicate a list of items when the sequence of the items is important,
such as the steps listed in a procedure.

■ ■ ■ Bullets indicate a list of items when the sequence of the items is not important.

1 The hand points to information that requires special attention.

h The question mark directs you to a software help system with related information.

f The feet direct you to another document or website with related information.

m The multimedia icon directs you to a related multimedia presentation.

c A caution calls attention to a condition or possible situation that can damage or
destroy the product or your work.

w A warning calls attention to a condition or possible situation that can cause you
injury.

The envelope links to the Email Subscription Management Center page of the Altera
website, where you can sign up to receive update notifications for Altera documents.

The feedback icon allows you to submit feedback to Altera about the document.
Methods for collecting feedback vary as appropriate for each document.

The social media icons allow you to inform others about Altera documents. Methods
for submitting information vary as appropriate for each medium.
Quartus II Handbook Version 13.1 November 2013 Altera Corporation
Volume 3: Verification

https://www.altera.com/subscriptions/email/signup/eml-index.jsp

	Quartus II Handbook Version 13.1 Volume 1: Design and Synthesis
	Chapter Revision Dates
	Section I. Design Flows
	1. Managing Quartus II Projects
	Quick Start
	Understanding Quartus II Projects
	Viewing Basic Project Information
	Viewing Project Reports
	Viewing Project Messages
	Suppressing Messages
	Message Suppression Guidelines

	Managing Logic Design Files
	Including Design Libraries
	Specifying Design Libraries

	Managing Project Settings
	Optimizing Project Settings
	Optimizing with Design Space Explorer
	Optimizing with Project Revisions
	Copying Your Project

	Managing Timing Constraints
	Managing System and IP Components
	Integrating System and IP Files
	Updating Outdated IP Files
	System and IP File Locations
	Processing Encrypted IP Files
	IP File Search Path

	Integrating Other EDA Tools
	Managing Team-based Projects
	Preserving Compilation Results
	Factors Affecting Compilation Results

	Migrating Results Across Quartus II Software Versions
	Exporting and Importing the Results Database
	Cleaning the Project Database

	Archiving Projects
	Manually Adding Files To Archives
	Archiving Compilation Results
	Archiving Projects for Altera Service Requests

	Using External Revision Control
	Files to Include In External Revision Control

	Migrating Projects Across Operating Systems
	Migrating Design Files and Libraries
	Use Relative Paths

	Design Library Migration Guidelines

	Scripting API
	Scripting Project Settings
	Project Revision Commands
	Create Revision Command
	Set Current Revision Command
	Get Project Revisions Command
	Delete Revision Command

	Project Archive Commands
	Creating a Project Archive

	Restoring an Archived Project
	Project Database Commands
	Import and Export Version‑Compatible Databases
	Import and Export Version-Compatible Databases from a Flow Package
	Generate Version-Compatible Database After Compilation
	quartus_cdb and quartus_sh Executables to Manage Version-Compatible Databases

	Project Library Commands
	Specify Project Libraries With SEARCH_PATH Assignment
	Report Specified Project Libraries Commands

	Document Revision History

	2. Design Planning with the Quartus II Software
	Creating Design Specifications
	Selecting Intellectual Property
	Using Qsys and Standard Interfaces in System Design
	Selecting a Device
	Device Migration Planning

	Planning for Device Programming or Configuration
	Estimating Power
	Early Pin Planning and I/O Analysis
	Simultaneous Switching Noise Analysis

	Selecting Third-Party EDA Tools
	Synthesis Tool
	Simulation Tool
	Formal Verification Tool

	Planning for On-Chip Debugging Tools
	Design Practices and HDL Coding Styles
	Design Recommendations
	Recommended HDL Coding Styles
	Managing Metastability

	Planning for Hierarchical and Team-Based Design
	Flat Compilation Flow with No Design Partitions
	Incremental Compilation with Design Partitions
	Planning Design Partitions and Floorplan Location Assignments

	Fast Synthesis and Early Timing Estimation
	Conclusion
	Document Revision History

	3. Quartus II Incremental Compilation for Hierarchical and Team-Based Design
	Deciding Whether to Use an Incremental Compilation Flow
	Flat Compilation Flow with No Design Partitions
	Incremental Capabilities Available When A Design Has No Partitions

	Incremental Compilation Flow With Design Partitions
	Team-Based Design Flows and IP Delivery

	Incremental Compilation Summary
	Steps for Incremental Compilation
	Preparing a Design for Incremental Compilation
	Compiling a Design Using Incremental Compilation

	Creating Design Partitions
	Creating Design Partitions in the Project Navigator
	Creating Design Partitions in the Design Partitions Window
	Creating Design Partitions With the Design Partition Planner
	Creating Design Partitions With Tcl Scripting
	Automatically-Generated Partitions

	Common Design Scenarios Using Incremental Compilation
	Reducing Compilation Time When Changing Source Files for One Partition
	Optimizing a Timing-Critical Partition
	Adding Design Logic Incrementally or Working With an Incomplete Design
	Debugging Incrementally With the SignalTap II Logic Analyzer
	Functional Safety IP Implementation
	IEC61508 Compliance
	Functional Safety Separation Flow
	How to Turn On the Functional Safety Separation Flow
	Preservation of Device Resources
	Preservation of Placement in the Device with LogicLock
	Assigning I/O Pins
	General Guidelines for Implementation
	Reports for SIP
	SIP Partial Bitstream Generation
	POF Comparison Tool for Verification

	Deciding Which Design Blocks Should Be Design Partitions
	Impact of Design Partitions on Design Optimization
	Turning On Supported Cross-boundary Optimizations

	Design Partition Assignments Compared to Physical Placement Assignments
	Using Partitions With Third-Party Synthesis Tools
	Synopsys Synplify Pro/Premier and Mentor Graphics Precision RTL Plus
	Other Synthesis Tools

	Assessing Partition Quality
	Partition Statistics Reports
	Partition Timing Reports
	Incremental Compilation Advisor

	Specifying the Level of Results Preservation for Subsequent Compilations
	Netlist Type for Design Partitions
	Fitter Preservation Level for Design Partitions
	Where Are the Netlist Databases Saved?
	Deleting Netlists
	What Changes Initiate the Automatic Resynthesis of a Partition?
	Resynthesis Due to Source Code Changes
	Forcing Use of the Compilation Netlist When a Partition has Changed

	Exporting Design Partitions from Separate Quartus II Projects
	Preparing the Top-Level Design
	Empty Partitions

	Project Management— Making the Top-Level Design Available to Other Designers
	Distributing the Top-Level Quartus II Project
	Generating Design Partition Scripts

	Exporting Partitions
	Viewing the Contents of a Quartus II Exported Partition File (.qxp)
	Integrating Partitions into the Top-Level Design
	Integrating Assignments from the .qxp
	Integrating Encrypted IP Cores from .qxp Files
	Advanced Importing Options

	Team-Based Design Optimization and Third-Party IP Delivery Scenarios
	Using an Exported Partition to Send to a Design Without Including Source Files
	Creating Precompiled Design Blocks (or Hard-Wired Macros) for Reuse
	Designing in a Team-Based Environment
	Enabling Designers on a Team to Optimize Independently
	Resolving Assignment Conflicts During Integration
	Importing a Partition to be Instantiated Multiple Times

	Performing Design Iterations With Lower-Level Partitions

	Creating a Design Floorplan With LogicLock Regions
	Creating and Manipulating LogicLock Regions
	Changing Partition Placement with LogicLock Changes
	Taking Advantage of the Early Timing Estimator

	Incremental Compilation Restrictions
	When Timing Performance May Not Be Preserved Exactly
	When Placement and Routing May Not Be Preserved Exactly
	Using Incremental Compilation With Quartus II Archive Files
	Formal Verification Support
	SignalProbe Pins and Engineering Change Orders
	SignalTap II Logic Analyzer in Exported Partitions
	External Logic Analyzer Interface in Exported Partitions
	Assignments Made in HDL Source Code in Exported Partitions
	Design Partition Script Limitations
	Warnings About Extra Clocks Due to Design Partition Scripts
	Synopsys Design Constraint Files for the TimeQuest Timing Analyzer in Design Partition Scripts
	Wildcard Support in Design Partition Scripts
	Derived Clocks and PLLs in Design Partition Scripts
	Pin Assignments for GXB and LVDS Blocks in Design Partition Scripts
	Virtual Pin Timing Assignments in Design Partition Scripts
	Top-Level Ports that Feed Multiple Lower-Level Pins in Design Partition Scripts

	Restrictions on Megafunction Partitions
	Register Packing and Partition Boundaries
	I/O Register Packing

	Scripting Support
	Tcl Scripting and Command-Line Examples
	Creating Design Partitions
	Enabling or Disabling Design Partition Assignments During Compilation
	Setting the Netlist Type
	Setting the Fitter Preservation Level for a Post-fit or Imported Netlist
	Preserving High-Speed Optimization
	Specifying the Software Should Use the Specified Netlist and Ignore Source File Changes
	Reducing Opening a Project, Creating Design Partitions, and Performing an Initial Compilation
	Optimizing the Placement for a Timing-Critical Partition
	Generating Design Partition Scripts
	Exporting a Partition
	Importing a Partition into the Top-Level Design
	Makefiles

	Conclusion
	Document Revision History

	4. Design Planning for Partial Reconfiguration
	Terminology
	Determining Resources for Partial Reconfiguration

	An Example of a Partial Reconfiguration Design
	Partial Reconfiguration Modes
	SCRUB Mode
	AND/OR Mode
	Programming File Sizes for a Partial Reconfiguration Project

	Partial Reconfiguration Design Flow
	Design Partitions for Partial Reconfiguration
	Incremental Compilation Partitions for Partial Reconfiguration
	Partial Reconfiguration Controller Instantiation in the Design
	Component Declaration of the PR Control Block and CRC Block in VHDL
	Instantiating the PR Control Block and CRC Block in VHDL
	Instantiating the PR Control Block and CRC Block in Verilog HDL

	Wrapper Logic for PR Regions

	Freeze Logic for PR Regions
	Clocks and Other Global Signals for a PR Design
	Floorplan Assignments for PR Designs

	Implementation Details for Partial Reconfiguration
	Partial Reconfiguration Pins
	Interface with the PR Control Block through a PR Host
	PR Control Signals Interface
	Reconfiguring a PR Region
	Partial Reconfiguration Cycle Waveform

	Partial Reconfiguration with an External Host
	Using an External Host with Multiple Devices

	Partial Reconfiguration with an Internal Host
	Partial Reconfiguration Project Management
	Create Reconfigurable Revisions
	Compiling Reconfigurable Revisions
	Timing Closure for a Partial Reconfiguration Project
	Bitstream Compression and Encryption for PR Designs

	Programming Files for a Partial Reconfiguration Project
	Generating Required Programming Files
	Generate PR Programming Files with the Convert Programming Files Dialog Box
	Generating a .pmsf File from a .msf and .sof Input File
	Generating a .rbf File from a .pmsf Input File
	Create a Merged .msf File from Multiple .msf Files
	Generating a Merged .pmsf File from Multiple .pmsf Files
	Enable Bitstream Decompression Option
	Enable Bitstream Decryption Option

	On-Chip Debug for PR Designs
	Partial Reconfiguration Known Limitations
	Memory Blocks Initialization Requirement for PR Designs
	M20K RAM Blocks in PR Designs
	Limitations When Using Stratix V Production Devices

	MLAB Blocks in PR designs
	Implementing Memories with Initialized Content
	Initializing M20K Blocks with a Double PR Cycle
	Double PR with Compressed Programming Bitstream

	Document Revision History

	5. Quartus II Design Separation Flow
	Design Flow Overview
	Creating Design Partitions for the Design Separation Flow
	Merging PLL Resources
	Avoiding Multiple Design Partitions With a Secured Region

	Creating a Design Floorplan with Secured Regions
	Using Security Attributes
	Using Secured Regions
	Adding I/O Pins as Members of Secured Regions
	Using Security Routing Interfaces

	Making Design Separation Flow Location Assignments in the Chip Planner
	Understanding Fencing Regions
	Creating Non-Rectangular Regions
	Guidelines for the Relative Placement of Secured LogicLock Regions
	Creating a Complete Floorplan
	Ensuring Routability Between Regions
	Ensuring Planarity
	Placing Physical Resources

	Making Signal Security Assignments
	Understanding Signal Names
	Working with Global Signals

	Assigning I/O Pins
	Making Post Compilation Edits
	Routing Restrictions
	Number of Signals in Routing Interfaces

	Application Example: Modifying a Fitter-Generated Floorplan for the Design Separation Flow
	Report Panels
	Secured LogicLock Region Summary
	Security Routing Interfaces
	Secured LogicLock Region Inputs and Outputs
	Security I/O Bank Usage

	Quartus Settings File Syntax
	LL_SECURITY_ROUTING_INTERFACE
	LL_REGION_SECURITY_LEVEL
	LL_MEMBER_OF_SECURITY_ROUTING_INTERFACE
	LL_SIGNAL_SECURITY_LEVEL

	Document Revision History

	Section 2. System Design with Qsys
	6. Creating a System With Qsys
	Component Interface Support
	Understanding the Qsys Design Flow
	Creating a Qsys System
	Adding and Connecting System Contents
	Adding Components
	Connecting Components
	Filtering Components

	Managing Views
	Using the Hierarchy Tab
	Using the Parameters Tab
	Using the Presets Tab
	Working With Presets for Supported IP Components

	Using the Block Symbol Tab
	Using the Address Map Tab
	Using the Clock Tab
	Using the Project Settings Tab
	Using the Instance Parameters Tab
	Creating an Instance Script

	Using the Interconnect Requirements Tab
	Configuring Interconnect Requirements for the System
	Configuring Interconnect Requirements for an Interface

	Creating Hierarchical Systems
	Adding Systems to the Library
	Creating a Component Based on a System

	Qsys 64-Bit Addressing Support
	Creating Secure Systems (TrustZones)
	Managing Secure Settings in Qsys
	Understanding Compilation-Time Security Configuration Options
	Accessing Undefined Memory Regions

	Viewing the Qsys Interconnect
	Using the Memory-Mapped Interconnect Tab
	Manually Controlling Pipelining in the Qsys Interconnect

	Integrating Your Qsys Design with the Quartus II Software
	Integrating with the .qsys File
	Integrating with the .qip File
	Setting Clock Constraints

	Generating a Qsys System
	Generating Output Files
	CMSIS Support for Qsys Systems With An HPS Component

	Viewing the HDL Example

	Simulating a Qsys System
	Generate and Modify the Testbench System
	Generate the Testbench System and a Simulation model at the Same Time (Verilog HDL only)
	Adding Assertion Monitors
	Simulation Scripts
	Simulating Software Running on a Nios II Processor

	System Examples
	PCI Express Subsystem Example
	Ethernet Subsystem Example
	PCI Express to Ethernet Bridge Example
	Pipeline Bridges

	Hierarchical System Using Instance Parameters Example

	Searching for Component Files to Add to the Library
	Adding Components to the Library
	Copy Components to a Directory Searched by Default
	Reference Components in an IP Index File (.ipx)
	Understanding the IP Index File (.ipx) Syntax
	ip-catalog
	ip-make-ipx

	Extending the Default Search Path

	Integrating Third-Party Components

	Using Qsys Command-Line with Utilities and Scripts
	Running the Qsys Editor from the Command-Line
	Launching Qsys with Additional Computer Memory

	Generating Qsys Systems with the qsys-generate Utility
	Creating and Managing a System with qsys-script
	Qsys Scripting Command Reference
	add_connection <start> [<end>]
	add_instance <name> <type> [<version>]
	add_interface <name> <type> <direction>
	auto_assign_base_addresses <instance>
	auto_assign_irqs <instance>
	auto_connect <element>
	create_system [<name>]
	get_instance_interface_parameter_value <instance> <interface> <parameter>
	get_composed_connection_parameters <instance> <childConnection>
	get_composed_connections <instance>
	get_composed_instance_assignment <instance> <childInstance> <key>
	get_composed_instance_assignments <instance> <childInstance>
	get_composed_instance_parameter_value <instance> <childInstance> <parameter>
	get_composed_instance_parameters <instance> <childInstance>
	get_composed_instances <instance>
	get_connection_parameter_property <connection> <parameter> <property>
	get_connection_parameter_value <connection> <parameter>
	get_connection_parameters <connection>
	get_connection_properties
	get_connection_property <connection> <property>
	get_connections [<element>]
	get_instance_assignment <instance> <key>
	get_instance_assignments <instance>
	get_instance_interface_assignment <instance> <interface> <key>
	get_instance_interface_assignments <instance> <interface>
	get_instance_interface_parameter_property <instance> <interface> <parameter> <property>
	get_instance_interface_parameter_value <instance> <interface> <parameter>
	get_instance_interface_parameters <instance> <interface>
	get_instance_interface_port_property <instance> <interface> <port> <property>
	get_instance_interface_ports <instance> <interface>
	get_instance_interface_properties
	get_instance_interface_property <instance> <interface> <property>
	get_instance_interfaces <instance>
	get_instance_parameter_property <instance> <parameter> <property>
	get_instance_parameter_value <instance> <parameter>
	get_instance_parameters <instance>
	get_instance_port_property <instance> <port> <property>
	get_instance_properties
	get_instance_property <instance> <property>
	get_instances
	get_interface_port_property <interface ><port ><property>
	get_interface_ports <interface>
	get_interface_properties
	get_interface_property <interface> <property>
	get_interfaces
	get_module_properties
	get_module_property <property>
	get_parameter_properties
	get_port_properties
	get_project_properties
	get_project_property <property>
	load_system <file>
	lock_avalon_base_address <instance.interface>
	preview_insert_avalon_streaming_adapters
	remove_connection <connection>
	remove_instance <instance>
	remove_interface <interface>
	save_system [<file>]
	send_message <level> <message>
	set_connection_parameter_value <connection> <parameter> <value>
	set_instance_parameter_value <instance> <parameter> <value>
	set_instance_property <instance> <property> <value>
	set_interface_property <interface> <property> <value>
	set_module_property <property> <value>
	set_project_property <property> <value>
	set_validation_property <property> <value>
	unlock_avalon_base_address <instance.interface>
	upgrade_sopc_system <filename>
	validate_connection <connection>
	validate_instance <instance>
	validate_instance_interface <instance> <interface>
	validate_system

	Document Revision History

	7. Creating Qsys Components
	Qsys Components
	Component Interface Support
	Component Structure
	Component File Organization
	Component Versions
	Upgrading IP Components to the Latest Version

	Life Cycle of a Component
	Creating Qsys Components in the Component Editor
	Saving a Component and Creating an _hw.tcl File
	Editing a Component with the Component Editor

	Specifying Basic Component Information
	Specifying Files for Synthesis and Simulation
	Specifying HDL Files for Synthesis
	Creating a New HDL File for Synthesis
	Analyzing Synthesis Files
	Naming HDL Signals for Automatic Interface and Type Recognition
	Specifying Files for Simulation
	Including Internal Register Map Description in the .svd for Slave Interfaces Connected to an HPS Component

	Specifying Component Parameters
	Allowed Ranges Parameter Property
	Types of Parameters
	User Parameters
	System Information Parameters
	Derived Parameters
	Parameterized Parameter Widths

	Declaring Parameters with Custom hw.tcl Commands
	Validating Parameter Values with a Validation Callback

	Specifying Interface and Signal Types
	Adding Interfaces and Managing Interface Settings
	Creating Custom _hw.tcl Interface Settings and Properties

	Controlling Interfaces Dynamically with an Elaboration Callback
	Controlling File Generation Dynamically with Parameters and a Fileset Callback
	Creating a Composed Component or Subsystem
	Creating a Component With Differing Structural Qsys View and Generated Output Files
	Adding Component Instances to a Static or Generated Component
	Static Components
	Generated Components
	Design Guidelines for Adding Component Instances

	Document Revision History

	8. Qsys Interconnect
	Memory-Mapped Interfaces
	Packet Format for Memory-Mapped Interfaces
	Qsys Packet Format
	Transaction Types for Memory-Mapped Interfaces

	Interconnect Domains
	Using One Domain with Width Adaptation
	Using Two Separate Domains

	Qsys Transformations
	Master Network Interfaces
	Avalon-MM Master Agent
	Avalon-MM Master Translator
	AXI Master Agent
	AXI Translator
	APB Master Agent
	APB Slave Agent
	APB Translator
	Memory-Mapped Router
	Memory-Mapped Traffic Limiter

	Slave Network Interfaces
	Avalon-MM Slave Translator
	AXI Translator
	Wait State Insertion
	Avalon-MM Slave Agent
	AXI Slave Agent

	Arbitration
	Arbitration Rules
	Fairness‑Based Shares
	Round‑Robin Scheduling
	Burst Transfers

	Arbitration Examples
	Memory-Mapped Arbiter

	Datapath Multiplexing

	Width Adaptation
	Memory-Mapped Width Adapter
	AXI Wide to Narrow Adaptation
	AXI Narrow to Wide Adaptation

	Burst Transfers
	Memory-Mapped Burst Adapter
	Burst Adaptation: AXI to Avalon
	Burst Adaptation: Avalon to AXI

	Address Decoding

	Streaming Interfaces
	Avalon-ST Multiplexer
	Avalon-ST Demultiplexer
	Avalon-ST Adapters
	Data Format Adapter
	Timing Adapter
	Channel Adapter
	Error Adapter
	Input Interface Parameters
	Output Interface Parameters
	Common to Input and Output Interfaces

	Interrupt Interfaces
	Individual Requests IRQ Scheme
	Assigning IRQs in Qsys
	IRQ Bridge
	IRQ Mapper
	IRQ Clock Crosser

	Clock Interfaces
	(High Speed Serial Interface) HSSI Clock Interfaces
	HSSI Serial Clock Interface
	HSSI Serial Clock Source
	HSSI Serial Clock Sink
	HSSI Serial Clock Connection
	HSSI Serial Clock Example

	HSSI Bonded Clock Interface
	HSSI Bonded Clock Source
	HSSI Bonded Clock Sink
	HSSI Bonded Clock Connection
	HSSI Bonded Clock Example

	Reset Interfaces
	Single Global Reset Signal Implemented by Qsys
	Reset Controller
	Reset Bridge
	Reset Sequencer
	Reset Sequencer Parameters
	Reset Sequencing Timing Diagrams
	Reset Sequencer CSR Registers
	Reset Sequencer Status Register Offset 0x00
	Reset Sequencer Interrupt Enable Register Offset 0x04
	Reset Sequencer Control Register Offset 0x08
	Reset Sequencer Software Sequenced Reset Entry Control Register Offset 0x0C
	Reset Sequencer Software Sequenced Reset Bring Up Control Register Offset 0x10
	Reset Sequencer Software Direct Controlled Resets Offset 0x14
	Reset Sequencer Software Reset Masking Offset 0x18

	Reset Sequencer Software Flows
	Reset Sequencer (Software-Triggered) Flow
	Reset Entry Flow
	Reset Bring-Up Flow
	Reset Entry (Software-Sequenced) Flow
	Reset Bring-Up (Software-Sequenced) Flow

	Conduits
	Interconnect Pipelining
	Manually Controlling Pipelining in the Qsys Interconnect

	AMBA AXI3 (version 1.0) Specification Support
	AXI3 Channels
	Read and Write Address Channels
	Write Data, Write Response, and Read Data Channels
	Low Power Channel

	Cache Support
	Bufferable
	Cacheable (Modifiable)

	Security Support
	Atomic Accesses
	Response Signaling
	Ordering Model
	AXI and Avalon Ordering

	Data Buses
	Unaligned Address Commands
	Avalon and AXI Transactions
	Transaction Cannot Cross 4KB Boundaries
	Handling Read Side Effects

	AMBA AXI4 (version 2.0) Specification Support
	Burst Support
	QoS
	Regions
	Write Response Dependency
	AWCACHE and ARCACHE
	Width Adaptation and Data Packing in Qsys
	Ordering Model
	Read and Write Allocate
	Locked Transactions
	Memory Types
	Mismatched Attributes
	Signals

	AMBA APB (version 1.0) Specification Support
	Bridges
	Burst Adaptation
	Width Adaptation
	Error Response

	Document Revision History

	9. Optimizing Qsys System Performance
	Designing with Avalon and AXI Interfaces
	Designing Streaming Components
	Designing Memory-Mapped Components

	Using Hierarchy in Systems
	Using Concurrency in Memory-Mapped Systems
	Create Multiple Masters
	Create Multiple Slave Interfaces
	Use DMA Engines

	Insert Pipeline Stages to Increase System Frequency
	Using Avalon Bridges
	Increasing System Frequency
	Insert Pipeline Bridges
	Use Clock Crossing Bridges

	Minimize Design Logic
	Avoid Speed Optimizations That Increase Logic
	Reduced Concurrency

	Minimizing Adapter Logic
	Effective Placement of Bridges
	Changing the Response Buffer Depth

	Consequences of Using Bridges
	Increased Latency
	Limited Concurrency
	Address Space Translation
	Address Coherency

	Increasing Transfer Throughput
	Using Pipelined Transfers
	Using the Maximum Pending Reads Parameter

	Arbitration Shares and Bursts
	Differences Between Arbitration Shares and Bursts
	Choosing Avalon-MM Interface Types
	Avalon-MM Burst Master Example

	Reducing Logic Utilization
	Minimize Interconnect Logic
	Create Dedicated Master and Slave Connections
	Removing Unnecessary Connections
	Simplifying Address Decode Logic

	Minimize Arbitration Logic by Consolidating Multiple Interfaces Into One
	Logic Consolidation Trade-Offs
	System Example of Consolidating Interfaces

	Implementing Multiple Clock Domains
	Clock Domain Crossing Logic
	Duration of Transfers Crossing Clock Domains

	Reducing Power Consumption
	Use Multiple Clock Domains
	Clock Crossing Bridge
	Clock Crossing Adapter Types
	Throughput
	Resource Utilization
	Throughput versus Memory Trade-Offs

	Minimizing Toggle Rates
	Registering Component Boundaries
	Using Clock Enables
	Inserting Bridges

	Disabling Logic
	Software-Controlled Sleep Mode
	Hardware-Controlled Sleep Mode

	Design Examples
	Avalon Pipelined Read Master Example
	Design Requirements
	Expected Throughput Improvement

	Multiplexer Examples
	Example to Double Clock Frequency
	Example to Double Data Width and Maintain Frequency
	Example to Boost the Frequency

	Conclusion
	Document Revision History

	10. Component Interface Tcl Reference
	Command Summary
	Module Definition
	add_documentation_link
	get_module_assignment
	get_module_assignments
	get_module_ports
	get_module_properties
	get_module_property
	package
	send_message
	set_module_assignment
	set_module_property
	add_hdl_instance
	Module Properties Table

	Parameters
	add_parameter
	decode_address_map
	get_parameters
	get_parameter_properties
	get_parameter_property
	get_parameter_value
	get_string
	load_strings
	set_parameter_property
	set_parameter_value
	Parameter Properties Table
	SYSTEM_INFO Properties Table

	Display Items
	add_display_item
	get_display_items
	get_display_item_properties
	get_display_item_property
	set_display_item_property
	Display Item Properties Table

	Interfaces and Ports
	add_interface
	add_interface_port
	get_interfaces
	get_interface_assignment
	get_interface_assignments
	get_interface_ports
	get_interface_properties
	get_interface_property
	get_port_properties
	get_port_property
	set_interface_assignment
	set_interface_property
	set_port_property
	Interface Properties Table
	Port Properties Table

	Composition
	add_instance
	add_connection
	get_connections
	get_connection_parameters
	get_connection_parameter_value
	get_instances
	get_instance_interfaces
	get_instance_interface_ports
	get_instance_interface_properties
	get_instance_property
	set_instance_property
	get_instance_properties
	get_instance_interface_property
	get_instance_parameters
	get_instance_parameter_property
	get_instance_parameter_value
	get_instance_port_property
	set_connection_parameter_value
	set_instance_parameter_value

	Fileset Generation
	add_fileset
	add_fileset_file
	set_fileset_property
	get_fileset_file_attribute
	set_fileset_file_attribute
	get_fileset_sim_properties
	set_fileset_sim_properties
	create_temp_file

	Miscellaneous
	check_device_family_equivalence
	get_device_family_displayname
	set_qip_strings

	Simulator Properties
	Instance Properties
	Port Roles (Interface Signal Types)
	AXI Interface Signal Types
	AXI Master Interface Signal Types
	AXI Slave Interface Signals

	APB Interface Signal Types
	Avalon Interface Signal Types
	Avalon Memory-Mapped Signals
	Avalon-ST Interface Signals
	Tri-state Slave Interface Signals
	Tri-state Conduit Interface Signals
	Avalon Clock Sink Interface Signals
	Avalon Clock Source Interface Signals
	Avalon Conduit Interface Signals
	Interrupt Sender Interface Signals
	Interrupt Receiver Interface Signals

	Document Revision History

	11. Qsys System Design Components
	Bridges
	Clock Bridge
	Avalon-MM Clock Crossing Bridge
	Avalon‑MM Pipeline Bridge
	Bridges Between Avalon and AXI Interfaces
	Address Span Extender

	Tri-state Components
	Generic Tri-state Controller
	Tri‑state Conduit Pin Sharer
	Tri‑state Conduit Bridge

	Test Pattern Generator and Checker Cores
	Test Pattern Generator
	Test Pattern Generator Command Interface
	Test Pattern Generator Control and Status Interface
	Test Pattern Generator Output Interface
	Test Pattern Generator Functional Parameter

	Test Pattern Checker
	Test Pattern Checker Input Interface
	Test Pattern Checker Control and Status Interface
	Test Pattern Checker Functional Parameter
	Test Pattern Checker Input Parameters

	Software Programming Model for the Test Pattern Generator and Checker Cores
	HAL System Library Support
	Software Files Provided with the Test Pattern Generator
	Register Maps for the Test Pattern Generator and Checker Cores
	Test Pattern Generator Control and Status Registers
	Test Pattern Generator Command Registers
	Test Pattern Checker Control and Status Registers

	Test Pattern Generator API
	data_source_reset()
	data_source_init()
	data_source_get_id()
	data_source_get_supports_packets()
	data_source_get_num_channels()
	data_source_get_symbols_per_cycle()
	data_source_set_enable()
	data_source_get_enable()
	data_source_set_throttle()
	data_source_get_throttle()
	data_source_is_busy()
	data_source_fill_level()
	data_source_send_data()

	Test Pattern Checker API
	data_sink_reset()
	data_sink_init()
	data_sink_get_id()
	data_sink_get_supports_packets()
	data_sink_get_num_channels()
	data_sink_get_symbols_per_cycle()
	data_sink_set enable()
	data_sink_get_enable()
	data_sink_set_throttle()
	data_sink_get_throttle()
	data_sink_get_packet_count()
	data_sink_get_error_count()
	data_sink_get_symbol_count()
	data_sink_get_exception()
	data_sink_exception_is_exception()
	data_sink_exception_has_data_error()
	data_sink_exception_has_missing_sop()
	data_sink_exception_has_missing_eop()
	data_sink_exception_signalled_error()
	data_sink_exception_channel()

	Splitter Core
	Splitter Core Backpressure
	Splitter Core Interfaces
	Splitter Core Parameters

	Delay Core
	Delay Core Reset Signal
	Delay Core Interfaces
	Delay Core Parameters

	Round Robin Scheduler
	Round Robin Scheduler Interfaces
	Almost-Full Status Interface
	Request Interface (Round Robin Scheduler)

	Round Robin Scheduler Operation
	Round Robin Scheduler Parameters

	Packets to Transactions Converter
	Packets to Transactions Converter Interfaces
	Packets to Transactions Converter Operation
	Packets to Transactions Converter Data Packet Formats
	Packets to Transactions Converter Supported Transactions
	Packets to Transactions Converter Malformed Packets

	Streaming Pipeline Stage
	Streaming Channel Multiplexer and Demultiplexer Cores
	Software Programming Model For the Multiplexer and Demultiplexer Components
	Multiplexer
	Multiplexer Input Interfaces
	Multiplexer Output Interface
	Multiplexer Parameters

	Demultiplexer
	Demultiplexer Input Interface
	Demultiplexer Output Interface
	Demultiplexer Parameters

	Single-Clock and Dual‑Clock FIFO Cores
	Interfaces Implemented in FIFO Cores
	Avalon-ST Data Interface
	Avalon-MM Control and Status Register Interface
	Avalon-ST Status Interface

	FIFO Operating Modes
	Fill Level of the FIFO Buffer
	Almost-Full and Almost-Empty Thresholds to Prevent Overflow and Underflow
	Configurable Parameters for the Single-Clock and Dual-Clock FIFO Cores
	Avalon-ST Single-Clock FIFO Registers

	Document Revision History

	Section 3. Design Guidelines
	12. Recommended Design Practices
	Synchronous FPGA Design Practices
	Fundamentals of Synchronous Design
	Hazards of Asynchronous Design

	Design Guidelines
	Combinational Logic Structures
	Combinational Loops
	Latches
	Delay Chains
	Pulse Generators and Multivibrators

	Clocking Schemes
	Internally Generated Clocks
	Divided Clocks
	Ripple Counters
	Multiplexed Clocks
	Gated Clocks
	Synchronous Clock Enables
	Recommended Clock-Gating Methods

	Optimizing for Physical Implementation and Timing Closure
	Planning Physical Implementation
	Planning FPGA Resources
	Optimizing for Timing Closure
	Optimizing Critical Timing Paths

	Power Optimization
	Metastability
	Incremental Compilation

	Checking Design Violations
	Quartus II Design Flow with the Design Assistant
	Enabling and Disabling Design Assistant Rules
	Viewing Design Assistant Results
	Custom Rules
	Custom Rules Coding Examples

	Targeting Clock and Register-Control Architectural Features
	Clock Network Resources
	Reset Resources
	Synchronous Reset
	Asynchronous Reset
	Synchronized Asynchronous Reset

	Register Control Signals

	Targeting Embedded RAM Architectural Features
	Conclusion
	Document Revision History

	13. Recommended HDL Coding Styles
	Using the Quartus II Templates
	Inserting a Template with the Quartus II Text Editor

	Using Altera Megafunctions
	Instantiating Altera Megafunctions in HDL Code
	Instantiating Megafunctions Using the MegaWizard Plug-In Manager
	Creating a Netlist File for Other Synthesis Tools
	Instantiating Megafunctions Using the Port and Parameter Definition

	Inferring Multiplier and DSP Functions from HDL Code
	Inferring Multipliers from HDL Code
	Inferring Multiply-Accumulators and Multiply-Adders from HDL Code

	Inferring Memory Functions from HDL Code
	Inferring RAM functions from HDL Code
	Use Synchronous Memory Blocks
	Avoid Unsupported Reset and Control Conditions
	Check Read-During-Write Behavior
	Controlling Inference and Implementation in Device RAM Blocks
	Single-Clock Synchronous RAM with Old Data Read-During-Write Behavior
	Single-Clock Synchronous RAM with New Data Read-During-Write Behavior
	Simple Dual-Port, Dual-Clock Synchronous RAM
	True Dual-Port Synchronous RAM
	Mixed-Width Dual-Port RAM
	RAM with Byte-Enable Signals
	Specifying Initial Memory Contents at Power-Up

	Inferring ROM Functions from HDL Code
	Shift Registers—Inferring the ALTSHIFT_TAPS Megafunction from HDL Code
	Simple Shift Register
	Shift Register with Evenly Spaced Taps

	Coding Guidelines for Registers and Latches
	Register Power-Up Values in Altera Devices
	Specifying a Power-Up Value

	Secondary Register Control Signals Such as Clear and Clock Enable
	Latches
	Unintentional Latch Generation
	Inferring Latches Correctly

	General Coding Guidelines
	Tri-State Signals
	Clock Multiplexing
	Adder Trees
	Architectures with 4-Input LUTs in Logic Elements
	Architectures with 6-Input LUTs in Adaptive Logic Modules

	State Machines
	Verilog HDL State Machines
	VHDL State Machines

	Multiplexers
	Quartus II Software Option for Multiplexer Restructuring
	Multiplexer Types
	Implicit Defaults in If Statements
	Default or Others Case Assignment

	Cyclic Redundancy Check Functions
	If Performance is Important, Optimize for Speed
	Use Separate CRC Blocks Instead of Cascaded Stages
	Use Separate CRC Blocks Instead of Allowing Blocks to Merge
	Take Advantage of Latency if Available
	Save Power by Disabling CRC Blocks When Not in Use
	Use the Device Synchronous Load (sload) Signal to Initialize

	Comparators
	Counters

	Designing with Low-Level Primitives
	Conclusion
	Document Revision History

	14. Managing Metastability with the Quartus II Software
	Introduction
	Metastability Analysis in the Quartus II Software
	Synchronization Register Chains
	Identifying Synchronizers for Metastability Analysis
	How Timing Constraints Affect Synchronizer Identification and Metastability Analysis

	Metastability and MTBF Reporting
	Metastability Reports
	MTBF Summary Report
	Synchronizer Summary Report
	Synchronizer Chain Statistics Report in the Timing Analyzer

	Synchronizer Data Toggle Rate in MTBF Calculation

	MTBF Optimization
	Synchronization Register Chain Length

	Reducing Metastability Effects
	Apply Complete System-Centric Timing Constraints for the Timing Analyzer
	Force the Identification of Synchronization Registers
	Set the Synchronizer Data Toggle Rate
	Optimize Metastability During Fitting
	Increase the Length of Synchronizers to Protect and Optimize
	Set Fitter Effort to Standard Fit instead of Auto Fit
	Increase the Number of Stages Used in Synchronizers, If Possible
	Select a Faster Speed Grade Device, if Possible

	Scripting Support
	Identifying Synchronizers for Metastability Analysis
	Synchronizer Data Toggle Rate in MTBF Calculation
	report_metastability and Tcl Command
	MTBF Optimization
	Synchronization Register Chain Length

	Conclusion
	Document Revision History

	15. Best Practices for Incremental Compilation Partitions and Floorplan Assignments
	Overview: Incremental Compilation
	Recommendations for the Netlist Type

	Design Flows Using Incremental Compilation
	Project Management in Team-Based Design Flows

	Why Plan Partitions and Floorplan Assignments?
	Partition Boundaries and Optimization
	Turning On Supported Cross-boundary Optimizations

	General Partitioning Guidelines
	Plan Design Hierarchy and Design Files
	Using Partitions with Third-Party Synthesis Tools

	Partition Design by Functionality and Block Size
	Partition Design by Clock Domain and Timing Criticality
	Consider What Is Changing

	Design Partition Guidelines
	Register Partition Inputs and Outputs
	Minimize Cross-Partition-Boundary I/O
	Examine the Need for Logic Optimization Across Partitions
	Keep Logic in the Same Partition for Optimization and Merging
	Keep Constants in the Same Partition as Logic
	Avoid Signals That Drive Multiple Partition I/O or Connect I/O Together
	Invert Clocks in Destination Partitions
	Connect I/O Pin Directly to I/O Register for Packing Across Partition Boundaries
	Do Not Use Internal Tri-States
	Include All Tri-State and Enable Logic in the Same Partition
	Include Bidirectional I/O Registers in the Same Partition (For Older Device Families)
	Summary of Guidelines Related to Logic Optimization Across Partitions

	Consider a Cascaded Reset Structure

	Design Partition Guidelines for Third-Party IP Delivery
	Allocate Logic Resources
	Allocate Global Routing Signals and Clock Networks if Required
	Assign Virtual Pins
	Perform Timing Budgeting if Required
	Drive Clocks Directly
	Recreate PLLs for Lower-Level Partitions if Required

	Checking Partition Quality
	Incremental Compilation Advisor
	Design Partition Planner
	Viewing Design Partition Planner and Floorplan Side-by-Side
	Partition Statistics Report
	Report Partition Timing in the TimeQuest Timing Analyzer
	Check if Partition Assignments Impact the Quality of Results

	Including SDC Constraints from Lower-Level Partitions for Third-Party IP Delivery
	Creating an .sdc File with Project-Wide Constraints
	Creating an .sdc with Partition-Specific Constraints
	Consolidating the .sdc in the Top-Level Design

	Introduction to Design Floorplans
	The Difference between Logical Partitions and Physical Regions
	Why Create a Floorplan?
	When to Create a Floorplan
	Early Floorplan
	Late Floorplan

	Design Floorplan Placement Guidelines
	Assigning Partitions to LogicLock Regions
	How to Size and Place Regions
	Modifying Region Size and Origin
	I/O Connections
	LogicLock Resource Exclusions

	Creating Non-Rectangular Regions

	Checking Floorplan Quality
	Incremental Compilation Advisor
	LogicLock Region Resource Estimates
	LogicLock Region Properties Statistics Report
	Locate the Quartus II TimeQuest Timing Analyzer Path in the Chip Planner
	Inter-Region Connection Bundles
	Routing Utilization
	Ensure Floorplan Assignments Do Not Significantly Impact Quality of Results

	Recommended Design Flows and Application Examples
	Create a Floorplan for Major Design Blocks
	Create a Floorplan Assignment for One Design Block with Difficult Timing
	Create a Floorplan as the Project Lead in a Team-Based Flow

	Conclusion
	Document Revision History

	Section 4. Synthesis
	16. Quartus II Integrated Synthesis
	Design Flow
	Language Support
	Verilog HDL Support
	Verilog HDL Configuration
	SystemVerilog Support
	Initial Constructs and Memory System Tasks
	Verilog HDL Macros

	VHDL Support
	VHDL-2008 Support
	VHDL Standard Libraries and Packages
	VHDL wait Constructs

	AHDL Support
	Schematic Design Entry Support
	State Machine Editor
	Design Libraries
	Specifying a Destination Library Name in the Settings Dialog Box
	Specifying a Destination Library Name in the Quartus II Settings File or with Tcl
	Specifying a Destination Library Name in a VHDL File
	Mapping a VHDL Instance to an Entity in a Specific Library

	Using Parameters/Generics
	Setting Default Parameter Values and BDF Instance Parameter Values
	Passing Parameters Between Two Design Languages

	Incremental Compilation
	Partitions for Preserving Hierarchical Boundaries
	Parallel Synthesis
	Quartus II Exported Partition File as Source

	Quartus II Synthesis Options
	Setting Synthesis Options
	Quartus II Logic Options
	Synthesis Attributes
	Synthesis Directives

	Optimization Technique
	Auto Gated Clock Conversion
	Timing-Driven Synthesis
	SDC Constraint Protection
	PowerPlay Power Optimization
	Limiting Resource Usage in Partitions
	Creating LogicLock Regions
	Using Assignments to Limit the Number of RAM and DSP Blocks

	Restructure Multiplexers
	Synthesis Effort
	Synthesis Seed
	State Machine Processing
	Manually Specifying State Assignments Using the syn_encoding Attribute
	Manually Specifying Enumerated Types Using the enum_encoding Attribute

	Safe State Machine
	Power-Up Level
	Inferred Power-Up Levels

	Power-Up Don’t Care
	Remove Duplicate Registers
	Preserve Registers
	Disable Register Merging/Don’t Merge Register
	Noprune Synthesis Attribute/Preserve Fan-out Free Register Node
	Keep Combinational Node/Implement as Output of Logic Cell
	Disabling Synthesis Netlist Optimizations with dont_retime Attribute
	Disabling Synthesis Netlist Optimizations with dont_replicate Attribute
	Maximum Fan-Out
	Controlling Clock Enable Signals with Auto Clock Enable Replacement and direct_enable

	Inferring Multiplier, DSP, and Memory Functions from HDL Code
	Multiply-Accumulators and Multiply-Adders
	Shift Registers
	RAM and ROM
	Resource Aware RAM, ROM, and Shift-Register Inference
	Auto RAM to Logic Cell Conversion
	RAM Style and ROM Style—for Inferred Memory
	RAM Style Attribute—For Shift Registers Inference
	Turning Off the Add Pass-Through Logic to Inferred RAMs no_rw_check Attribute
	RAM Initialization File—for Inferred Memory
	Multiplier Style—for Inferred Multipliers
	Full Case Attribute
	Parallel Case
	Translate Off and On / Synthesis Off and On
	Ignore translate_off and synthesis_off Directives
	Read Comments as HDL
	Use I/O Flipflops
	Specifying Pin Locations with chip_pin
	Using altera_attribute to Set Quartus II Logic Options

	Analyzing Synthesis Results
	Analysis & Synthesis Section of the Compilation Report
	Project Navigator
	Upgrade IP Components Dialog Box

	Analyzing and Controlling Synthesis Messages
	Quartus II Messages
	VHDL and Verilog HDL Messages
	Setting the HDL Message Level
	Enabling or Disabling Specific HDL Messages by Module/Entity

	Node-Naming Conventions in Quartus II Integrated Synthesis
	Hierarchical Node-Naming Conventions
	Node-Naming Conventions for Registers (DFF or D Flipflop Atoms)
	Register Changes During Synthesis
	Synthesis and Fitting Optimizations
	State Machines
	Inferred Adder-Subtractors, Shift Registers, Memory, and DSP Functions
	Packed Input and Output Registers of RAM and DSP Blocks

	Preserving Register Names
	Node-Naming Conventions for Combinational Logic Cells
	Preserving Combinational Logic Names

	Scripting Support
	Adding an HDL File to a Project and Setting the HDL Version
	Assigning a Pin
	Creating Design Partitions for Incremental Compilation
	Quartus II Synthesis Options

	Conclusion
	Document Revision History

	17. Synopsys Synplify Support
	About Synplify Support
	Design Flow
	Hardware Description Language Support
	Altera Device Family Support
	Specifying the Quartus II Software Version

	Exporting Designs to the Quartus II Software Using NativeLink Integration
	Running the Quartus II Software from within the Synplify Software
	Using the Quartus II Software to Run the Synplify Software

	Synplify Software Generated Files
	Design Constraints Support
	Specifying the Output Netlist File Name and Result Format
	Running the Quartus II Software Manually With the Synplify‑Generated Tcl Script
	Passing TimeQuest SDC Timing Constraints to the Quartus II Software
	Individual Clocks and Frequencies
	Input and Output Delay
	Multicycle Path
	False Path

	Simulation and Formal Verification
	Synplify Optimization Strategies
	Using Synplify Premier to Optimize Your Design
	Using Implementations in Synplify Pro or Premier
	Timing-Driven Synthesis Settings
	Clock Frequencies
	Multiple Clock Domains
	Input and Output Delays
	Multicycle Paths
	False Paths

	FSM Compiler
	FSM Explorer in Synplify Pro and Premier

	Optimization Attributes and Options
	Retiming in Synplify Pro and Premier
	Maximum Fan-Out
	Preserving Nets
	Register Packing
	Resource Sharing
	Preserving Hierarchy
	Register Input and Output Delays
	syn_direct_enable
	I/O Standard

	Altera-Specific Attributes
	altera_chip_pin_lc
	altera_io_powerup
	altera_io_opendrain

	Guidelines for Altera Megafunctions and Architecture-Specific Features
	Instantiating Altera Megafunctions With the MegaWizard Plug‑In Manager
	Instantiating Megafunctions With MegaWizard Plug-In Manager-Generated Verilog HDL Files
	Instantiating Megafunctions with MegaWizard Plug-In Manager-Generated VHDL Files
	Changing Synplify’s Default Behavior for Instantiated Altera Megafunctions
	Instantiating Intellectual Property With the MegaWizard Plug-In Manager and IP Toolbench
	Instantiating Black Box IP Functions With Generated Verilog HDL Files
	Instantiating Black Box IP Functions With Generated VHDL Files
	Other Synplify Software Attributes for Creating Black Boxes

	Including Files for Quartus II Placement and Routing Only
	Inferring Altera Megafunctions from HDL Code
	Inferring Multipliers
	Resource Balancing
	Controlling the DSP Block Inference
	Signal Level Attribute

	Inferring RAM
	RAM Initialization
	Inferring ROM
	Inferring Shift Registers

	Incremental Compilation and Block-Based Design
	Design Flow for Incremental Compilation
	Creating a Design with Separate Netlist Files for Incremental Compilation
	Using MultiPoint Synthesis with Incremental Compilation
	Set Compile Points and Create Constraint Files
	Defining Compile Points With .tcl or .sdc Files

	Additional Considerations for Compile Points
	Creating a Quartus II Project for Compile Points and Multiple .vqm Files
	Creating a Single Quartus II Project for a Standard Incremental Compilation Flow
	Creating Multiple Quartus II Projects for a Bottom-Up Incremental Compilation Flow

	Creating Multiple .vqm Files for a Incremental Compilation Flow With Separate Synplify Projects
	Manually Creating Multiple .vqm Files With Black Boxes
	Creating Multiple .vqm Files for this Design
	Creating Black Boxes in Verilog HDL
	Creating Black Boxes in VHDL

	Creating a Quartus II Project for Multiple .vqm Files
	Creating a Single Quartus II Project for a Standard Incremental Compilation Flow
	Creating Multiple Quartus II Projects for a Bottom-Up Incremental Compilation Flow

	Performing Incremental Compilation in the Quartus II Software

	Document Revision History

	18. Mentor Graphics Precision Synthesis Support
	Altera Device Family Support
	Design Flow
	Creating and Compiling a Project in the Precision Synthesis Software
	Mapping the Precision Synthesis Design
	Setting Timing Constraints
	Setting Mapping Constraints
	Assigning Pin Numbers and I/O Settings
	Assigning I/O Registers
	Disabling I/O Pad Insertion
	Preventing the Precision Synthesis Software from Adding I/O Pads
	Preventing the Precision Synthesis Software from Adding an I/O Pad on an Individual Pin

	Controlling Fan-Out on Data Nets

	Synthesizing the Design and Evaluating the Results
	Obtaining Accurate Logic Utilization and Timing Analysis Reports

	Exporting Designs to the Quartus II Software Using NativeLink Integration
	Running the Quartus II Software from within the Precision Synthesis Software
	Running the Quartus II Software Manually Using the Precision Synthesis-Generated Tcl Script
	Using the Quartus II Software to Run the Precision Synthesis Software
	Passing Constraints to the Quartus II Software
	create_clock
	set_input_delay
	set_output_delay
	set_max_delay and set_min_delay
	set_false_path
	set_multicycle_path

	Guidelines for Altera Megafunctions and Architecture-Specific Features
	Instantiating Altera Megafunctions Using the MegaWizard Plug-In Manager
	Instantiating Megafunctions With MegaWizard Plug-In Manager-Generated Verilog HDL Files
	Instantiating Megafunctions With MegaWizard Plug-In Manager-Generated VHDL Files
	Instantiating Intellectual Property With the MegaWizard Plug-In Manager and IP Toolbench
	Instantiating Black Box IP Functions With Generated Verilog HDL Files
	Instantiating Black Box IP Functions With Generated VHDL Files

	Inferring Altera Megafunctions from HDL Code
	Multipliers
	Setting the Use Dedicated Multiplier Option
	Setting the dedicated_mult Attribute
	Multiplier-Accumulators and Multiplier-Adders
	Controlling DSP Block Inference
	RAM and ROM

	Incremental Compilation and Block-Based Design
	Creating a Design with Precision RTL Plus Incremental Synthesis
	Creating Partitions with the incr_partition Attribute

	Creating Multiple Mapped Netlist Files With Separate Precision Projects or Implementations
	Creating Black Boxes to Create EDIF Netlists
	Creating Black Boxes in Verilog HDL
	Creating Black Boxes in VHDL

	Creating Quartus II Projects for Multiple EDIF Files
	Creating a Single Quartus II Project for a Standard Incremental Compilation Flow
	Creating Multiple Quartus II Projects for a Bottom-Up Flow

	Hierarchy and Design Considerations

	Conclusion
	Document Revision History

	19. Analyzing Designs with Quartus II Netlist Viewers
	When to Use the Netlist Viewers: Analyzing Design Problems
	Quartus II Design Flow with the Netlist Viewers
	RTL Viewer Overview
	State Machine Viewer Overview
	Technology Map Viewer Overview
	Introduction to the User Interface
	Netlist Navigator Pane
	Properties Pane
	Netlist Viewers Find Pane

	Schematic View
	Display Schematics in Multiple Tabbed View
	Schematic Symbols
	Select Items in the Schematic View
	Shortcut Menu Commands in the Schematic View
	Filtering in the Schematic View
	View Contents of Nodes in the Schematic View
	Moving Nodes in the Schematic View
	View LUT Representations in the Technology Map Viewer
	Zoom Controls
	Navigating with the Bird's Eye View
	Partition the Schematic into Pages
	Follow Nets Across Schematic Pages

	State Machine Viewer
	State Diagram View
	State Transition Table
	State Encoding Table
	Select Items in the State Machine Viewer
	Switch Between State Machines

	Probing to a Source Design File and Other Quartus II Windows
	Probing to the Netlist Viewers from Other Quartus II Windows
	Viewing a Timing Path
	Document Revision History

	Additional Information
	How to Contact Altera
	Typographic Conventions

	Quartus II Handbook Version 13.1 Volume 2: Design Implementation and Optimization
	Chapter Revision Dates
	Section I. Scripting and Constraint Entry
	1. Constraining Designs
	Constraining Designs with the Quartus II GUI
	Global Constraints
	Node, Entity, and Instance-Level Constraints
	Probing Between Components of the Quartus II GUI
	SDC and the TimeQuest Timing Analyzer

	Constraining Designs with Tcl
	Quartus II Settings Files and Tcl
	Timing Analysis with Synopsys Design Constraints and Tcl

	A Fully Iterative Scripted Flow
	Document Revision History

	2. Command-Line Scripting
	Benefits of Command-Line Executables
	Introductory Example
	Command-Line Scripting Help

	Project Settings with Command-Line Options
	Option Precedence

	Compilation with quartus_sh --flow
	Text-Based Report Files
	Using Command-Line Executables In Scripts
	Makefile Implementation

	The MegaWizard Plug-In Manager
	Command-Line Support
	Module and Wizard Names

	Ports and Parameters
	Invalid Configurations
	Strategies to Determine Port and Parameter Values

	Optional Files
	Parameter File
	Working Directory
	Variation File Name

	Command-Line Scripting Examples
	Create a Project and Apply Constraints
	Check Design File Syntax
	Create a Project and Synthesize a Netlist Using Netlist Optimizations
	Archive and Restore Projects
	Perform I/O Assignment Analysis
	Update Memory Contents Without Recompiling
	Create a Compressed Configuration File
	Fit a Design as Quickly as Possible
	Fit a Design Using Multiple Seeds
	Regenerating Megafunctions After Updating the Quartus II Software
	The QFlow Script

	Document Revision History

	3. Tcl Scripting
	Introduction
	Tool Command Language
	Quartus II Tcl Packages
	Loading Packages

	Quartus II Tcl API Help
	Command-Line Options: -t, -s, and --tcl_eval
	Run a Tcl Script
	Interactive Shell Mode
	Evaluate as Tcl

	The Quartus II Tcl Console Window

	End-to-End Design Flows
	Creating Projects and Making Assignments
	Compiling Designs
	The flow Package
	Compile All Revisions

	Reporting
	Viewing Report Data in Excel

	Timing Analysis
	Automating Script Execution
	Execution Example
	Controlling Processing
	Displaying Messages

	Other Scripting Features
	Natural Bus Naming
	Short Option Names
	Collection Commands
	The foreach_in_collection Command
	The get_collection_size Command

	The post_message Command
	Accessing Command-Line Arguments
	The cmdline Package

	The quartus() Array

	The Quartus II Tcl Shell in Interactive Mode
	The tclsh Shell
	Tcl Scripting Basics
	Hello World Example
	Variables
	Substitutions
	Variable Value Substitution
	Nested Command Substitution
	Backlash Substitution

	Arithmetic
	Lists
	Arrays
	Control Structures
	Procedures
	File I/O
	Syntax and Comments
	External References

	Document Revision History

	Section II. I/O and PCB Tools
	4. Managing Device I/O Pins
	I/O Planning Overview
	Basic I/O Planning Flow
	Integrating PCB Design Tools
	Altera Device Terms

	Assigning I/O Pins
	Assigning to Exclusive Pin Groups
	Assigning Slew Rate and Drive Strength
	Assigning Differential Pins
	Overriding I/O Placement Rules on Differential Pins

	Entering Pin Assignments with Tcl Commands
	Entering Pin Assignments in HDL Code
	Using Synthesis Attributes
	Using Low‑Level I/O Primitives

	Importing and Exporting I/O Pin Assignments
	Importing and Exporting for PCB Tools
	Migrating Assignments to Another Target Device

	Validating Pin Assignments
	I/O Assignment Validation Rules
	Checking I/O Pin Assignments In Real-Time
	Running I/O Assignment Analysis
	Running Early I/O Assignment Analysis (without Design Files)
	Running I/O Assignment Analysis (with Design Files)
	Overriding Default I/O Pin Analysis

	Understanding I/O Analysis Reports

	Verifying I/O Timing
	Running Advanced I/O Timing
	Understanding the Board Trace Models
	Defining the Board Trace Model
	Modifying the Board Trace Model
	Specifying Near‑End vs Far‑End I/O Timing Analysis
	Understanding Advanced I/O Timing Analysis Reports

	Adjusting I/O Timing and Power with Capacitive Loading

	Viewing Routing and Timing Delays
	Analyzing Simultaneous Switching Noise
	Scripting API
	Run I/O Assignment Analysis
	Generate Mapped Netlist
	Reserve Pins
	Set Location
	Exclusive I/O Group
	Slew Rate and Current Strength

	Document Revision History

	5. Simultaneous Switching Noise (SSN) Analysis and Optimizations
	Definitions
	Understanding SSN
	SSN Estimation Tools
	SSN Analysis Overview
	Performing Early Pin-Out SSN Analysis
	Performing Early Pin-Out SSN Analysis with the ESE Tool
	Performing Early Pin-Out SSN Analysis with the SSN Analyzer

	Performing Final Pin-Out SSN Analysis

	Design Factors Affecting SSN Results
	Optimizing Your Design for SSN Analysis
	Optimizing Pin Placements for Signal Integrity
	Specifying Board Trace Model Settings
	Defining PCB Layers and PCB Layer Thickness
	Specifying Signal Breakout Layers
	Creating I/O Assignments
	Decreasing Pessimism in SSN Analysis
	Excluding Pins as Aggressor Signals

	Performing SSN Analysis and Viewing Results
	Understanding the SSN Reports
	Summary Report
	Output Pins and Input Pins Reports
	Unanalyzed Pins Report
	Confidence Metric Details Report

	Viewing SSN Analysis Results in the Pin Planner

	Decreasing Processing Time for SSN Analysis
	Scripting Support
	Optimizing Pin Placements for Signal Integrity
	Defining PCB Layers and PCB Layer Thickness
	Specifying Signal Breakout Layers
	Decreasing Pessimism in SSN Analysis
	Performing SSN Analysis

	Conclusion
	Document Revision History

	6. Signal Integrity Analysis with Third-Party Tools
	Introduction
	I/O Model Selection: IBIS or HSPICE
	FPGA to Board Signal Integrity Analysis Flow
	Create I/O and Board Trace Model Assignments
	Output File Generation
	Customize the Output Files
	Set Up and Run Simulations in Third-Party Tools
	Interpret Simulation Results

	Simulation with IBIS Models
	Elements of an IBIS Model
	Creating Accurate IBIS Models
	Download IBIS Models
	Generate Custom IBIS Models with the IBIS Writer

	Design Simulation Using the Mentor Graphics HyperLynx Software
	Configuring LineSim to Use Altera IBIS Models
	Integrating Altera IBIS Models into LineSim Simulations
	Running and Interpreting LineSim Simulations

	Simulation with HSPICE Models
	Supported Devices and Signaling
	Accessing HSPICE Simulation Kits
	The Double Counting Problem in HSPICE Simulations
	Defining the Double Counting Problem
	The Solution to Double Counting

	HSPICE Writer Tool Flow
	Applying I/O Assignments
	Enabling HSPICE Writer
	Enabling HSPICE Writer Using Assignments
	Naming Conventions for HSPICE Files
	Invoking HSPICE Writer
	Invoking HSPICE Writer from the Command Line
	Customizing Automatically Generated HSPICE Decks

	Running an HSPICE Simulation
	Interpreting the Results of an Output Simulation
	Interpreting the Results of an Input Simulation
	Viewing and Interpreting Tabular Simulation Results
	Viewing Graphical Simulation Results
	Making Design Adjustments Based on HSPICE Simulations
	Sample Input for I/O HSPICE Simulation Deck
	Header Comment
	Simulation Conditions
	Simulation Options
	Constant Definition
	Buffer Netlist
	Drive Strength
	I/O Buffer Instantiation
	Board Trace and Termination
	Stimulus Model
	Simulation Analysis

	Sample Output for I/O HSPICE Simulation Deck
	Header Comment
	Simulation Conditions
	Simulation Options
	Constraint Definition
	I/O Buffer Netlist
	Drive Strength
	Slew Rate and Delay Chain
	I/O Buffer Instantiation
	Board and Trace Termination
	Double-Counting Compensation Circuitry
	Simulation Analysis

	Advanced Topics
	PVT Simulations
	Hold Time Analysis
	I/O Voltage Variations
	Correlation Report

	Conclusion
	Document Revision History

	7. Mentor Graphics PCB Design Tools Support
	FPGA-to-PCB Design Flow
	Performing Simultaneous Switching Noise (SSN) Analysis of Your FPGA

	Setting Up the Quartus II Software
	Generating a .pin File
	Generating an .fx File
	Creating a Backup .qsf

	FPGA-to-Board Integration with the I/O Designer Software
	I/O Designer Database Wizard
	Updating Pin Assignments from the Quartus II Software
	Sending Pin Assignment Changes to the Quartus II Software
	Protecting Assignments in the Quartus II Software

	Generating Symbols for the DxDesigner Software
	Setting Up the I/O Designer Software to Work with the DxDesigner Software
	Creating Symbols with the Symbol Wizard
	Exporting Symbols to the DxDesigner Software

	Scripting Support

	FPGA-to-Board Integration with the DxDesigner Software
	DxDesigner Project Settings
	DxDesigner Symbol Wizard

	Conclusion
	Document Revision History

	8. Cadence PCB Design Tools Support
	Product Comparison
	FPGA-to-PCB Design Flow
	Performing Simultaneous Switching Noise (SSN) Analysis of Your FPGA

	Setting Up the Quartus II Software
	Generating a .pin File

	FPGA-to-Board Integration with the Cadence Allegro Design Entry HDL Software
	Creating Symbols
	Cadence Allegro PCB Librarian Part Developer Tool

	Instantiating the Symbol in the Cadence Allegro Design Entry HDL Software

	FPGA-to-Board Integration with Cadence Allegro Design Entry CIS Software
	Creating a Cadence Allegro Design Entry CIS Project
	Generating a Part
	Splitting a Part
	Instantiating a Symbol in a Design Entry CIS Schematic
	Altera Libraries for the Cadence Allegro Design Entry CIS Software

	Conclusion
	Document Revision History

	9. Reviewing Printed Circuit Board Schematics with the Quartus II Software
	Reviewing Quartus II Software Settings
	Device and Pins Options Dialog Box Settings
	Configuration Page Settings
	Unused Pin Page Settings
	Dual-Purpose Pins Page Settings
	Voltage Page Settings
	Error Detection CRC Page Settings

	Voltage Page Settings

	Reviewing Device Pin-Out Information in the Fitter Report
	Reviewing Compilation Error and Warning Messages
	Using Additional Quartus II Software Features
	Using Additional Quartus II Software Tools
	Pin Planner
	SSN Analyzer

	Conclusion
	Document Revision History

	Section III. Area, Timing, Power, and Compilation Time Optimization
	10. Design Optimization Overview
	Introduction
	Initial Compilation: Required Settings
	Device Settings
	Device Migration Settings
	I/O Assignments
	Timing Requirement Settings
	Partitions and Floorplan Assignments for Incremental Compilation

	Physical Implementation
	Trade-Offs and Limitations
	Preserving Results and Enabling Teamwork
	Reducing Area
	Reducing Critical Path Delay
	Reducing Power Consumption
	Reducing Runtime

	Using Quartus II Tools
	Design Analysis
	Advisors
	Design Space Explorer

	Conclusion
	Document Revision History

	11. Reducing Compilation Time
	Compilation Time Optimization Techniques
	Compilation Time Advisor
	Strategies to Reduce the Overall Compilation Time
	Using Parallel Compilation with Multiple Processors
	Using Incremental Compilation
	Using the Smart Compilation Setting

	Reducing Synthesis Time and Synthesis Netlist Optimization Time
	Settings to Reduce Synthesis Time and Synthesis Netlist Optimization Time
	Use Appropriate Coding Style to Reduce Synthesis Time

	Reducing Placement Time
	Fitter Effort Setting
	Placement Effort Multiplier Settings
	Physical Synthesis Effort Settings
	Preserving Placement with Incremental Compilation

	Reducing Routing Time
	Identifying Routing Congestion in the Chip Planner
	Preserving Routing with Incremental Compilation

	Reducing Static Timing Analysis Time
	Setting Process Priority

	Document Revision History

	12. Timing Closure and Optimization
	Initial Compilation: Optional Fitter Settings
	Optimize Hold Timing
	Optimize Multi-Corner Timing
	Fitter Aggressive Routability Optimization

	Design Analysis
	Ignored Timing Constraints
	I/O Timing (Including tPD)
	Register-to-Register Timing
	Timing Analysis with the TimeQuest Timing Analyzer
	Tips for Analyzing Failing Paths
	Tips for Analyzing Failing Clock Paths that Cross Clock Domains
	Tips for Analyzing Paths from/to the Source and Destination of Critical Path
	Tips for Locating Multiple Paths to the Chip Planner
	Tips for Creating a .tcl Script to Monitor Critical Paths Across Compiles
	Global Routing Resources

	Optimizing Timing (LUT-Based Devices)
	Debugging Timing Failures in the TimeQuest Analyzer
	Timing Optimization Advisor
	I/O Timing Optimization
	Improving Setup and Clock-to-Output Times Summary
	Timing-Driven Compilation
	Fast Input, Output, and Output Enable Registers
	Programmable Delays
	Use PLLs to Shift Clock Edges
	Use Fast Regional Clock Networks and Regional Clocks Networks
	Spine Clock Limitations
	Change How Hold Times are Optimized for MAX II Devices

	Register-to-Register Timing Optimization Techniques (LUT-Based Devices)
	Optimize Source Code
	Improving Register-to-Register Timing Summary
	Physical Synthesis Optimizations
	Turn Off Extra-Effort Power Optimization Settings
	Optimize Synthesis for Speed, Not Area
	Flatten the Hierarchy During Synthesis
	Set the Synthesis Effort to High
	Change State Machine Encoding
	Duplicate Logic for Fan-Out Control
	Prevent Shift Register Inference
	Use Other Synthesis Options Available in Your Synthesis Tool
	Fitter Seed
	Set Maximum Router Timing Optimization Level

	LogicLock Assignments
	Hierarchy Assignments

	Location Assignments
	Metastability Analysis and Optimization Techniques

	Design Evaluation for Timing Closure
	Review Compilation Results
	Review Messages
	Evaluate Physical Synthesis Results
	Evaluate Fitter Netlist Optimizations
	Evaluate optimization results
	Evaluate resource usage
	Evaluate Other Reports and Adjust Settings Accordingly

	Review Details of Timing Paths
	Making Adjustments and Recompiling

	Scripting Support
	Initial Compilation Settings
	Resource Utilization Optimization Techniques (LUT-Based Devices)
	I/O Timing Optimization Techniques (LUT-Based Devices)
	Register-to-Register Timing Optimization Techniques (LUT-Based Devices)

	Document Revision History

	13. Power Optimization
	Power Dissipation
	Design Space Explorer
	Power-Driven Compilation
	Power-Driven Synthesis
	Power-Driven Fitter
	Area-Driven Synthesis
	Gate-Level Register Retiming

	Design Guidelines
	Clock Power Management
	LAB-Wide Clock Enable Example

	Reducing Memory Power Consumption
	Memory Power Reduction Example

	Pipelining and Retiming
	Architectural Optimization
	I/O Power Guidelines
	Dynamically Controlled On-Chip Terminations
	Power Optimization Advisor
	Power Optimization Advisor Example

	Conclusion

	Document Revision History

	14. Area Optimization
	Resource Utilization
	Optimizing Resource Utilization (LUT-Based Devices)
	Using the Resource Optimization Advisor
	Resolving Resource Utilization Issues Summary
	I/O Pin Utilization or Placement
	Use I/O Assignment Analysis
	Modify Pin Assignments or Choose a Larger Package

	Logic Utilization or Placement
	Optimize Source Code
	Optimize Synthesis for Area, Not Speed
	Restructure Multiplexers
	Perform WYSIWYG Primitive Resynthesis with Balanced or Area Setting
	Use Register Packing
	Remove Fitter Constraints
	Flatten the Hierarchy During Synthesis
	Retarget Memory Blocks
	Use Physical Synthesis Options to Reduce Area
	Retarget or Balance DSP Blocks
	Use a Larger Device

	Routing
	Set Auto Packed Registers to Sparse or Sparse Auto
	Set Fitter Aggressive Routability Optimizations to Always
	Increase Router Effort Multiplier
	Remove Fitter Constraints
	Optimize Synthesis for Area, Not Speed
	Optimize Source Code
	Use a Larger Device

	Optimizing Resource Utilization (Macrocell-Based CPLDs)
	Use Dedicated Inputs for Global Control Signals
	Reserve Device Resources
	Pin Assignment Guidelines and Procedures
	Control Signal Pin Assignments
	Output Enable Pin Assignments
	Estimate Fan-In When Assigning Output Pins
	Outputs Using Parallel Expander Pin Assignments

	Resolving Resource Utilization Problems
	Resolving Macrocell Usage Issues
	Resolving Routing Issues
	Using LCELL Buffers to Reduce Required Resources

	Scripting Support
	Initial Compilation Settings
	Resource Utilization Optimization Techniques (LUT-Based Devices)

	Document Revision History

	15. Analyzing and Optimizing the Design Floorplan with the Chip Planner
	Chip Planner Overview
	Starting the Chip Planner
	Chip Planner Toolbar
	Chip Planner Presets, Layers, and Editing Modes
	Locate History Window

	LogicLock Regions
	Creating LogicLock Regions
	Creating LogicLock Regions with the Project Navigator
	Creating LogicLock Regions with the LogicLock Regions window
	Creating LogicLock Regions with the Design Partition Planner
	Creating LogicLock Regions with the Chip Planner

	Creating Nonrectangular LogicLock Regions
	Hierarchical (Parent and Child) LogicLock Regions
	Placing LogicLock Regions
	Placing Device Resources into LogicLock Regions
	LogicLock Regions Window
	Reserved LogicLock Region
	Excluded Resources
	Additional Quartus II LogicLock Design Features
	Analysis and Synthesis Resource Utilization by Entity
	Quartus II Revisions Feature
	LogicLock Assignment Precedence
	Virtual Pins

	Using LogicLock Regions in the Chip Planner
	Viewing Connections Between LogicLock Regions in the Chip Planner
	Using LogicLock Regions with the Design Partition Planner

	Design Floorplan Analysis Using the Chip Planner
	Chip Planner Floorplan Views
	Bird’s Eye View
	Properties Window

	Viewing Architecture-Specific Design Information
	Viewing Available Clock Networks in the Device
	Viewing Critical Paths
	Viewing Routing Congestion
	Viewing I/O Banks
	Viewing High-Speed Serial Interfaces (HSSI)
	Generating Fan-In and Fan-Out Connections
	Generating Immediate Fan-In and Fan-Out Connections
	Highlight Routing
	Show Delays
	Exploring Paths in the Chip Planner
	Locate Path from the Timing Analysis Report to the Chip Planner
	Analyzing Connections for a Path

	Viewing Assignments in the Chip Planner
	Viewing High-Speed and Low-Power Tiles in the Chip Planner

	Scripting Support
	Initializing and Uninitializing a LogicLock Region
	Creating or Modifying LogicLock Regions
	Obtaining LogicLock Region Properties
	Assigning LogicLock Region Content
	Save a Node-Level Netlist for the Entire Design into a Persistent Source File
	Setting LogicLock Assignment Priority
	Assigning Virtual Pins

	Document Revision History

	16. Netlist Optimizations and Physical Synthesis
	WYSIWYG Primitive Resynthesis
	Performing Physical Synthesis Optimizations
	Automatic Asynchronous Signal Pipelining
	Physical Synthesis for Combinational Logic
	Physical Synthesis for Registers—Register Duplication
	Physical Synthesis for Registers—Register Retiming
	Preserving Your Physical Synthesis Results
	Physical Synthesis Options for Fitting

	Applying Netlist Optimization Options
	Scripting Support
	Synthesis Netlist Optimizations
	Physical Synthesis Optimizations
	Incremental Compilation
	Back-Annotating Assignments

	Conclusion
	Document Revision History

	Section IV. Engineering Change Management
	17. Engineering Change Management with the Chip Planner
	Engineering Change Orders
	Performance Preservation
	Compilation Time
	Verification
	Change Modification Record

	ECO Design Flow
	The Chip Planner Overview
	Opening the Chip Planner
	The Chip Planner Tasks and Layers

	Performing ECOs with the Chip Planner (Floorplan View)
	Creating, Deleting, and Moving Atoms
	Check and Save Netlist Changes

	Performing ECOs in the Resource Property Editor
	Logic Elements
	Logic Element Schematic View
	Logic Element Properties
	Modes of Operation
	Sum and Carry Equations
	sload and sclr Signals
	Register Cascade Mode
	Cell Delay Table
	Logic Element Connections
	Delete a Logic Element

	Adaptive Logic Modules
	Adaptive Logic Module Schematic
	Adaptive Logic Module Properties
	Adaptive Logic Module Connections

	FPGA I/O Elements
	Stratix V I/O Elements
	Arria GX, Stratix, Stratix II, and Stratix GX I/O Elements
	Arria II GX, Stratix III, and Stratix IV I/O Elements
	Cyclone and Cyclone II I/O Elements
	Cyclone III I/O Elements
	MAX II I/O Elements

	FPGA RAM Blocks
	FPGA DSP Blocks

	Change Manager
	Complex Changes in the Change Manager
	Managing SignalProbe Signals
	Exporting Changes

	Scripting Support
	Common ECO Applications
	Adjust the Drive Strength of an I/O with the Chip Planner
	Modify the PLL Properties With the Chip Planner
	PLL Properties
	Adjusting the Duty Cycle
	Adjusting the Phase Shift
	Adjusting the Output Clock Frequency
	Adjusting the Spread Spectrum

	Modify the Connectivity between Resource Atoms

	Post ECO Steps
	Conclusion
	Document Revision History

	Additional Information
	How to Contact Altera
	Typographic Conventions

	Quartus II Handbook Version 13.1 Volume 3: Verification
	Chapter Revision Dates
	Section I. Simulation
	1. Simulating Altera Designs
	Altera Simulation Overview
	Simulator Support
	Simulation Levels
	Simulation Flows
	HDL Support
	System and IP File Locations

	Preparing for Simulation
	Compiling Simulation Models
	Generating IP Simulation Files for RTL Simulation
	Generating IP Functional Simulation Models for RTL Simulation

	Running a Simulation (NativeLink Flow)
	Setting Up Simulation (NativeLink Flow)
	Running RTL Simulation (NativeLink Flow)
	Running Gate-Level Simulation (NativeLink Flow)

	Running a Simulation (Custom Flow)
	Using Simulation Library Compiler (Custom Flow)
	Using NativeLink-Generated Scripts (Custom Flow)
	Using IP and Qsys Simulation Setup Scripts (Custom Flow)
	Generating Custom Simulation Scripts with ip-make-simscript

	Document Revision History

	2. Mentor Graphics ModelSim and QuestaSim Support
	Quick Start Example (ModelSim Verilog)
	ModelSim, ModelSim-Altera, and QuestaSim Guidelines
	Using ModelSim-Altera Precompiled Libraries
	Disabling Timing Violation on Registers
	Passing Parameter Information from Verilog HDL to VHDL
	Increasing Simulation Speed
	Simulating Transport Delays
	Viewing Error Messages
	Generating Power Analysis Files
	Viewing a Simulation Waveform
	Simulating with ModelSim-Altera Waveform Editor
	Simulation Setup Script Example
	Unsupported Features

	Document Revision History

	3. Synopsys VCS and VCS MX Support
	Quick Start Example (VCS Verilog)
	VCS and VCS MX Guidelines
	Disabling Timing Violation on Registers
	Simulating Transport Delays
	Generating Power Analysis Files
	Simulation Setup Script Example

	Document Revision History

	4. Cadence Incisive Enterprise Simulator Support
	Quick Start Example (NC-Verilog)
	Cadence Incisive Enterprise Guidelines
	Simulation Tool Interfaces
	Elaborating Your Design
	Back-Annotating Simulation Timing Data (VHDL Only)
	Disabling Timing Violations on Registers
	Simulating Pulse Reject Delays
	Viewing a Simulation Waveform
	Simulation Setup Script Example

	Document Revision History

	5. Aldec Active-HDL and Riviera-PRO Support
	Quick Start Example (Active-HDL VHDL)
	Active-HDL and Riviera-PRO Guidelines
	Compiling SystemVerilog Files
	Simulating Transport Delays
	Disabling Timing Violation on Registers
	Using Simulation Setup Scripts

	Document Revision History

	Section II. Timing Analysis
	6. Timing Analysis Overview
	TimeQuest Terminology and Concepts
	Timing Netlists and Timing Paths
	The Timing Netlist
	Timing Paths
	Data and Clock Arrival Times
	Launch and Latch Edges

	Clock Setup Check
	Clock Hold Check
	Recovery and Removal Time
	Multicycle Paths
	Metastability
	Common Clock Path Pessimism Removal
	Clock-As-Data Analysis
	Multicorner Analysis

	Document Revision History

	7. The Quartus II TimeQuest Timing Analyzer
	Getting Started with the TimeQuest Analyzer
	Running the TimeQuest Analyzer
	Recommended Flow
	Creating and Setting Up your Design
	Performing an Initial Compilation
	Specifying Timing Requirements
	Performing a Full Compilation
	Verifying Timing

	SDC File Precedence

	Using the Quartus II Templates
	Creating a Constraint File with the Quartus II Text Editor

	Constraining and Analyzing with Tcl Commands
	Collection Commands
	Wildcard Characters
	Adding and Removing Collection Items
	Using the query_collection Command
	Using the get_pins Command

	Identifying the Quartus II Software Executable from the SDC File
	Locating Timing Paths in Other Tools

	Design Constraints: An Example
	Creating Clocks and Clock Constraints
	Creating Base Clocks
	Creating Virtual Clocks
	I/O Interface Uncertainty

	Creating Multifrequency Clocks
	Creating Generated Clocks
	Deriving PLL Clocks
	Automatically Detecting Clocks and Creating Default Clock Constraints
	Creating Clock Groups
	Exclusive Clock Groups
	Asynchronous Clock Groups

	Accounting for Clock Effect Characteristics
	Clock Latency
	Clock Uncertainty

	Creating I/O Requirements
	Input Constraints
	Output Constraints

	Creating Delay and Skew Constraints
	Advanced I/O Timing and Board Trace Model Delay
	Maximum Skew

	Creating Timing Exceptions
	Precedence
	False Paths
	Minimum and Maximum Delays
	Delay Annotation
	Multicycle Paths
	Common Multicycle Variations
	Relaxing Setup with set_multicyle_path
	Accounting for a Phase Shift

	Multicycle Clock Setup Check and Hold Check Analysis
	Multicycle Clock Setup
	Multicycle Clock Hold

	Examples of Basic Multicycle Exceptions
	Default Settings
	End Multicycle Setup = 2 and End Multicycle Hold = 0
	End Multicycle Setup = 2 and End Multicycle Hold = 1

	Application of Multicycle Exceptions
	Same Frequency Clocks with Destination Clock Offset
	The Destination Clock Frequency is a Multiple of the Source Clock Frequency
	The Destination Clock Frequency is a Multiple of the Source Clock Frequency with an Offset
	The Source Clock Frequency is a Multiple of the Destination Clock Frequency
	The Source Clock Frequency is a Multiple of the Destination Clock Frequency with an Offset

	Timing Reports
	Document Revision History

	Section III. Power Estimation and Analysis
	8. PowerPlay Power Analysis
	Types of Power Analyses
	Differences between the PowerPlay EPE and the Quartus II PowerPlay Power Analyzer

	Factors Affecting Power Consumption
	Device Selection
	Environmental Conditions
	Device Resource Usage
	Signal Activities

	PowerPlay Power Analyzer Flow
	Operating Settings and Conditions
	Signal Activities Data Sources
	Simulation Results

	Using Simulation Files in Modular Design Flows
	Complete Design Simulation
	Modular Design Simulation
	Multiple Simulations on the Same Entity
	Overlapping Simulations
	Partial Simulations
	Specifying Start and End Time when Performing Signal-Activity Calculations using the Limit VCD Period Option

	Node Name Matching Considerations
	Glitch Filtering
	Enabling First Level of Glitch Filtering
	Enabling Second Level of Glitch Filtering

	Node and Entity Assignments
	Timing Assignments to Clock Nodes

	Default Toggle Rate Assignment
	Vectorless Estimation

	Using the PowerPlay Power Analyzer
	Common Analysis Flows
	Signal Activities from Full Post-Fit Netlist (Timing) Simulation
	Signal Activities from Full Post-Fit Netlist (Zero Delay) Simulation
	Signal Activities from RTL (Functional) Simulation, Supplemented by Vectorless Estimation
	RTL Simulation Limitation

	Signal Activities from Vectorless Estimation and User-Supplied Input Pin Activities
	Signal Activities from User Defaults Only

	Importance of .vcd
	Generating a .vcd
	Generating a .vcd from ModelSim Software
	Generating a .vcd from Full Post-Fit Netlist (Zero Delay) Simulation

	PowerPlay Power Analyzer Compilation Report
	Scripting Support
	Running the PowerPlay Power Analyzer from the Command–Line

	Document Revision History

	Section IV. System Debugging Tools
	9. System Debugging Tools Overview
	About Altera System Debugging Tools
	System Debugging Tools Portfolio
	System Debugging Tools Comparison
	Altera JTAG Interface (AJI)
	Required Arbitration Logic
	Debugging Ecosystem
	About Analysis Tools for RTL Nodes
	Resource Usage
	Overhead Logic
	For SignalProbe
	For Logic Analyzer Interface
	For SignalTap II

	Resource Estimation

	Pin Usage
	For SignalProbe
	For Logic Analyzer Interface
	For SignalTap II

	Usability Enhancements
	Incremental Compilation
	Incremental Routing
	Automation Via Scripting
	Remote Debugging

	Suggested On-Chip Debugging Tools for Common Debugging Features
	About Stimulus‑Capable Tools
	In-System Sources and Probes
	Push Button Functionality

	In-System Memory Content Editor
	Generate Test Vectors

	Virtual JTAG Interface Megafunction
	System Console
	Test Signal Integrity
	Board Bring-Up and Verification
	Test Link Signal Integrity with Transceiver Toolkit

	Document Revision History

	10. Analyzing and Debugging Designs with the System Console
	About the System Console
	System Level Debugging Architecture
	System Console Flow
	Use-Cases for the System Console
	System Console GUI
	System Explorer Pane

	Setting Up the System Console
	Qsys Components

	Starting System Console
	Starting System Console from Quartus II
	Starting System Console from Qsys
	Starting System Console from Nios II Command Shell

	Services for System Console
	Locating Available Services
	Opening and Closing Services

	Using the System Console
	Interactive Help

	System Console Examples
	Board Bring-Up with the System Console Tutorial
	Board Bring-Up Flow
	Qsys Modules
	How the Qsys Modules Work

	Setting Up the Board Bring-Up Design Example
	Verifying JTAG Connectivity
	Verifying Clock and Reset Signals
	Verifying Memory and Other Peripheral Interfaces
	Locating and Opening the Master Service
	Avalon-MM Slaves
	Testing the PIO component
	Testing On-chip Memory
	Testing the Checksum Accelerator

	Creating a Simple Dashboard Example
	Nios II Processor Example
	On-Board USB Blaster II Support
	Console Commands
	Plugins
	Design Service Commands
	Programmable Logic Device (PLD) Commands
	Monitor Commands
	Trace Commands
	Board Bring-Up Commands
	JTAG Debug Commands
	Clock and Reset Signal Commands
	Avalon-MM Commands
	SLD Commands
	Claim Values for Claim Services

	Processor Commands
	Bytestream Commands
	Marker Commands
	In-System Sources and Probes Commands
	Dashboard Commands
	Specifying Widgets
	Customizing Widgets
	Assigning Dashboard Widget Properties

	Document Revision History

	11. Debugging Transceiver Links
	Transceiver Debugging Overview
	Using the Transceiver Toolkit GUI
	Controlling Transceiver Channels
	Auto Sweep Testing
	Adaptive Equalization Control
	Signal Eye Margin Testing
	Serial Bit Comparator Mode

	Scripting Support

	Configuring Systems for Debug
	Adapting Altera Design Examples
	Modifying Design Examples
	Modifying Design Example Pin Assignments

	Integrating Debug Components In Your Design
	Configuring BER Tests
	Configuring PRBS Signal Eye Tests
	Configuring Custom Traffic Signal Eye Tests
	Configuring Link Optimization Tests
	Configuring PMA Analog Setting Control

	Debugging Transceiver Links
	Step 1: Load Your Design
	Step 2: Link Hardware Resources
	Linking One Design to One Device
	Linking Two Designs to Two Devices
	Linking Designs and Devices on Separate Boards
	Linking One Design on Two Devices

	Step 3: Verify Hardware Connections
	Step 4: Identify Transceiver Channels
	Step 5: Run Link Tests
	Running BER Tests
	Running PRBS Signal Eye Tests
	Running Custom Traffic Tests
	Running Link Optimization Tests

	Controlling PMA Analog Settings

	Toolkit GUI Setting Reference
	Scripting API
	Transceiver Toolkit Commands
	Data Pattern Generator Commands
	Data Pattern Checker Commands

	Revision History

	12. Quick Design Debugging Using SignalProbe
	Debugging Using the SignalProbe Feature
	Performing a Full Compilation
	Reserving SignalProbe Pins
	Assigning SignalProbe Sources
	Adding Registers Between Pipeline Paths and SignalProbe Pins
	Performing a SignalProbe Compilation
	Analyzing the Results of a SignalProbe Compilation
	SignalProbe Compilation Functions
	Understanding the Results of a SignalProbe Compilation
	Analyzing SignalProbe Routing Failures

	Scripting Support
	Making a SignalProbe Pin
	Deleting a SignalProbe Pin
	Enabling a SignalProbe Pin
	Disabling a SignalProbe Pin
	Performing a SignalProbe Compilation
	Script Example

	Reserving SignalProbe Pins
	Common Problems When Reserving a SignalProbe Pin

	Adding SignalProbe Sources
	Assigning I/O Standards
	Adding Registers for Pipelining
	Running SignalProbe Immediately After a Full Compilation
	Running SignalProbe Manually
	Enabling or Disabling All SignalProbe Routing
	Allowing SignalProbe to Modify Fitting Results

	Document Revision History

	13. Design Debugging Using the SignalTap II Logic Analyzer
	Hardware and Software Requirements
	Design Flow Using the SignalTap II Logic Analyzer
	SignalTap II Logic Analyzer Task Flow
	Add the SignalTap II Logic Analyzer to Your Design
	Configure the SignalTap II Logic Analyzer
	Define Trigger Conditions
	Compile the Design
	Program the Target Device or Devices
	Run the SignalTap II Logic Analyzer
	View, Analyze, and Use Captured Data
	Embedding Multiple Analyzers in One FPGA
	Monitoring FPGA Resources Used by the SignalTap II Logic Analyzer
	Using the MegaWizard Plug-In Manager to Create Your Logic Analyzer

	Configure the SignalTap II Logic Analyzer
	Assigning an Acquisition Clock
	Adding Signals to the SignalTap II File
	Signal Preservation
	Assigning Data Signals Using the Technology Map Viewer
	Node List Signal Use Options
	Untappable Signals

	Adding Signals with a Plug-In
	Adding Finite State Machine State Encoding Registers
	Modifying and Restoring Mnemonic Tables for State Machines
	Additional Considerations

	Specifying the Sample Depth
	Capturing Data to a Specific RAM Type
	Choosing the Buffer Acquisition Mode
	Non-Segmented Buffer
	Segmented Buffer

	Using the Storage Qualifier Feature
	Input Port Mode
	Transitional Mode
	Conditional Mode
	Start/Stop Mode
	State-Based
	Showing Data Discontinuities
	Disable Storage Qualifier

	Managing Multiple SignalTap II Files and Configurations

	Define Triggers
	Creating Basic Trigger Conditions
	Creating Advanced Trigger Conditions
	Examples of Advanced Triggering Expressions

	Trigger Condition Flow Control
	Sequential Triggering
	State-Based Triggering
	SignalTap II Trigger Flow Description Language
	State Labels
	Boolean_expression
	Action_list
	Resource Manipulation Action
	Buffer Control Action
	State Transition Action
	Using the State-Based Storage Qualifier Feature

	Specifying the Trigger Position
	Creating a Power-Up Trigger
	Enabling a Power-Up Trigger
	Managing and Configuring Power-Up and Runtime Trigger Conditions

	Using External Triggers
	Using the Trigger Out of One Analyzer as the Trigger In of Another Analyzer

	Compile the Design
	Faster Compilations with Quartus II Incremental Compilation
	Enabling Incremental Compilation for Your Design
	Using Incremental Compilation with the SignalTap II Logic Analyzer

	Preventing Changes Requiring Recompilation
	Timing Preservation with the SignalTap II Logic Analyzer
	Performance and Resource Considerations

	Program the Target Device or Devices
	Run the SignalTap II Logic Analyzer
	Runtime Reconfigurable Options
	SignalTap II Status Messages

	View, Analyze, and Use Captured Data
	Capturing Data Using Segmented Buffers
	Differences in Pre-fill Write Behavior Between Different Acquisition Modes
	Creating Mnemonics for Bit Patterns
	Automatic Mnemonics with a Plug-In
	Locating a Node in the Design
	Saving Captured Data
	Exporting Captured Data to Other File Formats
	Creating a SignalTap II List File

	Other Features
	Using the SignalTap II MATLAB MEX Function to Capture Data
	Using SignalTap II in a Lab Environment
	Remote Debugging Using the SignalTap II Logic Analyzer
	Debugging Using a Local PC and an Altera SoC
	Debugging Using a Local PC and a Remote PC

	Using the SignalTap II Logic Analyzer in Devices with Configuration Bitstream Security
	Backward Compatibility with Previous Versions of Quartus II Software
	SignalTap II Command-Line Options
	SignalTap II Tcl Commands

	Design Example: Using SignalTap II Logic Analyzers
	Custom Triggering Flow Application Examples
	Design Example 1: Specifying a Custom Trigger Position
	Design Example 2: Trigger When triggercond1 Occurs Ten Times between triggercond2 and triggercond3

	SignalTap II Scripting Support
	Conclusion
	Document Revision History

	14. In-System Debugging Using External Logic Analyzers
	Choosing a Logic Analyzer
	Required Components

	Debugging Your Design Using the LAI
	Working with LAI Files
	Configuring the File Core Parameters
	Mapping the LAI File Pins to Available I/O Pins
	Mapping Internal Signals to the LAI Banks
	Using the Node Finder
	Compiling Your Quartus II Project
	Programming Your Altera-Supported Device Using the LAI

	Controlling the Active Bank During Runtime
	Acquiring Data on Your Logic Analyzer

	Using the LAI with Incremental Compilation
	Conclusion
	Document Revision History

	15. In-System Modification of Memory and Constants
	Overview
	Updating Memory and Constants in Your Design
	Creating In-System Modifiable Memories and Constants
	Running the In-System Memory Content Editor
	Instance Manager
	Editing Data Displayed in the Hex Editor Pane
	Importing and Exporting Memory Files
	Scripting Support
	Programming the Device with the In-System Memory Content Editor
	Example: Using the In-System Memory Content Editor with the SignalTap II Logic Analyzer

	Conclusion
	Document Revision History

	16. Design Debugging Using In-System Sources and Probes
	Overview
	Hardware and Software Requirements

	Design Flow Using the In-System Sources and Probes Editor
	Configuring the ALTSOURCE_PROBE Megafunction
	Instantiating the ALTSOURCE_PROBE Megafunction
	Compiling the Design

	Running the In-System Sources and Probes Editor
	Programming Your Device With JTAG Chain Configuration
	Instance Manager
	In-System Sources and Probes Editor Pane
	Reading Probe Data
	Writing Data
	Organizing Data

	Tcl interface for the In-System Sources and Probes Editor
	Design Example: Dynamic PLL Reconfiguration
	Conclusion
	Document Revision History

	Section V. Formal Verification
	17. Cadence Encounter Conformal Support
	Formal Verification Versus Simulation
	Formal Verification: What You Must Know
	Formal Verification Design Flow
	Quartus II Integrated Synthesis
	EDA Tool Support for Quartus II Integrated Synthesis

	Synplify Pro

	RTL Coding Guidelines for Quartus II Integrated Synthesis
	Synthesis Directives and Attributes
	Fixed-Output Registers
	ROM, LPM_DIVIDE, and Shift Register Inference
	RAM Inference
	Latch Inference
	Combinational Loops
	Finite State Machine Coding Styles

	Black Boxes in the Conformal LEC Flow
	Generating the Post-Fit Netlist Output File and the Conformal LEC Setup Files
	Quartus II Software Generated Files, Formal Verification Scripts, and Directories

	Understanding the Formal Verification Scripts for the Conformal LEC Software
	Conformal LEC Commands in the Quartus II Software Generated Scripts

	Comparing Designs Using the Conformal LEC Software
	Running the Conformal LEC Software from the GUI
	Running the Conformal LEC Software From a System Command Prompt

	Known Issues and Limitations
	Black Box Models
	Conformal Dofile/Script Example
	Conclusion
	Document Revision History

	Section VI. Device Programming
	18. Quartus II Programmer
	Programming Flow
	Optional Programming or Configuration Files
	Secondary Programming Files

	Quartus II Programmer GUI
	Editing the Device Details of an Unknown Device
	Setting Up Your Hardware
	Setting the JTAG Hardware
	Using the JTAG Chain Debugger Tool

	Stand-Alone Quartus II Programmer
	Programming and Configuration Modes
	Design Security Keys
	Convert Programming Files Dialog Box
	Debugging Your Configuration
	Converting Programming Files for Partial Reconfiguration
	Generating .pmsf using a .msf and a .sof
	Generating .rbf for Partial Reconfiguration Using a .pmsf
	Enable Decompression during Partial Reconfiguration Option

	Flash Loaders
	JTAG Debug Mode for Partial Reconfiguration
	Configuring Partial Reconfiguration Bitstream in JTAG Debug Mode

	Scripting Support
	The jtagconfig Debugging Tool
	Generating .pmsf using a .msf and a .sof
	Generating .rbf for Partial Reconfiguration using a .pmsf

	Document Revision History

	Additional Information
	How to Contact Altera
	Typographic Conventions

