
1

Installing and Using GHDL
Richard Susta, Dept. of Control Eng. CTU-FEE in Prague

Version 1.1 from Sept 30, 2024

Document home page: https://dcenet.fel.cvut.cz/edu/fpga/install_en.aspx

Content
About GHDL .. 1

Installing MSYS2 ... 2

Installing GHDL .. 3

Installing GtkWave Utility .. 5

Environment Setup ... 6

Using GHDL .. 7

About GHDL

 GHDL compiles the VHDL source code into a Windows exe file. According to our

tests, the whole translation-simulation cycle is as fast as in the professional

simulators. The latter, however, requires us to know its development

environment (quite different) as well as the creation of the project. It specifies

the bugs in VHDL more precisely, but one must know how to use it.

 GHDL quickly runs even from the command terminal of Visual Studio Code.

 The entire installation of GHDL with GTKWave requires approximately 2.7 GB,

slightly less than ModelSim or Questa, and was created for Linux. It does not

use the Windows registry or its system folders and can be cleanly uninstalled.

 GHDL fully supports the 1987, 1993, and 2002 versions of the IEEE 1076 VHDL

standards and the main features of its 2008 revision.

 GHDL runs on Linux, Windows, and Apple OS X. It is an open-source project

with active contributors, see https://github.com/ghdl/. You can freely download

a binary distribution for your OS or try to compile GHDL on your machine.

 Linux installation of GHDL is straightforward but more complicated in Windows

because it requires adding MINGW, Minimalist GNU for Windows.

 Beware! Native Windows versions also exist, but they are all obsolete. The

authors no longer generate such distributions.

 The GHDL project now supports only MSYS2, Minimal System, i.e., MinGW

component (Minimalist GNU for Windows) as the established Software

Distribution and Building Platforms for Windows.

 We must start by installing MSYS2.

https://susta.cz/
https://control.fel.cvut.cz/en
https://dcenet.fel.cvut.cz/edu/fpga/install_en.aspx
https://github.com/ghdl/

2

Installing MSYS2

Go to the official project's WEB site and download the actual installer. All images

from the document are screenshots of msys2-x86_64-20240113.exe version from Jan

13,2024. Run the installer and confirm the security warning:

Click [Next] on

the introductory dialog.

Enter your desired installation Folder. It must have a short ASCII-only path to an

SSD or HD with NTFS volume. The default is C:\msys64\

Its path cannot contain accents, diacritic marks, spaces, symlinks pointing to another

file or directory, and associated subst to virtual drives. The network drives, and FAT

volumes are also not supported.

Choose a menu shortcut on the

following screen and run the
installation by [Next].

https://www.msys2.org/
https://github.com/msys2/msys2-installer/releases/download/2024-07-27/msys2-x86_64-20240727.exe

3

The installation will report all its actions And finally, it finishes.

If the UCRT64 terminal window appears, you can close it. We do not need it.

Installing GHDL

With MSYS2, we can install GHDL. Open a MSYS2 MSYS console from the

Windows Start menu.

To install the 64-bit version of GHDL, we use the following command :

pacman -S mingw64/mingw-w64-x86_64-ghdl-llvm

Copy it into MSYS2 MSYS command console:

4

The Pacman (Packet Manager) finds necessary changes. Confirm them by entering Y.

The installation will again report all actions as general Linux program behavior.

5

Finally, it reports done.

Installing GtkWave Utility

We also need GTKWave to see the signals generated by the GHDL simulation. Copy

the following line to the MSYS2 window and start the command:

pacman -S mingw64/mingw-w64-x86_64-gtkwave

By entering Y, we confirm the changes offered by Pacman:

GtkWave installation also reports all its actions:

Finally, it terminates. We can close the MSYS command line window.

6

Environment Setup

We add the location of GHDL to the end of PATH, which is more robust. In batch

command shell files, we can temporarily move it to the front of PATH at any time.

We press the Windows keyboard Key and start writing the word environment. After

its first three letters, Windows should offer the choice:

We select it and choose [Environment Variables…] in the System Properties window.

Then, we edit the Path in the System variables.

7

We found out the location of our ghdl.exe. If we did not change the defaults, it is:

We append it to the end of the Path:

Using GHDL

We also have Quartus installed, which uses MinGW but a different version than GHDL,

which is nothing new in the installation hell of the computer world where it is not wise

to mix versions. Because of this, we have added mingw64 to the end of PATH!

For the same reason, we cannot simply run ghdl.exe stand-alone or utilize a makefile,

but we must embed it into the Windows shell script, in which we can temporarily

move the path to GHDL utilities to the top.

Suppose we placed all necessary files into C:\SPS\GHDL_MHL2\

Morse beacon needs only MorseMHL2.vhd and testbench_morse.vhd for GHDL. The

testbench_morse was explained in the lectures.

8

In the simulation subfolder, we have 2 batch files. The first is runmorse.bat, which

contains the following Windows shell commands:

@ECHO OFF
rem We specify the following sets as temporary
SETLOCAL
rem Testbench filename is without extension
set TBNAME=testbench_morse
rem Files used by the testbench have extensions and relative paths
set FILES=../MorseMHL2.vhd
rem Simulation running time, us=microsecond
set SIMTIME=1us
rem Our name of simulation temporary results
set SIMNAME=MySim

rem Temporary moving mingw64 to top of PATH
set PATH=C:\msys64\mingw64\bin\;%PATH%
rem Compile for VHDL-2008
set GHDL_FLAGS=-fsynopsys --std=08
rem We use %SIMNAME%.vcd as the flag of succesful compilation
if exist %SIMNAME%.vcd del %SIMNAME%.vcd
rem Analyse –a create object files, -e create exe, -r run exe
@ECHO ON

ghdl.exe -a %GHDL_FLAGS% %FILES% ../%TBNAME%.vhd
@IF ERRORLEVEL 1 GOTO BAT-END
ghdl.exe -e %GHDL_FLAGS% %TBNAME%
@IF ERRORLEVEL 1 GOTO BAT-END
ghdl.exe -r %GHDL_FLAGS% %TBNAME% --vcd=%SIMNAME%.vcd --stop-time=%SIMTIME%
:BAT-END

Its commands:

ECHO OFF – do not print lines, ON printing all lines that do not begin by @

SETLOCAL - it starts the localization of environment variables that will be valid until

the end of the batch file or a matching ENDLOCAL command is reached.

rem - the next text is comment till the end of the line.

set TBNAME - the entity of testbench, just name, no extension or path

set FILES= - file(s) referenced in testbench separated by spaces

set SIMTIME - running time, here, 1 microsecond

set SIMNAME.. – any free name for temporary files

set PATH - the temporary move mingw64 path to the top.

set GHDL_FLAGS - switching on VHDL 2008 support.

9

ghdl.exe -a

It analyzes VHDL files in the upper directory. Notice their compilation order!

The FILES must precede testbench file.

IF ERRORLEVEL 1 GOTO BAT-END - go to end if the previous command exits on an error.

ghdl.exe -e creates the simulation in testbench_morse.exe file.

ghdl.exe -r runs the executable and creates morse.vcd.

Note: If we want to simulate another VHDL file, change set commands.

Running runmorse.bat from Visual Studio Code terminal:

C:\SPS\GHDL_MHL2\simulation> .\runmorse.bat

C:\SPS\GHDL_MHL2\simulation>ghdl.exe -a -fsynopsys --std=08 ../MorseMHL2.vhd ../testbench_morse.vhd

C:\SPS\GHDL_MHL2\simulation>ghdl.exe -e -fsynopsys --std=08 testbench_morse

C:\SPS\GHDL_MHL2\simulation>ghdl.exe -r -fsynopsys --std=08 testbench_morse --vcd=MySim.vcd --wave=MySim.ghw --

stop-time=1us

.\testbench_morse.exe:info: simulation stopped by --stop-time @1us

PS C:\SPS\GHDL_MHL2\simulation>

After successful compilation, we run runwave.bat

C:\SPS\GHDL_MHL2\simulation> .\runwave.bat

It contains the following commands. Note: SIMNAM must agree with runmorse

@ECHO OFF

rem We specify the following sets as temporary

SETLOCAL

set SIMNAME=MySim

rem Temporary moving mingw64 to top

set PATH=C:\msys64\mingw64\bin\;%PATH%

IF exist ./%SIMNAME%.vcd (

 rem Run gtkwave and continue batch commands

 start gtkwave ./%SIMNAME%.vcd

) ELSE (

echo There's nothing to view. First, the compilation must exit successfully.

)

The shell command "start" opens a separate Command Prompt window, in which it

runs gtkwave.exe. The runwave.bat shell continues and is closed.

In GtkWave, we first press Zoom Fit to see the simulated time

interval and adjust the zoom with the mouse wheel.

10

By double-clicking on the signal list, we first add desired waves, and by right-clicking

on them, we can change their colors or listed data formats.

The gtkwave program loads .vcd (.vcd=Value Change Dump) result of ghdl.exe.

If we create a new *.vcd by subsequent runmorse.bat, we only reload *.vcd from

GTKWave: File->Reload Waveform

We can reload next time if we store the simulation to keep signals and their settings.

The command "Read Save File" loads the saved signals and their waves, and then we

reload them to refresh data. The colors and formats remain.

https://en.wikipedia.org/wiki/Value_change_dump

11

The batch scripts can be also executed from Visual Studio Code terminal, which has a

lot of extensions for VHDL coding. The following pictures were created with the aid of

the 2024-02-03 release of the extension:

First, from Visual Studio Code, open the folder

with simulated files. In the MHL2 example case, it
is: C:\SPS\GHDL_MHL2 folder.

After opening the folder, create a new command line terminal:

.

The command window starts in the folder C:\SPS\GHDL_MHL2.

First, we must change its default path to the simulation subdirectory, where we

intentionally placed runmorse.bat and runwave.bat. Hence, the intermediate GHDL

compilation files also remain here and do not mess up the main folder.

Then, we execute the batch files:

12

Notes:

 The command line windows accept '/' or '\' characters as folder separators.

 By default, Windows PowerShell does not load files from the current location in all

cases. It keeps Linux customs.

We must add ./ or .\ in front of all filenames in our current directory.

 Pressing the [TAB] autocompletes the command. If more than one option is

available, we can hit [TAB] again to display the following possible choices or

continue typing until only one matching choice is left.

In the example above, we wrote down only:

cd ./ after TAB, it was autocompleted to cd .\simulation\

./r pressing TAB autocompleted to .\runmorse.bat

./r two TABs autocompleted to .\runwave.bat

Professional simulators such as ModelSim or Questa offer more possibilities, but their

environments differ from programming tools, so they need effort to learn and more

steps to run simulations.

GHDL simulates as fast as professional simulators and is much easier to run. Using

GHDL, we can debug more advanced tasks, such as a circuit that will economically

create an LCD control panel background image, which will be the following credit

project in our Logic Systems and Processors course.

 [The image source Corel 9 ClipArts]
~~~ The End ~~~ 

https://dcenet.fel.cvut.cz/edu/fpga/Default_en.aspx

